xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 2edb3dcc4f69d09d0b5a60ef77640285ed90e8b5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
81 
82 /*
83  * Programming rules.
84  *
85  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
86  * properly lock its in-core state, create a DMU transaction, do the work,
87  * record this work in the intent log (ZIL), commit the DMU transaction,
88  * and wait for the intent log to commit if it is a synchronous operation.
89  * Moreover, the vnode ops must work in both normal and log replay context.
90  * The ordering of events is important to avoid deadlocks and references
91  * to freed memory.  The example below illustrates the following Big Rules:
92  *
93  *  (1) A check must be made in each zfs thread for a mounted file system.
94  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
95  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
96  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
97  *      can return EIO from the calling function.
98  *
99  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
100  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
101  *	First, if it's the last reference, the vnode/znode
102  *	can be freed, so the zp may point to freed memory.  Second, the last
103  *	reference will call zfs_zinactive(), which may induce a lot of work --
104  *	pushing cached pages (which acquires range locks) and syncing out
105  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
106  *	which could deadlock the system if you were already holding one.
107  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
108  *
109  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
110  *	as they can span dmu_tx_assign() calls.
111  *
112  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113  *	This is critical because we don't want to block while holding locks.
114  *	Note, in particular, that if a lock is sometimes acquired before
115  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
116  *	use a non-blocking assign can deadlock the system.  The scenario:
117  *
118  *	Thread A has grabbed a lock before calling dmu_tx_assign().
119  *	Thread B is in an already-assigned tx, and blocks for this lock.
120  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121  *	forever, because the previous txg can't quiesce until B's tx commits.
122  *
123  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124  *	then drop all locks, call dmu_tx_wait(), and try again.
125  *
126  *  (5)	If the operation succeeded, generate the intent log entry for it
127  *	before dropping locks.  This ensures that the ordering of events
128  *	in the intent log matches the order in which they actually occurred.
129  *      During ZIL replay the zfs_log_* functions will update the sequence
130  *	number to indicate the zil transaction has replayed.
131  *
132  *  (6)	At the end of each vnode op, the DMU tx must always commit,
133  *	regardless of whether there were any errors.
134  *
135  *  (7)	After dropping all locks, invoke zil_commit(zilog, foid)
136  *	to ensure that synchronous semantics are provided when necessary.
137  *
138  * In general, this is how things should be ordered in each vnode op:
139  *
140  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
141  * top:
142  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
143  *	rw_enter(...);			// grab any other locks you need
144  *	tx = dmu_tx_create(...);	// get DMU tx
145  *	dmu_tx_hold_*();		// hold each object you might modify
146  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
147  *	if (error) {
148  *		rw_exit(...);		// drop locks
149  *		zfs_dirent_unlock(dl);	// unlock directory entry
150  *		VN_RELE(...);		// release held vnodes
151  *		if (error == ERESTART) {
152  *			dmu_tx_wait(tx);
153  *			dmu_tx_abort(tx);
154  *			goto top;
155  *		}
156  *		dmu_tx_abort(tx);	// abort DMU tx
157  *		ZFS_EXIT(zfsvfs);	// finished in zfs
158  *		return (error);		// really out of space
159  *	}
160  *	error = do_real_work();		// do whatever this VOP does
161  *	if (error == 0)
162  *		zfs_log_*(...);		// on success, make ZIL entry
163  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
164  *	rw_exit(...);			// drop locks
165  *	zfs_dirent_unlock(dl);		// unlock directory entry
166  *	VN_RELE(...);			// release held vnodes
167  *	zil_commit(zilog, foid);	// synchronous when necessary
168  *	ZFS_EXIT(zfsvfs);		// finished in zfs
169  *	return (error);			// done, report error
170  */
171 
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
175 {
176 	znode_t	*zp = VTOZ(*vpp);
177 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
178 
179 	ZFS_ENTER(zfsvfs);
180 	ZFS_VERIFY_ZP(zp);
181 
182 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 	    ((flag & FAPPEND) == 0)) {
184 		ZFS_EXIT(zfsvfs);
185 		return (EPERM);
186 	}
187 
188 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 	    ZTOV(zp)->v_type == VREG &&
190 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 		if (fs_vscan(*vpp, cr, 0) != 0) {
192 			ZFS_EXIT(zfsvfs);
193 			return (EACCES);
194 		}
195 	}
196 
197 	/* Keep a count of the synchronous opens in the znode */
198 	if (flag & (FSYNC | FDSYNC))
199 		atomic_inc_32(&zp->z_sync_cnt);
200 
201 	ZFS_EXIT(zfsvfs);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208     caller_context_t *ct)
209 {
210 	znode_t	*zp = VTOZ(vp);
211 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
212 
213 	/*
214 	 * Clean up any locks held by this process on the vp.
215 	 */
216 	cleanlocks(vp, ddi_get_pid(), 0);
217 	cleanshares(vp, ddi_get_pid());
218 
219 	ZFS_ENTER(zfsvfs);
220 	ZFS_VERIFY_ZP(zp);
221 
222 	/* Decrement the synchronous opens in the znode */
223 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 		atomic_dec_32(&zp->z_sync_cnt);
225 
226 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 	    ZTOV(zp)->v_type == VREG &&
228 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 		VERIFY(fs_vscan(vp, cr, 1) == 0);
230 
231 	ZFS_EXIT(zfsvfs);
232 	return (0);
233 }
234 
235 /*
236  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
238  */
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
241 {
242 	znode_t	*zp = VTOZ(vp);
243 	uint64_t noff = (uint64_t)*off; /* new offset */
244 	uint64_t file_sz;
245 	int error;
246 	boolean_t hole;
247 
248 	file_sz = zp->z_size;
249 	if (noff >= file_sz)  {
250 		return (ENXIO);
251 	}
252 
253 	if (cmd == _FIO_SEEK_HOLE)
254 		hole = B_TRUE;
255 	else
256 		hole = B_FALSE;
257 
258 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
259 
260 	/* end of file? */
261 	if ((error == ESRCH) || (noff > file_sz)) {
262 		/*
263 		 * Handle the virtual hole at the end of file.
264 		 */
265 		if (hole) {
266 			*off = file_sz;
267 			return (0);
268 		}
269 		return (ENXIO);
270 	}
271 
272 	if (noff < *off)
273 		return (error);
274 	*off = noff;
275 	return (error);
276 }
277 
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281     int *rvalp, caller_context_t *ct)
282 {
283 	offset_t off;
284 	int error;
285 	zfsvfs_t *zfsvfs;
286 	znode_t *zp;
287 
288 	switch (com) {
289 	case _FIOFFS:
290 		return (zfs_sync(vp->v_vfsp, 0, cred));
291 
292 		/*
293 		 * The following two ioctls are used by bfu.  Faking out,
294 		 * necessary to avoid bfu errors.
295 		 */
296 	case _FIOGDIO:
297 	case _FIOSDIO:
298 		return (0);
299 
300 	case _FIO_SEEK_DATA:
301 	case _FIO_SEEK_HOLE:
302 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 			return (EFAULT);
304 
305 		zp = VTOZ(vp);
306 		zfsvfs = zp->z_zfsvfs;
307 		ZFS_ENTER(zfsvfs);
308 		ZFS_VERIFY_ZP(zp);
309 
310 		/* offset parameter is in/out */
311 		error = zfs_holey(vp, com, &off);
312 		ZFS_EXIT(zfsvfs);
313 		if (error)
314 			return (error);
315 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 			return (EFAULT);
317 		return (0);
318 	}
319 	return (ENOTTY);
320 }
321 
322 /*
323  * Utility functions to map and unmap a single physical page.  These
324  * are used to manage the mappable copies of ZFS file data, and therefore
325  * do not update ref/mod bits.
326  */
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
329 {
330 	if (kpm_enable)
331 		return (hat_kpm_mapin(pp, 0));
332 	ASSERT(rw == S_READ || rw == S_WRITE);
333 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 	    (caddr_t)-1));
335 }
336 
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
339 {
340 	if (kpm_enable) {
341 		hat_kpm_mapout(pp, 0, addr);
342 	} else {
343 		ppmapout(addr);
344 	}
345 }
346 
347 /*
348  * When a file is memory mapped, we must keep the IO data synchronized
349  * between the DMU cache and the memory mapped pages.  What this means:
350  *
351  * On Write:	If we find a memory mapped page, we write to *both*
352  *		the page and the dmu buffer.
353  */
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
356 {
357 	int64_t	off;
358 
359 	off = start & PAGEOFFSET;
360 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 		page_t *pp;
362 		uint64_t nbytes = MIN(PAGESIZE - off, len);
363 
364 		if (pp = page_lookup(vp, start, SE_SHARED)) {
365 			caddr_t va;
366 
367 			va = zfs_map_page(pp, S_WRITE);
368 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
369 			    DMU_READ_PREFETCH);
370 			zfs_unmap_page(pp, va);
371 			page_unlock(pp);
372 		}
373 		len -= nbytes;
374 		off = 0;
375 	}
376 }
377 
378 /*
379  * When a file is memory mapped, we must keep the IO data synchronized
380  * between the DMU cache and the memory mapped pages.  What this means:
381  *
382  * On Read:	We "read" preferentially from memory mapped pages,
383  *		else we default from the dmu buffer.
384  *
385  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386  *	the file is memory mapped.
387  */
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
390 {
391 	znode_t *zp = VTOZ(vp);
392 	objset_t *os = zp->z_zfsvfs->z_os;
393 	int64_t	start, off;
394 	int len = nbytes;
395 	int error = 0;
396 
397 	start = uio->uio_loffset;
398 	off = start & PAGEOFFSET;
399 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 		page_t *pp;
401 		uint64_t bytes = MIN(PAGESIZE - off, len);
402 
403 		if (pp = page_lookup(vp, start, SE_SHARED)) {
404 			caddr_t va;
405 
406 			va = zfs_map_page(pp, S_READ);
407 			error = uiomove(va + off, bytes, UIO_READ, uio);
408 			zfs_unmap_page(pp, va);
409 			page_unlock(pp);
410 		} else {
411 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
412 		}
413 		len -= bytes;
414 		off = 0;
415 		if (error)
416 			break;
417 	}
418 	return (error);
419 }
420 
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422 
423 /*
424  * Read bytes from specified file into supplied buffer.
425  *
426  *	IN:	vp	- vnode of file to be read from.
427  *		uio	- structure supplying read location, range info,
428  *			  and return buffer.
429  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
430  *		cr	- credentials of caller.
431  *		ct	- caller context
432  *
433  *	OUT:	uio	- updated offset and range, buffer filled.
434  *
435  *	RETURN:	0 if success
436  *		error code if failure
437  *
438  * Side Effects:
439  *	vp - atime updated if byte count > 0
440  */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 	znode_t		*zp = VTOZ(vp);
446 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
447 	objset_t	*os;
448 	ssize_t		n, nbytes;
449 	int		error;
450 	rl_t		*rl;
451 	xuio_t		*xuio = NULL;
452 
453 	ZFS_ENTER(zfsvfs);
454 	ZFS_VERIFY_ZP(zp);
455 	os = zfsvfs->z_os;
456 
457 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 		ZFS_EXIT(zfsvfs);
459 		return (EACCES);
460 	}
461 
462 	/*
463 	 * Validate file offset
464 	 */
465 	if (uio->uio_loffset < (offset_t)0) {
466 		ZFS_EXIT(zfsvfs);
467 		return (EINVAL);
468 	}
469 
470 	/*
471 	 * Fasttrack empty reads
472 	 */
473 	if (uio->uio_resid == 0) {
474 		ZFS_EXIT(zfsvfs);
475 		return (0);
476 	}
477 
478 	/*
479 	 * Check for mandatory locks
480 	 */
481 	if (MANDMODE(zp->z_mode)) {
482 		if (error = chklock(vp, FREAD,
483 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 			ZFS_EXIT(zfsvfs);
485 			return (error);
486 		}
487 	}
488 
489 	/*
490 	 * If we're in FRSYNC mode, sync out this znode before reading it.
491 	 */
492 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 		zil_commit(zfsvfs->z_log, zp->z_id);
494 
495 	/*
496 	 * Lock the range against changes.
497 	 */
498 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
499 
500 	/*
501 	 * If we are reading past end-of-file we can skip
502 	 * to the end; but we might still need to set atime.
503 	 */
504 	if (uio->uio_loffset >= zp->z_size) {
505 		error = 0;
506 		goto out;
507 	}
508 
509 	ASSERT(uio->uio_loffset < zp->z_size);
510 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
511 
512 	if ((uio->uio_extflg == UIO_XUIO) &&
513 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 		int nblk;
515 		int blksz = zp->z_blksz;
516 		uint64_t offset = uio->uio_loffset;
517 
518 		xuio = (xuio_t *)uio;
519 		if ((ISP2(blksz))) {
520 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 			    blksz)) / blksz;
522 		} else {
523 			ASSERT(offset + n <= blksz);
524 			nblk = 1;
525 		}
526 		(void) dmu_xuio_init(xuio, nblk);
527 
528 		if (vn_has_cached_data(vp)) {
529 			/*
530 			 * For simplicity, we always allocate a full buffer
531 			 * even if we only expect to read a portion of a block.
532 			 */
533 			while (--nblk >= 0) {
534 				(void) dmu_xuio_add(xuio,
535 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 				    blksz), 0, blksz);
537 			}
538 		}
539 	}
540 
541 	while (n > 0) {
542 		nbytes = MIN(n, zfs_read_chunk_size -
543 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
544 
545 		if (vn_has_cached_data(vp))
546 			error = mappedread(vp, nbytes, uio);
547 		else
548 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 		if (error) {
550 			/* convert checksum errors into IO errors */
551 			if (error == ECKSUM)
552 				error = EIO;
553 			break;
554 		}
555 
556 		n -= nbytes;
557 	}
558 out:
559 	zfs_range_unlock(rl);
560 
561 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 	ZFS_EXIT(zfsvfs);
563 	return (error);
564 }
565 
566 /*
567  * Write the bytes to a file.
568  *
569  *	IN:	vp	- vnode of file to be written to.
570  *		uio	- structure supplying write location, range info,
571  *			  and data buffer.
572  *		ioflag	- FAPPEND flag set if in append mode.
573  *		cr	- credentials of caller.
574  *		ct	- caller context (NFS/CIFS fem monitor only)
575  *
576  *	OUT:	uio	- updated offset and range.
577  *
578  *	RETURN:	0 if success
579  *		error code if failure
580  *
581  * Timestamps:
582  *	vp - ctime|mtime updated if byte count > 0
583  */
584 
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 	znode_t		*zp = VTOZ(vp);
590 	rlim64_t	limit = uio->uio_llimit;
591 	ssize_t		start_resid = uio->uio_resid;
592 	ssize_t		tx_bytes;
593 	uint64_t	end_size;
594 	dmu_tx_t	*tx;
595 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
596 	zilog_t		*zilog;
597 	offset_t	woff;
598 	ssize_t		n, nbytes;
599 	rl_t		*rl;
600 	int		max_blksz = zfsvfs->z_max_blksz;
601 	int		error;
602 	arc_buf_t	*abuf;
603 	iovec_t		*aiov;
604 	xuio_t		*xuio = NULL;
605 	int		i_iov = 0;
606 	int		iovcnt = uio->uio_iovcnt;
607 	iovec_t		*iovp = uio->uio_iov;
608 	int		write_eof;
609 	int		count = 0;
610 	sa_bulk_attr_t	bulk[4];
611 	uint64_t	mtime[2], ctime[2];
612 
613 	/*
614 	 * Fasttrack empty write
615 	 */
616 	n = start_resid;
617 	if (n == 0)
618 		return (0);
619 
620 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 		limit = MAXOFFSET_T;
622 
623 	ZFS_ENTER(zfsvfs);
624 	ZFS_VERIFY_ZP(zp);
625 
626 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 	    &zp->z_size, 8);
630 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 	    &zp->z_pflags, 8);
632 
633 	/*
634 	 * If immutable or not appending then return EPERM
635 	 */
636 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 	    (uio->uio_loffset < zp->z_size))) {
639 		ZFS_EXIT(zfsvfs);
640 		return (EPERM);
641 	}
642 
643 	zilog = zfsvfs->z_log;
644 
645 	/*
646 	 * Validate file offset
647 	 */
648 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 	if (woff < 0) {
650 		ZFS_EXIT(zfsvfs);
651 		return (EINVAL);
652 	}
653 
654 	/*
655 	 * Check for mandatory locks before calling zfs_range_lock()
656 	 * in order to prevent a deadlock with locks set via fcntl().
657 	 */
658 	if (MANDMODE((mode_t)zp->z_mode) &&
659 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 		ZFS_EXIT(zfsvfs);
661 		return (error);
662 	}
663 
664 	/*
665 	 * Pre-fault the pages to ensure slow (eg NFS) pages
666 	 * don't hold up txg.
667 	 * Skip this if uio contains loaned arc_buf.
668 	 */
669 	if ((uio->uio_extflg == UIO_XUIO) &&
670 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 		xuio = (xuio_t *)uio;
672 	else
673 		uio_prefaultpages(n, uio);
674 
675 	/*
676 	 * If in append mode, set the io offset pointer to eof.
677 	 */
678 	if (ioflag & FAPPEND) {
679 		/*
680 		 * Obtain an appending range lock to guarantee file append
681 		 * semantics.  We reset the write offset once we have the lock.
682 		 */
683 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 		woff = rl->r_off;
685 		if (rl->r_len == UINT64_MAX) {
686 			/*
687 			 * We overlocked the file because this write will cause
688 			 * the file block size to increase.
689 			 * Note that zp_size cannot change with this lock held.
690 			 */
691 			woff = zp->z_size;
692 		}
693 		uio->uio_loffset = woff;
694 	} else {
695 		/*
696 		 * Note that if the file block size will change as a result of
697 		 * this write, then this range lock will lock the entire file
698 		 * so that we can re-write the block safely.
699 		 */
700 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 	}
702 
703 	if (woff >= limit) {
704 		zfs_range_unlock(rl);
705 		ZFS_EXIT(zfsvfs);
706 		return (EFBIG);
707 	}
708 
709 	if ((woff + n) > limit || woff > (limit - n))
710 		n = limit - woff;
711 
712 	/* Will this write extend the file length? */
713 	write_eof = (woff + n > zp->z_size);
714 
715 	end_size = MAX(zp->z_size, woff + n);
716 
717 	/*
718 	 * Write the file in reasonable size chunks.  Each chunk is written
719 	 * in a separate transaction; this keeps the intent log records small
720 	 * and allows us to do more fine-grained space accounting.
