1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include <sys/sid.h> 69 #include "fs/fs_subr.h" 70 #include <sys/zfs_ctldir.h> 71 #include <sys/zfs_fuid.h> 72 #include <sys/dnlc.h> 73 #include <sys/zfs_rlock.h> 74 #include <sys/extdirent.h> 75 #include <sys/kidmap.h> 76 #include <sys/cred_impl.h> 77 #include <sys/attr.h> 78 79 /* 80 * Programming rules. 81 * 82 * Each vnode op performs some logical unit of work. To do this, the ZPL must 83 * properly lock its in-core state, create a DMU transaction, do the work, 84 * record this work in the intent log (ZIL), commit the DMU transaction, 85 * and wait for the intent log to commit if it is a synchronous operation. 86 * Moreover, the vnode ops must work in both normal and log replay context. 87 * The ordering of events is important to avoid deadlocks and references 88 * to freed memory. The example below illustrates the following Big Rules: 89 * 90 * (1) A check must be made in each zfs thread for a mounted file system. 91 * This is done avoiding races using ZFS_ENTER(zfsvfs). 92 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 93 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 94 * can return EIO from the calling function. 95 * 96 * (2) VN_RELE() should always be the last thing except for zil_commit() 97 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 98 * First, if it's the last reference, the vnode/znode 99 * can be freed, so the zp may point to freed memory. Second, the last 100 * reference will call zfs_zinactive(), which may induce a lot of work -- 101 * pushing cached pages (which acquires range locks) and syncing out 102 * cached atime changes. Third, zfs_zinactive() may require a new tx, 103 * which could deadlock the system if you were already holding one. 104 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 105 * 106 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 107 * as they can span dmu_tx_assign() calls. 108 * 109 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 110 * This is critical because we don't want to block while holding locks. 111 * Note, in particular, that if a lock is sometimes acquired before 112 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 113 * use a non-blocking assign can deadlock the system. The scenario: 114 * 115 * Thread A has grabbed a lock before calling dmu_tx_assign(). 116 * Thread B is in an already-assigned tx, and blocks for this lock. 117 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 118 * forever, because the previous txg can't quiesce until B's tx commits. 119 * 120 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 121 * then drop all locks, call dmu_tx_wait(), and try again. 122 * 123 * (5) If the operation succeeded, generate the intent log entry for it 124 * before dropping locks. This ensures that the ordering of events 125 * in the intent log matches the order in which they actually occurred. 126 * During ZIL replay the zfs_log_* functions will update the sequence 127 * number to indicate the zil transaction has replayed. 128 * 129 * (6) At the end of each vnode op, the DMU tx must always commit, 130 * regardless of whether there were any errors. 131 * 132 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 133 * to ensure that synchronous semantics are provided when necessary. 134 * 135 * In general, this is how things should be ordered in each vnode op: 136 * 137 * ZFS_ENTER(zfsvfs); // exit if unmounted 138 * top: 139 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 140 * rw_enter(...); // grab any other locks you need 141 * tx = dmu_tx_create(...); // get DMU tx 142 * dmu_tx_hold_*(); // hold each object you might modify 143 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 144 * if (error) { 145 * rw_exit(...); // drop locks 146 * zfs_dirent_unlock(dl); // unlock directory entry 147 * VN_RELE(...); // release held vnodes 148 * if (error == ERESTART) { 149 * dmu_tx_wait(tx); 150 * dmu_tx_abort(tx); 151 * goto top; 152 * } 153 * dmu_tx_abort(tx); // abort DMU tx 154 * ZFS_EXIT(zfsvfs); // finished in zfs 155 * return (error); // really out of space 156 * } 157 * error = do_real_work(); // do whatever this VOP does 158 * if (error == 0) 159 * zfs_log_*(...); // on success, make ZIL entry 160 * dmu_tx_commit(tx); // commit DMU tx -- error or not 161 * rw_exit(...); // drop locks 162 * zfs_dirent_unlock(dl); // unlock directory entry 163 * VN_RELE(...); // release held vnodes 164 * zil_commit(zilog, seq, foid); // synchronous when necessary 165 * ZFS_EXIT(zfsvfs); // finished in zfs 166 * return (error); // done, report error 167 */ 168 169 /* ARGSUSED */ 170 static int 171 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 172 { 173 znode_t *zp = VTOZ(*vpp); 174 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 175 176 ZFS_ENTER(zfsvfs); 177 ZFS_VERIFY_ZP(zp); 178 179 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 180 ((flag & FAPPEND) == 0)) { 181 ZFS_EXIT(zfsvfs); 182 return (EPERM); 183 } 184 185 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 186 ZTOV(zp)->v_type == VREG && 187 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 188 zp->z_phys->zp_size > 0) { 189 if (fs_vscan(*vpp, cr, 0) != 0) { 190 ZFS_EXIT(zfsvfs); 191 return (EACCES); 192 } 193 } 194 195 /* Keep a count of the synchronous opens in the znode */ 196 if (flag & (FSYNC | FDSYNC)) 197 atomic_inc_32(&zp->z_sync_cnt); 198 199 ZFS_EXIT(zfsvfs); 200 return (0); 201 } 202 203 /* ARGSUSED */ 204 static int 205 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 206 caller_context_t *ct) 207 { 208 znode_t *zp = VTOZ(vp); 209 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 210 211 /* 212 * Clean up any locks held by this process on the vp. 213 */ 214 cleanlocks(vp, ddi_get_pid(), 0); 215 cleanshares(vp, ddi_get_pid()); 216 217 ZFS_ENTER(zfsvfs); 218 ZFS_VERIFY_ZP(zp); 219 220 /* Decrement the synchronous opens in the znode */ 221 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 222 atomic_dec_32(&zp->z_sync_cnt); 223 224 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 225 ZTOV(zp)->v_type == VREG && 226 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 227 zp->z_phys->zp_size > 0) 228 VERIFY(fs_vscan(vp, cr, 1) == 0); 229 230 ZFS_EXIT(zfsvfs); 231 return (0); 232 } 233 234 /* 235 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 236 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 237 */ 238 static int 239 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 240 { 241 znode_t *zp = VTOZ(vp); 242 uint64_t noff = (uint64_t)*off; /* new offset */ 243 uint64_t file_sz; 244 int error; 245 boolean_t hole; 246 247 file_sz = zp->z_phys->zp_size; 248 if (noff >= file_sz) { 249 return (ENXIO); 250 } 251 252 if (cmd == _FIO_SEEK_HOLE) 253 hole = B_TRUE; 254 else 255 hole = B_FALSE; 256 257 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 258 259 /* end of file? */ 260 if ((error == ESRCH) || (noff > file_sz)) { 261 /* 262 * Handle the virtual hole at the end of file. 263 */ 264 if (hole) { 265 *off = file_sz; 266 return (0); 267 } 268 return (ENXIO); 269 } 270 271 if (noff < *off) 272 return (error); 273 *off = noff; 274 return (error); 275 } 276 277 /* ARGSUSED */ 278 static int 279 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 280 int *rvalp, caller_context_t *ct) 281 { 282 offset_t off; 283 int error; 284 zfsvfs_t *zfsvfs; 285 znode_t *zp; 286 287 switch (com) { 288 case _FIOFFS: 289 return (zfs_sync(vp->v_vfsp, 0, cred)); 290 291 /* 292 * The following two ioctls are used by bfu. Faking out, 293 * necessary to avoid bfu errors. 294 */ 295 case _FIOGDIO: 296 case _FIOSDIO: 297 return (0); 298 299 case _FIO_SEEK_DATA: 300 case _FIO_SEEK_HOLE: 301 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 302 return (EFAULT); 303 304 zp = VTOZ(vp); 305 zfsvfs = zp->z_zfsvfs; 306 ZFS_ENTER(zfsvfs); 307 ZFS_VERIFY_ZP(zp); 308 309 /* offset parameter is in/out */ 310 error = zfs_holey(vp, com, &off); 311 ZFS_EXIT(zfsvfs); 312 if (error) 313 return (error); 314 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 315 return (EFAULT); 316 return (0); 317 } 318 return (ENOTTY); 319 } 320 321 /* 322 * Utility functions to map and unmap a single physical page. These 323 * are used to manage the mappable copies of ZFS file data, and therefore 324 * do not update ref/mod bits. 325 */ 326 caddr_t 327 zfs_map_page(page_t *pp, enum seg_rw rw) 328 { 329 if (kpm_enable) 330 return (hat_kpm_mapin(pp, 0)); 331 ASSERT(rw == S_READ || rw == S_WRITE); 332 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 333 (caddr_t)-1)); 334 } 335 336 void 337 zfs_unmap_page(page_t *pp, caddr_t addr) 338 { 339 if (kpm_enable) { 340 hat_kpm_mapout(pp, 0, addr); 341 } else { 342 ppmapout(addr); 343 } 344 } 345 346 /* 347 * When a file is memory mapped, we must keep the IO data synchronized 348 * between the DMU cache and the memory mapped pages. What this means: 349 * 350 * On Write: If we find a memory mapped page, we write to *both* 351 * the page and the dmu buffer. 352 */ 353 static void 354 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 355 { 356 int64_t off; 357 358 off = start & PAGEOFFSET; 359 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 360 page_t *pp; 361 uint64_t nbytes = MIN(PAGESIZE - off, len); 362 363 if (pp = page_lookup(vp, start, SE_SHARED)) { 364 caddr_t va; 365 366 va = zfs_map_page(pp, S_WRITE); 367 (void) dmu_read(os, oid, start+off, nbytes, va+off, 368 DMU_READ_PREFETCH); 369 zfs_unmap_page(pp, va); 370 page_unlock(pp); 371 } 372 len -= nbytes; 373 off = 0; 374 } 375 } 376 377 /* 378 * When a file is memory mapped, we must keep the IO data synchronized 379 * between the DMU cache and the memory mapped pages. What this means: 380 * 381 * On Read: We "read" preferentially from memory mapped pages, 382 * else we default from the dmu buffer. 383 * 384 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 385 * the file is memory mapped. 386 */ 387 static int 388 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 389 { 390 znode_t *zp = VTOZ(vp); 391 objset_t *os = zp->z_zfsvfs->z_os; 392 int64_t start, off; 393 int len = nbytes; 394 int error = 0; 395 396 start = uio->uio_loffset; 397 off = start & PAGEOFFSET; 398 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 399 page_t *pp; 400 uint64_t bytes = MIN(PAGESIZE - off, len); 401 402 if (pp = page_lookup(vp, start, SE_SHARED)) { 403 caddr_t va; 404 405 va = zfs_map_page(pp, S_READ); 406 error = uiomove(va + off, bytes, UIO_READ, uio); 407 zfs_unmap_page(pp, va); 408 page_unlock(pp); 409 } else { 410 error = dmu_read_uio(os, zp->z_id, uio, bytes); 411 } 412 len -= bytes; 413 off = 0; 414 if (error) 415 break; 416 } 417 return (error); 418 } 419 420 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 421 422 /* 423 * Read bytes from specified file into supplied buffer. 424 * 425 * IN: vp - vnode of file to be read from. 426 * uio - structure supplying read location, range info, 427 * and return buffer. 428 * ioflag - SYNC flags; used to provide FRSYNC semantics. 429 * cr - credentials of caller. 430 * ct - caller context 431 * 432 * OUT: uio - updated offset and range, buffer filled. 433 * 434 * RETURN: 0 if success 435 * error code if failure 436 * 437 * Side Effects: 438 * vp - atime updated if byte count > 0 439 */ 440 /* ARGSUSED */ 441 static int 442 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 443 { 444 znode_t *zp = VTOZ(vp); 445 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 446 objset_t *os; 447 ssize_t n, nbytes; 448 int error; 449 rl_t *rl; 450 451 ZFS_ENTER(zfsvfs); 452 ZFS_VERIFY_ZP(zp); 453 os = zfsvfs->z_os; 454 455 if (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) { 456 ZFS_EXIT(zfsvfs); 457 return (EACCES); 458 } 459 460 /* 461 * Validate file offset 462 */ 463 if (uio->uio_loffset < (offset_t)0) { 464 ZFS_EXIT(zfsvfs); 465 return (EINVAL); 466 } 467 468 /* 469 * Fasttrack empty reads 470 */ 471 if (uio->uio_resid == 0) { 472 ZFS_EXIT(zfsvfs); 473 return (0); 474 } 475 476 /* 477 * Check for mandatory locks 478 */ 479 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 480 if (error = chklock(vp, FREAD, 481 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 482 ZFS_EXIT(zfsvfs); 483 return (error); 484 } 485 } 486 487 /* 488 * If we're in FRSYNC mode, sync out this znode before reading it. 489 */ 490 if (ioflag & FRSYNC) 491 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 492 493 /* 494 * Lock the range against changes. 495 */ 496 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 497 498 /* 499 * If we are reading past end-of-file we can skip 500 * to the end; but we might still need to set atime. 501 */ 502 if (uio->uio_loffset >= zp->z_phys->zp_size) { 503 error = 0; 504 goto out; 505 } 506 507 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 508 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 509 510 while (n > 0) { 511 nbytes = MIN(n, zfs_read_chunk_size - 512 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 513 514 if (vn_has_cached_data(vp)) 515 error = mappedread(vp, nbytes, uio); 516 else 517 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 518 if (error) { 519 /* convert checksum errors into IO errors */ 520 if (error == ECKSUM) 521 error = EIO; 522 break; 523 } 524 525 n -= nbytes; 526 } 527 528 out: 529 zfs_range_unlock(rl); 530 531 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 532 ZFS_EXIT(zfsvfs); 533 return (error); 534 } 535 536 /* 537 * Write the bytes to a file. 538 * 539 * IN: vp - vnode of file to be written to. 540 * uio - structure supplying write location, range info, 541 * and data buffer. 542 * ioflag - FAPPEND flag set if in append mode. 543 * cr - credentials of caller. 544 * ct - caller context (NFS/CIFS fem monitor only) 545 * 546 * OUT: uio - updated offset and range. 547 * 548 * RETURN: 0 if success 549 * error code if failure 550 * 551 * Timestamps: 552 * vp - ctime|mtime updated if byte count > 0 553 */ 554 /* ARGSUSED */ 555 static int 556 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 557 { 558 znode_t *zp = VTOZ(vp); 559 rlim64_t limit = uio->uio_llimit; 560 ssize_t start_resid = uio->uio_resid; 561 ssize_t tx_bytes; 562 uint64_t end_size; 563 dmu_tx_t *tx; 564 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 565 zilog_t *zilog; 566 offset_t woff; 567 ssize_t n, nbytes; 568 rl_t *rl; 569 int max_blksz = zfsvfs->z_max_blksz; 570 uint64_t pflags; 571 int error; 572 arc_buf_t *abuf; 573 574 /* 575 * Fasttrack empty write 576 */ 577 n = start_resid; 578 if (n == 0) 579 return (0); 580 581 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 582 limit = MAXOFFSET_T; 583 584 ZFS_ENTER(zfsvfs); 585 ZFS_VERIFY_ZP(zp); 586 587 /* 588 * If immutable or not appending then return EPERM 589 */ 590 pflags = zp->z_phys->zp_flags; 591 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 592 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 593 (uio->uio_loffset < zp->z_phys->zp_size))) { 594 ZFS_EXIT(zfsvfs); 595 return (EPERM); 596 } 597 598 zilog = zfsvfs->z_log; 599 600 /* 601 * Pre-fault the pages to ensure slow (eg NFS) pages 602 * don't hold up txg. 603 */ 604 uio_prefaultpages(n, uio); 605 606 /* 607 * If in append mode, set the io offset pointer to eof. 608 */ 609 if (ioflag & FAPPEND) { 610 /* 611 * Range lock for a file append: 612 * The value for the start of range will be determined by 613 * zfs_range_lock() (to guarantee append semantics). 614 * If this write will cause the block size to increase, 615 * zfs_range_lock() will lock the entire file, so we must 616 * later reduce the range after we grow the block size. 617 */ 618 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 619 if (rl->r_len == UINT64_MAX) { 620 /* overlocked, zp_size can't change */ 621 woff = uio->uio_loffset = zp->z_phys->zp_size; 622 } else { 623 woff = uio->uio_loffset = rl->r_off; 624 } 625 } else { 626 woff = uio->uio_loffset; 627 /* 628 * Validate file offset 629 */ 630 if (woff < 0) { 631 ZFS_EXIT(zfsvfs); 632 return (EINVAL); 633 } 634 635 /* 636 * If we need to grow the block size then zfs_range_lock() 637 * will lock a wider range than we request here. 638 * Later after growing the block size we reduce the range. 