1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 ZFS_ENTER(zfsvfs); 212 ZFS_VERIFY_ZP(zp); 213 214 /* Decrement the synchronous opens in the znode */ 215 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 216 atomic_dec_32(&zp->z_sync_cnt); 217 218 /* 219 * Clean up any locks held by this process on the vp. 220 */ 221 cleanlocks(vp, ddi_get_pid(), 0); 222 cleanshares(vp, ddi_get_pid()); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 451 ZFS_ENTER(zfsvfs); 452 ZFS_VERIFY_ZP(zp); 453 os = zfsvfs->z_os; 454 455 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 456 ZFS_EXIT(zfsvfs); 457 return (EACCES); 458 } 459 460 /* 461 * Validate file offset 462 */ 463 if (uio->uio_loffset < (offset_t)0) { 464 ZFS_EXIT(zfsvfs); 465 return (EINVAL); 466 } 467 468 /* 469 * Fasttrack empty reads 470 */ 471 if (uio->uio_resid == 0) { 472 ZFS_EXIT(zfsvfs); 473 return (0); 474 } 475 476 /* 477 * Check for mandatory locks 478 */ 479 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 480 if (error = chklock(vp, FREAD, 481 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 482 ZFS_EXIT(zfsvfs); 483 return (error); 484 } 485 } 486 487 /* 488 * If we're in FRSYNC mode, sync out this znode before reading it. 489 */ 490 if (ioflag & FRSYNC) 491 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 492 493 /* 494 * Lock the range against changes. 495 */ 496 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 497 498 /* 499 * If we are reading past end-of-file we can skip 500 * to the end; but we might still need to set atime. 501 */ 502 if (uio->uio_loffset >= zp->z_phys->zp_size) { 503 error = 0; 504 goto out; 505 } 506 507 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 508 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 509 510 while (n > 0) { 511 nbytes = MIN(n, zfs_read_chunk_size - 512 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 513 514 if (vn_has_cached_data(vp)) 515 error = mappedread(vp, nbytes, uio); 516 else 517 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 518 if (error) { 519 /* convert checksum errors into IO errors */ 520 if (error == ECKSUM) 521 error = EIO; 522 break; 523 } 524 525 n -= nbytes; 526 } 527 528 out: 529 zfs_range_unlock(rl); 530 531 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 532 ZFS_EXIT(zfsvfs); 533 return (error); 534 } 535 536 /* 537 * Write the bytes to a file. 538 * 539 * IN: vp - vnode of file to be written to. 540 * uio - structure supplying write location, range info, 541 * and data buffer. 542 * ioflag - FAPPEND flag set if in append mode. 543 * cr - credentials of caller. 544 * ct - caller context (NFS/CIFS fem monitor only) 545 * 546 * OUT: uio - updated offset and range. 547 * 548 * RETURN: 0 if success 549 * error code if failure 550 * 551 * Timestamps: 552 * vp - ctime|mtime updated if byte count > 0 553 */ 554 /* ARGSUSED */ 555 static int 556 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 557 { 558 znode_t *zp = VTOZ(vp); 559 rlim64_t limit = uio->uio_llimit; 560 ssize_t start_resid = uio->uio_resid; 561 ssize_t tx_bytes; 562 uint64_t end_size; 563 dmu_tx_t *tx; 564 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 565 zilog_t *zilog; 566 offset_t woff; 567 ssize_t n, nbytes; 568 rl_t *rl; 569 int max_blksz = zfsvfs->z_max_blksz; 570 uint64_t pflags; 571 int error; 572 arc_buf_t *abuf; 573 574 /* 575 * Fasttrack empty write 576 */ 577 n = start_resid; 578 if (n == 0) 579 return (0); 580 581 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 582 limit = MAXOFFSET_T; 583 584 ZFS_ENTER(zfsvfs); 585 ZFS_VERIFY_ZP(zp); 586 587 /* 588 * If immutable or not appending then return EPERM 589 */ 590 pflags = zp->z_phys->zp_flags; 591 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 592 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 593 (uio->uio_loffset < zp->z_phys->zp_size))) { 594 ZFS_EXIT(zfsvfs); 595 return (EPERM); 596 } 597 598 zilog = zfsvfs->z_log; 599 600 /* 601 * Pre-fault the pages to ensure slow (eg NFS) pages 602 * don't hold up txg. 603 */ 604 uio_prefaultpages(n, uio); 605 606 /* 607 * If in append mode, set the io offset pointer to eof. 608 */ 609 if (ioflag & FAPPEND) { 610 /* 611 * Range lock for a file append: 612 * The value for the start of range will be determined by 613 * zfs_range_lock() (to guarantee append semantics). 614 * If this write will cause the block size to increase, 615 * zfs_range_lock() will lock the entire file, so we must 616 * later reduce the range after we grow the block size. 617 */ 618 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 619 if (rl->r_len == UINT64_MAX) { 620 /* overlocked, zp_size can't change */ 621 woff = uio->uio_loffset = zp->z_phys->zp_size; 622 } else { 623 woff = uio->uio_loffset = rl->r_off; 624 } 625 } else { 626 woff = uio->uio_loffset; 627 /* 628 * Validate file offset 629 */ 630 if (woff < 0) { 631 ZFS_EXIT(zfsvfs); 632 return (EINVAL); 633 } 634 635 /* 636 * If we need to grow the block size then zfs_range_lock() 637 * will lock a wider range than we request here. 638 * Later after growing the block size we reduce the range. 639 */ 640 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 641 } 642 643 if (woff >= limit) { 644 zfs_range_unlock(rl); 645 ZFS_EXIT(zfsvfs); 646 return (EFBIG); 647 } 648 649 if ((woff + n) > limit || woff > (limit - n)) 650 n = limit - woff; 651 652 /* 653 * Check for mandatory locks 654 */ 655 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 656 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 657 zfs_range_unlock(rl); 658 ZFS_EXIT(zfsvfs); 659 return (error); 660 } 661 end_size = MAX(zp->z_phys->zp_size, woff + n); 662 663 /* 664 * Write the file in reasonable size chunks. Each chunk is written 665 * in a separate transaction; this keeps the intent log records small 666 * and allows us to do more fine-grained space accounting. 667 */ 668 while (n > 0) { 669 abuf = NULL; 670 woff = uio->uio_loffset; 671 672 again: 673 if (zfs_usergroup_overquota(zfsvfs, 674 B_FALSE, zp->z_phys->zp_uid) || 675 zfs_usergroup_overquota(zfsvfs, 676 B_TRUE, zp->z_phys->zp_gid)) { 677 if (abuf != NULL) 678 dmu_return_arcbuf(abuf); 679 error = EDQUOT; 680 break; 681 } 682 683 /* 684 * If dmu_assign_arcbuf() is expected to execute with minimum 685 * overhead loan an arc buffer and copy user data to it before 686 * we enter a txg. This avoids holding a txg forever while we 687 * pagefault on a hanging NFS server mapping. 688 */ 689 if (abuf == NULL && n >= max_blksz && 690 woff >= zp->z_phys->zp_size && 691 P2PHASE(woff, max_blksz) == 0 && 692 zp->z_blksz == max_blksz) { 693 size_t cbytes; 694 695 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 696 ASSERT(abuf != NULL); 697 ASSERT(arc_buf_size(abuf) == max_blksz); 698 if (error = uiocopy(abuf->b_data, max_blksz, 699 UIO_WRITE, uio, &cbytes)) { 700 dmu_return_arcbuf(abuf); 701 break; 702 } 703 ASSERT(cbytes == max_blksz); 704 } 705 706 /* 707 * Start a transaction. 708 */ 709 tx = dmu_tx_create(zfsvfs->z_os); 710 dmu_tx_hold_bonus(tx, zp->z_id); 711 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 712 error = dmu_tx_assign(tx, TXG_NOWAIT); 713 if (error) { 714 if (error == ERESTART) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 goto again; 718 } 719 dmu_tx_abort(tx); 720 if (abuf != NULL) 721 dmu_return_arcbuf(abuf); 722 break; 723 } 724 725 /* 726 * If zfs_range_lock() over-locked we grow the blocksize 727 * and then reduce the lock range. This will only happen 728 * on the first iteration since zfs_range_reduce() will 729 * shrink down r_len to the appropriate size. 730 */ 731 if (rl->r_len == UINT64_MAX) { 732 uint64_t new_blksz; 733 734 if (zp->z_blksz > max_blksz) { 735 ASSERT(!ISP2(zp->z_blksz)); 736 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 737 } else { 738 new_blksz = MIN(end_size, max_blksz); 739 } 740 zfs_grow_blocksize(zp, new_blksz, tx); 741 zfs_range_reduce(rl, woff, n); 742 } 743 744 /* 745 * XXX - should we really limit each write to z_max_blksz? 746 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 747 */ 748 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 749 750 if (abuf == NULL) { 751 tx_bytes = uio->uio_resid; 752 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 753 nbytes, tx); 754 tx_bytes -= uio->uio_resid; 755 } else { 756 tx_bytes = nbytes; 757 ASSERT(tx_bytes == max_blksz); 758 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 759 ASSERT(tx_bytes <= uio->uio_resid); 760 uioskip(uio, tx_bytes); 761 } 762 if (tx_bytes && vn_has_cached_data(vp)) { 763 update_pages(vp, woff, 764 tx_bytes, zfsvfs->z_os, zp->z_id); 765 } 766 767 /* 768 * If we made no progress, we're done. If we made even 769 * partial progress, update the znode and ZIL accordingly. 770 */ 771 if (tx_bytes == 0) { 772 dmu_tx_commit(tx); 773 ASSERT(error != 0); 774 break; 775 } 776 777 /* 778 * Clear Set-UID/Set-GID bits on successful write if not 779 * privileged and at least one of the excute bits is set. 780 * 781 * It would be nice to to this after all writes have 782 * been done, but that would still expose the ISUID/ISGID 783 * to another app after the partial write is committed. 784 * 785 * Note: we don't call zfs_fuid_map_id() here because 786 * user 0 is not an ephemeral uid. 787 */ 788 mutex_enter(&zp->z_acl_lock); 789 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 790 (S_IXUSR >> 6))) != 0 && 791 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 792 secpolicy_vnode_setid_retain(cr, 793 (zp->z_phys->zp_mode & S_ISUID) != 0 && 794 zp->z_phys->zp_uid == 0) != 0) { 795 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 796 } 797 mutex_exit(&zp->z_acl_lock); 798 799 /* 800 * Update time stamp. NOTE: This marks the bonus buffer as 801 * dirty, so we don't have to do it again for zp_size. 802 */ 803 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 804 805 /* 806 * Update the file size (zp_size) if it has changed; 807 * account for possible concurrent updates. 808 */ 809 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 810 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 811 uio->uio_loffset); 812 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 813 dmu_tx_commit(tx); 814 815 if (error != 0) 816 break; 817 ASSERT(tx_bytes == nbytes); 818 n -= nbytes; 819 } 820 821 zfs_range_unlock(rl); 822 823 /* 824 * If we're in replay mode, or we made no progress, return error. 825 * Otherwise, it's at least a partial write, so it's successful. 826 */ 827 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 828 ZFS_EXIT(zfsvfs); 829 return (error); 830 } 831 832 if (ioflag & (FSYNC | FDSYNC)) 833 zil_commit(zilog, zp->z_last_itx, zp->z_id); 834 835 ZFS_EXIT(zfsvfs); 836 return (0); 837 } 838 839 void 840 zfs_get_done(dmu_buf_t *db, void *vzgd) 841 { 842 zgd_t *zgd = (zgd_t *)vzgd; 843 rl_t *rl = zgd->zgd_rl; 844 vnode_t *vp = ZTOV(rl->r_zp); 845 objset_t *os = rl->r_zp->z_zfsvfs->z_os; 846 847 dmu_buf_rele(db, vzgd); 848 zfs_range_unlock(rl); 849 /* 850 * Release the vnode asynchronously as we currently have the 851 * txg stopped from syncing. 852 */ 853 VN_RELE_ASYNC(vp, dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 854 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 855 kmem_free(zgd, sizeof (zgd_t)); 856 } 857 858 /* 859 * Get data to generate a TX_WRITE intent log record. 860 */ 861 int 862 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 863 { 864 zfsvfs_t *zfsvfs = arg; 865 objset_t *os = zfsvfs->z_os; 866 znode_t *zp; 867 uint64_t off = lr->lr_offset; 868 dmu_buf_t *db; 869 rl_t *rl; 870 zgd_t *zgd; 871 int dlen = lr->lr_length; /* length of user data */ 872 int error = 0; 873 874 ASSERT(zio); 875 ASSERT(dlen != 0); 876 877 /* 878 * Nothing to do if the file has been removed 879 */ 880 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 881 return (ENOENT); 882 if (zp->z_unlinked) { 883 /* 884 * Release the vnode asynchronously as we currently have the 885 * txg stopped from syncing. 886 */ 887 VN_RELE_ASYNC(ZTOV(zp), 888 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 889 return (ENOENT); 890 } 891 892 /* 893 * Write records come in two flavors: immediate and indirect. 894 * For small writes it's cheaper to store the data with the 895 * log record (immediate); for large writes it's cheaper to 896 * sync the data and get a pointer to it (indirect) so that 897 * we don't have to write the data twice. 898 */ 899 if (buf != NULL) { /* immediate write */ 900 rl = zfs_range_lock(zp, off, dlen, RL_READER); 901 /* test for truncation needs to be done while range locked */ 902 if (off >= zp->z_phys->zp_size) { 903 error = ENOENT; 904 goto out; 905 } 906 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf, 907 DMU_READ_NO_PREFETCH)); 908 } else { /* indirect write */ 909 uint64_t boff; /* block starting offset */ 910 911 /* 912 * Have to lock the whole block to ensure when it's 913 * written out and it's checksum is being calculated 914 * that no one can change the data. We need to re-check 915 * blocksize after we get the lock in case it's changed! 916 */ 917 for (;;) { 918 if (ISP2(zp->z_blksz)) { 919 boff = P2ALIGN_TYPED(off, zp->z_blksz, 920 uint64_t); 921 } else { 922 boff = 0; 923 } 924 dlen = zp->z_blksz; 925 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 926 if (zp->z_blksz == dlen) 927 break; 928 zfs_range_unlock(rl); 929 } 930 /* test for truncation needs to be done while range locked */ 931 if (off >= zp->z_phys->zp_size) { 932 error = ENOENT; 933 goto out; 934 } 935 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 936 zgd->zgd_rl = rl; 937 zgd->zgd_zilog = zfsvfs->z_log; 938 zgd->zgd_bp = &lr->lr_blkptr; 939 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 940 ASSERT(boff == db->db_offset); 941 lr->lr_blkoff = off - boff; 942 error = dmu_sync(zio, db, &lr->lr_blkptr, 943 lr->lr_common.lrc_txg, zfs_get_done, zgd); 944 ASSERT((error && error != EINPROGRESS) || 945 lr->lr_length <= zp->z_blksz); 946 if (error == 0) 947 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 948 /* 949 * If we get EINPROGRESS, then we need to wait for a 950 * write IO initiated by dmu_sync() to complete before 951 * we can release this dbuf. We will finish everything 952 * up in the zfs_get_done() callback. 953 */ 954 if (error == EINPROGRESS) 955 return (0); 956 dmu_buf_rele(db, zgd); 957 kmem_free(zgd, sizeof (zgd_t)); 958 } 959 out: 960 zfs_range_unlock(rl); 961 /* 962 * Release the vnode asynchronously as we currently have the 963 * txg stopped from syncing. 