721 	 */
722 	while (n > 0) {
723 		abuf = NULL;
724 		woff = uio->uio_loffset;
725 again:
726 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 			if (abuf != NULL)
729 				dmu_return_arcbuf(abuf);
730 			error = EDQUOT;
731 			break;
732 		}
733 
734 		if (xuio && abuf == NULL) {
735 			ASSERT(i_iov < iovcnt);
736 			aiov = &iovp[i_iov];
737 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 			dmu_xuio_clear(xuio, i_iov);
739 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 			    iovec_t *, aiov, arc_buf_t *, abuf);
741 			ASSERT((aiov->iov_base == abuf->b_data) ||
742 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
743 			    aiov->iov_len == arc_buf_size(abuf)));
744 			i_iov++;
745 		} else if (abuf == NULL && n >= max_blksz &&
746 		    woff >= zp->z_size &&
747 		    P2PHASE(woff, max_blksz) == 0 &&
748 		    zp->z_blksz == max_blksz) {
749 			/*
750 			 * This write covers a full block.  "Borrow" a buffer
751 			 * from the dmu so that we can fill it before we enter
752 			 * a transaction.  This avoids the possibility of
753 			 * holding up the transaction if the data copy hangs
754 			 * up on a pagefault (e.g., from an NFS server mapping).
755 			 */
756 			size_t cbytes;
757 
758 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 			    max_blksz);
760 			ASSERT(abuf != NULL);
761 			ASSERT(arc_buf_size(abuf) == max_blksz);
762 			if (error = uiocopy(abuf->b_data, max_blksz,
763 			    UIO_WRITE, uio, &cbytes)) {
764 				dmu_return_arcbuf(abuf);
765 				break;
766 			}
767 			ASSERT(cbytes == max_blksz);
768 		}
769 
770 		/*
771 		 * Start a transaction.
772 		 */
773 		tx = dmu_tx_create(zfsvfs->z_os);
774 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 		zfs_sa_upgrade_txholds(tx, zp);
777 		error = dmu_tx_assign(tx, TXG_NOWAIT);
778 		if (error) {
779 			if (error == ERESTART) {
780 				dmu_tx_wait(tx);
781 				dmu_tx_abort(tx);
782 				goto again;
783 			}
784 			dmu_tx_abort(tx);
785 			if (abuf != NULL)
786 				dmu_return_arcbuf(abuf);
787 			break;
788 		}
789 
790 		/*
791 		 * If zfs_range_lock() over-locked we grow the blocksize
792 		 * and then reduce the lock range.  This will only happen
793 		 * on the first iteration since zfs_range_reduce() will
794 		 * shrink down r_len to the appropriate size.
795 		 */
796 		if (rl->r_len == UINT64_MAX) {
797 			uint64_t new_blksz;
798 
799 			if (zp->z_blksz > max_blksz) {
800 				ASSERT(!ISP2(zp->z_blksz));
801 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 			} else {
803 				new_blksz = MIN(end_size, max_blksz);
804 			}
805 			zfs_grow_blocksize(zp, new_blksz, tx);
806 			zfs_range_reduce(rl, woff, n);
807 		}
808 
809 		/*
810 		 * XXX - should we really limit each write to z_max_blksz?
811 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 		 */
813 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
814 
815 		if (abuf == NULL) {
816 			tx_bytes = uio->uio_resid;
817 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 			    uio, nbytes, tx);
819 			tx_bytes -= uio->uio_resid;
820 		} else {
821 			tx_bytes = nbytes;
822 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 			/*
824 			 * If this is not a full block write, but we are
825 			 * extending the file past EOF and this data starts
826 			 * block-aligned, use assign_arcbuf().  Otherwise,
827 			 * write via dmu_write().
828 			 */
829 			if (tx_bytes < max_blksz && (!write_eof ||
830 			    aiov->iov_base != abuf->b_data)) {
831 				ASSERT(xuio);
832 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 				    aiov->iov_len, aiov->iov_base, tx);
834 				dmu_return_arcbuf(abuf);
835 				xuio_stat_wbuf_copied();
836 			} else {
837 				ASSERT(xuio || tx_bytes == max_blksz);
838 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 				    woff, abuf, tx);
840 			}
841 			ASSERT(tx_bytes <= uio->uio_resid);
842 			uioskip(uio, tx_bytes);
843 		}
844 		if (tx_bytes && vn_has_cached_data(vp)) {
845 			update_pages(vp, woff,
846 			    tx_bytes, zfsvfs->z_os, zp->z_id);
847 		}
848 
849 		/*
850 		 * If we made no progress, we're done.  If we made even
851 		 * partial progress, update the znode and ZIL accordingly.
852 		 */
853 		if (tx_bytes == 0) {
854 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
856 			dmu_tx_commit(tx);
857 			ASSERT(error != 0);
858 			break;
859 		}
860 
861 		/*
862 		 * Clear Set-UID/Set-GID bits on successful write if not
863 		 * privileged and at least one of the excute bits is set.
864 		 *
865 		 * It would be nice to to this after all writes have
866 		 * been done, but that would still expose the ISUID/ISGID
867 		 * to another app after the partial write is committed.
868 		 *
869 		 */
870 		mutex_enter(&zp->z_acl_lock);
871 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
872 		    (S_IXUSR >> 6))) != 0 &&
873 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
874 		    secpolicy_vnode_setid_retain(cr,
875 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
876 			uint64_t newmode;
877 			zp->z_mode &= ~(S_ISUID | S_ISGID);
878 			newmode = zp->z_mode;
879 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
880 			    (void *)&newmode, sizeof (uint64_t), tx);
881 		}
882 		mutex_exit(&zp->z_acl_lock);
883 
884 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
885 		    B_TRUE);
886 
887 		/*
888 		 * Update the file size (zp_size) if it has changed;
889 		 * account for possible concurrent updates.
890 		 */
891 		while ((end_size = zp->z_size) < uio->uio_loffset) {
892 			(void) atomic_cas_64(&zp->z_size, end_size,
893 			    uio->uio_loffset);
894 			ASSERT(error == 0);
895 		}
896 		/*
897 		 * If we are replaying and eof is non zero then force
898 		 * the file size to the specified eof. Note, there's no
899 		 * concurrency during replay.
900 		 */
901 		if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
902 			zp->z_size = zfsvfs->z_replay_eof;
903 
904 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
905 
906 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
907 		dmu_tx_commit(tx);
908 
909 		if (error != 0)
910 			break;
911 		ASSERT(tx_bytes == nbytes);
912 		n -= nbytes;
913 	}
914 
915 	zfs_range_unlock(rl);
916 
917 	/*
918 	 * If we're in replay mode, or we made no progress, return error.
919 	 * Otherwise, it's at least a partial write, so it's successful.
920 	 */
921 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
922 		ZFS_EXIT(zfsvfs);
923 		return (error);
924 	}
925 
926 	if (ioflag & (FSYNC | FDSYNC) ||
927 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
928 		zil_commit(zilog, zp->z_id);
929 
930 	ZFS_EXIT(zfsvfs);
931 	return (0);
932 }
933 
934 void
935 zfs_get_done(zgd_t *zgd, int error)
936 {
937 	znode_t *zp = zgd->zgd_private;
938 	objset_t *os = zp->z_zfsvfs->z_os;
939 
940 	if (zgd->zgd_db)
941 		dmu_buf_rele(zgd->zgd_db, zgd);
942 
943 	zfs_range_unlock(zgd->zgd_rl);
944 
945 	/*
946 	 * Release the vnode asynchronously as we currently have the
947 	 * txg stopped from syncing.
948 	 */
949 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
950 
951 	if (error == 0 && zgd->zgd_bp)
952 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
953 
954 	kmem_free(zgd, sizeof (zgd_t));
955 }
956 
957 #ifdef DEBUG
958 static int zil_fault_io = 0;
959 #endif
960 
961 /*
962  * Get data to generate a TX_WRITE intent log record.
963  */
964 int
965 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
966 {
967 	zfsvfs_t *zfsvfs = arg;
968 	objset_t *os = zfsvfs->z_os;
969 	znode_t *zp;
970 	uint64_t object = lr->lr_foid;
971 	uint64_t offset = lr->lr_offset;
972 	uint64_t size = lr->lr_length;
973 	blkptr_t *bp = &lr->lr_blkptr;
974 	dmu_buf_t *db;
975 	zgd_t *zgd;
976 	int error = 0;
977 
978 	ASSERT(zio != NULL);
979 	ASSERT(size != 0);
980 
981 	/*
982 	 * Nothing to do if the file has been removed
983 	 */
984 	if (zfs_zget(zfsvfs, object, &zp) != 0)
985 		return (ENOENT);
986 	if (zp->z_unlinked) {
987 		/*
988 		 * Release the vnode asynchronously as we currently have the
989 		 * txg stopped from syncing.
990 		 */
991 		VN_RELE_ASYNC(ZTOV(zp),
992 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
993 		return (ENOENT);
994 	}
995 
996 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
997 	zgd->zgd_zilog = zfsvfs->z_log;
998 	zgd->zgd_private = zp;
999 
1000 	/*
1001 	 * Write records come in two flavors: immediate and indirect.
1002 	 * For small writes it's cheaper to store the data with the
1003 	 * log record (immediate); for large writes it's cheaper to
1004 	 * sync the data and get a pointer to it (indirect) so that
1005 	 * we don't have to write the data twice.
1006 	 */
1007 	if (buf != NULL) { /* immediate write */
1008 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1009 		/* test for truncation needs to be done while range locked */
1010 		if (offset >= zp->z_size) {
1011 			error = ENOENT;
1012 		} else {
1013 			error = dmu_read(os, object, offset, size, buf,
1014 			    DMU_READ_NO_PREFETCH);
1015 		}
1016 		ASSERT(error == 0 || error == ENOENT);
1017 	} else { /* indirect write */
1018 		/*
1019 		 * Have to lock the whole block to ensure when it's
1020 		 * written out and it's checksum is being calculated
1021 		 * that no one can change the data. We need to re-check
1022 		 * blocksize after we get the lock in case it's changed!
1023 		 */
1024 		for (;;) {
1025 			uint64_t blkoff;
1026 			size = zp->z_blksz;
1027 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1028 			offset -= blkoff;
1029 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1030 			    RL_READER);
1031 			if (zp->z_blksz == size)
1032 				break;
1033 			offset += blkoff;
1034 			zfs_range_unlock(zgd->zgd_rl);
1035 		}
1036 		/* test for truncation needs to be done while range locked */
1037 		if (lr->lr_offset >= zp->z_size)
1038 			error = ENOENT;
1039 #ifdef DEBUG
1040 		if (zil_fault_io) {
1041 			error = EIO;
1042 			zil_fault_io = 0;
1043 		}
1044 #endif
1045 		if (error == 0)
1046 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1047 			    DMU_READ_NO_PREFETCH);
1048 
1049 		if (error == 0) {
1050 			zgd->zgd_db = db;
1051 			zgd->zgd_bp = bp;
1052 
1053 			ASSERT(db->db_offset == offset);
1054 			ASSERT(db->db_size == size);
1055 
1056 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1057 			    zfs_get_done, zgd);
1058 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1059 
1060 			/*
1061 			 * On success, we need to wait for the write I/O
1062 			 * initiated by dmu_sync() to complete before we can
1063 			 * release this dbuf.  We will finish everything up
1064 			 * in the zfs_get_done() callback.
1065 			 */
1066 			if (error == 0)
1067 				return (0);
1068 
1069 			if (error == EALREADY) {
1070 				lr->lr_common.lrc_txtype = TX_WRITE2;
1071 				error = 0;
1072 			}
1073 		}
1074 	}
1075 
1076 	zfs_get_done(zgd, error);
1077 
1078 	return (error);
1079 }
1080 
1081 /*ARGSUSED*/
1082 static int
1083 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1084     caller_context_t *ct)
1085 {
1086 	znode_t *zp = VTOZ(vp);
1087 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1088 	int error;
1089 
1090 	ZFS_ENTER(zfsvfs);
1091 	ZFS_VERIFY_ZP(zp);
1092 
1093 	if (flag & V_ACE_MASK)
1094 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1095 	else
1096 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1097 
1098 	ZFS_EXIT(zfsvfs);
1099 	return (error);
1100 }
1101 
1102 /*
1103  * If vnode is for a device return a specfs vnode instead.
1104  */
1105 static int
1106 specvp_check(vnode_t **vpp, cred_t *cr)
1107 {
1108 	int error = 0;
1109 
1110 	if (IS_DEVVP(*vpp)) {
1111 		struct vnode *svp;
1112 
1113 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1114 		VN_RELE(*vpp);
1115 		if (svp == NULL)
1116 			error = ENOSYS;
1117 		*vpp = svp;
1118 	}
1119 	return (error);
1120 }
1121 
1122 
1123 /*
1124  * Lookup an entry in a directory, or an extended attribute directory.
1125  * If it exists, return a held vnode reference for it.
1126  *
1127  *	IN:	dvp	- vnode of directory to search.
1128  *		nm	- name of entry to lookup.
1129  *		pnp	- full pathname to lookup [UNUSED].
1130  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1131  *		rdir	- root directory vnode [UNUSED].
1132  *		cr	- credentials of caller.
1133  *		ct	- caller context
1134  *		direntflags - directory lookup flags
1135  *		realpnp - returned pathname.
1136  *
1137  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1138  *
1139  *	RETURN:	0 if success
1140  *		error code if failure
1141  *
1142  * Timestamps:
1143  *	NA
1144  */
1145 /* ARGSUSED */
1146 static int
1147 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1148     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1149     int *direntflags, pathname_t *realpnp)
1150 {
1151 	znode_t *zdp = VTOZ(dvp);
1152 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1153 	int	error = 0;
1154 
1155 	/* fast path */
1156 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1157 
1158 		if (dvp->v_type != VDIR) {
1159 			return (ENOTDIR);
1160 		} else if (zdp->z_sa_hdl == NULL) {
1161 			return (EIO);
1162 		}
1163 
1164 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1165 			error = zfs_fastaccesschk_execute(zdp, cr);
1166 			if (!error) {
1167 				*vpp = dvp;
1168 				VN_HOLD(*vpp);
1169 				return (0);
1170 			}
1171 			return (error);
1172 		} else {
1173 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1174 
1175 			if (tvp) {
1176 				error = zfs_fastaccesschk_execute(zdp, cr);
1177 				if (error) {
1178 					VN_RELE(tvp);
1179 					return (error);
1180 				}
1181 				if (tvp == DNLC_NO_VNODE) {
1182 					VN_RELE(tvp);
1183 					return (ENOENT);
1184 				} else {
1185 					*vpp = tvp;
1186 					return (specvp_check(vpp, cr));
1187 				}
1188 			}
1189 		}
1190 	}
1191 
1192 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1193 
1194 	ZFS_ENTER(zfsvfs);
1195 	ZFS_VERIFY_ZP(zdp);
1196 
1197 	*vpp = NULL;
1198 
1199 	if (flags & LOOKUP_XATTR) {
1200 		/*
1201 		 * If the xattr property is off, refuse the lookup request.
1202 		 */
1203 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1204 			ZFS_EXIT(zfsvfs);
1205 			return (EINVAL);
1206 		}
1207 
1208 		/*
1209 		 * We don't allow recursive attributes..
1210 		 * Maybe someday we will.
1211 		 */
1212 		if (zdp->z_pflags & ZFS_XATTR) {
1213 			ZFS_EXIT(zfsvfs);
1214 			return (EINVAL);
1215 		}
1216 
1217 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1218 			ZFS_EXIT(zfsvfs);
1219 			return (error);
1220 		}
1221 
1222 		/*
1223 		 * Do we have permission to get into attribute directory?
1224 		 */
1225 
1226 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1227 		    B_FALSE, cr)) {
1228 			VN_RELE(*vpp);
1229 			*vpp = NULL;
1230 		}
1231 
1232 		ZFS_EXIT(zfsvfs);
1233 		return (error);
1234 	}
1235 
1236 	if (dvp->v_type != VDIR) {
1237 		ZFS_EXIT(zfsvfs);
1238 		return (ENOTDIR);
1239 	}
1240 
1241 	/*
1242 	 * Check accessibility of directory.
1243 	 */
1244 
1245 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1246 		ZFS_EXIT(zfsvfs);
1247 		return (error);
1248 	}
1249 
1250 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1251 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1252 		ZFS_EXIT(zfsvfs);
1253 		return (EILSEQ);
1254 	}
1255 
1256 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1257 	if (error == 0)
1258 		error = specvp_check(vpp, cr);
1259 
1260 	ZFS_EXIT(zfsvfs);
1261 	return (error);
1262 }
1263 
1264 /*
1265  * Attempt to create a new entry in a directory.  If the entry
1266  * already exists, truncate the file if permissible, else return
1267  * an error.  Return the vp of the created or trunc'd file.
1268  *
1269  *	IN:	dvp	- vnode of directory to put new file entry in.
1270  *		name	- name of new file entry.
1271  *		vap	- attributes of new file.
1272  *		excl	- flag indicating exclusive or non-exclusive mode.
1273  *		mode	- mode to open file with.
1274  *		cr	- credentials of caller.
1275  *		flag	- large file flag [UNUSED].
1276  *		ct	- caller context
1277  *		vsecp 	- ACL to be set
1278  *
1279  *	OUT:	vpp	- vnode of created or trunc'd entry.
1280  *
1281  *	RETURN:	0 if success
1282  *		error code if failure
1283  *
1284  * Timestamps:
1285  *	dvp - ctime|mtime updated if new entry created
1286  *	 vp - ctime|mtime always, atime if new
1287  */
1288 
1289 /* ARGSUSED */
1290 static int
1291 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1292     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1293     vsecattr_t *vsecp)
1294 {
1295 	znode_t		*zp, *dzp = VTOZ(dvp);
1296 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1297 	zilog_t		*zilog;
1298 	objset_t	*os;
1299 	zfs_dirlock_t	*dl;
1300 	dmu_tx_t	*tx;
1301 	int		error;
1302 	ksid_t		*ksid;
1303 	uid_t		uid;
1304 	gid_t		gid = crgetgid(cr);
1305 	zfs_acl_ids_t   acl_ids;
1306 	boolean_t	fuid_dirtied;
1307 	boolean_t	have_acl = B_FALSE;
1308 
1309 	/*
1310 	 * If we have an ephemeral id, ACL, or XVATTR then
1311 	 * make sure file system is at proper version
1312 	 */
1313 
1314 	ksid = crgetsid(cr, KSID_OWNER);
1315 	if (ksid)
1316 		uid = ksid_getid(ksid);
1317 	else
1318 		uid = crgetuid(cr);
1319 
1320 	if (zfsvfs->z_use_fuids == B_FALSE &&
1321 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1322 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1323 		return (EINVAL);
1324 
1325 	ZFS_ENTER(zfsvfs);
1326 	ZFS_VERIFY_ZP(dzp);
1327 	os = zfsvfs->z_os;
1328 	zilog = zfsvfs->z_log;
1329 
1330 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1331 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1332 		ZFS_EXIT(zfsvfs);
1333 		return (EILSEQ);
1334 	}
1335 
1336 	if (vap->va_mask & AT_XVATTR) {
1337 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1338 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1339 			ZFS_EXIT(zfsvfs);
1340 			return (error);
1341 		}
1342 	}
1343 top:
1344 	*vpp = NULL;
1345 
1346 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1347 		vap->va_mode &= ~VSVTX;
1348 
1349 	if (*name == '\0') {
1350 		/*
1351 		 * Null component name refers to the directory itself.
