1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 /* Portions Copyright 2007 Jeremy Teo */ 26 /* Portions Copyright 2010 Robert Milkowski */ 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/time.h> 31 #include <sys/systm.h> 32 #include <sys/sysmacros.h> 33 #include <sys/resource.h> 34 #include <sys/vfs.h> 35 #include <sys/vfs_opreg.h> 36 #include <sys/vnode.h> 37 #include <sys/file.h> 38 #include <sys/stat.h> 39 #include <sys/kmem.h> 40 #include <sys/taskq.h> 41 #include <sys/uio.h> 42 #include <sys/vmsystm.h> 43 #include <sys/atomic.h> 44 #include <sys/vm.h> 45 #include <vm/seg_vn.h> 46 #include <vm/pvn.h> 47 #include <vm/as.h> 48 #include <vm/kpm.h> 49 #include <vm/seg_kpm.h> 50 #include <sys/mman.h> 51 #include <sys/pathname.h> 52 #include <sys/cmn_err.h> 53 #include <sys/errno.h> 54 #include <sys/unistd.h> 55 #include <sys/zfs_dir.h> 56 #include <sys/zfs_acl.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/dmu.h> 60 #include <sys/dmu_objset.h> 61 #include <sys/spa.h> 62 #include <sys/txg.h> 63 #include <sys/dbuf.h> 64 #include <sys/zap.h> 65 #include <sys/sa.h> 66 #include <sys/dirent.h> 67 #include <sys/policy.h> 68 #include <sys/sunddi.h> 69 #include <sys/filio.h> 70 #include <sys/sid.h> 71 #include "fs/fs_subr.h" 72 #include <sys/zfs_ctldir.h> 73 #include <sys/zfs_fuid.h> 74 #include <sys/zfs_sa.h> 75 #include <sys/dnlc.h> 76 #include <sys/zfs_rlock.h> 77 #include <sys/extdirent.h> 78 #include <sys/kidmap.h> 79 #include <sys/cred.h> 80 #include <sys/attr.h> 81 82 /* 83 * Programming rules. 84 * 85 * Each vnode op performs some logical unit of work. To do this, the ZPL must 86 * properly lock its in-core state, create a DMU transaction, do the work, 87 * record this work in the intent log (ZIL), commit the DMU transaction, 88 * and wait for the intent log to commit if it is a synchronous operation. 89 * Moreover, the vnode ops must work in both normal and log replay context. 90 * The ordering of events is important to avoid deadlocks and references 91 * to freed memory. The example below illustrates the following Big Rules: 92 * 93 * (1) A check must be made in each zfs thread for a mounted file system. 94 * This is done avoiding races using ZFS_ENTER(zfsvfs). 95 * A ZFS_EXIT(zfsvfs) is needed before all returns. Any znodes 96 * must be checked with ZFS_VERIFY_ZP(zp). Both of these macros 97 * can return EIO from the calling function. 98 * 99 * (2) VN_RELE() should always be the last thing except for zil_commit() 100 * (if necessary) and ZFS_EXIT(). This is for 3 reasons: 101 * First, if it's the last reference, the vnode/znode 102 * can be freed, so the zp may point to freed memory. Second, the last 103 * reference will call zfs_zinactive(), which may induce a lot of work -- 104 * pushing cached pages (which acquires range locks) and syncing out 105 * cached atime changes. Third, zfs_zinactive() may require a new tx, 106 * which could deadlock the system if you were already holding one. 107 * If you must call VN_RELE() within a tx then use VN_RELE_ASYNC(). 108 * 109 * (3) All range locks must be grabbed before calling dmu_tx_assign(), 110 * as they can span dmu_tx_assign() calls. 111 * 112 * (4) Always pass TXG_NOWAIT as the second argument to dmu_tx_assign(). 113 * This is critical because we don't want to block while holding locks. 114 * Note, in particular, that if a lock is sometimes acquired before 115 * the tx assigns, and sometimes after (e.g. z_lock), then failing to 116 * use a non-blocking assign can deadlock the system. The scenario: 117 * 118 * Thread A has grabbed a lock before calling dmu_tx_assign(). 119 * Thread B is in an already-assigned tx, and blocks for this lock. 120 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open() 121 * forever, because the previous txg can't quiesce until B's tx commits. 122 * 123 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT, 124 * then drop all locks, call dmu_tx_wait(), and try again. 125 * 126 * (5) If the operation succeeded, generate the intent log entry for it 127 * before dropping locks. This ensures that the ordering of events 128 * in the intent log matches the order in which they actually occurred. 129 * During ZIL replay the zfs_log_* functions will update the sequence 130 * number to indicate the zil transaction has replayed. 131 * 132 * (6) At the end of each vnode op, the DMU tx must always commit, 133 * regardless of whether there were any errors. 134 * 135 * (7) After dropping all locks, invoke zil_commit(zilog, foid) 136 * to ensure that synchronous semantics are provided when necessary. 137 * 138 * In general, this is how things should be ordered in each vnode op: 139 * 140 * ZFS_ENTER(zfsvfs); // exit if unmounted 141 * top: 142 * zfs_dirent_lock(&dl, ...) // lock directory entry (may VN_HOLD()) 143 * rw_enter(...); // grab any other locks you need 144 * tx = dmu_tx_create(...); // get DMU tx 145 * dmu_tx_hold_*(); // hold each object you might modify 146 * error = dmu_tx_assign(tx, TXG_NOWAIT); // try to assign 147 * if (error) { 148 * rw_exit(...); // drop locks 149 * zfs_dirent_unlock(dl); // unlock directory entry 150 * VN_RELE(...); // release held vnodes 151 * if (error == ERESTART) { 152 * dmu_tx_wait(tx); 153 * dmu_tx_abort(tx); 154 * goto top; 155 * } 156 * dmu_tx_abort(tx); // abort DMU tx 157 * ZFS_EXIT(zfsvfs); // finished in zfs 158 * return (error); // really out of space 159 * } 160 * error = do_real_work(); // do whatever this VOP does 161 * if (error == 0) 162 * zfs_log_*(...); // on success, make ZIL entry 163 * dmu_tx_commit(tx); // commit DMU tx -- error or not 164 * rw_exit(...); // drop locks 165 * zfs_dirent_unlock(dl); // unlock directory entry 166 * VN_RELE(...); // release held vnodes 167 * zil_commit(zilog, foid); // synchronous when necessary 168 * ZFS_EXIT(zfsvfs); // finished in zfs 169 * return (error); // done, report error 170 */ 171 172 /* ARGSUSED */ 173 static int 174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct) 175 { 176 znode_t *zp = VTOZ(*vpp); 177 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 178 179 ZFS_ENTER(zfsvfs); 180 ZFS_VERIFY_ZP(zp); 181 182 if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) && 183 ((flag & FAPPEND) == 0)) { 184 ZFS_EXIT(zfsvfs); 185 return (EPERM); 186 } 187 188 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 189 ZTOV(zp)->v_type == VREG && 190 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) { 191 if (fs_vscan(*vpp, cr, 0) != 0) { 192 ZFS_EXIT(zfsvfs); 193 return (EACCES); 194 } 195 } 196 197 /* Keep a count of the synchronous opens in the znode */ 198 if (flag & (FSYNC | FDSYNC)) 199 atomic_inc_32(&zp->z_sync_cnt); 200 201 ZFS_EXIT(zfsvfs); 202 return (0); 203 } 204 205 /* ARGSUSED */ 206 static int 207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr, 208 caller_context_t *ct) 209 { 210 znode_t *zp = VTOZ(vp); 211 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 212 213 /* 214 * Clean up any locks held by this process on the vp. 215 */ 216 cleanlocks(vp, ddi_get_pid(), 0); 217 cleanshares(vp, ddi_get_pid()); 218 219 ZFS_ENTER(zfsvfs); 220 ZFS_VERIFY_ZP(zp); 221 222 /* Decrement the synchronous opens in the znode */ 223 if ((flag & (FSYNC | FDSYNC)) && (count == 1)) 224 atomic_dec_32(&zp->z_sync_cnt); 225 226 if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan && 227 ZTOV(zp)->v_type == VREG && 228 !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) 229 VERIFY(fs_vscan(vp, cr, 1) == 0); 230 231 ZFS_EXIT(zfsvfs); 232 return (0); 233 } 234 235 /* 236 * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and 237 * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter. 238 */ 239 static int 240 zfs_holey(vnode_t *vp, int cmd, offset_t *off) 241 { 242 znode_t *zp = VTOZ(vp); 243 uint64_t noff = (uint64_t)*off; /* new offset */ 244 uint64_t file_sz; 245 int error; 246 boolean_t hole; 247 248 file_sz = zp->z_size; 249 if (noff >= file_sz) { 250 return (ENXIO); 251 } 252 253 if (cmd == _FIO_SEEK_HOLE) 254 hole = B_TRUE; 255 else 256 hole = B_FALSE; 257 258 error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff); 259 260 /* end of file? */ 261 if ((error == ESRCH) || (noff > file_sz)) { 262 /* 263 * Handle the virtual hole at the end of file. 264 */ 265 if (hole) { 266 *off = file_sz; 267 return (0); 268 } 269 return (ENXIO); 270 } 271 272 if (noff < *off) 273 return (error); 274 *off = noff; 275 return (error); 276 } 277 278 /* ARGSUSED */ 279 static int 280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred, 281 int *rvalp, caller_context_t *ct) 282 { 283 offset_t off; 284 int error; 285 zfsvfs_t *zfsvfs; 286 znode_t *zp; 287 288 switch (com) { 289 case _FIOFFS: 290 return (zfs_sync(vp->v_vfsp, 0, cred)); 291 292 /* 293 * The following two ioctls are used by bfu. Faking out, 294 * necessary to avoid bfu errors. 295 */ 296 case _FIOGDIO: 297 case _FIOSDIO: 298 return (0); 299 300 case _FIO_SEEK_DATA: 301 case _FIO_SEEK_HOLE: 302 if (ddi_copyin((void *)data, &off, sizeof (off), flag)) 303 return (EFAULT); 304 305 zp = VTOZ(vp); 306 zfsvfs = zp->z_zfsvfs; 307 ZFS_ENTER(zfsvfs); 308 ZFS_VERIFY_ZP(zp); 309 310 /* offset parameter is in/out */ 311 error = zfs_holey(vp, com, &off); 312 ZFS_EXIT(zfsvfs); 313 if (error) 314 return (error); 315 if (ddi_copyout(&off, (void *)data, sizeof (off), flag)) 316 return (EFAULT); 317 return (0); 318 } 319 return (ENOTTY); 320 } 321 322 /* 323 * Utility functions to map and unmap a single physical page. These 324 * are used to manage the mappable copies of ZFS file data, and therefore 325 * do not update ref/mod bits. 326 */ 327 caddr_t 328 zfs_map_page(page_t *pp, enum seg_rw rw) 329 { 330 if (kpm_enable) 331 return (hat_kpm_mapin(pp, 0)); 332 ASSERT(rw == S_READ || rw == S_WRITE); 333 return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0), 334 (caddr_t)-1)); 335 } 336 337 void 338 zfs_unmap_page(page_t *pp, caddr_t addr) 339 { 340 if (kpm_enable) { 341 hat_kpm_mapout(pp, 0, addr); 342 } else { 343 ppmapout(addr); 344 } 345 } 346 347 /* 348 * When a file is memory mapped, we must keep the IO data synchronized 349 * between the DMU cache and the memory mapped pages. What this means: 350 * 351 * On Write: If we find a memory mapped page, we write to *both* 352 * the page and the dmu buffer. 353 */ 354 static void 355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid) 356 { 357 int64_t off; 358 359 off = start & PAGEOFFSET; 360 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 361 page_t *pp; 362 uint64_t nbytes = MIN(PAGESIZE - off, len); 363 364 if (pp = page_lookup(vp, start, SE_SHARED)) { 365 caddr_t va; 366 367 va = zfs_map_page(pp, S_WRITE); 368 (void) dmu_read(os, oid, start+off, nbytes, va+off, 369 DMU_READ_PREFETCH); 370 zfs_unmap_page(pp, va); 371 page_unlock(pp); 372 } 373 len -= nbytes; 374 off = 0; 375 } 376 } 377 378 /* 379 * When a file is memory mapped, we must keep the IO data synchronized 380 * between the DMU cache and the memory mapped pages. What this means: 381 * 382 * On Read: We "read" preferentially from memory mapped pages, 383 * else we default from the dmu buffer. 384 * 385 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when 386 * the file is memory mapped. 387 */ 388 static int 389 mappedread(vnode_t *vp, int nbytes, uio_t *uio) 390 { 391 znode_t *zp = VTOZ(vp); 392 objset_t *os = zp->z_zfsvfs->z_os; 393 int64_t start, off; 394 int len = nbytes; 395 int error = 0; 396 397 start = uio->uio_loffset; 398 off = start & PAGEOFFSET; 399 for (start &= PAGEMASK; len > 0; start += PAGESIZE) { 400 page_t *pp; 401 uint64_t bytes = MIN(PAGESIZE - off, len); 402 403 if (pp = page_lookup(vp, start, SE_SHARED)) { 404 caddr_t va; 405 406 va = zfs_map_page(pp, S_READ); 407 error = uiomove(va + off, bytes, UIO_READ, uio); 408 zfs_unmap_page(pp, va); 409 page_unlock(pp); 410 } else { 411 error = dmu_read_uio(os, zp->z_id, uio, bytes); 412 } 413 len -= bytes; 414 off = 0; 415 if (error) 416 break; 417 } 418 return (error); 419 } 420 421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */ 422 423 /* 424 * Read bytes from specified file into supplied buffer. 425 * 426 * IN: vp - vnode of file to be read from. 427 * uio - structure supplying read location, range info, 428 * and return buffer. 429 * ioflag - SYNC flags; used to provide FRSYNC semantics. 430 * cr - credentials of caller. 431 * ct - caller context 432 * 433 * OUT: uio - updated offset and range, buffer filled. 434 * 435 * RETURN: 0 if success 436 * error code if failure 437 * 438 * Side Effects: 439 * vp - atime updated if byte count > 0 440 */ 441 /* ARGSUSED */ 442 static int 443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 444 { 445 znode_t *zp = VTOZ(vp); 446 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 447 objset_t *os; 448 ssize_t n, nbytes; 449 int error; 450 rl_t *rl; 451 xuio_t *xuio = NULL; 452 453 ZFS_ENTER(zfsvfs); 454 ZFS_VERIFY_ZP(zp); 455 os = zfsvfs->z_os; 456 457 if (zp->z_pflags & ZFS_AV_QUARANTINED) { 458 ZFS_EXIT(zfsvfs); 459 return (EACCES); 460 } 461 462 /* 463 * Validate file offset 464 */ 465 if (uio->uio_loffset < (offset_t)0) { 466 ZFS_EXIT(zfsvfs); 467 return (EINVAL); 468 } 469 470 /* 471 * Fasttrack empty reads 472 */ 473 if (uio->uio_resid == 0) { 474 ZFS_EXIT(zfsvfs); 475 return (0); 476 } 477 478 /* 479 * Check for mandatory locks 480 */ 481 if (MANDMODE(zp->z_mode)) { 482 if (error = chklock(vp, FREAD, 483 uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) { 484 ZFS_EXIT(zfsvfs); 485 return (error); 486 } 487 } 488 489 /* 490 * If we're in FRSYNC mode, sync out this znode before reading it. 491 */ 492 if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 493 zil_commit(zfsvfs->z_log, zp->z_id); 494 495 /* 496 * Lock the range against changes. 497 */ 498 rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER); 499 500 /* 501 * If we are reading past end-of-file we can skip 502 * to the end; but we might still need to set atime. 503 */ 504 if (uio->uio_loffset >= zp->z_size) { 505 error = 0; 506 goto out; 507 } 508 509 ASSERT(uio->uio_loffset < zp->z_size); 510 n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset); 511 512 if ((uio->uio_extflg == UIO_XUIO) && 513 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) { 514 int nblk; 515 int blksz = zp->z_blksz; 516 uint64_t offset = uio->uio_loffset; 517 518 xuio = (xuio_t *)uio; 519 if ((ISP2(blksz))) { 520 nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset, 521 blksz)) / blksz; 522 } else { 523 ASSERT(offset + n <= blksz); 524 nblk = 1; 525 } 526 (void) dmu_xuio_init(xuio, nblk); 527 528 if (vn_has_cached_data(vp)) { 529 /* 530 * For simplicity, we always allocate a full buffer 531 * even if we only expect to read a portion of a block. 532 */ 533 while (--nblk >= 0) { 534 (void) dmu_xuio_add(xuio, 535 dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 536 blksz), 0, blksz); 537 } 538 } 539 } 540 541 while (n > 0) { 542 nbytes = MIN(n, zfs_read_chunk_size - 543 P2PHASE(uio->uio_loffset, zfs_read_chunk_size)); 544 545 if (vn_has_cached_data(vp)) 546 error = mappedread(vp, nbytes, uio); 547 else 548 error = dmu_read_uio(os, zp->z_id, uio, nbytes); 549 if (error) { 550 /* convert checksum errors into IO errors */ 551 if (error == ECKSUM) 552 error = EIO; 553 break; 554 } 555 556 n -= nbytes; 557 } 558 out: 559 zfs_range_unlock(rl); 560 561 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 562 ZFS_EXIT(zfsvfs); 563 return (error); 564 } 565 566 /* 567 * Write the bytes to a file. 568 * 569 * IN: vp - vnode of file to be written to. 570 * uio - structure supplying write location, range info, 571 * and data buffer. 572 * ioflag - FAPPEND flag set if in append mode. 573 * cr - credentials of caller. 574 * ct - caller context (NFS/CIFS fem monitor only) 575 * 576 * OUT: uio - updated offset and range. 577 * 578 * RETURN: 0 if success 579 * error code if failure 580 * 581 * Timestamps: 582 * vp - ctime|mtime updated if byte count > 0 583 */ 584 585 /* ARGSUSED */ 586 static int 587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct) 588 { 589 znode_t *zp = VTOZ(vp); 590 rlim64_t limit = uio->uio_llimit; 591 ssize_t start_resid = uio->uio_resid; 592 ssize_t tx_bytes; 593 uint64_t end_size; 594 dmu_tx_t *tx; 595 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 596 zilog_t *zilog; 597 offset_t woff; 598 ssize_t n, nbytes; 599 rl_t *rl; 600 int max_blksz = zfsvfs->z_max_blksz; 601 int error; 602 arc_buf_t *abuf; 603 iovec_t *aiov; 604 xuio_t *xuio = NULL; 605 int i_iov = 0; 606 int iovcnt = uio->uio_iovcnt; 607 iovec_t *iovp = uio->uio_iov; 608 int write_eof; 609 int count = 0; 610 sa_bulk_attr_t bulk[4]; 611 uint64_t mtime[2], ctime[2]; 612 613 /* 614 * Fasttrack empty write 615 */ 616 n = start_resid; 617 if (n == 0) 618 return (0); 619 620 if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T) 621 limit = MAXOFFSET_T; 622 623 ZFS_ENTER(zfsvfs); 624 ZFS_VERIFY_ZP(zp); 625 626 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 627 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 628 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL, 629 &zp->z_size, 8); 630 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 631 &zp->z_pflags, 8); 632 633 /* 634 * If immutable or not appending then return EPERM 635 */ 636 if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) || 637 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) && 638 (uio->uio_loffset < zp->z_size))) { 639 ZFS_EXIT(zfsvfs); 640 return (EPERM); 641 } 642 643 zilog = zfsvfs->z_log; 644 645 /* 646 * Validate file offset 647 */ 648 woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset; 649 if (woff < 0) { 650 ZFS_EXIT(zfsvfs); 651 return (EINVAL); 652 } 653 654 /* 655 * Check for mandatory locks before calling zfs_range_lock() 656 * in order to prevent a deadlock with locks set via fcntl(). 