1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* Portions Copyright 2007 Jeremy Teo */ 27 28 #pragma ident "%Z%%M% %I% %E% SMI" 29 30 #include <sys/types.h> 31 #include <sys/param.h> 32 #include <sys/time.h> 33 #include <sys/systm.h> 34 #include <sys/sysmacros.h> 35 #include <sys/resource.h> 36 #include <sys/vfs.h> 37 #include <sys/vfs_opreg.h> 38 #include <sys/vnode.h> 39 #include <sys/file.h> 40 #include <sys/stat.h> 41 #include <sys/kmem.h> 42 #include <sys/taskq.h> 43 #include <sys/uio.h> 44 #include <sys/vmsystm.h> 45 #include <sys/atomic.h> 46 #include <sys/vm.h> 47 #include <vm/seg_vn.h> 48 #include <vm/pvn.h> 49 #include <vm/as.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/spa.h> 61 #include <sys/txg.h> 62 #include <sys/dbuf.h> 63 #include <sys/zap.h> 64 #include <sys/dirent.h> 65 #include <sys/policy.h> 66 #include <sys/sunddi.h> 67 #include <sys/filio.h> 68 #include "fs/fs_subr.h" 69 #include <sys/zfs_ctldir.h> 70 #include <sys/zfs_fuid.h> 71 #include <sys/dnlc.h> 72 #include <sys/zfs_rlock.h> 73 #include <sys/extdirent.h> 74 #include <sys/kidmap.h> 75 #include <sys/cred_impl.h> 76 77 /* 78 * Programming rules. 79 * 80 * Each vnode op performs some logical unit of work. To do this, the ZPL must 81 * properly lock its in-core state, create a DMU transaction, do the work, 82 * record this work in the intent log (ZIL), commit the DMU transaction, 83 * and wait for the intent log to commit if it is a synchronous operation. 84 * Moreover, the vnode ops must work in both normal and log replay context. 85 * The ordering of events is important to avoid deadlocks and references 86 * to freed memory. The example below illustrates the following Big Rules: 87 * 88 * (1) A check must be made in each zfs thread for a mounted file system. 89 * This is done avoiding races using ZFS_ENTER(zfsvfs). 90 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 91 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 92 * can return EIO from the calling function. 93 * 94 * (2) VN_RELE() should always be the last thing except for zil_commit() 95 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 96 * First, if it's the last reference, the vnode/znode 97 * can be freed, so the zp may point to freed memory. Second, the last 98 * reference will call zfs_zinactive(), which may induce a lot of work -- 99 * pushing cached pages (which acquires range locks) and syncing out 100 * cached atime changes. Third, zfs_zinactive() may require a new tx, 101 * which could deadlock the system if you were already holding one. 102 * 103 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 104 * as they can span dmu_tx_assign() calls. 105 * 106 * (4) Always pass zfsvfs->z_assign as the second argument to dmu_tx_assign(). 107 * In normal operation, this will be TXG_NOWAIT. During ZIL replay, 108 * it will be a specific txg. Either way, dmu_tx_assign() never blocks. 109 * This is critical because we don't want to block while holding locks. 110 * Note, in particular, that if a lock is sometimes acquired before 111 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 112 * use a non-blocking assign can deadlock the system. The scenario: 113 * 114 * Thread A has grabbed a lock before calling dmu_tx_assign(). 115 * Thread B is in an already-assigned tx, and blocks for this lock. 116 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 117 * forever, because the previous txg can't quiesce until B's tx commits. 118 * 119 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 120 * then drop all locks, call dmu_tx_wait(), and try again. 121 * 122 * (5) If the operation succeeded, generate the intent log entry for it 123 * before dropping locks. This ensures that the ordering of events 124 * in the intent log matches the order in which they actually occurred. 125 * 126 * (6) At the end of each vnode op, the DMU tx must always commit, 127 * regardless of whether there were any errors. 128 * 129 * (7) After dropping all locks, invoke zil_commit(zilog, seq, foid) 130 * to ensure that synchronous semantics are provided when necessary. 131 * 132 * In general, this is how things should be ordered in each vnode op: 133 * 134 * ZFS_ENTER(zfsvfs); // exit if unmounted 135 * top: 136 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 137 * rw_enter(...); // grab any other locks you need 138 * tx = dmu_tx_create(...); // get DMU tx 139 * dmu_tx_hold_*(); // hold each object you might modify 140 * error = dmu_tx_assign(tx, zfsvfs->z_assign); // try to assign 141 * if (error) { 142 * rw_exit(...); // drop locks 143 * zfs_dirent_unlock(dl); // unlock directory entry 144 * VN_RELE(...); // release held vnodes 145 * if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 146 * dmu_tx_wait(tx); 147 * dmu_tx_abort(tx); 148 * goto top; 149 * } 150 * dmu_tx_abort(tx); // abort DMU tx 151 * ZFS_EXIT(zfsvfs); // finished in zfs 152 * return (error); // really out of space 153 * } 154 * error = do_real_work(); // do whatever this VOP does 155 * if (error == 0) 156 * zfs_log_*(...); // on success, make ZIL entry 157 * dmu_tx_commit(tx); // commit DMU tx -- error or not 158 * rw_exit(...); // drop locks 159 * zfs_dirent_unlock(dl); // unlock directory entry 160 * VN_RELE(...); // release held vnodes 161 * zil_commit(zilog, seq, foid); // synchronous when necessary 162 * ZFS_EXIT(zfsvfs); // finished in zfs 163 * return (error); // done, report error 164 */ 165 166 /* ARGSUSED */ 167 static int 168 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 169 { 170 znode_t *zp = VTOZ(*vpp); 171 172 if ((flag & FWRITE) && (zp->z_phys->zp_flags & ZFS_APPENDONLY) && 173 ((flag & FAPPEND) == 0)) { 174 return (EPERM); 175 } 176 177 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 178 ZTOV(zp)->v_type == VREG && 179 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 180 zp->z_phys->zp_size > 0) 181 if (fs_vscan(*vpp, cr, 0) != 0) 182 return (EACCES); 183 184 /* Keep a count of the synchronous opens in the znode */ 185 if (flag & (FSYNC | FDSYNC)) 186 atomic_inc_32(&zp->z_sync_cnt); 187 188 return (0); 189 } 190 191 /* ARGSUSED */ 192 static int 193 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 194 caller_context_t *ct) 195 { 196 znode_t *zp = VTOZ(vp); 197 198 /* Decrement the synchronous opens in the znode */ 199 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 200 atomic_dec_32(&zp->z_sync_cnt); 201 202 /* 203 * Clean up any locks held by this process on the vp. 204 */ 205 cleanlocks(vp, ddi_get_pid(), 0); 206 cleanshares(vp, ddi_get_pid()); 207 208 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 209 ZTOV(zp)->v_type == VREG && 210 !(zp->z_phys->zp_flags & ZFS_AV_QUARANTINED) && 211 zp->z_phys->zp_size > 0) 212 VERIFY(fs_vscan(vp, cr, 1) == 0); 213 214 return (0); 215 } 216 217 /* 218 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 219 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 220 */ 221 static int 222 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 223 { 224 znode_t *zp = VTOZ(vp); 225 uint64_t noff = (uint64_t)*off; /* new offset */ 226 uint64_t file_sz; 227 int error; 228 boolean_t hole; 229 230 file_sz = zp->z_phys->zp_size; 231 if (noff >= file_sz) { 232 return (ENXIO); 233 } 234 235 if (cmd == _FIO_SEEK_HOLE) 236 hole = B_TRUE; 237 else 238 hole = B_FALSE; 239 240 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 241 242 /* end of file? */ 243 if ((error == ESRCH) || (noff > file_sz)) { 244 /* 245 * Handle the virtual hole at the end of file. 246 */ 247 if (hole) { 248 *off = file_sz; 249 return (0); 250 } 251 return (ENXIO); 252 } 253 254 if (noff < *off) 255 return (error); 256 *off = noff; 257 return (error); 258 } 259 260 /* ARGSUSED */ 261 static int 262 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 263 int *rvalp, caller_context_t *ct) 264 { 265 offset_t off; 266 int error; 267 zfsvfs_t *zfsvfs; 268 znode_t *zp; 269 270 switch (com) { 271 case _FIOFFS: 272 return (zfs_sync(vp->v_vfsp, 0, cred)); 273 274 /* 275 * The following two ioctls are used by bfu. Faking out, 276 * necessary to avoid bfu errors. 277 */ 278 case _FIOGDIO: 279 case _FIOSDIO: 280 return (0); 281 282 case _FIO_SEEK_DATA: 283 case _FIO_SEEK_HOLE: 284 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 285 return (EFAULT); 286 287 zp = VTOZ(vp); 288 zfsvfs = zp->z_zfsvfs; 289 ZFS_ENTER(zfsvfs); 290 ZFS_VERIFY_ZP(zp); 291 292 /* offset parameter is in/out */ 293 error = zfs_holey(vp, com, &off); 294 ZFS_EXIT(zfsvfs); 295 if (error) 296 return (error); 297 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 298 return (EFAULT); 299 return (0); 300 } 301 return (ENOTTY); 302 } 303 304 /* 305 * When a file is memory mapped, we must keep the IO data synchronized 306 * between the DMU cache and the memory mapped pages. What this means: 307 * 308 * On Write: If we find a memory mapped page, we write to *both* 309 * the page and the dmu buffer. 310 * 311 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 312 * the file is memory mapped. 313 */ 314 static int 315 mappedwrite(vnode_t *vp, int nbytes, uio_t *uio, dmu_tx_t *tx) 316 { 317 znode_t *zp = VTOZ(vp); 318 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 319 int64_t start, off; 320 int len = nbytes; 321 int error = 0; 322 323 start = uio->uio_loffset; 324 off = start & PAGEOFFSET; 325 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 326 page_t *pp; 327 uint64_t bytes = MIN(PAGESIZE - off, len); 328 uint64_t woff = uio->uio_loffset; 329 330 /* 331 * We don't want a new page to "appear" in the middle of 332 * the file update (because it may not get the write 333 * update data), so we grab a lock to block 334 * zfs_getpage(). 335 */ 336 rw_enter(&zp->z_map_lock, RW_WRITER); 337 if (pp = page_lookup(vp, start, SE_SHARED)) { 338 caddr_t va; 339 340 rw_exit(&zp->z_map_lock); 341 va = ppmapin(pp, PROT_READ | PROT_WRITE, (caddr_t)-1L); 342 error = uiomove(va+off, bytes, UIO_WRITE, uio); 343 if (error == 0) { 344 dmu_write(zfsvfs->z_os, zp->z_id, 345 woff, bytes, va+off, tx); 346 } 347 ppmapout(va); 348 page_unlock(pp); 349 } else { 350 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 351 uio, bytes, tx); 352 rw_exit(&zp->z_map_lock); 353 } 354 len -= bytes; 355 off = 0; 356 if (error) 357 break; 358 } 359 return (error); 360 } 361 362 /* 363 * When a file is memory mapped, we must keep the IO data synchronized 364 * between the DMU cache and the memory mapped pages. What this means: 365 * 366 * On Read: We "read" preferentially from memory mapped pages, 367 * else we default from the dmu buffer. 368 * 369 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 370 * the file is memory mapped. 371 */ 372 static int 373 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 374 { 375 znode_t *zp = VTOZ(vp); 376 objset_t *os = zp->z_zfsvfs->z_os; 377 int64_t start, off; 378 int len = nbytes; 379 int error = 0; 380 381 start = uio->uio_loffset; 382 off = start & PAGEOFFSET; 383 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 384 page_t *pp; 385 uint64_t bytes = MIN(PAGESIZE - off, len); 386 387 if (pp = page_lookup(vp, start, SE_SHARED)) { 388 caddr_t va; 389 390 va = ppmapin(pp, PROT_READ, (caddr_t)-1L); 391 error = uiomove(va + off, bytes, UIO_READ, uio); 392 ppmapout(va); 393 page_unlock(pp); 394 } else { 395 error = dmu_read_uio(os, zp->z_id, uio, bytes); 396 } 397 len -= bytes; 398 off = 0; 399 if (error) 400 break; 401 } 402 return (error); 403 } 404 405 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 406 407 /* 408 * Read bytes from specified file into supplied buffer. 409 * 410 * IN: vp - vnode of file to be read from. 411 * uio - structure supplying read location, range info, 412 * and return buffer. 413 * ioflag - SYNC flags; used to provide FRSYNC semantics. 414 * cr - credentials of caller. 415 * ct - caller context 416 * 417 * OUT: uio - updated offset and range, buffer filled. 418 * 419 * RETURN: 0 if success 420 * error code if failure 421 * 422 * Side Effects: 423 * vp - atime updated if byte count > 0 424 */ 425 /* ARGSUSED */ 426 static int 427 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 428 { 429 znode_t *zp = VTOZ(vp); 430 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 431 objset_t *os; 432 ssize_t n, nbytes; 433 int error; 434 rl_t *rl; 435 436 ZFS_ENTER(zfsvfs); 437 ZFS_VERIFY_ZP(zp); 438 os = zfsvfs->z_os; 439 440 /* 441 * Validate file offset 442 */ 443 if (uio->uio_loffset < (offset_t)0) { 444 ZFS_EXIT(zfsvfs); 445 return (EINVAL); 446 } 447 448 /* 449 * Fasttrack empty reads 450 */ 451 if (uio->uio_resid == 0) { 452 ZFS_EXIT(zfsvfs); 453 return (0); 454 } 455 456 /* 457 * Check for mandatory locks 458 */ 459 if (MANDMODE((mode_t)zp->z_phys->zp_mode)) { 460 if (error = chklock(vp, FREAD, 461 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 462 ZFS_EXIT(zfsvfs); 463 return (error); 464 } 465 } 466 467 /* 468 * If we're in FRSYNC mode, sync out this znode before reading it. 469 */ 470 if (ioflag & FRSYNC) 471 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 472 473 /* 474 * Lock the range against changes. 475 */ 476 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 477 478 /* 479 * If we are reading past end-of-file we can skip 480 * to the end; but we might still need to set atime. 481 */ 482 if (uio->uio_loffset >= zp->z_phys->zp_size) { 483 error = 0; 484 goto out; 485 } 486 487 ASSERT(uio->uio_loffset < zp->z_phys->zp_size); 488 n = MIN(uio->uio_resid, zp->z_phys->zp_size - uio->uio_loffset); 489 490 while (n > 0) { 491 nbytes = MIN(n, zfs_read_chunk_size - 492 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 493 494 if (vn_has_cached_data(vp)) 495 error = mappedread(vp, nbytes, uio); 496 else 497 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 498 if (error) 499 break; 500 501 n -= nbytes; 502 } 503 504 out: 505 zfs_range_unlock(rl); 506 507 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 508 ZFS_EXIT(zfsvfs); 509 return (error); 510 } 511 512 /* 513 * Fault in the pages of the first n bytes specified by the uio structure. 514 * 1 byte in each page is touched and the uio struct is unmodified. 515 * Any error will exit this routine as this is only a best 516 * attempt to get the pages resident. This is a copy of ufs_trans_touch(). 517 */ 518 static void 519 zfs_prefault_write(ssize_t n, struct uio *uio) 520 { 521 struct iovec *iov; 522 ulong_t cnt, incr; 523 caddr_t p; 524 uint8_t tmp; 525 526 iov = uio->uio_iov; 527 528 while (n) { 529 cnt = MIN(iov->iov_len, n); 530 if (cnt == 0) { 531 /* empty iov entry */ 532 iov++; 533 continue; 534 } 535 n -= cnt; 536 /* 537 * touch each page in this segment. 538 */ 539 p = iov->iov_base; 540 while (cnt) { 541 switch (uio->uio_segflg) { 542 case UIO_USERSPACE: 543 case UIO_USERISPACE: 544 if (fuword8(p, &tmp)) 545 return; 546 break; 547 case UIO_SYSSPACE: 548 if (kcopy(p, &tmp, 1)) 549 return; 550 break; 551 } 552 incr = MIN(cnt, PAGESIZE); 553 p += incr; 554 cnt -= incr; 555 } 556 /* 557 * touch the last byte in case it straddles a page. 558 */ 559 p--; 560 switch (uio->uio_segflg) { 561 case UIO_USERSPACE: 562 case UIO_USERISPACE: 563 if (fuword8(p, &tmp)) 564 return; 565 break; 566 case UIO_SYSSPACE: 567 if (kcopy(p, &tmp, 1)) 568 return; 569 break; 570 } 571 iov++; 572 } 573 } 574 575 /* 576 * Write the bytes to a file. 577 * 578 * IN: vp - vnode of file to be written to. 579 * uio - structure supplying write location, range info, 580 * and data buffer. 