1352 		 */
1353 		VN_HOLD(dvp);
1354 		zp = dzp;
1355 		dl = NULL;
1356 		error = 0;
1357 	} else {
1358 		/* possible VN_HOLD(zp) */
1359 		int zflg = 0;
1360 
1361 		if (flag & FIGNORECASE)
1362 			zflg |= ZCILOOK;
1363 
1364 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1365 		    NULL, NULL);
1366 		if (error) {
1367 			if (strcmp(name, "..") == 0)
1368 				error = EISDIR;
1369 			ZFS_EXIT(zfsvfs);
1370 			return (error);
1371 		}
1372 	}
1373 
1374 	if (zp == NULL) {
1375 		uint64_t txtype;
1376 
1377 		/*
1378 		 * Create a new file object and update the directory
1379 		 * to reference it.
1380 		 */
1381 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1382 			goto out;
1383 		}
1384 
1385 		/*
1386 		 * We only support the creation of regular files in
1387 		 * extended attribute directories.
1388 		 */
1389 
1390 		if ((dzp->z_pflags & ZFS_XATTR) &&
1391 		    (vap->va_type != VREG)) {
1392 			error = EINVAL;
1393 			goto out;
1394 		}
1395 
1396 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1397 		    cr, vsecp, &acl_ids)) != 0)
1398 			goto out;
1399 		have_acl = B_TRUE;
1400 
1401 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1402 			zfs_acl_ids_free(&acl_ids);
1403 			error = EDQUOT;
1404 			goto out;
1405 		}
1406 
1407 		tx = dmu_tx_create(os);
1408 
1409 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1410 		    ZFS_SA_BASE_ATTR_SIZE);
1411 
1412 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1413 		if (fuid_dirtied)
1414 			zfs_fuid_txhold(zfsvfs, tx);
1415 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1416 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1417 		if (!zfsvfs->z_use_sa &&
1418 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1419 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1420 			    0, acl_ids.z_aclp->z_acl_bytes);
1421 		}
1422 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1423 		if (error) {
1424 			zfs_dirent_unlock(dl);
1425 			if (error == ERESTART) {
1426 				dmu_tx_wait(tx);
1427 				dmu_tx_abort(tx);
1428 				goto top;
1429 			}
1430 			zfs_acl_ids_free(&acl_ids);
1431 			dmu_tx_abort(tx);
1432 			ZFS_EXIT(zfsvfs);
1433 			return (error);
1434 		}
1435 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1436 
1437 		if (fuid_dirtied)
1438 			zfs_fuid_sync(zfsvfs, tx);
1439 
1440 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1441 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1442 		if (flag & FIGNORECASE)
1443 			txtype |= TX_CI;
1444 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1445 		    vsecp, acl_ids.z_fuidp, vap);
1446 		zfs_acl_ids_free(&acl_ids);
1447 		dmu_tx_commit(tx);
1448 	} else {
1449 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1450 
1451 		/*
1452 		 * A directory entry already exists for this name.
1453 		 */
1454 		/*
1455 		 * Can't truncate an existing file if in exclusive mode.
1456 		 */
1457 		if (excl == EXCL) {
1458 			error = EEXIST;
1459 			goto out;
1460 		}
1461 		/*
1462 		 * Can't open a directory for writing.
1463 		 */
1464 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1465 			error = EISDIR;
1466 			goto out;
1467 		}
1468 		/*
1469 		 * Verify requested access to file.
1470 		 */
1471 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1472 			goto out;
1473 		}
1474 
1475 		mutex_enter(&dzp->z_lock);
1476 		dzp->z_seq++;
1477 		mutex_exit(&dzp->z_lock);
1478 
1479 		/*
1480 		 * Truncate regular files if requested.
1481 		 */
1482 		if ((ZTOV(zp)->v_type == VREG) &&
1483 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1484 			/* we can't hold any locks when calling zfs_freesp() */
1485 			zfs_dirent_unlock(dl);
1486 			dl = NULL;
1487 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1488 			if (error == 0) {
1489 				vnevent_create(ZTOV(zp), ct);
1490 			}
1491 		}
1492 	}
1493 out:
1494 
1495 	if (dl)
1496 		zfs_dirent_unlock(dl);
1497 
1498 	if (error) {
1499 		if (zp)
1500 			VN_RELE(ZTOV(zp));
1501 	} else {
1502 		*vpp = ZTOV(zp);
1503 		error = specvp_check(vpp, cr);
1504 	}
1505 
1506 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1507 		zil_commit(zilog, 0);
1508 
1509 	ZFS_EXIT(zfsvfs);
1510 	return (error);
1511 }
1512 
1513 /*
1514  * Remove an entry from a directory.
1515  *
1516  *	IN:	dvp	- vnode of directory to remove entry from.
1517  *		name	- name of entry to remove.
1518  *		cr	- credentials of caller.
1519  *		ct	- caller context
1520  *		flags	- case flags
1521  *
1522  *	RETURN:	0 if success
1523  *		error code if failure
1524  *
1525  * Timestamps:
1526  *	dvp - ctime|mtime
1527  *	 vp - ctime (if nlink > 0)
1528  */
1529 
1530 uint64_t null_xattr = 0;
1531 
1532 /*ARGSUSED*/
1533 static int
1534 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1535     int flags)
1536 {
1537 	znode_t		*zp, *dzp = VTOZ(dvp);
1538 	znode_t		*xzp = NULL;
1539 	vnode_t		*vp;
1540 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1541 	zilog_t		*zilog;
1542 	uint64_t	acl_obj, xattr_obj = 0;
1543 	uint64_t 	xattr_obj_unlinked = 0;
1544 	uint64_t	obj = 0;
1545 	zfs_dirlock_t	*dl;
1546 	dmu_tx_t	*tx;
1547 	boolean_t	may_delete_now, delete_now = FALSE;
1548 	boolean_t	unlinked, toobig = FALSE;
1549 	uint64_t	txtype;
1550 	pathname_t	*realnmp = NULL;
1551 	pathname_t	realnm;
1552 	int		error;
1553 	int		zflg = ZEXISTS;
1554 
1555 	ZFS_ENTER(zfsvfs);
1556 	ZFS_VERIFY_ZP(dzp);
1557 	zilog = zfsvfs->z_log;
1558 
1559 	if (flags & FIGNORECASE) {
1560 		zflg |= ZCILOOK;
1561 		pn_alloc(&realnm);
1562 		realnmp = &realnm;
1563 	}
1564 
1565 top:
1566 	/*
1567 	 * Attempt to lock directory; fail if entry doesn't exist.
1568 	 */
1569 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1570 	    NULL, realnmp)) {
1571 		if (realnmp)
1572 			pn_free(realnmp);
1573 		ZFS_EXIT(zfsvfs);
1574 		return (error);
1575 	}
1576 
1577 	vp = ZTOV(zp);
1578 
1579 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1580 		goto out;
1581 	}
1582 
1583 	/*
1584 	 * Need to use rmdir for removing directories.
1585 	 */
1586 	if (vp->v_type == VDIR) {
1587 		error = EPERM;
1588 		goto out;
1589 	}
1590 
1591 	vnevent_remove(vp, dvp, name, ct);
1592 
1593 	if (realnmp)
1594 		dnlc_remove(dvp, realnmp->pn_buf);
1595 	else
1596 		dnlc_remove(dvp, name);
1597 
1598 	mutex_enter(&vp->v_lock);
1599 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1600 	mutex_exit(&vp->v_lock);
1601 
1602 	/*
1603 	 * We may delete the znode now, or we may put it in the unlinked set;
1604 	 * it depends on whether we're the last link, and on whether there are
1605 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1606 	 * allow for either case.
1607 	 */
1608 	obj = zp->z_id;
1609 	tx = dmu_tx_create(zfsvfs->z_os);
1610 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1611 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1612 	zfs_sa_upgrade_txholds(tx, zp);
1613 	zfs_sa_upgrade_txholds(tx, dzp);
1614 	if (may_delete_now) {
1615 		toobig =
1616 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1617 		/* if the file is too big, only hold_free a token amount */
1618 		dmu_tx_hold_free(tx, zp->z_id, 0,
1619 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1620 	}
1621 
1622 	/* are there any extended attributes? */
1623 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1624 	    &xattr_obj, sizeof (xattr_obj));
1625 	if (xattr_obj) {
1626 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1627 		ASSERT3U(error, ==, 0);
1628 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1629 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1630 	}
1631 
1632 	mutex_enter(&zp->z_lock);
1633 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1634 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1635 	mutex_exit(&zp->z_lock);
1636 
1637 	/* charge as an update -- would be nice not to charge at all */
1638 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1639 
1640 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1641 	if (error) {
1642 		zfs_dirent_unlock(dl);
1643 		VN_RELE(vp);
1644 		if (error == ERESTART) {
1645 			dmu_tx_wait(tx);
1646 			dmu_tx_abort(tx);
1647 			goto top;
1648 		}
1649 		if (realnmp)
1650 			pn_free(realnmp);
1651 		dmu_tx_abort(tx);
1652 		ZFS_EXIT(zfsvfs);
1653 		return (error);
1654 	}
1655 
1656 	/*
1657 	 * Remove the directory entry.
1658 	 */
1659 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1660 
1661 	if (error) {
1662 		dmu_tx_commit(tx);
1663 		goto out;
1664 	}
1665 
1666 	if (unlinked) {
1667 
1668 		/*
1669 		 * Hold z_lock so that we can make sure that the ACL obj
1670 		 * hasn't changed.  Could have been deleted due to
1671 		 * zfs_sa_upgrade().
1672 		 */
1673 		mutex_enter(&zp->z_lock);
1674 		mutex_enter(&vp->v_lock);
1675 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1676 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1677 		delete_now = may_delete_now && !toobig &&
1678 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1679 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1680 		    acl_obj;
1681 		mutex_exit(&vp->v_lock);
1682 	}
1683 
1684 	if (delete_now) {
1685 		if (xattr_obj_unlinked) {
1686 			ASSERT3U(xzp->z_links, ==, 2);
1687 			mutex_enter(&xzp->z_lock);
1688 			xzp->z_unlinked = 1;
1689 			xzp->z_links = 0;
1690 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1691 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1692 			ASSERT3U(error,  ==,  0);
1693 			mutex_exit(&xzp->z_lock);
1694 			zfs_unlinked_add(xzp, tx);
1695 
1696 			if (zp->z_is_sa)
1697 				error = sa_remove(zp->z_sa_hdl,
1698 				    SA_ZPL_XATTR(zfsvfs), tx);
1699 			else
1700 				error = sa_update(zp->z_sa_hdl,
1701 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1702 				    sizeof (uint64_t), tx);
1703 			ASSERT3U(error, ==, 0);
1704 		}
1705 		mutex_enter(&vp->v_lock);
1706 		vp->v_count--;
1707 		ASSERT3U(vp->v_count, ==, 0);
1708 		mutex_exit(&vp->v_lock);
1709 		mutex_exit(&zp->z_lock);
1710 		zfs_znode_delete(zp, tx);
1711 	} else if (unlinked) {
1712 		mutex_exit(&zp->z_lock);
1713 		zfs_unlinked_add(zp, tx);
1714 	}
1715 
1716 	txtype = TX_REMOVE;
1717 	if (flags & FIGNORECASE)
1718 		txtype |= TX_CI;
1719 	zfs_log_remove(zilog, tx, txtype, dzp, name, obj);
1720 
1721 	dmu_tx_commit(tx);
1722 out:
1723 	if (realnmp)
1724 		pn_free(realnmp);
1725 
1726 	zfs_dirent_unlock(dl);
1727 
1728 	if (!delete_now)
1729 		VN_RELE(vp);
1730 	if (xzp)
1731 		VN_RELE(ZTOV(xzp));
1732 
1733 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1734 		zil_commit(zilog, 0);
1735 
1736 	ZFS_EXIT(zfsvfs);
1737 	return (error);
1738 }
1739 
1740 /*
1741  * Create a new directory and insert it into dvp using the name
1742  * provided.  Return a pointer to the inserted directory.
1743  *
1744  *	IN:	dvp	- vnode of directory to add subdir to.
1745  *		dirname	- name of new directory.
1746  *		vap	- attributes of new directory.
1747  *		cr	- credentials of caller.
1748  *		ct	- caller context
1749  *		vsecp	- ACL to be set
1750  *
1751  *	OUT:	vpp	- vnode of created directory.
1752  *
1753  *	RETURN:	0 if success
1754  *		error code if failure
1755  *
1756  * Timestamps:
1757  *	dvp - ctime|mtime updated
1758  *	 vp - ctime|mtime|atime updated
1759  */
1760 /*ARGSUSED*/
1761 static int
1762 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1763     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1764 {
1765 	znode_t		*zp, *dzp = VTOZ(dvp);
1766 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1767 	zilog_t		*zilog;
1768 	zfs_dirlock_t	*dl;
1769 	uint64_t	txtype;
1770 	dmu_tx_t	*tx;
1771 	int		error;
1772 	int		zf = ZNEW;
1773 	ksid_t		*ksid;
1774 	uid_t		uid;
1775 	gid_t		gid = crgetgid(cr);
1776 	zfs_acl_ids_t   acl_ids;
1777 	boolean_t	fuid_dirtied;
1778 
1779 	ASSERT(vap->va_type == VDIR);
1780 
1781 	/*
1782 	 * If we have an ephemeral id, ACL, or XVATTR then
1783 	 * make sure file system is at proper version
1784 	 */
1785 
1786 	ksid = crgetsid(cr, KSID_OWNER);
1787 	if (ksid)
1788 		uid = ksid_getid(ksid);
1789 	else
1790 		uid = crgetuid(cr);
1791 	if (zfsvfs->z_use_fuids == B_FALSE &&
1792 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1793 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1794 		return (EINVAL);
1795 
1796 	ZFS_ENTER(zfsvfs);
1797 	ZFS_VERIFY_ZP(dzp);
1798 	zilog = zfsvfs->z_log;
1799 
1800 	if (dzp->z_pflags & ZFS_XATTR) {
1801 		ZFS_EXIT(zfsvfs);
1802 		return (EINVAL);
1803 	}
1804 
1805 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1806 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1807 		ZFS_EXIT(zfsvfs);
1808 		return (EILSEQ);
1809 	}
1810 	if (flags & FIGNORECASE)
1811 		zf |= ZCILOOK;
1812 
1813 	if (vap->va_mask & AT_XVATTR) {
1814 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1815 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1816 			ZFS_EXIT(zfsvfs);
1817 			return (error);
1818 		}
1819 	}
1820 
1821 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1822 	    vsecp, &acl_ids)) != 0) {
1823 		ZFS_EXIT(zfsvfs);
1824 		return (error);
1825 	}
1826 	/*
1827 	 * First make sure the new directory doesn't exist.
1828 	 *
1829 	 * Existence is checked first to make sure we don't return
1830 	 * EACCES instead of EEXIST which can cause some applications
1831 	 * to fail.
1832 	 */
1833 top:
1834 	*vpp = NULL;
1835 
1836 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1837 	    NULL, NULL)) {
1838 		zfs_acl_ids_free(&acl_ids);
1839 		ZFS_EXIT(zfsvfs);
1840 		return (error);
1841 	}
1842 
1843 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1844 		zfs_acl_ids_free(&acl_ids);
1845 		zfs_dirent_unlock(dl);
1846 		ZFS_EXIT(zfsvfs);
1847 		return (error);
1848 	}
1849 
1850 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1851 		zfs_acl_ids_free(&acl_ids);
1852 		zfs_dirent_unlock(dl);
1853 		ZFS_EXIT(zfsvfs);
1854 		return (EDQUOT);
1855 	}
1856 
1857 	/*
1858 	 * Add a new entry to the directory.
1859 	 */
1860 	tx = dmu_tx_create(zfsvfs->z_os);
1861 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1862 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1863 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1864 	if (fuid_dirtied)
1865 		zfs_fuid_txhold(zfsvfs, tx);
1866 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1867 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1868 		    acl_ids.z_aclp->z_acl_bytes);
1869 	}
1870 
1871 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1872 	    ZFS_SA_BASE_ATTR_SIZE);
1873 
1874 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1875 	if (error) {
1876 		zfs_dirent_unlock(dl);
1877 		if (error == ERESTART) {
1878 			dmu_tx_wait(tx);
1879 			dmu_tx_abort(tx);
1880 			goto top;
1881 		}
1882 		zfs_acl_ids_free(&acl_ids);
1883 		dmu_tx_abort(tx);
1884 		ZFS_EXIT(zfsvfs);
1885 		return (error);
1886 	}
1887 
1888 	/*
1889 	 * Create new node.
1890 	 */
1891 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1892 
1893 	if (fuid_dirtied)
1894 		zfs_fuid_sync(zfsvfs, tx);
1895 
1896 	/*
1897 	 * Now put new name in parent dir.
1898 	 */
1899 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1900 
1901 	*vpp = ZTOV(zp);
1902 
1903 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1904 	if (flags & FIGNORECASE)
1905 		txtype |= TX_CI;
1906 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1907 	    acl_ids.z_fuidp, vap);
1908 
1909 	zfs_acl_ids_free(&acl_ids);
1910 
1911 	dmu_tx_commit(tx);
1912 
1913 	zfs_dirent_unlock(dl);
1914 
1915 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1916 		zil_commit(zilog, 0);
1917 
1918 	ZFS_EXIT(zfsvfs);
1919 	return (0);
1920 }
1921 
1922 /*
1923  * Remove a directory subdir entry.  If the current working
1924  * directory is the same as the subdir to be removed, the
1925  * remove will fail.
1926  *
1927  *	IN:	dvp	- vnode of directory to remove from.
1928  *		name	- name of directory to be removed.
1929  *		cwd	- vnode of current working directory.
1930  *		cr	- credentials of caller.
1931  *		ct	- caller context
1932  *		flags	- case flags
1933  *
1934  *	RETURN:	0 if success
1935  *		error code if failure
1936  *
1937  * Timestamps:
1938  *	dvp - ctime|mtime updated
1939  */
1940 /*ARGSUSED*/
1941 static int
1942 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1943     caller_context_t *ct, int flags)
1944 {
1945 	znode_t		*dzp = VTOZ(dvp);
1946 	znode_t		*zp;
1947 	vnode_t		*vp;
1948 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1949 	zilog_t		*zilog;
1950 	zfs_dirlock_t	*dl;
1951 	dmu_tx_t	*tx;
1952 	int		error;
1953 	int		zflg = ZEXISTS;
1954 
1955 	ZFS_ENTER(zfsvfs);
1956 	ZFS_VERIFY_ZP(dzp);
1957 	zilog = zfsvfs->z_log;
1958 
1959 	if (flags & FIGNORECASE)
1960 		zflg |= ZCILOOK;
1961 top:
1962 	zp = NULL;
1963 
1964 	/*
1965 	 * Attempt to lock directory; fail if entry doesn't exist.