657 */ 658 if (MANDMODE((mode_t)zp->z_mode) && 659 (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) { 660 ZFS_EXIT(zfsvfs); 661 return (error); 662 } 663 664 /* 665 * Pre-fault the pages to ensure slow (eg NFS) pages 666 * don't hold up txg. 667 * Skip this if uio contains loaned arc_buf. 668 */ 669 if ((uio->uio_extflg == UIO_XUIO) && 670 (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) 671 xuio = (xuio_t *)uio; 672 else 673 uio_prefaultpages(n, uio); 674 675 /* 676 * If in append mode, set the io offset pointer to eof. 677 */ 678 if (ioflag & FAPPEND) { 679 /* 680 * Obtain an appending range lock to guarantee file append 681 * semantics. We reset the write offset once we have the lock. 682 */ 683 rl = zfs_range_lock(zp, 0, n, RL_APPEND); 684 woff = rl->r_off; 685 if (rl->r_len == UINT64_MAX) { 686 /* 687 * We overlocked the file because this write will cause 688 * the file block size to increase. 689 * Note that zp_size cannot change with this lock held. 690 */ 691 woff = zp->z_size; 692 } 693 uio->uio_loffset = woff; 694 } else { 695 /* 696 * Note that if the file block size will change as a result of 697 * this write, then this range lock will lock the entire file 698 * so that we can re-write the block safely. 699 */ 700 rl = zfs_range_lock(zp, woff, n, RL_WRITER); 701 } 702 703 if (woff >= limit) { 704 zfs_range_unlock(rl); 705 ZFS_EXIT(zfsvfs); 706 return (EFBIG); 707 } 708 709 if ((woff + n) > limit || woff > (limit - n)) 710 n = limit - woff; 711 712 /* Will this write extend the file length? */ 713 write_eof = (woff + n > zp->z_size); 714 715 end_size = MAX(zp->z_size, woff + n); 716 717 /* 718 * Write the file in reasonable size chunks. Each chunk is written 719 * in a separate transaction; this keeps the intent log records small 720 * and allows us to do more fine-grained space accounting. 721 */ 722 while (n > 0) { 723 abuf = NULL; 724 woff = uio->uio_loffset; 725 again: 726 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 727 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 728 if (abuf != NULL) 729 dmu_return_arcbuf(abuf); 730 error = EDQUOT; 731 break; 732 } 733 734 if (xuio && abuf == NULL) { 735 ASSERT(i_iov < iovcnt); 736 aiov = &iovp[i_iov]; 737 abuf = dmu_xuio_arcbuf(xuio, i_iov); 738 dmu_xuio_clear(xuio, i_iov); 739 DTRACE_PROBE3(zfs_cp_write, int, i_iov, 740 iovec_t *, aiov, arc_buf_t *, abuf); 741 ASSERT((aiov->iov_base == abuf->b_data) || 742 ((char *)aiov->iov_base - (char *)abuf->b_data + 743 aiov->iov_len == arc_buf_size(abuf))); 744 i_iov++; 745 } else if (abuf == NULL && n >= max_blksz && 746 woff >= zp->z_size && 747 P2PHASE(woff, max_blksz) == 0 && 748 zp->z_blksz == max_blksz) { 749 /* 750 * This write covers a full block. "Borrow" a buffer 751 * from the dmu so that we can fill it before we enter 752 * a transaction. This avoids the possibility of 753 * holding up the transaction if the data copy hangs 754 * up on a pagefault (e.g., from an NFS server mapping). 755 */ 756 size_t cbytes; 757 758 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 759 max_blksz); 760 ASSERT(abuf != NULL); 761 ASSERT(arc_buf_size(abuf) == max_blksz); 762 if (error = uiocopy(abuf->b_data, max_blksz, 763 UIO_WRITE, uio, &cbytes)) { 764 dmu_return_arcbuf(abuf); 765 break; 766 } 767 ASSERT(cbytes == max_blksz); 768 } 769 770 /* 771 * Start a transaction. 772 */ 773 tx = dmu_tx_create(zfsvfs->z_os); 774 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 775 dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz)); 776 zfs_sa_upgrade_txholds(tx, zp); 777 error = dmu_tx_assign(tx, TXG_NOWAIT); 778 if (error) { 779 if (error == ERESTART) { 780 dmu_tx_wait(tx); 781 dmu_tx_abort(tx); 782 goto again; 783 } 784 dmu_tx_abort(tx); 785 if (abuf != NULL) 786 dmu_return_arcbuf(abuf); 787 break; 788 } 789 790 /* 791 * If zfs_range_lock() over-locked we grow the blocksize 792 * and then reduce the lock range. This will only happen 793 * on the first iteration since zfs_range_reduce() will 794 * shrink down r_len to the appropriate size. 795 */ 796 if (rl->r_len == UINT64_MAX) { 797 uint64_t new_blksz; 798 799 if (zp->z_blksz > max_blksz) { 800 ASSERT(!ISP2(zp->z_blksz)); 801 new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE); 802 } else { 803 new_blksz = MIN(end_size, max_blksz); 804 } 805 zfs_grow_blocksize(zp, new_blksz, tx); 806 zfs_range_reduce(rl, woff, n); 807 } 808 809 /* 810 * XXX - should we really limit each write to z_max_blksz? 811 * Perhaps we should use SPA_MAXBLOCKSIZE chunks? 812 */ 813 nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz)); 814 815 if (abuf == NULL) { 816 tx_bytes = uio->uio_resid; 817 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl), 818 uio, nbytes, tx); 819 tx_bytes -= uio->uio_resid; 820 } else { 821 tx_bytes = nbytes; 822 ASSERT(xuio == NULL || tx_bytes == aiov->iov_len); 823 /* 824 * If this is not a full block write, but we are 825 * extending the file past EOF and this data starts 826 * block-aligned, use assign_arcbuf(). Otherwise, 827 * write via dmu_write(). 828 */ 829 if (tx_bytes < max_blksz && (!write_eof || 830 aiov->iov_base != abuf->b_data)) { 831 ASSERT(xuio); 832 dmu_write(zfsvfs->z_os, zp->z_id, woff, 833 aiov->iov_len, aiov->iov_base, tx); 834 dmu_return_arcbuf(abuf); 835 xuio_stat_wbuf_copied(); 836 } else { 837 ASSERT(xuio || tx_bytes == max_blksz); 838 dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl), 839 woff, abuf, tx); 840 } 841 ASSERT(tx_bytes <= uio->uio_resid); 842 uioskip(uio, tx_bytes); 843 } 844 if (tx_bytes && vn_has_cached_data(vp)) { 845 update_pages(vp, woff, 846 tx_bytes, zfsvfs->z_os, zp->z_id); 847 } 848 849 /* 850 * If we made no progress, we're done. If we made even 851 * partial progress, update the znode and ZIL accordingly. 852 */ 853 if (tx_bytes == 0) { 854 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 855 (void *)&zp->z_size, sizeof (uint64_t), tx); 856 dmu_tx_commit(tx); 857 ASSERT(error != 0); 858 break; 859 } 860 861 /* 862 * Clear Set-UID/Set-GID bits on successful write if not 863 * privileged and at least one of the excute bits is set. 864 * 865 * It would be nice to to this after all writes have 866 * been done, but that would still expose the ISUID/ISGID 867 * to another app after the partial write is committed. 868 * 869 */ 870 mutex_enter(&zp->z_acl_lock); 871 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | 872 (S_IXUSR >> 6))) != 0 && 873 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 && 874 secpolicy_vnode_setid_retain(cr, 875 (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) { 876 uint64_t newmode; 877 zp->z_mode &= ~(S_ISUID | S_ISGID); 878 newmode = zp->z_mode; 879 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs), 880 (void *)&newmode, sizeof (uint64_t), tx); 881 } 882 mutex_exit(&zp->z_acl_lock); 883 884 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 885 B_TRUE); 886 887 /* 888 * Update the file size (zp_size) if it has changed; 889 * account for possible concurrent updates. 890 */ 891 while ((end_size = zp->z_size) < uio->uio_loffset) { 892 (void) atomic_cas_64(&zp->z_size, end_size, 893 uio->uio_loffset); 894 ASSERT(error == 0); 895 } 896 /* 897 * If we are replaying and eof is non zero then force 898 * the file size to the specified eof. Note, there's no 899 * concurrency during replay. 900 */ 901 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0) 902 zp->z_size = zfsvfs->z_replay_eof; 903 904 error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 905 906 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag); 907 dmu_tx_commit(tx); 908 909 if (error != 0) 910 break; 911 ASSERT(tx_bytes == nbytes); 912 n -= nbytes; 913 } 914 915 zfs_range_unlock(rl); 916 917 /* 918 * If we're in replay mode, or we made no progress, return error. 919 * Otherwise, it's at least a partial write, so it's successful. 920 */ 921 if (zfsvfs->z_replay || uio->uio_resid == start_resid) { 922 ZFS_EXIT(zfsvfs); 923 return (error); 924 } 925 926 if (ioflag & (FSYNC | FDSYNC) || 927 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 928 zil_commit(zilog, zp->z_id); 929 930 ZFS_EXIT(zfsvfs); 931 return (0); 932 } 933 934 void 935 zfs_get_done(zgd_t *zgd, int error) 936 { 937 znode_t *zp = zgd->zgd_private; 938 objset_t *os = zp->z_zfsvfs->z_os; 939 940 if (zgd->zgd_db) 941 dmu_buf_rele(zgd->zgd_db, zgd); 942 943 zfs_range_unlock(zgd->zgd_rl); 944 945 /* 946 * Release the vnode asynchronously as we currently have the 947 * txg stopped from syncing. 948 */ 949 VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 950 951 if (error == 0 && zgd->zgd_bp) 952 zil_add_block(zgd->zgd_zilog, zgd->zgd_bp); 953 954 kmem_free(zgd, sizeof (zgd_t)); 955 } 956 957 #ifdef DEBUG 958 static int zil_fault_io = 0; 959 #endif 960 961 /* 962 * Get data to generate a TX_WRITE intent log record. 963 */ 964 int 965 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio) 966 { 967 zfsvfs_t *zfsvfs = arg; 968 objset_t *os = zfsvfs->z_os; 969 znode_t *zp; 970 uint64_t object = lr->lr_foid; 971 uint64_t offset = lr->lr_offset; 972 uint64_t size = lr->lr_length; 973 blkptr_t *bp = &lr->lr_blkptr; 974 dmu_buf_t *db; 975 zgd_t *zgd; 976 int error = 0; 977 978 ASSERT(zio != NULL); 979 ASSERT(size != 0); 980 981 /* 982 * Nothing to do if the file has been removed 983 */ 984 if (zfs_zget(zfsvfs, object, &zp) != 0) 985 return (ENOENT); 986 if (zp->z_unlinked) { 987 /* 988 * Release the vnode asynchronously as we currently have the 989 * txg stopped from syncing. 990 */ 991 VN_RELE_ASYNC(ZTOV(zp), 992 dsl_pool_vnrele_taskq(dmu_objset_pool(os))); 993 return (ENOENT); 994 } 995 996 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP); 997 zgd->zgd_zilog = zfsvfs->z_log; 998 zgd->zgd_private = zp; 999 1000 /* 1001 * Write records come in two flavors: immediate and indirect. 1002 * For small writes it's cheaper to store the data with the 1003 * log record (immediate); for large writes it's cheaper to 1004 * sync the data and get a pointer to it (indirect) so that 1005 * we don't have to write the data twice. 1006 */ 1007 if (buf != NULL) { /* immediate write */ 1008 zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER); 1009 /* test for truncation needs to be done while range locked */ 1010 if (offset >= zp->z_size) { 1011 error = ENOENT; 1012 } else { 1013 error = dmu_read(os, object, offset, size, buf, 1014 DMU_READ_NO_PREFETCH); 1015 } 1016 ASSERT(error == 0 || error == ENOENT); 1017 } else { /* indirect write */ 1018 /* 1019 * Have to lock the whole block to ensure when it's 1020 * written out and it's checksum is being calculated 1021 * that no one can change the data. We need to re-check 1022 * blocksize after we get the lock in case it's changed! 1023 */ 1024 for (;;) { 1025 uint64_t blkoff; 1026 size = zp->z_blksz; 1027 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset; 1028 offset -= blkoff; 1029 zgd->zgd_rl = zfs_range_lock(zp, offset, size, 1030 RL_READER); 1031 if (zp->z_blksz == size) 1032 break; 1033 offset += blkoff; 1034 zfs_range_unlock(zgd->zgd_rl); 1035 } 1036 /* test for truncation needs to be done while range locked */ 1037 if (lr->lr_offset >= zp->z_size) 1038 error = ENOENT; 1039 #ifdef DEBUG 1040 if (zil_fault_io) { 1041 error = EIO; 1042 zil_fault_io = 0; 1043 } 1044 #endif 1045 if (error == 0) 1046 error = dmu_buf_hold(os, object, offset, zgd, &db, 1047 DMU_READ_NO_PREFETCH); 1048 1049 if (error == 0) { 1050 zgd->zgd_db = db; 1051 zgd->zgd_bp = bp; 1052 1053 ASSERT(db->db_offset == offset); 1054 ASSERT(db->db_size == size); 1055 1056 error = dmu_sync(zio, lr->lr_common.lrc_txg, 1057 zfs_get_done, zgd); 1058 ASSERT(error || lr->lr_length <= zp->z_blksz); 1059 1060 /* 1061 * On success, we need to wait for the write I/O 1062 * initiated by dmu_sync() to complete before we can 1063 * release this dbuf. We will finish everything up 1064 * in the zfs_get_done() callback. 1065 */ 1066 if (error == 0) 1067 return (0); 1068 1069 if (error == EALREADY) { 1070 lr->lr_common.lrc_txtype = TX_WRITE2; 1071 error = 0; 1072 } 1073 } 1074 } 1075 1076 zfs_get_done(zgd, error); 1077 1078 return (error); 1079 } 1080 1081 /*ARGSUSED*/ 1082 static int 1083 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr, 1084 caller_context_t *ct) 1085 { 1086 znode_t *zp = VTOZ(vp); 1087 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 1088 int error; 1089 1090 ZFS_ENTER(zfsvfs); 1091 ZFS_VERIFY_ZP(zp); 1092 1093 if (flag & V_ACE_MASK) 1094 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr); 1095 else 1096 error = zfs_zaccess_rwx(zp, mode, flag, cr); 1097 1098 ZFS_EXIT(zfsvfs); 1099 return (error); 1100 } 1101 1102 /* 1103 * If vnode is for a device return a specfs vnode instead. 1104 */ 1105 static int 1106 specvp_check(vnode_t **vpp, cred_t *cr) 1107 { 1108 int error = 0; 1109 1110 if (IS_DEVVP(*vpp)) { 1111 struct vnode *svp; 1112 1113 svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr); 1114 VN_RELE(*vpp); 1115 if (svp == NULL) 1116 error = ENOSYS; 1117 *vpp = svp; 1118 } 1119 return (error); 1120 } 1121 1122 1123 /* 1124 * Lookup an entry in a directory, or an extended attribute directory. 1125 * If it exists, return a held vnode reference for it. 1126 * 1127 * IN: dvp - vnode of directory to search. 1128 * nm - name of entry to lookup. 1129 * pnp - full pathname to lookup [UNUSED]. 1130 * flags - LOOKUP_XATTR set if looking for an attribute. 1131 * rdir - root directory vnode [UNUSED]. 1132 * cr - credentials of caller. 1133 * ct - caller context 1134 * direntflags - directory lookup flags 1135 * realpnp - returned pathname. 1136 * 1137 * OUT: vpp - vnode of located entry, NULL if not found. 1138 * 1139 * RETURN: 0 if success 1140 * error code if failure 1141 * 1142 * Timestamps: 1143 * NA 1144 */ 1145 /* ARGSUSED */ 1146 static int 1147 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp, 1148 int flags, vnode_t *rdir, cred_t *cr, caller_context_t *ct, 1149 int *direntflags, pathname_t *realpnp) 1150 { 1151 znode_t *zdp = VTOZ(dvp); 1152 zfsvfs_t *zfsvfs = zdp->z_zfsvfs; 1153 int error = 0; 1154 1155 /* fast path */ 1156 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) { 1157 1158 if (dvp->v_type != VDIR) { 1159 return (ENOTDIR); 1160 } else if (zdp->z_sa_hdl == NULL) { 1161 return (EIO); 1162 } 1163 1164 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) { 1165 error = zfs_fastaccesschk_execute(zdp, cr); 1166 if (!error) { 1167 *vpp = dvp; 1168 VN_HOLD(*vpp); 1169 return (0); 1170 } 1171 return (error); 1172 } else { 1173 vnode_t *tvp = dnlc_lookup(dvp, nm); 1174 1175 if (tvp) { 1176 error = zfs_fastaccesschk_execute(zdp, cr); 1177 if (error) { 1178 VN_RELE(tvp); 1179 return (error); 1180 } 1181 if (tvp == DNLC_NO_VNODE) { 1182 VN_RELE(tvp); 1183 return (ENOENT); 1184 } else { 1185 *vpp = tvp; 1186 return (specvp_check(vpp, cr)); 1187 } 1188 } 1189 } 1190 } 1191 1192 DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm); 1193 1194 ZFS_ENTER(zfsvfs); 1195 ZFS_VERIFY_ZP(zdp); 1196 1197 *vpp = NULL; 1198 1199 if (flags & LOOKUP_XATTR) { 1200 /* 1201 * If the xattr property is off, refuse the lookup request. 1202 */ 1203 if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) { 1204 ZFS_EXIT(zfsvfs); 1205 return (EINVAL); 1206 } 1207 1208 /* 1209 * We don't allow recursive attributes.. 1210 * Maybe someday we will. 1211 */ 1212 if (zdp->z_pflags & ZFS_XATTR) { 1213 ZFS_EXIT(zfsvfs); 1214 return (EINVAL); 1215 } 1216 1217 if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) { 1218 ZFS_EXIT(zfsvfs); 1219 return (error); 1220 } 1221 1222 /* 1223 * Do we have permission to get into attribute directory? 1224 */ 1225 1226 if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0, 1227 B_FALSE, cr)) { 1228 VN_RELE(*vpp); 1229 *vpp = NULL; 1230 } 1231 1232 ZFS_EXIT(zfsvfs); 1233 return (error); 1234 } 1235 1236 if (dvp->v_type != VDIR) { 1237 ZFS_EXIT(zfsvfs); 1238 return (ENOTDIR); 1239 } 1240 1241 /* 1242 * Check accessibility of directory. 