964 */ 965 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 966 return (error); 967 } 968 969 /*ARGSUSED*/ 970 static int 971 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 972 caller_context_t *ct) 973 { 974 znode_t *zp = VTOZ(vp); 975 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 976 int error; 977 978 ZFS_ENTER(zfsvfs); 979 ZFS_VERIFY_ZP(zp); 980 981 if (flag & V_ACE_MASK) 982 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 983 else 984 error = zfs_zaccess_rwx(zp, mode, flag, cr); 985 986 ZFS_EXIT(zfsvfs); 987 return (error); 988 } 989 990 /* 991 * Lookup an entry in a directory, or an extended attribute directory. 992 * If it exists, return a held vnode reference for it. 993 * 994 * IN: dvp - vnode of directory to search. 995 * nm - name of entry to lookup. 996 * pnp - full pathname to lookup [UNUSED]. 997 * flags - LOOKUP_XATTR set if looking for an attribute. 998 * rdir - root directory vnode [UNUSED]. 999 * cr - credentials of caller. 1000 * ct - caller context 1001 * direntflags - directory lookup flags 1002 * realpnp - returned pathname. 1003 * 1004 * OUT: vpp - vnode of located entry, NULL if not found. 1005 * 1006 * RETURN: 0 if success 1007 * error code if failure 1008 * 1009 * Timestamps: 1010 * NA 1011 */ 1012 /* ARGSUSED */ 1013 static int 1014 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1015 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1016 int *direntflags, pathname_t *realpnp) 1017 { 1018 znode_t *zdp = VTOZ(dvp); 1019 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1020 int error; 1021 1022 ZFS_ENTER(zfsvfs); 1023 ZFS_VERIFY_ZP(zdp); 1024 1025 *vpp = NULL; 1026 1027 if (flags & LOOKUP_XATTR) { 1028 /* 1029 * If the xattr property is off, refuse the lookup request. 1030 */ 1031 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1032 ZFS_EXIT(zfsvfs); 1033 return (EINVAL); 1034 } 1035 1036 /* 1037 * We don't allow recursive attributes.. 1038 * Maybe someday we will. 1039 */ 1040 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1041 ZFS_EXIT(zfsvfs); 1042 return (EINVAL); 1043 } 1044 1045 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1046 ZFS_EXIT(zfsvfs); 1047 return (error); 1048 } 1049 1050 /* 1051 * Do we have permission to get into attribute directory? 1052 */ 1053 1054 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1055 B_FALSE, cr)) { 1056 VN_RELE(*vpp); 1057 *vpp = NULL; 1058 } 1059 1060 ZFS_EXIT(zfsvfs); 1061 return (error); 1062 } 1063 1064 if (dvp->v_type != VDIR) { 1065 ZFS_EXIT(zfsvfs); 1066 return (ENOTDIR); 1067 } 1068 1069 /* 1070 * Check accessibility of directory. 1071 */ 1072 1073 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1074 ZFS_EXIT(zfsvfs); 1075 return (error); 1076 } 1077 1078 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1079 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1080 ZFS_EXIT(zfsvfs); 1081 return (EILSEQ); 1082 } 1083 1084 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1085 if (error == 0) { 1086 /* 1087 * Convert device special files 1088 */ 1089 if (IS_DEVVP(*vpp)) { 1090 vnode_t *svp; 1091 1092 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1093 VN_RELE(*vpp); 1094 if (svp == NULL) 1095 error = ENOSYS; 1096 else 1097 *vpp = svp; 1098 } 1099 } 1100 1101 ZFS_EXIT(zfsvfs); 1102 return (error); 1103 } 1104 1105 /* 1106 * Attempt to create a new entry in a directory. If the entry 1107 * already exists, truncate the file if permissible, else return 1108 * an error. Return the vp of the created or trunc'd file. 1109 * 1110 * IN: dvp - vnode of directory to put new file entry in. 1111 * name - name of new file entry. 1112 * vap - attributes of new file. 1113 * excl - flag indicating exclusive or non-exclusive mode. 1114 * mode - mode to open file with. 1115 * cr - credentials of caller. 1116 * flag - large file flag [UNUSED]. 1117 * ct - caller context 1118 * vsecp - ACL to be set 1119 * 1120 * OUT: vpp - vnode of created or trunc'd entry. 1121 * 1122 * RETURN: 0 if success 1123 * error code if failure 1124 * 1125 * Timestamps: 1126 * dvp - ctime|mtime updated if new entry created 1127 * vp - ctime|mtime always, atime if new 1128 */ 1129 1130 /* ARGSUSED */ 1131 static int 1132 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1133 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1134 vsecattr_t *vsecp) 1135 { 1136 znode_t *zp, *dzp = VTOZ(dvp); 1137 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1138 zilog_t *zilog; 1139 objset_t *os; 1140 zfs_dirlock_t *dl; 1141 dmu_tx_t *tx; 1142 int error; 1143 ksid_t *ksid; 1144 uid_t uid; 1145 gid_t gid = crgetgid(cr); 1146 zfs_acl_ids_t acl_ids; 1147 boolean_t fuid_dirtied; 1148 1149 /* 1150 * If we have an ephemeral id, ACL, or XVATTR then 1151 * make sure file system is at proper version 1152 */ 1153 1154 ksid = crgetsid(cr, KSID_OWNER); 1155 if (ksid) 1156 uid = ksid_getid(ksid); 1157 else 1158 uid = crgetuid(cr); 1159 1160 if (zfsvfs->z_use_fuids == B_FALSE && 1161 (vsecp || (vap->va_mask & AT_XVATTR) || 1162 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1163 return (EINVAL); 1164 1165 ZFS_ENTER(zfsvfs); 1166 ZFS_VERIFY_ZP(dzp); 1167 os = zfsvfs->z_os; 1168 zilog = zfsvfs->z_log; 1169 1170 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1171 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1172 ZFS_EXIT(zfsvfs); 1173 return (EILSEQ); 1174 } 1175 1176 if (vap->va_mask & AT_XVATTR) { 1177 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1178 crgetuid(cr), cr, vap->va_type)) != 0) { 1179 ZFS_EXIT(zfsvfs); 1180 return (error); 1181 } 1182 } 1183 top: 1184 *vpp = NULL; 1185 1186 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1187 vap->va_mode &= ~VSVTX; 1188 1189 if (*name == '\0') { 1190 /* 1191 * Null component name refers to the directory itself. 1192 */ 1193 VN_HOLD(dvp); 1194 zp = dzp; 1195 dl = NULL; 1196 error = 0; 1197 } else { 1198 /* possible VN_HOLD(zp) */ 1199 int zflg = 0; 1200 1201 if (flag & FIGNORECASE) 1202 zflg |= ZCILOOK; 1203 1204 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1205 NULL, NULL); 1206 if (error) { 1207 if (strcmp(name, "..") == 0) 1208 error = EISDIR; 1209 ZFS_EXIT(zfsvfs); 1210 return (error); 1211 } 1212 } 1213 if (zp == NULL) { 1214 uint64_t txtype; 1215 1216 /* 1217 * Create a new file object and update the directory 1218 * to reference it. 1219 */ 1220 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1221 goto out; 1222 } 1223 1224 /* 1225 * We only support the creation of regular files in 1226 * extended attribute directories. 1227 */ 1228 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1229 (vap->va_type != VREG)) { 1230 error = EINVAL; 1231 goto out; 1232 } 1233 1234 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1235 &acl_ids)) != 0) 1236 goto out; 1237 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1238 error = EDQUOT; 1239 goto out; 1240 } 1241 1242 tx = dmu_tx_create(os); 1243 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1244 fuid_dirtied = zfsvfs->z_fuid_dirty; 1245 if (fuid_dirtied) 1246 zfs_fuid_txhold(zfsvfs, tx); 1247 dmu_tx_hold_bonus(tx, dzp->z_id); 1248 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1249 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1250 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1251 0, SPA_MAXBLOCKSIZE); 1252 } 1253 error = dmu_tx_assign(tx, TXG_NOWAIT); 1254 if (error) { 1255 zfs_acl_ids_free(&acl_ids); 1256 zfs_dirent_unlock(dl); 1257 if (error == ERESTART) { 1258 dmu_tx_wait(tx); 1259 dmu_tx_abort(tx); 1260 goto top; 1261 } 1262 dmu_tx_abort(tx); 1263 ZFS_EXIT(zfsvfs); 1264 return (error); 1265 } 1266 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1267 1268 if (fuid_dirtied) 1269 zfs_fuid_sync(zfsvfs, tx); 1270 1271 (void) zfs_link_create(dl, zp, tx, ZNEW); 1272 1273 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1274 if (flag & FIGNORECASE) 1275 txtype |= TX_CI; 1276 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1277 vsecp, acl_ids.z_fuidp, vap); 1278 zfs_acl_ids_free(&acl_ids); 1279 dmu_tx_commit(tx); 1280 } else { 1281 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1282 1283 /* 1284 * A directory entry already exists for this name. 1285 */ 1286 /* 1287 * Can't truncate an existing file if in exclusive mode. 1288 */ 1289 if (excl == EXCL) { 1290 error = EEXIST; 1291 goto out; 1292 } 1293 /* 1294 * Can't open a directory for writing. 1295 */ 1296 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1297 error = EISDIR; 1298 goto out; 1299 } 1300 /* 1301 * Verify requested access to file. 1302 */ 1303 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1304 goto out; 1305 } 1306 1307 mutex_enter(&dzp->z_lock); 1308 dzp->z_seq++; 1309 mutex_exit(&dzp->z_lock); 1310 1311 /* 1312 * Truncate regular files if requested. 1313 */ 1314 if ((ZTOV(zp)->v_type == VREG) && 1315 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1316 /* we can't hold any locks when calling zfs_freesp() */ 1317 zfs_dirent_unlock(dl); 1318 dl = NULL; 1319 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1320 if (error == 0) { 1321 vnevent_create(ZTOV(zp), ct); 1322 } 1323 } 1324 } 1325 out: 1326 1327 if (dl) 1328 zfs_dirent_unlock(dl); 1329 1330 if (error) { 1331 if (zp) 1332 VN_RELE(ZTOV(zp)); 1333 } else { 1334 *vpp = ZTOV(zp); 1335 /* 1336 * If vnode is for a device return a specfs vnode instead. 1337 */ 1338 if (IS_DEVVP(*vpp)) { 1339 struct vnode *svp; 1340 1341 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1342 VN_RELE(*vpp); 1343 if (svp == NULL) { 1344 error = ENOSYS; 1345 } 1346 *vpp = svp; 1347 } 1348 } 1349 1350 ZFS_EXIT(zfsvfs); 1351 return (error); 1352 } 1353 1354 /* 1355 * Remove an entry from a directory. 1356 * 1357 * IN: dvp - vnode of directory to remove entry from. 1358 * name - name of entry to remove. 1359 * cr - credentials of caller. 1360 * ct - caller context 1361 * flags - case flags 1362 * 1363 * RETURN: 0 if success 1364 * error code if failure 1365 * 1366 * Timestamps: 1367 * dvp - ctime|mtime 1368 * vp - ctime (if nlink > 0) 1369 */ 1370 /*ARGSUSED*/ 1371 static int 1372 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1373 int flags) 1374 { 1375 znode_t *zp, *dzp = VTOZ(dvp); 1376 znode_t *xzp = NULL; 1377 vnode_t *vp; 1378 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1379 zilog_t *zilog; 1380 uint64_t acl_obj, xattr_obj; 1381 zfs_dirlock_t *dl; 1382 dmu_tx_t *tx; 1383 boolean_t may_delete_now, delete_now = FALSE; 1384 boolean_t unlinked, toobig = FALSE; 1385 uint64_t txtype; 1386 pathname_t *realnmp = NULL; 1387 pathname_t realnm; 1388 int error; 1389 int zflg = ZEXISTS; 1390 1391 ZFS_ENTER(zfsvfs); 1392 ZFS_VERIFY_ZP(dzp); 1393 zilog = zfsvfs->z_log; 1394 1395 if (flags & FIGNORECASE) { 1396 zflg |= ZCILOOK; 1397 pn_alloc(&realnm); 1398 realnmp = &realnm; 1399 } 1400 1401 top: 1402 /* 1403 * Attempt to lock directory; fail if entry doesn't exist. 1404 */ 1405 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1406 NULL, realnmp)) { 1407 if (realnmp) 1408 pn_free(realnmp); 1409 ZFS_EXIT(zfsvfs); 1410 return (error); 1411 } 1412 1413 vp = ZTOV(zp); 1414 1415 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1416 goto out; 1417 } 1418 1419 /* 1420 * Need to use rmdir for removing directories. 1421 */ 1422 if (vp->v_type == VDIR) { 1423 error = EPERM; 1424 goto out; 1425 } 1426 1427 vnevent_remove(vp, dvp, name, ct); 1428 1429 if (realnmp) 1430 dnlc_remove(dvp, realnmp->pn_buf); 1431 else 1432 dnlc_remove(dvp, name); 1433 1434 mutex_enter(&vp->v_lock); 1435 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1436 mutex_exit(&vp->v_lock); 1437 1438 /* 1439 * We may delete the znode now, or we may put it in the unlinked set; 1440 * it depends on whether we're the last link, and on whether there are 1441 * other holds on the vnode. So we dmu_tx_hold() the right things to 1442 * allow for either case. 1443 */ 1444 tx = dmu_tx_create(zfsvfs->z_os); 1445 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1446 dmu_tx_hold_bonus(tx, zp->z_id); 1447 if (may_delete_now) { 1448 toobig = 1449 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1450 /* if the file is too big, only hold_free a token amount */ 1451 dmu_tx_hold_free(tx, zp->z_id, 0, 1452 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1453 } 1454 1455 /* are there any extended attributes? */ 1456 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1457 /* XXX - do we need this if we are deleting? */ 1458 dmu_tx_hold_bonus(tx, xattr_obj); 1459 } 1460 1461 /* are there any additional acls */ 1462 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1463 may_delete_now) 1464 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1465 1466 /* charge as an update -- would be nice not to charge at all */ 1467 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1468 1469 error = dmu_tx_assign(tx, TXG_NOWAIT); 1470 if (error) { 1471 zfs_dirent_unlock(dl); 1472 VN_RELE(vp); 1473 if (error == ERESTART) { 1474 dmu_tx_wait(tx); 1475 dmu_tx_abort(tx); 1476 goto top; 1477 } 1478 if (realnmp) 1479 pn_free(realnmp); 1480 dmu_tx_abort(tx); 1481 ZFS_EXIT(zfsvfs); 1482 return (error); 1483 } 1484 1485 /* 1486 * Remove the directory entry. 1487 */ 1488 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1489 1490 if (error) { 1491 dmu_tx_commit(tx); 1492 goto out; 1493 } 1494 1495 if (unlinked) { 1496 mutex_enter(&vp->v_lock); 1497 delete_now = may_delete_now && !toobig && 1498 vp->v_count == 1 && !vn_has_cached_data(vp) && 1499 zp->z_phys->zp_xattr == xattr_obj && 1500 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1501 mutex_exit(&vp->v_lock); 1502 } 1503 1504 if (delete_now) { 1505 if (zp->z_phys->zp_xattr) { 1506 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1507 ASSERT3U(error, ==, 0); 1508 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1509 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1510 mutex_enter(&xzp->z_lock); 1511 xzp->z_unlinked = 1; 1512 xzp->z_phys->zp_links = 0; 1513 mutex_exit(&xzp->z_lock); 1514 zfs_unlinked_add(xzp, tx); 1515 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1516 } 1517 mutex_enter(&zp->z_lock); 1518 mutex_enter(&vp->v_lock); 1519 vp->v_count--; 1520 ASSERT3U(vp->v_count, ==, 0); 1521 mutex_exit(&vp->v_lock); 1522 mutex_exit(&zp->z_lock); 1523 zfs_znode_delete(zp, tx); 1524 } else if (unlinked) { 1525 zfs_unlinked_add(zp, tx); 1526 } 1527 1528 txtype = TX_REMOVE; 1529 if (flags & FIGNORECASE) 1530 txtype |= TX_CI; 1531 zfs_log_remove(zilog, tx, txtype, dzp, name); 1532 1533 dmu_tx_commit(tx); 1534 out: 1535 if (realnmp) 1536 pn_free(realnmp); 1537 1538 zfs_dirent_unlock(dl); 1539 1540 if (!delete_now) { 1541 VN_RELE(vp); 1542 } else if (xzp) { 1543 /* this rele is delayed to prevent nesting transactions */ 1544 VN_RELE(ZTOV(xzp)); 1545 } 1546 1547 ZFS_EXIT(zfsvfs); 1548 return (error); 1549 } 1550 1551 /* 1552 * Create a new directory and insert it into dvp using the name 1553 * provided. Return a pointer to the inserted directory. 