1966 	 */
1967 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1968 	    NULL, NULL)) {
1969 		ZFS_EXIT(zfsvfs);
1970 		return (error);
1971 	}
1972 
1973 	vp = ZTOV(zp);
1974 
1975 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1976 		goto out;
1977 	}
1978 
1979 	if (vp->v_type != VDIR) {
1980 		error = ENOTDIR;
1981 		goto out;
1982 	}
1983 
1984 	if (vp == cwd) {
1985 		error = EINVAL;
1986 		goto out;
1987 	}
1988 
1989 	vnevent_rmdir(vp, dvp, name, ct);
1990 
1991 	/*
1992 	 * Grab a lock on the directory to make sure that noone is
1993 	 * trying to add (or lookup) entries while we are removing it.
1994 	 */
1995 	rw_enter(&zp->z_name_lock, RW_WRITER);
1996 
1997 	/*
1998 	 * Grab a lock on the parent pointer to make sure we play well
1999 	 * with the treewalk and directory rename code.
2000 	 */
2001 	rw_enter(&zp->z_parent_lock, RW_WRITER);
2002 
2003 	tx = dmu_tx_create(zfsvfs->z_os);
2004 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
2005 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2006 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2007 	zfs_sa_upgrade_txholds(tx, zp);
2008 	zfs_sa_upgrade_txholds(tx, dzp);
2009 	error = dmu_tx_assign(tx, TXG_NOWAIT);
2010 	if (error) {
2011 		rw_exit(&zp->z_parent_lock);
2012 		rw_exit(&zp->z_name_lock);
2013 		zfs_dirent_unlock(dl);
2014 		VN_RELE(vp);
2015 		if (error == ERESTART) {
2016 			dmu_tx_wait(tx);
2017 			dmu_tx_abort(tx);
2018 			goto top;
2019 		}
2020 		dmu_tx_abort(tx);
2021 		ZFS_EXIT(zfsvfs);
2022 		return (error);
2023 	}
2024 
2025 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2026 
2027 	if (error == 0) {
2028 		uint64_t txtype = TX_RMDIR;
2029 		if (flags & FIGNORECASE)
2030 			txtype |= TX_CI;
2031 		zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT);
2032 	}
2033 
2034 	dmu_tx_commit(tx);
2035 
2036 	rw_exit(&zp->z_parent_lock);
2037 	rw_exit(&zp->z_name_lock);
2038 out:
2039 	zfs_dirent_unlock(dl);
2040 
2041 	VN_RELE(vp);
2042 
2043 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2044 		zil_commit(zilog, 0);
2045 
2046 	ZFS_EXIT(zfsvfs);
2047 	return (error);
2048 }
2049 
2050 /*
2051  * Read as many directory entries as will fit into the provided
2052  * buffer from the given directory cursor position (specified in
2053  * the uio structure.
2054  *
2055  *	IN:	vp	- vnode of directory to read.
2056  *		uio	- structure supplying read location, range info,
2057  *			  and return buffer.
2058  *		cr	- credentials of caller.
2059  *		ct	- caller context
2060  *		flags	- case flags
2061  *
2062  *	OUT:	uio	- updated offset and range, buffer filled.
2063  *		eofp	- set to true if end-of-file detected.
2064  *
2065  *	RETURN:	0 if success
2066  *		error code if failure
2067  *
2068  * Timestamps:
2069  *	vp - atime updated
2070  *
2071  * Note that the low 4 bits of the cookie returned by zap is always zero.
2072  * This allows us to use the low range for "special" directory entries:
2073  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2074  * we use the offset 2 for the '.zfs' directory.
2075  */
2076 /* ARGSUSED */
2077 static int
2078 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2079     caller_context_t *ct, int flags)
2080 {
2081 	znode_t		*zp = VTOZ(vp);
2082 	iovec_t		*iovp;
2083 	edirent_t	*eodp;
2084 	dirent64_t	*odp;
2085 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2086 	objset_t	*os;
2087 	caddr_t		outbuf;
2088 	size_t		bufsize;
2089 	zap_cursor_t	zc;
2090 	zap_attribute_t	zap;
2091 	uint_t		bytes_wanted;
2092 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2093 	uint64_t	parent;
2094 	int		local_eof;
2095 	int		outcount;
2096 	int		error;
2097 	uint8_t		prefetch;
2098 	boolean_t	check_sysattrs;
2099 
2100 	ZFS_ENTER(zfsvfs);
2101 	ZFS_VERIFY_ZP(zp);
2102 
2103 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2104 	    &parent, sizeof (parent))) != 0) {
2105 		ZFS_EXIT(zfsvfs);
2106 		return (error);
2107 	}
2108 
2109 	/*
2110 	 * If we are not given an eof variable,
2111 	 * use a local one.
2112 	 */
2113 	if (eofp == NULL)
2114 		eofp = &local_eof;
2115 
2116 	/*
2117 	 * Check for valid iov_len.
2118 	 */
2119 	if (uio->uio_iov->iov_len <= 0) {
2120 		ZFS_EXIT(zfsvfs);
2121 		return (EINVAL);
2122 	}
2123 
2124 	/*
2125 	 * Quit if directory has been removed (posix)
2126 	 */
2127 	if ((*eofp = zp->z_unlinked) != 0) {
2128 		ZFS_EXIT(zfsvfs);
2129 		return (0);
2130 	}
2131 
2132 	error = 0;
2133 	os = zfsvfs->z_os;
2134 	offset = uio->uio_loffset;
2135 	prefetch = zp->z_zn_prefetch;
2136 
2137 	/*
2138 	 * Initialize the iterator cursor.
2139 	 */
2140 	if (offset <= 3) {
2141 		/*
2142 		 * Start iteration from the beginning of the directory.
2143 		 */
2144 		zap_cursor_init(&zc, os, zp->z_id);
2145 	} else {
2146 		/*
2147 		 * The offset is a serialized cursor.
2148 		 */
2149 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2150 	}
2151 
2152 	/*
2153 	 * Get space to change directory entries into fs independent format.
2154 	 */
2155 	iovp = uio->uio_iov;
2156 	bytes_wanted = iovp->iov_len;
2157 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2158 		bufsize = bytes_wanted;
2159 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2160 		odp = (struct dirent64 *)outbuf;
2161 	} else {
2162 		bufsize = bytes_wanted;
2163 		odp = (struct dirent64 *)iovp->iov_base;
2164 	}
2165 	eodp = (struct edirent *)odp;
2166 
2167 	/*
2168 	 * If this VFS supports the system attribute view interface; and
2169 	 * we're looking at an extended attribute directory; and we care
2170 	 * about normalization conflicts on this vfs; then we must check
2171 	 * for normalization conflicts with the sysattr name space.
2172 	 */
2173 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2174 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2175 	    (flags & V_RDDIR_ENTFLAGS);
2176 
2177 	/*
2178 	 * Transform to file-system independent format
2179 	 */
2180 	outcount = 0;
2181 	while (outcount < bytes_wanted) {
2182 		ino64_t objnum;
2183 		ushort_t reclen;
2184 		off64_t *next = NULL;
2185 
2186 		/*
2187 		 * Special case `.', `..', and `.zfs'.
2188 		 */
2189 		if (offset == 0) {
2190 			(void) strcpy(zap.za_name, ".");
2191 			zap.za_normalization_conflict = 0;
2192 			objnum = zp->z_id;
2193 		} else if (offset == 1) {
2194 			(void) strcpy(zap.za_name, "..");
2195 			zap.za_normalization_conflict = 0;
2196 			objnum = parent;
2197 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2198 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2199 			zap.za_normalization_conflict = 0;
2200 			objnum = ZFSCTL_INO_ROOT;
2201 		} else {
2202 			/*
2203 			 * Grab next entry.
2204 			 */
2205 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2206 				if ((*eofp = (error == ENOENT)) != 0)
2207 					break;
2208 				else
2209 					goto update;
2210 			}
2211 
2212 			if (zap.za_integer_length != 8 ||
2213 			    zap.za_num_integers != 1) {
2214 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2215 				    "entry, obj = %lld, offset = %lld\n",
2216 				    (u_longlong_t)zp->z_id,
2217 				    (u_longlong_t)offset);
2218 				error = ENXIO;
2219 				goto update;
2220 			}
2221 
2222 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2223 			/*
2224 			 * MacOS X can extract the object type here such as:
2225 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2226 			 */
2227 
2228 			if (check_sysattrs && !zap.za_normalization_conflict) {
2229 				zap.za_normalization_conflict =
2230 				    xattr_sysattr_casechk(zap.za_name);
2231 			}
2232 		}
2233 
2234 		if (flags & V_RDDIR_ACCFILTER) {
2235 			/*
2236 			 * If we have no access at all, don't include
2237 			 * this entry in the returned information
2238 			 */
2239 			znode_t	*ezp;
2240 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2241 				goto skip_entry;
2242 			if (!zfs_has_access(ezp, cr)) {
2243 				VN_RELE(ZTOV(ezp));
2244 				goto skip_entry;
2245 			}
2246 			VN_RELE(ZTOV(ezp));
2247 		}
2248 
2249 		if (flags & V_RDDIR_ENTFLAGS)
2250 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2251 		else
2252 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2253 
2254 		/*
2255 		 * Will this entry fit in the buffer?
2256 		 */
2257 		if (outcount + reclen > bufsize) {
2258 			/*
2259 			 * Did we manage to fit anything in the buffer?
2260 			 */
2261 			if (!outcount) {
2262 				error = EINVAL;
2263 				goto update;
2264 			}
2265 			break;
2266 		}
2267 		if (flags & V_RDDIR_ENTFLAGS) {
2268 			/*
2269 			 * Add extended flag entry:
2270 			 */
2271 			eodp->ed_ino = objnum;
2272 			eodp->ed_reclen = reclen;
2273 			/* NOTE: ed_off is the offset for the *next* entry */
2274 			next = &(eodp->ed_off);
2275 			eodp->ed_eflags = zap.za_normalization_conflict ?
2276 			    ED_CASE_CONFLICT : 0;
2277 			(void) strncpy(eodp->ed_name, zap.za_name,
2278 			    EDIRENT_NAMELEN(reclen));
2279 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2280 		} else {
2281 			/*
2282 			 * Add normal entry:
2283 			 */
2284 			odp->d_ino = objnum;
2285 			odp->d_reclen = reclen;
2286 			/* NOTE: d_off is the offset for the *next* entry */
2287 			next = &(odp->d_off);
2288 			(void) strncpy(odp->d_name, zap.za_name,
2289 			    DIRENT64_NAMELEN(reclen));
2290 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2291 		}
2292 		outcount += reclen;
2293 
2294 		ASSERT(outcount <= bufsize);
2295 
2296 		/* Prefetch znode */
2297 		if (prefetch)
2298 			dmu_prefetch(os, objnum, 0, 0);
2299 
2300 	skip_entry:
2301 		/*
2302 		 * Move to the next entry, fill in the previous offset.
2303 		 */
2304 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2305 			zap_cursor_advance(&zc);
2306 			offset = zap_cursor_serialize(&zc);
2307 		} else {
2308 			offset += 1;
2309 		}
2310 		if (next)
2311 			*next = offset;
2312 	}
2313 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2314 
2315 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2316 		iovp->iov_base += outcount;
2317 		iovp->iov_len -= outcount;
2318 		uio->uio_resid -= outcount;
2319 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2320 		/*
2321 		 * Reset the pointer.
2322 		 */
2323 		offset = uio->uio_loffset;
2324 	}
2325 
2326 update:
2327 	zap_cursor_fini(&zc);
2328 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2329 		kmem_free(outbuf, bufsize);
2330 
2331 	if (error == ENOENT)
2332 		error = 0;
2333 
2334 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2335 
2336 	uio->uio_loffset = offset;
2337 	ZFS_EXIT(zfsvfs);
2338 	return (error);
2339 }
2340 
2341 ulong_t zfs_fsync_sync_cnt = 4;
2342 
2343 static int
2344 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2345 {
2346 	znode_t	*zp = VTOZ(vp);
2347 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2348 
2349 	/*
2350 	 * Regardless of whether this is required for standards conformance,
2351 	 * this is the logical behavior when fsync() is called on a file with
2352 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2353 	 * going to be pushed out as part of the zil_commit().
2354 	 */
2355 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2356 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2357 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2358 
2359 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2360 
2361 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2362 		ZFS_ENTER(zfsvfs);
2363 		ZFS_VERIFY_ZP(zp);
2364 		zil_commit(zfsvfs->z_log, zp->z_id);
2365 		ZFS_EXIT(zfsvfs);
2366 	}
2367 	return (0);
2368 }
2369 
2370 
2371 /*
2372  * Get the requested file attributes and place them in the provided
2373  * vattr structure.
2374  *
2375  *	IN:	vp	- vnode of file.
2376  *		vap	- va_mask identifies requested attributes.
2377  *			  If AT_XVATTR set, then optional attrs are requested
2378  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2379  *		cr	- credentials of caller.
2380  *		ct	- caller context
2381  *
2382  *	OUT:	vap	- attribute values.
2383  *
2384  *	RETURN:	0 (always succeeds)
2385  */
2386 /* ARGSUSED */
2387 static int
2388 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2389     caller_context_t *ct)
2390 {
2391 	znode_t *zp = VTOZ(vp);
2392 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2393 	int	error = 0;
2394 	uint64_t links;
2395 	uint64_t mtime[2], ctime[2];
2396 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2397 	xoptattr_t *xoap = NULL;
2398 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2399 	sa_bulk_attr_t bulk[2];
2400 	int count = 0;
2401 
2402 	ZFS_ENTER(zfsvfs);
2403 	ZFS_VERIFY_ZP(zp);
2404 
2405 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2406 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2407 
2408 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2409 		ZFS_EXIT(zfsvfs);
2410 		return (error);
2411 	}
2412 
2413 	/*
2414 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2415 	 * Also, if we are the owner don't bother, since owner should
2416 	 * always be allowed to read basic attributes of file.
2417 	 */
2418 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) {
2419 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2420 		    skipaclchk, cr)) {
2421 			ZFS_EXIT(zfsvfs);
2422 			return (error);
2423 		}
2424 	}
2425 
2426 	/*
2427 	 * Return all attributes.  It's cheaper to provide the answer
2428 	 * than to determine whether we were asked the question.
2429 	 */
2430 
2431 	mutex_enter(&zp->z_lock);
2432 	vap->va_type = vp->v_type;
2433 	vap->va_mode = zp->z_mode & MODEMASK;
2434 	vap->va_uid = zp->z_uid;
2435 	vap->va_gid = zp->z_gid;
2436 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2437 	vap->va_nodeid = zp->z_id;
2438 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2439 		links = zp->z_links + 1;
2440 	else
2441 		links = zp->z_links;
2442 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2443 	vap->va_size = zp->z_size;
2444 	vap->va_rdev = vp->v_rdev;
2445 	vap->va_seq = zp->z_seq;
2446 
2447 	/*
2448 	 * Add in any requested optional attributes and the create time.
2449 	 * Also set the corresponding bits in the returned attribute bitmap.
2450 	 */
2451 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2452 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2453 			xoap->xoa_archive =
2454 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2455 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2456 		}
2457 
2458 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2459 			xoap->xoa_readonly =
2460 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2461 			XVA_SET_RTN(xvap, XAT_READONLY);
2462 		}
2463 
2464 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2465 			xoap->xoa_system =
2466 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2467 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2468 		}
2469 
2470 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2471 			xoap->xoa_hidden =
2472 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2473 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2474 		}
2475 
2476 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2477 			xoap->xoa_nounlink =
2478 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2479 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2480 		}
2481 
2482 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2483 			xoap->xoa_immutable =
2484 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2485 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2486 		}
2487 
2488 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2489 			xoap->xoa_appendonly =
2490 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2491 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2492 		}
2493 
2494 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2495 			xoap->xoa_nodump =
2496 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2497 			XVA_SET_RTN(xvap, XAT_NODUMP);
2498 		}
2499 
2500 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2501 			xoap->xoa_opaque =
2502 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2503 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2504 		}
2505 
2506 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2507 			xoap->xoa_av_quarantined =
2508 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2509 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2510 		}
2511 
2512 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2513 			xoap->xoa_av_modified =
2514 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2515 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2516 		}
2517 
2518 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2519 		    vp->v_type == VREG) {
2520 			zfs_sa_get_scanstamp(zp, xvap);
2521 		}
2522 
2523 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2524 			uint64_t times[2];
2525 
2526 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2527 			    times, sizeof (times));
2528 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2529 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2530 		}
2531 
2532 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2533 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2534 			XVA_SET_RTN(xvap, XAT_REPARSE);
2535 		}
2536 	}
2537 
2538 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2539 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2540 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2541 
2542 	mutex_exit(&zp->z_lock);
2543 
2544 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2545 
2546 	if (zp->z_blksz == 0) {
2547 		/*
2548 		 * Block size hasn't been set; suggest maximal I/O transfers.
2549 		 */
2550 		vap->va_blksize = zfsvfs->z_max_blksz;
2551 	}
2552 
2553 	ZFS_EXIT(zfsvfs);
2554 	return (0);
2555 }
2556 
2557 /*
2558  * Set the file attributes to the values contained in the
2559  * vattr structure.
2560  *
2561  *	IN:	vp	- vnode of file to be modified.
2562  *		vap	- new attribute values.
2563  *			  If AT_XVATTR set, then optional attrs are being set
2564  *		flags	- ATTR_UTIME set if non-default time values provided.
2565  *			- ATTR_NOACLCHECK (CIFS context only).
2566  *		cr	- credentials of caller.
2567  *		ct	- caller context
2568  *
2569  *	RETURN:	0 if success
2570  *		error code if failure
2571  *
2572  * Timestamps:
2573  *	vp - ctime updated, mtime updated if size changed.