581 * ioflag - FAPPEND flag set if in append mode. 582 * cr - credentials of caller. 583 * ct - caller context (NFS/CIFS fem monitor only) 584 * 585 * OUT: uio - updated offset and range. 586 * 587 * RETURN: 0 if success 588 * error code if failure 589 * 590 * Timestamps: 591 * vp - ctime|mtime updated if byte count > 0 592 */ 593 /* ARGSUSED */ 594 static int 595 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 596 { 597 znode_t *zp = VTOZ(vp); 598 rlim64_t limit = uio->uio_llimit; 599 ssize_t start_resid = uio->uio_resid; 600 ssize_t tx_bytes; 601 uint64_t end_size; 602 dmu_tx_t *tx; 603 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 604 zilog_t *zilog; 605 offset_t woff; 606 ssize_t n, nbytes; 607 rl_t *rl; 608 int max_blksz = zfsvfs->z_max_blksz; 609 uint64_t pflags = zp->z_phys->zp_flags; 610 int error; 611 612 /* 613 * If immutable or not appending then return EPERM 614 */ 615 if ((pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 616 ((pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 617 (uio->uio_loffset < zp->z_phys->zp_size))) 618 return (EPERM); 619 620 /* 621 * Fasttrack empty write 622 */ 623 n = start_resid; 624 if (n == 0) 625 return (0); 626 627 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 628 limit = MAXOFFSET_T; 629 630 ZFS_ENTER(zfsvfs); 631 ZFS_VERIFY_ZP(zp); 632 zilog = zfsvfs->z_log; 633 634 /* 635 * Pre-fault the pages to ensure slow (eg NFS) pages 636 * don't hold up txg. 637 */ 638 zfs_prefault_write(n, uio); 639 640 /* 641 * If in append mode, set the io offset pointer to eof. 642 */ 643 if (ioflag & FAPPEND) { 644 /* 645 * Range lock for a file append: 646 * The value for the start of range will be determined by 647 * zfs_range_lock() (to guarantee append semantics). 648 * If this write will cause the block size to increase, 649 * zfs_range_lock() will lock the entire file, so we must 650 * later reduce the range after we grow the block size. 651 */ 652 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 653 if (rl->r_len == UINT64_MAX) { 654 /* overlocked, zp_size can't change */ 655 woff = uio->uio_loffset = zp->z_phys->zp_size; 656 } else { 657 woff = uio->uio_loffset = rl->r_off; 658 } 659 } else { 660 woff = uio->uio_loffset; 661 /* 662 * Validate file offset 663 */ 664 if (woff < 0) { 665 ZFS_EXIT(zfsvfs); 666 return (EINVAL); 667 } 668 669 /* 670 * If we need to grow the block size then zfs_range_lock() 671 * will lock a wider range than we request here. 672 * Later after growing the block size we reduce the range. 673 */ 674 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 675 } 676 677 if (woff >= limit) { 678 zfs_range_unlock(rl); 679 ZFS_EXIT(zfsvfs); 680 return (EFBIG); 681 } 682 683 if ((woff + n) > limit || woff > (limit - n)) 684 n = limit - woff; 685 686 /* 687 * Check for mandatory locks 688 */ 689 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && 690 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 691 zfs_range_unlock(rl); 692 ZFS_EXIT(zfsvfs); 693 return (error); 694 } 695 end_size = MAX(zp->z_phys->zp_size, woff + n); 696 697 /* 698 * Write the file in reasonable size chunks. Each chunk is written 699 * in a separate transaction; this keeps the intent log records small 700 * and allows us to do more fine-grained space accounting. 701 */ 702 while (n > 0) { 703 /* 704 * Start a transaction. 705 */ 706 woff = uio->uio_loffset; 707 tx = dmu_tx_create(zfsvfs->z_os); 708 dmu_tx_hold_bonus(tx, zp->z_id); 709 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 710 error = dmu_tx_assign(tx, zfsvfs->z_assign); 711 if (error) { 712 if (error == ERESTART && 713 zfsvfs->z_assign == TXG_NOWAIT) { 714 dmu_tx_wait(tx); 715 dmu_tx_abort(tx); 716 continue; 717 } 718 dmu_tx_abort(tx); 719 break; 720 } 721 722 /* 723 * If zfs_range_lock() over-locked we grow the blocksize 724 * and then reduce the lock range. This will only happen 725 * on the first iteration since zfs_range_reduce() will 726 * shrink down r_len to the appropriate size. 727 */ 728 if (rl->r_len == UINT64_MAX) { 729 uint64_t new_blksz; 730 731 if (zp->z_blksz > max_blksz) { 732 ASSERT(!ISP2(zp->z_blksz)); 733 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 734 } else { 735 new_blksz = MIN(end_size, max_blksz); 736 } 737 zfs_grow_blocksize(zp, new_blksz, tx); 738 zfs_range_reduce(rl, woff, n); 739 } 740 741 /* 742 * XXX - should we really limit each write to z_max_blksz? 743 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 744 */ 745 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 746 rw_enter(&zp->z_map_lock, RW_READER); 747 748 tx_bytes = uio->uio_resid; 749 if (vn_has_cached_data(vp)) { 750 rw_exit(&zp->z_map_lock); 751 error = mappedwrite(vp, nbytes, uio, tx); 752 } else { 753 error = dmu_write_uio(zfsvfs->z_os, zp->z_id, 754 uio, nbytes, tx); 755 rw_exit(&zp->z_map_lock); 756 } 757 tx_bytes -= uio->uio_resid; 758 759 /* 760 * If we made no progress, we're done. If we made even 761 * partial progress, update the znode and ZIL accordingly. 762 */ 763 if (tx_bytes == 0) { 764 dmu_tx_commit(tx); 765 ASSERT(error != 0); 766 break; 767 } 768 769 /* 770 * Clear Set-UID/Set-GID bits on successful write if not 771 * privileged and at least one of the excute bits is set. 772 * 773 * It would be nice to to this after all writes have 774 * been done, but that would still expose the ISUID/ISGID 775 * to another app after the partial write is committed. 776 * 777 * Note: we don't call zfs_fuid_map_id() here because 778 * user 0 is not an ephemeral uid. 779 */ 780 mutex_enter(&zp->z_acl_lock); 781 if ((zp->z_phys->zp_mode & (S_IXUSR | (S_IXUSR >> 3) | 782 (S_IXUSR >> 6))) != 0 && 783 (zp->z_phys->zp_mode & (S_ISUID | S_ISGID)) != 0 && 784 secpolicy_vnode_setid_retain(cr, 785 (zp->z_phys->zp_mode & S_ISUID) != 0 && 786 zp->z_phys->zp_uid == 0) != 0) { 787 zp->z_phys->zp_mode &= ~(S_ISUID | S_ISGID); 788 } 789 mutex_exit(&zp->z_acl_lock); 790 791 /* 792 * Update time stamp. NOTE: This marks the bonus buffer as 793 * dirty, so we don't have to do it again for zp_size. 794 */ 795 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 796 797 /* 798 * Update the file size (zp_size) if it has changed; 799 * account for possible concurrent updates. 800 */ 801 while ((end_size = zp->z_phys->zp_size) < uio->uio_loffset) 802 (void) atomic_cas_64(&zp->z_phys->zp_size, end_size, 803 uio->uio_loffset); 804 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 805 dmu_tx_commit(tx); 806 807 if (error != 0) 808 break; 809 ASSERT(tx_bytes == nbytes); 810 n -= nbytes; 811 } 812 813 zfs_range_unlock(rl); 814 815 /* 816 * If we're in replay mode, or we made no progress, return error. 817 * Otherwise, it's at least a partial write, so it's successful. 818 */ 819 if (zfsvfs->z_assign >= TXG_INITIAL || uio->uio_resid == start_resid) { 820 ZFS_EXIT(zfsvfs); 821 return (error); 822 } 823 824 if (ioflag & (FSYNC | FDSYNC)) 825 zil_commit(zilog, zp->z_last_itx, zp->z_id); 826 827 ZFS_EXIT(zfsvfs); 828 return (0); 829 } 830 831 void 832 zfs_get_done(dmu_buf_t *db, void *vzgd) 833 { 834 zgd_t *zgd = (zgd_t *)vzgd; 835 rl_t *rl = zgd->zgd_rl; 836 vnode_t *vp = ZTOV(rl->r_zp); 837 838 dmu_buf_rele(db, vzgd); 839 zfs_range_unlock(rl); 840 VN_RELE(vp); 841 zil_add_vdev(zgd->zgd_zilog, DVA_GET_VDEV(BP_IDENTITY(zgd->zgd_bp))); 842 kmem_free(zgd, sizeof (zgd_t)); 843 } 844 845 /* 846 * Get data to generate a TX_WRITE intent log record. 847 */ 848 int 849 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 850 { 851 zfsvfs_t *zfsvfs = arg; 852 objset_t *os = zfsvfs->z_os; 853 znode_t *zp; 854 uint64_t off = lr->lr_offset; 855 dmu_buf_t *db; 856 rl_t *rl; 857 zgd_t *zgd; 858 int dlen = lr->lr_length; /* length of user data */ 859 int error = 0; 860 861 ASSERT(zio); 862 ASSERT(dlen != 0); 863 864 /* 865 * Nothing to do if the file has been removed 866 */ 867 if (zfs_zget(zfsvfs, lr->lr_foid, &zp) != 0) 868 return (ENOENT); 869 if (zp->z_unlinked) { 870 VN_RELE(ZTOV(zp)); 871 return (ENOENT); 872 } 873 874 /* 875 * Write records come in two flavors: immediate and indirect. 876 * For small writes it's cheaper to store the data with the 877 * log record (immediate); for large writes it's cheaper to 878 * sync the data and get a pointer to it (indirect) so that 879 * we don't have to write the data twice. 880 */ 881 if (buf != NULL) { /* immediate write */ 882 rl = zfs_range_lock(zp, off, dlen, RL_READER); 883 /* test for truncation needs to be done while range locked */ 884 if (off >= zp->z_phys->zp_size) { 885 error = ENOENT; 886 goto out; 887 } 888 VERIFY(0 == dmu_read(os, lr->lr_foid, off, dlen, buf)); 889 } else { /* indirect write */ 890 uint64_t boff; /* block starting offset */ 891 892 /* 893 * Have to lock the whole block to ensure when it's 894 * written out and it's checksum is being calculated 895 * that no one can change the data. We need to re-check 896 * blocksize after we get the lock in case it's changed! 897 */ 898 for (;;) { 899 if (ISP2(zp->z_blksz)) { 900 boff = P2ALIGN_TYPED(off, zp->z_blksz, 901 uint64_t); 902 } else { 903 boff = 0; 904 } 905 dlen = zp->z_blksz; 906 rl = zfs_range_lock(zp, boff, dlen, RL_READER); 907 if (zp->z_blksz == dlen) 908 break; 909 zfs_range_unlock(rl); 910 } 911 /* test for truncation needs to be done while range locked */ 912 if (off >= zp->z_phys->zp_size) { 913 error = ENOENT; 914 goto out; 915 } 916 zgd = (zgd_t *)kmem_alloc(sizeof (zgd_t), KM_SLEEP); 917 zgd->zgd_rl = rl; 918 zgd->zgd_zilog = zfsvfs->z_log; 919 zgd->zgd_bp = &lr->lr_blkptr; 920 VERIFY(0 == dmu_buf_hold(os, lr->lr_foid, boff, zgd, &db)); 921 ASSERT(boff == db->db_offset); 922 lr->lr_blkoff = off - boff; 923 error = dmu_sync(zio, db, &lr->lr_blkptr, 924 lr->lr_common.lrc_txg, zfs_get_done, zgd); 925 ASSERT((error && error != EINPROGRESS) || 926 lr->lr_length <= zp->z_blksz); 927 if (error == 0) { 928 zil_add_vdev(zfsvfs->z_log, 929 DVA_GET_VDEV(BP_IDENTITY(&lr->lr_blkptr))); 930 } 931 /* 932 * If we get EINPROGRESS, then we need to wait for a 933 * write IO initiated by dmu_sync() to complete before 934 * we can release this dbuf. We will finish everything 935 * up in the zfs_get_done() callback. 936 */ 937 if (error == EINPROGRESS) 938 return (0); 939 dmu_buf_rele(db, zgd); 940 kmem_free(zgd, sizeof (zgd_t)); 941 } 942 out: 943 zfs_range_unlock(rl); 944 VN_RELE(ZTOV(zp)); 945 return (error); 946 } 947 948 /*ARGSUSED*/ 949 static int 950 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 951 caller_context_t *ct) 952 { 953 znode_t *zp = VTOZ(vp); 954 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 955 int error; 956 957 ZFS_ENTER(zfsvfs); 958 ZFS_VERIFY_ZP(zp); 959 960 if (flag & V_ACE_MASK) 961 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 962 else 963 error = zfs_zaccess_rwx(zp, mode, flag, cr); 964 965 ZFS_EXIT(zfsvfs); 966 return (error); 967 } 968 969 /* 970 * Lookup an entry in a directory, or an extended attribute directory. 971 * If it exists, return a held vnode reference for it. 972 * 973 * IN: dvp - vnode of directory to search. 974 * nm - name of entry to lookup. 975 * pnp - full pathname to lookup [UNUSED]. 976 * flags - LOOKUP_XATTR set if looking for an attribute. 977 * rdir - root directory vnode [UNUSED]. 978 * cr - credentials of caller. 979 * ct - caller context 980 * direntflags - directory lookup flags 981 * realpnp - returned pathname. 982 * 983 * OUT: vpp - vnode of located entry, NULL if not found. 984 * 985 * RETURN: 0 if success 986 * error code if failure 987 * 988 * Timestamps: 989 * NA 990 */ 991 /* ARGSUSED */ 992 static int 993 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 994 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 995 int *direntflags, pathname_t *realpnp) 996 { 997 znode_t *zdp = VTOZ(dvp); 998 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 999 int error; 1000 1001 ZFS_ENTER(zfsvfs); 1002 ZFS_VERIFY_ZP(zdp); 1003 1004 *vpp = NULL; 1005 1006 if (flags & LOOKUP_XATTR) { 1007 /* 1008 * If the xattr property is off, refuse the lookup request. 1009 */ 1010 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1011 ZFS_EXIT(zfsvfs); 1012 return (EINVAL); 1013 } 1014 1015 /* 1016 * We don't allow recursive attributes.. 1017 * Maybe someday we will. 1018 */ 1019 if (zdp->z_phys->zp_flags & ZFS_XATTR) { 1020 ZFS_EXIT(zfsvfs); 1021 return (EINVAL); 1022 } 1023 1024 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1025 ZFS_EXIT(zfsvfs); 1026 return (error); 1027 } 1028 1029 /* 1030 * Do we have permission to get into attribute directory? 1031 */ 1032 1033 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1034 B_FALSE, cr)) { 1035 VN_RELE(*vpp); 1036 *vpp = NULL; 1037 } 1038 1039 ZFS_EXIT(zfsvfs); 1040 return (error); 1041 } 1042 1043 if (dvp->v_type != VDIR) { 1044 ZFS_EXIT(zfsvfs); 1045 return (ENOTDIR); 1046 } 1047 1048 /* 1049 * Check accessibility of directory. 1050 */ 1051 1052 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1053 ZFS_EXIT(zfsvfs); 1054 return (error); 1055 } 1056 1057 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1058 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1059 ZFS_EXIT(zfsvfs); 1060 return (EILSEQ); 1061 } 1062 1063 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1064 if (error == 0) { 1065 /* 1066 * Convert device special files 1067 */ 1068 if (IS_DEVVP(*vpp)) { 1069 vnode_t *svp; 1070 1071 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1072 VN_RELE(*vpp); 1073 if (svp == NULL) 1074 error = ENOSYS; 1075 else 1076 *vpp = svp; 1077 } 1078 } 1079 1080 ZFS_EXIT(zfsvfs); 1081 return (error); 1082 } 1083 1084 /* 1085 * Attempt to create a new entry in a directory. If the entry 1086 * already exists, truncate the file if permissible, else return 1087 * an error. Return the vp of the created or trunc'd file. 1088 * 1089 * IN: dvp - vnode of directory to put new file entry in. 1090 * name - name of new file entry. 1091 * vap - attributes of new file. 1092 * excl - flag indicating exclusive or non-exclusive mode. 1093 * mode - mode to open file with. 1094 * cr - credentials of caller. 1095 * flag - large file flag [UNUSED]. 1096 * ct - caller context 1097 * vsecp - ACL to be set 1098 * 1099 * OUT: vpp - vnode of created or trunc'd entry. 1100 * 1101 * RETURN: 0 if success 1102 * error code if failure 1103 * 1104 * Timestamps: 1105 * dvp - ctime|mtime updated if new entry created 1106 * vp - ctime|mtime always, atime if new 1107 */ 1108 1109 /* ARGSUSED */ 1110 static int 1111 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1112 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1113 vsecattr_t *vsecp) 1114 { 1115 znode_t *zp, *dzp = VTOZ(dvp); 1116 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1117 zilog_t *zilog; 1118 objset_t *os; 1119 zfs_dirlock_t *dl; 1120 dmu_tx_t *tx; 1121 int error; 1122 zfs_acl_t *aclp = NULL; 1123 zfs_fuid_info_t *fuidp = NULL; 1124 1125 /* 1126 * If we have an ephemeral id, ACL, or XVATTR then 1127 * make sure file system is at proper version 1128 */ 1129 1130 if (zfsvfs->z_use_fuids == B_FALSE && 1131 (vsecp || (vap->va_mask & AT_XVATTR) || 1132 IS_EPHEMERAL(crgetuid(cr)) || IS_EPHEMERAL(crgetgid(cr)))) 1133 return (EINVAL); 1134 1135 ZFS_ENTER(zfsvfs); 1136 ZFS_VERIFY_ZP(dzp); 1137 os = zfsvfs->z_os; 1138 zilog = zfsvfs->z_log; 1139 1140 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1141 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1142 ZFS_EXIT(zfsvfs); 1143 return (EILSEQ); 1144 } 1145 1146 if (vap->va_mask & AT_XVATTR) { 1147 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1148 crgetuid(cr), cr, vap->va_type)) != 0) { 1149 ZFS_EXIT(zfsvfs); 1150 return (error); 1151 } 1152 } 1153 top: 1154 *vpp = NULL; 1155 1156 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1157 vap->va_mode &= ~VSVTX; 1158 1159 if (*name == '\0') { 1160 /* 1161 * Null component name refers to the directory itself. 