1243 */ 1244 1245 if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) { 1246 ZFS_EXIT(zfsvfs); 1247 return (error); 1248 } 1249 1250 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm), 1251 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1252 ZFS_EXIT(zfsvfs); 1253 return (EILSEQ); 1254 } 1255 1256 error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp); 1257 if (error == 0) 1258 error = specvp_check(vpp, cr); 1259 1260 ZFS_EXIT(zfsvfs); 1261 return (error); 1262 } 1263 1264 /* 1265 * Attempt to create a new entry in a directory. If the entry 1266 * already exists, truncate the file if permissible, else return 1267 * an error. Return the vp of the created or trunc'd file. 1268 * 1269 * IN: dvp - vnode of directory to put new file entry in. 1270 * name - name of new file entry. 1271 * vap - attributes of new file. 1272 * excl - flag indicating exclusive or non-exclusive mode. 1273 * mode - mode to open file with. 1274 * cr - credentials of caller. 1275 * flag - large file flag [UNUSED]. 1276 * ct - caller context 1277 * vsecp - ACL to be set 1278 * 1279 * OUT: vpp - vnode of created or trunc'd entry. 1280 * 1281 * RETURN: 0 if success 1282 * error code if failure 1283 * 1284 * Timestamps: 1285 * dvp - ctime|mtime updated if new entry created 1286 * vp - ctime|mtime always, atime if new 1287 */ 1288 1289 /* ARGSUSED */ 1290 static int 1291 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl, 1292 int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct, 1293 vsecattr_t *vsecp) 1294 { 1295 znode_t *zp, *dzp = VTOZ(dvp); 1296 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1297 zilog_t *zilog; 1298 objset_t *os; 1299 zfs_dirlock_t *dl; 1300 dmu_tx_t *tx; 1301 int error; 1302 ksid_t *ksid; 1303 uid_t uid; 1304 gid_t gid = crgetgid(cr); 1305 zfs_acl_ids_t acl_ids; 1306 boolean_t fuid_dirtied; 1307 boolean_t have_acl = B_FALSE; 1308 1309 /* 1310 * If we have an ephemeral id, ACL, or XVATTR then 1311 * make sure file system is at proper version 1312 */ 1313 1314 ksid = crgetsid(cr, KSID_OWNER); 1315 if (ksid) 1316 uid = ksid_getid(ksid); 1317 else 1318 uid = crgetuid(cr); 1319 1320 if (zfsvfs->z_use_fuids == B_FALSE && 1321 (vsecp || (vap->va_mask & AT_XVATTR) || 1322 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1323 return (EINVAL); 1324 1325 ZFS_ENTER(zfsvfs); 1326 ZFS_VERIFY_ZP(dzp); 1327 os = zfsvfs->z_os; 1328 zilog = zfsvfs->z_log; 1329 1330 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 1331 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1332 ZFS_EXIT(zfsvfs); 1333 return (EILSEQ); 1334 } 1335 1336 if (vap->va_mask & AT_XVATTR) { 1337 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1338 crgetuid(cr), cr, vap->va_type)) != 0) { 1339 ZFS_EXIT(zfsvfs); 1340 return (error); 1341 } 1342 } 1343 top: 1344 *vpp = NULL; 1345 1346 if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr)) 1347 vap->va_mode &= ~VSVTX; 1348 1349 if (*name == '\0') { 1350 /* 1351 * Null component name refers to the directory itself. 1352 */ 1353 VN_HOLD(dvp); 1354 zp = dzp; 1355 dl = NULL; 1356 error = 0; 1357 } else { 1358 /* possible VN_HOLD(zp) */ 1359 int zflg = 0; 1360 1361 if (flag & FIGNORECASE) 1362 zflg |= ZCILOOK; 1363 1364 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1365 NULL, NULL); 1366 if (error) { 1367 if (strcmp(name, "..") == 0) 1368 error = EISDIR; 1369 ZFS_EXIT(zfsvfs); 1370 return (error); 1371 } 1372 } 1373 1374 if (zp == NULL) { 1375 uint64_t txtype; 1376 1377 /* 1378 * Create a new file object and update the directory 1379 * to reference it. 1380 */ 1381 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 1382 goto out; 1383 } 1384 1385 /* 1386 * We only support the creation of regular files in 1387 * extended attribute directories. 1388 */ 1389 1390 if ((dzp->z_pflags & ZFS_XATTR) && 1391 (vap->va_type != VREG)) { 1392 error = EINVAL; 1393 goto out; 1394 } 1395 1396 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap, 1397 cr, vsecp, &acl_ids)) != 0) 1398 goto out; 1399 have_acl = B_TRUE; 1400 1401 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1402 zfs_acl_ids_free(&acl_ids); 1403 error = EDQUOT; 1404 goto out; 1405 } 1406 1407 tx = dmu_tx_create(os); 1408 1409 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1410 ZFS_SA_BASE_ATTR_SIZE); 1411 1412 fuid_dirtied = zfsvfs->z_fuid_dirty; 1413 if (fuid_dirtied) 1414 zfs_fuid_txhold(zfsvfs, tx); 1415 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 1416 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 1417 if (!zfsvfs->z_use_sa && 1418 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1419 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 1420 0, acl_ids.z_aclp->z_acl_bytes); 1421 } 1422 error = dmu_tx_assign(tx, TXG_NOWAIT); 1423 if (error) { 1424 zfs_dirent_unlock(dl); 1425 if (error == ERESTART) { 1426 dmu_tx_wait(tx); 1427 dmu_tx_abort(tx); 1428 goto top; 1429 } 1430 zfs_acl_ids_free(&acl_ids); 1431 dmu_tx_abort(tx); 1432 ZFS_EXIT(zfsvfs); 1433 return (error); 1434 } 1435 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1436 1437 if (fuid_dirtied) 1438 zfs_fuid_sync(zfsvfs, tx); 1439 1440 (void) zfs_link_create(dl, zp, tx, ZNEW); 1441 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap); 1442 if (flag & FIGNORECASE) 1443 txtype |= TX_CI; 1444 zfs_log_create(zilog, tx, txtype, dzp, zp, name, 1445 vsecp, acl_ids.z_fuidp, vap); 1446 zfs_acl_ids_free(&acl_ids); 1447 dmu_tx_commit(tx); 1448 } else { 1449 int aflags = (flag & FAPPEND) ? V_APPEND : 0; 1450 1451 /* 1452 * A directory entry already exists for this name. 1453 */ 1454 /* 1455 * Can't truncate an existing file if in exclusive mode. 1456 */ 1457 if (excl == EXCL) { 1458 error = EEXIST; 1459 goto out; 1460 } 1461 /* 1462 * Can't open a directory for writing. 1463 */ 1464 if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) { 1465 error = EISDIR; 1466 goto out; 1467 } 1468 /* 1469 * Verify requested access to file. 1470 */ 1471 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) { 1472 goto out; 1473 } 1474 1475 mutex_enter(&dzp->z_lock); 1476 dzp->z_seq++; 1477 mutex_exit(&dzp->z_lock); 1478 1479 /* 1480 * Truncate regular files if requested. 1481 */ 1482 if ((ZTOV(zp)->v_type == VREG) && 1483 (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) { 1484 /* we can't hold any locks when calling zfs_freesp() */ 1485 zfs_dirent_unlock(dl); 1486 dl = NULL; 1487 error = zfs_freesp(zp, 0, 0, mode, TRUE); 1488 if (error == 0) { 1489 vnevent_create(ZTOV(zp), ct); 1490 } 1491 } 1492 } 1493 out: 1494 1495 if (dl) 1496 zfs_dirent_unlock(dl); 1497 1498 if (error) { 1499 if (zp) 1500 VN_RELE(ZTOV(zp)); 1501 } else { 1502 *vpp = ZTOV(zp); 1503 error = specvp_check(vpp, cr); 1504 } 1505 1506 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1507 zil_commit(zilog, 0); 1508 1509 ZFS_EXIT(zfsvfs); 1510 return (error); 1511 } 1512 1513 /* 1514 * Remove an entry from a directory. 1515 * 1516 * IN: dvp - vnode of directory to remove entry from. 1517 * name - name of entry to remove. 1518 * cr - credentials of caller. 1519 * ct - caller context 1520 * flags - case flags 1521 * 1522 * RETURN: 0 if success 1523 * error code if failure 1524 * 1525 * Timestamps: 1526 * dvp - ctime|mtime 1527 * vp - ctime (if nlink > 0) 1528 */ 1529 1530 uint64_t null_xattr = 0; 1531 1532 /*ARGSUSED*/ 1533 static int 1534 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct, 1535 int flags) 1536 { 1537 znode_t *zp, *dzp = VTOZ(dvp); 1538 znode_t *xzp = NULL; 1539 vnode_t *vp; 1540 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1541 zilog_t *zilog; 1542 uint64_t acl_obj, xattr_obj = 0; 1543 uint64_t xattr_obj_unlinked = 0; 1544 uint64_t obj = 0; 1545 zfs_dirlock_t *dl; 1546 dmu_tx_t *tx; 1547 boolean_t may_delete_now, delete_now = FALSE; 1548 boolean_t unlinked, toobig = FALSE; 1549 uint64_t txtype; 1550 pathname_t *realnmp = NULL; 1551 pathname_t realnm; 1552 int error; 1553 int zflg = ZEXISTS; 1554 1555 ZFS_ENTER(zfsvfs); 1556 ZFS_VERIFY_ZP(dzp); 1557 zilog = zfsvfs->z_log; 1558 1559 if (flags & FIGNORECASE) { 1560 zflg |= ZCILOOK; 1561 pn_alloc(&realnm); 1562 realnmp = &realnm; 1563 } 1564 1565 top: 1566 /* 1567 * Attempt to lock directory; fail if entry doesn't exist. 1568 */ 1569 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1570 NULL, realnmp)) { 1571 if (realnmp) 1572 pn_free(realnmp); 1573 ZFS_EXIT(zfsvfs); 1574 return (error); 1575 } 1576 1577 vp = ZTOV(zp); 1578 1579 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1580 goto out; 1581 } 1582 1583 /* 1584 * Need to use rmdir for removing directories. 1585 */ 1586 if (vp->v_type == VDIR) { 1587 error = EPERM; 1588 goto out; 1589 } 1590 1591 vnevent_remove(vp, dvp, name, ct); 1592 1593 if (realnmp) 1594 dnlc_remove(dvp, realnmp->pn_buf); 1595 else 1596 dnlc_remove(dvp, name); 1597 1598 mutex_enter(&vp->v_lock); 1599 may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp); 1600 mutex_exit(&vp->v_lock); 1601 1602 /* 1603 * We may delete the znode now, or we may put it in the unlinked set; 1604 * it depends on whether we're the last link, and on whether there are 1605 * other holds on the vnode. So we dmu_tx_hold() the right things to 1606 * allow for either case. 1607 */ 1608 obj = zp->z_id; 1609 tx = dmu_tx_create(zfsvfs->z_os); 1610 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 1611 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 1612 zfs_sa_upgrade_txholds(tx, zp); 1613 zfs_sa_upgrade_txholds(tx, dzp); 1614 if (may_delete_now) { 1615 toobig = 1616 zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT; 1617 /* if the file is too big, only hold_free a token amount */ 1618 dmu_tx_hold_free(tx, zp->z_id, 0, 1619 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END)); 1620 } 1621 1622 /* are there any extended attributes? */ 1623 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1624 &xattr_obj, sizeof (xattr_obj)); 1625 if (xattr_obj) { 1626 error = zfs_zget(zfsvfs, xattr_obj, &xzp); 1627 ASSERT3U(error, ==, 0); 1628 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 1629 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE); 1630 } 1631 1632 mutex_enter(&zp->z_lock); 1633 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now) 1634 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END); 1635 mutex_exit(&zp->z_lock); 1636 1637 /* charge as an update -- would be nice not to charge at all */ 1638 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 1639 1640 error = dmu_tx_assign(tx, TXG_NOWAIT); 1641 if (error) { 1642 zfs_dirent_unlock(dl); 1643 VN_RELE(vp); 1644 if (error == ERESTART) { 1645 dmu_tx_wait(tx); 1646 dmu_tx_abort(tx); 1647 goto top; 1648 } 1649 if (realnmp) 1650 pn_free(realnmp); 1651 dmu_tx_abort(tx); 1652 ZFS_EXIT(zfsvfs); 1653 return (error); 1654 } 1655 1656 /* 1657 * Remove the directory entry. 1658 */ 1659 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked); 1660 1661 if (error) { 1662 dmu_tx_commit(tx); 1663 goto out; 1664 } 1665 1666 if (unlinked) { 1667 1668 /* 1669 * Hold z_lock so that we can make sure that the ACL obj 1670 * hasn't changed. Could have been deleted due to 1671 * zfs_sa_upgrade(). 1672 */ 1673 mutex_enter(&zp->z_lock); 1674 mutex_enter(&vp->v_lock); 1675 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), 1676 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked)); 1677 delete_now = may_delete_now && !toobig && 1678 vp->v_count == 1 && !vn_has_cached_data(vp) && 1679 xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) == 1680 acl_obj; 1681 mutex_exit(&vp->v_lock); 1682 } 1683 1684 if (delete_now) { 1685 if (xattr_obj_unlinked) { 1686 ASSERT3U(xzp->z_links, ==, 2); 1687 mutex_enter(&xzp->z_lock); 1688 xzp->z_unlinked = 1; 1689 xzp->z_links = 0; 1690 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs), 1691 &xzp->z_links, sizeof (xzp->z_links), tx); 1692 ASSERT3U(error, ==, 0); 1693 mutex_exit(&xzp->z_lock); 1694 zfs_unlinked_add(xzp, tx); 1695 1696 if (zp->z_is_sa) 1697 error = sa_remove(zp->z_sa_hdl, 1698 SA_ZPL_XATTR(zfsvfs), tx); 1699 else 1700 error = sa_update(zp->z_sa_hdl, 1701 SA_ZPL_XATTR(zfsvfs), &null_xattr, 1702 sizeof (uint64_t), tx); 1703 ASSERT3U(error, ==, 0); 1704 } 1705 mutex_enter(&vp->v_lock); 1706 vp->v_count--; 1707 ASSERT3U(vp->v_count, ==, 0); 1708 mutex_exit(&vp->v_lock); 1709 mutex_exit(&zp->z_lock); 1710 zfs_znode_delete(zp, tx); 1711 } else if (unlinked) { 1712 mutex_exit(&zp->z_lock); 1713 zfs_unlinked_add(zp, tx); 1714 } 1715 1716 txtype = TX_REMOVE; 1717 if (flags & FIGNORECASE) 1718 txtype |= TX_CI; 1719 zfs_log_remove(zilog, tx, txtype, dzp, name, obj); 1720 1721 dmu_tx_commit(tx); 1722 out: 1723 if (realnmp) 1724 pn_free(realnmp); 1725 1726 zfs_dirent_unlock(dl); 1727 1728 if (!delete_now) 1729 VN_RELE(vp); 1730 if (xzp) 1731 VN_RELE(ZTOV(xzp)); 1732 1733 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1734 zil_commit(zilog, 0); 1735 1736 ZFS_EXIT(zfsvfs); 1737 return (error); 1738 } 1739 1740 /* 1741 * Create a new directory and insert it into dvp using the name 1742 * provided. Return a pointer to the inserted directory. 1743 * 1744 * IN: dvp - vnode of directory to add subdir to. 1745 * dirname - name of new directory. 1746 * vap - attributes of new directory. 1747 * cr - credentials of caller. 1748 * ct - caller context 1749 * vsecp - ACL to be set 1750 * 1751 * OUT: vpp - vnode of created directory. 1752 * 1753 * RETURN: 0 if success 1754 * error code if failure 1755 * 1756 * Timestamps: 1757 * dvp - ctime|mtime updated 1758 * vp - ctime|mtime|atime updated 1759 */ 1760 /*ARGSUSED*/ 1761 static int 1762 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr, 1763 caller_context_t *ct, int flags, vsecattr_t *vsecp) 1764 { 1765 znode_t *zp, *dzp = VTOZ(dvp); 1766 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1767 zilog_t *zilog; 1768 zfs_dirlock_t *dl; 1769 uint64_t txtype; 1770 dmu_tx_t *tx; 1771 int error; 1772 int zf = ZNEW; 1773 ksid_t *ksid; 1774 uid_t uid; 1775 gid_t gid = crgetgid(cr); 1776 zfs_acl_ids_t acl_ids; 1777 boolean_t fuid_dirtied; 1778 1779 ASSERT(vap->va_type == VDIR); 1780 1781 /* 1782 * If we have an ephemeral id, ACL, or XVATTR then 1783 * make sure file system is at proper version 1784 */ 1785 1786 ksid = crgetsid(cr, KSID_OWNER); 1787 if (ksid) 1788 uid = ksid_getid(ksid); 1789 else 1790 uid = crgetuid(cr); 1791 if (zfsvfs->z_use_fuids == B_FALSE && 1792 (vsecp || (vap->va_mask & AT_XVATTR) || 1793 IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid))) 1794 return (EINVAL); 1795 1796 ZFS_ENTER(zfsvfs); 1797 ZFS_VERIFY_ZP(dzp); 1798 zilog = zfsvfs->z_log; 1799 1800 if (dzp->z_pflags & ZFS_XATTR) { 1801 ZFS_EXIT(zfsvfs); 1802 return (EINVAL); 1803 } 1804 1805 if (zfsvfs->z_utf8 && u8_validate(dirname, 1806 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 1807 ZFS_EXIT(zfsvfs); 1808 return (EILSEQ); 1809 } 1810 if (flags & FIGNORECASE) 1811 zf |= ZCILOOK; 1812 1813 if (vap->va_mask & AT_XVATTR) { 1814 if ((error = secpolicy_xvattr((xvattr_t *)vap, 1815 crgetuid(cr), cr, vap->va_type)) != 0) { 1816 ZFS_EXIT(zfsvfs); 1817 return (error); 1818 } 1819 } 1820 1821 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr, 1822 vsecp, &acl_ids)) != 0) { 1823 ZFS_EXIT(zfsvfs); 1824 return (error); 1825 } 1826 /* 1827 * First make sure the new directory doesn't exist. 1828 * 1829 * Existence is checked first to make sure we don't return 1830 * EACCES instead of EEXIST which can cause some applications 1831 * to fail. 1832 */ 1833 top: 1834 *vpp = NULL; 1835 1836 if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf, 1837 NULL, NULL)) { 1838 zfs_acl_ids_free(&acl_ids); 1839 ZFS_EXIT(zfsvfs); 1840 return (error); 1841 } 1842 1843 if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) { 1844 zfs_acl_ids_free(&acl_ids); 1845 zfs_dirent_unlock(dl); 1846 ZFS_EXIT(zfsvfs); 1847 return (error); 1848 } 1849 1850 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 1851 zfs_acl_ids_free(&acl_ids); 1852 zfs_dirent_unlock(dl); 1853 ZFS_EXIT(zfsvfs); 1854 return (EDQUOT); 1855 } 1856 1857 /* 1858 * Add a new entry to the directory. 1859 */ 1860 tx = dmu_tx_create(zfsvfs->z_os); 1861 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname); 1862 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 1863 fuid_dirtied = zfsvfs->z_fuid_dirty; 1864 if (fuid_dirtied) 1865 zfs_fuid_txhold(zfsvfs, tx); 1866 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 1867 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 1868 acl_ids.z_aclp->z_acl_bytes); 1869 } 1870 1871 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 1872 ZFS_SA_BASE_ATTR_SIZE); 1873 1874 error = dmu_tx_assign(tx, TXG_NOWAIT); 1875 if (error) { 1876 zfs_dirent_unlock(dl); 1877 if (error == ERESTART) { 1878 dmu_tx_wait(tx); 1879 dmu_tx_abort(tx); 1880 goto top; 1881 } 1882 zfs_acl_ids_free(&acl_ids); 1883 dmu_tx_abort(tx); 1884 ZFS_EXIT(zfsvfs); 1885 return (error); 1886 } 1887 1888 /* 1889 * Create new node. 1890 */ 1891 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 1892 1893 if (fuid_dirtied) 1894 zfs_fuid_sync(zfsvfs, tx); 1895 1896 /* 1897 * Now put new name in parent dir. 1898 */ 1899 (void) zfs_link_create(dl, zp, tx, ZNEW); 1900 1901 *vpp = ZTOV(zp); 1902 1903 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap); 1904 if (flags & FIGNORECASE) 1905 txtype |= TX_CI; 1906 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp, 1907 acl_ids.z_fuidp, vap); 1908 1909 zfs_acl_ids_free(&acl_ids); 1910 1911 dmu_tx_commit(tx); 1912 1913 zfs_dirent_unlock(dl); 1914 1915 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 1916 zil_commit(zilog, 0); 1917 1918 ZFS_EXIT(zfsvfs); 1919 return (0); 1920 } 1921 1922 /* 1923 * Remove a directory subdir entry. If the current working 1924 * directory is the same as the subdir to be removed, the 1925 * remove will fail. 1926 * 1927 * IN: dvp - vnode of directory to remove from. 1928 * name - name of directory to be removed. 