2574  */
2575 /* ARGSUSED */
2576 static int
2577 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2578 	caller_context_t *ct)
2579 {
2580 	znode_t		*zp = VTOZ(vp);
2581 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2582 	zilog_t		*zilog;
2583 	dmu_tx_t	*tx;
2584 	vattr_t		oldva;
2585 	xvattr_t	tmpxvattr;
2586 	uint_t		mask = vap->va_mask;
2587 	uint_t		saved_mask;
2588 	int		trim_mask = 0;
2589 	uint64_t	new_mode;
2590 	uint64_t	new_uid, new_gid;
2591 	uint64_t	xattr_obj = 0;
2592 	uint64_t	mtime[2], ctime[2];
2593 	znode_t		*attrzp;
2594 	int		need_policy = FALSE;
2595 	int		err, err2;
2596 	zfs_fuid_info_t *fuidp = NULL;
2597 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2598 	xoptattr_t	*xoap;
2599 	zfs_acl_t	*aclp = NULL;
2600 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2601 	boolean_t	fuid_dirtied = B_FALSE;
2602 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2603 	int		count = 0, xattr_count = 0;
2604 
2605 	if (mask == 0)
2606 		return (0);
2607 
2608 	if (mask & AT_NOSET)
2609 		return (EINVAL);
2610 
2611 	ZFS_ENTER(zfsvfs);
2612 	ZFS_VERIFY_ZP(zp);
2613 
2614 	zilog = zfsvfs->z_log;
2615 
2616 	/*
2617 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2618 	 * that file system is at proper version level
2619 	 */
2620 
2621 	if (zfsvfs->z_use_fuids == B_FALSE &&
2622 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2623 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2624 	    (mask & AT_XVATTR))) {
2625 		ZFS_EXIT(zfsvfs);
2626 		return (EINVAL);
2627 	}
2628 
2629 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2630 		ZFS_EXIT(zfsvfs);
2631 		return (EISDIR);
2632 	}
2633 
2634 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2635 		ZFS_EXIT(zfsvfs);
2636 		return (EINVAL);
2637 	}
2638 
2639 	/*
2640 	 * If this is an xvattr_t, then get a pointer to the structure of
2641 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2642 	 */
2643 	xoap = xva_getxoptattr(xvap);
2644 
2645 	xva_init(&tmpxvattr);
2646 
2647 	/*
2648 	 * Immutable files can only alter immutable bit and atime
2649 	 */
2650 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2651 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2652 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2653 		ZFS_EXIT(zfsvfs);
2654 		return (EPERM);
2655 	}
2656 
2657 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2658 		ZFS_EXIT(zfsvfs);
2659 		return (EPERM);
2660 	}
2661 
2662 	/*
2663 	 * Verify timestamps doesn't overflow 32 bits.
2664 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2665 	 * handle times greater than 2039.  This check should be removed
2666 	 * once large timestamps are fully supported.
2667 	 */
2668 	if (mask & (AT_ATIME | AT_MTIME)) {
2669 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2670 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2671 			ZFS_EXIT(zfsvfs);
2672 			return (EOVERFLOW);
2673 		}
2674 	}
2675 
2676 top:
2677 	attrzp = NULL;
2678 
2679 	/* Can this be moved to before the top label? */
2680 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2681 		ZFS_EXIT(zfsvfs);
2682 		return (EROFS);
2683 	}
2684 
2685 	/*
2686 	 * First validate permissions
2687 	 */
2688 
2689 	if (mask & AT_SIZE) {
2690 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2691 		if (err) {
2692 			ZFS_EXIT(zfsvfs);
2693 			return (err);
2694 		}
2695 		/*
2696 		 * XXX - Note, we are not providing any open
2697 		 * mode flags here (like FNDELAY), so we may
2698 		 * block if there are locks present... this
2699 		 * should be addressed in openat().
2700 		 */
2701 		/* XXX - would it be OK to generate a log record here? */
2702 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2703 		if (err) {
2704 			ZFS_EXIT(zfsvfs);
2705 			return (err);
2706 		}
2707 	}
2708 
2709 	if (mask & (AT_ATIME|AT_MTIME) ||
2710 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2711 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2712 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2713 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2714 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2715 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2716 		    skipaclchk, cr);
2717 	}
2718 
2719 	if (mask & (AT_UID|AT_GID)) {
2720 		int	idmask = (mask & (AT_UID|AT_GID));
2721 		int	take_owner;
2722 		int	take_group;
2723 
2724 		/*
2725 		 * NOTE: even if a new mode is being set,
2726 		 * we may clear S_ISUID/S_ISGID bits.
2727 		 */
2728 
2729 		if (!(mask & AT_MODE))
2730 			vap->va_mode = zp->z_mode;
2731 
2732 		/*
2733 		 * Take ownership or chgrp to group we are a member of
2734 		 */
2735 
2736 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2737 		take_group = (mask & AT_GID) &&
2738 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2739 
2740 		/*
2741 		 * If both AT_UID and AT_GID are set then take_owner and
2742 		 * take_group must both be set in order to allow taking
2743 		 * ownership.
2744 		 *
2745 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2746 		 *
2747 		 */
2748 
2749 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2750 		    ((idmask == AT_UID) && take_owner) ||
2751 		    ((idmask == AT_GID) && take_group)) {
2752 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2753 			    skipaclchk, cr) == 0) {
2754 				/*
2755 				 * Remove setuid/setgid for non-privileged users
2756 				 */
2757 				secpolicy_setid_clear(vap, cr);
2758 				trim_mask = (mask & (AT_UID|AT_GID));
2759 			} else {
2760 				need_policy =  TRUE;
2761 			}
2762 		} else {
2763 			need_policy =  TRUE;
2764 		}
2765 	}
2766 
2767 	mutex_enter(&zp->z_lock);
2768 	oldva.va_mode = zp->z_mode;
2769 	oldva.va_uid = zp->z_uid;
2770 	oldva.va_gid = zp->z_gid;
2771 	if (mask & AT_XVATTR) {
2772 		/*
2773 		 * Update xvattr mask to include only those attributes
2774 		 * that are actually changing.
2775 		 *
2776 		 * the bits will be restored prior to actually setting
2777 		 * the attributes so the caller thinks they were set.
2778 		 */
2779 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2780 			if (xoap->xoa_appendonly !=
2781 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2782 				need_policy = TRUE;
2783 			} else {
2784 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2785 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2786 			}
2787 		}
2788 
2789 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2790 			if (xoap->xoa_nounlink !=
2791 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2792 				need_policy = TRUE;
2793 			} else {
2794 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2795 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2796 			}
2797 		}
2798 
2799 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2800 			if (xoap->xoa_immutable !=
2801 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2802 				need_policy = TRUE;
2803 			} else {
2804 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2805 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2806 			}
2807 		}
2808 
2809 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2810 			if (xoap->xoa_nodump !=
2811 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2812 				need_policy = TRUE;
2813 			} else {
2814 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2815 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2816 			}
2817 		}
2818 
2819 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2820 			if (xoap->xoa_av_modified !=
2821 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2822 				need_policy = TRUE;
2823 			} else {
2824 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2825 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2826 			}
2827 		}
2828 
2829 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2830 			if ((vp->v_type != VREG &&
2831 			    xoap->xoa_av_quarantined) ||
2832 			    xoap->xoa_av_quarantined !=
2833 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2834 				need_policy = TRUE;
2835 			} else {
2836 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2837 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2838 			}
2839 		}
2840 
2841 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2842 			mutex_exit(&zp->z_lock);
2843 			ZFS_EXIT(zfsvfs);
2844 			return (EPERM);
2845 		}
2846 
2847 		if (need_policy == FALSE &&
2848 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2849 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2850 			need_policy = TRUE;
2851 		}
2852 	}
2853 
2854 	mutex_exit(&zp->z_lock);
2855 
2856 	if (mask & AT_MODE) {
2857 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2858 			err = secpolicy_setid_setsticky_clear(vp, vap,
2859 			    &oldva, cr);
2860 			if (err) {
2861 				ZFS_EXIT(zfsvfs);
2862 				return (err);
2863 			}
2864 			trim_mask |= AT_MODE;
2865 		} else {
2866 			need_policy = TRUE;
2867 		}
2868 	}
2869 
2870 	if (need_policy) {
2871 		/*
2872 		 * If trim_mask is set then take ownership
2873 		 * has been granted or write_acl is present and user
2874 		 * has the ability to modify mode.  In that case remove
2875 		 * UID|GID and or MODE from mask so that
2876 		 * secpolicy_vnode_setattr() doesn't revoke it.
2877 		 */
2878 
2879 		if (trim_mask) {
2880 			saved_mask = vap->va_mask;
2881 			vap->va_mask &= ~trim_mask;
2882 		}
2883 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2884 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2885 		if (err) {
2886 			ZFS_EXIT(zfsvfs);
2887 			return (err);
2888 		}
2889 
2890 		if (trim_mask)
2891 			vap->va_mask |= saved_mask;
2892 	}
2893 
2894 	/*
2895 	 * secpolicy_vnode_setattr, or take ownership may have
2896 	 * changed va_mask
2897 	 */
2898 	mask = vap->va_mask;
2899 
2900 	if ((mask & (AT_UID | AT_GID))) {
2901 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj,
2902 		    sizeof (xattr_obj));
2903 
2904 		if (xattr_obj) {
2905 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2906 			if (err)
2907 				goto out2;
2908 		}
2909 		if (mask & AT_UID) {
2910 			new_uid = zfs_fuid_create(zfsvfs,
2911 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2912 			if (vap->va_uid != zp->z_uid &&
2913 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2914 				err = EDQUOT;
2915 				goto out2;
2916 			}
2917 		}
2918 
2919 		if (mask & AT_GID) {
2920 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2921 			    cr, ZFS_GROUP, &fuidp);
2922 			if (new_gid != zp->z_gid &&
2923 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2924 				err = EDQUOT;
2925 				goto out2;
2926 			}
2927 		}
2928 	}
2929 	tx = dmu_tx_create(zfsvfs->z_os);
2930 
2931 	if (mask & AT_MODE) {
2932 		uint64_t pmode = zp->z_mode;
2933 		uint64_t acl_obj;
2934 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2935 
2936 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2937 			goto out;
2938 
2939 		mutex_enter(&zp->z_lock);
2940 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2941 			/*
2942 			 * Are we upgrading ACL from old V0 format
2943 			 * to V1 format?
2944 			 */
2945 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2946 			    zfs_znode_acl_version(zp) ==
2947 			    ZFS_ACL_VERSION_INITIAL) {
2948 				dmu_tx_hold_free(tx, acl_obj, 0,
2949 				    DMU_OBJECT_END);
2950 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2951 				    0, aclp->z_acl_bytes);
2952 			} else {
2953 				dmu_tx_hold_write(tx, acl_obj, 0,
2954 				    aclp->z_acl_bytes);
2955 			}
2956 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2957 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2958 			    0, aclp->z_acl_bytes);
2959 		}
2960 		mutex_exit(&zp->z_lock);
2961 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2962 	} else {
2963 		if ((mask & AT_XVATTR) &&
2964 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2965 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2966 		else
2967 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2968 	}
2969 
2970 	if (attrzp) {
2971 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2972 	}
2973 
2974 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2975 	if (fuid_dirtied)
2976 		zfs_fuid_txhold(zfsvfs, tx);
2977 
2978 	zfs_sa_upgrade_txholds(tx, zp);
2979 
2980 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2981 	if (err) {
2982 		if (err == ERESTART)
2983 			dmu_tx_wait(tx);
2984 		goto out;
2985 	}
2986 
2987 	count = 0;
2988 	/*
2989 	 * Set each attribute requested.
2990 	 * We group settings according to the locks they need to acquire.
2991 	 *
2992 	 * Note: you cannot set ctime directly, although it will be
2993 	 * updated as a side-effect of calling this function.
2994 	 */
2995 
2996 
2997 	if (mask & (AT_UID|AT_GID|AT_MODE))
2998 		mutex_enter(&zp->z_acl_lock);
2999 	mutex_enter(&zp->z_lock);
3000 
3001 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
3002 	    &zp->z_pflags, sizeof (zp->z_pflags));
3003 
3004 	if (attrzp) {
3005 		if (mask & (AT_UID|AT_GID|AT_MODE))
3006 			mutex_enter(&attrzp->z_acl_lock);
3007 		mutex_enter(&attrzp->z_lock);
3008 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3009 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
3010 		    sizeof (attrzp->z_pflags));
3011 	}
3012 
3013 	if (mask & (AT_UID|AT_GID)) {
3014 
3015 		if (mask & AT_UID) {
3016 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3017 			    &new_uid, sizeof (new_uid));
3018 			zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid,
3019 			    cr, ZFS_OWNER);
3020 			if (attrzp) {
3021 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3022 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3023 				    sizeof (new_uid));
3024 				attrzp->z_uid = zp->z_uid;
3025 			}
3026 		}
3027 
3028 		if (mask & AT_GID) {
3029 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3030 			    NULL, &new_gid, sizeof (new_gid));
3031 			zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr,
3032 			    ZFS_GROUP);
3033 			if (attrzp) {
3034 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3035 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3036 				    sizeof (new_gid));
3037 				attrzp->z_gid = zp->z_gid;
3038 			}
3039 		}
3040 		if (!(mask & AT_MODE)) {
3041 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3042 			    NULL, &new_mode, sizeof (new_mode));
3043 			new_mode = zp->z_mode;
3044 		}
3045 		err = zfs_acl_chown_setattr(zp);
3046 		ASSERT(err == 0);
3047 		if (attrzp) {
3048 			err = zfs_acl_chown_setattr(attrzp);
3049 			ASSERT(err == 0);
3050 		}
3051 	}
3052 
3053 	if (mask & AT_MODE) {
3054 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3055 		    &new_mode, sizeof (new_mode));
3056 		zp->z_mode = new_mode;
3057 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3058 		err = zfs_aclset_common(zp, aclp, cr, tx);
3059 		ASSERT3U(err, ==, 0);
3060 		zp->z_acl_cached = aclp;
3061 		aclp = NULL;
3062 	}
3063 
3064 
3065 	if (mask & AT_ATIME) {
3066 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3067 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3068 		    &zp->z_atime, sizeof (zp->z_atime));
3069 	}
3070 
3071 	if (mask & AT_MTIME) {
3072 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3073 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3074 		    mtime, sizeof (mtime));
3075 	}
3076 
3077 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3078 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3079 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3080 		    NULL, mtime, sizeof (mtime));
3081 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3082 		    &ctime, sizeof (ctime));
3083 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3084 		    B_TRUE);
3085 	} else if (mask != 0) {
3086 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3087 		    &ctime, sizeof (ctime));
3088 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3089 		    B_TRUE);
3090 		if (attrzp) {
3091 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3092 			    SA_ZPL_CTIME(zfsvfs), NULL,
3093 			    &ctime, sizeof (ctime));
3094 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3095 			    mtime, ctime, B_TRUE);
3096 		}
3097 	}
3098 	/*
3099 	 * Do this after setting timestamps to prevent timestamp
3100 	 * update from toggling bit
3101 	 */
3102 
3103 	if (xoap && (mask & AT_XVATTR)) {
3104 
3105 		/*
3106 		 * restore trimmed off masks
3107 		 * so that return masks can be set for caller.
3108 		 */
3109 
3110 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3111 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3112 		}
3113 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3114 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3115 		}
3116 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3117 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3118 		}
3119 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3120 			XVA_SET_REQ(xvap, XAT_NODUMP);
3121 		}
3122 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3123 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3124 		}
3125 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3126 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3127 		}
3128 
3129 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3130 			ASSERT(vp->v_type == VREG);
3131 
3132 		zfs_xvattr_set(zp, xvap, tx);
3133 	}
3134 
3135 	if (fuid_dirtied)
3136 		zfs_fuid_sync(zfsvfs, tx);
3137 
3138 	if (mask != 0)
3139 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3140 
3141 	mutex_exit(&zp->z_lock);
3142 	if (mask & (AT_UID|AT_GID|AT_MODE))
3143 		mutex_exit(&zp->z_acl_lock);
3144 
3145 	if (attrzp) {
3146 		if (mask & (AT_UID|AT_GID|AT_MODE))
3147 			mutex_exit(&attrzp->z_acl_lock);
3148 		mutex_exit(&attrzp->z_lock);
3149 	}
3150 out:
3151 	if (err == 0 && attrzp) {
3152 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3153 		    xattr_count, tx);
3154 		ASSERT(err2 == 0);
3155 	}
3156 
3157 	if (attrzp)
3158 		VN_RELE(ZTOV(attrzp));
3159 	if (aclp)
3160 		zfs_acl_free(aclp);
3161 
3162 	if (fuidp) {
3163 		zfs_fuid_info_free(fuidp);
3164 		fuidp = NULL;
3165 	}
3166 
3167 	if (err) {
3168 		dmu_tx_abort(tx);
3169 		if (err == ERESTART)
3170 			goto top;
3171 	} else {
3172 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3173 		dmu_tx_commit(tx);
3174 	}
3175 
3176 
3177 out2:
3178 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3179 		zil_commit(zilog, 0);
3180 
3181 	ZFS_EXIT(zfsvfs);
3182 	return (err);
3183 }
3184 
3185 typedef struct zfs_zlock {
3186 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3187 	znode_t		*zl_znode;	/* znode we held */
3188 	struct zfs_zlock *zl_next;	/* next in list */
3189 } zfs_zlock_t;
3190 
3191 /*
3192  * Drop locks and release vnodes that were held by zfs_rename_lock().
3193  */
3194 static void
3195 zfs_rename_unlock(zfs_zlock_t **zlpp)
3196 {
3197 	zfs_zlock_t *zl;
3198 
3199 	while ((zl = *zlpp) != NULL) {
3200 		if (zl->zl_znode != NULL)
3201 			VN_RELE(ZTOV(zl->zl_znode));
3202 		rw_exit(zl->zl_rwlock);
3203 		*zlpp = zl->zl_next;
3204 		kmem_free(zl, sizeof (*zl));
3205 	}
3206 }
3207 
3208 /*
3209  * Search back through the directory tree, using the ".." entries.
3210  * Lock each directory in the chain to prevent concurrent renames.
3211  * Fail any attempt to move a directory into one of its own descendants.
3212  * XXX - z_parent_lock can overlap with map or grow locks
3213  */
3214 static int
3215 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3216 {
3217 	zfs_zlock_t	*zl;
3218 	znode_t		*zp = tdzp;
3219 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3220 	uint64_t	oidp = zp->z_id;
3221 	krwlock_t	*rwlp = &szp->z_parent_lock;
3222 	krw_t		rw = RW_WRITER;
3223 
3224 	/*
3225 	 * First pass write-locks szp and compares to zp->z_id.
3226 	 * Later passes read-lock zp and compare to zp->z_parent.
3227 	 */
3228 	do {
3229 		if (!rw_tryenter(rwlp, rw)) {
3230 			/*
3231 			 * Another thread is renaming in this path.
3232 			 * Note that if we are a WRITER, we don't have any
3233 			 * parent_locks held yet.
3234 			 */
3235 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3236 				/*
3237 				 * Drop our locks and restart
3238 				 */
3239 				zfs_rename_unlock(&zl);
3240 				*zlpp = NULL;
3241 				zp = tdzp;
3242 				oidp = zp->z_id;
3243 				rwlp = &szp->z_parent_lock;
3244 				rw = RW_WRITER;
3245 				continue;
3246 			} else {
3247 				/*
3248 				 * Wait for other thread to drop its locks
3249 				 */
3250 				rw_enter(rwlp, rw);
3251 			}
3252 		}
3253 
3254 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3255 		zl->zl_rwlock = rwlp;
3256 		zl->zl_znode = NULL;
3257 		zl->zl_next = *zlpp;
3258 		*zlpp = zl;
3259 
3260 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3261 			return (EINVAL);
3262 
3263 		if (oidp == rootid)		/* We've hit the top */
3264 			return (0);
3265 
3266 		if (rw == RW_READER) {		/* i.e. not the first pass */
3267 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3268 			if (error)
3269 				return (error);
3270 			zl->zl_znode = zp;
3271 		}
3272 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3273 		    &oidp, sizeof (oidp));
3274 		rwlp = &zp->z_parent_lock;
3275 		rw = RW_READER;
3276 
3277 	} while (zp->z_id != sdzp->z_id);
3278 
3279 	return (0);
3280 }
3281 
3282 /*
3283  * Move an entry from the provided source directory to the target
3284  * directory.  Change the entry name as indicated.