1162 */ 1163 VN_HOLD(dvp); 1164 zp = dzp; 1165 dl = NULL; 1166 error = 0; 1167 } else { 1168 /* possible VN_HOLD(zp) */ 1169 int zflg = 0; 1170 1171 if (flag & FIGNORECASE) 1172 zflg |= ZCILOOK; 1173 1174 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1175 NULL, NULL); 1176 if (error) { 1177 if (strcmp(name, "..") == 0) 1178 error = EISDIR; 1179 ZFS_EXIT(zfsvfs); 1180 if (aclp) 1181 zfs_acl_free(aclp); 1182 return (error); 1183 } 1184 } 1185 if (vsecp && aclp == NULL) { 1186 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1187 if (error) { 1188 ZFS_EXIT(zfsvfs); 1189 if (dl) 1190 zfs_dirent_unlock(dl); 1191 return (error); 1192 } 1193 } 1194 1195 if (zp == NULL) { 1196 uint64_t txtype; 1197 1198 /* 1199 * Create a new file object and update the directory 1200 * to reference it. 1201 */ 1202 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1203 goto out; 1204 } 1205 1206 /* 1207 * We only support the creation of regular files in 1208 * extended attribute directories. 1209 */ 1210 if ((dzp->z_phys->zp_flags & ZFS_XATTR) && 1211 (vap->va_type != VREG)) { 1212 error = EINVAL; 1213 goto out; 1214 } 1215 1216 tx = dmu_tx_create(os); 1217 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1218 if (zfsvfs->z_fuid_obj == 0) { 1219 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1220 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1221 SPA_MAXBLOCKSIZE); 1222 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1223 } else { 1224 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1225 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1226 SPA_MAXBLOCKSIZE); 1227 } 1228 dmu_tx_hold_bonus(tx, dzp->z_id); 1229 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1230 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) { 1231 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1232 0, SPA_MAXBLOCKSIZE); 1233 } 1234 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1235 if (error) { 1236 zfs_dirent_unlock(dl); 1237 if (error == ERESTART && 1238 zfsvfs->z_assign == TXG_NOWAIT) { 1239 dmu_tx_wait(tx); 1240 dmu_tx_abort(tx); 1241 goto top; 1242 } 1243 dmu_tx_abort(tx); 1244 ZFS_EXIT(zfsvfs); 1245 if (aclp) 1246 zfs_acl_free(aclp); 1247 return (error); 1248 } 1249 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1250 (void) zfs_link_create(dl, zp, tx, ZNEW); 1251 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1252 if (flag & FIGNORECASE) 1253 txtype |= TX_CI; 1254 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1255 vsecp, fuidp, vap); 1256 if (fuidp) 1257 zfs_fuid_info_free(fuidp); 1258 dmu_tx_commit(tx); 1259 } else { 1260 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1261 1262 /* 1263 * A directory entry already exists for this name. 1264 */ 1265 /* 1266 * Can't truncate an existing file if in exclusive mode. 1267 */ 1268 if (excl == EXCL) { 1269 error = EEXIST; 1270 goto out; 1271 } 1272 /* 1273 * Can't open a directory for writing. 1274 */ 1275 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1276 error = EISDIR; 1277 goto out; 1278 } 1279 /* 1280 * Verify requested access to file. 1281 */ 1282 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1283 goto out; 1284 } 1285 1286 mutex_enter(&dzp->z_lock); 1287 dzp->z_seq++; 1288 mutex_exit(&dzp->z_lock); 1289 1290 /* 1291 * Truncate regular files if requested. 1292 */ 1293 if ((ZTOV(zp)->v_type == VREG) && 1294 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1295 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1296 if (error == ERESTART && 1297 zfsvfs->z_assign == TXG_NOWAIT) { 1298 /* NB: we already did dmu_tx_wait() */ 1299 zfs_dirent_unlock(dl); 1300 VN_RELE(ZTOV(zp)); 1301 goto top; 1302 } 1303 1304 if (error == 0) { 1305 vnevent_create(ZTOV(zp), ct); 1306 } 1307 } 1308 } 1309 out: 1310 1311 if (dl) 1312 zfs_dirent_unlock(dl); 1313 1314 if (error) { 1315 if (zp) 1316 VN_RELE(ZTOV(zp)); 1317 } else { 1318 *vpp = ZTOV(zp); 1319 /* 1320 * If vnode is for a device return a specfs vnode instead. 1321 */ 1322 if (IS_DEVVP(*vpp)) { 1323 struct vnode *svp; 1324 1325 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1326 VN_RELE(*vpp); 1327 if (svp == NULL) { 1328 error = ENOSYS; 1329 } 1330 *vpp = svp; 1331 } 1332 } 1333 if (aclp) 1334 zfs_acl_free(aclp); 1335 1336 ZFS_EXIT(zfsvfs); 1337 return (error); 1338 } 1339 1340 /* 1341 * Remove an entry from a directory. 1342 * 1343 * IN: dvp - vnode of directory to remove entry from. 1344 * name - name of entry to remove. 1345 * cr - credentials of caller. 1346 * ct - caller context 1347 * flags - case flags 1348 * 1349 * RETURN: 0 if success 1350 * error code if failure 1351 * 1352 * Timestamps: 1353 * dvp - ctime|mtime 1354 * vp - ctime (if nlink > 0) 1355 */ 1356 /*ARGSUSED*/ 1357 static int 1358 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1359 int flags) 1360 { 1361 znode_t *zp, *dzp = VTOZ(dvp); 1362 znode_t *xzp = NULL; 1363 vnode_t *vp; 1364 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1365 zilog_t *zilog; 1366 uint64_t acl_obj, xattr_obj; 1367 zfs_dirlock_t *dl; 1368 dmu_tx_t *tx; 1369 boolean_t may_delete_now, delete_now = FALSE; 1370 boolean_t unlinked; 1371 uint64_t txtype; 1372 pathname_t *realnmp = NULL; 1373 pathname_t realnm; 1374 int error; 1375 int zflg = ZEXISTS; 1376 1377 ZFS_ENTER(zfsvfs); 1378 ZFS_VERIFY_ZP(dzp); 1379 zilog = zfsvfs->z_log; 1380 1381 if (flags & FIGNORECASE) { 1382 zflg |= ZCILOOK; 1383 pn_alloc(&realnm); 1384 realnmp = &realnm; 1385 } 1386 1387 top: 1388 /* 1389 * Attempt to lock directory; fail if entry doesn't exist. 1390 */ 1391 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1392 NULL, realnmp)) { 1393 if (realnmp) 1394 pn_free(realnmp); 1395 ZFS_EXIT(zfsvfs); 1396 return (error); 1397 } 1398 1399 vp = ZTOV(zp); 1400 1401 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1402 goto out; 1403 } 1404 1405 /* 1406 * Need to use rmdir for removing directories. 1407 */ 1408 if (vp->v_type == VDIR) { 1409 error = EPERM; 1410 goto out; 1411 } 1412 1413 vnevent_remove(vp, dvp, name, ct); 1414 1415 if (realnmp) 1416 dnlc_remove(dvp, realnmp->pn_path); 1417 else 1418 dnlc_remove(dvp, name); 1419 1420 mutex_enter(&vp->v_lock); 1421 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1422 mutex_exit(&vp->v_lock); 1423 1424 /* 1425 * We may delete the znode now, or we may put it in the unlinked set; 1426 * it depends on whether we're the last link, and on whether there are 1427 * other holds on the vnode. So we dmu_tx_hold() the right things to 1428 * allow for either case. 1429 */ 1430 tx = dmu_tx_create(zfsvfs->z_os); 1431 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1432 dmu_tx_hold_bonus(tx, zp->z_id); 1433 if (may_delete_now) 1434 dmu_tx_hold_free(tx, zp->z_id, 0, DMU_OBJECT_END); 1435 1436 /* are there any extended attributes? */ 1437 if ((xattr_obj = zp->z_phys->zp_xattr) != 0) { 1438 /* XXX - do we need this if we are deleting? */ 1439 dmu_tx_hold_bonus(tx, xattr_obj); 1440 } 1441 1442 /* are there any additional acls */ 1443 if ((acl_obj = zp->z_phys->zp_acl.z_acl_extern_obj) != 0 && 1444 may_delete_now) 1445 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1446 1447 /* charge as an update -- would be nice not to charge at all */ 1448 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1449 1450 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1451 if (error) { 1452 zfs_dirent_unlock(dl); 1453 VN_RELE(vp); 1454 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1455 dmu_tx_wait(tx); 1456 dmu_tx_abort(tx); 1457 goto top; 1458 } 1459 if (realnmp) 1460 pn_free(realnmp); 1461 dmu_tx_abort(tx); 1462 ZFS_EXIT(zfsvfs); 1463 return (error); 1464 } 1465 1466 /* 1467 * Remove the directory entry. 1468 */ 1469 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1470 1471 if (error) { 1472 dmu_tx_commit(tx); 1473 goto out; 1474 } 1475 1476 if (unlinked) { 1477 mutex_enter(&vp->v_lock); 1478 delete_now = may_delete_now && 1479 vp->v_count == 1 && !vn_has_cached_data(vp) && 1480 zp->z_phys->zp_xattr == xattr_obj && 1481 zp->z_phys->zp_acl.z_acl_extern_obj == acl_obj; 1482 mutex_exit(&vp->v_lock); 1483 } 1484 1485 if (delete_now) { 1486 if (zp->z_phys->zp_xattr) { 1487 error = zfs_zget(zfsvfs, zp->z_phys->zp_xattr, &xzp); 1488 ASSERT3U(error, ==, 0); 1489 ASSERT3U(xzp->z_phys->zp_links, ==, 2); 1490 dmu_buf_will_dirty(xzp->z_dbuf, tx); 1491 mutex_enter(&xzp->z_lock); 1492 xzp->z_unlinked = 1; 1493 xzp->z_phys->zp_links = 0; 1494 mutex_exit(&xzp->z_lock); 1495 zfs_unlinked_add(xzp, tx); 1496 zp->z_phys->zp_xattr = 0; /* probably unnecessary */ 1497 } 1498 mutex_enter(&zp->z_lock); 1499 mutex_enter(&vp->v_lock); 1500 vp->v_count--; 1501 ASSERT3U(vp->v_count, ==, 0); 1502 mutex_exit(&vp->v_lock); 1503 mutex_exit(&zp->z_lock); 1504 zfs_znode_delete(zp, tx); 1505 VFS_RELE(zfsvfs->z_vfs); 1506 } else if (unlinked) { 1507 zfs_unlinked_add(zp, tx); 1508 } 1509 1510 txtype = TX_REMOVE; 1511 if (flags & FIGNORECASE) 1512 txtype |= TX_CI; 1513 zfs_log_remove(zilog, tx, txtype, dzp, name); 1514 1515 dmu_tx_commit(tx); 1516 out: 1517 if (realnmp) 1518 pn_free(realnmp); 1519 1520 zfs_dirent_unlock(dl); 1521 1522 if (!delete_now) { 1523 VN_RELE(vp); 1524 } else if (xzp) { 1525 /* this rele delayed to prevent nesting transactions */ 1526 VN_RELE(ZTOV(xzp)); 1527 } 1528 1529 ZFS_EXIT(zfsvfs); 1530 return (error); 1531 } 1532 1533 /* 1534 * Create a new directory and insert it into dvp using the name 1535 * provided. Return a pointer to the inserted directory. 1536 * 1537 * IN: dvp - vnode of directory to add subdir to. 1538 * dirname - name of new directory. 1539 * vap - attributes of new directory. 1540 * cr - credentials of caller. 1541 * ct - caller context 1542 * vsecp - ACL to be set 1543 * 1544 * OUT: vpp - vnode of created directory. 1545 * 1546 * RETURN: 0 if success 1547 * error code if failure 1548 * 1549 * Timestamps: 1550 * dvp - ctime|mtime updated 1551 * vp - ctime|mtime|atime updated 1552 */ 1553 /*ARGSUSED*/ 1554 static int 1555 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1556 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1557 { 1558 znode_t *zp, *dzp = VTOZ(dvp); 1559 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1560 zilog_t *zilog; 1561 zfs_dirlock_t *dl; 1562 uint64_t txtype; 1563 dmu_tx_t *tx; 1564 int error; 1565 zfs_acl_t *aclp = NULL; 1566 zfs_fuid_info_t *fuidp = NULL; 1567 int zf = ZNEW; 1568 1569 ASSERT(vap->va_type == VDIR); 1570 1571 /* 1572 * If we have an ephemeral id, ACL, or XVATTR then 1573 * make sure file system is at proper version 1574 */ 1575 1576 if (zfsvfs->z_use_fuids == B_FALSE && 1577 (vsecp || (vap->va_mask & AT_XVATTR) || IS_EPHEMERAL(crgetuid(cr))|| 1578 IS_EPHEMERAL(crgetgid(cr)))) 1579 return (EINVAL); 1580 1581 ZFS_ENTER(zfsvfs); 1582 ZFS_VERIFY_ZP(dzp); 1583 zilog = zfsvfs->z_log; 1584 1585 if (dzp->z_phys->zp_flags & ZFS_XATTR) { 1586 ZFS_EXIT(zfsvfs); 1587 return (EINVAL); 1588 } 1589 1590 if (zfsvfs->z_utf8 && u8_validate(dirname, 1591 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1592 ZFS_EXIT(zfsvfs); 1593 return (EILSEQ); 1594 } 1595 if (flags & FIGNORECASE) 1596 zf |= ZCILOOK; 1597 1598 if (vap->va_mask & AT_XVATTR) 1599 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1600 crgetuid(cr), cr, vap->va_type)) != 0) { 1601 ZFS_EXIT(zfsvfs); 1602 return (error); 1603 } 1604 1605 /* 1606 * First make sure the new directory doesn't exist. 1607 */ 1608 top: 1609 *vpp = NULL; 1610 1611 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1612 NULL, NULL)) { 1613 ZFS_EXIT(zfsvfs); 1614 return (error); 1615 } 1616 1617 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1618 zfs_dirent_unlock(dl); 1619 ZFS_EXIT(zfsvfs); 1620 return (error); 1621 } 1622 1623 if (vsecp && aclp == NULL) { 1624 error = zfs_vsec_2_aclp(zfsvfs, vap->va_type, vsecp, &aclp); 1625 if (error) { 1626 zfs_dirent_unlock(dl); 1627 ZFS_EXIT(zfsvfs); 1628 return (error); 1629 } 1630 } 1631 /* 1632 * Add a new entry to the directory. 1633 */ 1634 tx = dmu_tx_create(zfsvfs->z_os); 1635 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1636 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1637 if (zfsvfs->z_fuid_obj == 0) { 1638 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 1639 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1640 SPA_MAXBLOCKSIZE); 1641 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 1642 } else { 1643 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 1644 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 1645 SPA_MAXBLOCKSIZE); 1646 } 1647 if ((dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) || aclp) 1648 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1649 0, SPA_MAXBLOCKSIZE); 1650 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1651 if (error) { 1652 zfs_dirent_unlock(dl); 1653 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1654 dmu_tx_wait(tx); 1655 dmu_tx_abort(tx); 1656 goto top; 1657 } 1658 dmu_tx_abort(tx); 1659 ZFS_EXIT(zfsvfs); 1660 if (aclp) 1661 zfs_acl_free(aclp); 1662 return (error); 1663 } 1664 1665 /* 1666 * Create new node. 1667 */ 1668 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, aclp, &fuidp); 1669 1670 if (aclp) 1671 zfs_acl_free(aclp); 1672 1673 /* 1674 * Now put new name in parent dir. 1675 */ 1676 (void) zfs_link_create(dl, zp, tx, ZNEW); 1677 1678 *vpp = ZTOV(zp); 1679 1680 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1681 if (flags & FIGNORECASE) 1682 txtype |= TX_CI; 1683 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, fuidp, vap); 1684 1685 if (fuidp) 1686 zfs_fuid_info_free(fuidp); 1687 dmu_tx_commit(tx); 1688 1689 zfs_dirent_unlock(dl); 1690 1691 ZFS_EXIT(zfsvfs); 1692 return (0); 1693 } 1694 1695 /* 1696 * Remove a directory subdir entry. If the current working 1697 * directory is the same as the subdir to be removed, the 1698 * remove will fail. 1699 * 1700 * IN: dvp - vnode of directory to remove from. 1701 * name - name of directory to be removed. 1702 * cwd - vnode of current working directory. 1703 * cr - credentials of caller. 1704 * ct - caller context 1705 * flags - case flags 1706 * 1707 * RETURN: 0 if success 1708 * error code if failure 1709 * 1710 * Timestamps: 1711 * dvp - ctime|mtime updated 1712 */ 1713 /*ARGSUSED*/ 1714 static int 1715 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1716 caller_context_t *ct, int flags) 1717 { 1718 znode_t *dzp = VTOZ(dvp); 1719 znode_t *zp; 1720 vnode_t *vp; 1721 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1722 zilog_t *zilog; 1723 zfs_dirlock_t *dl; 1724 dmu_tx_t *tx; 1725 int error; 1726 int zflg = ZEXISTS; 1727 1728 ZFS_ENTER(zfsvfs); 1729 ZFS_VERIFY_ZP(dzp); 1730 zilog = zfsvfs->z_log; 1731 1732 if (flags & FIGNORECASE) 1733 zflg |= ZCILOOK; 1734 top: 1735 zp = NULL; 1736 1737 /* 1738 * Attempt to lock directory; fail if entry doesn't exist. 