1554 * 1555 * IN: dvp - vnode of directory to add subdir to. 1556 * dirname - name of new directory. 1557 * vap - attributes of new directory. 1558 * cr - credentials of caller. 1559 * ct - caller context 1560 * vsecp - ACL to be set 1561 * 1562 * OUT: vpp - vnode of created directory. 1563 * 1564 * RETURN: 0 if success 1565 * error code if failure 1566 * 1567 * Timestamps: 1568 * dvp - ctime|mtime updated 1569 * vp - ctime|mtime|atime updated 1570 */ 1571 /*ARGSUSED*/ 1572 static int 1573 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1574 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1575 { 1576 znode_t *zp, *dzp = VTOZ(dvp); 1577 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1578 zilog_t *zilog; 1579 zfs_dirlock_t *dl; 1580 uint64_t txtype; 1581 dmu_tx_t *tx; 1582 int error; 1583 int zf = ZNEW; 1584 ksid_t *ksid; 1585 uid_t uid; 1586 gid_t gid = crgetgid(cr); 1587 zfs_acl_ids_t acl_ids; 1588 boolean_t fuid_dirtied; 1589 1590 ASSERT(vap->va_type == VDIR); 1591 1592 /* 1593 * If we have an ephemeral id, ACL, or XVATTR then 1594 * make sure file system is at proper version 1595 */ 1596 1597 ksid = crgetsid(cr, KSID_OWNER); 1598 if (ksid) 1599 uid = ksid_getid(ksid); 1600 else 1601 uid = crgetuid(cr); 1602 if (zfsvfs->z_use_fuids == B_FALSE && 1603 (vsecp || (vap->va_mask & AT_XVATTR) || 1604 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1605 return (EINVAL); 1606 1607 ZFS_ENTER(zfsvfs); 1608 ZFS_VERIFY_ZP(dzp); 1609 zilog = zfsvfs->z_log; 1610 1611 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1612 ZFS_EXIT(zfsvfs); 1613 return (EINVAL); 1614 } 1615 1616 if (zfsvfs->z_utf8 && u8_validate(dirname, 1617 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1618 ZFS_EXIT(zfsvfs); 1619 return (EILSEQ); 1620 } 1621 if (flags & FIGNORECASE) 1622 zf |= ZCILOOK; 1623 1624 if (vap->va_mask & AT_XVATTR) 1625 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1626 crgetuid(cr), cr, vap->va_type)) != 0) { 1627 ZFS_EXIT(zfsvfs); 1628 return (error); 1629 } 1630 1631 /* 1632 * First make sure the new directory doesn't exist. 1633 */ 1634 top: 1635 *vpp = NULL; 1636 1637 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1638 NULL, NULL)) { 1639 ZFS_EXIT(zfsvfs); 1640 return (error); 1641 } 1642 1643 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1644 zfs_dirent_unlock(dl); 1645 ZFS_EXIT(zfsvfs); 1646 return (error); 1647 } 1648 1649 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1650 &acl_ids)) != 0) { 1651 zfs_dirent_unlock(dl); 1652 ZFS_EXIT(zfsvfs); 1653 return (error); 1654 } 1655 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1656 zfs_dirent_unlock(dl); 1657 ZFS_EXIT(zfsvfs); 1658 return (EDQUOT); 1659 } 1660 1661 /* 1662 * Add a new entry to the directory. 1663 */ 1664 tx = dmu_tx_create(zfsvfs->z_os); 1665 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1666 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1667 fuid_dirtied = zfsvfs->z_fuid_dirty; 1668 if (fuid_dirtied) 1669 zfs_fuid_txhold(zfsvfs, tx); 1670 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1671 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1672 0, SPA_MAXBLOCKSIZE); 1673 error = dmu_tx_assign(tx, TXG_NOWAIT); 1674 if (error) { 1675 zfs_acl_ids_free(&acl_ids); 1676 zfs_dirent_unlock(dl); 1677 if (error == ERESTART) { 1678 dmu_tx_wait(tx); 1679 dmu_tx_abort(tx); 1680 goto top; 1681 } 1682 dmu_tx_abort(tx); 1683 ZFS_EXIT(zfsvfs); 1684 return (error); 1685 } 1686 1687 /* 1688 * Create new node. 1689 */ 1690 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1691 1692 if (fuid_dirtied) 1693 zfs_fuid_sync(zfsvfs, tx); 1694 /* 1695 * Now put new name in parent dir. 1696 */ 1697 (void) zfs_link_create(dl, zp, tx, ZNEW); 1698 1699 *vpp = ZTOV(zp); 1700 1701 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1702 if (flags & FIGNORECASE) 1703 txtype |= TX_CI; 1704 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1705 acl_ids.z_fuidp, vap); 1706 1707 zfs_acl_ids_free(&acl_ids); 1708 dmu_tx_commit(tx); 1709 1710 zfs_dirent_unlock(dl); 1711 1712 ZFS_EXIT(zfsvfs); 1713 return (0); 1714 } 1715 1716 /* 1717 * Remove a directory subdir entry. If the current working 1718 * directory is the same as the subdir to be removed, the 1719 * remove will fail. 1720 * 1721 * IN: dvp - vnode of directory to remove from. 1722 * name - name of directory to be removed. 1723 * cwd - vnode of current working directory. 1724 * cr - credentials of caller. 1725 * ct - caller context 1726 * flags - case flags 1727 * 1728 * RETURN: 0 if success 1729 * error code if failure 1730 * 1731 * Timestamps: 1732 * dvp - ctime|mtime updated 1733 */ 1734 /*ARGSUSED*/ 1735 static int 1736 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1737 caller_context_t *ct, int flags) 1738 { 1739 znode_t *dzp = VTOZ(dvp); 1740 znode_t *zp; 1741 vnode_t *vp; 1742 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1743 zilog_t *zilog; 1744 zfs_dirlock_t *dl; 1745 dmu_tx_t *tx; 1746 int error; 1747 int zflg = ZEXISTS; 1748 1749 ZFS_ENTER(zfsvfs); 1750 ZFS_VERIFY_ZP(dzp); 1751 zilog = zfsvfs->z_log; 1752 1753 if (flags & FIGNORECASE) 1754 zflg |= ZCILOOK; 1755 top: 1756 zp = NULL; 1757 1758 /* 1759 * Attempt to lock directory; fail if entry doesn't exist. 1760 */ 1761 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1762 NULL, NULL)) { 1763 ZFS_EXIT(zfsvfs); 1764 return (error); 1765 } 1766 1767 vp = ZTOV(zp); 1768 1769 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1770 goto out; 1771 } 1772 1773 if (vp->v_type != VDIR) { 1774 error = ENOTDIR; 1775 goto out; 1776 } 1777 1778 if (vp == cwd) { 1779 error = EINVAL; 1780 goto out; 1781 } 1782 1783 vnevent_rmdir(vp, dvp, name, ct); 1784 1785 /* 1786 * Grab a lock on the directory to make sure that noone is 1787 * trying to add (or lookup) entries while we are removing it. 1788 */ 1789 rw_enter(&zp->z_name_lock, RW_WRITER); 1790 1791 /* 1792 * Grab a lock on the parent pointer to make sure we play well 1793 * with the treewalk and directory rename code. 1794 */ 1795 rw_enter(&zp->z_parent_lock, RW_WRITER); 1796 1797 tx = dmu_tx_create(zfsvfs->z_os); 1798 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1799 dmu_tx_hold_bonus(tx, zp->z_id); 1800 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1801 error = dmu_tx_assign(tx, TXG_NOWAIT); 1802 if (error) { 1803 rw_exit(&zp->z_parent_lock); 1804 rw_exit(&zp->z_name_lock); 1805 zfs_dirent_unlock(dl); 1806 VN_RELE(vp); 1807 if (error == ERESTART) { 1808 dmu_tx_wait(tx); 1809 dmu_tx_abort(tx); 1810 goto top; 1811 } 1812 dmu_tx_abort(tx); 1813 ZFS_EXIT(zfsvfs); 1814 return (error); 1815 } 1816 1817 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1818 1819 if (error == 0) { 1820 uint64_t txtype = TX_RMDIR; 1821 if (flags & FIGNORECASE) 1822 txtype |= TX_CI; 1823 zfs_log_remove(zilog, tx, txtype, dzp, name); 1824 } 1825 1826 dmu_tx_commit(tx); 1827 1828 rw_exit(&zp->z_parent_lock); 1829 rw_exit(&zp->z_name_lock); 1830 out: 1831 zfs_dirent_unlock(dl); 1832 1833 VN_RELE(vp); 1834 1835 ZFS_EXIT(zfsvfs); 1836 return (error); 1837 } 1838 1839 /* 1840 * Read as many directory entries as will fit into the provided 1841 * buffer from the given directory cursor position (specified in 1842 * the uio structure. 1843 * 1844 * IN: vp - vnode of directory to read. 1845 * uio - structure supplying read location, range info, 1846 * and return buffer. 1847 * cr - credentials of caller. 1848 * ct - caller context 1849 * flags - case flags 1850 * 1851 * OUT: uio - updated offset and range, buffer filled. 1852 * eofp - set to true if end-of-file detected. 1853 * 1854 * RETURN: 0 if success 1855 * error code if failure 1856 * 1857 * Timestamps: 1858 * vp - atime updated 1859 * 1860 * Note that the low 4 bits of the cookie returned by zap is always zero. 1861 * This allows us to use the low range for "special" directory entries: 1862 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1863 * we use the offset 2 for the '.zfs' directory. 1864 */ 1865 /* ARGSUSED */ 1866 static int 1867 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1868 caller_context_t *ct, int flags) 1869 { 1870 znode_t *zp = VTOZ(vp); 1871 iovec_t *iovp; 1872 edirent_t *eodp; 1873 dirent64_t *odp; 1874 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1875 objset_t *os; 1876 caddr_t outbuf; 1877 size_t bufsize; 1878 zap_cursor_t zc; 1879 zap_attribute_t zap; 1880 uint_t bytes_wanted; 1881 uint64_t offset; /* must be unsigned; checks for < 1 */ 1882 int local_eof; 1883 int outcount; 1884 int error; 1885 uint8_t prefetch; 1886 boolean_t check_sysattrs; 1887 1888 ZFS_ENTER(zfsvfs); 1889 ZFS_VERIFY_ZP(zp); 1890 1891 /* 1892 * If we are not given an eof variable, 1893 * use a local one. 1894 */ 1895 if (eofp == NULL) 1896 eofp = &local_eof; 1897 1898 /* 1899 * Check for valid iov_len. 1900 */ 1901 if (uio->uio_iov->iov_len <= 0) { 1902 ZFS_EXIT(zfsvfs); 1903 return (EINVAL); 1904 } 1905 1906 /* 1907 * Quit if directory has been removed (posix) 1908 */ 1909 if ((*eofp = zp->z_unlinked) != 0) { 1910 ZFS_EXIT(zfsvfs); 1911 return (0); 1912 } 1913 1914 error = 0; 1915 os = zfsvfs->z_os; 1916 offset = uio->uio_loffset; 1917 prefetch = zp->z_zn_prefetch; 1918 1919 /* 1920 * Initialize the iterator cursor. 1921 */ 1922 if (offset <= 3) { 1923 /* 1924 * Start iteration from the beginning of the directory. 1925 */ 1926 zap_cursor_init(&zc, os, zp->z_id); 1927 } else { 1928 /* 1929 * The offset is a serialized cursor. 1930 */ 1931 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1932 } 1933 1934 /* 1935 * Get space to change directory entries into fs independent format. 1936 */ 1937 iovp = uio->uio_iov; 1938 bytes_wanted = iovp->iov_len; 1939 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1940 bufsize = bytes_wanted; 1941 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1942 odp = (struct dirent64 *)outbuf; 1943 } else { 1944 bufsize = bytes_wanted; 1945 odp = (struct dirent64 *)iovp->iov_base; 1946 } 1947 eodp = (struct edirent *)odp; 1948 1949 /* 1950 * If this VFS supports the system attribute view interface; and 1951 * we're looking at an extended attribute directory; and we care 1952 * about normalization conflicts on this vfs; then we must check 1953 * for normalization conflicts with the sysattr name space. 1954 */ 1955 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 1956 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 1957 (flags & V_RDDIR_ENTFLAGS); 1958 1959 /* 1960 * Transform to file-system independent format 1961 */ 1962 outcount = 0; 1963 while (outcount < bytes_wanted) { 1964 ino64_t objnum; 1965 ushort_t reclen; 1966 off64_t *next; 1967 1968 /* 1969 * Special case `.', `..', and `.zfs'. 1970 */ 1971 if (offset == 0) { 1972 (void) strcpy(zap.za_name, "."); 1973 zap.za_normalization_conflict = 0; 1974 objnum = zp->z_id; 1975 } else if (offset == 1) { 1976 (void) strcpy(zap.za_name, ".."); 1977 zap.za_normalization_conflict = 0; 1978 objnum = zp->z_phys->zp_parent; 1979 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1980 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1981 zap.za_normalization_conflict = 0; 1982 objnum = ZFSCTL_INO_ROOT; 1983 } else { 1984 /* 1985 * Grab next entry. 1986 */ 1987 if (error = zap_cursor_retrieve(&zc, &zap)) { 1988 if ((*eofp = (error == ENOENT)) != 0) 1989 break; 1990 else 1991 goto update; 1992 } 1993 1994 if (zap.za_integer_length != 8 || 1995 zap.za_num_integers != 1) { 1996 cmn_err(CE_WARN, "zap_readdir: bad directory " 1997 "entry, obj = %lld, offset = %lld\n", 1998 (u_longlong_t)zp->z_id, 1999 (u_longlong_t)offset); 2000 error = ENXIO; 2001 goto update; 2002 } 2003 2004 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2005 /* 2006 * MacOS X can extract the object type here such as: 2007 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2008 */ 2009 2010 if (check_sysattrs && !zap.za_normalization_conflict) { 2011 zap.za_normalization_conflict = 2012 xattr_sysattr_casechk(zap.za_name); 2013 } 2014 } 2015 2016 if (flags & V_RDDIR_ACCFILTER) { 2017 /* 2018 * If we have no access at all, don't include 2019 * this entry in the returned information 2020 */ 2021 znode_t *ezp; 2022 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2023 goto skip_entry; 2024 if (!zfs_has_access(ezp, cr)) { 2025 VN_RELE(ZTOV(ezp)); 2026 goto skip_entry; 2027 } 2028 VN_RELE(ZTOV(ezp)); 2029 } 2030 2031 if (flags & V_RDDIR_ENTFLAGS) 2032 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2033 else 2034 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2035 2036 /* 2037 * Will this entry fit in the buffer? 2038 */ 2039 if (outcount + reclen > bufsize) { 2040 /* 2041 * Did we manage to fit anything in the buffer? 2042 */ 2043 if (!outcount) { 2044 error = EINVAL; 2045 goto update; 2046 } 2047 break; 2048 } 2049 if (flags & V_RDDIR_ENTFLAGS) { 2050 /* 2051 * Add extended flag entry: 2052 */ 2053 eodp->ed_ino = objnum; 2054 eodp->ed_reclen = reclen; 2055 /* NOTE: ed_off is the offset for the *next* entry */ 2056 next = &(eodp->ed_off); 2057 eodp->ed_eflags = zap.za_normalization_conflict ? 2058 ED_CASE_CONFLICT : 0; 2059 (void) strncpy(eodp->ed_name, zap.za_name, 2060 EDIRENT_NAMELEN(reclen)); 2061 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2062 } else { 2063 /* 2064 * Add normal entry: 2065 */ 2066 odp->d_ino = objnum; 2067 odp->d_reclen = reclen; 2068 /* NOTE: d_off is the offset for the *next* entry */ 2069 next = &(odp->d_off); 2070 (void) strncpy(odp->d_name, zap.za_name, 2071 DIRENT64_NAMELEN(reclen)); 2072 odp = (dirent64_t *)((intptr_t)odp + reclen); 2073 } 2074 outcount += reclen; 2075 2076 ASSERT(outcount <= bufsize); 2077 2078 /* Prefetch znode */ 2079 if (prefetch) 2080 dmu_prefetch(os, objnum, 0, 0); 2081 2082 skip_entry: 2083 /* 2084 * Move to the next entry, fill in the previous offset. 2085 */ 2086 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2087 zap_cursor_advance(&zc); 2088 offset = zap_cursor_serialize(&zc); 2089 } else { 2090 offset += 1; 2091 } 2092 *next = offset; 2093 } 2094 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2095 2096 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2097 iovp->iov_base += outcount; 2098 iovp->iov_len -= outcount; 2099 uio->uio_resid -= outcount; 2100 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2101 /* 2102 * Reset the pointer. 