3285  *
3286  *	IN:	sdvp	- Source directory containing the "old entry".
3287  *		snm	- Old entry name.
3288  *		tdvp	- Target directory to contain the "new entry".
3289  *		tnm	- New entry name.
3290  *		cr	- credentials of caller.
3291  *		ct	- caller context
3292  *		flags	- case flags
3293  *
3294  *	RETURN:	0 if success
3295  *		error code if failure
3296  *
3297  * Timestamps:
3298  *	sdvp,tdvp - ctime|mtime updated
3299  */
3300 /*ARGSUSED*/
3301 static int
3302 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3303     caller_context_t *ct, int flags)
3304 {
3305 	znode_t		*tdzp, *szp, *tzp;
3306 	znode_t		*sdzp = VTOZ(sdvp);
3307 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3308 	zilog_t		*zilog;
3309 	vnode_t		*realvp;
3310 	zfs_dirlock_t	*sdl, *tdl;
3311 	dmu_tx_t	*tx;
3312 	zfs_zlock_t	*zl;
3313 	int		cmp, serr, terr;
3314 	int		error = 0;
3315 	int		zflg = 0;
3316 
3317 	ZFS_ENTER(zfsvfs);
3318 	ZFS_VERIFY_ZP(sdzp);
3319 	zilog = zfsvfs->z_log;
3320 
3321 	/*
3322 	 * Make sure we have the real vp for the target directory.
3323 	 */
3324 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3325 		tdvp = realvp;
3326 
3327 	if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3328 		ZFS_EXIT(zfsvfs);
3329 		return (EXDEV);
3330 	}
3331 
3332 	tdzp = VTOZ(tdvp);
3333 	ZFS_VERIFY_ZP(tdzp);
3334 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3335 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3336 		ZFS_EXIT(zfsvfs);
3337 		return (EILSEQ);
3338 	}
3339 
3340 	if (flags & FIGNORECASE)
3341 		zflg |= ZCILOOK;
3342 
3343 top:
3344 	szp = NULL;
3345 	tzp = NULL;
3346 	zl = NULL;
3347 
3348 	/*
3349 	 * This is to prevent the creation of links into attribute space
3350 	 * by renaming a linked file into/outof an attribute directory.
3351 	 * See the comment in zfs_link() for why this is considered bad.
3352 	 */
3353 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3354 		ZFS_EXIT(zfsvfs);
3355 		return (EINVAL);
3356 	}
3357 
3358 	/*
3359 	 * Lock source and target directory entries.  To prevent deadlock,
3360 	 * a lock ordering must be defined.  We lock the directory with
3361 	 * the smallest object id first, or if it's a tie, the one with
3362 	 * the lexically first name.
3363 	 */
3364 	if (sdzp->z_id < tdzp->z_id) {
3365 		cmp = -1;
3366 	} else if (sdzp->z_id > tdzp->z_id) {
3367 		cmp = 1;
3368 	} else {
3369 		/*
3370 		 * First compare the two name arguments without
3371 		 * considering any case folding.
3372 		 */
3373 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3374 
3375 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3376 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3377 		if (cmp == 0) {
3378 			/*
3379 			 * POSIX: "If the old argument and the new argument
3380 			 * both refer to links to the same existing file,
3381 			 * the rename() function shall return successfully
3382 			 * and perform no other action."
3383 			 */
3384 			ZFS_EXIT(zfsvfs);
3385 			return (0);
3386 		}
3387 		/*
3388 		 * If the file system is case-folding, then we may
3389 		 * have some more checking to do.  A case-folding file
3390 		 * system is either supporting mixed case sensitivity
3391 		 * access or is completely case-insensitive.  Note
3392 		 * that the file system is always case preserving.
3393 		 *
3394 		 * In mixed sensitivity mode case sensitive behavior
3395 		 * is the default.  FIGNORECASE must be used to
3396 		 * explicitly request case insensitive behavior.
3397 		 *
3398 		 * If the source and target names provided differ only
3399 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3400 		 * we will treat this as a special case in the
3401 		 * case-insensitive mode: as long as the source name
3402 		 * is an exact match, we will allow this to proceed as
3403 		 * a name-change request.
3404 		 */
3405 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3406 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3407 		    flags & FIGNORECASE)) &&
3408 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3409 		    &error) == 0) {
3410 			/*
3411 			 * case preserving rename request, require exact
3412 			 * name matches
3413 			 */
3414 			zflg |= ZCIEXACT;
3415 			zflg &= ~ZCILOOK;
3416 		}
3417 	}
3418 
3419 	/*
3420 	 * If the source and destination directories are the same, we should
3421 	 * grab the z_name_lock of that directory only once.
3422 	 */
3423 	if (sdzp == tdzp) {
3424 		zflg |= ZHAVELOCK;
3425 		rw_enter(&sdzp->z_name_lock, RW_READER);
3426 	}
3427 
3428 	if (cmp < 0) {
3429 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3430 		    ZEXISTS | zflg, NULL, NULL);
3431 		terr = zfs_dirent_lock(&tdl,
3432 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3433 	} else {
3434 		terr = zfs_dirent_lock(&tdl,
3435 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3436 		serr = zfs_dirent_lock(&sdl,
3437 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3438 		    NULL, NULL);
3439 	}
3440 
3441 	if (serr) {
3442 		/*
3443 		 * Source entry invalid or not there.
3444 		 */
3445 		if (!terr) {
3446 			zfs_dirent_unlock(tdl);
3447 			if (tzp)
3448 				VN_RELE(ZTOV(tzp));
3449 		}
3450 
3451 		if (sdzp == tdzp)
3452 			rw_exit(&sdzp->z_name_lock);
3453 
3454 		if (strcmp(snm, "..") == 0)
3455 			serr = EINVAL;
3456 		ZFS_EXIT(zfsvfs);
3457 		return (serr);
3458 	}
3459 	if (terr) {
3460 		zfs_dirent_unlock(sdl);
3461 		VN_RELE(ZTOV(szp));
3462 
3463 		if (sdzp == tdzp)
3464 			rw_exit(&sdzp->z_name_lock);
3465 
3466 		if (strcmp(tnm, "..") == 0)
3467 			terr = EINVAL;
3468 		ZFS_EXIT(zfsvfs);
3469 		return (terr);
3470 	}
3471 
3472 	/*
3473 	 * Must have write access at the source to remove the old entry
3474 	 * and write access at the target to create the new entry.
3475 	 * Note that if target and source are the same, this can be
3476 	 * done in a single check.
3477 	 */
3478 
3479 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3480 		goto out;
3481 
3482 	if (ZTOV(szp)->v_type == VDIR) {
3483 		/*
3484 		 * Check to make sure rename is valid.
3485 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3486 		 */
3487 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3488 			goto out;
3489 	}
3490 
3491 	/*
3492 	 * Does target exist?
3493 	 */
3494 	if (tzp) {
3495 		/*
3496 		 * Source and target must be the same type.
3497 		 */
3498 		if (ZTOV(szp)->v_type == VDIR) {
3499 			if (ZTOV(tzp)->v_type != VDIR) {
3500 				error = ENOTDIR;
3501 				goto out;
3502 			}
3503 		} else {
3504 			if (ZTOV(tzp)->v_type == VDIR) {
3505 				error = EISDIR;
3506 				goto out;
3507 			}
3508 		}
3509 		/*
3510 		 * POSIX dictates that when the source and target
3511 		 * entries refer to the same file object, rename
3512 		 * must do nothing and exit without error.
3513 		 */
3514 		if (szp->z_id == tzp->z_id) {
3515 			error = 0;
3516 			goto out;
3517 		}
3518 	}
3519 
3520 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3521 	if (tzp)
3522 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3523 
3524 	/*
3525 	 * notify the target directory if it is not the same
3526 	 * as source directory.
3527 	 */
3528 	if (tdvp != sdvp) {
3529 		vnevent_rename_dest_dir(tdvp, ct);
3530 	}
3531 
3532 	tx = dmu_tx_create(zfsvfs->z_os);
3533 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3534 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3535 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3536 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3537 	if (sdzp != tdzp) {
3538 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3539 		zfs_sa_upgrade_txholds(tx, tdzp);
3540 	}
3541 	if (tzp) {
3542 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3543 		zfs_sa_upgrade_txholds(tx, tzp);
3544 	}
3545 
3546 	zfs_sa_upgrade_txholds(tx, szp);
3547 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3548 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3549 	if (error) {
3550 		if (zl != NULL)
3551 			zfs_rename_unlock(&zl);
3552 		zfs_dirent_unlock(sdl);
3553 		zfs_dirent_unlock(tdl);
3554 
3555 		if (sdzp == tdzp)
3556 			rw_exit(&sdzp->z_name_lock);
3557 
3558 		VN_RELE(ZTOV(szp));
3559 		if (tzp)
3560 			VN_RELE(ZTOV(tzp));
3561 		if (error == ERESTART) {
3562 			dmu_tx_wait(tx);
3563 			dmu_tx_abort(tx);
3564 			goto top;
3565 		}
3566 		dmu_tx_abort(tx);
3567 		ZFS_EXIT(zfsvfs);
3568 		return (error);
3569 	}
3570 
3571 	if (tzp)	/* Attempt to remove the existing target */
3572 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3573 
3574 	if (error == 0) {
3575 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3576 		if (error == 0) {
3577 			szp->z_pflags |= ZFS_AV_MODIFIED;
3578 
3579 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3580 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3581 			ASSERT3U(error, ==, 0);
3582 
3583 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3584 			if (error == 0) {
3585 				zfs_log_rename(zilog, tx, TX_RENAME |
3586 				    (flags & FIGNORECASE ? TX_CI : 0), sdzp,
3587 				    sdl->dl_name, tdzp, tdl->dl_name, szp);
3588 
3589 				/*
3590 				 * Update path information for the target vnode
3591 				 */
3592 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3593 				    strlen(tnm));
3594 			} else {
3595 				/*
3596 				 * At this point, we have successfully created
3597 				 * the target name, but have failed to remove
3598 				 * the source name.  Since the create was done
3599 				 * with the ZRENAMING flag, there are
3600 				 * complications; for one, the link count is
3601 				 * wrong.  The easiest way to deal with this
3602 				 * is to remove the newly created target, and
3603 				 * return the original error.  This must
3604 				 * succeed; fortunately, it is very unlikely to
3605 				 * fail, since we just created it.
3606 				 */
3607 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3608 				    ZRENAMING, NULL), ==, 0);
3609 			}
3610 		}
3611 	}
3612 
3613 	dmu_tx_commit(tx);
3614 out:
3615 	if (zl != NULL)
3616 		zfs_rename_unlock(&zl);
3617 
3618 	zfs_dirent_unlock(sdl);
3619 	zfs_dirent_unlock(tdl);
3620 
3621 	if (sdzp == tdzp)
3622 		rw_exit(&sdzp->z_name_lock);
3623 
3624 
3625 	VN_RELE(ZTOV(szp));
3626 	if (tzp)
3627 		VN_RELE(ZTOV(tzp));
3628 
3629 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3630 		zil_commit(zilog, 0);
3631 
3632 	ZFS_EXIT(zfsvfs);
3633 	return (error);
3634 }
3635 
3636 /*
3637  * Insert the indicated symbolic reference entry into the directory.
3638  *
3639  *	IN:	dvp	- Directory to contain new symbolic link.
3640  *		link	- Name for new symlink entry.
3641  *		vap	- Attributes of new entry.
3642  *		target	- Target path of new symlink.
3643  *		cr	- credentials of caller.
3644  *		ct	- caller context
3645  *		flags	- case flags
3646  *
3647  *	RETURN:	0 if success
3648  *		error code if failure
3649  *
3650  * Timestamps:
3651  *	dvp - ctime|mtime updated
3652  */
3653 /*ARGSUSED*/
3654 static int
3655 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3656     caller_context_t *ct, int flags)
3657 {
3658 	znode_t		*zp, *dzp = VTOZ(dvp);
3659 	zfs_dirlock_t	*dl;
3660 	dmu_tx_t	*tx;
3661 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3662 	zilog_t		*zilog;
3663 	uint64_t	len = strlen(link);
3664 	int		error;
3665 	int		zflg = ZNEW;
3666 	zfs_acl_ids_t	acl_ids;
3667 	boolean_t	fuid_dirtied;
3668 	uint64_t	txtype = TX_SYMLINK;
3669 
3670 	ASSERT(vap->va_type == VLNK);
3671 
3672 	ZFS_ENTER(zfsvfs);
3673 	ZFS_VERIFY_ZP(dzp);
3674 	zilog = zfsvfs->z_log;
3675 
3676 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3677 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3678 		ZFS_EXIT(zfsvfs);
3679 		return (EILSEQ);
3680 	}
3681 	if (flags & FIGNORECASE)
3682 		zflg |= ZCILOOK;
3683 
3684 	if (len > MAXPATHLEN) {
3685 		ZFS_EXIT(zfsvfs);
3686 		return (ENAMETOOLONG);
3687 	}
3688 
3689 	if ((error = zfs_acl_ids_create(dzp, 0,
3690 	    vap, cr, NULL, &acl_ids)) != 0) {
3691 		ZFS_EXIT(zfsvfs);
3692 		return (error);
3693 	}
3694 top:
3695 	/*
3696 	 * Attempt to lock directory; fail if entry already exists.
3697 	 */
3698 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3699 	if (error) {
3700 		zfs_acl_ids_free(&acl_ids);
3701 		ZFS_EXIT(zfsvfs);
3702 		return (error);
3703 	}
3704 
3705 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3706 		zfs_acl_ids_free(&acl_ids);
3707 		zfs_dirent_unlock(dl);
3708 		ZFS_EXIT(zfsvfs);
3709 		return (error);
3710 	}
3711 
3712 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3713 		zfs_acl_ids_free(&acl_ids);
3714 		zfs_dirent_unlock(dl);
3715 		ZFS_EXIT(zfsvfs);
3716 		return (EDQUOT);
3717 	}
3718 	tx = dmu_tx_create(zfsvfs->z_os);
3719 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3720 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3721 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3722 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3723 	    ZFS_SA_BASE_ATTR_SIZE + len);
3724 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3725 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3726 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3727 		    acl_ids.z_aclp->z_acl_bytes);
3728 	}
3729 	if (fuid_dirtied)
3730 		zfs_fuid_txhold(zfsvfs, tx);
3731 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3732 	if (error) {
3733 		zfs_dirent_unlock(dl);
3734 		if (error == ERESTART) {
3735 			dmu_tx_wait(tx);
3736 			dmu_tx_abort(tx);
3737 			goto top;
3738 		}
3739 		zfs_acl_ids_free(&acl_ids);
3740 		dmu_tx_abort(tx);
3741 		ZFS_EXIT(zfsvfs);
3742 		return (error);
3743 	}
3744 
3745 	/*
3746 	 * Create a new object for the symlink.
3747 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3748 	 */
3749 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3750 
3751 	if (fuid_dirtied)
3752 		zfs_fuid_sync(zfsvfs, tx);
3753 
3754 	mutex_enter(&zp->z_lock);
3755 	if (zp->z_is_sa)
3756 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3757 		    link, len, tx);
3758 	else
3759 		zfs_sa_symlink(zp, link, len, tx);
3760 	mutex_exit(&zp->z_lock);
3761 
3762 	zp->z_size = len;
3763 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3764 	    &zp->z_size, sizeof (zp->z_size), tx);
3765 	/*
3766 	 * Insert the new object into the directory.
3767 	 */
3768 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3769 
3770 	if (flags & FIGNORECASE)
3771 		txtype |= TX_CI;
3772 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3773 
3774 	zfs_acl_ids_free(&acl_ids);
3775 
3776 	dmu_tx_commit(tx);
3777 
3778 	zfs_dirent_unlock(dl);
3779 
3780 	VN_RELE(ZTOV(zp));
3781 
3782 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3783 		zil_commit(zilog, 0);
3784 
3785 	ZFS_EXIT(zfsvfs);
3786 	return (error);
3787 }
3788 
3789 /*
3790  * Return, in the buffer contained in the provided uio structure,
3791  * the symbolic path referred to by vp.
3792  *
3793  *	IN:	vp	- vnode of symbolic link.
3794  *		uoip	- structure to contain the link path.
3795  *		cr	- credentials of caller.
3796  *		ct	- caller context
3797  *
3798  *	OUT:	uio	- structure to contain the link path.
3799  *
3800  *	RETURN:	0 if success
3801  *		error code if failure
3802  *
3803  * Timestamps:
3804  *	vp - atime updated
3805  */
3806 /* ARGSUSED */
3807 static int
3808 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3809 {
3810 	znode_t		*zp = VTOZ(vp);
3811 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3812 	int		error;
3813 
3814 	ZFS_ENTER(zfsvfs);
3815 	ZFS_VERIFY_ZP(zp);
3816 
3817 	mutex_enter(&zp->z_lock);
3818 	if (zp->z_is_sa)
3819 		error = sa_lookup_uio(zp->z_sa_hdl,
3820 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3821 	else
3822 		error = zfs_sa_readlink(zp, uio);
3823 	mutex_exit(&zp->z_lock);
3824 
3825 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3826 
3827 	ZFS_EXIT(zfsvfs);
3828 	return (error);
3829 }
3830 
3831 /*
3832  * Insert a new entry into directory tdvp referencing svp.
3833  *
3834  *	IN:	tdvp	- Directory to contain new entry.
3835  *		svp	- vnode of new entry.
3836  *		name	- name of new entry.
3837  *		cr	- credentials of caller.
3838  *		ct	- caller context
3839  *
3840  *	RETURN:	0 if success
3841  *		error code if failure
3842  *
3843  * Timestamps:
3844  *	tdvp - ctime|mtime updated
3845  *	 svp - ctime updated
3846  */
3847 /* ARGSUSED */
3848 static int
3849 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3850     caller_context_t *ct, int flags)
3851 {
3852 	znode_t		*dzp = VTOZ(tdvp);
3853 	znode_t		*tzp, *szp;
3854 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3855 	zilog_t		*zilog;
3856 	zfs_dirlock_t	*dl;
3857 	dmu_tx_t	*tx;
3858 	vnode_t		*realvp;
3859 	int		error;
3860 	int		zf = ZNEW;
3861 	uint64_t	parent;
3862 
3863 	ASSERT(tdvp->v_type == VDIR);
3864 
3865 	ZFS_ENTER(zfsvfs);
3866 	ZFS_VERIFY_ZP(dzp);
3867 	zilog = zfsvfs->z_log;
3868 
3869 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3870 		svp = realvp;
3871 
3872 	/*
3873 	 * POSIX dictates that we return EPERM here.