1739 */ 1740 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1741 NULL, NULL)) { 1742 ZFS_EXIT(zfsvfs); 1743 return (error); 1744 } 1745 1746 vp = ZTOV(zp); 1747 1748 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1749 goto out; 1750 } 1751 1752 if (vp->v_type != VDIR) { 1753 error = ENOTDIR; 1754 goto out; 1755 } 1756 1757 if (vp == cwd) { 1758 error = EINVAL; 1759 goto out; 1760 } 1761 1762 vnevent_rmdir(vp, dvp, name, ct); 1763 1764 /* 1765 * Grab a lock on the directory to make sure that noone is 1766 * trying to add (or lookup) entries while we are removing it. 1767 */ 1768 rw_enter(&zp->z_name_lock, RW_WRITER); 1769 1770 /* 1771 * Grab a lock on the parent pointer to make sure we play well 1772 * with the treewalk and directory rename code. 1773 */ 1774 rw_enter(&zp->z_parent_lock, RW_WRITER); 1775 1776 tx = dmu_tx_create(zfsvfs->z_os); 1777 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1778 dmu_tx_hold_bonus(tx, zp->z_id); 1779 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1780 error = dmu_tx_assign(tx, zfsvfs->z_assign); 1781 if (error) { 1782 rw_exit(&zp->z_parent_lock); 1783 rw_exit(&zp->z_name_lock); 1784 zfs_dirent_unlock(dl); 1785 VN_RELE(vp); 1786 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 1787 dmu_tx_wait(tx); 1788 dmu_tx_abort(tx); 1789 goto top; 1790 } 1791 dmu_tx_abort(tx); 1792 ZFS_EXIT(zfsvfs); 1793 return (error); 1794 } 1795 1796 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 1797 1798 if (error == 0) { 1799 uint64_t txtype = TX_RMDIR; 1800 if (flags & FIGNORECASE) 1801 txtype |= TX_CI; 1802 zfs_log_remove(zilog, tx, txtype, dzp, name); 1803 } 1804 1805 dmu_tx_commit(tx); 1806 1807 rw_exit(&zp->z_parent_lock); 1808 rw_exit(&zp->z_name_lock); 1809 out: 1810 zfs_dirent_unlock(dl); 1811 1812 VN_RELE(vp); 1813 1814 ZFS_EXIT(zfsvfs); 1815 return (error); 1816 } 1817 1818 /* 1819 * Read as many directory entries as will fit into the provided 1820 * buffer from the given directory cursor position (specified in 1821 * the uio structure. 1822 * 1823 * IN: vp - vnode of directory to read. 1824 * uio - structure supplying read location, range info, 1825 * and return buffer. 1826 * cr - credentials of caller. 1827 * ct - caller context 1828 * flags - case flags 1829 * 1830 * OUT: uio - updated offset and range, buffer filled. 1831 * eofp - set to true if end-of-file detected. 1832 * 1833 * RETURN: 0 if success 1834 * error code if failure 1835 * 1836 * Timestamps: 1837 * vp - atime updated 1838 * 1839 * Note that the low 4 bits of the cookie returned by zap is always zero. 1840 * This allows us to use the low range for "special" directory entries: 1841 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 1842 * we use the offset 2 for the '.zfs' directory. 1843 */ 1844 /* ARGSUSED */ 1845 static int 1846 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 1847 caller_context_t *ct, int flags) 1848 { 1849 znode_t *zp = VTOZ(vp); 1850 iovec_t *iovp; 1851 edirent_t *eodp; 1852 dirent64_t *odp; 1853 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1854 objset_t *os; 1855 caddr_t outbuf; 1856 size_t bufsize; 1857 zap_cursor_t zc; 1858 zap_attribute_t zap; 1859 uint_t bytes_wanted; 1860 uint64_t offset; /* must be unsigned; checks for < 1 */ 1861 int local_eof; 1862 int outcount; 1863 int error; 1864 uint8_t prefetch; 1865 1866 ZFS_ENTER(zfsvfs); 1867 ZFS_VERIFY_ZP(zp); 1868 1869 /* 1870 * If we are not given an eof variable, 1871 * use a local one. 1872 */ 1873 if (eofp == NULL) 1874 eofp = &local_eof; 1875 1876 /* 1877 * Check for valid iov_len. 1878 */ 1879 if (uio->uio_iov->iov_len <= 0) { 1880 ZFS_EXIT(zfsvfs); 1881 return (EINVAL); 1882 } 1883 1884 /* 1885 * Quit if directory has been removed (posix) 1886 */ 1887 if ((*eofp = zp->z_unlinked) != 0) { 1888 ZFS_EXIT(zfsvfs); 1889 return (0); 1890 } 1891 1892 error = 0; 1893 os = zfsvfs->z_os; 1894 offset = uio->uio_loffset; 1895 prefetch = zp->z_zn_prefetch; 1896 1897 /* 1898 * Initialize the iterator cursor. 1899 */ 1900 if (offset <= 3) { 1901 /* 1902 * Start iteration from the beginning of the directory. 1903 */ 1904 zap_cursor_init(&zc, os, zp->z_id); 1905 } else { 1906 /* 1907 * The offset is a serialized cursor. 1908 */ 1909 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 1910 } 1911 1912 /* 1913 * Get space to change directory entries into fs independent format. 1914 */ 1915 iovp = uio->uio_iov; 1916 bytes_wanted = iovp->iov_len; 1917 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 1918 bufsize = bytes_wanted; 1919 outbuf = kmem_alloc(bufsize, KM_SLEEP); 1920 odp = (struct dirent64 *)outbuf; 1921 } else { 1922 bufsize = bytes_wanted; 1923 odp = (struct dirent64 *)iovp->iov_base; 1924 } 1925 eodp = (struct edirent *)odp; 1926 1927 /* 1928 * Transform to file-system independent format 1929 */ 1930 outcount = 0; 1931 while (outcount < bytes_wanted) { 1932 ino64_t objnum; 1933 ushort_t reclen; 1934 off64_t *next; 1935 1936 /* 1937 * Special case `.', `..', and `.zfs'. 1938 */ 1939 if (offset == 0) { 1940 (void) strcpy(zap.za_name, "."); 1941 zap.za_normalization_conflict = 0; 1942 objnum = zp->z_id; 1943 } else if (offset == 1) { 1944 (void) strcpy(zap.za_name, ".."); 1945 zap.za_normalization_conflict = 0; 1946 objnum = zp->z_phys->zp_parent; 1947 } else if (offset == 2 && zfs_show_ctldir(zp)) { 1948 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 1949 zap.za_normalization_conflict = 0; 1950 objnum = ZFSCTL_INO_ROOT; 1951 } else { 1952 /* 1953 * Grab next entry. 1954 */ 1955 if (error = zap_cursor_retrieve(&zc, &zap)) { 1956 if ((*eofp = (error == ENOENT)) != 0) 1957 break; 1958 else 1959 goto update; 1960 } 1961 1962 if (zap.za_integer_length != 8 || 1963 zap.za_num_integers != 1) { 1964 cmn_err(CE_WARN, "zap_readdir: bad directory " 1965 "entry, obj = %lld, offset = %lld\n", 1966 (u_longlong_t)zp->z_id, 1967 (u_longlong_t)offset); 1968 error = ENXIO; 1969 goto update; 1970 } 1971 1972 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 1973 /* 1974 * MacOS X can extract the object type here such as: 1975 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 1976 */ 1977 } 1978 1979 if (flags & V_RDDIR_ENTFLAGS) 1980 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 1981 else 1982 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 1983 1984 /* 1985 * Will this entry fit in the buffer? 1986 */ 1987 if (outcount + reclen > bufsize) { 1988 /* 1989 * Did we manage to fit anything in the buffer? 1990 */ 1991 if (!outcount) { 1992 error = EINVAL; 1993 goto update; 1994 } 1995 break; 1996 } 1997 if (flags & V_RDDIR_ENTFLAGS) { 1998 /* 1999 * Add extended flag entry: 2000 */ 2001 eodp->ed_ino = objnum; 2002 eodp->ed_reclen = reclen; 2003 /* NOTE: ed_off is the offset for the *next* entry */ 2004 next = &(eodp->ed_off); 2005 eodp->ed_eflags = zap.za_normalization_conflict ? 2006 ED_CASE_CONFLICT : 0; 2007 (void) strncpy(eodp->ed_name, zap.za_name, 2008 EDIRENT_NAMELEN(reclen)); 2009 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2010 } else { 2011 /* 2012 * Add normal entry: 2013 */ 2014 odp->d_ino = objnum; 2015 odp->d_reclen = reclen; 2016 /* NOTE: d_off is the offset for the *next* entry */ 2017 next = &(odp->d_off); 2018 (void) strncpy(odp->d_name, zap.za_name, 2019 DIRENT64_NAMELEN(reclen)); 2020 odp = (dirent64_t *)((intptr_t)odp + reclen); 2021 } 2022 outcount += reclen; 2023 2024 ASSERT(outcount <= bufsize); 2025 2026 /* Prefetch znode */ 2027 if (prefetch) 2028 dmu_prefetch(os, objnum, 0, 0); 2029 2030 /* 2031 * Move to the next entry, fill in the previous offset. 2032 */ 2033 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2034 zap_cursor_advance(&zc); 2035 offset = zap_cursor_serialize(&zc); 2036 } else { 2037 offset += 1; 2038 } 2039 *next = offset; 2040 } 2041 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2042 2043 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2044 iovp->iov_base += outcount; 2045 iovp->iov_len -= outcount; 2046 uio->uio_resid -= outcount; 2047 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2048 /* 2049 * Reset the pointer. 2050 */ 2051 offset = uio->uio_loffset; 2052 } 2053 2054 update: 2055 zap_cursor_fini(&zc); 2056 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2057 kmem_free(outbuf, bufsize); 2058 2059 if (error == ENOENT) 2060 error = 0; 2061 2062 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2063 2064 uio->uio_loffset = offset; 2065 ZFS_EXIT(zfsvfs); 2066 return (error); 2067 } 2068 2069 ulong_t zfs_fsync_sync_cnt = 4; 2070 2071 static int 2072 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2073 { 2074 znode_t *zp = VTOZ(vp); 2075 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2076 2077 /* 2078 * Regardless of whether this is required for standards conformance, 2079 * this is the logical behavior when fsync() is called on a file with 2080 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2081 * going to be pushed out as part of the zil_commit(). 2082 */ 2083 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2084 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2085 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2086 2087 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2088 2089 ZFS_ENTER(zfsvfs); 2090 ZFS_VERIFY_ZP(zp); 2091 zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id); 2092 ZFS_EXIT(zfsvfs); 2093 return (0); 2094 } 2095 2096 2097 /* 2098 * Get the requested file attributes and place them in the provided 2099 * vattr structure. 2100 * 2101 * IN: vp - vnode of file. 2102 * vap - va_mask identifies requested attributes. 2103 * If AT_XVATTR set, then optional attrs are requested 2104 * flags - ATTR_NOACLCHECK (CIFS server context) 2105 * cr - credentials of caller. 2106 * ct - caller context 2107 * 2108 * OUT: vap - attribute values. 2109 * 2110 * RETURN: 0 (always succeeds) 2111 */ 2112 /* ARGSUSED */ 2113 static int 2114 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2115 caller_context_t *ct) 2116 { 2117 znode_t *zp = VTOZ(vp); 2118 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2119 znode_phys_t *pzp; 2120 int error = 0; 2121 uint64_t links; 2122 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2123 xoptattr_t *xoap = NULL; 2124 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2125 2126 ZFS_ENTER(zfsvfs); 2127 ZFS_VERIFY_ZP(zp); 2128 pzp = zp->z_phys; 2129 2130 mutex_enter(&zp->z_lock); 2131 2132 /* 2133 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2134 * Also, if we are the owner don't bother, since owner should 2135 * always be allowed to read basic attributes of file. 2136 */ 2137 if (!(pzp->zp_flags & ZFS_ACL_TRIVIAL) && 2138 (pzp->zp_uid != crgetuid(cr))) { 2139 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2140 skipaclchk, cr)) { 2141 mutex_exit(&zp->z_lock); 2142 ZFS_EXIT(zfsvfs); 2143 return (error); 2144 } 2145 } 2146 2147 /* 2148 * Return all attributes. It's cheaper to provide the answer 2149 * than to determine whether we were asked the question. 2150 */ 2151 2152 vap->va_type = vp->v_type; 2153 vap->va_mode = pzp->zp_mode & MODEMASK; 2154 zfs_fuid_map_ids(zp, &vap->va_uid, &vap->va_gid); 2155 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2156 vap->va_nodeid = zp->z_id; 2157 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2158 links = pzp->zp_links + 1; 2159 else 2160 links = pzp->zp_links; 2161 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2162 vap->va_size = pzp->zp_size; 2163 vap->va_rdev = vp->v_rdev; 2164 vap->va_seq = zp->z_seq; 2165 2166 /* 2167 * Add in any requested optional attributes and the create time. 2168 * Also set the corresponding bits in the returned attribute bitmap. 2169 */ 2170 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2171 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2172 xoap->xoa_archive = 2173 ((pzp->zp_flags & ZFS_ARCHIVE) != 0); 2174 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2175 } 2176 2177 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2178 xoap->xoa_readonly = 2179 ((pzp->zp_flags & ZFS_READONLY) != 0); 2180 XVA_SET_RTN(xvap, XAT_READONLY); 2181 } 2182 2183 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2184 xoap->xoa_system = 2185 ((pzp->zp_flags & ZFS_SYSTEM) != 0); 2186 XVA_SET_RTN(xvap, XAT_SYSTEM); 2187 } 2188 2189 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2190 xoap->xoa_hidden = 2191 ((pzp->zp_flags & ZFS_HIDDEN) != 0); 2192 XVA_SET_RTN(xvap, XAT_HIDDEN); 2193 } 2194 2195 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2196 xoap->xoa_nounlink = 2197 ((pzp->zp_flags & ZFS_NOUNLINK) != 0); 2198 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2199 } 2200 2201 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2202 xoap->xoa_immutable = 2203 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0); 2204 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2205 } 2206 2207 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2208 xoap->xoa_appendonly = 2209 ((pzp->zp_flags & ZFS_APPENDONLY) != 0); 2210 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2211 } 2212 2213 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2214 xoap->xoa_nodump = 2215 ((pzp->zp_flags & ZFS_NODUMP) != 0); 2216 XVA_SET_RTN(xvap, XAT_NODUMP); 2217 } 2218 2219 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2220 xoap->xoa_opaque = 2221 ((pzp->zp_flags & ZFS_OPAQUE) != 0); 2222 XVA_SET_RTN(xvap, XAT_OPAQUE); 2223 } 2224 2225 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2226 xoap->xoa_av_quarantined = 2227 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0); 2228 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2229 } 2230 2231 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2232 xoap->xoa_av_modified = 2233 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0); 2234 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2235 } 2236 2237 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2238 vp->v_type == VREG && 2239 (pzp->zp_flags & ZFS_BONUS_SCANSTAMP)) { 2240 size_t len; 2241 dmu_object_info_t doi; 2242 2243 /* 2244 * Only VREG files have anti-virus scanstamps, so we 2245 * won't conflict with symlinks in the bonus buffer. 2246 */ 2247 dmu_object_info_from_db(zp->z_dbuf, &doi); 2248 len = sizeof (xoap->xoa_av_scanstamp) + 2249 sizeof (znode_phys_t); 2250 if (len <= doi.doi_bonus_size) { 2251 /* 2252 * pzp points to the start of the 2253 * znode_phys_t. pzp + 1 points to the 2254 * first byte after the znode_phys_t. 2255 */ 2256 (void) memcpy(xoap->xoa_av_scanstamp, 2257 pzp + 1, 2258 sizeof (xoap->xoa_av_scanstamp)); 2259 XVA_SET_RTN(xvap, XAT_AV_SCANSTAMP); 2260 } 2261 } 2262 2263 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2264 ZFS_TIME_DECODE(&xoap->xoa_createtime, pzp->zp_crtime); 2265 XVA_SET_RTN(xvap, XAT_CREATETIME); 2266 } 2267 } 2268 2269 ZFS_TIME_DECODE(&vap->va_atime, pzp->zp_atime); 2270 ZFS_TIME_DECODE(&vap->va_mtime, pzp->zp_mtime); 2271 ZFS_TIME_DECODE(&vap->va_ctime, pzp->zp_ctime); 2272 2273 mutex_exit(&zp->z_lock); 2274 2275 dmu_object_size_from_db(zp->z_dbuf, &vap->va_blksize, &vap->va_nblocks); 2276 2277 if (zp->z_blksz == 0) { 2278 /* 2279 * Block size hasn't been set; suggest maximal I/O transfers. 2280 */ 2281 vap->va_blksize = zfsvfs->z_max_blksz; 2282 } 2283 2284 ZFS_EXIT(zfsvfs); 2285 return (0); 2286 } 2287 2288 /* 2289 * Set the file attributes to the values contained in the 2290 * vattr structure. 2291 * 2292 * IN: vp - vnode of file to be modified. 2293 * vap - new attribute values. 2294 * If AT_XVATTR set, then optional attrs are being set 2295 * flags - ATTR_UTIME set if non-default time values provided. 2296 * - ATTR_NOACLCHECK (CIFS context only). 2297 * cr - credentials of caller. 2298 * ct - caller context 2299 * 2300 * RETURN: 0 if success 2301 * error code if failure 2302 * 2303 * Timestamps: 2304 * vp - ctime updated, mtime updated if size changed. 