2103 */ 2104 offset = uio->uio_loffset; 2105 } 2106 2107 update: 2108 zap_cursor_fini(&zc); 2109 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2110 kmem_free(outbuf, bufsize); 2111 2112 if (error == ENOENT) 2113 error = 0; 2114 2115 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2116 2117 uio->uio_loffset = offset; 2118 ZFS_EXIT(zfsvfs); 2119 return (error); 2120 } 2121 2122 ulong_t zfs_fsync_sync_cnt = 4; 2123 2124 static int 2125 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2126 { 2127 znode_t *zp = VTOZ(vp); 2128 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2129 2130 /* 2131 * Regardless of whether this is required for standards conformance, 2132 * this is the logical behavior when fsync() is called on a file with 2133 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2134 * going to be pushed out as part of the zil_commit(). 2135 */ 2136 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2137 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2138 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2139 2140 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2141 2142 ZFS_ENTER(zfsvfs); 2143 ZFS_VERIFY_ZP(zp); 2144 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2145 ZFS_EXIT(zfsvfs); 2146 return (0); 2147 } 2148 2149 2150 /* 2151 * Get the requested file attributes and place them in the provided 2152 * vattr structure. 2153 * 2154 * IN: vp - vnode of file. 2155 * vap - va_mask identifies requested attributes. 2156 * If AT_XVATTR set, then optional attrs are requested 2157 * flags - ATTR_NOACLCHECK (CIFS server context) 2158 * cr - credentials of caller. 2159 * ct - caller context 2160 * 2161 * OUT: vap - attribute values. 2162 * 2163 * RETURN: 0 (always succeeds) 2164 */ 2165 /* ARGSUSED */ 2166 static int 2167 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2168 caller_context_t *ct) 2169 { 2170 znode_t *zp = VTOZ(vp); 2171 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2172 znode_phys_t *pzp; 2173 int error = 0; 2174 uint64_t links; 2175 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2176 xoptattr_t *xoap = NULL; 2177 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2178 2179 ZFS_ENTER(zfsvfs); 2180 ZFS_VERIFY_ZP(zp); 2181 pzp = zp->z_phys; 2182 2183 mutex_enter(&zp->z_lock); 2184 2185 /* 2186 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2187 * Also, if we are the owner don't bother, since owner should 2188 * always be allowed to read basic attributes of file. 2189 */ 2190 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2191 (pzp->zp_uid != crgetuid(cr))) { 2192 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2193 skipaclchk, cr)) { 2194 mutex_exit(&zp->z_lock); 2195 ZFS_EXIT(zfsvfs); 2196 return (error); 2197 } 2198 } 2199 2200 /* 2201 * Return all attributes. It's cheaper to provide the answer 2202 * than to determine whether we were asked the question. 2203 */ 2204 2205 vap->va_type = vp->v_type; 2206 vap->va_mode = pzp->zp_mode & MODEMASK; 2207 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2208 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2209 vap->va_nodeid = zp->z_id; 2210 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2211 links = pzp->zp_links + 1; 2212 else 2213 links = pzp->zp_links; 2214 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2215 vap->va_size = pzp->zp_size; 2216 vap->va_rdev = vp->v_rdev; 2217 vap->va_seq = zp->z_seq; 2218 2219 /* 2220 * Add in any requested optional attributes and the create time. 2221 * Also set the corresponding bits in the returned attribute bitmap. 2222 */ 2223 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2224 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2225 xoap->xoa_archive = 2226 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2227 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2228 } 2229 2230 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2231 xoap->xoa_readonly = 2232 ((pzp->zp_flags & ZFS_READONLY) != 0); 2233 XVA_SET_RTN(xvap, XAT_READONLY); 2234 } 2235 2236 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2237 xoap->xoa_system = 2238 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2239 XVA_SET_RTN(xvap, XAT_SYSTEM); 2240 } 2241 2242 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2243 xoap->xoa_hidden = 2244 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2245 XVA_SET_RTN(xvap, XAT_HIDDEN); 2246 } 2247 2248 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2249 xoap->xoa_nounlink = 2250 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2251 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2252 } 2253 2254 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2255 xoap->xoa_immutable = 2256 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2257 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2258 } 2259 2260 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2261 xoap->xoa_appendonly = 2262 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2263 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2264 } 2265 2266 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2267 xoap->xoa_nodump = 2268 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2269 XVA_SET_RTN(xvap, XAT_NODUMP); 2270 } 2271 2272 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2273 xoap->xoa_opaque = 2274 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2275 XVA_SET_RTN(xvap, XAT_OPAQUE); 2276 } 2277 2278 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2279 xoap->xoa_av_quarantined = 2280 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2281 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2282 } 2283 2284 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2285 xoap->xoa_av_modified = 2286 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2287 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2288 } 2289 2290 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2291 vp->v_type == VREG && 2292 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2293 size_t len; 2294 dmu_object_info_t doi; 2295 2296 /* 2297 * Only VREG files have anti-virus scanstamps, so we 2298 * won't conflict with symlinks in the bonus buffer. 2299 */ 2300 dmu_object_info_from_db(zp->z_dbuf, &doi); 2301 len = sizeof (xoap->xoa_av_scanstamp) + 2302 sizeof (znode_phys_t); 2303 if (len <= doi.doi_bonus_size) { 2304 /* 2305 * pzp points to the start of the 2306 * znode_phys_t. pzp + 1 points to the 2307 * first byte after the znode_phys_t. 2308 */ 2309 (void) memcpy(xoap->xoa_av_scanstamp, 2310 pzp + 1, 2311 sizeof (xoap->xoa_av_scanstamp)); 2312 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2313 } 2314 } 2315 2316 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2317 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2318 XVA_SET_RTN(xvap, XAT_CREATETIME); 2319 } 2320 } 2321 2322 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2323 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2324 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2325 2326 mutex_exit(&zp->z_lock); 2327 2328 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2329 2330 if (zp->z_blksz == 0) { 2331 /* 2332 * Block size hasn't been set; suggest maximal I/O transfers. 2333 */ 2334 vap->va_blksize = zfsvfs->z_max_blksz; 2335 } 2336 2337 ZFS_EXIT(zfsvfs); 2338 return (0); 2339 } 2340 2341 /* 2342 * Set the file attributes to the values contained in the 2343 * vattr structure. 2344 * 2345 * IN: vp - vnode of file to be modified. 2346 * vap - new attribute values. 2347 * If AT_XVATTR set, then optional attrs are being set 2348 * flags - ATTR_UTIME set if non-default time values provided. 2349 * - ATTR_NOACLCHECK (CIFS context only). 2350 * cr - credentials of caller. 2351 * ct - caller context 2352 * 2353 * RETURN: 0 if success 2354 * error code if failure 2355 * 2356 * Timestamps: 2357 * vp - ctime updated, mtime updated if size changed. 2358 */ 2359 /* ARGSUSED */ 2360 static int 2361 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2362 caller_context_t *ct) 2363 { 2364 znode_t *zp = VTOZ(vp); 2365 znode_phys_t *pzp; 2366 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2367 zilog_t *zilog; 2368 dmu_tx_t *tx; 2369 vattr_t oldva; 2370 xvattr_t tmpxvattr; 2371 uint_t mask = vap->va_mask; 2372 uint_t saved_mask; 2373 int trim_mask = 0; 2374 uint64_t new_mode; 2375 uint64_t new_uid, new_gid; 2376 znode_t *attrzp; 2377 int need_policy = FALSE; 2378 int err; 2379 zfs_fuid_info_t *fuidp = NULL; 2380 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2381 xoptattr_t *xoap; 2382 zfs_acl_t *aclp = NULL; 2383 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2384 boolean_t fuid_dirtied = B_FALSE; 2385 2386 if (mask == 0) 2387 return (0); 2388 2389 if (mask & AT_NOSET) 2390 return (EINVAL); 2391 2392 ZFS_ENTER(zfsvfs); 2393 ZFS_VERIFY_ZP(zp); 2394 2395 pzp = zp->z_phys; 2396 zilog = zfsvfs->z_log; 2397 2398 /* 2399 * Make sure that if we have ephemeral uid/gid or xvattr specified 2400 * that file system is at proper version level 2401 */ 2402 2403 if (zfsvfs->z_use_fuids == B_FALSE && 2404 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2405 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2406 (mask & AT_XVATTR))) { 2407 ZFS_EXIT(zfsvfs); 2408 return (EINVAL); 2409 } 2410 2411 if (mask & AT_SIZE && vp->v_type == VDIR) { 2412 ZFS_EXIT(zfsvfs); 2413 return (EISDIR); 2414 } 2415 2416 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2417 ZFS_EXIT(zfsvfs); 2418 return (EINVAL); 2419 } 2420 2421 /* 2422 * If this is an xvattr_t, then get a pointer to the structure of 2423 * optional attributes. If this is NULL, then we have a vattr_t. 2424 */ 2425 xoap = xva_getxoptattr(xvap); 2426 2427 xva_init(&tmpxvattr); 2428 2429 /* 2430 * Immutable files can only alter immutable bit and atime 2431 */ 2432 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2433 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2434 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2435 ZFS_EXIT(zfsvfs); 2436 return (EPERM); 2437 } 2438 2439 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2440 ZFS_EXIT(zfsvfs); 2441 return (EPERM); 2442 } 2443 2444 /* 2445 * Verify timestamps doesn't overflow 32 bits. 2446 * ZFS can handle large timestamps, but 32bit syscalls can't 2447 * handle times greater than 2039. This check should be removed 2448 * once large timestamps are fully supported. 2449 */ 2450 if (mask & (AT_ATIME | AT_MTIME)) { 2451 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2452 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2453 ZFS_EXIT(zfsvfs); 2454 return (EOVERFLOW); 2455 } 2456 } 2457 2458 top: 2459 attrzp = NULL; 2460 2461 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2462 ZFS_EXIT(zfsvfs); 2463 return (EROFS); 2464 } 2465 2466 /* 2467 * First validate permissions 2468 */ 2469 2470 if (mask & AT_SIZE) { 2471 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2472 if (err) { 2473 ZFS_EXIT(zfsvfs); 2474 return (err); 2475 } 2476 /* 2477 * XXX - Note, we are not providing any open 2478 * mode flags here (like FNDELAY), so we may 2479 * block if there are locks present... this 2480 * should be addressed in openat(). 2481 */ 2482 /* XXX - would it be OK to generate a log record here? */ 2483 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2484 if (err) { 2485 ZFS_EXIT(zfsvfs); 2486 return (err); 2487 } 2488 } 2489 2490 if (mask & (AT_ATIME|AT_MTIME) || 2491 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2492 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2493 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2494 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2495 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2496 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2497 skipaclchk, cr); 2498 2499 if (mask & (AT_UID|AT_GID)) { 2500 int idmask = (mask & (AT_UID|AT_GID)); 2501 int take_owner; 2502 int take_group; 2503 2504 /* 2505 * NOTE: even if a new mode is being set, 2506 * we may clear S_ISUID/S_ISGID bits. 2507 */ 2508 2509 if (!(mask & AT_MODE)) 2510 vap->va_mode = pzp->zp_mode; 2511 2512 /* 2513 * Take ownership or chgrp to group we are a member of 2514 */ 2515 2516 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2517 take_group = (mask & AT_GID) && 2518 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2519 2520 /* 2521 * If both AT_UID and AT_GID are set then take_owner and 2522 * take_group must both be set in order to allow taking 2523 * ownership. 2524 * 2525 * Otherwise, send the check through secpolicy_vnode_setattr() 2526 * 2527 */ 2528 2529 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2530 ((idmask == AT_UID) && take_owner) || 2531 ((idmask == AT_GID) && take_group)) { 2532 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2533 skipaclchk, cr) == 0) { 2534 /* 2535 * Remove setuid/setgid for non-privileged users 2536 */ 2537 secpolicy_setid_clear(vap, cr); 2538 trim_mask = (mask & (AT_UID|AT_GID)); 2539 } else { 2540 need_policy = TRUE; 2541 } 2542 } else { 2543 need_policy = TRUE; 2544 } 2545 } 2546 2547 mutex_enter(&zp->z_lock); 2548 oldva.va_mode = pzp->zp_mode; 2549 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2550 if (mask & AT_XVATTR) { 2551 /* 2552 * Update xvattr mask to include only those attributes 2553 * that are actually changing. 