3874 	 * Better choices include ENOTSUP or EISDIR.
3875 	 */
3876 	if (svp->v_type == VDIR) {
3877 		ZFS_EXIT(zfsvfs);
3878 		return (EPERM);
3879 	}
3880 
3881 	if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3882 		ZFS_EXIT(zfsvfs);
3883 		return (EXDEV);
3884 	}
3885 
3886 	szp = VTOZ(svp);
3887 	ZFS_VERIFY_ZP(szp);
3888 
3889 	/* Prevent links to .zfs/shares files */
3890 
3891 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3892 	    &parent, sizeof (uint64_t))) != 0) {
3893 		ZFS_EXIT(zfsvfs);
3894 		return (error);
3895 	}
3896 	if (parent == zfsvfs->z_shares_dir) {
3897 		ZFS_EXIT(zfsvfs);
3898 		return (EPERM);
3899 	}
3900 
3901 	if (zfsvfs->z_utf8 && u8_validate(name,
3902 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3903 		ZFS_EXIT(zfsvfs);
3904 		return (EILSEQ);
3905 	}
3906 	if (flags & FIGNORECASE)
3907 		zf |= ZCILOOK;
3908 
3909 	/*
3910 	 * We do not support links between attributes and non-attributes
3911 	 * because of the potential security risk of creating links
3912 	 * into "normal" file space in order to circumvent restrictions
3913 	 * imposed in attribute space.
3914 	 */
3915 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3916 		ZFS_EXIT(zfsvfs);
3917 		return (EINVAL);
3918 	}
3919 
3920 
3921 	if (szp->z_uid != crgetuid(cr) &&
3922 	    secpolicy_basic_link(cr) != 0) {
3923 		ZFS_EXIT(zfsvfs);
3924 		return (EPERM);
3925 	}
3926 
3927 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3928 		ZFS_EXIT(zfsvfs);
3929 		return (error);
3930 	}
3931 
3932 top:
3933 	/*
3934 	 * Attempt to lock directory; fail if entry already exists.
3935 	 */
3936 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3937 	if (error) {
3938 		ZFS_EXIT(zfsvfs);
3939 		return (error);
3940 	}
3941 
3942 	tx = dmu_tx_create(zfsvfs->z_os);
3943 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3944 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3945 	zfs_sa_upgrade_txholds(tx, szp);
3946 	zfs_sa_upgrade_txholds(tx, dzp);
3947 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3948 	if (error) {
3949 		zfs_dirent_unlock(dl);
3950 		if (error == ERESTART) {
3951 			dmu_tx_wait(tx);
3952 			dmu_tx_abort(tx);
3953 			goto top;
3954 		}
3955 		dmu_tx_abort(tx);
3956 		ZFS_EXIT(zfsvfs);
3957 		return (error);
3958 	}
3959 
3960 	error = zfs_link_create(dl, szp, tx, 0);
3961 
3962 	if (error == 0) {
3963 		uint64_t txtype = TX_LINK;
3964 		if (flags & FIGNORECASE)
3965 			txtype |= TX_CI;
3966 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3967 	}
3968 
3969 	dmu_tx_commit(tx);
3970 
3971 	zfs_dirent_unlock(dl);
3972 
3973 	if (error == 0) {
3974 		vnevent_link(svp, ct);
3975 	}
3976 
3977 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3978 		zil_commit(zilog, 0);
3979 
3980 	ZFS_EXIT(zfsvfs);
3981 	return (error);
3982 }
3983 
3984 /*
3985  * zfs_null_putapage() is used when the file system has been force
3986  * unmounted. It just drops the pages.
3987  */
3988 /* ARGSUSED */
3989 static int
3990 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3991 		size_t *lenp, int flags, cred_t *cr)
3992 {
3993 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3994 	return (0);
3995 }
3996 
3997 /*
3998  * Push a page out to disk, klustering if possible.
3999  *
4000  *	IN:	vp	- file to push page to.
4001  *		pp	- page to push.
4002  *		flags	- additional flags.
4003  *		cr	- credentials of caller.
4004  *
4005  *	OUT:	offp	- start of range pushed.
4006  *		lenp	- len of range pushed.
4007  *
4008  *	RETURN:	0 if success
4009  *		error code if failure
4010  *
4011  * NOTE: callers must have locked the page to be pushed.  On
4012  * exit, the page (and all other pages in the kluster) must be
4013  * unlocked.
4014  */
4015 /* ARGSUSED */
4016 static int
4017 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4018 		size_t *lenp, int flags, cred_t *cr)
4019 {
4020 	znode_t		*zp = VTOZ(vp);
4021 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4022 	dmu_tx_t	*tx;
4023 	u_offset_t	off, koff;
4024 	size_t		len, klen;
4025 	int		err;
4026 
4027 	off = pp->p_offset;
4028 	len = PAGESIZE;
4029 	/*
4030 	 * If our blocksize is bigger than the page size, try to kluster
4031 	 * multiple pages so that we write a full block (thus avoiding
4032 	 * a read-modify-write).
4033 	 */
4034 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4035 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4036 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4037 		ASSERT(koff <= zp->z_size);
4038 		if (koff + klen > zp->z_size)
4039 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4040 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4041 	}
4042 	ASSERT3U(btop(len), ==, btopr(len));
4043 
4044 	/*
4045 	 * Can't push pages past end-of-file.
4046 	 */
4047 	if (off >= zp->z_size) {
4048 		/* ignore all pages */
4049 		err = 0;
4050 		goto out;
4051 	} else if (off + len > zp->z_size) {
4052 		int npages = btopr(zp->z_size - off);
4053 		page_t *trunc;
4054 
4055 		page_list_break(&pp, &trunc, npages);
4056 		/* ignore pages past end of file */
4057 		if (trunc)
4058 			pvn_write_done(trunc, flags);
4059 		len = zp->z_size - off;
4060 	}
4061 
4062 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4063 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4064 		err = EDQUOT;
4065 		goto out;
4066 	}
4067 top:
4068 	tx = dmu_tx_create(zfsvfs->z_os);
4069 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4070 
4071 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4072 	zfs_sa_upgrade_txholds(tx, zp);
4073 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4074 	if (err != 0) {
4075 		if (err == ERESTART) {
4076 			dmu_tx_wait(tx);
4077 			dmu_tx_abort(tx);
4078 			goto top;
4079 		}
4080 		dmu_tx_abort(tx);
4081 		goto out;
4082 	}
4083 
4084 	if (zp->z_blksz <= PAGESIZE) {
4085 		caddr_t va = zfs_map_page(pp, S_READ);
4086 		ASSERT3U(len, <=, PAGESIZE);
4087 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4088 		zfs_unmap_page(pp, va);
4089 	} else {
4090 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4091 	}
4092 
4093 	if (err == 0) {
4094 		uint64_t mtime[2], ctime[2];
4095 		sa_bulk_attr_t bulk[3];
4096 		int count = 0;
4097 
4098 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4099 		    &mtime, 16);
4100 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4101 		    &ctime, 16);
4102 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4103 		    &zp->z_pflags, 8);
4104 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4105 		    B_TRUE);
4106 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4107 	}
4108 	dmu_tx_commit(tx);
4109 
4110 out:
4111 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4112 	if (offp)
4113 		*offp = off;
4114 	if (lenp)
4115 		*lenp = len;
4116 
4117 	return (err);
4118 }
4119 
4120 /*
4121  * Copy the portion of the file indicated from pages into the file.
4122  * The pages are stored in a page list attached to the files vnode.
4123  *
4124  *	IN:	vp	- vnode of file to push page data to.
4125  *		off	- position in file to put data.
4126  *		len	- amount of data to write.
4127  *		flags	- flags to control the operation.
4128  *		cr	- credentials of caller.
4129  *		ct	- caller context.
4130  *
4131  *	RETURN:	0 if success
4132  *		error code if failure
4133  *
4134  * Timestamps:
4135  *	vp - ctime|mtime updated
4136  */
4137 /*ARGSUSED*/
4138 static int
4139 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4140     caller_context_t *ct)
4141 {
4142 	znode_t		*zp = VTOZ(vp);
4143 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4144 	page_t		*pp;
4145 	size_t		io_len;
4146 	u_offset_t	io_off;
4147 	uint_t		blksz;
4148 	rl_t		*rl;
4149 	int		error = 0;
4150 
4151 	ZFS_ENTER(zfsvfs);
4152 	ZFS_VERIFY_ZP(zp);
4153 
4154 	/*
4155 	 * Align this request to the file block size in case we kluster.
4156 	 * XXX - this can result in pretty aggresive locking, which can
4157 	 * impact simultanious read/write access.  One option might be
4158 	 * to break up long requests (len == 0) into block-by-block
4159 	 * operations to get narrower locking.
4160 	 */
4161 	blksz = zp->z_blksz;
4162 	if (ISP2(blksz))
4163 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4164 	else
4165 		io_off = 0;
4166 	if (len > 0 && ISP2(blksz))
4167 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4168 	else
4169 		io_len = 0;
4170 
4171 	if (io_len == 0) {
4172 		/*
4173 		 * Search the entire vp list for pages >= io_off.
4174 		 */
4175 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4176 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4177 		goto out;
4178 	}
4179 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4180 
4181 	if (off > zp->z_size) {
4182 		/* past end of file */
4183 		zfs_range_unlock(rl);
4184 		ZFS_EXIT(zfsvfs);
4185 		return (0);
4186 	}
4187 
4188 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4189 
4190 	for (off = io_off; io_off < off + len; io_off += io_len) {
4191 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4192 			pp = page_lookup(vp, io_off,
4193 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4194 		} else {
4195 			pp = page_lookup_nowait(vp, io_off,
4196 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4197 		}
4198 
4199 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4200 			int err;
4201 
4202 			/*
4203 			 * Found a dirty page to push
4204 			 */
4205 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4206 			if (err)
4207 				error = err;
4208 		} else {
4209 			io_len = PAGESIZE;
4210 		}
4211 	}
4212 out:
4213 	zfs_range_unlock(rl);
4214 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4215 		zil_commit(zfsvfs->z_log, zp->z_id);
4216 	ZFS_EXIT(zfsvfs);
4217 	return (error);
4218 }
4219 
4220 /*ARGSUSED*/
4221 void
4222 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4223 {
4224 	znode_t	*zp = VTOZ(vp);
4225 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4226 	int error;
4227 
4228 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4229 	if (zp->z_sa_hdl == NULL) {
4230 		/*
4231 		 * The fs has been unmounted, or we did a
4232 		 * suspend/resume and this file no longer exists.
4233 		 */
4234 		if (vn_has_cached_data(vp)) {
4235 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4236 			    B_INVAL, cr);
4237 		}
4238 
4239 		mutex_enter(&zp->z_lock);
4240 		mutex_enter(&vp->v_lock);
4241 		ASSERT(vp->v_count == 1);
4242 		vp->v_count = 0;
4243 		mutex_exit(&vp->v_lock);
4244 		mutex_exit(&zp->z_lock);
4245 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4246 		zfs_znode_free(zp);
4247 		return;
4248 	}
4249 
4250 	/*
4251 	 * Attempt to push any data in the page cache.  If this fails
4252 	 * we will get kicked out later in zfs_zinactive().
4253 	 */
4254 	if (vn_has_cached_data(vp)) {
4255 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4256 		    cr);
4257 	}
4258 
4259 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4260 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4261 
4262 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4263 		zfs_sa_upgrade_txholds(tx, zp);
4264 		error = dmu_tx_assign(tx, TXG_WAIT);
4265 		if (error) {
4266 			dmu_tx_abort(tx);
4267 		} else {
4268 			mutex_enter(&zp->z_lock);
4269 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4270 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4271 			zp->z_atime_dirty = 0;
4272 			mutex_exit(&zp->z_lock);
4273 			dmu_tx_commit(tx);
4274 		}
4275 	}
4276 
4277 	zfs_zinactive(zp);
4278 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4279 }
4280 
4281 /*
4282  * Bounds-check the seek operation.
4283  *
4284  *	IN:	vp	- vnode seeking within
4285  *		ooff	- old file offset
4286  *		noffp	- pointer to new file offset
4287  *		ct	- caller context
4288  *
4289  *	RETURN:	0 if success
4290  *		EINVAL if new offset invalid
4291  */
4292 /* ARGSUSED */
4293 static int
4294 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4295     caller_context_t *ct)
4296 {
4297 	if (vp->v_type == VDIR)
4298 		return (0);
4299 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4300 }
4301 
4302 /*
4303  * Pre-filter the generic locking function to trap attempts to place
4304  * a mandatory lock on a memory mapped file.
4305  */
4306 static int
4307 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4308     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4309 {
4310 	znode_t *zp = VTOZ(vp);
4311 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4312 
4313 	ZFS_ENTER(zfsvfs);
4314 	ZFS_VERIFY_ZP(zp);
4315 
4316 	/*
4317 	 * We are following the UFS semantics with respect to mapcnt
4318 	 * here: If we see that the file is mapped already, then we will
4319 	 * return an error, but we don't worry about races between this
4320 	 * function and zfs_map().
4321 	 */
4322 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4323 		ZFS_EXIT(zfsvfs);
4324 		return (EAGAIN);
4325 	}
4326 	ZFS_EXIT(zfsvfs);
4327 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4328 }
4329 
4330 /*
4331  * If we can't find a page in the cache, we will create a new page
4332  * and fill it with file data.  For efficiency, we may try to fill
4333  * multiple pages at once (klustering) to fill up the supplied page
4334  * list.  Note that the pages to be filled are held with an exclusive
4335  * lock to prevent access by other threads while they are being filled.
4336  */
4337 static int
4338 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4339     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4340 {
4341 	znode_t *zp = VTOZ(vp);
4342 	page_t *pp, *cur_pp;
4343 	objset_t *os = zp->z_zfsvfs->z_os;
4344 	u_offset_t io_off, total;
4345 	size_t io_len;
4346 	int err;
4347 
4348 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4349 		/*
4350 		 * We only have a single page, don't bother klustering
4351 		 */
4352 		io_off = off;
4353 		io_len = PAGESIZE;
4354 		pp = page_create_va(vp, io_off, io_len,
4355 		    PG_EXCL | PG_WAIT, seg, addr);
4356 	} else {
4357 		/*
4358 		 * Try to find enough pages to fill the page list
4359 		 */
4360 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4361 		    &io_len, off, plsz, 0);
4362 	}
4363 	if (pp == NULL) {
4364 		/*
4365 		 * The page already exists, nothing to do here.
4366 		 */
4367 		*pl = NULL;
4368 		return (0);
4369 	}
4370 
4371 	/*
4372 	 * Fill the pages in the kluster.
4373 	 */
4374 	cur_pp = pp;
4375 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4376 		caddr_t va;
4377 
4378 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4379 		va = zfs_map_page(cur_pp, S_WRITE);
4380 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4381 		    DMU_READ_PREFETCH);
4382 		zfs_unmap_page(cur_pp, va);
4383 		if (err) {
4384 			/* On error, toss the entire kluster */
4385 			pvn_read_done(pp, B_ERROR);
4386 			/* convert checksum errors into IO errors */
4387 			if (err == ECKSUM)
4388 				err = EIO;
4389 			return (err);
4390 		}
4391 		cur_pp = cur_pp->p_next;
4392 	}
4393 
4394 	/*
4395 	 * Fill in the page list array from the kluster starting
4396 	 * from the desired offset `off'.
4397 	 * NOTE: the page list will always be null terminated.
4398 	 */
4399 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4400 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4401 
4402 	return (0);
4403 }
4404 
4405 /*
4406  * Return pointers to the pages for the file region [off, off + len]
4407  * in the pl array.  If plsz is greater than len, this function may
4408  * also return page pointers from after the specified region
4409  * (i.e. the region [off, off + plsz]).  These additional pages are
4410  * only returned if they are already in the cache, or were created as
4411  * part of a klustered read.
4412  *
4413  *	IN:	vp	- vnode of file to get data from.
4414  *		off	- position in file to get data from.
4415  *		len	- amount of data to retrieve.
4416  *		plsz	- length of provided page list.
4417  *		seg	- segment to obtain pages for.
4418  *		addr	- virtual address of fault.
4419  *		rw	- mode of created pages.
4420  *		cr	- credentials of caller.
4421  *		ct	- caller context.
4422  *
4423  *	OUT:	protp	- protection mode of created pages.
4424  *		pl	- list of pages created.
4425  *
4426  *	RETURN:	0 if success
4427  *		error code if failure
4428  *
4429  * Timestamps:
4430  *	vp - atime updated
4431  */
4432 /* ARGSUSED */
4433 static int
4434 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4435 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4436 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4437 {
4438 	znode_t		*zp = VTOZ(vp);
4439 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4440 	page_t		**pl0 = pl;
4441 	int		err = 0;
4442 
4443 	/* we do our own caching, faultahead is unnecessary */
4444 	if (pl == NULL)
4445 		return (0);
4446 	else if (len > plsz)
4447 		len = plsz;
4448 	else
4449 		len = P2ROUNDUP(len, PAGESIZE);
4450 	ASSERT(plsz >= len);
4451 
4452 	ZFS_ENTER(zfsvfs);
4453 	ZFS_VERIFY_ZP(zp);
4454 
4455 	if (protp)
4456 		*protp = PROT_ALL;
4457 
4458 	/*
4459 	 * Loop through the requested range [off, off + len) looking
4460 	 * for pages.  If we don't find a page, we will need to create
4461 	 * a new page and fill it with data from the file.
4462 	 */
4463 	while (len > 0) {
4464 		if (*pl = page_lookup(vp, off, SE_SHARED))
4465 			*(pl+1) = NULL;
4466 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4467 			goto out;
4468 		while (*pl) {
4469 			ASSERT3U((*pl)->p_offset, ==, off);
4470 			off += PAGESIZE;
4471 			addr += PAGESIZE;
4472 			if (len > 0) {
4473 				ASSERT3U(len, >=, PAGESIZE);
4474 				len -= PAGESIZE;
4475 			}
4476 			ASSERT3U(plsz, >=, PAGESIZE);
4477 			plsz -= PAGESIZE;
4478 			pl++;
4479 		}
4480 	}
4481 
4482 	/*
4483 	 * Fill out the page array with any pages already in the cache.
4484 	 */
4485 	while (plsz > 0 &&
4486 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4487 			off += PAGESIZE;
4488 			plsz -= PAGESIZE;
4489 	}
4490 out:
4491 	if (err) {
4492 		/*
4493 		 * Release any pages we have previously locked.