1929 * cwd - vnode of current working directory. 1930 * cr - credentials of caller. 1931 * ct - caller context 1932 * flags - case flags 1933 * 1934 * RETURN: 0 if success 1935 * error code if failure 1936 * 1937 * Timestamps: 1938 * dvp - ctime|mtime updated 1939 */ 1940 /*ARGSUSED*/ 1941 static int 1942 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr, 1943 caller_context_t *ct, int flags) 1944 { 1945 znode_t *dzp = VTOZ(dvp); 1946 znode_t *zp; 1947 vnode_t *vp; 1948 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 1949 zilog_t *zilog; 1950 zfs_dirlock_t *dl; 1951 dmu_tx_t *tx; 1952 int error; 1953 int zflg = ZEXISTS; 1954 1955 ZFS_ENTER(zfsvfs); 1956 ZFS_VERIFY_ZP(dzp); 1957 zilog = zfsvfs->z_log; 1958 1959 if (flags & FIGNORECASE) 1960 zflg |= ZCILOOK; 1961 top: 1962 zp = NULL; 1963 1964 /* 1965 * Attempt to lock directory; fail if entry doesn't exist. 1966 */ 1967 if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, 1968 NULL, NULL)) { 1969 ZFS_EXIT(zfsvfs); 1970 return (error); 1971 } 1972 1973 vp = ZTOV(zp); 1974 1975 if (error = zfs_zaccess_delete(dzp, zp, cr)) { 1976 goto out; 1977 } 1978 1979 if (vp->v_type != VDIR) { 1980 error = ENOTDIR; 1981 goto out; 1982 } 1983 1984 if (vp == cwd) { 1985 error = EINVAL; 1986 goto out; 1987 } 1988 1989 vnevent_rmdir(vp, dvp, name, ct); 1990 1991 /* 1992 * Grab a lock on the directory to make sure that noone is 1993 * trying to add (or lookup) entries while we are removing it. 1994 */ 1995 rw_enter(&zp->z_name_lock, RW_WRITER); 1996 1997 /* 1998 * Grab a lock on the parent pointer to make sure we play well 1999 * with the treewalk and directory rename code. 2000 */ 2001 rw_enter(&zp->z_parent_lock, RW_WRITER); 2002 2003 tx = dmu_tx_create(zfsvfs->z_os); 2004 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name); 2005 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2006 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 2007 zfs_sa_upgrade_txholds(tx, zp); 2008 zfs_sa_upgrade_txholds(tx, dzp); 2009 error = dmu_tx_assign(tx, TXG_NOWAIT); 2010 if (error) { 2011 rw_exit(&zp->z_parent_lock); 2012 rw_exit(&zp->z_name_lock); 2013 zfs_dirent_unlock(dl); 2014 VN_RELE(vp); 2015 if (error == ERESTART) { 2016 dmu_tx_wait(tx); 2017 dmu_tx_abort(tx); 2018 goto top; 2019 } 2020 dmu_tx_abort(tx); 2021 ZFS_EXIT(zfsvfs); 2022 return (error); 2023 } 2024 2025 error = zfs_link_destroy(dl, zp, tx, zflg, NULL); 2026 2027 if (error == 0) { 2028 uint64_t txtype = TX_RMDIR; 2029 if (flags & FIGNORECASE) 2030 txtype |= TX_CI; 2031 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT); 2032 } 2033 2034 dmu_tx_commit(tx); 2035 2036 rw_exit(&zp->z_parent_lock); 2037 rw_exit(&zp->z_name_lock); 2038 out: 2039 zfs_dirent_unlock(dl); 2040 2041 VN_RELE(vp); 2042 2043 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 2044 zil_commit(zilog, 0); 2045 2046 ZFS_EXIT(zfsvfs); 2047 return (error); 2048 } 2049 2050 /* 2051 * Read as many directory entries as will fit into the provided 2052 * buffer from the given directory cursor position (specified in 2053 * the uio structure. 2054 * 2055 * IN: vp - vnode of directory to read. 2056 * uio - structure supplying read location, range info, 2057 * and return buffer. 2058 * cr - credentials of caller. 2059 * ct - caller context 2060 * flags - case flags 2061 * 2062 * OUT: uio - updated offset and range, buffer filled. 2063 * eofp - set to true if end-of-file detected. 2064 * 2065 * RETURN: 0 if success 2066 * error code if failure 2067 * 2068 * Timestamps: 2069 * vp - atime updated 2070 * 2071 * Note that the low 4 bits of the cookie returned by zap is always zero. 2072 * This allows us to use the low range for "special" directory entries: 2073 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem, 2074 * we use the offset 2 for the '.zfs' directory. 2075 */ 2076 /* ARGSUSED */ 2077 static int 2078 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp, 2079 caller_context_t *ct, int flags) 2080 { 2081 znode_t *zp = VTOZ(vp); 2082 iovec_t *iovp; 2083 edirent_t *eodp; 2084 dirent64_t *odp; 2085 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2086 objset_t *os; 2087 caddr_t outbuf; 2088 size_t bufsize; 2089 zap_cursor_t zc; 2090 zap_attribute_t zap; 2091 uint_t bytes_wanted; 2092 uint64_t offset; /* must be unsigned; checks for < 1 */ 2093 uint64_t parent; 2094 int local_eof; 2095 int outcount; 2096 int error; 2097 uint8_t prefetch; 2098 boolean_t check_sysattrs; 2099 2100 ZFS_ENTER(zfsvfs); 2101 ZFS_VERIFY_ZP(zp); 2102 2103 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 2104 &parent, sizeof (parent))) != 0) { 2105 ZFS_EXIT(zfsvfs); 2106 return (error); 2107 } 2108 2109 /* 2110 * If we are not given an eof variable, 2111 * use a local one. 2112 */ 2113 if (eofp == NULL) 2114 eofp = &local_eof; 2115 2116 /* 2117 * Check for valid iov_len. 2118 */ 2119 if (uio->uio_iov->iov_len <= 0) { 2120 ZFS_EXIT(zfsvfs); 2121 return (EINVAL); 2122 } 2123 2124 /* 2125 * Quit if directory has been removed (posix) 2126 */ 2127 if ((*eofp = zp->z_unlinked) != 0) { 2128 ZFS_EXIT(zfsvfs); 2129 return (0); 2130 } 2131 2132 error = 0; 2133 os = zfsvfs->z_os; 2134 offset = uio->uio_loffset; 2135 prefetch = zp->z_zn_prefetch; 2136 2137 /* 2138 * Initialize the iterator cursor. 2139 */ 2140 if (offset <= 3) { 2141 /* 2142 * Start iteration from the beginning of the directory. 2143 */ 2144 zap_cursor_init(&zc, os, zp->z_id); 2145 } else { 2146 /* 2147 * The offset is a serialized cursor. 2148 */ 2149 zap_cursor_init_serialized(&zc, os, zp->z_id, offset); 2150 } 2151 2152 /* 2153 * Get space to change directory entries into fs independent format. 2154 */ 2155 iovp = uio->uio_iov; 2156 bytes_wanted = iovp->iov_len; 2157 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) { 2158 bufsize = bytes_wanted; 2159 outbuf = kmem_alloc(bufsize, KM_SLEEP); 2160 odp = (struct dirent64 *)outbuf; 2161 } else { 2162 bufsize = bytes_wanted; 2163 odp = (struct dirent64 *)iovp->iov_base; 2164 } 2165 eodp = (struct edirent *)odp; 2166 2167 /* 2168 * If this VFS supports the system attribute view interface; and 2169 * we're looking at an extended attribute directory; and we care 2170 * about normalization conflicts on this vfs; then we must check 2171 * for normalization conflicts with the sysattr name space. 2172 */ 2173 check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 2174 (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm && 2175 (flags & V_RDDIR_ENTFLAGS); 2176 2177 /* 2178 * Transform to file-system independent format 2179 */ 2180 outcount = 0; 2181 while (outcount < bytes_wanted) { 2182 ino64_t objnum; 2183 ushort_t reclen; 2184 off64_t *next = NULL; 2185 2186 /* 2187 * Special case `.', `..', and `.zfs'. 2188 */ 2189 if (offset == 0) { 2190 (void) strcpy(zap.za_name, "."); 2191 zap.za_normalization_conflict = 0; 2192 objnum = zp->z_id; 2193 } else if (offset == 1) { 2194 (void) strcpy(zap.za_name, ".."); 2195 zap.za_normalization_conflict = 0; 2196 objnum = parent; 2197 } else if (offset == 2 && zfs_show_ctldir(zp)) { 2198 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME); 2199 zap.za_normalization_conflict = 0; 2200 objnum = ZFSCTL_INO_ROOT; 2201 } else { 2202 /* 2203 * Grab next entry. 2204 */ 2205 if (error = zap_cursor_retrieve(&zc, &zap)) { 2206 if ((*eofp = (error == ENOENT)) != 0) 2207 break; 2208 else 2209 goto update; 2210 } 2211 2212 if (zap.za_integer_length != 8 || 2213 zap.za_num_integers != 1) { 2214 cmn_err(CE_WARN, "zap_readdir: bad directory " 2215 "entry, obj = %lld, offset = %lld\n", 2216 (u_longlong_t)zp->z_id, 2217 (u_longlong_t)offset); 2218 error = ENXIO; 2219 goto update; 2220 } 2221 2222 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer); 2223 /* 2224 * MacOS X can extract the object type here such as: 2225 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer); 2226 */ 2227 2228 if (check_sysattrs && !zap.za_normalization_conflict) { 2229 zap.za_normalization_conflict = 2230 xattr_sysattr_casechk(zap.za_name); 2231 } 2232 } 2233 2234 if (flags & V_RDDIR_ACCFILTER) { 2235 /* 2236 * If we have no access at all, don't include 2237 * this entry in the returned information 2238 */ 2239 znode_t *ezp; 2240 if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0) 2241 goto skip_entry; 2242 if (!zfs_has_access(ezp, cr)) { 2243 VN_RELE(ZTOV(ezp)); 2244 goto skip_entry; 2245 } 2246 VN_RELE(ZTOV(ezp)); 2247 } 2248 2249 if (flags & V_RDDIR_ENTFLAGS) 2250 reclen = EDIRENT_RECLEN(strlen(zap.za_name)); 2251 else 2252 reclen = DIRENT64_RECLEN(strlen(zap.za_name)); 2253 2254 /* 2255 * Will this entry fit in the buffer? 2256 */ 2257 if (outcount + reclen > bufsize) { 2258 /* 2259 * Did we manage to fit anything in the buffer? 2260 */ 2261 if (!outcount) { 2262 error = EINVAL; 2263 goto update; 2264 } 2265 break; 2266 } 2267 if (flags & V_RDDIR_ENTFLAGS) { 2268 /* 2269 * Add extended flag entry: 2270 */ 2271 eodp->ed_ino = objnum; 2272 eodp->ed_reclen = reclen; 2273 /* NOTE: ed_off is the offset for the *next* entry */ 2274 next = &(eodp->ed_off); 2275 eodp->ed_eflags = zap.za_normalization_conflict ? 2276 ED_CASE_CONFLICT : 0; 2277 (void) strncpy(eodp->ed_name, zap.za_name, 2278 EDIRENT_NAMELEN(reclen)); 2279 eodp = (edirent_t *)((intptr_t)eodp + reclen); 2280 } else { 2281 /* 2282 * Add normal entry: 2283 */ 2284 odp->d_ino = objnum; 2285 odp->d_reclen = reclen; 2286 /* NOTE: d_off is the offset for the *next* entry */ 2287 next = &(odp->d_off); 2288 (void) strncpy(odp->d_name, zap.za_name, 2289 DIRENT64_NAMELEN(reclen)); 2290 odp = (dirent64_t *)((intptr_t)odp + reclen); 2291 } 2292 outcount += reclen; 2293 2294 ASSERT(outcount <= bufsize); 2295 2296 /* Prefetch znode */ 2297 if (prefetch) 2298 dmu_prefetch(os, objnum, 0, 0); 2299 2300 skip_entry: 2301 /* 2302 * Move to the next entry, fill in the previous offset. 2303 */ 2304 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) { 2305 zap_cursor_advance(&zc); 2306 offset = zap_cursor_serialize(&zc); 2307 } else { 2308 offset += 1; 2309 } 2310 if (next) 2311 *next = offset; 2312 } 2313 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */ 2314 2315 if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) { 2316 iovp->iov_base += outcount; 2317 iovp->iov_len -= outcount; 2318 uio->uio_resid -= outcount; 2319 } else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) { 2320 /* 2321 * Reset the pointer. 2322 */ 2323 offset = uio->uio_loffset; 2324 } 2325 2326 update: 2327 zap_cursor_fini(&zc); 2328 if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) 2329 kmem_free(outbuf, bufsize); 2330 2331 if (error == ENOENT) 2332 error = 0; 2333 2334 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 2335 2336 uio->uio_loffset = offset; 2337 ZFS_EXIT(zfsvfs); 2338 return (error); 2339 } 2340 2341 ulong_t zfs_fsync_sync_cnt = 4; 2342 2343 static int 2344 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct) 2345 { 2346 znode_t *zp = VTOZ(vp); 2347 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2348 2349 /* 2350 * Regardless of whether this is required for standards conformance, 2351 * this is the logical behavior when fsync() is called on a file with 2352 * dirty pages. We use B_ASYNC since the ZIL transactions are already 2353 * going to be pushed out as part of the zil_commit(). 2354 */ 2355 if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) && 2356 (vp->v_type == VREG) && !(IS_SWAPVP(vp))) 2357 (void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct); 2358 2359 (void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt); 2360 2361 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) { 2362 ZFS_ENTER(zfsvfs); 2363 ZFS_VERIFY_ZP(zp); 2364 zil_commit(zfsvfs->z_log, zp->z_id); 2365 ZFS_EXIT(zfsvfs); 2366 } 2367 return (0); 2368 } 2369 2370 2371 /* 2372 * Get the requested file attributes and place them in the provided 2373 * vattr structure. 2374 * 2375 * IN: vp - vnode of file. 2376 * vap - va_mask identifies requested attributes. 2377 * If AT_XVATTR set, then optional attrs are requested 2378 * flags - ATTR_NOACLCHECK (CIFS server context) 2379 * cr - credentials of caller. 2380 * ct - caller context 2381 * 2382 * OUT: vap - attribute values. 2383 * 2384 * RETURN: 0 (always succeeds) 2385 */ 2386 /* ARGSUSED */ 2387 static int 2388 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2389 caller_context_t *ct) 2390 { 2391 znode_t *zp = VTOZ(vp); 2392 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2393 int error = 0; 2394 uint64_t links; 2395 uint64_t mtime[2], ctime[2]; 2396 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2397 xoptattr_t *xoap = NULL; 2398 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2399 sa_bulk_attr_t bulk[2]; 2400 int count = 0; 2401 2402 ZFS_ENTER(zfsvfs); 2403 ZFS_VERIFY_ZP(zp); 2404 2405 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16); 2406 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16); 2407 2408 if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) { 2409 ZFS_EXIT(zfsvfs); 2410 return (error); 2411 } 2412 2413 /* 2414 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES. 2415 * Also, if we are the owner don't bother, since owner should 2416 * always be allowed to read basic attributes of file. 2417 */ 2418 if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) { 2419 if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0, 2420 skipaclchk, cr)) { 2421 ZFS_EXIT(zfsvfs); 2422 return (error); 2423 } 2424 } 2425 2426 /* 2427 * Return all attributes. It's cheaper to provide the answer 2428 * than to determine whether we were asked the question. 2429 */ 2430 2431 mutex_enter(&zp->z_lock); 2432 vap->va_type = vp->v_type; 2433 vap->va_mode = zp->z_mode & MODEMASK; 2434 vap->va_uid = zp->z_uid; 2435 vap->va_gid = zp->z_gid; 2436 vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev; 2437 vap->va_nodeid = zp->z_id; 2438 if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp)) 2439 links = zp->z_links + 1; 2440 else 2441 links = zp->z_links; 2442 vap->va_nlink = MIN(links, UINT32_MAX); /* nlink_t limit! */ 2443 vap->va_size = zp->z_size; 2444 vap->va_rdev = vp->v_rdev; 2445 vap->va_seq = zp->z_seq; 2446 2447 /* 2448 * Add in any requested optional attributes and the create time. 2449 * Also set the corresponding bits in the returned attribute bitmap. 2450 */ 2451 if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) { 2452 if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) { 2453 xoap->xoa_archive = 2454 ((zp->z_pflags & ZFS_ARCHIVE) != 0); 2455 XVA_SET_RTN(xvap, XAT_ARCHIVE); 2456 } 2457 2458 if (XVA_ISSET_REQ(xvap, XAT_READONLY)) { 2459 xoap->xoa_readonly = 2460 ((zp->z_pflags & ZFS_READONLY) != 0); 2461 XVA_SET_RTN(xvap, XAT_READONLY); 2462 } 2463 2464 if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) { 2465 xoap->xoa_system = 2466 ((zp->z_pflags & ZFS_SYSTEM) != 0); 2467 XVA_SET_RTN(xvap, XAT_SYSTEM); 2468 } 2469 2470 if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) { 2471 xoap->xoa_hidden = 2472 ((zp->z_pflags & ZFS_HIDDEN) != 0); 2473 XVA_SET_RTN(xvap, XAT_HIDDEN); 2474 } 2475 2476 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2477 xoap->xoa_nounlink = 2478 ((zp->z_pflags & ZFS_NOUNLINK) != 0); 2479 XVA_SET_RTN(xvap, XAT_NOUNLINK); 2480 } 2481 2482 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2483 xoap->xoa_immutable = 2484 ((zp->z_pflags & ZFS_IMMUTABLE) != 0); 2485 XVA_SET_RTN(xvap, XAT_IMMUTABLE); 2486 } 2487 2488 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2489 xoap->xoa_appendonly = 2490 ((zp->z_pflags & ZFS_APPENDONLY) != 0); 2491 XVA_SET_RTN(xvap, XAT_APPENDONLY); 2492 } 2493 2494 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2495 xoap->xoa_nodump = 2496 ((zp->z_pflags & ZFS_NODUMP) != 0); 2497 XVA_SET_RTN(xvap, XAT_NODUMP); 2498 } 2499 2500 if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) { 2501 xoap->xoa_opaque = 2502 ((zp->z_pflags & ZFS_OPAQUE) != 0); 2503 XVA_SET_RTN(xvap, XAT_OPAQUE); 2504 } 2505 2506 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2507 xoap->xoa_av_quarantined = 2508 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0); 2509 XVA_SET_RTN(xvap, XAT_AV_QUARANTINED); 2510 } 2511 2512 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2513 xoap->xoa_av_modified = 2514 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0); 2515 XVA_SET_RTN(xvap, XAT_AV_MODIFIED); 2516 } 2517 2518 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) && 2519 vp->v_type == VREG) { 2520 zfs_sa_get_scanstamp(zp, xvap); 2521 } 2522 2523 if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) { 2524 uint64_t times[2]; 2525 2526 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs), 2527 times, sizeof (times)); 2528 ZFS_TIME_DECODE(&xoap->xoa_createtime, times); 2529 XVA_SET_RTN(xvap, XAT_CREATETIME); 2530 } 2531 2532 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2533 xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0); 2534 XVA_SET_RTN(xvap, XAT_REPARSE); 2535 } 2536 } 2537 2538 ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime); 2539 ZFS_TIME_DECODE(&vap->va_mtime, mtime); 2540 ZFS_TIME_DECODE(&vap->va_ctime, ctime); 2541 2542 mutex_exit(&zp->z_lock); 2543 2544 sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks); 2545 2546 if (zp->z_blksz == 0) { 2547 /* 2548 * Block size hasn't been set; suggest maximal I/O transfers. 