2305 */ 2306 /* ARGSUSED */ 2307 static int 2308 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2309 caller_context_t *ct) 2310 { 2311 znode_t *zp = VTOZ(vp); 2312 znode_phys_t *pzp; 2313 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2314 zilog_t *zilog; 2315 dmu_tx_t *tx; 2316 vattr_t oldva; 2317 uint_t mask = vap->va_mask; 2318 uint_t saved_mask; 2319 int trim_mask = 0; 2320 uint64_t new_mode; 2321 znode_t *attrzp; 2322 int need_policy = FALSE; 2323 int err; 2324 zfs_fuid_info_t *fuidp = NULL; 2325 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2326 xoptattr_t *xoap; 2327 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2328 2329 if (mask == 0) 2330 return (0); 2331 2332 if (mask & AT_NOSET) 2333 return (EINVAL); 2334 2335 ZFS_ENTER(zfsvfs); 2336 ZFS_VERIFY_ZP(zp); 2337 2338 pzp = zp->z_phys; 2339 zilog = zfsvfs->z_log; 2340 2341 /* 2342 * Make sure that if we have ephemeral uid/gid or xvattr specified 2343 * that file system is at proper version level 2344 */ 2345 2346 if (zfsvfs->z_use_fuids == B_FALSE && 2347 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2348 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2349 (mask & AT_XVATTR))) { 2350 ZFS_EXIT(zfsvfs); 2351 return (EINVAL); 2352 } 2353 2354 if (mask & AT_SIZE && vp->v_type == VDIR) { 2355 ZFS_EXIT(zfsvfs); 2356 return (EISDIR); 2357 } 2358 2359 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2360 ZFS_EXIT(zfsvfs); 2361 return (EINVAL); 2362 } 2363 2364 /* 2365 * If this is an xvattr_t, then get a pointer to the structure of 2366 * optional attributes. If this is NULL, then we have a vattr_t. 2367 */ 2368 xoap = xva_getxoptattr(xvap); 2369 2370 /* 2371 * Immutable files can only alter immutable bit and atime 2372 */ 2373 if ((pzp->zp_flags & ZFS_IMMUTABLE) && 2374 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2375 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2376 ZFS_EXIT(zfsvfs); 2377 return (EPERM); 2378 } 2379 2380 if ((mask & AT_SIZE) && (pzp->zp_flags & ZFS_READONLY)) { 2381 ZFS_EXIT(zfsvfs); 2382 return (EPERM); 2383 } 2384 2385 top: 2386 attrzp = NULL; 2387 2388 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2389 ZFS_EXIT(zfsvfs); 2390 return (EROFS); 2391 } 2392 2393 /* 2394 * First validate permissions 2395 */ 2396 2397 if (mask & AT_SIZE) { 2398 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2399 if (err) { 2400 ZFS_EXIT(zfsvfs); 2401 return (err); 2402 } 2403 /* 2404 * XXX - Note, we are not providing any open 2405 * mode flags here (like FNDELAY), so we may 2406 * block if there are locks present... this 2407 * should be addressed in openat(). 2408 */ 2409 do { 2410 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2411 /* NB: we already did dmu_tx_wait() if necessary */ 2412 } while (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 2413 if (err) { 2414 ZFS_EXIT(zfsvfs); 2415 return (err); 2416 } 2417 } 2418 2419 if (mask & (AT_ATIME|AT_MTIME) || 2420 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2421 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2422 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2423 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2424 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) 2425 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2426 skipaclchk, cr); 2427 2428 if (mask & (AT_UID|AT_GID)) { 2429 int idmask = (mask & (AT_UID|AT_GID)); 2430 int take_owner; 2431 int take_group; 2432 2433 /* 2434 * NOTE: even if a new mode is being set, 2435 * we may clear S_ISUID/S_ISGID bits. 2436 */ 2437 2438 if (!(mask & AT_MODE)) 2439 vap->va_mode = pzp->zp_mode; 2440 2441 /* 2442 * Take ownership or chgrp to group we are a member of 2443 */ 2444 2445 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2446 take_group = (mask & AT_GID) && 2447 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2448 2449 /* 2450 * If both AT_UID and AT_GID are set then take_owner and 2451 * take_group must both be set in order to allow taking 2452 * ownership. 2453 * 2454 * Otherwise, send the check through secpolicy_vnode_setattr() 2455 * 2456 */ 2457 2458 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2459 ((idmask == AT_UID) && take_owner) || 2460 ((idmask == AT_GID) && take_group)) { 2461 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2462 skipaclchk, cr) == 0) { 2463 /* 2464 * Remove setuid/setgid for non-privileged users 2465 */ 2466 secpolicy_setid_clear(vap, cr); 2467 trim_mask = (mask & (AT_UID|AT_GID)); 2468 } else { 2469 need_policy = TRUE; 2470 } 2471 } else { 2472 need_policy = TRUE; 2473 } 2474 } 2475 2476 mutex_enter(&zp->z_lock); 2477 oldva.va_mode = pzp->zp_mode; 2478 zfs_fuid_map_ids(zp, &oldva.va_uid, &oldva.va_gid); 2479 if (mask & AT_XVATTR) { 2480 if ((need_policy == FALSE) && 2481 (XVA_ISSET_REQ(xvap, XAT_APPENDONLY) && 2482 xoap->xoa_appendonly != 2483 ((pzp->zp_flags & ZFS_APPENDONLY) != 0)) || 2484 (XVA_ISSET_REQ(xvap, XAT_NOUNLINK) && 2485 xoap->xoa_nounlink != 2486 ((pzp->zp_flags & ZFS_NOUNLINK) != 0)) || 2487 (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE) && 2488 xoap->xoa_immutable != 2489 ((pzp->zp_flags & ZFS_IMMUTABLE) != 0)) || 2490 (XVA_ISSET_REQ(xvap, XAT_NODUMP) && 2491 xoap->xoa_nodump != 2492 ((pzp->zp_flags & ZFS_NODUMP) != 0)) || 2493 (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED) && 2494 xoap->xoa_av_modified != 2495 ((pzp->zp_flags & ZFS_AV_MODIFIED) != 0)) || 2496 ((XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED) && 2497 ((vp->v_type != VREG && xoap->xoa_av_quarantined) || 2498 xoap->xoa_av_quarantined != 2499 ((pzp->zp_flags & ZFS_AV_QUARANTINED) != 0)))) || 2500 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) || 2501 (XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2502 need_policy = TRUE; 2503 } 2504 } 2505 2506 mutex_exit(&zp->z_lock); 2507 2508 if (mask & AT_MODE) { 2509 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2510 err = secpolicy_setid_setsticky_clear(vp, vap, 2511 &oldva, cr); 2512 if (err) { 2513 ZFS_EXIT(zfsvfs); 2514 return (err); 2515 } 2516 trim_mask |= AT_MODE; 2517 } else { 2518 need_policy = TRUE; 2519 } 2520 } 2521 2522 if (need_policy) { 2523 /* 2524 * If trim_mask is set then take ownership 2525 * has been granted or write_acl is present and user 2526 * has the ability to modify mode. In that case remove 2527 * UID|GID and or MODE from mask so that 2528 * secpolicy_vnode_setattr() doesn't revoke it. 2529 */ 2530 2531 if (trim_mask) { 2532 saved_mask = vap->va_mask; 2533 vap->va_mask &= ~trim_mask; 2534 } 2535 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2536 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2537 if (err) { 2538 ZFS_EXIT(zfsvfs); 2539 return (err); 2540 } 2541 2542 if (trim_mask) 2543 vap->va_mask |= saved_mask; 2544 } 2545 2546 /* 2547 * secpolicy_vnode_setattr, or take ownership may have 2548 * changed va_mask 2549 */ 2550 mask = vap->va_mask; 2551 2552 tx = dmu_tx_create(zfsvfs->z_os); 2553 dmu_tx_hold_bonus(tx, zp->z_id); 2554 if (zfsvfs->z_fuid_obj == 0) { 2555 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 2556 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 2557 SPA_MAXBLOCKSIZE); 2558 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 2559 } else { 2560 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 2561 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 2562 SPA_MAXBLOCKSIZE); 2563 } 2564 2565 if (mask & AT_MODE) { 2566 uint64_t pmode = pzp->zp_mode; 2567 2568 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2569 2570 if (pzp->zp_acl.z_acl_extern_obj) { 2571 /* Are we upgrading ACL from old V0 format to new V1 */ 2572 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2573 pzp->zp_acl.z_acl_version == 2574 ZFS_ACL_VERSION_INITIAL) { 2575 dmu_tx_hold_free(tx, 2576 pzp->zp_acl.z_acl_extern_obj, 0, 2577 DMU_OBJECT_END); 2578 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2579 0, sizeof (zfs_object_ace_t) * 2048 + 6); 2580 } else { 2581 dmu_tx_hold_write(tx, 2582 pzp->zp_acl.z_acl_extern_obj, 0, 2583 SPA_MAXBLOCKSIZE); 2584 } 2585 } else { 2586 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2587 0, sizeof (zfs_object_ace_t) * 2048 + 6); 2588 } 2589 } 2590 2591 if ((mask & (AT_UID | AT_GID)) && pzp->zp_xattr != 0) { 2592 err = zfs_zget(zp->z_zfsvfs, pzp->zp_xattr, &attrzp); 2593 if (err) { 2594 dmu_tx_abort(tx); 2595 ZFS_EXIT(zfsvfs); 2596 return (err); 2597 } 2598 dmu_tx_hold_bonus(tx, attrzp->z_id); 2599 } 2600 2601 err = dmu_tx_assign(tx, zfsvfs->z_assign); 2602 if (err) { 2603 if (attrzp) 2604 VN_RELE(ZTOV(attrzp)); 2605 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 2606 dmu_tx_wait(tx); 2607 dmu_tx_abort(tx); 2608 goto top; 2609 } 2610 dmu_tx_abort(tx); 2611 ZFS_EXIT(zfsvfs); 2612 return (err); 2613 } 2614 2615 dmu_buf_will_dirty(zp->z_dbuf, tx); 2616 2617 /* 2618 * Set each attribute requested. 2619 * We group settings according to the locks they need to acquire. 2620 * 2621 * Note: you cannot set ctime directly, although it will be 2622 * updated as a side-effect of calling this function. 2623 */ 2624 2625 mutex_enter(&zp->z_lock); 2626 2627 if (mask & AT_MODE) { 2628 err = zfs_acl_chmod_setattr(zp, new_mode, tx); 2629 ASSERT3U(err, ==, 0); 2630 } 2631 2632 if (attrzp) 2633 mutex_enter(&attrzp->z_lock); 2634 2635 if (mask & AT_UID) { 2636 pzp->zp_uid = zfs_fuid_create(zfsvfs, 2637 vap->va_uid, ZFS_OWNER, tx, &fuidp); 2638 if (attrzp) { 2639 attrzp->z_phys->zp_uid = zfs_fuid_create(zfsvfs, 2640 vap->va_uid, ZFS_OWNER, tx, &fuidp); 2641 } 2642 } 2643 2644 if (mask & AT_GID) { 2645 pzp->zp_gid = zfs_fuid_create(zfsvfs, vap->va_gid, 2646 ZFS_GROUP, tx, &fuidp); 2647 if (attrzp) 2648 attrzp->z_phys->zp_gid = zfs_fuid_create(zfsvfs, 2649 vap->va_gid, ZFS_GROUP, tx, &fuidp); 2650 } 2651 2652 if (attrzp) 2653 mutex_exit(&attrzp->z_lock); 2654 2655 if (mask & AT_ATIME) 2656 ZFS_TIME_ENCODE(&vap->va_atime, pzp->zp_atime); 2657 2658 if (mask & AT_MTIME) 2659 ZFS_TIME_ENCODE(&vap->va_mtime, pzp->zp_mtime); 2660 2661 if (mask & AT_SIZE) 2662 zfs_time_stamper_locked(zp, CONTENT_MODIFIED, tx); 2663 else if (mask != 0) 2664 zfs_time_stamper_locked(zp, STATE_CHANGED, tx); 2665 /* 2666 * Do this after setting timestamps to prevent timestamp 2667 * update from toggling bit 2668 */ 2669 2670 if (xoap && (mask & AT_XVATTR)) { 2671 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) { 2672 size_t len; 2673 dmu_object_info_t doi; 2674 2675 ASSERT(vp->v_type == VREG); 2676 2677 /* Grow the bonus buffer if necessary. */ 2678 dmu_object_info_from_db(zp->z_dbuf, &doi); 2679 len = sizeof (xoap->xoa_av_scanstamp) + 2680 sizeof (znode_phys_t); 2681 if (len > doi.doi_bonus_size) 2682 VERIFY(dmu_set_bonus(zp->z_dbuf, len, tx) == 0); 2683 } 2684 zfs_xvattr_set(zp, xvap); 2685 } 2686 2687 if (mask != 0) 2688 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 2689 2690 if (fuidp) 2691 zfs_fuid_info_free(fuidp); 2692 mutex_exit(&zp->z_lock); 2693 2694 if (attrzp) 2695 VN_RELE(ZTOV(attrzp)); 2696 2697 dmu_tx_commit(tx); 2698 2699 ZFS_EXIT(zfsvfs); 2700 return (err); 2701 } 2702 2703 typedef struct zfs_zlock { 2704 krwlock_t *zl_rwlock; /* lock we acquired */ 2705 znode_t *zl_znode; /* znode we held */ 2706 struct zfs_zlock *zl_next; /* next in list */ 2707 } zfs_zlock_t; 2708 2709 /* 2710 * Drop locks and release vnodes that were held by zfs_rename_lock(). 2711 */ 2712 static void 2713 zfs_rename_unlock(zfs_zlock_t **zlpp) 2714 { 2715 zfs_zlock_t *zl; 2716 2717 while ((zl = *zlpp) != NULL) { 2718 if (zl->zl_znode != NULL) 2719 VN_RELE(ZTOV(zl->zl_znode)); 2720 rw_exit(zl->zl_rwlock); 2721 *zlpp = zl->zl_next; 2722 kmem_free(zl, sizeof (*zl)); 2723 } 2724 } 2725 2726 /* 2727 * Search back through the directory tree, using the ".." entries. 2728 * Lock each directory in the chain to prevent concurrent renames. 2729 * Fail any attempt to move a directory into one of its own descendants. 2730 * XXX - z_parent_lock can overlap with map or grow locks 2731 */ 2732 static int 2733 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 2734 { 2735 zfs_zlock_t *zl; 2736 znode_t *zp = tdzp; 2737 uint64_t rootid = zp->z_zfsvfs->z_root; 2738 uint64_t *oidp = &zp->z_id; 2739 krwlock_t *rwlp = &szp->z_parent_lock; 2740 krw_t rw = RW_WRITER; 2741 2742 /* 2743 * First pass write-locks szp and compares to zp->z_id. 2744 * Later passes read-lock zp and compare to zp->z_parent. 2745 */ 2746 do { 2747 if (!rw_tryenter(rwlp, rw)) { 2748 /* 2749 * Another thread is renaming in this path. 2750 * Note that if we are a WRITER, we don't have any 2751 * parent_locks held yet. 2752 */ 2753 if (rw == RW_READER && zp->z_id > szp->z_id) { 2754 /* 2755 * Drop our locks and restart 2756 */ 2757 zfs_rename_unlock(&zl); 2758 *zlpp = NULL; 2759 zp = tdzp; 2760 oidp = &zp->z_id; 2761 rwlp = &szp->z_parent_lock; 2762 rw = RW_WRITER; 2763 continue; 2764 } else { 2765 /* 2766 * Wait for other thread to drop its locks 2767 */ 2768 rw_enter(rwlp, rw); 2769 } 2770 } 2771 2772 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 2773 zl->zl_rwlock = rwlp; 2774 zl->zl_znode = NULL; 2775 zl->zl_next = *zlpp; 2776 *zlpp = zl; 2777 2778 if (*oidp == szp->z_id) /* We're a descendant of szp */ 2779 return (EINVAL); 2780 2781 if (*oidp == rootid) /* We've hit the top */ 2782 return (0); 2783 2784 if (rw == RW_READER) { /* i.e. not the first pass */ 2785 int error = zfs_zget(zp->z_zfsvfs, *oidp, &zp); 2786 if (error) 2787 return (error); 2788 zl->zl_znode = zp; 2789 } 2790 oidp = &zp->z_phys->zp_parent; 2791 rwlp = &zp->z_parent_lock; 2792 rw = RW_READER; 2793 2794 } while (zp->z_id != sdzp->z_id); 2795 2796 return (0); 2797 } 2798 2799 /* 2800 * Move an entry from the provided source directory to the target 2801 * directory. Change the entry name as indicated. 2802 * 2803 * IN: sdvp - Source directory containing the "old entry". 2804 * snm - Old entry name. 2805 * tdvp - Target directory to contain the "new entry". 2806 * tnm - New entry name. 2807 * cr - credentials of caller. 2808 * ct - caller context 2809 * flags - case flags 2810 * 2811 * RETURN: 0 if success 2812 * error code if failure 2813 * 2814 * Timestamps: 2815 * sdvp,tdvp - ctime|mtime updated 2816 */ 2817 /*ARGSUSED*/ 2818 static int 2819 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 2820 caller_context_t *ct, int flags) 2821 { 2822 znode_t *tdzp, *szp, *tzp; 2823 znode_t *sdzp = VTOZ(sdvp); 2824 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 2825 zilog_t *zilog; 2826 vnode_t *realvp; 2827 zfs_dirlock_t *sdl, *tdl; 2828 dmu_tx_t *tx; 2829 zfs_zlock_t *zl; 2830 int cmp, serr, terr; 2831 int error = 0; 2832 int zflg = 0; 2833 2834 ZFS_ENTER(zfsvfs); 2835 ZFS_VERIFY_ZP(sdzp); 2836 zilog = zfsvfs->z_log; 2837 2838 /* 2839 * Make sure we have the real vp for the target directory. 2840 */ 2841 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 2842 tdvp = realvp; 2843 2844 if (tdvp->v_vfsp != sdvp->v_vfsp) { 2845 ZFS_EXIT(zfsvfs); 2846 return (EXDEV); 2847 } 2848 2849 tdzp = VTOZ(tdvp); 2850 ZFS_VERIFY_ZP(tdzp); 2851 if (zfsvfs->z_utf8 && u8_validate(tnm, 2852 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 2853 ZFS_EXIT(zfsvfs); 2854 return (EILSEQ); 2855 } 2856 2857 if (flags & FIGNORECASE) 2858 zflg |= ZCILOOK; 2859 2860 top: 2861 szp = NULL; 2862 tzp = NULL; 2863 zl = NULL; 2864 2865 /* 2866 * This is to prevent the creation of links into attribute space 2867 * by renaming a linked file into/outof an attribute directory. 