639 */ 640 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 641 } 642 643 if (woff >= limit) { 644 zfs_range_unlock(rl); 645 ZFS_EXIT(zfsvfs); 646 return (EFBIG); 647 } 648 649 if ((woff + n) > limit || woff > (limit - n)) 650 n = limit - woff; 651 652 /* 653 * Check for mandatory locks 654 */ 655 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 656 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 657 zfs_range_unlock(rl); 658 ZFS_EXIT(zfsvfs); 659 return (error); 660 } 661 end_size = MAX(zp->z_phys->zp_size, woff + n); 662 663 /* 664 * Write the file in reasonable size chunks. Each chunk is written 665 * in a separate transaction; this keeps the intent log records small 666 * and allows us to do more fine-grained space accounting. 667 */ 668 while (n > 0) { 669 abuf = NULL; 670 woff = uio->uio_loffset; 671 672 again: 673 if (zfs_usergroup_overquota(zfsvfs, 674 B_FALSE, zp->z_phys->zp_uid) || 675 zfs_usergroup_overquota(zfsvfs, 676 B_TRUE, zp->z_phys->zp_gid)) { 677 if (abuf != NULL) 678 dmu_return_arcbuf(abuf); 679 error = EDQUOT; 680 break; 681 } 682 683 /* 684 * If dmu_assign_arcbuf() is expected to execute with minimum 685 * overhead loan an arc buffer and copy user data to it before 686 * we enter a txg. This avoids holding a txg forever while we 687 * pagefault on a hanging NFS server mapping. 688 */ 689 if (abuf == NULL && n >= max_blksz && 690 woff >= zp->z_phys->zp_size && 691 P2PHASE(woff, max_blksz) == 0 && 692 zp->z_blksz == max_blksz) { 693 size_t cbytes; 694 695 abuf = dmu_request_arcbuf(zp->z_dbuf, max_blksz); 696 ASSERT(abuf != NULL); 697 ASSERT(arc_buf_size(abuf) == max_blksz); 698 if (error = uiocopy(abuf->b_data, max_blksz, 699 UIO_WRITE, uio, &cbytes)) { 700 dmu_return_arcbuf(abuf); 701 break; 702 } 703 ASSERT(cbytes == max_blksz); 704 } 705 706 /* 707 * Start a transaction. 708 */ 709 tx = dmu_tx_create(zfsvfs->z_os); 710 dmu_tx_hold_bonus(tx, zp->z_id); 711 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 712 error = dmu_tx_assign(tx, TXG_NOWAIT); 713 if (error) { 714 if (error == ERESTART) { 715 dmu_tx_wait(tx); 716 dmu_tx_abort(tx); 717 goto again; 718 } 719 dmu_tx_abort(tx); 720 if (abuf != NULL) 721 dmu_return_arcbuf(abuf); 722 break; 723 } 724 725 /* 726 * If zfs_range_lock() over-locked we grow the blocksize 727 * and then reduce the lock range. This will only happen 728 * on the first iteration since zfs_range_reduce() will 729 * shrink down r_len to the appropriate size. 730 */ 731 if (rl->r_len == UINT64_MAX) { 732 uint64_t new_blksz; 733 734 if (zp->z_blksz > max_blksz) { 735 ASSERT(!ISP2(zp->z_blksz)); 736 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 737 } else { 738 new_blksz = MIN(end_size, max_blksz); 739 } 740 zfs_grow_blocksize(zp, new_blksz, tx); 741 zfs_range_reduce(rl, woff, n); 742 } 743 744 /* 745 * XXX - should we really limit each write to z_max_blksz? 746 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 747 */ 748 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 749 750 if (abuf == NULL) { 751 tx_bytes = uio->uio_resid; 752 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, uio, 753 nbytes, tx); 754 tx_bytes -= uio->uio_resid; 755 } else { 756 tx_bytes = nbytes; 757 ASSERT(tx_bytes == max_blksz); 758 dmu_assign_arcbuf(zp->z_dbuf, woff, abuf, tx); 759 ASSERT(tx_bytes <= uio->uio_resid); 760 uioskip(uio, tx_bytes); 761 } 762 if (tx_bytes && vn_has_cached_data(vp)) { 763 update_pages(vp, woff, 764 tx_bytes, zfsvfs->z_os, zp->z_id); 765 } 766 767 /* 768 * If we made no progress, we're done. If we made even 769 * partial progress, update the znode and ZIL accordingly. 770 */ 771 if (tx_bytes == 0) { 772 dmu_tx_commit(tx); 773 ASSERT(error != 0); 774 break; 775 } 776 777 /* 778 * Clear Set-UID/Set-GID bits on successful write if not 779 * privileged and at least one of the excute bits is set. 780 * 781 * It would be nice to to this after all writes have 782 * been done, but that would still expose the ISUID/ISGID 783 * to another app after the partial write is committed. 784 * 785 * Note: we don't call zfs_fuid_map_id() here because 786 * user 0 is not an ephemeral uid. 787 */ 788 mutex_enter(&zp->z_acl_lock); 789 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 790 (S_IXUSR >> 6))) != 0 && 791 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 792 secpolicy_vnode_setid_retain(cr, 793 (zp->z_phys->zp_mode & S_ISUID) != 0 && 794 zp->z_phys->zp_uid == 0) != 0) { 795 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 796 } 797 mutex_exit(&zp->z_acl_lock); 798 799 /* 800 * Update time stamp. NOTE: This marks the bonus buffer as 801 * dirty, so we don't have to do it again for zp_size. 802 */ 803 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 804 805 /* 806 * Update the file size (zp_size) if it has changed; 807 * account for possible concurrent updates. 808 */ 809 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 810 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 811 uio->uio_loffset); 812 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 813 dmu_tx_commit(tx); 814 815 if (error != 0) 816 break; 817 ASSERT(tx_bytes == nbytes); 818 n -= nbytes; 819 } 820 821 zfs_range_unlock(rl); 822 823 /* 824 * If we're in replay mode, or we made no progress, return error. 825 * Otherwise, it's at least a partial write, so it's successful. 826 */ 827 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 828 ZFS_EXIT(zfsvfs); 829 return (error); 830 } 831 832 if (ioflag & (FSYNC | FDSYNC)) 833 zil_commit(zilog, zp->z_last_itx, zp->z_id); 834 835 ZFS_EXIT(zfsvfs); 836 return (0); 837 } 838 839 void 840 zfs_get_done(dmu_buf_t *db, void *vzgd) 841 { 842 zgd_t *zgd = (zgd_t *)vzgd; 843 rl_t *rl = zgd->zgd_rl; 844 vnode_t *vp = ZTOV(rl->r_zp); 845 objset_t *os = rl->r_zp->z_zfsvfs->z_os; 846 847 dmu_buf_rele(db, vzgd); 848 zfs_range_unlock(rl); 849 /* 850 * Release the vnode asynchronously as we currently have the 851 * txg stopped from syncing. 852 */ 853 VN_RELE_ASYNC(vp, dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 854 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 855 kmem_free(zgd, sizeof (zgd_t)); 856 } 857 858 #ifdef DEBUG 859 static int zil_fault_io = 0; 860 #endif 861 862 /* 863 * Get data to generate a TX_WRITE intent log record. 864 */ 865 int 866 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 867 { 868 zfsvfs_t *zfsvfs = arg; 869 objset_t *os = zfsvfs->z_os; 870 znode_t *zp; 871 uint64_t off = lr->lr_offset; 872 dmu_buf_t *db; 873 rl_t *rl; 874 zgd_t *zgd; 875 int dlen = lr->lr_length; /* length of user data */ 876 int error = 0; 877 878 ASSERT(zio); 879 ASSERT(dlen != 0); 880 881 /* 882 * Nothing to do if the file has been removed 883 */ 884 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 885 return (ENOENT); 886 if (zp->z_unlinked) { 887 /* 888 * Release the vnode asynchronously as we currently have the 889 * txg stopped from syncing. 890 */ 891 VN_RELE_ASYNC(ZTOV(zp), 892 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 893 return (ENOENT); 894 } 895 896 /* 897 * Write records come in two flavors: immediate and indirect. 898 * For small writes it's cheaper to store the data with the 899 * log record (immediate); for large writes it's cheaper to 900 * sync the data and get a pointer to it (indirect) so that 901 * we don't have to write the data twice. 902 */ 903 if (buf != NULL) { /* immediate write */ 904 rl = zfs_range_lock(zp, off, dlen, RL_READER); 905 /* test for truncation needs to be done while range locked */ 906 if (off >= zp->z_phys->zp_size) { 907 error = ENOENT; 908 goto out; 909 } 910 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf, 911 DMU_READ_NO_PREFETCH)); 912 } else { /* indirect write */ 913 uint64_t boff; /* block starting offset */ 914 915 /* 916 * Have to lock the whole block to ensure when it's 917 * written out and it's checksum is being calculated 918 * that no one can change the data. We need to re-check 919 * blocksize after we get the lock in case it's changed! 920 */ 921 for (;;) { 922 if (ISP2(zp->z_blksz)) { 923 boff = P2ALIGN_TYPED(off, zp->z_blksz, 924 uint64_t); 925 } else { 926 boff = 0; 927 } 928 dlen = zp->z_blksz; 929 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 930 if (zp->z_blksz == dlen) 931 break; 932 zfs_range_unlock(rl); 933 } 934 /* test for truncation needs to be done while range locked */ 935 if (off >= zp->z_phys->zp_size) { 936 error = ENOENT; 937 goto out; 938 } 939 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 940 zgd->zgd_rl = rl; 941 zgd->zgd_zilog = zfsvfs->z_log; 942 zgd->zgd_bp = &lr->lr_blkptr; 943 #ifdef DEBUG 944 if (zil_fault_io) { 945 error = EIO; 946 zil_fault_io = 0; 947 } else { 948 error = dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db); 949 } 950 #else 951 error = dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db); 952 #endif 953 if (error != 0) { 954 kmem_free(zgd, sizeof (zgd_t)); 955 goto out; 956 } 957 958 ASSERT(boff == db->db_offset); 959 lr->lr_blkoff = off - boff; 960 error = dmu_sync(zio, db, &lr->lr_blkptr, 961 lr->lr_common.lrc_txg, zfs_get_done, zgd); 962 ASSERT((error && error != EINPROGRESS) || 963 lr->lr_length <= zp->z_blksz); 964 if (error == 0) { 965 /* 966 * dmu_sync() can compress a block of zeros to a null 967 * blkptr but the block size still needs to be passed 968 * through to replay. 969 */ 970 BP_SET_LSIZE(&lr->lr_blkptr, db->db_size); 971 zil_add_block(zfsvfs->z_log, &lr->lr_blkptr); 972 } 973 974 /* 975 * If we get EINPROGRESS, then we need to wait for a 976 * write IO initiated by dmu_sync() to complete before 977 * we can release this dbuf. We will finish everything 978 * up in the zfs_get_done() callback. 979 */ 980 if (error == EINPROGRESS) { 981 return (0); 982 } else if (error == EALREADY) { 983 lr->lr_common.lrc_txtype = TX_WRITE2; 984 error = 0; 985 } 986 dmu_buf_rele(db, zgd); 987 kmem_free(zgd, sizeof (zgd_t)); 988 } 989 out: 990 zfs_range_unlock(rl); 991 /* 992 * Release the vnode asynchronously as we currently have the 993 * txg stopped from syncing. 994 */ 995 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 996 return (error); 997 } 998 999 /*ARGSUSED*/ 1000 static int 1001 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1002 caller_context_t *ct) 1003 { 1004 znode_t *zp = VTOZ(vp); 1005 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1006 int error; 1007 1008 ZFS_ENTER(zfsvfs); 1009 ZFS_VERIFY_ZP(zp); 1010 1011 if (flag & V_ACE_MASK) 1012 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1013 else 1014 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1015 1016 ZFS_EXIT(zfsvfs); 1017 return (error); 1018 } 1019 1020 /* 1021 * If vnode is for a device return a specfs vnode instead. 1022 */ 1023 static int 1024 specvp_check(vnode_t **vpp, cred_t *cr) 1025 { 1026 int error = 0; 1027 1028 if (IS_DEVVP(*vpp)) { 1029 struct vnode *svp; 1030 1031 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1032 VN_RELE(*vpp); 1033 if (svp == NULL) 1034 error = ENOSYS; 1035 *vpp = svp; 1036 } 1037 return (error); 1038 } 1039 1040 1041 /* 1042 * Lookup an entry in a directory, or an extended attribute directory. 1043 * If it exists, return a held vnode reference for it. 1044 * 1045 * IN: dvp - vnode of directory to search. 1046 * nm - name of entry to lookup. 1047 * pnp - full pathname to lookup [UNUSED]. 1048 * flags - LOOKUP_XATTR set if looking for an attribute. 1049 * rdir - root directory vnode [UNUSED]. 1050 * cr - credentials of caller. 1051 * ct - caller context 1052 * direntflags - directory lookup flags 1053 * realpnp - returned pathname. 1054 * 1055 * OUT: vpp - vnode of located entry, NULL if not found. 1056 * 1057 * RETURN: 0 if success 1058 * error code if failure 1059 * 1060 * Timestamps: 1061 * NA 1062 */ 1063 /* ARGSUSED */ 1064 static int 1065 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1066 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1067 int *direntflags, pathname_t *realpnp) 1068 { 1069 znode_t *zdp = VTOZ(dvp); 1070 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1071 int error = 0; 1072 1073 /* fast path */ 1074 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1075 1076 if (dvp->v_type != VDIR) { 1077 return (ENOTDIR); 1078 } else if (zdp->z_dbuf == NULL) { 1079 return (EIO); 1080 } 1081 1082 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1083 error = zfs_fastaccesschk_execute(zdp, cr); 1084 if (!error) { 1085 *vpp = dvp; 1086 VN_HOLD(*vpp); 1087 return (0); 1088 } 1089 return (error); 1090 } else { 1091 vnode_t *tvp = dnlc_lookup(dvp, nm); 1092 1093 if (tvp) { 1094 error = zfs_fastaccesschk_execute(zdp, cr); 1095 if (error) { 1096 VN_RELE(tvp); 1097 return (error); 1098 } 1099 if (tvp == DNLC_NO_VNODE) { 1100 VN_RELE(tvp); 1101 return (ENOENT); 1102 } else { 1103 *vpp = tvp; 1104 return (specvp_check(vpp, cr)); 1105 } 1106 } 1107 } 1108 } 1109 1110 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1111 1112 ZFS_ENTER(zfsvfs); 1113 ZFS_VERIFY_ZP(zdp); 1114 1115 *vpp = NULL; 1116 1117 if (flags & LOOKUP_XATTR) { 1118 /* 1119 * If the xattr property is off, refuse the lookup request. 1120 */ 1121 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1122 ZFS_EXIT(zfsvfs); 1123 return (EINVAL); 1124 } 1125 1126 /* 1127 * We don't allow recursive attributes.. 1128 * Maybe someday we will. 1129 */ 1130 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1131 ZFS_EXIT(zfsvfs); 1132 return (EINVAL); 1133 } 1134 1135 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1136 ZFS_EXIT(zfsvfs); 1137 return (error); 1138 } 1139 1140 /* 1141 * Do we have permission to get into attribute directory? 1142 */ 1143 1144 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1145 B_FALSE, cr)) { 1146 VN_RELE(*vpp); 1147 *vpp = NULL; 1148 } 1149 1150 ZFS_EXIT(zfsvfs); 1151 return (error); 1152 } 1153 1154 if (dvp->v_type != VDIR) { 1155 ZFS_EXIT(zfsvfs); 1156 return (ENOTDIR); 1157 } 1158 1159 /* 1160 * Check accessibility of directory. 1161 */ 1162 1163 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1164 ZFS_EXIT(zfsvfs); 1165 return (error); 1166 } 1167 1168 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1169 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1170 ZFS_EXIT(zfsvfs); 1171 return (EILSEQ); 1172 } 1173 1174 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1175 if (error == 0) 1176 error = specvp_check(vpp, cr); 1177 1178 ZFS_EXIT(zfsvfs); 1179 return (error); 1180 } 1181 1182 /* 1183 * Attempt to create a new entry in a directory. If the entry 1184 * already exists, truncate the file if permissible, else return 1185 * an error. Return the vp of the created or trunc'd file. 1186 * 1187 * IN: dvp - vnode of directory to put new file entry in. 1188 * name - name of new file entry. 1189 * vap - attributes of new file. 1190 * excl - flag indicating exclusive or non-exclusive mode. 1191 * mode - mode to open file with. 1192 * cr - credentials of caller. 1193 * flag - large file flag [UNUSED]. 1194 * ct - caller context 1195 * vsecp - ACL to be set 1196 * 1197 * OUT: vpp - vnode of created or trunc'd entry. 1198 * 1199 * RETURN: 0 if success 1200 * error code if failure 1201 * 1202 * Timestamps: 1203 * dvp - ctime|mtime updated if new entry created 1204 * vp - ctime|mtime always, atime if new 1205 */ 1206 1207 /* ARGSUSED */ 1208 static int 1209 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1210 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1211 vsecattr_t *vsecp) 1212 { 1213 znode_t *zp, *dzp = VTOZ(dvp); 1214 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1215 zilog_t *zilog; 1216 objset_t *os; 1217 zfs_dirlock_t *dl; 1218 dmu_tx_t *tx; 1219 int error; 1220 ksid_t *ksid; 1221 uid_t uid; 1222 gid_t gid = crgetgid(cr); 1223 zfs_acl_ids_t acl_ids; 1224 boolean_t fuid_dirtied; 1225 1226 /* 1227 * If we have an ephemeral id, ACL, or XVATTR then 1228 * make sure file system is at proper version 1229 */ 1230 1231 ksid = crgetsid(cr, KSID_OWNER); 1232 if (ksid) 1233 uid = ksid_getid(ksid); 1234 else 1235 uid = crgetuid(cr); 1236 1237 if (zfsvfs->z_use_fuids == B_FALSE && 1238 (vsecp || (vap->va_mask & AT_XVATTR) || 1239 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1240 return (EINVAL); 1241 1242 ZFS_ENTER(zfsvfs); 1243 ZFS_VERIFY_ZP(dzp); 1244 os = zfsvfs->z_os; 1245 zilog = zfsvfs->z_log; 1246 1247 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1248 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1249 ZFS_EXIT(zfsvfs); 1250 return (EILSEQ); 1251 } 1252 1253 if (vap->va_mask & AT_XVATTR) { 1254 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1255 crgetuid(cr), cr, vap->va_type)) != 0) { 1256 ZFS_EXIT(zfsvfs); 1257 return (error); 1258 } 1259 } 1260 top: 1261 *vpp = NULL; 1262 1263 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1264 vap->va_mode &= ~VSVTX; 1265 1266 if (*name == '\0') { 1267 /* 1268 * Null component name refers to the directory itself. 