2549 */ 2550 vap->va_blksize = zfsvfs->z_max_blksz; 2551 } 2552 2553 ZFS_EXIT(zfsvfs); 2554 return (0); 2555 } 2556 2557 /* 2558 * Set the file attributes to the values contained in the 2559 * vattr structure. 2560 * 2561 * IN: vp - vnode of file to be modified. 2562 * vap - new attribute values. 2563 * If AT_XVATTR set, then optional attrs are being set 2564 * flags - ATTR_UTIME set if non-default time values provided. 2565 * - ATTR_NOACLCHECK (CIFS context only). 2566 * cr - credentials of caller. 2567 * ct - caller context 2568 * 2569 * RETURN: 0 if success 2570 * error code if failure 2571 * 2572 * Timestamps: 2573 * vp - ctime updated, mtime updated if size changed. 2574 */ 2575 /* ARGSUSED */ 2576 static int 2577 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr, 2578 caller_context_t *ct) 2579 { 2580 znode_t *zp = VTOZ(vp); 2581 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 2582 zilog_t *zilog; 2583 dmu_tx_t *tx; 2584 vattr_t oldva; 2585 xvattr_t tmpxvattr; 2586 uint_t mask = vap->va_mask; 2587 uint_t saved_mask; 2588 int trim_mask = 0; 2589 uint64_t new_mode; 2590 uint64_t new_uid, new_gid; 2591 uint64_t xattr_obj = 0; 2592 uint64_t mtime[2], ctime[2]; 2593 znode_t *attrzp; 2594 int need_policy = FALSE; 2595 int err, err2; 2596 zfs_fuid_info_t *fuidp = NULL; 2597 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */ 2598 xoptattr_t *xoap; 2599 zfs_acl_t *aclp = NULL; 2600 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 2601 boolean_t fuid_dirtied = B_FALSE; 2602 sa_bulk_attr_t bulk[7], xattr_bulk[7]; 2603 int count = 0, xattr_count = 0; 2604 2605 if (mask == 0) 2606 return (0); 2607 2608 if (mask & AT_NOSET) 2609 return (EINVAL); 2610 2611 ZFS_ENTER(zfsvfs); 2612 ZFS_VERIFY_ZP(zp); 2613 2614 zilog = zfsvfs->z_log; 2615 2616 /* 2617 * Make sure that if we have ephemeral uid/gid or xvattr specified 2618 * that file system is at proper version level 2619 */ 2620 2621 if (zfsvfs->z_use_fuids == B_FALSE && 2622 (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) || 2623 ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) || 2624 (mask & AT_XVATTR))) { 2625 ZFS_EXIT(zfsvfs); 2626 return (EINVAL); 2627 } 2628 2629 if (mask & AT_SIZE && vp->v_type == VDIR) { 2630 ZFS_EXIT(zfsvfs); 2631 return (EISDIR); 2632 } 2633 2634 if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) { 2635 ZFS_EXIT(zfsvfs); 2636 return (EINVAL); 2637 } 2638 2639 /* 2640 * If this is an xvattr_t, then get a pointer to the structure of 2641 * optional attributes. If this is NULL, then we have a vattr_t. 2642 */ 2643 xoap = xva_getxoptattr(xvap); 2644 2645 xva_init(&tmpxvattr); 2646 2647 /* 2648 * Immutable files can only alter immutable bit and atime 2649 */ 2650 if ((zp->z_pflags & ZFS_IMMUTABLE) && 2651 ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) || 2652 ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) { 2653 ZFS_EXIT(zfsvfs); 2654 return (EPERM); 2655 } 2656 2657 if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) { 2658 ZFS_EXIT(zfsvfs); 2659 return (EPERM); 2660 } 2661 2662 /* 2663 * Verify timestamps doesn't overflow 32 bits. 2664 * ZFS can handle large timestamps, but 32bit syscalls can't 2665 * handle times greater than 2039. This check should be removed 2666 * once large timestamps are fully supported. 2667 */ 2668 if (mask & (AT_ATIME | AT_MTIME)) { 2669 if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) || 2670 ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) { 2671 ZFS_EXIT(zfsvfs); 2672 return (EOVERFLOW); 2673 } 2674 } 2675 2676 top: 2677 attrzp = NULL; 2678 2679 /* Can this be moved to before the top label? */ 2680 if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) { 2681 ZFS_EXIT(zfsvfs); 2682 return (EROFS); 2683 } 2684 2685 /* 2686 * First validate permissions 2687 */ 2688 2689 if (mask & AT_SIZE) { 2690 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr); 2691 if (err) { 2692 ZFS_EXIT(zfsvfs); 2693 return (err); 2694 } 2695 /* 2696 * XXX - Note, we are not providing any open 2697 * mode flags here (like FNDELAY), so we may 2698 * block if there are locks present... this 2699 * should be addressed in openat(). 2700 */ 2701 /* XXX - would it be OK to generate a log record here? */ 2702 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE); 2703 if (err) { 2704 ZFS_EXIT(zfsvfs); 2705 return (err); 2706 } 2707 } 2708 2709 if (mask & (AT_ATIME|AT_MTIME) || 2710 ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) || 2711 XVA_ISSET_REQ(xvap, XAT_READONLY) || 2712 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) || 2713 XVA_ISSET_REQ(xvap, XAT_CREATETIME) || 2714 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) { 2715 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0, 2716 skipaclchk, cr); 2717 } 2718 2719 if (mask & (AT_UID|AT_GID)) { 2720 int idmask = (mask & (AT_UID|AT_GID)); 2721 int take_owner; 2722 int take_group; 2723 2724 /* 2725 * NOTE: even if a new mode is being set, 2726 * we may clear S_ISUID/S_ISGID bits. 2727 */ 2728 2729 if (!(mask & AT_MODE)) 2730 vap->va_mode = zp->z_mode; 2731 2732 /* 2733 * Take ownership or chgrp to group we are a member of 2734 */ 2735 2736 take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr)); 2737 take_group = (mask & AT_GID) && 2738 zfs_groupmember(zfsvfs, vap->va_gid, cr); 2739 2740 /* 2741 * If both AT_UID and AT_GID are set then take_owner and 2742 * take_group must both be set in order to allow taking 2743 * ownership. 2744 * 2745 * Otherwise, send the check through secpolicy_vnode_setattr() 2746 * 2747 */ 2748 2749 if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) || 2750 ((idmask == AT_UID) && take_owner) || 2751 ((idmask == AT_GID) && take_group)) { 2752 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0, 2753 skipaclchk, cr) == 0) { 2754 /* 2755 * Remove setuid/setgid for non-privileged users 2756 */ 2757 secpolicy_setid_clear(vap, cr); 2758 trim_mask = (mask & (AT_UID|AT_GID)); 2759 } else { 2760 need_policy = TRUE; 2761 } 2762 } else { 2763 need_policy = TRUE; 2764 } 2765 } 2766 2767 mutex_enter(&zp->z_lock); 2768 oldva.va_mode = zp->z_mode; 2769 oldva.va_uid = zp->z_uid; 2770 oldva.va_gid = zp->z_gid; 2771 if (mask & AT_XVATTR) { 2772 /* 2773 * Update xvattr mask to include only those attributes 2774 * that are actually changing. 2775 * 2776 * the bits will be restored prior to actually setting 2777 * the attributes so the caller thinks they were set. 2778 */ 2779 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) { 2780 if (xoap->xoa_appendonly != 2781 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) { 2782 need_policy = TRUE; 2783 } else { 2784 XVA_CLR_REQ(xvap, XAT_APPENDONLY); 2785 XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY); 2786 } 2787 } 2788 2789 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) { 2790 if (xoap->xoa_nounlink != 2791 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) { 2792 need_policy = TRUE; 2793 } else { 2794 XVA_CLR_REQ(xvap, XAT_NOUNLINK); 2795 XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK); 2796 } 2797 } 2798 2799 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) { 2800 if (xoap->xoa_immutable != 2801 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) { 2802 need_policy = TRUE; 2803 } else { 2804 XVA_CLR_REQ(xvap, XAT_IMMUTABLE); 2805 XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE); 2806 } 2807 } 2808 2809 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) { 2810 if (xoap->xoa_nodump != 2811 ((zp->z_pflags & ZFS_NODUMP) != 0)) { 2812 need_policy = TRUE; 2813 } else { 2814 XVA_CLR_REQ(xvap, XAT_NODUMP); 2815 XVA_SET_REQ(&tmpxvattr, XAT_NODUMP); 2816 } 2817 } 2818 2819 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) { 2820 if (xoap->xoa_av_modified != 2821 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) { 2822 need_policy = TRUE; 2823 } else { 2824 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED); 2825 XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED); 2826 } 2827 } 2828 2829 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) { 2830 if ((vp->v_type != VREG && 2831 xoap->xoa_av_quarantined) || 2832 xoap->xoa_av_quarantined != 2833 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) { 2834 need_policy = TRUE; 2835 } else { 2836 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED); 2837 XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED); 2838 } 2839 } 2840 2841 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) { 2842 mutex_exit(&zp->z_lock); 2843 ZFS_EXIT(zfsvfs); 2844 return (EPERM); 2845 } 2846 2847 if (need_policy == FALSE && 2848 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) || 2849 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) { 2850 need_policy = TRUE; 2851 } 2852 } 2853 2854 mutex_exit(&zp->z_lock); 2855 2856 if (mask & AT_MODE) { 2857 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) { 2858 err = secpolicy_setid_setsticky_clear(vp, vap, 2859 &oldva, cr); 2860 if (err) { 2861 ZFS_EXIT(zfsvfs); 2862 return (err); 2863 } 2864 trim_mask |= AT_MODE; 2865 } else { 2866 need_policy = TRUE; 2867 } 2868 } 2869 2870 if (need_policy) { 2871 /* 2872 * If trim_mask is set then take ownership 2873 * has been granted or write_acl is present and user 2874 * has the ability to modify mode. In that case remove 2875 * UID|GID and or MODE from mask so that 2876 * secpolicy_vnode_setattr() doesn't revoke it. 2877 */ 2878 2879 if (trim_mask) { 2880 saved_mask = vap->va_mask; 2881 vap->va_mask &= ~trim_mask; 2882 } 2883 err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags, 2884 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp); 2885 if (err) { 2886 ZFS_EXIT(zfsvfs); 2887 return (err); 2888 } 2889 2890 if (trim_mask) 2891 vap->va_mask |= saved_mask; 2892 } 2893 2894 /* 2895 * secpolicy_vnode_setattr, or take ownership may have 2896 * changed va_mask 2897 */ 2898 mask = vap->va_mask; 2899 2900 if ((mask & (AT_UID | AT_GID))) { 2901 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj, 2902 sizeof (xattr_obj)); 2903 2904 if (xattr_obj) { 2905 err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp); 2906 if (err) 2907 goto out2; 2908 } 2909 if (mask & AT_UID) { 2910 new_uid = zfs_fuid_create(zfsvfs, 2911 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp); 2912 if (vap->va_uid != zp->z_uid && 2913 zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) { 2914 err = EDQUOT; 2915 goto out2; 2916 } 2917 } 2918 2919 if (mask & AT_GID) { 2920 new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid, 2921 cr, ZFS_GROUP, &fuidp); 2922 if (new_gid != zp->z_gid && 2923 zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) { 2924 err = EDQUOT; 2925 goto out2; 2926 } 2927 } 2928 } 2929 tx = dmu_tx_create(zfsvfs->z_os); 2930 2931 if (mask & AT_MODE) { 2932 uint64_t pmode = zp->z_mode; 2933 uint64_t acl_obj; 2934 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT); 2935 2936 if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)) 2937 goto out; 2938 2939 mutex_enter(&zp->z_lock); 2940 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) { 2941 /* 2942 * Are we upgrading ACL from old V0 format 2943 * to V1 format? 2944 */ 2945 if (zfsvfs->z_version <= ZPL_VERSION_FUID && 2946 zfs_znode_acl_version(zp) == 2947 ZFS_ACL_VERSION_INITIAL) { 2948 dmu_tx_hold_free(tx, acl_obj, 0, 2949 DMU_OBJECT_END); 2950 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2951 0, aclp->z_acl_bytes); 2952 } else { 2953 dmu_tx_hold_write(tx, acl_obj, 0, 2954 aclp->z_acl_bytes); 2955 } 2956 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) { 2957 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 2958 0, aclp->z_acl_bytes); 2959 } 2960 mutex_exit(&zp->z_lock); 2961 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2962 } else { 2963 if ((mask & AT_XVATTR) && 2964 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 2965 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE); 2966 else 2967 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 2968 } 2969 2970 if (attrzp) { 2971 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE); 2972 } 2973 2974 fuid_dirtied = zfsvfs->z_fuid_dirty; 2975 if (fuid_dirtied) 2976 zfs_fuid_txhold(zfsvfs, tx); 2977 2978 zfs_sa_upgrade_txholds(tx, zp); 2979 2980 err = dmu_tx_assign(tx, TXG_NOWAIT); 2981 if (err) { 2982 if (err == ERESTART) 2983 dmu_tx_wait(tx); 2984 goto out; 2985 } 2986 2987 count = 0; 2988 /* 2989 * Set each attribute requested. 2990 * We group settings according to the locks they need to acquire. 2991 * 2992 * Note: you cannot set ctime directly, although it will be 2993 * updated as a side-effect of calling this function. 2994 */ 2995 2996 2997 if (mask & (AT_UID|AT_GID|AT_MODE)) 2998 mutex_enter(&zp->z_acl_lock); 2999 mutex_enter(&zp->z_lock); 3000 3001 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 3002 &zp->z_pflags, sizeof (zp->z_pflags)); 3003 3004 if (attrzp) { 3005 if (mask & (AT_UID|AT_GID|AT_MODE)) 3006 mutex_enter(&attrzp->z_acl_lock); 3007 mutex_enter(&attrzp->z_lock); 3008 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3009 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags, 3010 sizeof (attrzp->z_pflags)); 3011 } 3012 3013 if (mask & (AT_UID|AT_GID)) { 3014 3015 if (mask & AT_UID) { 3016 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL, 3017 &new_uid, sizeof (new_uid)); 3018 zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid, 3019 cr, ZFS_OWNER); 3020 if (attrzp) { 3021 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3022 SA_ZPL_UID(zfsvfs), NULL, &new_uid, 3023 sizeof (new_uid)); 3024 attrzp->z_uid = zp->z_uid; 3025 } 3026 } 3027 3028 if (mask & AT_GID) { 3029 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), 3030 NULL, &new_gid, sizeof (new_gid)); 3031 zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr, 3032 ZFS_GROUP); 3033 if (attrzp) { 3034 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3035 SA_ZPL_GID(zfsvfs), NULL, &new_gid, 3036 sizeof (new_gid)); 3037 attrzp->z_gid = zp->z_gid; 3038 } 3039 } 3040 if (!(mask & AT_MODE)) { 3041 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), 3042 NULL, &new_mode, sizeof (new_mode)); 3043 new_mode = zp->z_mode; 3044 } 3045 err = zfs_acl_chown_setattr(zp); 3046 ASSERT(err == 0); 3047 if (attrzp) { 3048 err = zfs_acl_chown_setattr(attrzp); 3049 ASSERT(err == 0); 3050 } 3051 } 3052 3053 if (mask & AT_MODE) { 3054 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL, 3055 &new_mode, sizeof (new_mode)); 3056 zp->z_mode = new_mode; 3057 ASSERT3U((uintptr_t)aclp, !=, NULL); 3058 err = zfs_aclset_common(zp, aclp, cr, tx); 3059 ASSERT3U(err, ==, 0); 3060 zp->z_acl_cached = aclp; 3061 aclp = NULL; 3062 } 3063 3064 3065 if (mask & AT_ATIME) { 3066 ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime); 3067 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL, 3068 &zp->z_atime, sizeof (zp->z_atime)); 3069 } 3070 3071 if (mask & AT_MTIME) { 3072 ZFS_TIME_ENCODE(&vap->va_mtime, mtime); 3073 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 3074 mtime, sizeof (mtime)); 3075 } 3076 3077 /* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */ 3078 if (mask & AT_SIZE && !(mask & AT_MTIME)) { 3079 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), 3080 NULL, mtime, sizeof (mtime)); 3081 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3082 &ctime, sizeof (ctime)); 3083 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 3084 B_TRUE); 3085 } else if (mask != 0) { 3086 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 3087 &ctime, sizeof (ctime)); 3088 zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime, 3089 B_TRUE); 3090 if (attrzp) { 3091 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count, 3092 SA_ZPL_CTIME(zfsvfs), NULL, 3093 &ctime, sizeof (ctime)); 3094 zfs_tstamp_update_setup(attrzp, STATE_CHANGED, 3095 mtime, ctime, B_TRUE); 3096 } 3097 } 3098 /* 3099 * Do this after setting timestamps to prevent timestamp 3100 * update from toggling bit 3101 */ 3102 3103 if (xoap && (mask & AT_XVATTR)) { 3104 3105 /* 3106 * restore trimmed off masks 3107 * so that return masks can be set for caller. 