2868 * See the comment in zfs_link() for why this is considered bad. 2869 */ 2870 if ((tdzp->z_phys->zp_flags & ZFS_XATTR) != 2871 (sdzp->z_phys->zp_flags & ZFS_XATTR)) { 2872 ZFS_EXIT(zfsvfs); 2873 return (EINVAL); 2874 } 2875 2876 /* 2877 * Lock source and target directory entries. To prevent deadlock, 2878 * a lock ordering must be defined. We lock the directory with 2879 * the smallest object id first, or if it's a tie, the one with 2880 * the lexically first name. 2881 */ 2882 if (sdzp->z_id < tdzp->z_id) { 2883 cmp = -1; 2884 } else if (sdzp->z_id > tdzp->z_id) { 2885 cmp = 1; 2886 } else { 2887 /* 2888 * First compare the two name arguments without 2889 * considering any case folding. 2890 */ 2891 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 2892 2893 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 2894 ASSERT(error == 0 || !zfsvfs->z_utf8); 2895 if (cmp == 0) { 2896 /* 2897 * POSIX: "If the old argument and the new argument 2898 * both refer to links to the same existing file, 2899 * the rename() function shall return successfully 2900 * and perform no other action." 2901 */ 2902 ZFS_EXIT(zfsvfs); 2903 return (0); 2904 } 2905 /* 2906 * If the file system is case-folding, then we may 2907 * have some more checking to do. A case-folding file 2908 * system is either supporting mixed case sensitivity 2909 * access or is completely case-insensitive. Note 2910 * that the file system is always case preserving. 2911 * 2912 * In mixed sensitivity mode case sensitive behavior 2913 * is the default. FIGNORECASE must be used to 2914 * explicitly request case insensitive behavior. 2915 * 2916 * If the source and target names provided differ only 2917 * by case (e.g., a request to rename 'tim' to 'Tim'), 2918 * we will treat this as a special case in the 2919 * case-insensitive mode: as long as the source name 2920 * is an exact match, we will allow this to proceed as 2921 * a name-change request. 2922 */ 2923 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 2924 (zfsvfs->z_case == ZFS_CASE_MIXED && 2925 flags & FIGNORECASE)) && 2926 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 2927 &error) == 0) { 2928 /* 2929 * case preserving rename request, require exact 2930 * name matches 2931 */ 2932 zflg |= ZCIEXACT; 2933 zflg &= ~ZCILOOK; 2934 } 2935 } 2936 2937 if (cmp < 0) { 2938 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 2939 ZEXISTS | zflg, NULL, NULL); 2940 terr = zfs_dirent_lock(&tdl, 2941 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 2942 } else { 2943 terr = zfs_dirent_lock(&tdl, 2944 tdzp, tnm, &tzp, zflg, NULL, NULL); 2945 serr = zfs_dirent_lock(&sdl, 2946 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 2947 NULL, NULL); 2948 } 2949 2950 if (serr) { 2951 /* 2952 * Source entry invalid or not there. 2953 */ 2954 if (!terr) { 2955 zfs_dirent_unlock(tdl); 2956 if (tzp) 2957 VN_RELE(ZTOV(tzp)); 2958 } 2959 if (strcmp(snm, "..") == 0) 2960 serr = EINVAL; 2961 ZFS_EXIT(zfsvfs); 2962 return (serr); 2963 } 2964 if (terr) { 2965 zfs_dirent_unlock(sdl); 2966 VN_RELE(ZTOV(szp)); 2967 if (strcmp(tnm, "..") == 0) 2968 terr = EINVAL; 2969 ZFS_EXIT(zfsvfs); 2970 return (terr); 2971 } 2972 2973 /* 2974 * Must have write access at the source to remove the old entry 2975 * and write access at the target to create the new entry. 2976 * Note that if target and source are the same, this can be 2977 * done in a single check. 2978 */ 2979 2980 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 2981 goto out; 2982 2983 if (ZTOV(szp)->v_type == VDIR) { 2984 /* 2985 * Check to make sure rename is valid. 2986 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 2987 */ 2988 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 2989 goto out; 2990 } 2991 2992 /* 2993 * Does target exist? 2994 */ 2995 if (tzp) { 2996 /* 2997 * Source and target must be the same type. 2998 */ 2999 if (ZTOV(szp)->v_type == VDIR) { 3000 if (ZTOV(tzp)->v_type != VDIR) { 3001 error = ENOTDIR; 3002 goto out; 3003 } 3004 } else { 3005 if (ZTOV(tzp)->v_type == VDIR) { 3006 error = EISDIR; 3007 goto out; 3008 } 3009 } 3010 /* 3011 * POSIX dictates that when the source and target 3012 * entries refer to the same file object, rename 3013 * must do nothing and exit without error. 3014 */ 3015 if (szp->z_id == tzp->z_id) { 3016 error = 0; 3017 goto out; 3018 } 3019 } 3020 3021 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3022 if (tzp) 3023 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3024 3025 /* 3026 * notify the target directory if it is not the same 3027 * as source directory. 3028 */ 3029 if (tdvp != sdvp) { 3030 vnevent_rename_dest_dir(tdvp, ct); 3031 } 3032 3033 tx = dmu_tx_create(zfsvfs->z_os); 3034 dmu_tx_hold_bonus(tx, szp->z_id); /* nlink changes */ 3035 dmu_tx_hold_bonus(tx, sdzp->z_id); /* nlink changes */ 3036 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3037 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3038 if (sdzp != tdzp) 3039 dmu_tx_hold_bonus(tx, tdzp->z_id); /* nlink changes */ 3040 if (tzp) 3041 dmu_tx_hold_bonus(tx, tzp->z_id); /* parent changes */ 3042 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3043 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3044 if (error) { 3045 if (zl != NULL) 3046 zfs_rename_unlock(&zl); 3047 zfs_dirent_unlock(sdl); 3048 zfs_dirent_unlock(tdl); 3049 VN_RELE(ZTOV(szp)); 3050 if (tzp) 3051 VN_RELE(ZTOV(tzp)); 3052 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3053 dmu_tx_wait(tx); 3054 dmu_tx_abort(tx); 3055 goto top; 3056 } 3057 dmu_tx_abort(tx); 3058 ZFS_EXIT(zfsvfs); 3059 return (error); 3060 } 3061 3062 if (tzp) /* Attempt to remove the existing target */ 3063 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3064 3065 if (error == 0) { 3066 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3067 if (error == 0) { 3068 szp->z_phys->zp_flags |= ZFS_AV_MODIFIED; 3069 3070 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3071 ASSERT(error == 0); 3072 3073 zfs_log_rename(zilog, tx, 3074 TX_RENAME | (flags & FIGNORECASE ? TX_CI : 0), 3075 sdzp, sdl->dl_name, tdzp, tdl->dl_name, szp); 3076 } 3077 } 3078 3079 dmu_tx_commit(tx); 3080 out: 3081 if (zl != NULL) 3082 zfs_rename_unlock(&zl); 3083 3084 zfs_dirent_unlock(sdl); 3085 zfs_dirent_unlock(tdl); 3086 3087 VN_RELE(ZTOV(szp)); 3088 if (tzp) 3089 VN_RELE(ZTOV(tzp)); 3090 3091 ZFS_EXIT(zfsvfs); 3092 return (error); 3093 } 3094 3095 /* 3096 * Insert the indicated symbolic reference entry into the directory. 3097 * 3098 * IN: dvp - Directory to contain new symbolic link. 3099 * link - Name for new symlink entry. 3100 * vap - Attributes of new entry. 3101 * target - Target path of new symlink. 3102 * cr - credentials of caller. 3103 * ct - caller context 3104 * flags - case flags 3105 * 3106 * RETURN: 0 if success 3107 * error code if failure 3108 * 3109 * Timestamps: 3110 * dvp - ctime|mtime updated 3111 */ 3112 /*ARGSUSED*/ 3113 static int 3114 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3115 caller_context_t *ct, int flags) 3116 { 3117 znode_t *zp, *dzp = VTOZ(dvp); 3118 zfs_dirlock_t *dl; 3119 dmu_tx_t *tx; 3120 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3121 zilog_t *zilog; 3122 int len = strlen(link); 3123 int error; 3124 int zflg = ZNEW; 3125 zfs_fuid_info_t *fuidp = NULL; 3126 3127 ASSERT(vap->va_type == VLNK); 3128 3129 ZFS_ENTER(zfsvfs); 3130 ZFS_VERIFY_ZP(dzp); 3131 zilog = zfsvfs->z_log; 3132 3133 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3134 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3135 ZFS_EXIT(zfsvfs); 3136 return (EILSEQ); 3137 } 3138 if (flags & FIGNORECASE) 3139 zflg |= ZCILOOK; 3140 top: 3141 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3142 ZFS_EXIT(zfsvfs); 3143 return (error); 3144 } 3145 3146 if (len > MAXPATHLEN) { 3147 ZFS_EXIT(zfsvfs); 3148 return (ENAMETOOLONG); 3149 } 3150 3151 /* 3152 * Attempt to lock directory; fail if entry already exists. 3153 */ 3154 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3155 if (error) { 3156 ZFS_EXIT(zfsvfs); 3157 return (error); 3158 } 3159 3160 tx = dmu_tx_create(zfsvfs->z_os); 3161 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3162 dmu_tx_hold_bonus(tx, dzp->z_id); 3163 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3164 if (dzp->z_phys->zp_flags & ZFS_INHERIT_ACE) 3165 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, SPA_MAXBLOCKSIZE); 3166 if (zfsvfs->z_fuid_obj == 0) { 3167 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT); 3168 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3169 SPA_MAXBLOCKSIZE); 3170 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, FALSE, NULL); 3171 } else { 3172 dmu_tx_hold_bonus(tx, zfsvfs->z_fuid_obj); 3173 dmu_tx_hold_write(tx, zfsvfs->z_fuid_obj, 0, 3174 SPA_MAXBLOCKSIZE); 3175 } 3176 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3177 if (error) { 3178 zfs_dirent_unlock(dl); 3179 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3180 dmu_tx_wait(tx); 3181 dmu_tx_abort(tx); 3182 goto top; 3183 } 3184 dmu_tx_abort(tx); 3185 ZFS_EXIT(zfsvfs); 3186 return (error); 3187 } 3188 3189 dmu_buf_will_dirty(dzp->z_dbuf, tx); 3190 3191 /* 3192 * Create a new object for the symlink. 3193 * Put the link content into bonus buffer if it will fit; 3194 * otherwise, store it just like any other file data. 3195 */ 3196 if (sizeof (znode_phys_t) + len <= dmu_bonus_max()) { 3197 zfs_mknode(dzp, vap, tx, cr, 0, &zp, len, NULL, &fuidp); 3198 if (len != 0) 3199 bcopy(link, zp->z_phys + 1, len); 3200 } else { 3201 dmu_buf_t *dbp; 3202 3203 zfs_mknode(dzp, vap, tx, cr, 0, &zp, 0, NULL, &fuidp); 3204 /* 3205 * Nothing can access the znode yet so no locking needed 3206 * for growing the znode's blocksize. 3207 */ 3208 zfs_grow_blocksize(zp, len, tx); 3209 3210 VERIFY(0 == dmu_buf_hold(zfsvfs->z_os, 3211 zp->z_id, 0, FTAG, &dbp)); 3212 dmu_buf_will_dirty(dbp, tx); 3213 3214 ASSERT3U(len, <=, dbp->db_size); 3215 bcopy(link, dbp->db_data, len); 3216 dmu_buf_rele(dbp, FTAG); 3217 } 3218 zp->z_phys->zp_size = len; 3219 3220 /* 3221 * Insert the new object into the directory. 3222 */ 3223 (void) zfs_link_create(dl, zp, tx, ZNEW); 3224 out: 3225 if (error == 0) { 3226 uint64_t txtype = TX_SYMLINK; 3227 if (flags & FIGNORECASE) 3228 txtype |= TX_CI; 3229 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3230 } 3231 if (fuidp) 3232 zfs_fuid_info_free(fuidp); 3233 3234 dmu_tx_commit(tx); 3235 3236 zfs_dirent_unlock(dl); 3237 3238 VN_RELE(ZTOV(zp)); 3239 3240 ZFS_EXIT(zfsvfs); 3241 return (error); 3242 } 3243 3244 /* 3245 * Return, in the buffer contained in the provided uio structure, 3246 * the symbolic path referred to by vp. 3247 * 3248 * IN: vp - vnode of symbolic link. 3249 * uoip - structure to contain the link path. 3250 * cr - credentials of caller. 3251 * ct - caller context 3252 * 3253 * OUT: uio - structure to contain the link path. 3254 * 3255 * RETURN: 0 if success 3256 * error code if failure 3257 * 3258 * Timestamps: 3259 * vp - atime updated 3260 */ 3261 /* ARGSUSED */ 3262 static int 3263 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3264 { 3265 znode_t *zp = VTOZ(vp); 3266 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3267 size_t bufsz; 3268 int error; 3269 3270 ZFS_ENTER(zfsvfs); 3271 ZFS_VERIFY_ZP(zp); 3272 3273 bufsz = (size_t)zp->z_phys->zp_size; 3274 if (bufsz + sizeof (znode_phys_t) <= zp->z_dbuf->db_size) { 3275 error = uiomove(zp->z_phys + 1, 3276 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3277 } else { 3278 dmu_buf_t *dbp; 3279 error = dmu_buf_hold(zfsvfs->z_os, zp->z_id, 0, FTAG, &dbp); 3280 if (error) { 3281 ZFS_EXIT(zfsvfs); 3282 return (error); 3283 } 3284 error = uiomove(dbp->db_data, 3285 MIN((size_t)bufsz, uio->uio_resid), UIO_READ, uio); 3286 dmu_buf_rele(dbp, FTAG); 3287 } 3288 3289 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3290 ZFS_EXIT(zfsvfs); 3291 return (error); 3292 } 3293 3294 /* 3295 * Insert a new entry into directory tdvp referencing svp. 3296 * 3297 * IN: tdvp - Directory to contain new entry. 3298 * svp - vnode of new entry. 3299 * name - name of new entry. 3300 * cr - credentials of caller. 3301 * ct - caller context 3302 * 3303 * RETURN: 0 if success 3304 * error code if failure 3305 * 3306 * Timestamps: 3307 * tdvp - ctime|mtime updated 3308 * svp - ctime updated 3309 */ 3310 /* ARGSUSED */ 3311 static int 3312 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3313 caller_context_t *ct, int flags) 3314 { 3315 znode_t *dzp = VTOZ(tdvp); 3316 znode_t *tzp, *szp; 3317 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3318 zilog_t *zilog; 3319 zfs_dirlock_t *dl; 3320 dmu_tx_t *tx; 3321 vnode_t *realvp; 3322 int error; 3323 int zf = ZNEW; 3324 uid_t owner; 3325 3326 ASSERT(tdvp->v_type == VDIR); 3327 3328 ZFS_ENTER(zfsvfs); 3329 ZFS_VERIFY_ZP(dzp); 3330 zilog = zfsvfs->z_log; 3331 3332 if (VOP_REALVP(svp, &realvp, ct) == 0) 3333 svp = realvp; 3334 3335 if (svp->v_vfsp != tdvp->v_vfsp) { 3336 ZFS_EXIT(zfsvfs); 3337 return (EXDEV); 3338 } 3339 szp = VTOZ(svp); 3340 ZFS_VERIFY_ZP(szp); 3341 3342 if (zfsvfs->z_utf8 && u8_validate(name, 3343 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3344 ZFS_EXIT(zfsvfs); 3345 return (EILSEQ); 3346 } 3347 if (flags & FIGNORECASE) 3348 zf |= ZCILOOK; 3349 3350 top: 3351 /* 3352 * We do not support links between attributes and non-attributes 3353 * because of the potential security risk of creating links 3354 * into "normal" file space in order to circumvent restrictions 3355 * imposed in attribute space. 3356 */ 3357 if ((szp->z_phys->zp_flags & ZFS_XATTR) != 3358 (dzp->z_phys->zp_flags & ZFS_XATTR)) { 3359 ZFS_EXIT(zfsvfs); 3360 return (EINVAL); 3361 } 3362 3363 /* 3364 * POSIX dictates that we return EPERM here. 3365 * Better choices include ENOTSUP or EISDIR. 3366 */ 3367 if (svp->v_type == VDIR) { 3368 ZFS_EXIT(zfsvfs); 3369 return (EPERM); 3370 } 3371 3372 zfs_fuid_map_id(zfsvfs, szp->z_phys->zp_uid, ZFS_OWNER, &owner); 3373 if (owner != crgetuid(cr) && 3374 secpolicy_basic_link(cr) != 0) { 3375 ZFS_EXIT(zfsvfs); 3376 return (EPERM); 3377 } 3378 3379 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3380 ZFS_EXIT(zfsvfs); 3381 return (error); 3382 } 3383 3384 /* 3385 * Attempt to lock directory; fail if entry already exists. 3386 */ 3387 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3388 if (error) { 3389 ZFS_EXIT(zfsvfs); 3390 return (error); 3391 } 3392 3393 tx = dmu_tx_create(zfsvfs->z_os); 3394 dmu_tx_hold_bonus(tx, szp->z_id); 3395 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3396 error = dmu_tx_assign(tx, zfsvfs->z_assign); 3397 if (error) { 3398 zfs_dirent_unlock(dl); 3399 if (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3400 dmu_tx_wait(tx); 3401 dmu_tx_abort(tx); 3402 goto top; 3403 } 3404 dmu_tx_abort(tx); 3405 ZFS_EXIT(zfsvfs); 3406 return (error); 3407 } 3408 3409 error = zfs_link_create(dl, szp, tx, 0); 3410 3411 if (error == 0) { 3412 uint64_t txtype = TX_LINK; 3413 if (flags & FIGNORECASE) 3414 txtype |= TX_CI; 3415 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3416 } 3417 3418 dmu_tx_commit(tx); 3419 3420 zfs_dirent_unlock(dl); 3421 3422 if (error == 0) { 3423 vnevent_link(svp, ct); 3424 } 3425 3426 ZFS_EXIT(zfsvfs); 3427 return (error); 3428 } 3429 3430 /* 3431 * zfs_null_putapage() is used when the file system has been force 3432 * unmounted. It just drops the pages. 