2554 * 2555 * the bits will be restored prior to actually setting 2556 * the attributes so the caller thinks they were set. 2557 */ 2558 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2559 if (xoap->xoa_appendonly != 2560 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2561 need_policy = TRUE; 2562 } else { 2563 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2564 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2565 } 2566 } 2567 2568 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2569 if (xoap->xoa_nounlink != 2570 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2571 need_policy = TRUE; 2572 } else { 2573 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2574 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2575 } 2576 } 2577 2578 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2579 if (xoap->xoa_immutable != 2580 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2581 need_policy = TRUE; 2582 } else { 2583 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2584 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2585 } 2586 } 2587 2588 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2589 if (xoap->xoa_nodump != 2590 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2591 need_policy = TRUE; 2592 } else { 2593 XVA_CLR_REQ(xvap, XAT_NODUMP); 2594 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2595 } 2596 } 2597 2598 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2599 if (xoap->xoa_av_modified != 2600 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2601 need_policy = TRUE; 2602 } else { 2603 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2604 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2605 } 2606 } 2607 2608 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2609 if ((vp->v_type != VREG && 2610 xoap->xoa_av_quarantined) || 2611 xoap->xoa_av_quarantined != 2612 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2613 need_policy = TRUE; 2614 } else { 2615 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2616 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2617 } 2618 } 2619 2620 if (need_policy == FALSE && 2621 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2622 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2623 need_policy = TRUE; 2624 } 2625 } 2626 2627 mutex_exit(&zp->z_lock); 2628 2629 if (mask & AT_MODE) { 2630 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2631 err = secpolicy_setid_setsticky_clear(vp, vap, 2632 &oldva, cr); 2633 if (err) { 2634 ZFS_EXIT(zfsvfs); 2635 return (err); 2636 } 2637 trim_mask |= AT_MODE; 2638 } else { 2639 need_policy = TRUE; 2640 } 2641 } 2642 2643 if (need_policy) { 2644 /* 2645 * If trim_mask is set then take ownership 2646 * has been granted or write_acl is present and user 2647 * has the ability to modify mode. In that case remove 2648 * UID|GID and or MODE from mask so that 2649 * secpolicy_vnode_setattr() doesn't revoke it. 2650 */ 2651 2652 if (trim_mask) { 2653 saved_mask = vap->va_mask; 2654 vap->va_mask &= ~trim_mask; 2655 } 2656 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2657 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2658 if (err) { 2659 ZFS_EXIT(zfsvfs); 2660 return (err); 2661 } 2662 2663 if (trim_mask) 2664 vap->va_mask |= saved_mask; 2665 } 2666 2667 /* 2668 * secpolicy_vnode_setattr, or take ownership may have 2669 * changed va_mask 2670 */ 2671 mask = vap->va_mask; 2672 2673 tx = dmu_tx_create(zfsvfs->z_os); 2674 dmu_tx_hold_bonus(tx, zp->z_id); 2675 2676 if (mask & AT_MODE) { 2677 uint64_t pmode = pzp->zp_mode; 2678 2679 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2680 2681 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2682 goto out; 2683 if (pzp->zp_acl.z_acl_extern_obj) { 2684 /* Are we upgrading ACL from old V0 format to new V1 */ 2685 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2686 pzp->zp_acl.z_acl_version == 2687 ZFS_ACL_VERSION_INITIAL) { 2688 dmu_tx_hold_free(tx, 2689 pzp->zp_acl.z_acl_extern_obj, 0, 2690 DMU_OBJECT_END); 2691 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2692 0, aclp->z_acl_bytes); 2693 } else { 2694 dmu_tx_hold_write(tx, 2695 pzp->zp_acl.z_acl_extern_obj, 0, 2696 aclp->z_acl_bytes); 2697 } 2698 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2699 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2700 0, aclp->z_acl_bytes); 2701 } 2702 } 2703 2704 if (mask & (AT_UID | AT_GID)) { 2705 if (pzp->zp_xattr) { 2706 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2707 if (err) 2708 goto out; 2709 dmu_tx_hold_bonus(tx, attrzp->z_id); 2710 } 2711 if (mask & AT_UID) { 2712 new_uid = zfs_fuid_create(zfsvfs, 2713 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2714 if (new_uid != pzp->zp_uid && 2715 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2716 err = EDQUOT; 2717 goto out; 2718 } 2719 } 2720 2721 if (mask & AT_GID) { 2722 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2723 cr, ZFS_GROUP, &fuidp); 2724 if (new_gid != pzp->zp_gid && 2725 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2726 err = EDQUOT; 2727 goto out; 2728 } 2729 } 2730 fuid_dirtied = zfsvfs->z_fuid_dirty; 2731 if (fuid_dirtied) { 2732 if (zfsvfs->z_fuid_obj == 0) { 2733 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2734 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2735 FUID_SIZE_ESTIMATE(zfsvfs)); 2736 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2737 FALSE, NULL); 2738 } else { 2739 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2740 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2741 FUID_SIZE_ESTIMATE(zfsvfs)); 2742 } 2743 } 2744 } 2745 2746 err = dmu_tx_assign(tx, TXG_NOWAIT); 2747 if (err) { 2748 if (err == ERESTART) 2749 dmu_tx_wait(tx); 2750 goto out; 2751 } 2752 2753 dmu_buf_will_dirty(zp->z_dbuf, tx); 2754 2755 /* 2756 * Set each attribute requested. 2757 * We group settings according to the locks they need to acquire. 2758 * 2759 * Note: you cannot set ctime directly, although it will be 2760 * updated as a side-effect of calling this function. 2761 */ 2762 2763 mutex_enter(&zp->z_lock); 2764 2765 if (mask & AT_MODE) { 2766 mutex_enter(&zp->z_acl_lock); 2767 zp->z_phys->zp_mode = new_mode; 2768 err = zfs_aclset_common(zp, aclp, cr, tx); 2769 ASSERT3U(err, ==, 0); 2770 mutex_exit(&zp->z_acl_lock); 2771 } 2772 2773 if (attrzp) 2774 mutex_enter(&attrzp->z_lock); 2775 2776 if (mask & AT_UID) { 2777 pzp->zp_uid = new_uid; 2778 if (attrzp) 2779 attrzp->z_phys->zp_uid = new_uid; 2780 } 2781 2782 if (mask & AT_GID) { 2783 pzp->zp_gid = new_gid; 2784 if (attrzp) 2785 attrzp->z_phys->zp_gid = new_gid; 2786 } 2787 2788 if (attrzp) 2789 mutex_exit(&attrzp->z_lock); 2790 2791 if (mask & AT_ATIME) 2792 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2793 2794 if (mask & AT_MTIME) 2795 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2796 2797 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2798 if (mask & AT_SIZE) 2799 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2800 else if (mask != 0) 2801 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2802 /* 2803 * Do this after setting timestamps to prevent timestamp 2804 * update from toggling bit 2805 */ 2806 2807 if (xoap && (mask & AT_XVATTR)) { 2808 2809 /* 2810 * restore trimmed off masks 2811 * so that return masks can be set for caller. 2812 */ 2813 2814 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2815 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2816 } 2817 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2818 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2819 } 2820 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2821 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2822 } 2823 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2824 XVA_SET_REQ(xvap, XAT_NODUMP); 2825 } 2826 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2827 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2828 } 2829 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2830 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2831 } 2832 2833 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2834 size_t len; 2835 dmu_object_info_t doi; 2836 2837 ASSERT(vp->v_type == VREG); 2838 2839 /* Grow the bonus buffer if necessary. */ 2840 dmu_object_info_from_db(zp->z_dbuf, &doi); 2841 len = sizeof (xoap->xoa_av_scanstamp) + 2842 sizeof (znode_phys_t); 2843 if (len > doi.doi_bonus_size) 2844 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2845 } 2846 zfs_xvattr_set(zp, xvap); 2847 } 2848 2849 if (fuid_dirtied) 2850 zfs_fuid_sync(zfsvfs, tx); 2851 2852 if (mask != 0) 2853 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2854 2855 mutex_exit(&zp->z_lock); 2856 2857 out: 2858 if (attrzp) 2859 VN_RELE(ZTOV(attrzp)); 2860 2861 if (aclp) { 2862 zfs_acl_free(aclp); 2863 aclp = NULL; 2864 } 2865 2866 if (fuidp) { 2867 zfs_fuid_info_free(fuidp); 2868 fuidp = NULL; 2869 } 2870 2871 if (err) 2872 dmu_tx_abort(tx); 2873 else 2874 dmu_tx_commit(tx); 2875 2876 if (err == ERESTART) 2877 goto top; 2878 2879 ZFS_EXIT(zfsvfs); 2880 return (err); 2881 } 2882 2883 typedef struct zfs_zlock { 2884 krwlock_t *zl_rwlock; /* lock we acquired */ 2885 znode_t *zl_znode; /* znode we held */ 2886 struct zfs_zlock *zl_next; /* next in list */ 2887 } zfs_zlock_t; 2888 2889 /* 2890 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2891 */ 2892 static void 2893 zfs_rename_unlock(zfs_zlock_t **zlpp) 2894 { 2895 zfs_zlock_t *zl; 2896 2897 while ((zl = *zlpp) != NULL) { 2898 if (zl->zl_znode != NULL) 2899 VN_RELE(ZTOV(zl->zl_znode)); 2900 rw_exit(zl->zl_rwlock); 2901 *zlpp = zl->zl_next; 2902 kmem_free(zl, sizeof (*zl)); 2903 } 2904 } 2905 2906 /* 2907 * Search back through the directory tree, using the ".." entries. 2908 * Lock each directory in the chain to prevent concurrent renames. 2909 * Fail any attempt to move a directory into one of its own descendants. 2910 * XXX - z_parent_lock can overlap with map or grow locks 2911 */ 2912 static int 2913 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2914 { 2915 zfs_zlock_t *zl; 2916 znode_t *zp = tdzp; 2917 uint64_t rootid = zp->z_zfsvfs->z_root; 2918 uint64_t *oidp = &zp->z_id; 2919 krwlock_t *rwlp = &szp->z_parent_lock; 2920 krw_t rw = RW_WRITER; 2921 2922 /* 2923 * First pass write-locks szp and compares to zp->z_id. 2924 * Later passes read-lock zp and compare to zp->z_parent. 2925 */ 2926 do { 2927 if (!rw_tryenter(rwlp, rw)) { 2928 /* 2929 * Another thread is renaming in this path. 2930 * Note that if we are a WRITER, we don't have any 2931 * parent_locks held yet. 2932 */ 2933 if (rw == RW_READER && zp->z_id > szp->z_id) { 2934 /* 2935 * Drop our locks and restart 2936 */ 2937 zfs_rename_unlock(&zl); 2938 *zlpp = NULL; 2939 zp = tdzp; 2940 oidp = &zp->z_id; 2941 rwlp = &szp->z_parent_lock; 2942 rw = RW_WRITER; 2943 continue; 2944 } else { 2945 /* 2946 * Wait for other thread to drop its locks 2947 */ 2948 rw_enter(rwlp, rw); 2949 } 2950 } 2951 2952 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2953 zl->zl_rwlock = rwlp; 2954 zl->zl_znode = NULL; 2955 zl->zl_next = *zlpp; 2956 *zlpp = zl; 2957 2958 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2959 return (EINVAL); 2960 2961 if (*oidp == rootid) /* We've hit the top */ 2962 return (0); 2963 2964 if (rw == RW_READER) { /* i.e. not the first pass */ 2965 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2966 if (error) 2967 return (error); 2968 zl->zl_znode = zp; 2969 } 2970 oidp = &zp->z_phys->zp_parent; 2971 rwlp = &zp->z_parent_lock; 2972 rw = RW_READER; 2973 2974 } while (zp->z_id != sdzp->z_id); 2975 2976 return (0); 2977 } 2978 2979 /* 2980 * Move an entry from the provided source directory to the target 2981 * directory. Change the entry name as indicated. 2982 * 2983 * IN: sdvp - Source directory containing the "old entry". 2984 * snm - Old entry name. 2985 * tdvp - Target directory to contain the "new entry". 2986 * tnm - New entry name. 2987 * cr - credentials of caller. 2988 * ct - caller context 2989 * flags - case flags 2990 * 2991 * RETURN: 0 if success 2992 * error code if failure 2993 * 2994 * Timestamps: 2995 * sdvp,tdvp - ctime|mtime updated 2996 */ 2997 /*ARGSUSED*/ 2998 static int 2999 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3000 caller_context_t *ct, int flags) 3001 { 3002 znode_t *tdzp, *szp, *tzp; 3003 znode_t *sdzp = VTOZ(sdvp); 3004 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3005 zilog_t *zilog; 3006 vnode_t *realvp; 3007 zfs_dirlock_t *sdl, *tdl; 3008 dmu_tx_t *tx; 3009 zfs_zlock_t *zl; 3010 int cmp, serr, terr; 3011 int error = 0; 3012 int zflg = 0; 3013 3014 ZFS_ENTER(zfsvfs); 3015 ZFS_VERIFY_ZP(sdzp); 3016 zilog = zfsvfs->z_log; 3017 3018 /* 3019 * Make sure we have the real vp for the target directory. 3020 */ 3021 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3022 tdvp = realvp; 3023 3024 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3025 ZFS_EXIT(zfsvfs); 3026 return (EXDEV); 3027 } 3028 3029 tdzp = VTOZ(tdvp); 3030 ZFS_VERIFY_ZP(tdzp); 3031 if (zfsvfs->z_utf8 && u8_validate(tnm, 3032 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3033 ZFS_EXIT(zfsvfs); 3034 return (EILSEQ); 3035 } 3036 3037 if (flags & FIGNORECASE) 3038 zflg |= ZCILOOK; 3039 3040 top: 3041 szp = NULL; 3042 tzp = NULL; 3043 zl = NULL; 3044 3045 /* 3046 * This is to prevent the creation of links into attribute space 3047 * by renaming a linked file into/outof an attribute directory. 3048 * See the comment in zfs_link() for why this is considered bad. 3049 */ 3050 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3051 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3052 ZFS_EXIT(zfsvfs); 3053 return (EINVAL); 3054 } 3055 3056 /* 3057 * Lock source and target directory entries. To prevent deadlock, 3058 * a lock ordering must be defined. We lock the directory with 3059 * the smallest object id first, or if it's a tie, the one with 3060 * the lexically first name. 3061 */ 3062 if (sdzp->z_id < tdzp->z_id) { 3063 cmp = -1; 3064 } else if (sdzp->z_id > tdzp->z_id) { 3065 cmp = 1; 3066 } else { 3067 /* 3068 * First compare the two name arguments without 3069 * considering any case folding. 3070 */ 3071 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3072 3073 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3074 ASSERT(error == 0 || !zfsvfs->z_utf8); 3075 if (cmp == 0) { 3076 /* 3077 * POSIX: "If the old argument and the new argument 3078 * both refer to links to the same existing file, 3079 * the rename() function shall return successfully 3080 * and perform no other action." 3081 */ 3082 ZFS_EXIT(zfsvfs); 3083 return (0); 3084 } 3085 /* 3086 * If the file system is case-folding, then we may 3087 * have some more checking to do. A case-folding file 3088 * system is either supporting mixed case sensitivity 3089 * access or is completely case-insensitive. Note 3090 * that the file system is always case preserving. 3091 * 3092 * In mixed sensitivity mode case sensitive behavior 3093 * is the default. FIGNORECASE must be used to 3094 * explicitly request case insensitive behavior. 3095 * 3096 * If the source and target names provided differ only 3097 * by case (e.g., a request to rename 'tim' to 'Tim'), 3098 * we will treat this as a special case in the 3099 * case-insensitive mode: as long as the source name 3100 * is an exact match, we will allow this to proceed as 3101 * a name-change request. 