3108 */ 3109 3110 if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) { 3111 XVA_SET_REQ(xvap, XAT_APPENDONLY); 3112 } 3113 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) { 3114 XVA_SET_REQ(xvap, XAT_NOUNLINK); 3115 } 3116 if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) { 3117 XVA_SET_REQ(xvap, XAT_IMMUTABLE); 3118 } 3119 if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) { 3120 XVA_SET_REQ(xvap, XAT_NODUMP); 3121 } 3122 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) { 3123 XVA_SET_REQ(xvap, XAT_AV_MODIFIED); 3124 } 3125 if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) { 3126 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED); 3127 } 3128 3129 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) 3130 ASSERT(vp->v_type == VREG); 3131 3132 zfs_xvattr_set(zp, xvap, tx); 3133 } 3134 3135 if (fuid_dirtied) 3136 zfs_fuid_sync(zfsvfs, tx); 3137 3138 if (mask != 0) 3139 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp); 3140 3141 mutex_exit(&zp->z_lock); 3142 if (mask & (AT_UID|AT_GID|AT_MODE)) 3143 mutex_exit(&zp->z_acl_lock); 3144 3145 if (attrzp) { 3146 if (mask & (AT_UID|AT_GID|AT_MODE)) 3147 mutex_exit(&attrzp->z_acl_lock); 3148 mutex_exit(&attrzp->z_lock); 3149 } 3150 out: 3151 if (err == 0 && attrzp) { 3152 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk, 3153 xattr_count, tx); 3154 ASSERT(err2 == 0); 3155 } 3156 3157 if (attrzp) 3158 VN_RELE(ZTOV(attrzp)); 3159 if (aclp) 3160 zfs_acl_free(aclp); 3161 3162 if (fuidp) { 3163 zfs_fuid_info_free(fuidp); 3164 fuidp = NULL; 3165 } 3166 3167 if (err) { 3168 dmu_tx_abort(tx); 3169 if (err == ERESTART) 3170 goto top; 3171 } else { 3172 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx); 3173 dmu_tx_commit(tx); 3174 } 3175 3176 3177 out2: 3178 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3179 zil_commit(zilog, 0); 3180 3181 ZFS_EXIT(zfsvfs); 3182 return (err); 3183 } 3184 3185 typedef struct zfs_zlock { 3186 krwlock_t *zl_rwlock; /* lock we acquired */ 3187 znode_t *zl_znode; /* znode we held */ 3188 struct zfs_zlock *zl_next; /* next in list */ 3189 } zfs_zlock_t; 3190 3191 /* 3192 * Drop locks and release vnodes that were held by zfs_rename_lock(). 3193 */ 3194 static void 3195 zfs_rename_unlock(zfs_zlock_t **zlpp) 3196 { 3197 zfs_zlock_t *zl; 3198 3199 while ((zl = *zlpp) != NULL) { 3200 if (zl->zl_znode != NULL) 3201 VN_RELE(ZTOV(zl->zl_znode)); 3202 rw_exit(zl->zl_rwlock); 3203 *zlpp = zl->zl_next; 3204 kmem_free(zl, sizeof (*zl)); 3205 } 3206 } 3207 3208 /* 3209 * Search back through the directory tree, using the ".." entries. 3210 * Lock each directory in the chain to prevent concurrent renames. 3211 * Fail any attempt to move a directory into one of its own descendants. 3212 * XXX - z_parent_lock can overlap with map or grow locks 3213 */ 3214 static int 3215 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp) 3216 { 3217 zfs_zlock_t *zl; 3218 znode_t *zp = tdzp; 3219 uint64_t rootid = zp->z_zfsvfs->z_root; 3220 uint64_t oidp = zp->z_id; 3221 krwlock_t *rwlp = &szp->z_parent_lock; 3222 krw_t rw = RW_WRITER; 3223 3224 /* 3225 * First pass write-locks szp and compares to zp->z_id. 3226 * Later passes read-lock zp and compare to zp->z_parent. 3227 */ 3228 do { 3229 if (!rw_tryenter(rwlp, rw)) { 3230 /* 3231 * Another thread is renaming in this path. 3232 * Note that if we are a WRITER, we don't have any 3233 * parent_locks held yet. 3234 */ 3235 if (rw == RW_READER && zp->z_id > szp->z_id) { 3236 /* 3237 * Drop our locks and restart 3238 */ 3239 zfs_rename_unlock(&zl); 3240 *zlpp = NULL; 3241 zp = tdzp; 3242 oidp = zp->z_id; 3243 rwlp = &szp->z_parent_lock; 3244 rw = RW_WRITER; 3245 continue; 3246 } else { 3247 /* 3248 * Wait for other thread to drop its locks 3249 */ 3250 rw_enter(rwlp, rw); 3251 } 3252 } 3253 3254 zl = kmem_alloc(sizeof (*zl), KM_SLEEP); 3255 zl->zl_rwlock = rwlp; 3256 zl->zl_znode = NULL; 3257 zl->zl_next = *zlpp; 3258 *zlpp = zl; 3259 3260 if (oidp == szp->z_id) /* We're a descendant of szp */ 3261 return (EINVAL); 3262 3263 if (oidp == rootid) /* We've hit the top */ 3264 return (0); 3265 3266 if (rw == RW_READER) { /* i.e. not the first pass */ 3267 int error = zfs_zget(zp->z_zfsvfs, oidp, &zp); 3268 if (error) 3269 return (error); 3270 zl->zl_znode = zp; 3271 } 3272 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs), 3273 &oidp, sizeof (oidp)); 3274 rwlp = &zp->z_parent_lock; 3275 rw = RW_READER; 3276 3277 } while (zp->z_id != sdzp->z_id); 3278 3279 return (0); 3280 } 3281 3282 /* 3283 * Move an entry from the provided source directory to the target 3284 * directory. Change the entry name as indicated. 3285 * 3286 * IN: sdvp - Source directory containing the "old entry". 3287 * snm - Old entry name. 3288 * tdvp - Target directory to contain the "new entry". 3289 * tnm - New entry name. 3290 * cr - credentials of caller. 3291 * ct - caller context 3292 * flags - case flags 3293 * 3294 * RETURN: 0 if success 3295 * error code if failure 3296 * 3297 * Timestamps: 3298 * sdvp,tdvp - ctime|mtime updated 3299 */ 3300 /*ARGSUSED*/ 3301 static int 3302 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr, 3303 caller_context_t *ct, int flags) 3304 { 3305 znode_t *tdzp, *szp, *tzp; 3306 znode_t *sdzp = VTOZ(sdvp); 3307 zfsvfs_t *zfsvfs = sdzp->z_zfsvfs; 3308 zilog_t *zilog; 3309 vnode_t *realvp; 3310 zfs_dirlock_t *sdl, *tdl; 3311 dmu_tx_t *tx; 3312 zfs_zlock_t *zl; 3313 int cmp, serr, terr; 3314 int error = 0; 3315 int zflg = 0; 3316 3317 ZFS_ENTER(zfsvfs); 3318 ZFS_VERIFY_ZP(sdzp); 3319 zilog = zfsvfs->z_log; 3320 3321 /* 3322 * Make sure we have the real vp for the target directory. 3323 */ 3324 if (VOP_REALVP(tdvp, &realvp, ct) == 0) 3325 tdvp = realvp; 3326 3327 if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) { 3328 ZFS_EXIT(zfsvfs); 3329 return (EXDEV); 3330 } 3331 3332 tdzp = VTOZ(tdvp); 3333 ZFS_VERIFY_ZP(tdzp); 3334 if (zfsvfs->z_utf8 && u8_validate(tnm, 3335 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3336 ZFS_EXIT(zfsvfs); 3337 return (EILSEQ); 3338 } 3339 3340 if (flags & FIGNORECASE) 3341 zflg |= ZCILOOK; 3342 3343 top: 3344 szp = NULL; 3345 tzp = NULL; 3346 zl = NULL; 3347 3348 /* 3349 * This is to prevent the creation of links into attribute space 3350 * by renaming a linked file into/outof an attribute directory. 3351 * See the comment in zfs_link() for why this is considered bad. 3352 */ 3353 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) { 3354 ZFS_EXIT(zfsvfs); 3355 return (EINVAL); 3356 } 3357 3358 /* 3359 * Lock source and target directory entries. To prevent deadlock, 3360 * a lock ordering must be defined. We lock the directory with 3361 * the smallest object id first, or if it's a tie, the one with 3362 * the lexically first name. 3363 */ 3364 if (sdzp->z_id < tdzp->z_id) { 3365 cmp = -1; 3366 } else if (sdzp->z_id > tdzp->z_id) { 3367 cmp = 1; 3368 } else { 3369 /* 3370 * First compare the two name arguments without 3371 * considering any case folding. 3372 */ 3373 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER); 3374 3375 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error); 3376 ASSERT(error == 0 || !zfsvfs->z_utf8); 3377 if (cmp == 0) { 3378 /* 3379 * POSIX: "If the old argument and the new argument 3380 * both refer to links to the same existing file, 3381 * the rename() function shall return successfully 3382 * and perform no other action." 3383 */ 3384 ZFS_EXIT(zfsvfs); 3385 return (0); 3386 } 3387 /* 3388 * If the file system is case-folding, then we may 3389 * have some more checking to do. A case-folding file 3390 * system is either supporting mixed case sensitivity 3391 * access or is completely case-insensitive. Note 3392 * that the file system is always case preserving. 3393 * 3394 * In mixed sensitivity mode case sensitive behavior 3395 * is the default. FIGNORECASE must be used to 3396 * explicitly request case insensitive behavior. 3397 * 3398 * If the source and target names provided differ only 3399 * by case (e.g., a request to rename 'tim' to 'Tim'), 3400 * we will treat this as a special case in the 3401 * case-insensitive mode: as long as the source name 3402 * is an exact match, we will allow this to proceed as 3403 * a name-change request. 3404 */ 3405 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 3406 (zfsvfs->z_case == ZFS_CASE_MIXED && 3407 flags & FIGNORECASE)) && 3408 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST, 3409 &error) == 0) { 3410 /* 3411 * case preserving rename request, require exact 3412 * name matches 3413 */ 3414 zflg |= ZCIEXACT; 3415 zflg &= ~ZCILOOK; 3416 } 3417 } 3418 3419 /* 3420 * If the source and destination directories are the same, we should 3421 * grab the z_name_lock of that directory only once. 3422 */ 3423 if (sdzp == tdzp) { 3424 zflg |= ZHAVELOCK; 3425 rw_enter(&sdzp->z_name_lock, RW_READER); 3426 } 3427 3428 if (cmp < 0) { 3429 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp, 3430 ZEXISTS | zflg, NULL, NULL); 3431 terr = zfs_dirent_lock(&tdl, 3432 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL); 3433 } else { 3434 terr = zfs_dirent_lock(&tdl, 3435 tdzp, tnm, &tzp, zflg, NULL, NULL); 3436 serr = zfs_dirent_lock(&sdl, 3437 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg, 3438 NULL, NULL); 3439 } 3440 3441 if (serr) { 3442 /* 3443 * Source entry invalid or not there. 3444 */ 3445 if (!terr) { 3446 zfs_dirent_unlock(tdl); 3447 if (tzp) 3448 VN_RELE(ZTOV(tzp)); 3449 } 3450 3451 if (sdzp == tdzp) 3452 rw_exit(&sdzp->z_name_lock); 3453 3454 if (strcmp(snm, "..") == 0) 3455 serr = EINVAL; 3456 ZFS_EXIT(zfsvfs); 3457 return (serr); 3458 } 3459 if (terr) { 3460 zfs_dirent_unlock(sdl); 3461 VN_RELE(ZTOV(szp)); 3462 3463 if (sdzp == tdzp) 3464 rw_exit(&sdzp->z_name_lock); 3465 3466 if (strcmp(tnm, "..") == 0) 3467 terr = EINVAL; 3468 ZFS_EXIT(zfsvfs); 3469 return (terr); 3470 } 3471 3472 /* 3473 * Must have write access at the source to remove the old entry 3474 * and write access at the target to create the new entry. 3475 * Note that if target and source are the same, this can be 3476 * done in a single check. 3477 */ 3478 3479 if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)) 3480 goto out; 3481 3482 if (ZTOV(szp)->v_type == VDIR) { 3483 /* 3484 * Check to make sure rename is valid. 3485 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d 3486 */ 3487 if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl)) 3488 goto out; 3489 } 3490 3491 /* 3492 * Does target exist? 3493 */ 3494 if (tzp) { 3495 /* 3496 * Source and target must be the same type. 3497 */ 3498 if (ZTOV(szp)->v_type == VDIR) { 3499 if (ZTOV(tzp)->v_type != VDIR) { 3500 error = ENOTDIR; 3501 goto out; 3502 } 3503 } else { 3504 if (ZTOV(tzp)->v_type == VDIR) { 3505 error = EISDIR; 3506 goto out; 3507 } 3508 } 3509 /* 3510 * POSIX dictates that when the source and target 3511 * entries refer to the same file object, rename 3512 * must do nothing and exit without error. 3513 */ 3514 if (szp->z_id == tzp->z_id) { 3515 error = 0; 3516 goto out; 3517 } 3518 } 3519 3520 vnevent_rename_src(ZTOV(szp), sdvp, snm, ct); 3521 if (tzp) 3522 vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct); 3523 3524 /* 3525 * notify the target directory if it is not the same 3526 * as source directory. 3527 */ 3528 if (tdvp != sdvp) { 3529 vnevent_rename_dest_dir(tdvp, ct); 3530 } 3531 3532 tx = dmu_tx_create(zfsvfs->z_os); 3533 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3534 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE); 3535 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm); 3536 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm); 3537 if (sdzp != tdzp) { 3538 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE); 3539 zfs_sa_upgrade_txholds(tx, tdzp); 3540 } 3541 if (tzp) { 3542 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE); 3543 zfs_sa_upgrade_txholds(tx, tzp); 3544 } 3545 3546 zfs_sa_upgrade_txholds(tx, szp); 3547 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL); 3548 error = dmu_tx_assign(tx, TXG_NOWAIT); 3549 if (error) { 3550 if (zl != NULL) 3551 zfs_rename_unlock(&zl); 3552 zfs_dirent_unlock(sdl); 3553 zfs_dirent_unlock(tdl); 3554 3555 if (sdzp == tdzp) 3556 rw_exit(&sdzp->z_name_lock); 3557 3558 VN_RELE(ZTOV(szp)); 3559 if (tzp) 3560 VN_RELE(ZTOV(tzp)); 3561 if (error == ERESTART) { 3562 dmu_tx_wait(tx); 3563 dmu_tx_abort(tx); 3564 goto top; 3565 } 3566 dmu_tx_abort(tx); 3567 ZFS_EXIT(zfsvfs); 3568 return (error); 3569 } 3570 3571 if (tzp) /* Attempt to remove the existing target */ 3572 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL); 3573 3574 if (error == 0) { 3575 error = zfs_link_create(tdl, szp, tx, ZRENAMING); 3576 if (error == 0) { 3577 szp->z_pflags |= ZFS_AV_MODIFIED; 3578 3579 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs), 3580 (void *)&szp->z_pflags, sizeof (uint64_t), tx); 3581 ASSERT3U(error, ==, 0); 3582 3583 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL); 3584 if (error == 0) { 3585 zfs_log_rename(zilog, tx, TX_RENAME | 3586 (flags & FIGNORECASE ? TX_CI : 0), sdzp, 3587 sdl->dl_name, tdzp, tdl->dl_name, szp); 3588 3589 /* 3590 * Update path information for the target vnode 3591 */ 3592 vn_renamepath(tdvp, ZTOV(szp), tnm, 3593 strlen(tnm)); 3594 } else { 3595 /* 3596 * At this point, we have successfully created 3597 * the target name, but have failed to remove 3598 * the source name. Since the create was done 3599 * with the ZRENAMING flag, there are 3600 * complications; for one, the link count is 3601 * wrong. The easiest way to deal with this 3602 * is to remove the newly created target, and 3603 * return the original error. This must 3604 * succeed; fortunately, it is very unlikely to 3605 * fail, since we just created it. 3606 */ 3607 VERIFY3U(zfs_link_destroy(tdl, szp, tx, 3608 ZRENAMING, NULL), ==, 0); 3609 } 3610 } 3611 } 3612 3613 dmu_tx_commit(tx); 3614 out: 3615 if (zl != NULL) 3616 zfs_rename_unlock(&zl); 3617 3618 zfs_dirent_unlock(sdl); 3619 zfs_dirent_unlock(tdl); 3620 3621 if (sdzp == tdzp) 3622 rw_exit(&sdzp->z_name_lock); 3623 3624 3625 VN_RELE(ZTOV(szp)); 3626 if (tzp) 3627 VN_RELE(ZTOV(tzp)); 3628 3629 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3630 zil_commit(zilog, 0); 3631 3632 ZFS_EXIT(zfsvfs); 3633 return (error); 3634 } 3635 3636 /* 3637 * Insert the indicated symbolic reference entry into the directory. 3638 * 3639 * IN: dvp - Directory to contain new symbolic link. 3640 * link - Name for new symlink entry. 3641 * vap - Attributes of new entry. 3642 * target - Target path of new symlink. 3643 * cr - credentials of caller. 3644 * ct - caller context 3645 * flags - case flags 3646 * 3647 * RETURN: 0 if success 3648 * error code if failure 3649 * 3650 * Timestamps: 3651 * dvp - ctime|mtime updated 3652 */ 3653 /*ARGSUSED*/ 3654 static int 3655 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr, 3656 caller_context_t *ct, int flags) 3657 { 3658 znode_t *zp, *dzp = VTOZ(dvp); 3659 zfs_dirlock_t *dl; 3660 dmu_tx_t *tx; 3661 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3662 zilog_t *zilog; 3663 uint64_t len = strlen(link); 3664 int error; 3665 int zflg = ZNEW; 3666 zfs_acl_ids_t acl_ids; 3667 boolean_t fuid_dirtied; 3668 uint64_t txtype = TX_SYMLINK; 3669 3670 ASSERT(vap->va_type == VLNK); 3671 3672 ZFS_ENTER(zfsvfs); 3673 ZFS_VERIFY_ZP(dzp); 3674 zilog = zfsvfs->z_log; 3675 3676 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name), 3677 NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3678 ZFS_EXIT(zfsvfs); 3679 return (EILSEQ); 3680 } 3681 if (flags & FIGNORECASE) 3682 zflg |= ZCILOOK; 3683 3684 if (len > MAXPATHLEN) { 3685 ZFS_EXIT(zfsvfs); 3686 return (ENAMETOOLONG); 3687 } 3688 3689 if ((error = zfs_acl_ids_create(dzp, 0, 3690 vap, cr, NULL, &acl_ids)) != 0) { 3691 ZFS_EXIT(zfsvfs); 3692 return (error); 3693 } 3694 top: 3695 /* 3696 * Attempt to lock directory; fail if entry already exists. 3697 */ 3698 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL); 3699 if (error) { 3700 zfs_acl_ids_free(&acl_ids); 3701 ZFS_EXIT(zfsvfs); 3702 return (error); 3703 } 3704 3705 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3706 zfs_acl_ids_free(&acl_ids); 3707 zfs_dirent_unlock(dl); 3708 ZFS_EXIT(zfsvfs); 3709 return (error); 3710 } 3711 3712 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) { 3713 zfs_acl_ids_free(&acl_ids); 3714 zfs_dirent_unlock(dl); 3715 ZFS_EXIT(zfsvfs); 3716 return (EDQUOT); 3717 } 3718 tx = dmu_tx_create(zfsvfs->z_os); 3719 fuid_dirtied = zfsvfs->z_fuid_dirty; 3720 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len)); 3721 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3722 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes + 3723 ZFS_SA_BASE_ATTR_SIZE + len); 3724 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE); 3725 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) { 3726 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, 3727 acl_ids.z_aclp->z_acl_bytes); 3728 } 3729 if (fuid_dirtied) 3730 zfs_fuid_txhold(zfsvfs, tx); 3731 error = dmu_tx_assign(tx, TXG_NOWAIT); 3732 if (error) { 3733 zfs_dirent_unlock(dl); 3734 if (error == ERESTART) { 3735 dmu_tx_wait(tx); 3736 dmu_tx_abort(tx); 3737 goto top; 3738 } 3739 zfs_acl_ids_free(&acl_ids); 3740 dmu_tx_abort(tx); 3741 ZFS_EXIT(zfsvfs); 3742 return (error); 3743 } 3744 3745 /* 3746 * Create a new object for the symlink. 