1269 */ 1270 VN_HOLD(dvp); 1271 zp = dzp; 1272 dl = NULL; 1273 error = 0; 1274 } else { 1275 /* possible VN_HOLD(zp) */ 1276 int zflg = 0; 1277 1278 if (flag & FIGNORECASE) 1279 zflg |= ZCILOOK; 1280 1281 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1282 NULL, NULL); 1283 if (error) { 1284 if (strcmp(name, "..") == 0) 1285 error = EISDIR; 1286 ZFS_EXIT(zfsvfs); 1287 return (error); 1288 } 1289 } 1290 if (zp == NULL) { 1291 uint64_t txtype; 1292 1293 /* 1294 * Create a new file object and update the directory 1295 * to reference it. 1296 */ 1297 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1298 goto out; 1299 } 1300 1301 /* 1302 * We only support the creation of regular files in 1303 * extended attribute directories. 1304 */ 1305 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1306 (vap->va_type != VREG)) { 1307 error = EINVAL; 1308 goto out; 1309 } 1310 1311 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1312 &acl_ids)) != 0) 1313 goto out; 1314 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1315 zfs_acl_ids_free(&acl_ids); 1316 error = EDQUOT; 1317 goto out; 1318 } 1319 1320 tx = dmu_tx_create(os); 1321 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1322 fuid_dirtied = zfsvfs->z_fuid_dirty; 1323 if (fuid_dirtied) 1324 zfs_fuid_txhold(zfsvfs, tx); 1325 dmu_tx_hold_bonus(tx, dzp->z_id); 1326 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1327 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1328 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1329 0, SPA_MAXBLOCKSIZE); 1330 } 1331 error = dmu_tx_assign(tx, TXG_NOWAIT); 1332 if (error) { 1333 zfs_acl_ids_free(&acl_ids); 1334 zfs_dirent_unlock(dl); 1335 if (error == ERESTART) { 1336 dmu_tx_wait(tx); 1337 dmu_tx_abort(tx); 1338 goto top; 1339 } 1340 dmu_tx_abort(tx); 1341 ZFS_EXIT(zfsvfs); 1342 return (error); 1343 } 1344 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1345 1346 if (fuid_dirtied) 1347 zfs_fuid_sync(zfsvfs, tx); 1348 1349 (void) zfs_link_create(dl, zp, tx, ZNEW); 1350 1351 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1352 if (flag & FIGNORECASE) 1353 txtype |= TX_CI; 1354 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1355 vsecp, acl_ids.z_fuidp, vap); 1356 zfs_acl_ids_free(&acl_ids); 1357 dmu_tx_commit(tx); 1358 } else { 1359 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1360 1361 /* 1362 * A directory entry already exists for this name. 1363 */ 1364 /* 1365 * Can't truncate an existing file if in exclusive mode. 1366 */ 1367 if (excl == EXCL) { 1368 error = EEXIST; 1369 goto out; 1370 } 1371 /* 1372 * Can't open a directory for writing. 1373 */ 1374 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1375 error = EISDIR; 1376 goto out; 1377 } 1378 /* 1379 * Verify requested access to file. 1380 */ 1381 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1382 goto out; 1383 } 1384 1385 mutex_enter(&dzp->z_lock); 1386 dzp->z_seq++; 1387 mutex_exit(&dzp->z_lock); 1388 1389 /* 1390 * Truncate regular files if requested. 1391 */ 1392 if ((ZTOV(zp)->v_type == VREG) && 1393 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1394 /* we can't hold any locks when calling zfs_freesp() */ 1395 zfs_dirent_unlock(dl); 1396 dl = NULL; 1397 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1398 if (error == 0) { 1399 vnevent_create(ZTOV(zp), ct); 1400 } 1401 } 1402 } 1403 out: 1404 1405 if (dl) 1406 zfs_dirent_unlock(dl); 1407 1408 if (error) { 1409 if (zp) 1410 VN_RELE(ZTOV(zp)); 1411 } else { 1412 *vpp = ZTOV(zp); 1413 error = specvp_check(vpp, cr); 1414 } 1415 1416 ZFS_EXIT(zfsvfs); 1417 return (error); 1418 } 1419 1420 /* 1421 * Remove an entry from a directory. 1422 * 1423 * IN: dvp - vnode of directory to remove entry from. 1424 * name - name of entry to remove. 1425 * cr - credentials of caller. 1426 * ct - caller context 1427 * flags - case flags 1428 * 1429 * RETURN: 0 if success 1430 * error code if failure 1431 * 1432 * Timestamps: 1433 * dvp - ctime|mtime 1434 * vp - ctime (if nlink > 0) 1435 */ 1436 /*ARGSUSED*/ 1437 static int 1438 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1439 int flags) 1440 { 1441 znode_t *zp, *dzp = VTOZ(dvp); 1442 znode_t *xzp = NULL; 1443 vnode_t *vp; 1444 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1445 zilog_t *zilog; 1446 uint64_t acl_obj, xattr_obj; 1447 zfs_dirlock_t *dl; 1448 dmu_tx_t *tx; 1449 boolean_t may_delete_now, delete_now = FALSE; 1450 boolean_t unlinked, toobig = FALSE; 1451 uint64_t txtype; 1452 pathname_t *realnmp = NULL; 1453 pathname_t realnm; 1454 int error; 1455 int zflg = ZEXISTS; 1456 1457 ZFS_ENTER(zfsvfs); 1458 ZFS_VERIFY_ZP(dzp); 1459 zilog = zfsvfs->z_log; 1460 1461 if (flags & FIGNORECASE) { 1462 zflg |= ZCILOOK; 1463 pn_alloc(&realnm); 1464 realnmp = &realnm; 1465 } 1466 1467 top: 1468 /* 1469 * Attempt to lock directory; fail if entry doesn't exist. 1470 */ 1471 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1472 NULL, realnmp)) { 1473 if (realnmp) 1474 pn_free(realnmp); 1475 ZFS_EXIT(zfsvfs); 1476 return (error); 1477 } 1478 1479 vp = ZTOV(zp); 1480 1481 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1482 goto out; 1483 } 1484 1485 /* 1486 * Need to use rmdir for removing directories. 1487 */ 1488 if (vp->v_type == VDIR) { 1489 error = EPERM; 1490 goto out; 1491 } 1492 1493 vnevent_remove(vp, dvp, name, ct); 1494 1495 if (realnmp) 1496 dnlc_remove(dvp, realnmp->pn_buf); 1497 else 1498 dnlc_remove(dvp, name); 1499 1500 mutex_enter(&vp->v_lock); 1501 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1502 mutex_exit(&vp->v_lock); 1503 1504 /* 1505 * We may delete the znode now, or we may put it in the unlinked set; 1506 * it depends on whether we're the last link, and on whether there are 1507 * other holds on the vnode. So we dmu_tx_hold() the right things to 1508 * allow for either case. 1509 */ 1510 tx = dmu_tx_create(zfsvfs->z_os); 1511 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1512 dmu_tx_hold_bonus(tx, zp->z_id); 1513 if (may_delete_now) { 1514 toobig = 1515 zp->z_phys->zp_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1516 /* if the file is too big, only hold_free a token amount */ 1517 dmu_tx_hold_free(tx, zp->z_id, 0, 1518 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1519 } 1520 1521 /* are there any extended attributes? */ 1522 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1523 /* XXX - do we need this if we are deleting? */ 1524 dmu_tx_hold_bonus(tx, xattr_obj); 1525 } 1526 1527 /* are there any additional acls */ 1528 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1529 may_delete_now) 1530 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1531 1532 /* charge as an update -- would be nice not to charge at all */ 1533 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1534 1535 error = dmu_tx_assign(tx, TXG_NOWAIT); 1536 if (error) { 1537 zfs_dirent_unlock(dl); 1538 VN_RELE(vp); 1539 if (error == ERESTART) { 1540 dmu_tx_wait(tx); 1541 dmu_tx_abort(tx); 1542 goto top; 1543 } 1544 if (realnmp) 1545 pn_free(realnmp); 1546 dmu_tx_abort(tx); 1547 ZFS_EXIT(zfsvfs); 1548 return (error); 1549 } 1550 1551 /* 1552 * Remove the directory entry. 1553 */ 1554 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1555 1556 if (error) { 1557 dmu_tx_commit(tx); 1558 goto out; 1559 } 1560 1561 if (unlinked) { 1562 mutex_enter(&vp->v_lock); 1563 delete_now = may_delete_now && !toobig && 1564 vp->v_count == 1 && !vn_has_cached_data(vp) && 1565 zp->z_phys->zp_xattr == xattr_obj && 1566 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1567 mutex_exit(&vp->v_lock); 1568 } 1569 1570 if (delete_now) { 1571 if (zp->z_phys->zp_xattr) { 1572 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1573 ASSERT3U(error, ==, 0); 1574 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1575 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1576 mutex_enter(&xzp->z_lock); 1577 xzp->z_unlinked = 1; 1578 xzp->z_phys->zp_links = 0; 1579 mutex_exit(&xzp->z_lock); 1580 zfs_unlinked_add(xzp, tx); 1581 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1582 } 1583 mutex_enter(&zp->z_lock); 1584 mutex_enter(&vp->v_lock); 1585 vp->v_count--; 1586 ASSERT3U(vp->v_count, ==, 0); 1587 mutex_exit(&vp->v_lock); 1588 mutex_exit(&zp->z_lock); 1589 zfs_znode_delete(zp, tx); 1590 } else if (unlinked) { 1591 zfs_unlinked_add(zp, tx); 1592 } 1593 1594 txtype = TX_REMOVE; 1595 if (flags & FIGNORECASE) 1596 txtype |= TX_CI; 1597 zfs_log_remove(zilog, tx, txtype, dzp, name); 1598 1599 dmu_tx_commit(tx); 1600 out: 1601 if (realnmp) 1602 pn_free(realnmp); 1603 1604 zfs_dirent_unlock(dl); 1605 1606 if (!delete_now) { 1607 VN_RELE(vp); 1608 } else if (xzp) { 1609 /* this rele is delayed to prevent nesting transactions */ 1610 VN_RELE(ZTOV(xzp)); 1611 } 1612 1613 ZFS_EXIT(zfsvfs); 1614 return (error); 1615 } 1616 1617 /* 1618 * Create a new directory and insert it into dvp using the name 1619 * provided. Return a pointer to the inserted directory. 1620 * 1621 * IN: dvp - vnode of directory to add subdir to. 1622 * dirname - name of new directory. 1623 * vap - attributes of new directory. 1624 * cr - credentials of caller. 1625 * ct - caller context 1626 * vsecp - ACL to be set 1627 * 1628 * OUT: vpp - vnode of created directory. 1629 * 1630 * RETURN: 0 if success 1631 * error code if failure 1632 * 1633 * Timestamps: 1634 * dvp - ctime|mtime updated 1635 * vp - ctime|mtime|atime updated 1636 */ 1637 /*ARGSUSED*/ 1638 static int 1639 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1640 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1641 { 1642 znode_t *zp, *dzp = VTOZ(dvp); 1643 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1644 zilog_t *zilog; 1645 zfs_dirlock_t *dl; 1646 uint64_t txtype; 1647 dmu_tx_t *tx; 1648 int error; 1649 int zf = ZNEW; 1650 ksid_t *ksid; 1651 uid_t uid; 1652 gid_t gid = crgetgid(cr); 1653 zfs_acl_ids_t acl_ids; 1654 boolean_t fuid_dirtied; 1655 1656 ASSERT(vap->va_type == VDIR); 1657 1658 /* 1659 * If we have an ephemeral id, ACL, or XVATTR then 1660 * make sure file system is at proper version 1661 */ 1662 1663 ksid = crgetsid(cr, KSID_OWNER); 1664 if (ksid) 1665 uid = ksid_getid(ksid); 1666 else 1667 uid = crgetuid(cr); 1668 if (zfsvfs->z_use_fuids == B_FALSE && 1669 (vsecp || (vap->va_mask & AT_XVATTR) || 1670 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1671 return (EINVAL); 1672 1673 ZFS_ENTER(zfsvfs); 1674 ZFS_VERIFY_ZP(dzp); 1675 zilog = zfsvfs->z_log; 1676 1677 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1678 ZFS_EXIT(zfsvfs); 1679 return (EINVAL); 1680 } 1681 1682 if (zfsvfs->z_utf8 && u8_validate(dirname, 1683 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1684 ZFS_EXIT(zfsvfs); 1685 return (EILSEQ); 1686 } 1687 if (flags & FIGNORECASE) 1688 zf |= ZCILOOK; 1689 1690 if (vap->va_mask & AT_XVATTR) 1691 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1692 crgetuid(cr), cr, vap->va_type)) != 0) { 1693 ZFS_EXIT(zfsvfs); 1694 return (error); 1695 } 1696 1697 /* 1698 * First make sure the new directory doesn't exist. 1699 */ 1700 top: 1701 *vpp = NULL; 1702 1703 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1704 NULL, NULL)) { 1705 ZFS_EXIT(zfsvfs); 1706 return (error); 1707 } 1708 1709 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1710 zfs_dirent_unlock(dl); 1711 ZFS_EXIT(zfsvfs); 1712 return (error); 1713 } 1714 1715 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, vsecp, 1716 &acl_ids)) != 0) { 1717 zfs_dirent_unlock(dl); 1718 ZFS_EXIT(zfsvfs); 1719 return (error); 1720 } 1721 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1722 zfs_acl_ids_free(&acl_ids); 1723 zfs_dirent_unlock(dl); 1724 ZFS_EXIT(zfsvfs); 1725 return (EDQUOT); 1726 } 1727 1728 /* 1729 * Add a new entry to the directory. 1730 */ 1731 tx = dmu_tx_create(zfsvfs->z_os); 1732 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1733 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1734 fuid_dirtied = zfsvfs->z_fuid_dirty; 1735 if (fuid_dirtied) 1736 zfs_fuid_txhold(zfsvfs, tx); 1737 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 1738 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1739 0, SPA_MAXBLOCKSIZE); 1740 error = dmu_tx_assign(tx, TXG_NOWAIT); 1741 if (error) { 1742 zfs_acl_ids_free(&acl_ids); 1743 zfs_dirent_unlock(dl); 1744 if (error == ERESTART) { 1745 dmu_tx_wait(tx); 1746 dmu_tx_abort(tx); 1747 goto top; 1748 } 1749 dmu_tx_abort(tx); 1750 ZFS_EXIT(zfsvfs); 1751 return (error); 1752 } 1753 1754 /* 1755 * Create new node. 1756 */ 1757 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 1758 1759 if (fuid_dirtied) 1760 zfs_fuid_sync(zfsvfs, tx); 1761 /* 1762 * Now put new name in parent dir. 1763 */ 1764 (void) zfs_link_create(dl, zp, tx, ZNEW); 1765 1766 *vpp = ZTOV(zp); 1767 1768 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1769 if (flags & FIGNORECASE) 1770 txtype |= TX_CI; 1771 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1772 acl_ids.z_fuidp, vap); 1773 1774 zfs_acl_ids_free(&acl_ids); 1775 dmu_tx_commit(tx); 1776 1777 zfs_dirent_unlock(dl); 1778 1779 ZFS_EXIT(zfsvfs); 1780 return (0); 1781 } 1782 1783 /* 1784 * Remove a directory subdir entry. If the current working 1785 * directory is the same as the subdir to be removed, the 1786 * remove will fail. 1787 * 1788 * IN: dvp - vnode of directory to remove from. 1789 * name - name of directory to be removed. 1790 * cwd - vnode of current working directory. 1791 * cr - credentials of caller. 1792 * ct - caller context 1793 * flags - case flags 1794 * 1795 * RETURN: 0 if success 1796 * error code if failure 1797 * 1798 * Timestamps: 1799 * dvp - ctime|mtime updated 1800 */ 1801 /*ARGSUSED*/ 1802 static int 1803 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1804 caller_context_t *ct, int flags) 1805 { 1806 znode_t *dzp = VTOZ(dvp); 1807 znode_t *zp; 1808 vnode_t *vp; 1809 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1810 zilog_t *zilog; 1811 zfs_dirlock_t *dl; 1812 dmu_tx_t *tx; 1813 int error; 1814 int zflg = ZEXISTS; 1815 1816 ZFS_ENTER(zfsvfs); 1817 ZFS_VERIFY_ZP(dzp); 1818 zilog = zfsvfs->z_log; 1819 1820 if (flags & FIGNORECASE) 1821 zflg |= ZCILOOK; 1822 top: 1823 zp = NULL; 1824 1825 /* 1826 * Attempt to lock directory; fail if entry doesn't exist. 1827 */ 1828 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1829 NULL, NULL)) { 1830 ZFS_EXIT(zfsvfs); 1831 return (error); 1832 } 1833 1834 vp = ZTOV(zp); 1835 1836 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1837 goto out; 1838 } 1839 1840 if (vp->v_type != VDIR) { 1841 error = ENOTDIR; 1842 goto out; 1843 } 1844 1845 if (vp == cwd) { 1846 error = EINVAL; 1847 goto out; 1848 } 1849 1850 vnevent_rmdir(vp, dvp, name, ct); 1851 1852 /* 1853 * Grab a lock on the directory to make sure that noone is 1854 * trying to add (or lookup) entries while we are removing it. 1855 */ 1856 rw_enter(&zp->z_name_lock, RW_WRITER); 1857 1858 /* 1859 * Grab a lock on the parent pointer to make sure we play well 1860 * with the treewalk and directory rename code. 1861 */ 1862 rw_enter(&zp->z_parent_lock, RW_WRITER); 1863 1864 tx = dmu_tx_create(zfsvfs->z_os); 1865 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1866 dmu_tx_hold_bonus(tx, zp->z_id); 1867 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1868 error = dmu_tx_assign(tx, TXG_NOWAIT); 1869 if (error) { 1870 rw_exit(&zp->z_parent_lock); 1871 rw_exit(&zp->z_name_lock); 1872 zfs_dirent_unlock(dl); 1873 VN_RELE(vp); 1874 if (error == ERESTART) { 1875 dmu_tx_wait(tx); 1876 dmu_tx_abort(tx); 1877 goto top; 1878 } 1879 dmu_tx_abort(tx); 1880 ZFS_EXIT(zfsvfs); 1881 return (error); 1882 } 1883 1884 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1885 1886 if (error == 0) { 1887 uint64_t txtype = TX_RMDIR; 1888 if (flags & FIGNORECASE) 1889 txtype |= TX_CI; 1890 zfs_log_remove(zilog, tx, txtype, dzp, name); 1891 } 1892 1893 dmu_tx_commit(tx); 1894 1895 rw_exit(&zp->z_parent_lock); 1896 rw_exit(&zp->z_name_lock); 1897 out: 1898 zfs_dirent_unlock(dl); 1899 1900 VN_RELE(vp); 1901 1902 ZFS_EXIT(zfsvfs); 1903 return (error); 1904 } 1905 1906 /* 1907 * Read as many directory entries as will fit into the provided 1908 * buffer from the given directory cursor position (specified in 1909 * the uio structure. 