3433 */ 3434 /* ARGSUSED */ 3435 static int 3436 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3437 size_t *lenp, int flags, cred_t *cr) 3438 { 3439 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3440 return (0); 3441 } 3442 3443 /* 3444 * Push a page out to disk, klustering if possible. 3445 * 3446 * IN: vp - file to push page to. 3447 * pp - page to push. 3448 * flags - additional flags. 3449 * cr - credentials of caller. 3450 * 3451 * OUT: offp - start of range pushed. 3452 * lenp - len of range pushed. 3453 * 3454 * RETURN: 0 if success 3455 * error code if failure 3456 * 3457 * NOTE: callers must have locked the page to be pushed. On 3458 * exit, the page (and all other pages in the kluster) must be 3459 * unlocked. 3460 */ 3461 /* ARGSUSED */ 3462 static int 3463 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3464 size_t *lenp, int flags, cred_t *cr) 3465 { 3466 znode_t *zp = VTOZ(vp); 3467 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3468 zilog_t *zilog = zfsvfs->z_log; 3469 dmu_tx_t *tx; 3470 rl_t *rl; 3471 u_offset_t off, koff; 3472 size_t len, klen; 3473 uint64_t filesz; 3474 int err; 3475 3476 filesz = zp->z_phys->zp_size; 3477 off = pp->p_offset; 3478 len = PAGESIZE; 3479 /* 3480 * If our blocksize is bigger than the page size, try to kluster 3481 * muiltiple pages so that we write a full block (thus avoiding 3482 * a read-modify-write). 3483 */ 3484 if (off < filesz && zp->z_blksz > PAGESIZE) { 3485 if (!ISP2(zp->z_blksz)) { 3486 /* Only one block in the file. */ 3487 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3488 koff = 0; 3489 } else { 3490 klen = zp->z_blksz; 3491 koff = P2ALIGN(off, (u_offset_t)klen); 3492 } 3493 ASSERT(koff <= filesz); 3494 if (koff + klen > filesz) 3495 klen = P2ROUNDUP(filesz - koff, (uint64_t)PAGESIZE); 3496 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 3497 } 3498 ASSERT3U(btop(len), ==, btopr(len)); 3499 top: 3500 rl = zfs_range_lock(zp, off, len, RL_WRITER); 3501 /* 3502 * Can't push pages past end-of-file. 3503 */ 3504 filesz = zp->z_phys->zp_size; 3505 if (off >= filesz) { 3506 /* ignore all pages */ 3507 err = 0; 3508 goto out; 3509 } else if (off + len > filesz) { 3510 int npages = btopr(filesz - off); 3511 page_t *trunc; 3512 3513 page_list_break(&pp, &trunc, npages); 3514 /* ignore pages past end of file */ 3515 if (trunc) 3516 pvn_write_done(trunc, flags); 3517 len = filesz - off; 3518 } 3519 3520 tx = dmu_tx_create(zfsvfs->z_os); 3521 dmu_tx_hold_write(tx, zp->z_id, off, len); 3522 dmu_tx_hold_bonus(tx, zp->z_id); 3523 err = dmu_tx_assign(tx, zfsvfs->z_assign); 3524 if (err != 0) { 3525 if (err == ERESTART && zfsvfs->z_assign == TXG_NOWAIT) { 3526 zfs_range_unlock(rl); 3527 dmu_tx_wait(tx); 3528 dmu_tx_abort(tx); 3529 err = 0; 3530 goto top; 3531 } 3532 dmu_tx_abort(tx); 3533 goto out; 3534 } 3535 3536 if (zp->z_blksz <= PAGESIZE) { 3537 caddr_t va = ppmapin(pp, PROT_READ, (caddr_t)-1); 3538 ASSERT3U(len, <=, PAGESIZE); 3539 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 3540 ppmapout(va); 3541 } else { 3542 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 3543 } 3544 3545 if (err == 0) { 3546 zfs_time_stamper(zp, CONTENT_MODIFIED, tx); 3547 zfs_log_write(zilog, tx, TX_WRITE, zp, off, len, 0); 3548 dmu_tx_commit(tx); 3549 } 3550 3551 out: 3552 zfs_range_unlock(rl); 3553 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 3554 if (offp) 3555 *offp = off; 3556 if (lenp) 3557 *lenp = len; 3558 3559 return (err); 3560 } 3561 3562 /* 3563 * Copy the portion of the file indicated from pages into the file. 3564 * The pages are stored in a page list attached to the files vnode. 3565 * 3566 * IN: vp - vnode of file to push page data to. 3567 * off - position in file to put data. 3568 * len - amount of data to write. 3569 * flags - flags to control the operation. 3570 * cr - credentials of caller. 3571 * ct - caller context. 3572 * 3573 * RETURN: 0 if success 3574 * error code if failure 3575 * 3576 * Timestamps: 3577 * vp - ctime|mtime updated 3578 */ 3579 /*ARGSUSED*/ 3580 static int 3581 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 3582 caller_context_t *ct) 3583 { 3584 znode_t *zp = VTOZ(vp); 3585 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3586 page_t *pp; 3587 size_t io_len; 3588 u_offset_t io_off; 3589 uint64_t filesz; 3590 int error = 0; 3591 3592 ZFS_ENTER(zfsvfs); 3593 ZFS_VERIFY_ZP(zp); 3594 3595 if (len == 0) { 3596 /* 3597 * Search the entire vp list for pages >= off. 3598 */ 3599 error = pvn_vplist_dirty(vp, (u_offset_t)off, zfs_putapage, 3600 flags, cr); 3601 goto out; 3602 } 3603 3604 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3605 if (off > filesz) { 3606 /* past end of file */ 3607 ZFS_EXIT(zfsvfs); 3608 return (0); 3609 } 3610 3611 len = MIN(len, filesz - off); 3612 3613 for (io_off = off; io_off < off + len; io_off += io_len) { 3614 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 3615 pp = page_lookup(vp, io_off, 3616 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 3617 } else { 3618 pp = page_lookup_nowait(vp, io_off, 3619 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 3620 } 3621 3622 if (pp != NULL && pvn_getdirty(pp, flags)) { 3623 int err; 3624 3625 /* 3626 * Found a dirty page to push 3627 */ 3628 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 3629 if (err) 3630 error = err; 3631 } else { 3632 io_len = PAGESIZE; 3633 } 3634 } 3635 out: 3636 if ((flags & B_ASYNC) == 0) 3637 zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id); 3638 ZFS_EXIT(zfsvfs); 3639 return (error); 3640 } 3641 3642 /*ARGSUSED*/ 3643 void 3644 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 3645 { 3646 znode_t *zp = VTOZ(vp); 3647 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3648 int error; 3649 3650 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 3651 if (zp->z_dbuf == NULL) { 3652 /* 3653 * This fs has been unmounted, or we did 3654 * zfs_suspend/resume and it no longer exists. 3655 */ 3656 if (vn_has_cached_data(vp)) { 3657 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 3658 B_INVAL, cr); 3659 } 3660 3661 mutex_enter(&zp->z_lock); 3662 vp->v_count = 0; /* count arrives as 1 */ 3663 mutex_exit(&zp->z_lock); 3664 zfs_znode_free(zp); 3665 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3666 VFS_RELE(zfsvfs->z_vfs); 3667 return; 3668 } 3669 3670 /* 3671 * Attempt to push any data in the page cache. If this fails 3672 * we will get kicked out later in zfs_zinactive(). 3673 */ 3674 if (vn_has_cached_data(vp)) { 3675 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 3676 cr); 3677 } 3678 3679 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 3680 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 3681 3682 dmu_tx_hold_bonus(tx, zp->z_id); 3683 error = dmu_tx_assign(tx, TXG_WAIT); 3684 if (error) { 3685 dmu_tx_abort(tx); 3686 } else { 3687 dmu_buf_will_dirty(zp->z_dbuf, tx); 3688 mutex_enter(&zp->z_lock); 3689 zp->z_atime_dirty = 0; 3690 mutex_exit(&zp->z_lock); 3691 dmu_tx_commit(tx); 3692 } 3693 } 3694 3695 zfs_zinactive(zp); 3696 rw_exit(&zfsvfs->z_teardown_inactive_lock); 3697 } 3698 3699 /* 3700 * Bounds-check the seek operation. 3701 * 3702 * IN: vp - vnode seeking within 3703 * ooff - old file offset 3704 * noffp - pointer to new file offset 3705 * ct - caller context 3706 * 3707 * RETURN: 0 if success 3708 * EINVAL if new offset invalid 3709 */ 3710 /* ARGSUSED */ 3711 static int 3712 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 3713 caller_context_t *ct) 3714 { 3715 if (vp->v_type == VDIR) 3716 return (0); 3717 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 3718 } 3719 3720 /* 3721 * Pre-filter the generic locking function to trap attempts to place 3722 * a mandatory lock on a memory mapped file. 3723 */ 3724 static int 3725 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 3726 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 3727 { 3728 znode_t *zp = VTOZ(vp); 3729 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3730 int error; 3731 3732 ZFS_ENTER(zfsvfs); 3733 ZFS_VERIFY_ZP(zp); 3734 3735 /* 3736 * We are following the UFS semantics with respect to mapcnt 3737 * here: If we see that the file is mapped already, then we will 3738 * return an error, but we don't worry about races between this 3739 * function and zfs_map(). 3740 */ 3741 if (zp->z_mapcnt > 0 && MANDMODE((mode_t)zp->z_phys->zp_mode)) { 3742 ZFS_EXIT(zfsvfs); 3743 return (EAGAIN); 3744 } 3745 error = fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct); 3746 ZFS_EXIT(zfsvfs); 3747 return (error); 3748 } 3749 3750 /* 3751 * If we can't find a page in the cache, we will create a new page 3752 * and fill it with file data. For efficiency, we may try to fill 3753 * multiple pages at once (klustering). 3754 */ 3755 static int 3756 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 3757 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 3758 { 3759 znode_t *zp = VTOZ(vp); 3760 page_t *pp, *cur_pp; 3761 objset_t *os = zp->z_zfsvfs->z_os; 3762 caddr_t va; 3763 u_offset_t io_off, total; 3764 uint64_t oid = zp->z_id; 3765 size_t io_len; 3766 uint64_t filesz; 3767 int err; 3768 3769 /* 3770 * If we are only asking for a single page don't bother klustering. 3771 */ 3772 filesz = zp->z_phys->zp_size; /* get consistent copy of zp_size */ 3773 if (off >= filesz) 3774 return (EFAULT); 3775 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 3776 io_off = off; 3777 io_len = PAGESIZE; 3778 pp = page_create_va(vp, io_off, io_len, PG_WAIT, seg, addr); 3779 } else { 3780 /* 3781 * Try to fill a kluster of pages (a blocks worth). 3782 */ 3783 size_t klen; 3784 u_offset_t koff; 3785 3786 if (!ISP2(zp->z_blksz)) { 3787 /* Only one block in the file. */ 3788 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 3789 koff = 0; 3790 } else { 3791 /* 3792 * It would be ideal to align our offset to the 3793 * blocksize but doing so has resulted in some 3794 * strange application crashes. For now, we 3795 * leave the offset as is and only adjust the 3796 * length if we are off the end of the file. 3797 */ 3798 koff = off; 3799 klen = plsz; 3800 } 3801 ASSERT(koff <= filesz); 3802 if (koff + klen > filesz) 3803 klen = P2ROUNDUP(filesz, (uint64_t)PAGESIZE) - koff; 3804 ASSERT3U(off, >=, koff); 3805 ASSERT3U(off, <, koff + klen); 3806 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 3807 &io_len, koff, klen, 0); 3808 } 3809 if (pp == NULL) { 3810 /* 3811 * Some other thread entered the page before us. 3812 * Return to zfs_getpage to retry the lookup. 3813 */ 3814 *pl = NULL; 3815 return (0); 3816 } 3817 3818 /* 3819 * Fill the pages in the kluster. 3820 */ 3821 cur_pp = pp; 3822 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 3823 ASSERT3U(io_off, ==, cur_pp->p_offset); 3824 va = ppmapin(cur_pp, PROT_READ | PROT_WRITE, (caddr_t)-1); 3825 err = dmu_read(os, oid, io_off, PAGESIZE, va); 3826 ppmapout(va); 3827 if (err) { 3828 /* On error, toss the entire kluster */ 3829 pvn_read_done(pp, B_ERROR); 3830 return (err); 3831 } 3832 cur_pp = cur_pp->p_next; 3833 } 3834 out: 3835 /* 3836 * Fill in the page list array from the kluster. If 3837 * there are too many pages in the kluster, return 3838 * as many pages as possible starting from the desired 3839 * offset `off'. 3840 * NOTE: the page list will always be null terminated. 3841 */ 3842 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 3843 3844 return (0); 3845 } 3846 3847 /* 3848 * Return pointers to the pages for the file region [off, off + len] 3849 * in the pl array. If plsz is greater than len, this function may 3850 * also return page pointers from before or after the specified 3851 * region (i.e. some region [off', off' + plsz]). These additional 3852 * pages are only returned if they are already in the cache, or were 3853 * created as part of a klustered read. 3854 * 3855 * IN: vp - vnode of file to get data from. 3856 * off - position in file to get data from. 3857 * len - amount of data to retrieve. 3858 * plsz - length of provided page list. 3859 * seg - segment to obtain pages for. 3860 * addr - virtual address of fault. 3861 * rw - mode of created pages. 3862 * cr - credentials of caller. 3863 * ct - caller context. 3864 * 3865 * OUT: protp - protection mode of created pages. 3866 * pl - list of pages created. 3867 * 3868 * RETURN: 0 if success 3869 * error code if failure 3870 * 3871 * Timestamps: 3872 * vp - atime updated 3873 */ 3874 /* ARGSUSED */ 3875 static int 3876 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 3877 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 3878 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 3879 { 3880 znode_t *zp = VTOZ(vp); 3881 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3882 page_t *pp, **pl0 = pl; 3883 int need_unlock = 0, err = 0; 3884 offset_t orig_off; 3885 3886 ZFS_ENTER(zfsvfs); 3887 ZFS_VERIFY_ZP(zp); 3888 3889 if (protp) 3890 *protp = PROT_ALL; 3891 3892 /* no faultahead (for now) */ 3893 if (pl == NULL) { 3894 ZFS_EXIT(zfsvfs); 3895 return (0); 3896 } 3897 3898 /* can't fault past EOF */ 3899 if (off >= zp->z_phys->zp_size) { 3900 ZFS_EXIT(zfsvfs); 3901 return (EFAULT); 3902 } 3903 orig_off = off; 3904 3905 /* 3906 * If we already own the lock, then we must be page faulting 3907 * in the middle of a write to this file (i.e., we are writing 3908 * to this file using data from a mapped region of the file). 3909 */ 3910 if (rw_owner(&zp->z_map_lock) != curthread) { 3911 rw_enter(&zp->z_map_lock, RW_WRITER); 3912 need_unlock = TRUE; 3913 } 3914 3915 /* 3916 * Loop through the requested range [off, off + len] looking 3917 * for pages. If we don't find a page, we will need to create 3918 * a new page and fill it with data from the file. 3919 */ 3920 while (len > 0) { 3921 if (plsz < PAGESIZE) 3922 break; 3923 if (pp = page_lookup(vp, off, SE_SHARED)) { 3924 *pl++ = pp; 3925 off += PAGESIZE; 3926 addr += PAGESIZE; 3927 len -= PAGESIZE; 3928 plsz -= PAGESIZE; 3929 } else { 3930 err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw); 3931 if (err) 3932 goto out; 3933 /* 3934 * klustering may have changed our region 3935 * to be block aligned. 3936 */ 3937 if (((pp = *pl) != 0) && (off != pp->p_offset)) { 3938 int delta = off - pp->p_offset; 3939 len += delta; 3940 off -= delta; 3941 addr -= delta; 3942 } 3943 while (*pl) { 3944 pl++; 3945 off += PAGESIZE; 3946 addr += PAGESIZE; 3947 plsz -= PAGESIZE; 3948 if (len > PAGESIZE) 3949 len -= PAGESIZE; 3950 else 3951 len = 0; 3952 } 3953 } 3954 } 3955 3956 /* 3957 * Fill out the page array with any pages already in the cache. 3958 */ 3959 while (plsz > 0) { 3960 pp = page_lookup_nowait(vp, off, SE_SHARED); 3961 if (pp == NULL) 3962 break; 3963 *pl++ = pp; 3964 off += PAGESIZE; 3965 plsz -= PAGESIZE; 3966 } 3967 3968 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3969 out: 3970 /* 3971 * We can't grab the range lock for the page as reader which would 3972 * stop truncation as this leads to deadlock. So we need to recheck 3973 * the file size. 3974 */ 3975 if (orig_off >= zp->z_phys->zp_size) 3976 err = EFAULT; 3977 if (err) { 3978 /* 3979 * Release any pages we have previously locked. 