4494 		 */
4495 		while (pl > pl0)
4496 			page_unlock(*--pl);
4497 	} else {
4498 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4499 	}
4500 
4501 	*pl = NULL;
4502 
4503 	ZFS_EXIT(zfsvfs);
4504 	return (err);
4505 }
4506 
4507 /*
4508  * Request a memory map for a section of a file.  This code interacts
4509  * with common code and the VM system as follows:
4510  *
4511  *	common code calls mmap(), which ends up in smmap_common()
4512  *
4513  *	this calls VOP_MAP(), which takes you into (say) zfs
4514  *
4515  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4516  *
4517  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4518  *
4519  *	zfs_addmap() updates z_mapcnt
4520  */
4521 /*ARGSUSED*/
4522 static int
4523 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4524     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4525     caller_context_t *ct)
4526 {
4527 	znode_t *zp = VTOZ(vp);
4528 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4529 	segvn_crargs_t	vn_a;
4530 	int		error;
4531 
4532 	ZFS_ENTER(zfsvfs);
4533 	ZFS_VERIFY_ZP(zp);
4534 
4535 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4536 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4537 		ZFS_EXIT(zfsvfs);
4538 		return (EPERM);
4539 	}
4540 
4541 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4542 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4543 		ZFS_EXIT(zfsvfs);
4544 		return (EACCES);
4545 	}
4546 
4547 	if (vp->v_flag & VNOMAP) {
4548 		ZFS_EXIT(zfsvfs);
4549 		return (ENOSYS);
4550 	}
4551 
4552 	if (off < 0 || len > MAXOFFSET_T - off) {
4553 		ZFS_EXIT(zfsvfs);
4554 		return (ENXIO);
4555 	}
4556 
4557 	if (vp->v_type != VREG) {
4558 		ZFS_EXIT(zfsvfs);
4559 		return (ENODEV);
4560 	}
4561 
4562 	/*
4563 	 * If file is locked, disallow mapping.
4564 	 */
4565 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4566 		ZFS_EXIT(zfsvfs);
4567 		return (EAGAIN);
4568 	}
4569 
4570 	as_rangelock(as);
4571 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4572 	if (error != 0) {
4573 		as_rangeunlock(as);
4574 		ZFS_EXIT(zfsvfs);
4575 		return (error);
4576 	}
4577 
4578 	vn_a.vp = vp;
4579 	vn_a.offset = (u_offset_t)off;
4580 	vn_a.type = flags & MAP_TYPE;
4581 	vn_a.prot = prot;
4582 	vn_a.maxprot = maxprot;
4583 	vn_a.cred = cr;
4584 	vn_a.amp = NULL;
4585 	vn_a.flags = flags & ~MAP_TYPE;
4586 	vn_a.szc = 0;
4587 	vn_a.lgrp_mem_policy_flags = 0;
4588 
4589 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4590 
4591 	as_rangeunlock(as);
4592 	ZFS_EXIT(zfsvfs);
4593 	return (error);
4594 }
4595 
4596 /* ARGSUSED */
4597 static int
4598 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4599     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4600     caller_context_t *ct)
4601 {
4602 	uint64_t pages = btopr(len);
4603 
4604 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4605 	return (0);
4606 }
4607 
4608 /*
4609  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4610  * more accurate mtime for the associated file.  Since we don't have a way of
4611  * detecting when the data was actually modified, we have to resort to
4612  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4613  * last page is pushed.  The problem occurs when the msync() call is omitted,
4614  * which by far the most common case:
4615  *
4616  * 	open()
4617  * 	mmap()
4618  * 	<modify memory>
4619  * 	munmap()
4620  * 	close()
4621  * 	<time lapse>
4622  * 	putpage() via fsflush
4623  *
4624  * If we wait until fsflush to come along, we can have a modification time that
4625  * is some arbitrary point in the future.  In order to prevent this in the
4626  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4627  * torn down.
4628  */
4629 /* ARGSUSED */
4630 static int
4631 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4632     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4633     caller_context_t *ct)
4634 {
4635 	uint64_t pages = btopr(len);
4636 
4637 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4638 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4639 
4640 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4641 	    vn_has_cached_data(vp))
4642 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4643 
4644 	return (0);
4645 }
4646 
4647 /*
4648  * Free or allocate space in a file.  Currently, this function only
4649  * supports the `F_FREESP' command.  However, this command is somewhat
4650  * misnamed, as its functionality includes the ability to allocate as
4651  * well as free space.
4652  *
4653  *	IN:	vp	- vnode of file to free data in.
4654  *		cmd	- action to take (only F_FREESP supported).
4655  *		bfp	- section of file to free/alloc.
4656  *		flag	- current file open mode flags.
4657  *		offset	- current file offset.
4658  *		cr	- credentials of caller [UNUSED].
4659  *		ct	- caller context.
4660  *
4661  *	RETURN:	0 if success
4662  *		error code if failure
4663  *
4664  * Timestamps:
4665  *	vp - ctime|mtime updated
4666  */
4667 /* ARGSUSED */
4668 static int
4669 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4670     offset_t offset, cred_t *cr, caller_context_t *ct)
4671 {
4672 	znode_t		*zp = VTOZ(vp);
4673 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4674 	uint64_t	off, len;
4675 	int		error;
4676 
4677 	ZFS_ENTER(zfsvfs);
4678 	ZFS_VERIFY_ZP(zp);
4679 
4680 	if (cmd != F_FREESP) {
4681 		ZFS_EXIT(zfsvfs);
4682 		return (EINVAL);
4683 	}
4684 
4685 	if (error = convoff(vp, bfp, 0, offset)) {
4686 		ZFS_EXIT(zfsvfs);
4687 		return (error);
4688 	}
4689 
4690 	if (bfp->l_len < 0) {
4691 		ZFS_EXIT(zfsvfs);
4692 		return (EINVAL);
4693 	}
4694 
4695 	off = bfp->l_start;
4696 	len = bfp->l_len; /* 0 means from off to end of file */
4697 
4698 	error = zfs_freesp(zp, off, len, flag, TRUE);
4699 
4700 	ZFS_EXIT(zfsvfs);
4701 	return (error);
4702 }
4703 
4704 /*ARGSUSED*/
4705 static int
4706 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4707 {
4708 	znode_t		*zp = VTOZ(vp);
4709 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4710 	uint32_t	gen;
4711 	uint64_t	gen64;
4712 	uint64_t	object = zp->z_id;
4713 	zfid_short_t	*zfid;
4714 	int		size, i, error;
4715 
4716 	ZFS_ENTER(zfsvfs);
4717 	ZFS_VERIFY_ZP(zp);
4718 
4719 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4720 	    &gen64, sizeof (uint64_t))) != 0) {
4721 		ZFS_EXIT(zfsvfs);
4722 		return (error);
4723 	}
4724 
4725 	gen = (uint32_t)gen64;
4726 
4727 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4728 	if (fidp->fid_len < size) {
4729 		fidp->fid_len = size;
4730 		ZFS_EXIT(zfsvfs);
4731 		return (ENOSPC);
4732 	}
4733 
4734 	zfid = (zfid_short_t *)fidp;
4735 
4736 	zfid->zf_len = size;
4737 
4738 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4739 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4740 
4741 	/* Must have a non-zero generation number to distinguish from .zfs */
4742 	if (gen == 0)
4743 		gen = 1;
4744 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4745 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4746 
4747 	if (size == LONG_FID_LEN) {
4748 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4749 		zfid_long_t	*zlfid;
4750 
4751 		zlfid = (zfid_long_t *)fidp;
4752 
4753 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4754 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4755 
4756 		/* XXX - this should be the generation number for the objset */
4757 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4758 			zlfid->zf_setgen[i] = 0;
4759 	}
4760 
4761 	ZFS_EXIT(zfsvfs);
4762 	return (0);
4763 }
4764 
4765 static int
4766 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4767     caller_context_t *ct)
4768 {
4769 	znode_t		*zp, *xzp;
4770 	zfsvfs_t	*zfsvfs;
4771 	zfs_dirlock_t	*dl;
4772 	int		error;
4773 
4774 	switch (cmd) {
4775 	case _PC_LINK_MAX:
4776 		*valp = ULONG_MAX;
4777 		return (0);
4778 
4779 	case _PC_FILESIZEBITS:
4780 		*valp = 64;
4781 		return (0);
4782 
4783 	case _PC_XATTR_EXISTS:
4784 		zp = VTOZ(vp);
4785 		zfsvfs = zp->z_zfsvfs;
4786 		ZFS_ENTER(zfsvfs);
4787 		ZFS_VERIFY_ZP(zp);
4788 		*valp = 0;
4789 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4790 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4791 		if (error == 0) {
4792 			zfs_dirent_unlock(dl);
4793 			if (!zfs_dirempty(xzp))
4794 				*valp = 1;
4795 			VN_RELE(ZTOV(xzp));
4796 		} else if (error == ENOENT) {
4797 			/*
4798 			 * If there aren't extended attributes, it's the
4799 			 * same as having zero of them.
4800 			 */
4801 			error = 0;
4802 		}
4803 		ZFS_EXIT(zfsvfs);
4804 		return (error);
4805 
4806 	case _PC_SATTR_ENABLED:
4807 	case _PC_SATTR_EXISTS:
4808 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4809 		    (vp->v_type == VREG || vp->v_type == VDIR);
4810 		return (0);
4811 
4812 	case _PC_ACCESS_FILTERING:
4813 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4814 		    vp->v_type == VDIR;
4815 		return (0);
4816 
4817 	case _PC_ACL_ENABLED:
4818 		*valp = _ACL_ACE_ENABLED;
4819 		return (0);
4820 
4821 	case _PC_MIN_HOLE_SIZE:
4822 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4823 		return (0);
4824 
4825 	case _PC_TIMESTAMP_RESOLUTION:
4826 		/* nanosecond timestamp resolution */
4827 		*valp = 1L;
4828 		return (0);
4829 
4830 	default:
4831 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4832 	}
4833 }
4834 
4835 /*ARGSUSED*/
4836 static int
4837 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4838     caller_context_t *ct)
4839 {
4840 	znode_t *zp = VTOZ(vp);
4841 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4842 	int error;
4843 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4844 
4845 	ZFS_ENTER(zfsvfs);
4846 	ZFS_VERIFY_ZP(zp);
4847 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4848 	ZFS_EXIT(zfsvfs);
4849 
4850 	return (error);
4851 }
4852 
4853 /*ARGSUSED*/
4854 static int
4855 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4856     caller_context_t *ct)
4857 {
4858 	znode_t *zp = VTOZ(vp);
4859 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4860 	int error;
4861 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4862 	zilog_t	*zilog = zfsvfs->z_log;
4863 
4864 	ZFS_ENTER(zfsvfs);
4865 	ZFS_VERIFY_ZP(zp);
4866 
4867 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4868 
4869 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4870 		zil_commit(zilog, 0);
4871 
4872 	ZFS_EXIT(zfsvfs);
4873 	return (error);
4874 }
4875 
4876 /*
4877  * Tunable, both must be a power of 2.
4878  *
4879  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4880  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4881  *                an arcbuf for a partial block read
4882  */
4883 int zcr_blksz_min = (1 << 10);	/* 1K */
4884 int zcr_blksz_max = (1 << 17);	/* 128K */
4885 
4886 /*ARGSUSED*/
4887 static int
4888 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4889     caller_context_t *ct)
4890 {
4891 	znode_t	*zp = VTOZ(vp);
4892 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4893 	int max_blksz = zfsvfs->z_max_blksz;
4894 	uio_t *uio = &xuio->xu_uio;
4895 	ssize_t size = uio->uio_resid;
4896 	offset_t offset = uio->uio_loffset;
4897 	int blksz;
4898 	int fullblk, i;
4899 	arc_buf_t *abuf;
4900 	ssize_t maxsize;
4901 	int preamble, postamble;
4902 
4903 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4904 		return (EINVAL);
4905 
4906 	ZFS_ENTER(zfsvfs);
4907 	ZFS_VERIFY_ZP(zp);
4908 	switch (ioflag) {
4909 	case UIO_WRITE:
4910 		/*
4911 		 * Loan out an arc_buf for write if write size is bigger than
4912 		 * max_blksz, and the file's block size is also max_blksz.
4913 		 */
4914 		blksz = max_blksz;
4915 		if (size < blksz || zp->z_blksz != blksz) {
4916 			ZFS_EXIT(zfsvfs);
4917 			return (EINVAL);
4918 		}
4919 		/*
4920 		 * Caller requests buffers for write before knowing where the
4921 		 * write offset might be (e.g. NFS TCP write).
4922 		 */
4923 		if (offset == -1) {
4924 			preamble = 0;
4925 		} else {
4926 			preamble = P2PHASE(offset, blksz);
4927 			if (preamble) {
4928 				preamble = blksz - preamble;
4929 				size -= preamble;
4930 			}
4931 		}
4932 
4933 		postamble = P2PHASE(size, blksz);
4934 		size -= postamble;
4935 
4936 		fullblk = size / blksz;
4937 		(void) dmu_xuio_init(xuio,
4938 		    (preamble != 0) + fullblk + (postamble != 0));
4939 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4940 		    int, postamble, int,
4941 		    (preamble != 0) + fullblk + (postamble != 0));
4942 
4943 		/*
4944 		 * Have to fix iov base/len for partial buffers.  They
4945 		 * currently represent full arc_buf's.
4946 		 */
4947 		if (preamble) {
4948 			/* data begins in the middle of the arc_buf */
4949 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4950 			    blksz);
4951 			ASSERT(abuf);
4952 			(void) dmu_xuio_add(xuio, abuf,
4953 			    blksz - preamble, preamble);
4954 		}
4955 
4956 		for (i = 0; i < fullblk; i++) {
4957 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4958 			    blksz);
4959 			ASSERT(abuf);
4960 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
4961 		}
4962 
4963 		if (postamble) {
4964 			/* data ends in the middle of the arc_buf */
4965 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4966 			    blksz);
4967 			ASSERT(abuf);
4968 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
4969 		}
4970 		break;
4971 	case UIO_READ:
4972 		/*
4973 		 * Loan out an arc_buf for read if the read size is larger than
4974 		 * the current file block size.  Block alignment is not
4975 		 * considered.  Partial arc_buf will be loaned out for read.
4976 		 */
4977 		blksz = zp->z_blksz;
4978 		if (blksz < zcr_blksz_min)
4979 			blksz = zcr_blksz_min;
4980 		if (blksz > zcr_blksz_max)
4981 			blksz = zcr_blksz_max;
4982 		/* avoid potential complexity of dealing with it */
4983 		if (blksz > max_blksz) {
4984 			ZFS_EXIT(zfsvfs);
4985 			return (EINVAL);
4986 		}
4987 
4988 		maxsize = zp->z_size - uio->uio_loffset;
4989 		if (size > maxsize)
4990 			size = maxsize;
4991 
4992 		if (size < blksz || vn_has_cached_data(vp)) {
4993 			ZFS_EXIT(zfsvfs);
4994 			return (EINVAL);
4995 		}
4996 		break;
4997 	default:
4998 		ZFS_EXIT(zfsvfs);
4999 		return (EINVAL);
5000 	}
5001 
5002 	uio->uio_extflg = UIO_XUIO;
5003 	XUIO_XUZC_RW(xuio) = ioflag;
5004 	ZFS_EXIT(zfsvfs);
5005 	return (0);
5006 }
5007 
5008 /*ARGSUSED*/
5009 static int
5010 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5011 {
5012 	int i;
5013 	arc_buf_t *abuf;
5014 	int ioflag = XUIO_XUZC_RW(xuio);
5015 
5016 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5017 
5018 	i = dmu_xuio_cnt(xuio);
5019 	while (i-- > 0) {
5020 		abuf = dmu_xuio_arcbuf(xuio, i);
5021 		/*
5022 		 * if abuf == NULL, it must be a write buffer
5023 		 * that has been returned in zfs_write().
5024 		 */
5025 		if (abuf)
5026 			dmu_return_arcbuf(abuf);
5027 		ASSERT(abuf || ioflag == UIO_WRITE);
5028 	}
5029 
5030 	dmu_xuio_fini(xuio);
5031 	return (0);
5032 }
5033 
5034 /*
5035  * Predeclare these here so that the compiler assumes that
5036  * this is an "old style" function declaration that does
5037  * not include arguments => we won't get type mismatch errors
5038  * in the initializations that follow.
5039  */
5040 static int zfs_inval();
5041 static int zfs_isdir();
5042 
5043 static int
5044 zfs_inval()
5045 {
5046 	return (EINVAL);
5047 }
5048 
5049 static int
5050 zfs_isdir()
5051 {
5052 	return (EISDIR);
5053 }
5054 /*
5055  * Directory vnode operations template
5056  */
5057 vnodeops_t *zfs_dvnodeops;
5058 const fs_operation_def_t zfs_dvnodeops_template[] = {
5059 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5060 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5061 	VOPNAME_READ,		{ .error = zfs_isdir },
5062 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5063 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5064 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5065 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5066 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5067 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5068 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5069 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5070 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5071 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5072 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5073 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5074 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5075 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5076 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5077 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5078 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5079 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5080 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5081 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5082 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5083 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5084 	NULL,			NULL
5085 };
5086 
5087 /*
5088  * Regular file vnode operations template
5089  */
5090 vnodeops_t *zfs_fvnodeops;
5091 const fs_operation_def_t zfs_fvnodeops_template[] = {
5092 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5093 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5094 	VOPNAME_READ,		{ .vop_read = zfs_read },
5095 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5096 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5097 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5098 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5099 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5100 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5101 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5102 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5103 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5104 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5105 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5106 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5107 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5108 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5109 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5110 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5111 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5112 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5113 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5114 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5115 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5116 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5117 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5118 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5119 	NULL,			NULL
5120 };
5121 
5122 /*
5123  * Symbolic link vnode operations template
5124  */
5125 vnodeops_t *zfs_symvnodeops;
5126 const fs_operation_def_t zfs_symvnodeops_template[] = {
5127 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5128 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5129 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5130 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5131 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5132 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5133 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5134 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5135 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5136 	NULL,			NULL
5137 };
5138 
5139 /*
5140  * special share hidden files vnode operations template
5141  */
5142 vnodeops_t *zfs_sharevnodeops;
5143 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5144 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5145 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5146 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5147 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5148 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5149 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5150 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5151 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5152 	NULL,			NULL
5153 };
5154 
5155 /*
5156  * Extended attribute directory vnode operations template
5157  *	This template is identical to the directory vnodes
5158  *	operation template except for restricted operations:
5159  *		VOP_MKDIR()
5160  *		VOP_SYMLINK()
5161  * Note that there are other restrictions embedded in:
5162  *	zfs_create()	- restrict type to VREG
5163  *	zfs_link()	- no links into/out of attribute space
5164  *	zfs_rename()	- no moves into/out of attribute space
5165  */
5166 vnodeops_t *zfs_xdvnodeops;
5167 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5168 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5169 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5170 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5171 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5172 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5173 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5174 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5175 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5176 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5177 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5178 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5179 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5180 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5181 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5182 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5183 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5184 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5185 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5186 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5187 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5188 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5189 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5190 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5191 	NULL,			NULL
5192 };
5193 
5194 /*
5195  * Error vnode operations template
5196  */
5197 vnodeops_t *zfs_evnodeops;
5198 const fs_operation_def_t zfs_evnodeops_template[] = {
5199 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5200 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5201 	NULL,			NULL
5202 };
5203