3747 * for version 4 ZPL datsets the symlink will be an SA attribute 3748 */ 3749 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids); 3750 3751 if (fuid_dirtied) 3752 zfs_fuid_sync(zfsvfs, tx); 3753 3754 mutex_enter(&zp->z_lock); 3755 if (zp->z_is_sa) 3756 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs), 3757 link, len, tx); 3758 else 3759 zfs_sa_symlink(zp, link, len, tx); 3760 mutex_exit(&zp->z_lock); 3761 3762 zp->z_size = len; 3763 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs), 3764 &zp->z_size, sizeof (zp->z_size), tx); 3765 /* 3766 * Insert the new object into the directory. 3767 */ 3768 (void) zfs_link_create(dl, zp, tx, ZNEW); 3769 3770 if (flags & FIGNORECASE) 3771 txtype |= TX_CI; 3772 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link); 3773 3774 zfs_acl_ids_free(&acl_ids); 3775 3776 dmu_tx_commit(tx); 3777 3778 zfs_dirent_unlock(dl); 3779 3780 VN_RELE(ZTOV(zp)); 3781 3782 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3783 zil_commit(zilog, 0); 3784 3785 ZFS_EXIT(zfsvfs); 3786 return (error); 3787 } 3788 3789 /* 3790 * Return, in the buffer contained in the provided uio structure, 3791 * the symbolic path referred to by vp. 3792 * 3793 * IN: vp - vnode of symbolic link. 3794 * uoip - structure to contain the link path. 3795 * cr - credentials of caller. 3796 * ct - caller context 3797 * 3798 * OUT: uio - structure to contain the link path. 3799 * 3800 * RETURN: 0 if success 3801 * error code if failure 3802 * 3803 * Timestamps: 3804 * vp - atime updated 3805 */ 3806 /* ARGSUSED */ 3807 static int 3808 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct) 3809 { 3810 znode_t *zp = VTOZ(vp); 3811 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 3812 int error; 3813 3814 ZFS_ENTER(zfsvfs); 3815 ZFS_VERIFY_ZP(zp); 3816 3817 mutex_enter(&zp->z_lock); 3818 if (zp->z_is_sa) 3819 error = sa_lookup_uio(zp->z_sa_hdl, 3820 SA_ZPL_SYMLINK(zfsvfs), uio); 3821 else 3822 error = zfs_sa_readlink(zp, uio); 3823 mutex_exit(&zp->z_lock); 3824 3825 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 3826 3827 ZFS_EXIT(zfsvfs); 3828 return (error); 3829 } 3830 3831 /* 3832 * Insert a new entry into directory tdvp referencing svp. 3833 * 3834 * IN: tdvp - Directory to contain new entry. 3835 * svp - vnode of new entry. 3836 * name - name of new entry. 3837 * cr - credentials of caller. 3838 * ct - caller context 3839 * 3840 * RETURN: 0 if success 3841 * error code if failure 3842 * 3843 * Timestamps: 3844 * tdvp - ctime|mtime updated 3845 * svp - ctime updated 3846 */ 3847 /* ARGSUSED */ 3848 static int 3849 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr, 3850 caller_context_t *ct, int flags) 3851 { 3852 znode_t *dzp = VTOZ(tdvp); 3853 znode_t *tzp, *szp; 3854 zfsvfs_t *zfsvfs = dzp->z_zfsvfs; 3855 zilog_t *zilog; 3856 zfs_dirlock_t *dl; 3857 dmu_tx_t *tx; 3858 vnode_t *realvp; 3859 int error; 3860 int zf = ZNEW; 3861 uint64_t parent; 3862 3863 ASSERT(tdvp->v_type == VDIR); 3864 3865 ZFS_ENTER(zfsvfs); 3866 ZFS_VERIFY_ZP(dzp); 3867 zilog = zfsvfs->z_log; 3868 3869 if (VOP_REALVP(svp, &realvp, ct) == 0) 3870 svp = realvp; 3871 3872 /* 3873 * POSIX dictates that we return EPERM here. 3874 * Better choices include ENOTSUP or EISDIR. 3875 */ 3876 if (svp->v_type == VDIR) { 3877 ZFS_EXIT(zfsvfs); 3878 return (EPERM); 3879 } 3880 3881 if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) { 3882 ZFS_EXIT(zfsvfs); 3883 return (EXDEV); 3884 } 3885 3886 szp = VTOZ(svp); 3887 ZFS_VERIFY_ZP(szp); 3888 3889 /* Prevent links to .zfs/shares files */ 3890 3891 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs), 3892 &parent, sizeof (uint64_t))) != 0) { 3893 ZFS_EXIT(zfsvfs); 3894 return (error); 3895 } 3896 if (parent == zfsvfs->z_shares_dir) { 3897 ZFS_EXIT(zfsvfs); 3898 return (EPERM); 3899 } 3900 3901 if (zfsvfs->z_utf8 && u8_validate(name, 3902 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) { 3903 ZFS_EXIT(zfsvfs); 3904 return (EILSEQ); 3905 } 3906 if (flags & FIGNORECASE) 3907 zf |= ZCILOOK; 3908 3909 /* 3910 * We do not support links between attributes and non-attributes 3911 * because of the potential security risk of creating links 3912 * into "normal" file space in order to circumvent restrictions 3913 * imposed in attribute space. 3914 */ 3915 if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) { 3916 ZFS_EXIT(zfsvfs); 3917 return (EINVAL); 3918 } 3919 3920 3921 if (szp->z_uid != crgetuid(cr) && 3922 secpolicy_basic_link(cr) != 0) { 3923 ZFS_EXIT(zfsvfs); 3924 return (EPERM); 3925 } 3926 3927 if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) { 3928 ZFS_EXIT(zfsvfs); 3929 return (error); 3930 } 3931 3932 top: 3933 /* 3934 * Attempt to lock directory; fail if entry already exists. 3935 */ 3936 error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL); 3937 if (error) { 3938 ZFS_EXIT(zfsvfs); 3939 return (error); 3940 } 3941 3942 tx = dmu_tx_create(zfsvfs->z_os); 3943 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE); 3944 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name); 3945 zfs_sa_upgrade_txholds(tx, szp); 3946 zfs_sa_upgrade_txholds(tx, dzp); 3947 error = dmu_tx_assign(tx, TXG_NOWAIT); 3948 if (error) { 3949 zfs_dirent_unlock(dl); 3950 if (error == ERESTART) { 3951 dmu_tx_wait(tx); 3952 dmu_tx_abort(tx); 3953 goto top; 3954 } 3955 dmu_tx_abort(tx); 3956 ZFS_EXIT(zfsvfs); 3957 return (error); 3958 } 3959 3960 error = zfs_link_create(dl, szp, tx, 0); 3961 3962 if (error == 0) { 3963 uint64_t txtype = TX_LINK; 3964 if (flags & FIGNORECASE) 3965 txtype |= TX_CI; 3966 zfs_log_link(zilog, tx, txtype, dzp, szp, name); 3967 } 3968 3969 dmu_tx_commit(tx); 3970 3971 zfs_dirent_unlock(dl); 3972 3973 if (error == 0) { 3974 vnevent_link(svp, ct); 3975 } 3976 3977 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 3978 zil_commit(zilog, 0); 3979 3980 ZFS_EXIT(zfsvfs); 3981 return (error); 3982 } 3983 3984 /* 3985 * zfs_null_putapage() is used when the file system has been force 3986 * unmounted. It just drops the pages. 3987 */ 3988 /* ARGSUSED */ 3989 static int 3990 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 3991 size_t *lenp, int flags, cred_t *cr) 3992 { 3993 pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR); 3994 return (0); 3995 } 3996 3997 /* 3998 * Push a page out to disk, klustering if possible. 3999 * 4000 * IN: vp - file to push page to. 4001 * pp - page to push. 4002 * flags - additional flags. 4003 * cr - credentials of caller. 4004 * 4005 * OUT: offp - start of range pushed. 4006 * lenp - len of range pushed. 4007 * 4008 * RETURN: 0 if success 4009 * error code if failure 4010 * 4011 * NOTE: callers must have locked the page to be pushed. On 4012 * exit, the page (and all other pages in the kluster) must be 4013 * unlocked. 4014 */ 4015 /* ARGSUSED */ 4016 static int 4017 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp, 4018 size_t *lenp, int flags, cred_t *cr) 4019 { 4020 znode_t *zp = VTOZ(vp); 4021 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4022 dmu_tx_t *tx; 4023 u_offset_t off, koff; 4024 size_t len, klen; 4025 int err; 4026 4027 off = pp->p_offset; 4028 len = PAGESIZE; 4029 /* 4030 * If our blocksize is bigger than the page size, try to kluster 4031 * multiple pages so that we write a full block (thus avoiding 4032 * a read-modify-write). 4033 */ 4034 if (off < zp->z_size && zp->z_blksz > PAGESIZE) { 4035 klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE); 4036 koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0; 4037 ASSERT(koff <= zp->z_size); 4038 if (koff + klen > zp->z_size) 4039 klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE); 4040 pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags); 4041 } 4042 ASSERT3U(btop(len), ==, btopr(len)); 4043 4044 /* 4045 * Can't push pages past end-of-file. 4046 */ 4047 if (off >= zp->z_size) { 4048 /* ignore all pages */ 4049 err = 0; 4050 goto out; 4051 } else if (off + len > zp->z_size) { 4052 int npages = btopr(zp->z_size - off); 4053 page_t *trunc; 4054 4055 page_list_break(&pp, &trunc, npages); 4056 /* ignore pages past end of file */ 4057 if (trunc) 4058 pvn_write_done(trunc, flags); 4059 len = zp->z_size - off; 4060 } 4061 4062 if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) || 4063 zfs_owner_overquota(zfsvfs, zp, B_TRUE)) { 4064 err = EDQUOT; 4065 goto out; 4066 } 4067 top: 4068 tx = dmu_tx_create(zfsvfs->z_os); 4069 dmu_tx_hold_write(tx, zp->z_id, off, len); 4070 4071 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4072 zfs_sa_upgrade_txholds(tx, zp); 4073 err = dmu_tx_assign(tx, TXG_NOWAIT); 4074 if (err != 0) { 4075 if (err == ERESTART) { 4076 dmu_tx_wait(tx); 4077 dmu_tx_abort(tx); 4078 goto top; 4079 } 4080 dmu_tx_abort(tx); 4081 goto out; 4082 } 4083 4084 if (zp->z_blksz <= PAGESIZE) { 4085 caddr_t va = zfs_map_page(pp, S_READ); 4086 ASSERT3U(len, <=, PAGESIZE); 4087 dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx); 4088 zfs_unmap_page(pp, va); 4089 } else { 4090 err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx); 4091 } 4092 4093 if (err == 0) { 4094 uint64_t mtime[2], ctime[2]; 4095 sa_bulk_attr_t bulk[3]; 4096 int count = 0; 4097 4098 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, 4099 &mtime, 16); 4100 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, 4101 &ctime, 16); 4102 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL, 4103 &zp->z_pflags, 8); 4104 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime, 4105 B_TRUE); 4106 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0); 4107 } 4108 dmu_tx_commit(tx); 4109 4110 out: 4111 pvn_write_done(pp, (err ? B_ERROR : 0) | flags); 4112 if (offp) 4113 *offp = off; 4114 if (lenp) 4115 *lenp = len; 4116 4117 return (err); 4118 } 4119 4120 /* 4121 * Copy the portion of the file indicated from pages into the file. 4122 * The pages are stored in a page list attached to the files vnode. 4123 * 4124 * IN: vp - vnode of file to push page data to. 4125 * off - position in file to put data. 4126 * len - amount of data to write. 4127 * flags - flags to control the operation. 4128 * cr - credentials of caller. 4129 * ct - caller context. 4130 * 4131 * RETURN: 0 if success 4132 * error code if failure 4133 * 4134 * Timestamps: 4135 * vp - ctime|mtime updated 4136 */ 4137 /*ARGSUSED*/ 4138 static int 4139 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr, 4140 caller_context_t *ct) 4141 { 4142 znode_t *zp = VTOZ(vp); 4143 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4144 page_t *pp; 4145 size_t io_len; 4146 u_offset_t io_off; 4147 uint_t blksz; 4148 rl_t *rl; 4149 int error = 0; 4150 4151 ZFS_ENTER(zfsvfs); 4152 ZFS_VERIFY_ZP(zp); 4153 4154 /* 4155 * Align this request to the file block size in case we kluster. 4156 * XXX - this can result in pretty aggresive locking, which can 4157 * impact simultanious read/write access. One option might be 4158 * to break up long requests (len == 0) into block-by-block 4159 * operations to get narrower locking. 4160 */ 4161 blksz = zp->z_blksz; 4162 if (ISP2(blksz)) 4163 io_off = P2ALIGN_TYPED(off, blksz, u_offset_t); 4164 else 4165 io_off = 0; 4166 if (len > 0 && ISP2(blksz)) 4167 io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t); 4168 else 4169 io_len = 0; 4170 4171 if (io_len == 0) { 4172 /* 4173 * Search the entire vp list for pages >= io_off. 4174 */ 4175 rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER); 4176 error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr); 4177 goto out; 4178 } 4179 rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER); 4180 4181 if (off > zp->z_size) { 4182 /* past end of file */ 4183 zfs_range_unlock(rl); 4184 ZFS_EXIT(zfsvfs); 4185 return (0); 4186 } 4187 4188 len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off); 4189 4190 for (off = io_off; io_off < off + len; io_off += io_len) { 4191 if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) { 4192 pp = page_lookup(vp, io_off, 4193 (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED); 4194 } else { 4195 pp = page_lookup_nowait(vp, io_off, 4196 (flags & B_FREE) ? SE_EXCL : SE_SHARED); 4197 } 4198 4199 if (pp != NULL && pvn_getdirty(pp, flags)) { 4200 int err; 4201 4202 /* 4203 * Found a dirty page to push 4204 */ 4205 err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr); 4206 if (err) 4207 error = err; 4208 } else { 4209 io_len = PAGESIZE; 4210 } 4211 } 4212 out: 4213 zfs_range_unlock(rl); 4214 if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4215 zil_commit(zfsvfs->z_log, zp->z_id); 4216 ZFS_EXIT(zfsvfs); 4217 return (error); 4218 } 4219 4220 /*ARGSUSED*/ 4221 void 4222 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct) 4223 { 4224 znode_t *zp = VTOZ(vp); 4225 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4226 int error; 4227 4228 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER); 4229 if (zp->z_sa_hdl == NULL) { 4230 /* 4231 * The fs has been unmounted, or we did a 4232 * suspend/resume and this file no longer exists. 4233 */ 4234 if (vn_has_cached_data(vp)) { 4235 (void) pvn_vplist_dirty(vp, 0, zfs_null_putapage, 4236 B_INVAL, cr); 4237 } 4238 4239 mutex_enter(&zp->z_lock); 4240 mutex_enter(&vp->v_lock); 4241 ASSERT(vp->v_count == 1); 4242 vp->v_count = 0; 4243 mutex_exit(&vp->v_lock); 4244 mutex_exit(&zp->z_lock); 4245 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4246 zfs_znode_free(zp); 4247 return; 4248 } 4249 4250 /* 4251 * Attempt to push any data in the page cache. If this fails 4252 * we will get kicked out later in zfs_zinactive(). 4253 */ 4254 if (vn_has_cached_data(vp)) { 4255 (void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC, 4256 cr); 4257 } 4258 4259 if (zp->z_atime_dirty && zp->z_unlinked == 0) { 4260 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os); 4261 4262 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE); 4263 zfs_sa_upgrade_txholds(tx, zp); 4264 error = dmu_tx_assign(tx, TXG_WAIT); 4265 if (error) { 4266 dmu_tx_abort(tx); 4267 } else { 4268 mutex_enter(&zp->z_lock); 4269 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs), 4270 (void *)&zp->z_atime, sizeof (zp->z_atime), tx); 4271 zp->z_atime_dirty = 0; 4272 mutex_exit(&zp->z_lock); 4273 dmu_tx_commit(tx); 4274 } 4275 } 4276 4277 zfs_zinactive(zp); 4278 rw_exit(&zfsvfs->z_teardown_inactive_lock); 4279 } 4280 4281 /* 4282 * Bounds-check the seek operation. 4283 * 4284 * IN: vp - vnode seeking within 4285 * ooff - old file offset 4286 * noffp - pointer to new file offset 4287 * ct - caller context 4288 * 4289 * RETURN: 0 if success 4290 * EINVAL if new offset invalid 4291 */ 4292 /* ARGSUSED */ 4293 static int 4294 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp, 4295 caller_context_t *ct) 4296 { 4297 if (vp->v_type == VDIR) 4298 return (0); 4299 return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0); 4300 } 4301 4302 /* 4303 * Pre-filter the generic locking function to trap attempts to place 4304 * a mandatory lock on a memory mapped file. 4305 */ 4306 static int 4307 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset, 4308 flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct) 4309 { 4310 znode_t *zp = VTOZ(vp); 4311 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4312 4313 ZFS_ENTER(zfsvfs); 4314 ZFS_VERIFY_ZP(zp); 4315 4316 /* 4317 * We are following the UFS semantics with respect to mapcnt 4318 * here: If we see that the file is mapped already, then we will 4319 * return an error, but we don't worry about races between this 4320 * function and zfs_map(). 4321 */ 4322 if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) { 4323 ZFS_EXIT(zfsvfs); 4324 return (EAGAIN); 4325 } 4326 ZFS_EXIT(zfsvfs); 4327 return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct)); 4328 } 4329 4330 /* 4331 * If we can't find a page in the cache, we will create a new page 4332 * and fill it with file data. For efficiency, we may try to fill 4333 * multiple pages at once (klustering) to fill up the supplied page 4334 * list. Note that the pages to be filled are held with an exclusive 4335 * lock to prevent access by other threads while they are being filled. 4336 */ 4337 static int 4338 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg, 4339 caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw) 4340 { 4341 znode_t *zp = VTOZ(vp); 4342 page_t *pp, *cur_pp; 4343 objset_t *os = zp->z_zfsvfs->z_os; 4344 u_offset_t io_off, total; 4345 size_t io_len; 4346 int err; 4347 4348 if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) { 4349 /* 4350 * We only have a single page, don't bother klustering 4351 */ 4352 io_off = off; 4353 io_len = PAGESIZE; 4354 pp = page_create_va(vp, io_off, io_len, 4355 PG_EXCL | PG_WAIT, seg, addr); 4356 } else { 4357 /* 4358 * Try to find enough pages to fill the page list 4359 */ 4360 pp = pvn_read_kluster(vp, off, seg, addr, &io_off, 4361 &io_len, off, plsz, 0); 4362 } 4363 if (pp == NULL) { 4364 /* 4365 * The page already exists, nothing to do here. 4366 */ 4367 *pl = NULL; 4368 return (0); 4369 } 4370 4371 /* 4372 * Fill the pages in the kluster. 