3102 */ 3103 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3104 (zfsvfs->z_case == ZFS_CASE_MIXED && 3105 flags & FIGNORECASE)) && 3106 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3107 &error) == 0) { 3108 /* 3109 * case preserving rename request, require exact 3110 * name matches 3111 */ 3112 zflg |= ZCIEXACT; 3113 zflg &= ~ZCILOOK; 3114 } 3115 } 3116 3117 if (cmp < 0) { 3118 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3119 ZEXISTS | zflg, NULL, NULL); 3120 terr = zfs_dirent_lock(&tdl, 3121 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3122 } else { 3123 terr = zfs_dirent_lock(&tdl, 3124 tdzp, tnm, &tzp, zflg, NULL, NULL); 3125 serr = zfs_dirent_lock(&sdl, 3126 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3127 NULL, NULL); 3128 } 3129 3130 if (serr) { 3131 /* 3132 * Source entry invalid or not there. 3133 */ 3134 if (!terr) { 3135 zfs_dirent_unlock(tdl); 3136 if (tzp) 3137 VN_RELE(ZTOV(tzp)); 3138 } 3139 if (strcmp(snm, "..") == 0) 3140 serr = EINVAL; 3141 ZFS_EXIT(zfsvfs); 3142 return (serr); 3143 } 3144 if (terr) { 3145 zfs_dirent_unlock(sdl); 3146 VN_RELE(ZTOV(szp)); 3147 if (strcmp(tnm, "..") == 0) 3148 terr = EINVAL; 3149 ZFS_EXIT(zfsvfs); 3150 return (terr); 3151 } 3152 3153 /* 3154 * Must have write access at the source to remove the old entry 3155 * and write access at the target to create the new entry. 3156 * Note that if target and source are the same, this can be 3157 * done in a single check. 3158 */ 3159 3160 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3161 goto out; 3162 3163 if (ZTOV(szp)->v_type == VDIR) { 3164 /* 3165 * Check to make sure rename is valid. 3166 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3167 */ 3168 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3169 goto out; 3170 } 3171 3172 /* 3173 * Does target exist? 3174 */ 3175 if (tzp) { 3176 /* 3177 * Source and target must be the same type. 3178 */ 3179 if (ZTOV(szp)->v_type == VDIR) { 3180 if (ZTOV(tzp)->v_type != VDIR) { 3181 error = ENOTDIR; 3182 goto out; 3183 } 3184 } else { 3185 if (ZTOV(tzp)->v_type == VDIR) { 3186 error = EISDIR; 3187 goto out; 3188 } 3189 } 3190 /* 3191 * POSIX dictates that when the source and target 3192 * entries refer to the same file object, rename 3193 * must do nothing and exit without error. 3194 */ 3195 if (szp->z_id == tzp->z_id) { 3196 error = 0; 3197 goto out; 3198 } 3199 } 3200 3201 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3202 if (tzp) 3203 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3204 3205 /* 3206 * notify the target directory if it is not the same 3207 * as source directory. 3208 */ 3209 if (tdvp != sdvp) { 3210 vnevent_rename_dest_dir(tdvp, ct); 3211 } 3212 3213 tx = dmu_tx_create(zfsvfs->z_os); 3214 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3215 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3216 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3217 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3218 if (sdzp != tdzp) 3219 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3220 if (tzp) 3221 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3222 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3223 error = dmu_tx_assign(tx, TXG_NOWAIT); 3224 if (error) { 3225 if (zl != NULL) 3226 zfs_rename_unlock(&zl); 3227 zfs_dirent_unlock(sdl); 3228 zfs_dirent_unlock(tdl); 3229 VN_RELE(ZTOV(szp)); 3230 if (tzp) 3231 VN_RELE(ZTOV(tzp)); 3232 if (error == ERESTART) { 3233 dmu_tx_wait(tx); 3234 dmu_tx_abort(tx); 3235 goto top; 3236 } 3237 dmu_tx_abort(tx); 3238 ZFS_EXIT(zfsvfs); 3239 return (error); 3240 } 3241 3242 if (tzp) /* Attempt to remove the existing target */ 3243 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3244 3245 if (error == 0) { 3246 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3247 if (error == 0) { 3248 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3249 3250 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3251 ASSERT(error == 0); 3252 3253 zfs_log_rename(zilog, tx, 3254 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3255 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3256 3257 /* Update path information for the target vnode */ 3258 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3259 } 3260 } 3261 3262 dmu_tx_commit(tx); 3263 out: 3264 if (zl != NULL) 3265 zfs_rename_unlock(&zl); 3266 3267 zfs_dirent_unlock(sdl); 3268 zfs_dirent_unlock(tdl); 3269 3270 VN_RELE(ZTOV(szp)); 3271 if (tzp) 3272 VN_RELE(ZTOV(tzp)); 3273 3274 ZFS_EXIT(zfsvfs); 3275 return (error); 3276 } 3277 3278 /* 3279 * Insert the indicated symbolic reference entry into the directory. 3280 * 3281 * IN: dvp - Directory to contain new symbolic link. 3282 * link - Name for new symlink entry. 3283 * vap - Attributes of new entry. 3284 * target - Target path of new symlink. 3285 * cr - credentials of caller. 3286 * ct - caller context 3287 * flags - case flags 3288 * 3289 * RETURN: 0 if success 3290 * error code if failure 3291 * 3292 * Timestamps: 3293 * dvp - ctime|mtime updated 3294 */ 3295 /*ARGSUSED*/ 3296 static int 3297 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3298 caller_context_t *ct, int flags) 3299 { 3300 znode_t *zp, *dzp = VTOZ(dvp); 3301 zfs_dirlock_t *dl; 3302 dmu_tx_t *tx; 3303 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3304 zilog_t *zilog; 3305 int len = strlen(link); 3306 int error; 3307 int zflg = ZNEW; 3308 zfs_acl_ids_t acl_ids; 3309 boolean_t fuid_dirtied; 3310 3311 ASSERT(vap->va_type == VLNK); 3312 3313 ZFS_ENTER(zfsvfs); 3314 ZFS_VERIFY_ZP(dzp); 3315 zilog = zfsvfs->z_log; 3316 3317 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3318 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3319 ZFS_EXIT(zfsvfs); 3320 return (EILSEQ); 3321 } 3322 if (flags & FIGNORECASE) 3323 zflg |= ZCILOOK; 3324 top: 3325 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3326 ZFS_EXIT(zfsvfs); 3327 return (error); 3328 } 3329 3330 if (len > MAXPATHLEN) { 3331 ZFS_EXIT(zfsvfs); 3332 return (ENAMETOOLONG); 3333 } 3334 3335 /* 3336 * Attempt to lock directory; fail if entry already exists. 3337 */ 3338 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3339 if (error) { 3340 ZFS_EXIT(zfsvfs); 3341 return (error); 3342 } 3343 3344 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3345 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3346 zfs_acl_ids_free(&acl_ids); 3347 zfs_dirent_unlock(dl); 3348 ZFS_EXIT(zfsvfs); 3349 return (EDQUOT); 3350 } 3351 tx = dmu_tx_create(zfsvfs->z_os); 3352 fuid_dirtied = zfsvfs->z_fuid_dirty; 3353 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3354 dmu_tx_hold_bonus(tx, dzp->z_id); 3355 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3356 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3357 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3358 if (fuid_dirtied) 3359 zfs_fuid_txhold(zfsvfs, tx); 3360 error = dmu_tx_assign(tx, TXG_NOWAIT); 3361 if (error) { 3362 zfs_acl_ids_free(&acl_ids); 3363 zfs_dirent_unlock(dl); 3364 if (error == ERESTART) { 3365 dmu_tx_wait(tx); 3366 dmu_tx_abort(tx); 3367 goto top; 3368 } 3369 dmu_tx_abort(tx); 3370 ZFS_EXIT(zfsvfs); 3371 return (error); 3372 } 3373 3374 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3375 3376 /* 3377 * Create a new object for the symlink. 3378 * Put the link content into bonus buffer if it will fit; 3379 * otherwise, store it just like any other file data. 3380 */ 3381 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3382 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3383 if (len != 0) 3384 bcopy(link, zp->z_phys + 1, len); 3385 } else { 3386 dmu_buf_t *dbp; 3387 3388 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3389 3390 if (fuid_dirtied) 3391 zfs_fuid_sync(zfsvfs, tx); 3392 /* 3393 * Nothing can access the znode yet so no locking needed 3394 * for growing the znode's blocksize. 3395 */ 3396 zfs_grow_blocksize(zp, len, tx); 3397 3398 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3399 zp->z_id, 0, FTAG, &dbp)); 3400 dmu_buf_will_dirty(dbp, tx); 3401 3402 ASSERT3U(len, <=, dbp->db_size); 3403 bcopy(link, dbp->db_data, len); 3404 dmu_buf_rele(dbp, FTAG); 3405 } 3406 zp->z_phys->zp_size = len; 3407 3408 /* 3409 * Insert the new object into the directory. 3410 */ 3411 (void) zfs_link_create(dl, zp, tx, ZNEW); 3412 if (error == 0) { 3413 uint64_t txtype = TX_SYMLINK; 3414 if (flags & FIGNORECASE) 3415 txtype |= TX_CI; 3416 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3417 } 3418 3419 zfs_acl_ids_free(&acl_ids); 3420 3421 dmu_tx_commit(tx); 3422 3423 zfs_dirent_unlock(dl); 3424 3425 VN_RELE(ZTOV(zp)); 3426 3427 ZFS_EXIT(zfsvfs); 3428 return (error); 3429 } 3430 3431 /* 3432 * Return, in the buffer contained in the provided uio structure, 3433 * the symbolic path referred to by vp. 3434 * 3435 * IN: vp - vnode of symbolic link. 3436 * uoip - structure to contain the link path. 3437 * cr - credentials of caller. 3438 * ct - caller context 3439 * 3440 * OUT: uio - structure to contain the link path. 3441 * 3442 * RETURN: 0 if success 3443 * error code if failure 3444 * 3445 * Timestamps: 3446 * vp - atime updated 3447 */ 3448 /* ARGSUSED */ 3449 static int 3450 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3451 { 3452 znode_t *zp = VTOZ(vp); 3453 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3454 size_t bufsz; 3455 int error; 3456 3457 ZFS_ENTER(zfsvfs); 3458 ZFS_VERIFY_ZP(zp); 3459 3460 bufsz = (size_t)zp->z_phys->zp_size; 3461 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3462 error = uiomove(zp->z_phys + 1, 3463 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3464 } else { 3465 dmu_buf_t *dbp; 3466 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3467 if (error) { 3468 ZFS_EXIT(zfsvfs); 3469 return (error); 3470 } 3471 error = uiomove(dbp->db_data, 3472 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3473 dmu_buf_rele(dbp, FTAG); 3474 } 3475 3476 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3477 ZFS_EXIT(zfsvfs); 3478 return (error); 3479 } 3480 3481 /* 3482 * Insert a new entry into directory tdvp referencing svp. 3483 * 3484 * IN: tdvp - Directory to contain new entry. 3485 * svp - vnode of new entry. 3486 * name - name of new entry. 3487 * cr - credentials of caller. 3488 * ct - caller context 3489 * 3490 * RETURN: 0 if success 3491 * error code if failure 3492 * 3493 * Timestamps: 3494 * tdvp - ctime|mtime updated 3495 * svp - ctime updated 3496 */ 3497 /* ARGSUSED */ 3498 static int 3499 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3500 caller_context_t *ct, int flags) 3501 { 3502 znode_t *dzp = VTOZ(tdvp); 3503 znode_t *tzp, *szp; 3504 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3505 zilog_t *zilog; 3506 zfs_dirlock_t *dl; 3507 dmu_tx_t *tx; 3508 vnode_t *realvp; 3509 int error; 3510 int zf = ZNEW; 3511 uid_t owner; 3512 3513 ASSERT(tdvp->v_type == VDIR); 3514 3515 ZFS_ENTER(zfsvfs); 3516 ZFS_VERIFY_ZP(dzp); 3517 zilog = zfsvfs->z_log; 3518 3519 if (VOP_REALVP(svp, &realvp, ct) == 0) 3520 svp = realvp; 3521 3522 if (svp->v_vfsp != tdvp->v_vfsp) { 3523 ZFS_EXIT(zfsvfs); 3524 return (EXDEV); 3525 } 3526 szp = VTOZ(svp); 3527 ZFS_VERIFY_ZP(szp); 3528 3529 if (zfsvfs->z_utf8 && u8_validate(name, 3530 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3531 ZFS_EXIT(zfsvfs); 3532 return (EILSEQ); 3533 } 3534 if (flags & FIGNORECASE) 3535 zf |= ZCILOOK; 3536 3537 top: 3538 /* 3539 * We do not support links between attributes and non-attributes 3540 * because of the potential security risk of creating links 3541 * into "normal" file space in order to circumvent restrictions 3542 * imposed in attribute space. 3543 */ 3544 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3545 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3546 ZFS_EXIT(zfsvfs); 3547 return (EINVAL); 3548 } 3549 3550 /* 3551 * POSIX dictates that we return EPERM here. 3552 * Better choices include ENOTSUP or EISDIR. 3553 */ 3554 if (svp->v_type == VDIR) { 3555 ZFS_EXIT(zfsvfs); 3556 return (EPERM); 3557 } 3558 3559 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3560 if (owner != crgetuid(cr) && 3561 secpolicy_basic_link(cr) != 0) { 3562 ZFS_EXIT(zfsvfs); 3563 return (EPERM); 3564 } 3565 3566 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3567 ZFS_EXIT(zfsvfs); 3568 return (error); 3569 } 3570 3571 /* 3572 * Attempt to lock directory; fail if entry already exists. 3573 */ 3574 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3575 if (error) { 3576 ZFS_EXIT(zfsvfs); 3577 return (error); 3578 } 3579 3580 tx = dmu_tx_create(zfsvfs->z_os); 3581 dmu_tx_hold_bonus(tx, szp->z_id); 3582 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3583 error = dmu_tx_assign(tx, TXG_NOWAIT); 3584 if (error) { 3585 zfs_dirent_unlock(dl); 3586 if (error == ERESTART) { 3587 dmu_tx_wait(tx); 3588 dmu_tx_abort(tx); 3589 goto top; 3590 } 3591 dmu_tx_abort(tx); 3592 ZFS_EXIT(zfsvfs); 3593 return (error); 3594 } 3595 3596 error = zfs_link_create(dl, szp, tx, 0); 3597 3598 if (error == 0) { 3599 uint64_t txtype = TX_LINK; 3600 if (flags & FIGNORECASE) 3601 txtype |= TX_CI; 3602 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3603 } 3604 3605 dmu_tx_commit(tx); 3606 3607 zfs_dirent_unlock(dl); 3608 3609 if (error == 0) { 3610 vnevent_link(svp, ct); 3611 } 3612 3613 ZFS_EXIT(zfsvfs); 3614 return (error); 3615 } 3616 3617 /* 3618 * zfs_null_putapage() is used when the file system has been force 3619 * unmounted. It just drops the pages. 3620 */ 3621 /* ARGSUSED */ 3622 static int 3623 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3624 size_t *lenp, int flags, cred_t *cr) 3625 { 3626 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3627 return (0); 3628 } 3629 3630 /* 3631 * Push a page out to disk, klustering if possible. 3632 * 3633 * IN: vp - file to push page to. 3634 * pp - page to push. 3635 * flags - additional flags. 3636 * cr - credentials of caller. 3637 * 3638 * OUT: offp - start of range pushed. 3639 * lenp - len of range pushed. 3640 * 3641 * RETURN: 0 if success 3642 * error code if failure 3643 * 3644 * NOTE: callers must have locked the page to be pushed. On 3645 * exit, the page (and all other pages in the kluster) must be 3646 * unlocked. 3647 */ 3648 /* ARGSUSED */ 3649 static int 3650 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3651 size_t *lenp, int flags, cred_t *cr) 3652 { 3653 znode_t *zp = VTOZ(vp); 3654 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3655 dmu_tx_t *tx; 3656 u_offset_t off, koff; 3657 size_t len, klen; 3658 uint64_t filesz; 3659 int err; 3660 3661 filesz = zp->z_phys->zp_size; 3662 off = pp->p_offset; 3663 len = PAGESIZE; 3664 /* 3665 * If our blocksize is bigger than the page size, try to kluster 3666 * multiple pages so that we write a full block (thus avoiding 3667 * a read-modify-write). 