1910 * 1911 * IN: vp - vnode of directory to read. 1912 * uio - structure supplying read location, range info, 1913 * and return buffer. 1914 * cr - credentials of caller. 1915 * ct - caller context 1916 * flags - case flags 1917 * 1918 * OUT: uio - updated offset and range, buffer filled. 1919 * eofp - set to true if end-of-file detected. 1920 * 1921 * RETURN: 0 if success 1922 * error code if failure 1923 * 1924 * Timestamps: 1925 * vp - atime updated 1926 * 1927 * Note that the low 4 bits of the cookie returned by zap is always zero. 1928 * This allows us to use the low range for "special" directory entries: 1929 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1930 * we use the offset 2 for the '.zfs' directory. 1931 */ 1932 /* ARGSUSED */ 1933 static int 1934 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1935 caller_context_t *ct, int flags) 1936 { 1937 znode_t *zp = VTOZ(vp); 1938 iovec_t *iovp; 1939 edirent_t *eodp; 1940 dirent64_t *odp; 1941 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1942 objset_t *os; 1943 caddr_t outbuf; 1944 size_t bufsize; 1945 zap_cursor_t zc; 1946 zap_attribute_t zap; 1947 uint_t bytes_wanted; 1948 uint64_t offset; /* must be unsigned; checks for < 1 */ 1949 int local_eof; 1950 int outcount; 1951 int error; 1952 uint8_t prefetch; 1953 boolean_t check_sysattrs; 1954 1955 ZFS_ENTER(zfsvfs); 1956 ZFS_VERIFY_ZP(zp); 1957 1958 /* 1959 * If we are not given an eof variable, 1960 * use a local one. 1961 */ 1962 if (eofp == NULL) 1963 eofp = &local_eof; 1964 1965 /* 1966 * Check for valid iov_len. 1967 */ 1968 if (uio->uio_iov->iov_len <= 0) { 1969 ZFS_EXIT(zfsvfs); 1970 return (EINVAL); 1971 } 1972 1973 /* 1974 * Quit if directory has been removed (posix) 1975 */ 1976 if ((*eofp = zp->z_unlinked) != 0) { 1977 ZFS_EXIT(zfsvfs); 1978 return (0); 1979 } 1980 1981 error = 0; 1982 os = zfsvfs->z_os; 1983 offset = uio->uio_loffset; 1984 prefetch = zp->z_zn_prefetch; 1985 1986 /* 1987 * Initialize the iterator cursor. 1988 */ 1989 if (offset <= 3) { 1990 /* 1991 * Start iteration from the beginning of the directory. 1992 */ 1993 zap_cursor_init(&zc, os, zp->z_id); 1994 } else { 1995 /* 1996 * The offset is a serialized cursor. 1997 */ 1998 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1999 } 2000 2001 /* 2002 * Get space to change directory entries into fs independent format. 2003 */ 2004 iovp = uio->uio_iov; 2005 bytes_wanted = iovp->iov_len; 2006 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2007 bufsize = bytes_wanted; 2008 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2009 odp = (struct dirent64 *)outbuf; 2010 } else { 2011 bufsize = bytes_wanted; 2012 odp = (struct dirent64 *)iovp->iov_base; 2013 } 2014 eodp = (struct edirent *)odp; 2015 2016 /* 2017 * If this VFS supports the system attribute view interface; and 2018 * we're looking at an extended attribute directory; and we care 2019 * about normalization conflicts on this vfs; then we must check 2020 * for normalization conflicts with the sysattr name space. 2021 */ 2022 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2023 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2024 (flags & V_RDDIR_ENTFLAGS); 2025 2026 /* 2027 * Transform to file-system independent format 2028 */ 2029 outcount = 0; 2030 while (outcount < bytes_wanted) { 2031 ino64_t objnum; 2032 ushort_t reclen; 2033 off64_t *next; 2034 2035 /* 2036 * Special case `.', `..', and `.zfs'. 2037 */ 2038 if (offset == 0) { 2039 (void) strcpy(zap.za_name, "."); 2040 zap.za_normalization_conflict = 0; 2041 objnum = zp->z_id; 2042 } else if (offset == 1) { 2043 (void) strcpy(zap.za_name, ".."); 2044 zap.za_normalization_conflict = 0; 2045 objnum = zp->z_phys->zp_parent; 2046 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2047 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2048 zap.za_normalization_conflict = 0; 2049 objnum = ZFSCTL_INO_ROOT; 2050 } else { 2051 /* 2052 * Grab next entry. 2053 */ 2054 if (error = zap_cursor_retrieve(&zc, &zap)) { 2055 if ((*eofp = (error == ENOENT)) != 0) 2056 break; 2057 else 2058 goto update; 2059 } 2060 2061 if (zap.za_integer_length != 8 || 2062 zap.za_num_integers != 1) { 2063 cmn_err(CE_WARN, "zap_readdir: bad directory " 2064 "entry, obj = %lld, offset = %lld\n", 2065 (u_longlong_t)zp->z_id, 2066 (u_longlong_t)offset); 2067 error = ENXIO; 2068 goto update; 2069 } 2070 2071 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2072 /* 2073 * MacOS X can extract the object type here such as: 2074 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2075 */ 2076 2077 if (check_sysattrs && !zap.za_normalization_conflict) { 2078 zap.za_normalization_conflict = 2079 xattr_sysattr_casechk(zap.za_name); 2080 } 2081 } 2082 2083 if (flags & V_RDDIR_ACCFILTER) { 2084 /* 2085 * If we have no access at all, don't include 2086 * this entry in the returned information 2087 */ 2088 znode_t *ezp; 2089 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2090 goto skip_entry; 2091 if (!zfs_has_access(ezp, cr)) { 2092 VN_RELE(ZTOV(ezp)); 2093 goto skip_entry; 2094 } 2095 VN_RELE(ZTOV(ezp)); 2096 } 2097 2098 if (flags & V_RDDIR_ENTFLAGS) 2099 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2100 else 2101 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2102 2103 /* 2104 * Will this entry fit in the buffer? 2105 */ 2106 if (outcount + reclen > bufsize) { 2107 /* 2108 * Did we manage to fit anything in the buffer? 2109 */ 2110 if (!outcount) { 2111 error = EINVAL; 2112 goto update; 2113 } 2114 break; 2115 } 2116 if (flags & V_RDDIR_ENTFLAGS) { 2117 /* 2118 * Add extended flag entry: 2119 */ 2120 eodp->ed_ino = objnum; 2121 eodp->ed_reclen = reclen; 2122 /* NOTE: ed_off is the offset for the *next* entry */ 2123 next = &(eodp->ed_off); 2124 eodp->ed_eflags = zap.za_normalization_conflict ? 2125 ED_CASE_CONFLICT : 0; 2126 (void) strncpy(eodp->ed_name, zap.za_name, 2127 EDIRENT_NAMELEN(reclen)); 2128 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2129 } else { 2130 /* 2131 * Add normal entry: 2132 */ 2133 odp->d_ino = objnum; 2134 odp->d_reclen = reclen; 2135 /* NOTE: d_off is the offset for the *next* entry */ 2136 next = &(odp->d_off); 2137 (void) strncpy(odp->d_name, zap.za_name, 2138 DIRENT64_NAMELEN(reclen)); 2139 odp = (dirent64_t *)((intptr_t)odp + reclen); 2140 } 2141 outcount += reclen; 2142 2143 ASSERT(outcount <= bufsize); 2144 2145 /* Prefetch znode */ 2146 if (prefetch) 2147 dmu_prefetch(os, objnum, 0, 0); 2148 2149 skip_entry: 2150 /* 2151 * Move to the next entry, fill in the previous offset. 2152 */ 2153 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2154 zap_cursor_advance(&zc); 2155 offset = zap_cursor_serialize(&zc); 2156 } else { 2157 offset += 1; 2158 } 2159 *next = offset; 2160 } 2161 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2162 2163 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2164 iovp->iov_base += outcount; 2165 iovp->iov_len -= outcount; 2166 uio->uio_resid -= outcount; 2167 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2168 /* 2169 * Reset the pointer. 2170 */ 2171 offset = uio->uio_loffset; 2172 } 2173 2174 update: 2175 zap_cursor_fini(&zc); 2176 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2177 kmem_free(outbuf, bufsize); 2178 2179 if (error == ENOENT) 2180 error = 0; 2181 2182 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2183 2184 uio->uio_loffset = offset; 2185 ZFS_EXIT(zfsvfs); 2186 return (error); 2187 } 2188 2189 ulong_t zfs_fsync_sync_cnt = 4; 2190 2191 static int 2192 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2193 { 2194 znode_t *zp = VTOZ(vp); 2195 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2196 2197 /* 2198 * Regardless of whether this is required for standards conformance, 2199 * this is the logical behavior when fsync() is called on a file with 2200 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2201 * going to be pushed out as part of the zil_commit(). 2202 */ 2203 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2204 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2205 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2206 2207 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2208 2209 ZFS_ENTER(zfsvfs); 2210 ZFS_VERIFY_ZP(zp); 2211 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2212 ZFS_EXIT(zfsvfs); 2213 return (0); 2214 } 2215 2216 2217 /* 2218 * Get the requested file attributes and place them in the provided 2219 * vattr structure. 2220 * 2221 * IN: vp - vnode of file. 2222 * vap - va_mask identifies requested attributes. 2223 * If AT_XVATTR set, then optional attrs are requested 2224 * flags - ATTR_NOACLCHECK (CIFS server context) 2225 * cr - credentials of caller. 2226 * ct - caller context 2227 * 2228 * OUT: vap - attribute values. 2229 * 2230 * RETURN: 0 (always succeeds) 2231 */ 2232 /* ARGSUSED */ 2233 static int 2234 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2235 caller_context_t *ct) 2236 { 2237 znode_t *zp = VTOZ(vp); 2238 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2239 znode_phys_t *pzp; 2240 int error = 0; 2241 uint64_t links; 2242 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2243 xoptattr_t *xoap = NULL; 2244 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2245 2246 ZFS_ENTER(zfsvfs); 2247 ZFS_VERIFY_ZP(zp); 2248 pzp = zp->z_phys; 2249 2250 /* 2251 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2252 * Also, if we are the owner don't bother, since owner should 2253 * always be allowed to read basic attributes of file. 2254 */ 2255 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2256 (pzp->zp_uid != crgetuid(cr))) { 2257 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2258 skipaclchk, cr)) { 2259 ZFS_EXIT(zfsvfs); 2260 return (error); 2261 } 2262 } 2263 2264 /* 2265 * Return all attributes. It's cheaper to provide the answer 2266 * than to determine whether we were asked the question. 2267 */ 2268 2269 mutex_enter(&zp->z_lock); 2270 vap->va_type = vp->v_type; 2271 vap->va_mode = pzp->zp_mode & MODEMASK; 2272 zfs_fuid_map_ids(zp, cr, &vap->va_uid, &vap->va_gid); 2273 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2274 vap->va_nodeid = zp->z_id; 2275 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2276 links = pzp->zp_links + 1; 2277 else 2278 links = pzp->zp_links; 2279 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2280 vap->va_size = pzp->zp_size; 2281 vap->va_rdev = vp->v_rdev; 2282 vap->va_seq = zp->z_seq; 2283 2284 /* 2285 * Add in any requested optional attributes and the create time. 2286 * Also set the corresponding bits in the returned attribute bitmap. 2287 */ 2288 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2289 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2290 xoap->xoa_archive = 2291 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2292 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2293 } 2294 2295 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2296 xoap->xoa_readonly = 2297 ((pzp->zp_flags & ZFS_READONLY) != 0); 2298 XVA_SET_RTN(xvap, XAT_READONLY); 2299 } 2300 2301 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2302 xoap->xoa_system = 2303 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2304 XVA_SET_RTN(xvap, XAT_SYSTEM); 2305 } 2306 2307 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2308 xoap->xoa_hidden = 2309 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2310 XVA_SET_RTN(xvap, XAT_HIDDEN); 2311 } 2312 2313 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2314 xoap->xoa_nounlink = 2315 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2316 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2317 } 2318 2319 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2320 xoap->xoa_immutable = 2321 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2322 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2323 } 2324 2325 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2326 xoap->xoa_appendonly = 2327 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2328 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2329 } 2330 2331 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2332 xoap->xoa_nodump = 2333 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2334 XVA_SET_RTN(xvap, XAT_NODUMP); 2335 } 2336 2337 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2338 xoap->xoa_opaque = 2339 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2340 XVA_SET_RTN(xvap, XAT_OPAQUE); 2341 } 2342 2343 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2344 xoap->xoa_av_quarantined = 2345 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2346 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2347 } 2348 2349 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2350 xoap->xoa_av_modified = 2351 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2352 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2353 } 2354 2355 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2356 vp->v_type == VREG && 2357 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2358 size_t len; 2359 dmu_object_info_t doi; 2360 2361 /* 2362 * Only VREG files have anti-virus scanstamps, so we 2363 * won't conflict with symlinks in the bonus buffer. 2364 */ 2365 dmu_object_info_from_db(zp->z_dbuf, &doi); 2366 len = sizeof (xoap->xoa_av_scanstamp) + 2367 sizeof (znode_phys_t); 2368 if (len <= doi.doi_bonus_size) { 2369 /* 2370 * pzp points to the start of the 2371 * znode_phys_t. pzp + 1 points to the 2372 * first byte after the znode_phys_t. 2373 */ 2374 (void) memcpy(xoap->xoa_av_scanstamp, 2375 pzp + 1, 2376 sizeof (xoap->xoa_av_scanstamp)); 2377 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2378 } 2379 } 2380 2381 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2382 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2383 XVA_SET_RTN(xvap, XAT_CREATETIME); 2384 } 2385 2386 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2387 xoap->xoa_reparse = 2388 ((pzp->zp_flags & ZFS_REPARSE) != 0); 2389 XVA_SET_RTN(xvap, XAT_REPARSE); 2390 } 2391 } 2392 2393 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2394 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2395 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2396 2397 mutex_exit(&zp->z_lock); 2398 2399 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2400 2401 if (zp->z_blksz == 0) { 2402 /* 2403 * Block size hasn't been set; suggest maximal I/O transfers. 2404 */ 2405 vap->va_blksize = zfsvfs->z_max_blksz; 2406 } 2407 2408 ZFS_EXIT(zfsvfs); 2409 return (0); 2410 } 2411 2412 /* 2413 * Set the file attributes to the values contained in the 2414 * vattr structure. 2415 * 2416 * IN: vp - vnode of file to be modified. 2417 * vap - new attribute values. 2418 * If AT_XVATTR set, then optional attrs are being set 2419 * flags - ATTR_UTIME set if non-default time values provided. 2420 * - ATTR_NOACLCHECK (CIFS context only). 2421 * cr - credentials of caller. 2422 * ct - caller context 2423 * 2424 * RETURN: 0 if success 2425 * error code if failure 2426 * 2427 * Timestamps: 2428 * vp - ctime updated, mtime updated if size changed. 