3980 */ 3981 while (pl > pl0) 3982 page_unlock(*--pl); 3983 } 3984 3985 *pl = NULL; 3986 3987 if (need_unlock) 3988 rw_exit(&zp->z_map_lock); 3989 3990 ZFS_EXIT(zfsvfs); 3991 return (err); 3992 } 3993 3994 /* 3995 * Request a memory map for a section of a file. This code interacts 3996 * with common code and the VM system as follows: 3997 * 3998 * common code calls mmap(), which ends up in smmap_common() 3999 * 4000 * this calls VOP_MAP(), which takes you into (say) zfs 4001 * 4002 * zfs_map() calls as_map(), passing segvn_create() as the callback 4003 * 4004 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4005 * 4006 * zfs_addmap() updates z_mapcnt 4007 */ 4008 /*ARGSUSED*/ 4009 static int 4010 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4011 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4012 caller_context_t *ct) 4013 { 4014 znode_t *zp = VTOZ(vp); 4015 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4016 segvn_crargs_t vn_a; 4017 int error; 4018 4019 if ((prot & PROT_WRITE) && 4020 (zp->z_phys->zp_flags & (ZFS_IMMUTABLE | ZFS_READONLY | 4021 ZFS_APPENDONLY))) 4022 return (EPERM); 4023 4024 ZFS_ENTER(zfsvfs); 4025 ZFS_VERIFY_ZP(zp); 4026 4027 if (vp->v_flag & VNOMAP) { 4028 ZFS_EXIT(zfsvfs); 4029 return (ENOSYS); 4030 } 4031 4032 if (off < 0 || len > MAXOFFSET_T - off) { 4033 ZFS_EXIT(zfsvfs); 4034 return (ENXIO); 4035 } 4036 4037 if (vp->v_type != VREG) { 4038 ZFS_EXIT(zfsvfs); 4039 return (ENODEV); 4040 } 4041 4042 /* 4043 * If file is locked, disallow mapping. 4044 */ 4045 if (MANDMODE((mode_t)zp->z_phys->zp_mode) && vn_has_flocks(vp)) { 4046 ZFS_EXIT(zfsvfs); 4047 return (EAGAIN); 4048 } 4049 4050 as_rangelock(as); 4051 if ((flags & MAP_FIXED) == 0) { 4052 map_addr(addrp, len, off, 1, flags); 4053 if (*addrp == NULL) { 4054 as_rangeunlock(as); 4055 ZFS_EXIT(zfsvfs); 4056 return (ENOMEM); 4057 } 4058 } else { 4059 /* 4060 * User specified address - blow away any previous mappings 4061 */ 4062 (void) as_unmap(as, *addrp, len); 4063 } 4064 4065 vn_a.vp = vp; 4066 vn_a.offset = (u_offset_t)off; 4067 vn_a.type = flags & MAP_TYPE; 4068 vn_a.prot = prot; 4069 vn_a.maxprot = maxprot; 4070 vn_a.cred = cr; 4071 vn_a.amp = NULL; 4072 vn_a.flags = flags & ~MAP_TYPE; 4073 vn_a.szc = 0; 4074 vn_a.lgrp_mem_policy_flags = 0; 4075 4076 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4077 4078 as_rangeunlock(as); 4079 ZFS_EXIT(zfsvfs); 4080 return (error); 4081 } 4082 4083 /* ARGSUSED */ 4084 static int 4085 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4086 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4087 caller_context_t *ct) 4088 { 4089 uint64_t pages = btopr(len); 4090 4091 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4092 return (0); 4093 } 4094 4095 /* 4096 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4097 * more accurate mtime for the associated file. Since we don't have a way of 4098 * detecting when the data was actually modified, we have to resort to 4099 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4100 * last page is pushed. The problem occurs when the msync() call is omitted, 4101 * which by far the most common case: 4102 * 4103 * open() 4104 * mmap() 4105 * <modify memory> 4106 * munmap() 4107 * close() 4108 * <time lapse> 4109 * putpage() via fsflush 4110 * 4111 * If we wait until fsflush to come along, we can have a modification time that 4112 * is some arbitrary point in the future. In order to prevent this in the 4113 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4114 * torn down. 4115 */ 4116 /* ARGSUSED */ 4117 static int 4118 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4119 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4120 caller_context_t *ct) 4121 { 4122 uint64_t pages = btopr(len); 4123 4124 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4125 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4126 4127 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4128 vn_has_cached_data(vp)) 4129 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4130 4131 return (0); 4132 } 4133 4134 /* 4135 * Free or allocate space in a file. Currently, this function only 4136 * supports the `F_FREESP' command. However, this command is somewhat 4137 * misnamed, as its functionality includes the ability to allocate as 4138 * well as free space. 4139 * 4140 * IN: vp - vnode of file to free data in. 4141 * cmd - action to take (only F_FREESP supported). 4142 * bfp - section of file to free/alloc. 4143 * flag - current file open mode flags. 4144 * offset - current file offset. 4145 * cr - credentials of caller [UNUSED]. 4146 * ct - caller context. 4147 * 4148 * RETURN: 0 if success 4149 * error code if failure 4150 * 4151 * Timestamps: 4152 * vp - ctime|mtime updated 4153 */ 4154 /* ARGSUSED */ 4155 static int 4156 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4157 offset_t offset, cred_t *cr, caller_context_t *ct) 4158 { 4159 znode_t *zp = VTOZ(vp); 4160 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4161 uint64_t off, len; 4162 int error; 4163 4164 ZFS_ENTER(zfsvfs); 4165 ZFS_VERIFY_ZP(zp); 4166 4167 top: 4168 if (cmd != F_FREESP) { 4169 ZFS_EXIT(zfsvfs); 4170 return (EINVAL); 4171 } 4172 4173 if (error = convoff(vp, bfp, 0, offset)) { 4174 ZFS_EXIT(zfsvfs); 4175 return (error); 4176 } 4177 4178 if (bfp->l_len < 0) { 4179 ZFS_EXIT(zfsvfs); 4180 return (EINVAL); 4181 } 4182 4183 off = bfp->l_start; 4184 len = bfp->l_len; /* 0 means from off to end of file */ 4185 4186 do { 4187 error = zfs_freesp(zp, off, len, flag, TRUE); 4188 /* NB: we already did dmu_tx_wait() if necessary */ 4189 } while (error == ERESTART && zfsvfs->z_assign == TXG_NOWAIT); 4190 4191 ZFS_EXIT(zfsvfs); 4192 return (error); 4193 } 4194 4195 /*ARGSUSED*/ 4196 static int 4197 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4198 { 4199 znode_t *zp = VTOZ(vp); 4200 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4201 uint32_t gen; 4202 uint64_t object = zp->z_id; 4203 zfid_short_t *zfid; 4204 int size, i; 4205 4206 ZFS_ENTER(zfsvfs); 4207 ZFS_VERIFY_ZP(zp); 4208 gen = (uint32_t)zp->z_gen; 4209 4210 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4211 if (fidp->fid_len < size) { 4212 fidp->fid_len = size; 4213 ZFS_EXIT(zfsvfs); 4214 return (ENOSPC); 4215 } 4216 4217 zfid = (zfid_short_t *)fidp; 4218 4219 zfid->zf_len = size; 4220 4221 for (i = 0; i < sizeof (zfid->zf_object); i++) 4222 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4223 4224 /* Must have a non-zero generation number to distinguish from .zfs */ 4225 if (gen == 0) 4226 gen = 1; 4227 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4228 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4229 4230 if (size == LONG_FID_LEN) { 4231 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4232 zfid_long_t *zlfid; 4233 4234 zlfid = (zfid_long_t *)fidp; 4235 4236 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4237 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4238 4239 /* XXX - this should be the generation number for the objset */ 4240 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4241 zlfid->zf_setgen[i] = 0; 4242 } 4243 4244 ZFS_EXIT(zfsvfs); 4245 return (0); 4246 } 4247 4248 static int 4249 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4250 caller_context_t *ct) 4251 { 4252 znode_t *zp, *xzp; 4253 zfsvfs_t *zfsvfs; 4254 zfs_dirlock_t *dl; 4255 int error; 4256 4257 switch (cmd) { 4258 case _PC_LINK_MAX: 4259 *valp = ULONG_MAX; 4260 return (0); 4261 4262 case _PC_FILESIZEBITS: 4263 *valp = 64; 4264 return (0); 4265 4266 case _PC_XATTR_EXISTS: 4267 zp = VTOZ(vp); 4268 zfsvfs = zp->z_zfsvfs; 4269 ZFS_ENTER(zfsvfs); 4270 ZFS_VERIFY_ZP(zp); 4271 *valp = 0; 4272 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4273 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4274 if (error == 0) { 4275 zfs_dirent_unlock(dl); 4276 if (!zfs_dirempty(xzp)) 4277 *valp = 1; 4278 VN_RELE(ZTOV(xzp)); 4279 } else if (error == ENOENT) { 4280 /* 4281 * If there aren't extended attributes, it's the 4282 * same as having zero of them. 4283 */ 4284 error = 0; 4285 } 4286 ZFS_EXIT(zfsvfs); 4287 return (error); 4288 4289 case _PC_SATTR_ENABLED: 4290 case _PC_SATTR_EXISTS: 4291 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_XVATTR) && 4292 (vp->v_type == VREG || vp->v_type == VDIR); 4293 return (0); 4294 4295 case _PC_ACL_ENABLED: 4296 *valp = _ACL_ACE_ENABLED; 4297 return (0); 4298 4299 case _PC_MIN_HOLE_SIZE: 4300 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4301 return (0); 4302 4303 default: 4304 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4305 } 4306 } 4307 4308 /*ARGSUSED*/ 4309 static int 4310 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4311 caller_context_t *ct) 4312 { 4313 znode_t *zp = VTOZ(vp); 4314 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4315 int error; 4316 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4317 4318 ZFS_ENTER(zfsvfs); 4319 ZFS_VERIFY_ZP(zp); 4320 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4321 ZFS_EXIT(zfsvfs); 4322 4323 return (error); 4324 } 4325 4326 /*ARGSUSED*/ 4327 static int 4328 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4329 caller_context_t *ct) 4330 { 4331 znode_t *zp = VTOZ(vp); 4332 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4333 int error; 4334 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4335 4336 ZFS_ENTER(zfsvfs); 4337 ZFS_VERIFY_ZP(zp); 4338 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4339 ZFS_EXIT(zfsvfs); 4340 return (error); 4341 } 4342 4343 /* 4344 * Predeclare these here so that the compiler assumes that 4345 * this is an "old style" function declaration that does 4346 * not include arguments => we won't get type mismatch errors 4347 * in the initializations that follow. 4348 */ 4349 static int zfs_inval(); 4350 static int zfs_isdir(); 4351 4352 static int 4353 zfs_inval() 4354 { 4355 return (EINVAL); 4356 } 4357 4358 static int 4359 zfs_isdir() 4360 { 4361 return (EISDIR); 4362 } 4363 /* 4364 * Directory vnode operations template 4365 */ 4366 vnodeops_t *zfs_dvnodeops; 4367 const fs_operation_def_t zfs_dvnodeops_template[] = { 4368 VOPNAME_OPEN, { .vop_open = zfs_open }, 4369 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4370 VOPNAME_READ, { .error = zfs_isdir }, 4371 VOPNAME_WRITE, { .error = zfs_isdir }, 4372 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4373 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4374 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4375 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4376 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4377 VOPNAME_CREATE, { .vop_create = zfs_create }, 4378 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4379 VOPNAME_LINK, { .vop_link = zfs_link }, 4380 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4381 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 4382 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4383 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4384 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 4385 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4386 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4387 VOPNAME_FID, { .vop_fid = zfs_fid }, 4388 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4389 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4390 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4391 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4392 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4393 NULL, NULL 4394 }; 4395 4396 /* 4397 * Regular file vnode operations template 4398 */ 4399 vnodeops_t *zfs_fvnodeops; 4400 const fs_operation_def_t zfs_fvnodeops_template[] = { 4401 VOPNAME_OPEN, { .vop_open = zfs_open }, 4402 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4403 VOPNAME_READ, { .vop_read = zfs_read }, 4404 VOPNAME_WRITE, { .vop_write = zfs_write }, 4405 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4406 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4407 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4408 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4409 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4410 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4411 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4412 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4413 VOPNAME_FID, { .vop_fid = zfs_fid }, 4414 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4415 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 4416 VOPNAME_SPACE, { .vop_space = zfs_space }, 4417 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 4418 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 4419 VOPNAME_MAP, { .vop_map = zfs_map }, 4420 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 4421 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 4422 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4423 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4424 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4425 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4426 NULL, NULL 4427 }; 4428 4429 /* 4430 * Symbolic link vnode operations template 4431 */ 4432 vnodeops_t *zfs_symvnodeops; 4433 const fs_operation_def_t zfs_symvnodeops_template[] = { 4434 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4435 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4436 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4437 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4438 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 4439 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4440 VOPNAME_FID, { .vop_fid = zfs_fid }, 4441 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4442 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4443 NULL, NULL 4444 }; 4445 4446 /* 4447 * Extended attribute directory vnode operations template 4448 * This template is identical to the directory vnodes 4449 * operation template except for restricted operations: 4450 * VOP_MKDIR() 4451 * VOP_SYMLINK() 4452 * Note that there are other restrictions embedded in: 4453 * zfs_create() - restrict type to VREG 4454 * zfs_link() - no links into/out of attribute space 4455 * zfs_rename() - no moves into/out of attribute space 4456 */ 4457 vnodeops_t *zfs_xdvnodeops; 4458 const fs_operation_def_t zfs_xdvnodeops_template[] = { 4459 VOPNAME_OPEN, { .vop_open = zfs_open }, 4460 VOPNAME_CLOSE, { .vop_close = zfs_close }, 4461 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 4462 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 4463 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 4464 VOPNAME_ACCESS, { .vop_access = zfs_access }, 4465 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 4466 VOPNAME_CREATE, { .vop_create = zfs_create }, 4467 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 4468 VOPNAME_LINK, { .vop_link = zfs_link }, 4469 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 4470 VOPNAME_MKDIR, { .error = zfs_inval }, 4471 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 4472 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 4473 VOPNAME_SYMLINK, { .error = zfs_inval }, 4474 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 4475 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4476 VOPNAME_FID, { .vop_fid = zfs_fid }, 4477 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 4478 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4479 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 4480 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 4481 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 4482 NULL, NULL 4483 }; 4484 4485 /* 4486 * Error vnode operations template 4487 */ 4488 vnodeops_t *zfs_evnodeops; 4489 const fs_operation_def_t zfs_evnodeops_template[] = { 4490 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 4491 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 4492 NULL, NULL 4493 }; 4494