3668 */ 3669 if (off < filesz && zp->z_blksz > PAGESIZE) { 3670 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3671 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3672 ASSERT(koff <= filesz); 3673 if (koff + klen > filesz) 3674 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3675 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3676 } 3677 ASSERT3U(btop(len), ==, btopr(len)); 3678 3679 /* 3680 * Can't push pages past end-of-file. 3681 */ 3682 if (off >= filesz) { 3683 /* ignore all pages */ 3684 err = 0; 3685 goto out; 3686 } else if (off + len > filesz) { 3687 int npages = btopr(filesz - off); 3688 page_t *trunc; 3689 3690 page_list_break(&pp, &trunc, npages); 3691 /* ignore pages past end of file */ 3692 if (trunc) 3693 pvn_write_done(trunc, flags); 3694 len = filesz - off; 3695 } 3696 3697 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3698 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3699 err = EDQUOT; 3700 goto out; 3701 } 3702 top: 3703 tx = dmu_tx_create(zfsvfs->z_os); 3704 dmu_tx_hold_write(tx, zp->z_id, off, len); 3705 dmu_tx_hold_bonus(tx, zp->z_id); 3706 err = dmu_tx_assign(tx, TXG_NOWAIT); 3707 if (err != 0) { 3708 if (err == ERESTART) { 3709 dmu_tx_wait(tx); 3710 dmu_tx_abort(tx); 3711 goto top; 3712 } 3713 dmu_tx_abort(tx); 3714 goto out; 3715 } 3716 3717 if (zp->z_blksz <= PAGESIZE) { 3718 caddr_t va = zfs_map_page(pp, S_READ); 3719 ASSERT3U(len, <=, PAGESIZE); 3720 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3721 zfs_unmap_page(pp, va); 3722 } else { 3723 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3724 } 3725 3726 if (err == 0) { 3727 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3728 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3729 dmu_tx_commit(tx); 3730 } 3731 3732 out: 3733 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3734 if (offp) 3735 *offp = off; 3736 if (lenp) 3737 *lenp = len; 3738 3739 return (err); 3740 } 3741 3742 /* 3743 * Copy the portion of the file indicated from pages into the file. 3744 * The pages are stored in a page list attached to the files vnode. 3745 * 3746 * IN: vp - vnode of file to push page data to. 3747 * off - position in file to put data. 3748 * len - amount of data to write. 3749 * flags - flags to control the operation. 3750 * cr - credentials of caller. 3751 * ct - caller context. 3752 * 3753 * RETURN: 0 if success 3754 * error code if failure 3755 * 3756 * Timestamps: 3757 * vp - ctime|mtime updated 3758 */ 3759 /*ARGSUSED*/ 3760 static int 3761 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3762 caller_context_t *ct) 3763 { 3764 znode_t *zp = VTOZ(vp); 3765 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3766 page_t *pp; 3767 size_t io_len; 3768 u_offset_t io_off; 3769 uint_t blksz; 3770 rl_t *rl; 3771 int error = 0; 3772 3773 ZFS_ENTER(zfsvfs); 3774 ZFS_VERIFY_ZP(zp); 3775 3776 /* 3777 * Align this request to the file block size in case we kluster. 3778 * XXX - this can result in pretty aggresive locking, which can 3779 * impact simultanious read/write access. One option might be 3780 * to break up long requests (len == 0) into block-by-block 3781 * operations to get narrower locking. 3782 */ 3783 blksz = zp->z_blksz; 3784 if (ISP2(blksz)) 3785 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3786 else 3787 io_off = 0; 3788 if (len > 0 && ISP2(blksz)) 3789 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3790 else 3791 io_len = 0; 3792 3793 if (io_len == 0) { 3794 /* 3795 * Search the entire vp list for pages >= io_off. 3796 */ 3797 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3798 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3799 goto out; 3800 } 3801 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3802 3803 if (off > zp->z_phys->zp_size) { 3804 /* past end of file */ 3805 zfs_range_unlock(rl); 3806 ZFS_EXIT(zfsvfs); 3807 return (0); 3808 } 3809 3810 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3811 3812 for (off = io_off; io_off < off + len; io_off += io_len) { 3813 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3814 pp = page_lookup(vp, io_off, 3815 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3816 } else { 3817 pp = page_lookup_nowait(vp, io_off, 3818 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3819 } 3820 3821 if (pp != NULL && pvn_getdirty(pp, flags)) { 3822 int err; 3823 3824 /* 3825 * Found a dirty page to push 3826 */ 3827 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3828 if (err) 3829 error = err; 3830 } else { 3831 io_len = PAGESIZE; 3832 } 3833 } 3834 out: 3835 zfs_range_unlock(rl); 3836 if ((flags & B_ASYNC) == 0) 3837 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3838 ZFS_EXIT(zfsvfs); 3839 return (error); 3840 } 3841 3842 /*ARGSUSED*/ 3843 void 3844 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3845 { 3846 znode_t *zp = VTOZ(vp); 3847 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3848 int error; 3849 3850 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3851 if (zp->z_dbuf == NULL) { 3852 /* 3853 * The fs has been unmounted, or we did a 3854 * suspend/resume and this file no longer exists. 3855 */ 3856 if (vn_has_cached_data(vp)) { 3857 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3858 B_INVAL, cr); 3859 } 3860 3861 mutex_enter(&zp->z_lock); 3862 vp->v_count = 0; /* count arrives as 1 */ 3863 mutex_exit(&zp->z_lock); 3864 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3865 zfs_znode_free(zp); 3866 return; 3867 } 3868 3869 /* 3870 * Attempt to push any data in the page cache. If this fails 3871 * we will get kicked out later in zfs_zinactive(). 3872 */ 3873 if (vn_has_cached_data(vp)) { 3874 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3875 cr); 3876 } 3877 3878 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3879 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3880 3881 dmu_tx_hold_bonus(tx, zp->z_id); 3882 error = dmu_tx_assign(tx, TXG_WAIT); 3883 if (error) { 3884 dmu_tx_abort(tx); 3885 } else { 3886 dmu_buf_will_dirty(zp->z_dbuf, tx); 3887 mutex_enter(&zp->z_lock); 3888 zp->z_atime_dirty = 0; 3889 mutex_exit(&zp->z_lock); 3890 dmu_tx_commit(tx); 3891 } 3892 } 3893 3894 zfs_zinactive(zp); 3895 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3896 } 3897 3898 /* 3899 * Bounds-check the seek operation. 3900 * 3901 * IN: vp - vnode seeking within 3902 * ooff - old file offset 3903 * noffp - pointer to new file offset 3904 * ct - caller context 3905 * 3906 * RETURN: 0 if success 3907 * EINVAL if new offset invalid 3908 */ 3909 /* ARGSUSED */ 3910 static int 3911 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3912 caller_context_t *ct) 3913 { 3914 if (vp->v_type == VDIR) 3915 return (0); 3916 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3917 } 3918 3919 /* 3920 * Pre-filter the generic locking function to trap attempts to place 3921 * a mandatory lock on a memory mapped file. 3922 */ 3923 static int 3924 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3925 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3926 { 3927 znode_t *zp = VTOZ(vp); 3928 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3929 int error; 3930 3931 ZFS_ENTER(zfsvfs); 3932 ZFS_VERIFY_ZP(zp); 3933 3934 /* 3935 * We are following the UFS semantics with respect to mapcnt 3936 * here: If we see that the file is mapped already, then we will 3937 * return an error, but we don't worry about races between this 3938 * function and zfs_map(). 3939 */ 3940 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3941 ZFS_EXIT(zfsvfs); 3942 return (EAGAIN); 3943 } 3944 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3945 ZFS_EXIT(zfsvfs); 3946 return (error); 3947 } 3948 3949 /* 3950 * If we can't find a page in the cache, we will create a new page 3951 * and fill it with file data. For efficiency, we may try to fill 3952 * multiple pages at once (klustering) to fill up the supplied page 3953 * list. Note that the pages to be filled are held with an exclusive 3954 * lock to prevent access by other threads while they are being filled. 3955 */ 3956 static int 3957 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3958 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3959 { 3960 znode_t *zp = VTOZ(vp); 3961 page_t *pp, *cur_pp; 3962 objset_t *os = zp->z_zfsvfs->z_os; 3963 u_offset_t io_off, total; 3964 size_t io_len; 3965 int err; 3966 3967 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3968 /* 3969 * We only have a single page, don't bother klustering 3970 */ 3971 io_off = off; 3972 io_len = PAGESIZE; 3973 pp = page_create_va(vp, io_off, io_len, 3974 PG_EXCL | PG_WAIT, seg, addr); 3975 } else { 3976 /* 3977 * Try to find enough pages to fill the page list 3978 */ 3979 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3980 &io_len, off, plsz, 0); 3981 } 3982 if (pp == NULL) { 3983 /* 3984 * The page already exists, nothing to do here. 3985 */ 3986 *pl = NULL; 3987 return (0); 3988 } 3989 3990 /* 3991 * Fill the pages in the kluster. 3992 */ 3993 cur_pp = pp; 3994 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3995 caddr_t va; 3996 3997 ASSERT3U(io_off, ==, cur_pp->p_offset); 3998 va = zfs_map_page(cur_pp, S_WRITE); 3999 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4000 DMU_READ_PREFETCH); 4001 zfs_unmap_page(cur_pp, va); 4002 if (err) { 4003 /* On error, toss the entire kluster */ 4004 pvn_read_done(pp, B_ERROR); 4005 /* convert checksum errors into IO errors */ 4006 if (err == ECKSUM) 4007 err = EIO; 4008 return (err); 4009 } 4010 cur_pp = cur_pp->p_next; 4011 } 4012 4013 /* 4014 * Fill in the page list array from the kluster starting 4015 * from the desired offset `off'. 4016 * NOTE: the page list will always be null terminated. 4017 */ 4018 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4019 ASSERT(pl == NULL || (*pl)->p_offset == off); 4020 4021 return (0); 4022 } 4023 4024 /* 4025 * Return pointers to the pages for the file region [off, off + len] 4026 * in the pl array. If plsz is greater than len, this function may 4027 * also return page pointers from after the specified region 4028 * (i.e. the region [off, off + plsz]). These additional pages are 4029 * only returned if they are already in the cache, or were created as 4030 * part of a klustered read. 4031 * 4032 * IN: vp - vnode of file to get data from. 4033 * off - position in file to get data from. 4034 * len - amount of data to retrieve. 4035 * plsz - length of provided page list. 4036 * seg - segment to obtain pages for. 4037 * addr - virtual address of fault. 4038 * rw - mode of created pages. 4039 * cr - credentials of caller. 4040 * ct - caller context. 4041 * 4042 * OUT: protp - protection mode of created pages. 4043 * pl - list of pages created. 4044 * 4045 * RETURN: 0 if success 4046 * error code if failure 4047 * 4048 * Timestamps: 4049 * vp - atime updated 4050 */ 4051 /* ARGSUSED */ 4052 static int 4053 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4054 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4055 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4056 { 4057 znode_t *zp = VTOZ(vp); 4058 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4059 page_t **pl0 = pl; 4060 int err = 0; 4061 4062 /* we do our own caching, faultahead is unnecessary */ 4063 if (pl == NULL) 4064 return (0); 4065 else if (len > plsz) 4066 len = plsz; 4067 else 4068 len = P2ROUNDUP(len, PAGESIZE); 4069 ASSERT(plsz >= len); 4070 4071 ZFS_ENTER(zfsvfs); 4072 ZFS_VERIFY_ZP(zp); 4073 4074 if (protp) 4075 *protp = PROT_ALL; 4076 4077 /* 4078 * Loop through the requested range [off, off + len) looking 4079 * for pages. If we don't find a page, we will need to create 4080 * a new page and fill it with data from the file. 4081 */ 4082 while (len > 0) { 4083 if (*pl = page_lookup(vp, off, SE_SHARED)) 4084 *(pl+1) = NULL; 4085 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4086 goto out; 4087 while (*pl) { 4088 ASSERT3U((*pl)->p_offset, ==, off); 4089 off += PAGESIZE; 4090 addr += PAGESIZE; 4091 if (len > 0) { 4092 ASSERT3U(len, >=, PAGESIZE); 4093 len -= PAGESIZE; 4094 } 4095 ASSERT3U(plsz, >=, PAGESIZE); 4096 plsz -= PAGESIZE; 4097 pl++; 4098 } 4099 } 4100 4101 /* 4102 * Fill out the page array with any pages already in the cache. 4103 */ 4104 while (plsz > 0 && 4105 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4106 off += PAGESIZE; 4107 plsz -= PAGESIZE; 4108 } 4109 out: 4110 if (err) { 4111 /* 4112 * Release any pages we have previously locked. 4113 */ 4114 while (pl > pl0) 4115 page_unlock(*--pl); 4116 } else { 4117 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4118 } 4119 4120 *pl = NULL; 4121 4122 ZFS_EXIT(zfsvfs); 4123 return (err); 4124 } 4125 4126 /* 4127 * Request a memory map for a section of a file. This code interacts 4128 * with common code and the VM system as follows: 4129 * 4130 * common code calls mmap(), which ends up in smmap_common() 4131 * 4132 * this calls VOP_MAP(), which takes you into (say) zfs 4133 * 4134 * zfs_map() calls as_map(), passing segvn_create() as the callback 4135 * 4136 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4137 * 4138 * zfs_addmap() updates z_mapcnt 4139 */ 4140 /*ARGSUSED*/ 4141 static int 4142 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4143 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4144 caller_context_t *ct) 4145 { 4146 znode_t *zp = VTOZ(vp); 4147 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4148 segvn_crargs_t vn_a; 4149 int error; 4150 4151 ZFS_ENTER(zfsvfs); 4152 ZFS_VERIFY_ZP(zp); 4153 4154 if ((prot & PROT_WRITE) && 4155 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4156 ZFS_APPENDONLY))) { 4157 ZFS_EXIT(zfsvfs); 4158 return (EPERM); 4159 } 4160 4161 if ((prot & (PROT_READ | PROT_EXEC)) && 4162 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4163 ZFS_EXIT(zfsvfs); 4164 return (EACCES); 4165 } 4166 4167 if (vp->v_flag & VNOMAP) { 4168 ZFS_EXIT(zfsvfs); 4169 return (ENOSYS); 4170 } 4171 4172 if (off < 0 || len > MAXOFFSET_T - off) { 4173 ZFS_EXIT(zfsvfs); 4174 return (ENXIO); 4175 } 4176 4177 if (vp->v_type != VREG) { 4178 ZFS_EXIT(zfsvfs); 4179 return (ENODEV); 4180 } 4181 4182 /* 4183 * If file is locked, disallow mapping. 