2429 */ 2430 /* ARGSUSED */ 2431 static int 2432 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2433 caller_context_t *ct) 2434 { 2435 znode_t *zp = VTOZ(vp); 2436 znode_phys_t *pzp; 2437 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2438 zilog_t *zilog; 2439 dmu_tx_t *tx; 2440 vattr_t oldva; 2441 xvattr_t tmpxvattr; 2442 uint_t mask = vap->va_mask; 2443 uint_t saved_mask; 2444 int trim_mask = 0; 2445 uint64_t new_mode; 2446 uint64_t new_uid, new_gid; 2447 znode_t *attrzp; 2448 int need_policy = FALSE; 2449 int err; 2450 zfs_fuid_info_t *fuidp = NULL; 2451 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2452 xoptattr_t *xoap; 2453 zfs_acl_t *aclp = NULL; 2454 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2455 boolean_t fuid_dirtied = B_FALSE; 2456 2457 if (mask == 0) 2458 return (0); 2459 2460 if (mask & AT_NOSET) 2461 return (EINVAL); 2462 2463 ZFS_ENTER(zfsvfs); 2464 ZFS_VERIFY_ZP(zp); 2465 2466 pzp = zp->z_phys; 2467 zilog = zfsvfs->z_log; 2468 2469 /* 2470 * Make sure that if we have ephemeral uid/gid or xvattr specified 2471 * that file system is at proper version level 2472 */ 2473 2474 if (zfsvfs->z_use_fuids == B_FALSE && 2475 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2476 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2477 (mask & AT_XVATTR))) { 2478 ZFS_EXIT(zfsvfs); 2479 return (EINVAL); 2480 } 2481 2482 if (mask & AT_SIZE && vp->v_type == VDIR) { 2483 ZFS_EXIT(zfsvfs); 2484 return (EISDIR); 2485 } 2486 2487 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2488 ZFS_EXIT(zfsvfs); 2489 return (EINVAL); 2490 } 2491 2492 /* 2493 * If this is an xvattr_t, then get a pointer to the structure of 2494 * optional attributes. If this is NULL, then we have a vattr_t. 2495 */ 2496 xoap = xva_getxoptattr(xvap); 2497 2498 xva_init(&tmpxvattr); 2499 2500 /* 2501 * Immutable files can only alter immutable bit and atime 2502 */ 2503 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2504 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2505 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2506 ZFS_EXIT(zfsvfs); 2507 return (EPERM); 2508 } 2509 2510 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2511 ZFS_EXIT(zfsvfs); 2512 return (EPERM); 2513 } 2514 2515 /* 2516 * Verify timestamps doesn't overflow 32 bits. 2517 * ZFS can handle large timestamps, but 32bit syscalls can't 2518 * handle times greater than 2039. This check should be removed 2519 * once large timestamps are fully supported. 2520 */ 2521 if (mask & (AT_ATIME | AT_MTIME)) { 2522 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2523 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2524 ZFS_EXIT(zfsvfs); 2525 return (EOVERFLOW); 2526 } 2527 } 2528 2529 top: 2530 attrzp = NULL; 2531 2532 /* Can this be moved to before the top label? */ 2533 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2534 ZFS_EXIT(zfsvfs); 2535 return (EROFS); 2536 } 2537 2538 /* 2539 * First validate permissions 2540 */ 2541 2542 if (mask & AT_SIZE) { 2543 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2544 if (err) { 2545 ZFS_EXIT(zfsvfs); 2546 return (err); 2547 } 2548 /* 2549 * XXX - Note, we are not providing any open 2550 * mode flags here (like FNDELAY), so we may 2551 * block if there are locks present... this 2552 * should be addressed in openat(). 2553 */ 2554 /* XXX - would it be OK to generate a log record here? */ 2555 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2556 if (err) { 2557 ZFS_EXIT(zfsvfs); 2558 return (err); 2559 } 2560 } 2561 2562 if (mask & (AT_ATIME|AT_MTIME) || 2563 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2564 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2565 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2566 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2567 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2568 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2569 skipaclchk, cr); 2570 2571 if (mask & (AT_UID|AT_GID)) { 2572 int idmask = (mask & (AT_UID|AT_GID)); 2573 int take_owner; 2574 int take_group; 2575 2576 /* 2577 * NOTE: even if a new mode is being set, 2578 * we may clear S_ISUID/S_ISGID bits. 2579 */ 2580 2581 if (!(mask & AT_MODE)) 2582 vap->va_mode = pzp->zp_mode; 2583 2584 /* 2585 * Take ownership or chgrp to group we are a member of 2586 */ 2587 2588 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2589 take_group = (mask & AT_GID) && 2590 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2591 2592 /* 2593 * If both AT_UID and AT_GID are set then take_owner and 2594 * take_group must both be set in order to allow taking 2595 * ownership. 2596 * 2597 * Otherwise, send the check through secpolicy_vnode_setattr() 2598 * 2599 */ 2600 2601 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2602 ((idmask == AT_UID) && take_owner) || 2603 ((idmask == AT_GID) && take_group)) { 2604 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2605 skipaclchk, cr) == 0) { 2606 /* 2607 * Remove setuid/setgid for non-privileged users 2608 */ 2609 secpolicy_setid_clear(vap, cr); 2610 trim_mask = (mask & (AT_UID|AT_GID)); 2611 } else { 2612 need_policy = TRUE; 2613 } 2614 } else { 2615 need_policy = TRUE; 2616 } 2617 } 2618 2619 mutex_enter(&zp->z_lock); 2620 oldva.va_mode = pzp->zp_mode; 2621 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid); 2622 if (mask & AT_XVATTR) { 2623 /* 2624 * Update xvattr mask to include only those attributes 2625 * that are actually changing. 2626 * 2627 * the bits will be restored prior to actually setting 2628 * the attributes so the caller thinks they were set. 2629 */ 2630 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2631 if (xoap->xoa_appendonly != 2632 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) { 2633 need_policy = TRUE; 2634 } else { 2635 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2636 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2637 } 2638 } 2639 2640 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2641 if (xoap->xoa_nounlink != 2642 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) { 2643 need_policy = TRUE; 2644 } else { 2645 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2646 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2647 } 2648 } 2649 2650 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2651 if (xoap->xoa_immutable != 2652 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) { 2653 need_policy = TRUE; 2654 } else { 2655 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2656 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2657 } 2658 } 2659 2660 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2661 if (xoap->xoa_nodump != 2662 ((pzp->zp_flags & ZFS_NODUMP) != 0)) { 2663 need_policy = TRUE; 2664 } else { 2665 XVA_CLR_REQ(xvap, XAT_NODUMP); 2666 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2667 } 2668 } 2669 2670 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2671 if (xoap->xoa_av_modified != 2672 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) { 2673 need_policy = TRUE; 2674 } else { 2675 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2676 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2677 } 2678 } 2679 2680 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2681 if ((vp->v_type != VREG && 2682 xoap->xoa_av_quarantined) || 2683 xoap->xoa_av_quarantined != 2684 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)) { 2685 need_policy = TRUE; 2686 } else { 2687 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2688 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2689 } 2690 } 2691 2692 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2693 mutex_exit(&zp->z_lock); 2694 ZFS_EXIT(zfsvfs); 2695 return (EPERM); 2696 } 2697 2698 if (need_policy == FALSE && 2699 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2700 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2701 need_policy = TRUE; 2702 } 2703 } 2704 2705 mutex_exit(&zp->z_lock); 2706 2707 if (mask & AT_MODE) { 2708 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2709 err = secpolicy_setid_setsticky_clear(vp, vap, 2710 &oldva, cr); 2711 if (err) { 2712 ZFS_EXIT(zfsvfs); 2713 return (err); 2714 } 2715 trim_mask |= AT_MODE; 2716 } else { 2717 need_policy = TRUE; 2718 } 2719 } 2720 2721 if (need_policy) { 2722 /* 2723 * If trim_mask is set then take ownership 2724 * has been granted or write_acl is present and user 2725 * has the ability to modify mode. In that case remove 2726 * UID|GID and or MODE from mask so that 2727 * secpolicy_vnode_setattr() doesn't revoke it. 2728 */ 2729 2730 if (trim_mask) { 2731 saved_mask = vap->va_mask; 2732 vap->va_mask &= ~trim_mask; 2733 } 2734 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2735 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2736 if (err) { 2737 ZFS_EXIT(zfsvfs); 2738 return (err); 2739 } 2740 2741 if (trim_mask) 2742 vap->va_mask |= saved_mask; 2743 } 2744 2745 /* 2746 * secpolicy_vnode_setattr, or take ownership may have 2747 * changed va_mask 2748 */ 2749 mask = vap->va_mask; 2750 2751 tx = dmu_tx_create(zfsvfs->z_os); 2752 dmu_tx_hold_bonus(tx, zp->z_id); 2753 2754 if (mask & AT_MODE) { 2755 uint64_t pmode = pzp->zp_mode; 2756 2757 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2758 2759 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2760 goto out; 2761 if (pzp->zp_acl.z_acl_extern_obj) { 2762 /* Are we upgrading ACL from old V0 format to new V1 */ 2763 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2764 pzp->zp_acl.z_acl_version == 2765 ZFS_ACL_VERSION_INITIAL) { 2766 dmu_tx_hold_free(tx, 2767 pzp->zp_acl.z_acl_extern_obj, 0, 2768 DMU_OBJECT_END); 2769 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2770 0, aclp->z_acl_bytes); 2771 } else { 2772 dmu_tx_hold_write(tx, 2773 pzp->zp_acl.z_acl_extern_obj, 0, 2774 aclp->z_acl_bytes); 2775 } 2776 } else if (aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2777 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2778 0, aclp->z_acl_bytes); 2779 } 2780 } 2781 2782 if (mask & (AT_UID | AT_GID)) { 2783 if (pzp->zp_xattr) { 2784 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2785 if (err) 2786 goto out; 2787 dmu_tx_hold_bonus(tx, attrzp->z_id); 2788 } 2789 if (mask & AT_UID) { 2790 new_uid = zfs_fuid_create(zfsvfs, 2791 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2792 if (new_uid != pzp->zp_uid && 2793 zfs_usergroup_overquota(zfsvfs, B_FALSE, new_uid)) { 2794 err = EDQUOT; 2795 goto out; 2796 } 2797 } 2798 2799 if (mask & AT_GID) { 2800 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2801 cr, ZFS_GROUP, &fuidp); 2802 if (new_gid != pzp->zp_gid && 2803 zfs_usergroup_overquota(zfsvfs, B_TRUE, new_gid)) { 2804 err = EDQUOT; 2805 goto out; 2806 } 2807 } 2808 fuid_dirtied = zfsvfs->z_fuid_dirty; 2809 if (fuid_dirtied) { 2810 if (zfsvfs->z_fuid_obj == 0) { 2811 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2812 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2813 FUID_SIZE_ESTIMATE(zfsvfs)); 2814 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 2815 FALSE, NULL); 2816 } else { 2817 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2818 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2819 FUID_SIZE_ESTIMATE(zfsvfs)); 2820 } 2821 } 2822 } 2823 2824 err = dmu_tx_assign(tx, TXG_NOWAIT); 2825 if (err) { 2826 if (err == ERESTART) 2827 dmu_tx_wait(tx); 2828 goto out; 2829 } 2830 2831 dmu_buf_will_dirty(zp->z_dbuf, tx); 2832 2833 /* 2834 * Set each attribute requested. 2835 * We group settings according to the locks they need to acquire. 2836 * 2837 * Note: you cannot set ctime directly, although it will be 2838 * updated as a side-effect of calling this function. 2839 */ 2840 2841 mutex_enter(&zp->z_lock); 2842 2843 if (mask & AT_MODE) { 2844 mutex_enter(&zp->z_acl_lock); 2845 zp->z_phys->zp_mode = new_mode; 2846 err = zfs_aclset_common(zp, aclp, cr, tx); 2847 ASSERT3U(err, ==, 0); 2848 zp->z_acl_cached = aclp; 2849 aclp = NULL; 2850 mutex_exit(&zp->z_acl_lock); 2851 } 2852 2853 if (attrzp) 2854 mutex_enter(&attrzp->z_lock); 2855 2856 if (mask & AT_UID) { 2857 pzp->zp_uid = new_uid; 2858 if (attrzp) 2859 attrzp->z_phys->zp_uid = new_uid; 2860 } 2861 2862 if (mask & AT_GID) { 2863 pzp->zp_gid = new_gid; 2864 if (attrzp) 2865 attrzp->z_phys->zp_gid = new_gid; 2866 } 2867 2868 if (attrzp) 2869 mutex_exit(&attrzp->z_lock); 2870 2871 if (mask & AT_ATIME) 2872 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2873 2874 if (mask & AT_MTIME) 2875 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2876 2877 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 2878 if (mask & AT_SIZE) 2879 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2880 else if (mask != 0) 2881 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2882 /* 2883 * Do this after setting timestamps to prevent timestamp 2884 * update from toggling bit 2885 */ 2886 2887 if (xoap && (mask & AT_XVATTR)) { 2888 2889 /* 2890 * restore trimmed off masks 2891 * so that return masks can be set for caller. 2892 */ 2893 2894 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 2895 XVA_SET_REQ(xvap, XAT_APPENDONLY); 2896 } 2897 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 2898 XVA_SET_REQ(xvap, XAT_NOUNLINK); 2899 } 2900 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 2901 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 2902 } 2903 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 2904 XVA_SET_REQ(xvap, XAT_NODUMP); 2905 } 2906 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 2907 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 2908 } 2909 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 2910 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 2911 } 2912 2913 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2914 size_t len; 2915 dmu_object_info_t doi; 2916 2917 ASSERT(vp->v_type == VREG); 2918 2919 /* Grow the bonus buffer if necessary. */ 2920 dmu_object_info_from_db(zp->z_dbuf, &doi); 2921 len = sizeof (xoap->xoa_av_scanstamp) + 2922 sizeof (znode_phys_t); 2923 if (len > doi.doi_bonus_size) 2924 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2925 } 2926 zfs_xvattr_set(zp, xvap); 2927 } 2928 2929 if (fuid_dirtied) 2930 zfs_fuid_sync(zfsvfs, tx); 2931 2932 if (mask != 0) 2933 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2934 2935 mutex_exit(&zp->z_lock); 2936 2937 out: 2938 if (attrzp) 2939 VN_RELE(ZTOV(attrzp)); 2940 2941 if (aclp) 2942 zfs_acl_free(aclp); 2943 2944 if (fuidp) { 2945 zfs_fuid_info_free(fuidp); 2946 fuidp = NULL; 2947 } 2948 2949 if (err) 2950 dmu_tx_abort(tx); 2951 else 2952 dmu_tx_commit(tx); 2953 2954 if (err == ERESTART) 2955 goto top; 2956 2957 ZFS_EXIT(zfsvfs); 2958 return (err); 2959 } 2960 2961 typedef struct zfs_zlock { 2962 krwlock_t *zl_rwlock; /* lock we acquired */ 2963 znode_t *zl_znode; /* znode we held */ 2964 struct zfs_zlock *zl_next; /* next in list */ 2965 } zfs_zlock_t; 2966 2967 /* 2968 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2969 */ 2970 static void 2971 zfs_rename_unlock(zfs_zlock_t **zlpp) 2972 { 2973 zfs_zlock_t *zl; 2974 2975 while ((zl = *zlpp) != NULL) { 2976 if (zl->zl_znode != NULL) 2977 VN_RELE(ZTOV(zl->zl_znode)); 2978 rw_exit(zl->zl_rwlock); 2979 *zlpp = zl->zl_next; 2980 kmem_free(zl, sizeof (*zl)); 2981 } 2982 } 2983 2984 /* 2985 * Search back through the directory tree, using the ".." entries. 2986 * Lock each directory in the chain to prevent concurrent renames. 2987 * Fail any attempt to move a directory into one of its own descendants. 2988 * XXX - z_parent_lock can overlap with map or grow locks 2989 */ 2990 static int 2991 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2992 { 2993 zfs_zlock_t *zl; 2994 znode_t *zp = tdzp; 2995 uint64_t rootid = zp->z_zfsvfs->z_root; 2996 uint64_t *oidp = &zp->z_id; 2997 krwlock_t *rwlp = &szp->z_parent_lock; 2998 krw_t rw = RW_WRITER; 2999 3000 /* 3001 * First pass write-locks szp and compares to zp->z_id. 3002 * Later passes read-lock zp and compare to zp->z_parent. 