4184 */ 4185 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4186 ZFS_EXIT(zfsvfs); 4187 return (EAGAIN); 4188 } 4189 4190 as_rangelock(as); 4191 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4192 if (error != 0) { 4193 as_rangeunlock(as); 4194 ZFS_EXIT(zfsvfs); 4195 return (error); 4196 } 4197 4198 vn_a.vp = vp; 4199 vn_a.offset = (u_offset_t)off; 4200 vn_a.type = flags & MAP_TYPE; 4201 vn_a.prot = prot; 4202 vn_a.maxprot = maxprot; 4203 vn_a.cred = cr; 4204 vn_a.amp = NULL; 4205 vn_a.flags = flags & ~MAP_TYPE; 4206 vn_a.szc = 0; 4207 vn_a.lgrp_mem_policy_flags = 0; 4208 4209 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4210 4211 as_rangeunlock(as); 4212 ZFS_EXIT(zfsvfs); 4213 return (error); 4214 } 4215 4216 /* ARGSUSED */ 4217 static int 4218 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4219 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4220 caller_context_t *ct) 4221 { 4222 uint64_t pages = btopr(len); 4223 4224 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4225 return (0); 4226 } 4227 4228 /* 4229 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4230 * more accurate mtime for the associated file. Since we don't have a way of 4231 * detecting when the data was actually modified, we have to resort to 4232 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4233 * last page is pushed. The problem occurs when the msync() call is omitted, 4234 * which by far the most common case: 4235 * 4236 * open() 4237 * mmap() 4238 * <modify memory> 4239 * munmap() 4240 * close() 4241 * <time lapse> 4242 * putpage() via fsflush 4243 * 4244 * If we wait until fsflush to come along, we can have a modification time that 4245 * is some arbitrary point in the future. In order to prevent this in the 4246 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4247 * torn down. 4248 */ 4249 /* ARGSUSED */ 4250 static int 4251 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4252 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4253 caller_context_t *ct) 4254 { 4255 uint64_t pages = btopr(len); 4256 4257 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4258 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4259 4260 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4261 vn_has_cached_data(vp)) 4262 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4263 4264 return (0); 4265 } 4266 4267 /* 4268 * Free or allocate space in a file. Currently, this function only 4269 * supports the `F_FREESP' command. However, this command is somewhat 4270 * misnamed, as its functionality includes the ability to allocate as 4271 * well as free space. 4272 * 4273 * IN: vp - vnode of file to free data in. 4274 * cmd - action to take (only F_FREESP supported). 4275 * bfp - section of file to free/alloc. 4276 * flag - current file open mode flags. 4277 * offset - current file offset. 4278 * cr - credentials of caller [UNUSED]. 4279 * ct - caller context. 4280 * 4281 * RETURN: 0 if success 4282 * error code if failure 4283 * 4284 * Timestamps: 4285 * vp - ctime|mtime updated 4286 */ 4287 /* ARGSUSED */ 4288 static int 4289 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4290 offset_t offset, cred_t *cr, caller_context_t *ct) 4291 { 4292 znode_t *zp = VTOZ(vp); 4293 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4294 uint64_t off, len; 4295 int error; 4296 4297 ZFS_ENTER(zfsvfs); 4298 ZFS_VERIFY_ZP(zp); 4299 4300 if (cmd != F_FREESP) { 4301 ZFS_EXIT(zfsvfs); 4302 return (EINVAL); 4303 } 4304 4305 if (error = convoff(vp, bfp, 0, offset)) { 4306 ZFS_EXIT(zfsvfs); 4307 return (error); 4308 } 4309 4310 if (bfp->l_len < 0) { 4311 ZFS_EXIT(zfsvfs); 4312 return (EINVAL); 4313 } 4314 4315 off = bfp->l_start; 4316 len = bfp->l_len; /* 0 means from off to end of file */ 4317 4318 error = zfs_freesp(zp, off, len, flag, TRUE); 4319 4320 ZFS_EXIT(zfsvfs); 4321 return (error); 4322 } 4323 4324 /*ARGSUSED*/ 4325 static int 4326 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4327 { 4328 znode_t *zp = VTOZ(vp); 4329 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4330 uint32_t gen; 4331 uint64_t object = zp->z_id; 4332 zfid_short_t *zfid; 4333 int size, i; 4334 4335 ZFS_ENTER(zfsvfs); 4336 ZFS_VERIFY_ZP(zp); 4337 gen = (uint32_t)zp->z_gen; 4338 4339 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4340 if (fidp->fid_len < size) { 4341 fidp->fid_len = size; 4342 ZFS_EXIT(zfsvfs); 4343 return (ENOSPC); 4344 } 4345 4346 zfid = (zfid_short_t *)fidp; 4347 4348 zfid->zf_len = size; 4349 4350 for (i = 0; i < sizeof (zfid->zf_object); i++) 4351 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4352 4353 /* Must have a non-zero generation number to distinguish from .zfs */ 4354 if (gen == 0) 4355 gen = 1; 4356 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4357 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4358 4359 if (size == LONG_FID_LEN) { 4360 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4361 zfid_long_t *zlfid; 4362 4363 zlfid = (zfid_long_t *)fidp; 4364 4365 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4366 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4367 4368 /* XXX - this should be the generation number for the objset */ 4369 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4370 zlfid->zf_setgen[i] = 0; 4371 } 4372 4373 ZFS_EXIT(zfsvfs); 4374 return (0); 4375 } 4376 4377 static int 4378 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4379 caller_context_t *ct) 4380 { 4381 znode_t *zp, *xzp; 4382 zfsvfs_t *zfsvfs; 4383 zfs_dirlock_t *dl; 4384 int error; 4385 4386 switch (cmd) { 4387 case _PC_LINK_MAX: 4388 *valp = ULONG_MAX; 4389 return (0); 4390 4391 case _PC_FILESIZEBITS: 4392 *valp = 64; 4393 return (0); 4394 4395 case _PC_XATTR_EXISTS: 4396 zp = VTOZ(vp); 4397 zfsvfs = zp->z_zfsvfs; 4398 ZFS_ENTER(zfsvfs); 4399 ZFS_VERIFY_ZP(zp); 4400 *valp = 0; 4401 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4402 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4403 if (error == 0) { 4404 zfs_dirent_unlock(dl); 4405 if (!zfs_dirempty(xzp)) 4406 *valp = 1; 4407 VN_RELE(ZTOV(xzp)); 4408 } else if (error == ENOENT) { 4409 /* 4410 * If there aren't extended attributes, it's the 4411 * same as having zero of them. 4412 */ 4413 error = 0; 4414 } 4415 ZFS_EXIT(zfsvfs); 4416 return (error); 4417 4418 case _PC_SATTR_ENABLED: 4419 case _PC_SATTR_EXISTS: 4420 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4421 (vp->v_type == VREG || vp->v_type == VDIR); 4422 return (0); 4423 4424 case _PC_ACCESS_FILTERING: 4425 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4426 vp->v_type == VDIR; 4427 return (0); 4428 4429 case _PC_ACL_ENABLED: 4430 *valp = _ACL_ACE_ENABLED; 4431 return (0); 4432 4433 case _PC_MIN_HOLE_SIZE: 4434 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4435 return (0); 4436 4437 default: 4438 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4439 } 4440 } 4441 4442 /*ARGSUSED*/ 4443 static int 4444 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4445 caller_context_t *ct) 4446 { 4447 znode_t *zp = VTOZ(vp); 4448 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4449 int error; 4450 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4451 4452 ZFS_ENTER(zfsvfs); 4453 ZFS_VERIFY_ZP(zp); 4454 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4455 ZFS_EXIT(zfsvfs); 4456 4457 return (error); 4458 } 4459 4460 /*ARGSUSED*/ 4461 static int 4462 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4463 caller_context_t *ct) 4464 { 4465 znode_t *zp = VTOZ(vp); 4466 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4467 int error; 4468 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4469 4470 ZFS_ENTER(zfsvfs); 4471 ZFS_VERIFY_ZP(zp); 4472 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4473 ZFS_EXIT(zfsvfs); 4474 return (error); 4475 } 4476 4477 /* 4478 * Predeclare these here so that the compiler assumes that 4479 * this is an "old style" function declaration that does 4480 * not include arguments => we won't get type mismatch errors 4481 * in the initializations that follow. 4482 */ 4483 static int zfs_inval(); 4484 static int zfs_isdir(); 4485 4486 static int 4487 zfs_inval() 4488 { 4489 return (EINVAL); 4490 } 4491 4492 static int 4493 zfs_isdir() 4494 { 4495 return (EISDIR); 4496 } 4497 /* 4498 * Directory vnode operations template 4499 */ 4500 vnodeops_t *zfs_dvnodeops; 4501 const fs_operation_def_t zfs_dvnodeops_template[] = { 4502 VOPNAME_OPEN, { .vop_open = zfs_open }, 4503 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4504 VOPNAME_READ, { .error = zfs_isdir }, 4505 VOPNAME_WRITE, { .error = zfs_isdir }, 4506 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4507 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4508 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4509 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4510 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4511 VOPNAME_CREATE, { .vop_create = zfs_create }, 4512 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4513 VOPNAME_LINK, { .vop_link = zfs_link }, 4514 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4515 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4516 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4517 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4518 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4519 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4520 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4521 VOPNAME_FID, { .vop_fid = zfs_fid }, 4522 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4523 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4524 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4525 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4526 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4527 NULL, NULL 4528 }; 4529 4530 /* 4531 * Regular file vnode operations template 4532 */ 4533 vnodeops_t *zfs_fvnodeops; 4534 const fs_operation_def_t zfs_fvnodeops_template[] = { 4535 VOPNAME_OPEN, { .vop_open = zfs_open }, 4536 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4537 VOPNAME_READ, { .vop_read = zfs_read }, 4538 VOPNAME_WRITE, { .vop_write = zfs_write }, 4539 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4540 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4541 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4542 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4543 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4544 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4545 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4546 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4547 VOPNAME_FID, { .vop_fid = zfs_fid }, 4548 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4549 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4550 VOPNAME_SPACE, { .vop_space = zfs_space }, 4551 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4552 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4553 VOPNAME_MAP, { .vop_map = zfs_map }, 4554 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4555 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4556 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4557 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4558 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4559 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4560 NULL, NULL 4561 }; 4562 4563 /* 4564 * Symbolic link vnode operations template 4565 */ 4566 vnodeops_t *zfs_symvnodeops; 4567 const fs_operation_def_t zfs_symvnodeops_template[] = { 4568 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4569 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4570 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4571 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4572 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4573 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4574 VOPNAME_FID, { .vop_fid = zfs_fid }, 4575 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4576 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4577 NULL, NULL 4578 }; 4579 4580 /* 4581 * special share hidden files vnode operations template 4582 */ 4583 vnodeops_t *zfs_sharevnodeops; 4584 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4585 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4586 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4587 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4588 VOPNAME_FID, { .vop_fid = zfs_fid }, 4589 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4590 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4591 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4592 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4593 NULL, NULL 4594 }; 4595 4596 /* 4597 * Extended attribute directory vnode operations template 4598 * This template is identical to the directory vnodes 4599 * operation template except for restricted operations: 4600 * VOP_MKDIR() 4601 * VOP_SYMLINK() 4602 * Note that there are other restrictions embedded in: 4603 * zfs_create() - restrict type to VREG 4604 * zfs_link() - no links into/out of attribute space 4605 * zfs_rename() - no moves into/out of attribute space 4606 */ 4607 vnodeops_t *zfs_xdvnodeops; 4608 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4609 VOPNAME_OPEN, { .vop_open = zfs_open }, 4610 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4611 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4612 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4613 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4614 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4615 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4616 VOPNAME_CREATE, { .vop_create = zfs_create }, 4617 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4618 VOPNAME_LINK, { .vop_link = zfs_link }, 4619 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4620 VOPNAME_MKDIR, { .error = zfs_inval }, 4621 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4622 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4623 VOPNAME_SYMLINK, { .error = zfs_inval }, 4624 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4625 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4626 VOPNAME_FID, { .vop_fid = zfs_fid }, 4627 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4628 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4629 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4630 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4631 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4632 NULL, NULL 4633 }; 4634 4635 /* 4636 * Error vnode operations template 4637 */ 4638 vnodeops_t *zfs_evnodeops; 4639 const fs_operation_def_t zfs_evnodeops_template[] = { 4640 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4641 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4642 NULL, NULL 4643 }; 4644