3003 */ 3004 do { 3005 if (!rw_tryenter(rwlp, rw)) { 3006 /* 3007 * Another thread is renaming in this path. 3008 * Note that if we are a WRITER, we don't have any 3009 * parent_locks held yet. 3010 */ 3011 if (rw == RW_READER && zp->z_id > szp->z_id) { 3012 /* 3013 * Drop our locks and restart 3014 */ 3015 zfs_rename_unlock(&zl); 3016 *zlpp = NULL; 3017 zp = tdzp; 3018 oidp = &zp->z_id; 3019 rwlp = &szp->z_parent_lock; 3020 rw = RW_WRITER; 3021 continue; 3022 } else { 3023 /* 3024 * Wait for other thread to drop its locks 3025 */ 3026 rw_enter(rwlp, rw); 3027 } 3028 } 3029 3030 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3031 zl->zl_rwlock = rwlp; 3032 zl->zl_znode = NULL; 3033 zl->zl_next = *zlpp; 3034 *zlpp = zl; 3035 3036 if (*oidp == szp->z_id) /* We're a descendant of szp */ 3037 return (EINVAL); 3038 3039 if (*oidp == rootid) /* We've hit the top */ 3040 return (0); 3041 3042 if (rw == RW_READER) { /* i.e. not the first pass */ 3043 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 3044 if (error) 3045 return (error); 3046 zl->zl_znode = zp; 3047 } 3048 oidp = &zp->z_phys->zp_parent; 3049 rwlp = &zp->z_parent_lock; 3050 rw = RW_READER; 3051 3052 } while (zp->z_id != sdzp->z_id); 3053 3054 return (0); 3055 } 3056 3057 /* 3058 * Move an entry from the provided source directory to the target 3059 * directory. Change the entry name as indicated. 3060 * 3061 * IN: sdvp - Source directory containing the "old entry". 3062 * snm - Old entry name. 3063 * tdvp - Target directory to contain the "new entry". 3064 * tnm - New entry name. 3065 * cr - credentials of caller. 3066 * ct - caller context 3067 * flags - case flags 3068 * 3069 * RETURN: 0 if success 3070 * error code if failure 3071 * 3072 * Timestamps: 3073 * sdvp,tdvp - ctime|mtime updated 3074 */ 3075 /*ARGSUSED*/ 3076 static int 3077 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3078 caller_context_t *ct, int flags) 3079 { 3080 znode_t *tdzp, *szp, *tzp; 3081 znode_t *sdzp = VTOZ(sdvp); 3082 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3083 zilog_t *zilog; 3084 vnode_t *realvp; 3085 zfs_dirlock_t *sdl, *tdl; 3086 dmu_tx_t *tx; 3087 zfs_zlock_t *zl; 3088 int cmp, serr, terr; 3089 int error = 0; 3090 int zflg = 0; 3091 3092 ZFS_ENTER(zfsvfs); 3093 ZFS_VERIFY_ZP(sdzp); 3094 zilog = zfsvfs->z_log; 3095 3096 /* 3097 * Make sure we have the real vp for the target directory. 3098 */ 3099 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3100 tdvp = realvp; 3101 3102 if (tdvp->v_vfsp != sdvp->v_vfsp) { 3103 ZFS_EXIT(zfsvfs); 3104 return (EXDEV); 3105 } 3106 3107 tdzp = VTOZ(tdvp); 3108 ZFS_VERIFY_ZP(tdzp); 3109 if (zfsvfs->z_utf8 && u8_validate(tnm, 3110 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3111 ZFS_EXIT(zfsvfs); 3112 return (EILSEQ); 3113 } 3114 3115 if (flags & FIGNORECASE) 3116 zflg |= ZCILOOK; 3117 3118 top: 3119 szp = NULL; 3120 tzp = NULL; 3121 zl = NULL; 3122 3123 /* 3124 * This is to prevent the creation of links into attribute space 3125 * by renaming a linked file into/outof an attribute directory. 3126 * See the comment in zfs_link() for why this is considered bad. 3127 */ 3128 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 3129 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 3130 ZFS_EXIT(zfsvfs); 3131 return (EINVAL); 3132 } 3133 3134 /* 3135 * Lock source and target directory entries. To prevent deadlock, 3136 * a lock ordering must be defined. We lock the directory with 3137 * the smallest object id first, or if it's a tie, the one with 3138 * the lexically first name. 3139 */ 3140 if (sdzp->z_id < tdzp->z_id) { 3141 cmp = -1; 3142 } else if (sdzp->z_id > tdzp->z_id) { 3143 cmp = 1; 3144 } else { 3145 /* 3146 * First compare the two name arguments without 3147 * considering any case folding. 3148 */ 3149 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3150 3151 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3152 ASSERT(error == 0 || !zfsvfs->z_utf8); 3153 if (cmp == 0) { 3154 /* 3155 * POSIX: "If the old argument and the new argument 3156 * both refer to links to the same existing file, 3157 * the rename() function shall return successfully 3158 * and perform no other action." 3159 */ 3160 ZFS_EXIT(zfsvfs); 3161 return (0); 3162 } 3163 /* 3164 * If the file system is case-folding, then we may 3165 * have some more checking to do. A case-folding file 3166 * system is either supporting mixed case sensitivity 3167 * access or is completely case-insensitive. Note 3168 * that the file system is always case preserving. 3169 * 3170 * In mixed sensitivity mode case sensitive behavior 3171 * is the default. FIGNORECASE must be used to 3172 * explicitly request case insensitive behavior. 3173 * 3174 * If the source and target names provided differ only 3175 * by case (e.g., a request to rename 'tim' to 'Tim'), 3176 * we will treat this as a special case in the 3177 * case-insensitive mode: as long as the source name 3178 * is an exact match, we will allow this to proceed as 3179 * a name-change request. 3180 */ 3181 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3182 (zfsvfs->z_case == ZFS_CASE_MIXED && 3183 flags & FIGNORECASE)) && 3184 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3185 &error) == 0) { 3186 /* 3187 * case preserving rename request, require exact 3188 * name matches 3189 */ 3190 zflg |= ZCIEXACT; 3191 zflg &= ~ZCILOOK; 3192 } 3193 } 3194 3195 if (cmp < 0) { 3196 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3197 ZEXISTS | zflg, NULL, NULL); 3198 terr = zfs_dirent_lock(&tdl, 3199 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3200 } else { 3201 terr = zfs_dirent_lock(&tdl, 3202 tdzp, tnm, &tzp, zflg, NULL, NULL); 3203 serr = zfs_dirent_lock(&sdl, 3204 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3205 NULL, NULL); 3206 } 3207 3208 if (serr) { 3209 /* 3210 * Source entry invalid or not there. 3211 */ 3212 if (!terr) { 3213 zfs_dirent_unlock(tdl); 3214 if (tzp) 3215 VN_RELE(ZTOV(tzp)); 3216 } 3217 if (strcmp(snm, "..") == 0) 3218 serr = EINVAL; 3219 ZFS_EXIT(zfsvfs); 3220 return (serr); 3221 } 3222 if (terr) { 3223 zfs_dirent_unlock(sdl); 3224 VN_RELE(ZTOV(szp)); 3225 if (strcmp(tnm, "..") == 0) 3226 terr = EINVAL; 3227 ZFS_EXIT(zfsvfs); 3228 return (terr); 3229 } 3230 3231 /* 3232 * Must have write access at the source to remove the old entry 3233 * and write access at the target to create the new entry. 3234 * Note that if target and source are the same, this can be 3235 * done in a single check. 3236 */ 3237 3238 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3239 goto out; 3240 3241 if (ZTOV(szp)->v_type == VDIR) { 3242 /* 3243 * Check to make sure rename is valid. 3244 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3245 */ 3246 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3247 goto out; 3248 } 3249 3250 /* 3251 * Does target exist? 3252 */ 3253 if (tzp) { 3254 /* 3255 * Source and target must be the same type. 3256 */ 3257 if (ZTOV(szp)->v_type == VDIR) { 3258 if (ZTOV(tzp)->v_type != VDIR) { 3259 error = ENOTDIR; 3260 goto out; 3261 } 3262 } else { 3263 if (ZTOV(tzp)->v_type == VDIR) { 3264 error = EISDIR; 3265 goto out; 3266 } 3267 } 3268 /* 3269 * POSIX dictates that when the source and target 3270 * entries refer to the same file object, rename 3271 * must do nothing and exit without error. 3272 */ 3273 if (szp->z_id == tzp->z_id) { 3274 error = 0; 3275 goto out; 3276 } 3277 } 3278 3279 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3280 if (tzp) 3281 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3282 3283 /* 3284 * notify the target directory if it is not the same 3285 * as source directory. 3286 */ 3287 if (tdvp != sdvp) { 3288 vnevent_rename_dest_dir(tdvp, ct); 3289 } 3290 3291 tx = dmu_tx_create(zfsvfs->z_os); 3292 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3293 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3294 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3295 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3296 if (sdzp != tdzp) 3297 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3298 if (tzp) 3299 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3300 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3301 error = dmu_tx_assign(tx, TXG_NOWAIT); 3302 if (error) { 3303 if (zl != NULL) 3304 zfs_rename_unlock(&zl); 3305 zfs_dirent_unlock(sdl); 3306 zfs_dirent_unlock(tdl); 3307 VN_RELE(ZTOV(szp)); 3308 if (tzp) 3309 VN_RELE(ZTOV(tzp)); 3310 if (error == ERESTART) { 3311 dmu_tx_wait(tx); 3312 dmu_tx_abort(tx); 3313 goto top; 3314 } 3315 dmu_tx_abort(tx); 3316 ZFS_EXIT(zfsvfs); 3317 return (error); 3318 } 3319 3320 if (tzp) /* Attempt to remove the existing target */ 3321 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3322 3323 if (error == 0) { 3324 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3325 if (error == 0) { 3326 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3327 3328 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3329 ASSERT(error == 0); 3330 3331 zfs_log_rename(zilog, tx, 3332 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3333 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3334 3335 /* Update path information for the target vnode */ 3336 vn_renamepath(tdvp, ZTOV(szp), tnm, strlen(tnm)); 3337 } 3338 } 3339 3340 dmu_tx_commit(tx); 3341 out: 3342 if (zl != NULL) 3343 zfs_rename_unlock(&zl); 3344 3345 zfs_dirent_unlock(sdl); 3346 zfs_dirent_unlock(tdl); 3347 3348 VN_RELE(ZTOV(szp)); 3349 if (tzp) 3350 VN_RELE(ZTOV(tzp)); 3351 3352 ZFS_EXIT(zfsvfs); 3353 return (error); 3354 } 3355 3356 /* 3357 * Insert the indicated symbolic reference entry into the directory. 3358 * 3359 * IN: dvp - Directory to contain new symbolic link. 3360 * link - Name for new symlink entry. 3361 * vap - Attributes of new entry. 3362 * target - Target path of new symlink. 3363 * cr - credentials of caller. 3364 * ct - caller context 3365 * flags - case flags 3366 * 3367 * RETURN: 0 if success 3368 * error code if failure 3369 * 3370 * Timestamps: 3371 * dvp - ctime|mtime updated 3372 */ 3373 /*ARGSUSED*/ 3374 static int 3375 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3376 caller_context_t *ct, int flags) 3377 { 3378 znode_t *zp, *dzp = VTOZ(dvp); 3379 zfs_dirlock_t *dl; 3380 dmu_tx_t *tx; 3381 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3382 zilog_t *zilog; 3383 int len = strlen(link); 3384 int error; 3385 int zflg = ZNEW; 3386 zfs_acl_ids_t acl_ids; 3387 boolean_t fuid_dirtied; 3388 3389 ASSERT(vap->va_type == VLNK); 3390 3391 ZFS_ENTER(zfsvfs); 3392 ZFS_VERIFY_ZP(dzp); 3393 zilog = zfsvfs->z_log; 3394 3395 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3396 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3397 ZFS_EXIT(zfsvfs); 3398 return (EILSEQ); 3399 } 3400 if (flags & FIGNORECASE) 3401 zflg |= ZCILOOK; 3402 top: 3403 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3404 ZFS_EXIT(zfsvfs); 3405 return (error); 3406 } 3407 3408 if (len > MAXPATHLEN) { 3409 ZFS_EXIT(zfsvfs); 3410 return (ENAMETOOLONG); 3411 } 3412 3413 /* 3414 * Attempt to lock directory; fail if entry already exists. 3415 */ 3416 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3417 if (error) { 3418 ZFS_EXIT(zfsvfs); 3419 return (error); 3420 } 3421 3422 VERIFY(0 == zfs_acl_ids_create(dzp, 0, vap, cr, NULL, &acl_ids)); 3423 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3424 zfs_acl_ids_free(&acl_ids); 3425 zfs_dirent_unlock(dl); 3426 ZFS_EXIT(zfsvfs); 3427 return (EDQUOT); 3428 } 3429 tx = dmu_tx_create(zfsvfs->z_os); 3430 fuid_dirtied = zfsvfs->z_fuid_dirty; 3431 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3432 dmu_tx_hold_bonus(tx, dzp->z_id); 3433 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3434 if (acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) 3435 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3436 if (fuid_dirtied) 3437 zfs_fuid_txhold(zfsvfs, tx); 3438 error = dmu_tx_assign(tx, TXG_NOWAIT); 3439 if (error) { 3440 zfs_acl_ids_free(&acl_ids); 3441 zfs_dirent_unlock(dl); 3442 if (error == ERESTART) { 3443 dmu_tx_wait(tx); 3444 dmu_tx_abort(tx); 3445 goto top; 3446 } 3447 dmu_tx_abort(tx); 3448 ZFS_EXIT(zfsvfs); 3449 return (error); 3450 } 3451 3452 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3453 3454 /* 3455 * Create a new object for the symlink. 3456 * Put the link content into bonus buffer if it will fit; 3457 * otherwise, store it just like any other file data. 3458 */ 3459 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3460 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, &acl_ids); 3461 if (len != 0) 3462 bcopy(link, zp->z_phys + 1, len); 3463 } else { 3464 dmu_buf_t *dbp; 3465 3466 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, &acl_ids); 3467 3468 if (fuid_dirtied) 3469 zfs_fuid_sync(zfsvfs, tx); 3470 /* 3471 * Nothing can access the znode yet so no locking needed 3472 * for growing the znode's blocksize. 3473 */ 3474 zfs_grow_blocksize(zp, len, tx); 3475 3476 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3477 zp->z_id, 0, FTAG, &dbp)); 3478 dmu_buf_will_dirty(dbp, tx); 3479 3480 ASSERT3U(len, <=, dbp->db_size); 3481 bcopy(link, dbp->db_data, len); 3482 dmu_buf_rele(dbp, FTAG); 3483 } 3484 zp->z_phys->zp_size = len; 3485 3486 /* 3487 * Insert the new object into the directory. 3488 */ 3489 (void) zfs_link_create(dl, zp, tx, ZNEW); 3490 if (error == 0) { 3491 uint64_t txtype = TX_SYMLINK; 3492 if (flags & FIGNORECASE) 3493 txtype |= TX_CI; 3494 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3495 } 3496 3497 zfs_acl_ids_free(&acl_ids); 3498 3499 dmu_tx_commit(tx); 3500 3501 zfs_dirent_unlock(dl); 3502 3503 VN_RELE(ZTOV(zp)); 3504 3505 ZFS_EXIT(zfsvfs); 3506 return (error); 3507 } 3508 3509 /* 3510 * Return, in the buffer contained in the provided uio structure, 3511 * the symbolic path referred to by vp. 3512 * 3513 * IN: vp - vnode of symbolic link. 3514 * uoip - structure to contain the link path. 3515 * cr - credentials of caller. 3516 * ct - caller context 3517 * 3518 * OUT: uio - structure to contain the link path. 3519 * 3520 * RETURN: 0 if success 3521 * error code if failure 3522 * 3523 * Timestamps: 3524 * vp - atime updated 3525 */ 3526 /* ARGSUSED */ 3527 static int 3528 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3529 { 3530 znode_t *zp = VTOZ(vp); 3531 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3532 size_t bufsz; 3533 int error; 3534 3535 ZFS_ENTER(zfsvfs); 3536 ZFS_VERIFY_ZP(zp); 3537 3538 bufsz = (size_t)zp->z_phys->zp_size; 3539 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3540 error = uiomove(zp->z_phys + 1, 3541 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3542 } else { 3543 dmu_buf_t *dbp; 3544 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3545 if (error) { 3546 ZFS_EXIT(zfsvfs); 3547 return (error); 3548 } 3549 error = uiomove(dbp->db_data, 3550 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3551 dmu_buf_rele(dbp, FTAG); 3552 } 3553 3554 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3555 ZFS_EXIT(zfsvfs); 3556 return (error); 3557 } 3558 3559 /* 3560 * Insert a new entry into directory tdvp referencing svp. 3561 * 3562 * IN: tdvp - Directory to contain new entry. 3563 * svp - vnode of new entry. 3564 * name - name of new entry. 3565 * cr - credentials of caller. 3566 * ct - caller context 3567 * 3568 * RETURN: 0 if success 3569 * error code if failure 3570 * 3571 * Timestamps: 3572 * tdvp - ctime|mtime updated 3573 * svp - ctime updated 3574 */ 3575 /* ARGSUSED */ 3576 static int 3577 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3578 caller_context_t *ct, int flags) 3579 { 3580 znode_t *dzp = VTOZ(tdvp); 3581 znode_t *tzp, *szp; 3582 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3583 zilog_t *zilog; 3584 zfs_dirlock_t *dl; 3585 dmu_tx_t *tx; 3586 vnode_t *realvp; 3587 int error; 3588 int zf = ZNEW; 3589 uid_t owner; 3590 3591 ASSERT(tdvp->v_type == VDIR); 3592 3593 ZFS_ENTER(zfsvfs); 3594 ZFS_VERIFY_ZP(dzp); 3595 zilog = zfsvfs->z_log; 3596 3597 if (VOP_REALVP(svp, &realvp, ct) == 0) 3598 svp = realvp; 3599 3600 if (svp->v_vfsp != tdvp->v_vfsp) { 3601 ZFS_EXIT(zfsvfs); 3602 return (EXDEV); 3603 } 3604 szp = VTOZ(svp); 3605 ZFS_VERIFY_ZP(szp); 3606 3607 if (zfsvfs->z_utf8 && u8_validate(name, 3608 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3609 ZFS_EXIT(zfsvfs); 3610 return (EILSEQ); 3611 } 3612 if (flags & FIGNORECASE) 3613 zf |= ZCILOOK; 3614 3615 top: 3616 /* 3617 * We do not support links between attributes and non-attributes 3618 * because of the potential security risk of creating links 3619 * into "normal" file space in order to circumvent restrictions 3620 * imposed in attribute space. 3621 */ 3622 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3623 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3624 ZFS_EXIT(zfsvfs); 3625 return (EINVAL); 3626 } 3627 3628 /* 3629 * POSIX dictates that we return EPERM here. 3630 * Better choices include ENOTSUP or EISDIR. 3631 */ 3632 if (svp->v_type == VDIR) { 3633 ZFS_EXIT(zfsvfs); 3634 return (EPERM); 3635 } 3636 3637 owner = zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, cr, ZFS_OWNER); 3638 if (owner != crgetuid(cr) && 3639 secpolicy_basic_link(cr) != 0) { 3640 ZFS_EXIT(zfsvfs); 3641 return (EPERM); 3642 } 3643 3644 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3645 ZFS_EXIT(zfsvfs); 3646 return (error); 3647 } 3648 3649 /* 3650 * Attempt to lock directory; fail if entry already exists. 3651 */ 3652 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3653 if (error) { 3654 ZFS_EXIT(zfsvfs); 3655 return (error); 3656 } 3657 3658 tx = dmu_tx_create(zfsvfs->z_os); 3659 dmu_tx_hold_bonus(tx, szp->z_id); 3660 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3661 error = dmu_tx_assign(tx, TXG_NOWAIT); 3662 if (error) { 3663 zfs_dirent_unlock(dl); 3664 if (error == ERESTART) { 3665 dmu_tx_wait(tx); 3666 dmu_tx_abort(tx); 3667 goto top; 3668 } 3669 dmu_tx_abort(tx); 3670 ZFS_EXIT(zfsvfs); 3671 return (error); 3672 } 3673 3674 error = zfs_link_create(dl, szp, tx, 0); 3675 3676 if (error == 0) { 3677 uint64_t txtype = TX_LINK; 3678 if (flags & FIGNORECASE) 3679 txtype |= TX_CI; 3680 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3681 } 3682 3683 dmu_tx_commit(tx); 3684 3685 zfs_dirent_unlock(dl); 3686 3687 if (error == 0) { 3688 vnevent_link(svp, ct); 3689 } 3690 3691 ZFS_EXIT(zfsvfs); 3692 return (error); 3693 } 3694 3695 /* 3696 * zfs_null_putapage() is used when the file system has been force 3697 * unmounted. It just drops the pages. 3698 */ 3699 /* ARGSUSED */ 3700 static int 3701 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3702 size_t *lenp, int flags, cred_t *cr) 3703 { 3704 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3705 return (0); 3706 } 3707 3708 /* 3709 * Push a page out to disk, klustering if possible. 3710 * 3711 * IN: vp - file to push page to. 3712 * pp - page to push. 3713 * flags - additional flags. 3714 * cr - credentials of caller. 3715 * 3716 * OUT: offp - start of range pushed. 3717 * lenp - len of range pushed. 3718 * 3719 * RETURN: 0 if success 3720 * error code if failure 3721 * 3722 * NOTE: callers must have locked the page to be pushed. On 3723 * exit, the page (and all other pages in the kluster) must be 3724 * unlocked. 3725 */ 3726 /* ARGSUSED */ 3727 static int 3728 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3729 size_t *lenp, int flags, cred_t *cr) 3730 { 3731 znode_t *zp = VTOZ(vp); 3732 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3733 dmu_tx_t *tx; 3734 u_offset_t off, koff; 3735 size_t len, klen; 3736 uint64_t filesz; 3737 int err; 3738 3739 filesz = zp->z_phys->zp_size; 3740 off = pp->p_offset; 3741 len = PAGESIZE; 3742 /* 3743 * If our blocksize is bigger than the page size, try to kluster 3744 * multiple pages so that we write a full block (thus avoiding 3745 * a read-modify-write). 3746 */ 3747 if (off < filesz && zp->z_blksz > PAGESIZE) { 3748 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3749 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 3750 ASSERT(koff <= filesz); 3751 if (koff + klen > filesz) 3752 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3753 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3754 } 3755 ASSERT3U(btop(len), ==, btopr(len)); 3756 3757 /* 3758 * Can't push pages past end-of-file. 3759 */ 3760 if (off >= filesz) { 3761 /* ignore all pages */ 3762 err = 0; 3763 goto out; 3764 } else if (off + len > filesz) { 3765 int npages = btopr(filesz - off); 3766 page_t *trunc; 3767 3768 page_list_break(&pp, &trunc, npages); 3769 /* ignore pages past end of file */ 3770 if (trunc) 3771 pvn_write_done(trunc, flags); 3772 len = filesz - off; 3773 } 3774 3775 if (zfs_usergroup_overquota(zfsvfs, B_FALSE, zp->z_phys->zp_uid) || 3776 zfs_usergroup_overquota(zfsvfs, B_TRUE, zp->z_phys->zp_gid)) { 3777 err = EDQUOT; 3778 goto out; 3779 } 3780 top: 3781 tx = dmu_tx_create(zfsvfs->z_os); 3782 dmu_tx_hold_write(tx, zp->z_id, off, len); 3783 dmu_tx_hold_bonus(tx, zp->z_id); 3784 err = dmu_tx_assign(tx, TXG_NOWAIT); 3785 if (err != 0) { 3786 if (err == ERESTART) { 3787 dmu_tx_wait(tx); 3788 dmu_tx_abort(tx); 3789 goto top; 3790 } 3791 dmu_tx_abort(tx); 3792 goto out; 3793 } 3794 3795 if (zp->z_blksz <= PAGESIZE) { 3796 caddr_t va = zfs_map_page(pp, S_READ); 3797 ASSERT3U(len, <=, PAGESIZE); 3798 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3799 zfs_unmap_page(pp, va); 3800 } else { 3801 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3802 } 3803 3804 if (err == 0) { 3805 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3806 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 3807 } 3808 dmu_tx_commit(tx); 3809 3810 out: 3811 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3812 if (offp) 3813 *offp = off; 3814 if (lenp) 3815 *lenp = len; 3816 3817 return (err); 3818 } 3819 3820 /* 3821 * Copy the portion of the file indicated from pages into the file. 3822 * The pages are stored in a page list attached to the files vnode. 3823 * 3824 * IN: vp - vnode of file to push page data to. 3825 * off - position in file to put data. 3826 * len - amount of data to write. 3827 * flags - flags to control the operation. 3828 * cr - credentials of caller. 3829 * ct - caller context. 3830 * 3831 * RETURN: 0 if success 3832 * error code if failure 3833 * 3834 * Timestamps: 3835 * vp - ctime|mtime updated 3836 */ 3837 /*ARGSUSED*/ 3838 static int 3839 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3840 caller_context_t *ct) 3841 { 3842 znode_t *zp = VTOZ(vp); 3843 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3844 page_t *pp; 3845 size_t io_len; 3846 u_offset_t io_off; 3847 uint_t blksz; 3848 rl_t *rl; 3849 int error = 0; 3850 3851 ZFS_ENTER(zfsvfs); 3852 ZFS_VERIFY_ZP(zp); 3853 3854 /* 3855 * Align this request to the file block size in case we kluster. 3856 * XXX - this can result in pretty aggresive locking, which can 3857 * impact simultanious read/write access. One option might be 3858 * to break up long requests (len == 0) into block-by-block 3859 * operations to get narrower locking. 3860 */ 3861 blksz = zp->z_blksz; 3862 if (ISP2(blksz)) 3863 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 3864 else 3865 io_off = 0; 3866 if (len > 0 && ISP2(blksz)) 3867 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 3868 else 3869 io_len = 0; 3870 3871 if (io_len == 0) { 3872 /* 3873 * Search the entire vp list for pages >= io_off. 3874 */ 3875 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 3876 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 3877 goto out; 3878 } 3879 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 3880 3881 if (off > zp->z_phys->zp_size) { 3882 /* past end of file */ 3883 zfs_range_unlock(rl); 3884 ZFS_EXIT(zfsvfs); 3885 return (0); 3886 } 3887 3888 len = MIN(io_len, P2ROUNDUP(zp->z_phys->zp_size, PAGESIZE) - io_off); 3889 3890 for (off = io_off; io_off < off + len; io_off += io_len) { 3891 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3892 pp = page_lookup(vp, io_off, 3893 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3894 } else { 3895 pp = page_lookup_nowait(vp, io_off, 3896 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3897 } 3898 3899 if (pp != NULL && pvn_getdirty(pp, flags)) { 3900 int err; 3901 3902 /* 3903 * Found a dirty page to push 3904 */ 3905 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3906 if (err) 3907 error = err; 3908 } else { 3909 io_len = PAGESIZE; 3910 } 3911 } 3912 out: 3913 zfs_range_unlock(rl); 3914 if ((flags & B_ASYNC) == 0) 3915 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3916 ZFS_EXIT(zfsvfs); 3917 return (error); 3918 } 3919 3920 /*ARGSUSED*/ 3921 void 3922 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3923 { 3924 znode_t *zp = VTOZ(vp); 3925 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3926 int error; 3927 3928 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3929 if (zp->z_dbuf == NULL) { 3930 /* 3931 * The fs has been unmounted, or we did a 3932 * suspend/resume and this file no longer exists. 3933 */ 3934 if (vn_has_cached_data(vp)) { 3935 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3936 B_INVAL, cr); 3937 } 3938 3939 mutex_enter(&zp->z_lock); 3940 mutex_enter(&vp->v_lock); 3941 ASSERT(vp->v_count == 1); 3942 vp->v_count = 0; 3943 mutex_exit(&vp->v_lock); 3944 mutex_exit(&zp->z_lock); 3945 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3946 zfs_znode_free(zp); 3947 return; 3948 } 3949 3950 /* 3951 * Attempt to push any data in the page cache. If this fails 3952 * we will get kicked out later in zfs_zinactive(). 3953 */ 3954 if (vn_has_cached_data(vp)) { 3955 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3956 cr); 3957 } 3958 3959 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3960 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3961 3962 dmu_tx_hold_bonus(tx, zp->z_id); 3963 error = dmu_tx_assign(tx, TXG_WAIT); 3964 if (error) { 3965 dmu_tx_abort(tx); 3966 } else { 3967 dmu_buf_will_dirty(zp->z_dbuf, tx); 3968 mutex_enter(&zp->z_lock); 3969 zp->z_atime_dirty = 0; 3970 mutex_exit(&zp->z_lock); 3971 dmu_tx_commit(tx); 3972 } 3973 } 3974 3975 zfs_zinactive(zp); 3976 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3977 } 3978 3979 /* 3980 * Bounds-check the seek operation. 3981 * 3982 * IN: vp - vnode seeking within 3983 * ooff - old file offset 3984 * noffp - pointer to new file offset 3985 * ct - caller context 3986 * 3987 * RETURN: 0 if success 3988 * EINVAL if new offset invalid 3989 */ 3990 /* ARGSUSED */ 3991 static int 3992 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3993 caller_context_t *ct) 3994 { 3995 if (vp->v_type == VDIR) 3996 return (0); 3997 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3998 } 3999 4000 /* 4001 * Pre-filter the generic locking function to trap attempts to place 4002 * a mandatory lock on a memory mapped file. 4003 */ 4004 static int 4005 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4006 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4007 { 4008 znode_t *zp = VTOZ(vp); 4009 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4010 int error; 4011 4012 ZFS_ENTER(zfsvfs); 4013 ZFS_VERIFY_ZP(zp); 4014 4015 /* 4016 * We are following the UFS semantics with respect to mapcnt 4017 * here: If we see that the file is mapped already, then we will 4018 * return an error, but we don't worry about races between this 4019 * function and zfs_map(). 4020 */ 4021 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 4022 ZFS_EXIT(zfsvfs); 4023 return (EAGAIN); 4024 } 4025 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 4026 ZFS_EXIT(zfsvfs); 4027 return (error); 4028 } 4029 4030 /* 4031 * If we can't find a page in the cache, we will create a new page 4032 * and fill it with file data. For efficiency, we may try to fill 4033 * multiple pages at once (klustering) to fill up the supplied page 4034 * list. Note that the pages to be filled are held with an exclusive 4035 * lock to prevent access by other threads while they are being filled. 4036 */ 4037 static int 4038 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4039 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4040 { 4041 znode_t *zp = VTOZ(vp); 4042 page_t *pp, *cur_pp; 4043 objset_t *os = zp->z_zfsvfs->z_os; 4044 u_offset_t io_off, total; 4045 size_t io_len; 4046 int err; 4047 4048 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4049 /* 4050 * We only have a single page, don't bother klustering 4051 */ 4052 io_off = off; 4053 io_len = PAGESIZE; 4054 pp = page_create_va(vp, io_off, io_len, 4055 PG_EXCL | PG_WAIT, seg, addr); 4056 } else { 4057 /* 4058 * Try to find enough pages to fill the page list 4059 */ 4060 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4061 &io_len, off, plsz, 0); 4062 } 4063 if (pp == NULL) { 4064 /* 4065 * The page already exists, nothing to do here. 4066 */ 4067 *pl = NULL; 4068 return (0); 4069 } 4070 4071 /* 4072 * Fill the pages in the kluster. 4073 */ 4074 cur_pp = pp; 4075 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4076 caddr_t va; 4077 4078 ASSERT3U(io_off, ==, cur_pp->p_offset); 4079 va = zfs_map_page(cur_pp, S_WRITE); 4080 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4081 DMU_READ_PREFETCH); 4082 zfs_unmap_page(cur_pp, va); 4083 if (err) { 4084 /* On error, toss the entire kluster */ 4085 pvn_read_done(pp, B_ERROR); 4086 /* convert checksum errors into IO errors */ 4087 if (err == ECKSUM) 4088 err = EIO; 4089 return (err); 4090 } 4091 cur_pp = cur_pp->p_next; 4092 } 4093 4094 /* 4095 * Fill in the page list array from the kluster starting 4096 * from the desired offset `off'. 4097 * NOTE: the page list will always be null terminated. 4098 */ 4099 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4100 ASSERT(pl == NULL || (*pl)->p_offset == off); 4101 4102 return (0); 4103 } 4104 4105 /* 4106 * Return pointers to the pages for the file region [off, off + len] 4107 * in the pl array. If plsz is greater than len, this function may 4108 * also return page pointers from after the specified region 4109 * (i.e. the region [off, off + plsz]). These additional pages are 4110 * only returned if they are already in the cache, or were created as 4111 * part of a klustered read. 4112 * 4113 * IN: vp - vnode of file to get data from. 4114 * off - position in file to get data from. 4115 * len - amount of data to retrieve. 4116 * plsz - length of provided page list. 4117 * seg - segment to obtain pages for. 4118 * addr - virtual address of fault. 4119 * rw - mode of created pages. 4120 * cr - credentials of caller. 4121 * ct - caller context. 4122 * 4123 * OUT: protp - protection mode of created pages. 4124 * pl - list of pages created. 4125 * 4126 * RETURN: 0 if success 4127 * error code if failure 4128 * 4129 * Timestamps: 4130 * vp - atime updated 4131 */ 4132 /* ARGSUSED */ 4133 static int 4134 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4135 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4136 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4137 { 4138 znode_t *zp = VTOZ(vp); 4139 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4140 page_t **pl0 = pl; 4141 int err = 0; 4142 4143 /* we do our own caching, faultahead is unnecessary */ 4144 if (pl == NULL) 4145 return (0); 4146 else if (len > plsz) 4147 len = plsz; 4148 else 4149 len = P2ROUNDUP(len, PAGESIZE); 4150 ASSERT(plsz >= len); 4151 4152 ZFS_ENTER(zfsvfs); 4153 ZFS_VERIFY_ZP(zp); 4154 4155 if (protp) 4156 *protp = PROT_ALL; 4157 4158 /* 4159 * Loop through the requested range [off, off + len) looking 4160 * for pages. If we don't find a page, we will need to create 4161 * a new page and fill it with data from the file. 4162 */ 4163 while (len > 0) { 4164 if (*pl = page_lookup(vp, off, SE_SHARED)) 4165 *(pl+1) = NULL; 4166 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4167 goto out; 4168 while (*pl) { 4169 ASSERT3U((*pl)->p_offset, ==, off); 4170 off += PAGESIZE; 4171 addr += PAGESIZE; 4172 if (len > 0) { 4173 ASSERT3U(len, >=, PAGESIZE); 4174 len -= PAGESIZE; 4175 } 4176 ASSERT3U(plsz, >=, PAGESIZE); 4177 plsz -= PAGESIZE; 4178 pl++; 4179 } 4180 } 4181 4182 /* 4183 * Fill out the page array with any pages already in the cache. 4184 */ 4185 while (plsz > 0 && 4186 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4187 off += PAGESIZE; 4188 plsz -= PAGESIZE; 4189 } 4190 out: 4191 if (err) { 4192 /* 4193 * Release any pages we have previously locked. 4194 */ 4195 while (pl > pl0) 4196 page_unlock(*--pl); 4197 } else { 4198 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4199 } 4200 4201 *pl = NULL; 4202 4203 ZFS_EXIT(zfsvfs); 4204 return (err); 4205 } 4206 4207 /* 4208 * Request a memory map for a section of a file. This code interacts 4209 * with common code and the VM system as follows: 4210 * 4211 * common code calls mmap(), which ends up in smmap_common() 4212 * 4213 * this calls VOP_MAP(), which takes you into (say) zfs 4214 * 4215 * zfs_map() calls as_map(), passing segvn_create() as the callback 4216 * 4217 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4218 * 4219 * zfs_addmap() updates z_mapcnt 4220 */ 4221 /*ARGSUSED*/ 4222 static int 4223 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4224 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4225 caller_context_t *ct) 4226 { 4227 znode_t *zp = VTOZ(vp); 4228 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4229 segvn_crargs_t vn_a; 4230 int error; 4231 4232 ZFS_ENTER(zfsvfs); 4233 ZFS_VERIFY_ZP(zp); 4234 4235 if ((prot & PROT_WRITE) && 4236 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4237 ZFS_APPENDONLY))) { 4238 ZFS_EXIT(zfsvfs); 4239 return (EPERM); 4240 } 4241 4242 if ((prot & (PROT_READ | PROT_EXEC)) && 4243 (zp->z_phys->zp_flags & ZFS_AV_QUARANTINED)) { 4244 ZFS_EXIT(zfsvfs); 4245 return (EACCES); 4246 } 4247 4248 if (vp->v_flag & VNOMAP) { 4249 ZFS_EXIT(zfsvfs); 4250 return (ENOSYS); 4251 } 4252 4253 if (off < 0 || len > MAXOFFSET_T - off) { 4254 ZFS_EXIT(zfsvfs); 4255 return (ENXIO); 4256 } 4257 4258 if (vp->v_type != VREG) { 4259 ZFS_EXIT(zfsvfs); 4260 return (ENODEV); 4261 } 4262 4263 /* 4264 * If file is locked, disallow mapping. 4265 */ 4266 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4267 ZFS_EXIT(zfsvfs); 4268 return (EAGAIN); 4269 } 4270 4271 as_rangelock(as); 4272 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4273 if (error != 0) { 4274 as_rangeunlock(as); 4275 ZFS_EXIT(zfsvfs); 4276 return (error); 4277 } 4278 4279 vn_a.vp = vp; 4280 vn_a.offset = (u_offset_t)off; 4281 vn_a.type = flags & MAP_TYPE; 4282 vn_a.prot = prot; 4283 vn_a.maxprot = maxprot; 4284 vn_a.cred = cr; 4285 vn_a.amp = NULL; 4286 vn_a.flags = flags & ~MAP_TYPE; 4287 vn_a.szc = 0; 4288 vn_a.lgrp_mem_policy_flags = 0; 4289 4290 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4291 4292 as_rangeunlock(as); 4293 ZFS_EXIT(zfsvfs); 4294 return (error); 4295 } 4296 4297 /* ARGSUSED */ 4298 static int 4299 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4300 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4301 caller_context_t *ct) 4302 { 4303 uint64_t pages = btopr(len); 4304 4305 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4306 return (0); 4307 } 4308 4309 /* 4310 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4311 * more accurate mtime for the associated file. Since we don't have a way of 4312 * detecting when the data was actually modified, we have to resort to 4313 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4314 * last page is pushed. The problem occurs when the msync() call is omitted, 4315 * which by far the most common case: 4316 * 4317 * open() 4318 * mmap() 4319 * <modify memory> 4320 * munmap() 4321 * close() 4322 * <time lapse> 4323 * putpage() via fsflush 4324 * 4325 * If we wait until fsflush to come along, we can have a modification time that 4326 * is some arbitrary point in the future. In order to prevent this in the 4327 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4328 * torn down. 4329 */ 4330 /* ARGSUSED */ 4331 static int 4332 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4333 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4334 caller_context_t *ct) 4335 { 4336 uint64_t pages = btopr(len); 4337 4338 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4339 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4340 4341 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4342 vn_has_cached_data(vp)) 4343 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4344 4345 return (0); 4346 } 4347 4348 /* 4349 * Free or allocate space in a file. Currently, this function only 4350 * supports the `F_FREESP' command. However, this command is somewhat 4351 * misnamed, as its functionality includes the ability to allocate as 4352 * well as free space. 4353 * 4354 * IN: vp - vnode of file to free data in. 4355 * cmd - action to take (only F_FREESP supported). 4356 * bfp - section of file to free/alloc. 4357 * flag - current file open mode flags. 4358 * offset - current file offset. 4359 * cr - credentials of caller [UNUSED]. 4360 * ct - caller context. 4361 * 4362 * RETURN: 0 if success 4363 * error code if failure 4364 * 4365 * Timestamps: 4366 * vp - ctime|mtime updated 4367 */ 4368 /* ARGSUSED */ 4369 static int 4370 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4371 offset_t offset, cred_t *cr, caller_context_t *ct) 4372 { 4373 znode_t *zp = VTOZ(vp); 4374 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4375 uint64_t off, len; 4376 int error; 4377 4378 ZFS_ENTER(zfsvfs); 4379 ZFS_VERIFY_ZP(zp); 4380 4381 if (cmd != F_FREESP) { 4382 ZFS_EXIT(zfsvfs); 4383 return (EINVAL); 4384 } 4385 4386 if (error = convoff(vp, bfp, 0, offset)) { 4387 ZFS_EXIT(zfsvfs); 4388 return (error); 4389 } 4390 4391 if (bfp->l_len < 0) { 4392 ZFS_EXIT(zfsvfs); 4393 return (EINVAL); 4394 } 4395 4396 off = bfp->l_start; 4397 len = bfp->l_len; /* 0 means from off to end of file */ 4398 4399 error = zfs_freesp(zp, off, len, flag, TRUE); 4400 4401 ZFS_EXIT(zfsvfs); 4402 return (error); 4403 } 4404 4405 /*ARGSUSED*/ 4406 static int 4407 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4408 { 4409 znode_t *zp = VTOZ(vp); 4410 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4411 uint32_t gen; 4412 uint64_t object = zp->z_id; 4413 zfid_short_t *zfid; 4414 int size, i; 4415 4416 ZFS_ENTER(zfsvfs); 4417 ZFS_VERIFY_ZP(zp); 4418 gen = (uint32_t)zp->z_gen; 4419 4420 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4421 if (fidp->fid_len < size) { 4422 fidp->fid_len = size; 4423 ZFS_EXIT(zfsvfs); 4424 return (ENOSPC); 4425 } 4426 4427 zfid = (zfid_short_t *)fidp; 4428 4429 zfid->zf_len = size; 4430 4431 for (i = 0; i < sizeof (zfid->zf_object); i++) 4432 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4433 4434 /* Must have a non-zero generation number to distinguish from .zfs */ 4435 if (gen == 0) 4436 gen = 1; 4437 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4438 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4439 4440 if (size == LONG_FID_LEN) { 4441 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4442 zfid_long_t *zlfid; 4443 4444 zlfid = (zfid_long_t *)fidp; 4445 4446 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4447 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4448 4449 /* XXX - this should be the generation number for the objset */ 4450 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4451 zlfid->zf_setgen[i] = 0; 4452 } 4453 4454 ZFS_EXIT(zfsvfs); 4455 return (0); 4456 } 4457 4458 static int 4459 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4460 caller_context_t *ct) 4461 { 4462 znode_t *zp, *xzp; 4463 zfsvfs_t *zfsvfs; 4464 zfs_dirlock_t *dl; 4465 int error; 4466 4467 switch (cmd) { 4468 case _PC_LINK_MAX: 4469 *valp = ULONG_MAX; 4470 return (0); 4471 4472 case _PC_FILESIZEBITS: 4473 *valp = 64; 4474 return (0); 4475 4476 case _PC_XATTR_EXISTS: 4477 zp = VTOZ(vp); 4478 zfsvfs = zp->z_zfsvfs; 4479 ZFS_ENTER(zfsvfs); 4480 ZFS_VERIFY_ZP(zp); 4481 *valp = 0; 4482 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4483 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4484 if (error == 0) { 4485 zfs_dirent_unlock(dl); 4486 if (!zfs_dirempty(xzp)) 4487 *valp = 1; 4488 VN_RELE(ZTOV(xzp)); 4489 } else if (error == ENOENT) { 4490 /* 4491 * If there aren't extended attributes, it's the 4492 * same as having zero of them. 4493 */ 4494 error = 0; 4495 } 4496 ZFS_EXIT(zfsvfs); 4497 return (error); 4498 4499 case _PC_SATTR_ENABLED: 4500 case _PC_SATTR_EXISTS: 4501 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4502 (vp->v_type == VREG || vp->v_type == VDIR); 4503 return (0); 4504 4505 case _PC_ACCESS_FILTERING: 4506 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4507 vp->v_type == VDIR; 4508 return (0); 4509 4510 case _PC_ACL_ENABLED: 4511 *valp = _ACL_ACE_ENABLED; 4512 return (0); 4513 4514 case _PC_MIN_HOLE_SIZE: 4515 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4516 return (0); 4517 4518 case _PC_TIMESTAMP_RESOLUTION: 4519 /* nanosecond timestamp resolution */ 4520 *valp = 1L; 4521 return (0); 4522 4523 default: 4524 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4525 } 4526 } 4527 4528 /*ARGSUSED*/ 4529 static int 4530 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4531 caller_context_t *ct) 4532 { 4533 znode_t *zp = VTOZ(vp); 4534 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4535 int error; 4536 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4537 4538 ZFS_ENTER(zfsvfs); 4539 ZFS_VERIFY_ZP(zp); 4540 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4541 ZFS_EXIT(zfsvfs); 4542 4543 return (error); 4544 } 4545 4546 /*ARGSUSED*/ 4547 static int 4548 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4549 caller_context_t *ct) 4550 { 4551 znode_t *zp = VTOZ(vp); 4552 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4553 int error; 4554 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4555 4556 ZFS_ENTER(zfsvfs); 4557 ZFS_VERIFY_ZP(zp); 4558 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4559 ZFS_EXIT(zfsvfs); 4560 return (error); 4561 } 4562 4563 /* 4564 * Predeclare these here so that the compiler assumes that 4565 * this is an "old style" function declaration that does 4566 * not include arguments => we won't get type mismatch errors 4567 * in the initializations that follow. 4568 */ 4569 static int zfs_inval(); 4570 static int zfs_isdir(); 4571 4572 static int 4573 zfs_inval() 4574 { 4575 return (EINVAL); 4576 } 4577 4578 static int 4579 zfs_isdir() 4580 { 4581 return (EISDIR); 4582 } 4583 /* 4584 * Directory vnode operations template 4585 */ 4586 vnodeops_t *zfs_dvnodeops; 4587 const fs_operation_def_t zfs_dvnodeops_template[] = { 4588 VOPNAME_OPEN, { .vop_open = zfs_open }, 4589 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4590 VOPNAME_READ, { .error = zfs_isdir }, 4591 VOPNAME_WRITE, { .error = zfs_isdir }, 4592 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4593 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4594 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4595 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4596 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4597 VOPNAME_CREATE, { .vop_create = zfs_create }, 4598 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4599 VOPNAME_LINK, { .vop_link = zfs_link }, 4600 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4601 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4602 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4603 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4604 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4605 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4606 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4607 VOPNAME_FID, { .vop_fid = zfs_fid }, 4608 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4609 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4610 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4611 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4612 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4613 NULL, NULL 4614 }; 4615 4616 /* 4617 * Regular file vnode operations template 4618 */ 4619 vnodeops_t *zfs_fvnodeops; 4620 const fs_operation_def_t zfs_fvnodeops_template[] = { 4621 VOPNAME_OPEN, { .vop_open = zfs_open }, 4622 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4623 VOPNAME_READ, { .vop_read = zfs_read }, 4624 VOPNAME_WRITE, { .vop_write = zfs_write }, 4625 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4626 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4627 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4628 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4629 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4630 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4631 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4632 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4633 VOPNAME_FID, { .vop_fid = zfs_fid }, 4634 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4635 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4636 VOPNAME_SPACE, { .vop_space = zfs_space }, 4637 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4638 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4639 VOPNAME_MAP, { .vop_map = zfs_map }, 4640 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4641 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4642 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4643 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4644 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4645 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4646 NULL, NULL 4647 }; 4648 4649 /* 4650 * Symbolic link vnode operations template 4651 */ 4652 vnodeops_t *zfs_symvnodeops; 4653 const fs_operation_def_t zfs_symvnodeops_template[] = { 4654 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4655 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4656 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4657 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4658 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4659 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4660 VOPNAME_FID, { .vop_fid = zfs_fid }, 4661 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4662 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4663 NULL, NULL 4664 }; 4665 4666 /* 4667 * special share hidden files vnode operations template 4668 */ 4669 vnodeops_t *zfs_sharevnodeops; 4670 const fs_operation_def_t zfs_sharevnodeops_template[] = { 4671 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4672 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4673 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4674 VOPNAME_FID, { .vop_fid = zfs_fid }, 4675 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4676 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4677 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4678 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4679 NULL, NULL 4680 }; 4681 4682 /* 4683 * Extended attribute directory vnode operations template 4684 * This template is identical to the directory vnodes 4685 * operation template except for restricted operations: 4686 * VOP_MKDIR() 4687 * VOP_SYMLINK() 4688 * Note that there are other restrictions embedded in: 4689 * zfs_create() - restrict type to VREG 4690 * zfs_link() - no links into/out of attribute space 4691 * zfs_rename() - no moves into/out of attribute space 4692 */ 4693 vnodeops_t *zfs_xdvnodeops; 4694 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4695 VOPNAME_OPEN, { .vop_open = zfs_open }, 4696 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4697 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4698 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4699 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4700 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4701 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4702 VOPNAME_CREATE, { .vop_create = zfs_create }, 4703 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4704 VOPNAME_LINK, { .vop_link = zfs_link }, 4705 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4706 VOPNAME_MKDIR, { .error = zfs_inval }, 4707 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4708 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4709 VOPNAME_SYMLINK, { .error = zfs_inval }, 4710 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4711 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4712 VOPNAME_FID, { .vop_fid = zfs_fid }, 4713 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4714 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4715 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4716 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4717 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4718 NULL, NULL 4719 }; 4720 4721 /* 4722 * Error vnode operations template 4723 */ 4724 vnodeops_t *zfs_evnodeops; 4725 const fs_operation_def_t zfs_evnodeops_template[] = { 4726 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4727 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4728 NULL, NULL 4729 }; 4730