4373 */ 4374 cur_pp = pp; 4375 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) { 4376 caddr_t va; 4377 4378 ASSERT3U(io_off, ==, cur_pp->p_offset); 4379 va = zfs_map_page(cur_pp, S_WRITE); 4380 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va, 4381 DMU_READ_PREFETCH); 4382 zfs_unmap_page(cur_pp, va); 4383 if (err) { 4384 /* On error, toss the entire kluster */ 4385 pvn_read_done(pp, B_ERROR); 4386 /* convert checksum errors into IO errors */ 4387 if (err == ECKSUM) 4388 err = EIO; 4389 return (err); 4390 } 4391 cur_pp = cur_pp->p_next; 4392 } 4393 4394 /* 4395 * Fill in the page list array from the kluster starting 4396 * from the desired offset `off'. 4397 * NOTE: the page list will always be null terminated. 4398 */ 4399 pvn_plist_init(pp, pl, plsz, off, io_len, rw); 4400 ASSERT(pl == NULL || (*pl)->p_offset == off); 4401 4402 return (0); 4403 } 4404 4405 /* 4406 * Return pointers to the pages for the file region [off, off + len] 4407 * in the pl array. If plsz is greater than len, this function may 4408 * also return page pointers from after the specified region 4409 * (i.e. the region [off, off + plsz]). These additional pages are 4410 * only returned if they are already in the cache, or were created as 4411 * part of a klustered read. 4412 * 4413 * IN: vp - vnode of file to get data from. 4414 * off - position in file to get data from. 4415 * len - amount of data to retrieve. 4416 * plsz - length of provided page list. 4417 * seg - segment to obtain pages for. 4418 * addr - virtual address of fault. 4419 * rw - mode of created pages. 4420 * cr - credentials of caller. 4421 * ct - caller context. 4422 * 4423 * OUT: protp - protection mode of created pages. 4424 * pl - list of pages created. 4425 * 4426 * RETURN: 0 if success 4427 * error code if failure 4428 * 4429 * Timestamps: 4430 * vp - atime updated 4431 */ 4432 /* ARGSUSED */ 4433 static int 4434 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp, 4435 page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr, 4436 enum seg_rw rw, cred_t *cr, caller_context_t *ct) 4437 { 4438 znode_t *zp = VTOZ(vp); 4439 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4440 page_t **pl0 = pl; 4441 int err = 0; 4442 4443 /* we do our own caching, faultahead is unnecessary */ 4444 if (pl == NULL) 4445 return (0); 4446 else if (len > plsz) 4447 len = plsz; 4448 else 4449 len = P2ROUNDUP(len, PAGESIZE); 4450 ASSERT(plsz >= len); 4451 4452 ZFS_ENTER(zfsvfs); 4453 ZFS_VERIFY_ZP(zp); 4454 4455 if (protp) 4456 *protp = PROT_ALL; 4457 4458 /* 4459 * Loop through the requested range [off, off + len) looking 4460 * for pages. If we don't find a page, we will need to create 4461 * a new page and fill it with data from the file. 4462 */ 4463 while (len > 0) { 4464 if (*pl = page_lookup(vp, off, SE_SHARED)) 4465 *(pl+1) = NULL; 4466 else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw)) 4467 goto out; 4468 while (*pl) { 4469 ASSERT3U((*pl)->p_offset, ==, off); 4470 off += PAGESIZE; 4471 addr += PAGESIZE; 4472 if (len > 0) { 4473 ASSERT3U(len, >=, PAGESIZE); 4474 len -= PAGESIZE; 4475 } 4476 ASSERT3U(plsz, >=, PAGESIZE); 4477 plsz -= PAGESIZE; 4478 pl++; 4479 } 4480 } 4481 4482 /* 4483 * Fill out the page array with any pages already in the cache. 4484 */ 4485 while (plsz > 0 && 4486 (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) { 4487 off += PAGESIZE; 4488 plsz -= PAGESIZE; 4489 } 4490 out: 4491 if (err) { 4492 /* 4493 * Release any pages we have previously locked. 4494 */ 4495 while (pl > pl0) 4496 page_unlock(*--pl); 4497 } else { 4498 ZFS_ACCESSTIME_STAMP(zfsvfs, zp); 4499 } 4500 4501 *pl = NULL; 4502 4503 ZFS_EXIT(zfsvfs); 4504 return (err); 4505 } 4506 4507 /* 4508 * Request a memory map for a section of a file. This code interacts 4509 * with common code and the VM system as follows: 4510 * 4511 * common code calls mmap(), which ends up in smmap_common() 4512 * 4513 * this calls VOP_MAP(), which takes you into (say) zfs 4514 * 4515 * zfs_map() calls as_map(), passing segvn_create() as the callback 4516 * 4517 * segvn_create() creates the new segment and calls VOP_ADDMAP() 4518 * 4519 * zfs_addmap() updates z_mapcnt 4520 */ 4521 /*ARGSUSED*/ 4522 static int 4523 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp, 4524 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4525 caller_context_t *ct) 4526 { 4527 znode_t *zp = VTOZ(vp); 4528 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4529 segvn_crargs_t vn_a; 4530 int error; 4531 4532 ZFS_ENTER(zfsvfs); 4533 ZFS_VERIFY_ZP(zp); 4534 4535 if ((prot & PROT_WRITE) && (zp->z_pflags & 4536 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) { 4537 ZFS_EXIT(zfsvfs); 4538 return (EPERM); 4539 } 4540 4541 if ((prot & (PROT_READ | PROT_EXEC)) && 4542 (zp->z_pflags & ZFS_AV_QUARANTINED)) { 4543 ZFS_EXIT(zfsvfs); 4544 return (EACCES); 4545 } 4546 4547 if (vp->v_flag & VNOMAP) { 4548 ZFS_EXIT(zfsvfs); 4549 return (ENOSYS); 4550 } 4551 4552 if (off < 0 || len > MAXOFFSET_T - off) { 4553 ZFS_EXIT(zfsvfs); 4554 return (ENXIO); 4555 } 4556 4557 if (vp->v_type != VREG) { 4558 ZFS_EXIT(zfsvfs); 4559 return (ENODEV); 4560 } 4561 4562 /* 4563 * If file is locked, disallow mapping. 4564 */ 4565 if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) { 4566 ZFS_EXIT(zfsvfs); 4567 return (EAGAIN); 4568 } 4569 4570 as_rangelock(as); 4571 error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags); 4572 if (error != 0) { 4573 as_rangeunlock(as); 4574 ZFS_EXIT(zfsvfs); 4575 return (error); 4576 } 4577 4578 vn_a.vp = vp; 4579 vn_a.offset = (u_offset_t)off; 4580 vn_a.type = flags & MAP_TYPE; 4581 vn_a.prot = prot; 4582 vn_a.maxprot = maxprot; 4583 vn_a.cred = cr; 4584 vn_a.amp = NULL; 4585 vn_a.flags = flags & ~MAP_TYPE; 4586 vn_a.szc = 0; 4587 vn_a.lgrp_mem_policy_flags = 0; 4588 4589 error = as_map(as, *addrp, len, segvn_create, &vn_a); 4590 4591 as_rangeunlock(as); 4592 ZFS_EXIT(zfsvfs); 4593 return (error); 4594 } 4595 4596 /* ARGSUSED */ 4597 static int 4598 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4599 size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr, 4600 caller_context_t *ct) 4601 { 4602 uint64_t pages = btopr(len); 4603 4604 atomic_add_64(&VTOZ(vp)->z_mapcnt, pages); 4605 return (0); 4606 } 4607 4608 /* 4609 * The reason we push dirty pages as part of zfs_delmap() is so that we get a 4610 * more accurate mtime for the associated file. Since we don't have a way of 4611 * detecting when the data was actually modified, we have to resort to 4612 * heuristics. If an explicit msync() is done, then we mark the mtime when the 4613 * last page is pushed. The problem occurs when the msync() call is omitted, 4614 * which by far the most common case: 4615 * 4616 * open() 4617 * mmap() 4618 * <modify memory> 4619 * munmap() 4620 * close() 4621 * <time lapse> 4622 * putpage() via fsflush 4623 * 4624 * If we wait until fsflush to come along, we can have a modification time that 4625 * is some arbitrary point in the future. In order to prevent this in the 4626 * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is 4627 * torn down. 4628 */ 4629 /* ARGSUSED */ 4630 static int 4631 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr, 4632 size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr, 4633 caller_context_t *ct) 4634 { 4635 uint64_t pages = btopr(len); 4636 4637 ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages); 4638 atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages); 4639 4640 if ((flags & MAP_SHARED) && (prot & PROT_WRITE) && 4641 vn_has_cached_data(vp)) 4642 (void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct); 4643 4644 return (0); 4645 } 4646 4647 /* 4648 * Free or allocate space in a file. Currently, this function only 4649 * supports the `F_FREESP' command. However, this command is somewhat 4650 * misnamed, as its functionality includes the ability to allocate as 4651 * well as free space. 4652 * 4653 * IN: vp - vnode of file to free data in. 4654 * cmd - action to take (only F_FREESP supported). 4655 * bfp - section of file to free/alloc. 4656 * flag - current file open mode flags. 4657 * offset - current file offset. 4658 * cr - credentials of caller [UNUSED]. 4659 * ct - caller context. 4660 * 4661 * RETURN: 0 if success 4662 * error code if failure 4663 * 4664 * Timestamps: 4665 * vp - ctime|mtime updated 4666 */ 4667 /* ARGSUSED */ 4668 static int 4669 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag, 4670 offset_t offset, cred_t *cr, caller_context_t *ct) 4671 { 4672 znode_t *zp = VTOZ(vp); 4673 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4674 uint64_t off, len; 4675 int error; 4676 4677 ZFS_ENTER(zfsvfs); 4678 ZFS_VERIFY_ZP(zp); 4679 4680 if (cmd != F_FREESP) { 4681 ZFS_EXIT(zfsvfs); 4682 return (EINVAL); 4683 } 4684 4685 if (error = convoff(vp, bfp, 0, offset)) { 4686 ZFS_EXIT(zfsvfs); 4687 return (error); 4688 } 4689 4690 if (bfp->l_len < 0) { 4691 ZFS_EXIT(zfsvfs); 4692 return (EINVAL); 4693 } 4694 4695 off = bfp->l_start; 4696 len = bfp->l_len; /* 0 means from off to end of file */ 4697 4698 error = zfs_freesp(zp, off, len, flag, TRUE); 4699 4700 ZFS_EXIT(zfsvfs); 4701 return (error); 4702 } 4703 4704 /*ARGSUSED*/ 4705 static int 4706 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct) 4707 { 4708 znode_t *zp = VTOZ(vp); 4709 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4710 uint32_t gen; 4711 uint64_t gen64; 4712 uint64_t object = zp->z_id; 4713 zfid_short_t *zfid; 4714 int size, i, error; 4715 4716 ZFS_ENTER(zfsvfs); 4717 ZFS_VERIFY_ZP(zp); 4718 4719 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), 4720 &gen64, sizeof (uint64_t))) != 0) { 4721 ZFS_EXIT(zfsvfs); 4722 return (error); 4723 } 4724 4725 gen = (uint32_t)gen64; 4726 4727 size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN; 4728 if (fidp->fid_len < size) { 4729 fidp->fid_len = size; 4730 ZFS_EXIT(zfsvfs); 4731 return (ENOSPC); 4732 } 4733 4734 zfid = (zfid_short_t *)fidp; 4735 4736 zfid->zf_len = size; 4737 4738 for (i = 0; i < sizeof (zfid->zf_object); i++) 4739 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 4740 4741 /* Must have a non-zero generation number to distinguish from .zfs */ 4742 if (gen == 0) 4743 gen = 1; 4744 for (i = 0; i < sizeof (zfid->zf_gen); i++) 4745 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i)); 4746 4747 if (size == LONG_FID_LEN) { 4748 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os); 4749 zfid_long_t *zlfid; 4750 4751 zlfid = (zfid_long_t *)fidp; 4752 4753 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 4754 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i)); 4755 4756 /* XXX - this should be the generation number for the objset */ 4757 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 4758 zlfid->zf_setgen[i] = 0; 4759 } 4760 4761 ZFS_EXIT(zfsvfs); 4762 return (0); 4763 } 4764 4765 static int 4766 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr, 4767 caller_context_t *ct) 4768 { 4769 znode_t *zp, *xzp; 4770 zfsvfs_t *zfsvfs; 4771 zfs_dirlock_t *dl; 4772 int error; 4773 4774 switch (cmd) { 4775 case _PC_LINK_MAX: 4776 *valp = ULONG_MAX; 4777 return (0); 4778 4779 case _PC_FILESIZEBITS: 4780 *valp = 64; 4781 return (0); 4782 4783 case _PC_XATTR_EXISTS: 4784 zp = VTOZ(vp); 4785 zfsvfs = zp->z_zfsvfs; 4786 ZFS_ENTER(zfsvfs); 4787 ZFS_VERIFY_ZP(zp); 4788 *valp = 0; 4789 error = zfs_dirent_lock(&dl, zp, "", &xzp, 4790 ZXATTR | ZEXISTS | ZSHARED, NULL, NULL); 4791 if (error == 0) { 4792 zfs_dirent_unlock(dl); 4793 if (!zfs_dirempty(xzp)) 4794 *valp = 1; 4795 VN_RELE(ZTOV(xzp)); 4796 } else if (error == ENOENT) { 4797 /* 4798 * If there aren't extended attributes, it's the 4799 * same as having zero of them. 4800 */ 4801 error = 0; 4802 } 4803 ZFS_EXIT(zfsvfs); 4804 return (error); 4805 4806 case _PC_SATTR_ENABLED: 4807 case _PC_SATTR_EXISTS: 4808 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) && 4809 (vp->v_type == VREG || vp->v_type == VDIR); 4810 return (0); 4811 4812 case _PC_ACCESS_FILTERING: 4813 *valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) && 4814 vp->v_type == VDIR; 4815 return (0); 4816 4817 case _PC_ACL_ENABLED: 4818 *valp = _ACL_ACE_ENABLED; 4819 return (0); 4820 4821 case _PC_MIN_HOLE_SIZE: 4822 *valp = (ulong_t)SPA_MINBLOCKSIZE; 4823 return (0); 4824 4825 case _PC_TIMESTAMP_RESOLUTION: 4826 /* nanosecond timestamp resolution */ 4827 *valp = 1L; 4828 return (0); 4829 4830 default: 4831 return (fs_pathconf(vp, cmd, valp, cr, ct)); 4832 } 4833 } 4834 4835 /*ARGSUSED*/ 4836 static int 4837 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4838 caller_context_t *ct) 4839 { 4840 znode_t *zp = VTOZ(vp); 4841 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4842 int error; 4843 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4844 4845 ZFS_ENTER(zfsvfs); 4846 ZFS_VERIFY_ZP(zp); 4847 error = zfs_getacl(zp, vsecp, skipaclchk, cr); 4848 ZFS_EXIT(zfsvfs); 4849 4850 return (error); 4851 } 4852 4853 /*ARGSUSED*/ 4854 static int 4855 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr, 4856 caller_context_t *ct) 4857 { 4858 znode_t *zp = VTOZ(vp); 4859 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4860 int error; 4861 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE; 4862 zilog_t *zilog = zfsvfs->z_log; 4863 4864 ZFS_ENTER(zfsvfs); 4865 ZFS_VERIFY_ZP(zp); 4866 4867 error = zfs_setacl(zp, vsecp, skipaclchk, cr); 4868 4869 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS) 4870 zil_commit(zilog, 0); 4871 4872 ZFS_EXIT(zfsvfs); 4873 return (error); 4874 } 4875 4876 /* 4877 * Tunable, both must be a power of 2. 4878 * 4879 * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf 4880 * zcr_blksz_max: if set to less than the file block size, allow loaning out of 4881 * an arcbuf for a partial block read 4882 */ 4883 int zcr_blksz_min = (1 << 10); /* 1K */ 4884 int zcr_blksz_max = (1 << 17); /* 128K */ 4885 4886 /*ARGSUSED*/ 4887 static int 4888 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr, 4889 caller_context_t *ct) 4890 { 4891 znode_t *zp = VTOZ(vp); 4892 zfsvfs_t *zfsvfs = zp->z_zfsvfs; 4893 int max_blksz = zfsvfs->z_max_blksz; 4894 uio_t *uio = &xuio->xu_uio; 4895 ssize_t size = uio->uio_resid; 4896 offset_t offset = uio->uio_loffset; 4897 int blksz; 4898 int fullblk, i; 4899 arc_buf_t *abuf; 4900 ssize_t maxsize; 4901 int preamble, postamble; 4902 4903 if (xuio->xu_type != UIOTYPE_ZEROCOPY) 4904 return (EINVAL); 4905 4906 ZFS_ENTER(zfsvfs); 4907 ZFS_VERIFY_ZP(zp); 4908 switch (ioflag) { 4909 case UIO_WRITE: 4910 /* 4911 * Loan out an arc_buf for write if write size is bigger than 4912 * max_blksz, and the file's block size is also max_blksz. 4913 */ 4914 blksz = max_blksz; 4915 if (size < blksz || zp->z_blksz != blksz) { 4916 ZFS_EXIT(zfsvfs); 4917 return (EINVAL); 4918 } 4919 /* 4920 * Caller requests buffers for write before knowing where the 4921 * write offset might be (e.g. NFS TCP write). 4922 */ 4923 if (offset == -1) { 4924 preamble = 0; 4925 } else { 4926 preamble = P2PHASE(offset, blksz); 4927 if (preamble) { 4928 preamble = blksz - preamble; 4929 size -= preamble; 4930 } 4931 } 4932 4933 postamble = P2PHASE(size, blksz); 4934 size -= postamble; 4935 4936 fullblk = size / blksz; 4937 (void) dmu_xuio_init(xuio, 4938 (preamble != 0) + fullblk + (postamble != 0)); 4939 DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble, 4940 int, postamble, int, 4941 (preamble != 0) + fullblk + (postamble != 0)); 4942 4943 /* 4944 * Have to fix iov base/len for partial buffers. They 4945 * currently represent full arc_buf's. 4946 */ 4947 if (preamble) { 4948 /* data begins in the middle of the arc_buf */ 4949 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4950 blksz); 4951 ASSERT(abuf); 4952 (void) dmu_xuio_add(xuio, abuf, 4953 blksz - preamble, preamble); 4954 } 4955 4956 for (i = 0; i < fullblk; i++) { 4957 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4958 blksz); 4959 ASSERT(abuf); 4960 (void) dmu_xuio_add(xuio, abuf, 0, blksz); 4961 } 4962 4963 if (postamble) { 4964 /* data ends in the middle of the arc_buf */ 4965 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl), 4966 blksz); 4967 ASSERT(abuf); 4968 (void) dmu_xuio_add(xuio, abuf, 0, postamble); 4969 } 4970 break; 4971 case UIO_READ: 4972 /* 4973 * Loan out an arc_buf for read if the read size is larger than 4974 * the current file block size. Block alignment is not 4975 * considered. Partial arc_buf will be loaned out for read. 4976 */ 4977 blksz = zp->z_blksz; 4978 if (blksz < zcr_blksz_min) 4979 blksz = zcr_blksz_min; 4980 if (blksz > zcr_blksz_max) 4981 blksz = zcr_blksz_max; 4982 /* avoid potential complexity of dealing with it */ 4983 if (blksz > max_blksz) { 4984 ZFS_EXIT(zfsvfs); 4985 return (EINVAL); 4986 } 4987 4988 maxsize = zp->z_size - uio->uio_loffset; 4989 if (size > maxsize) 4990 size = maxsize; 4991 4992 if (size < blksz || vn_has_cached_data(vp)) { 4993 ZFS_EXIT(zfsvfs); 4994 return (EINVAL); 4995 } 4996 break; 4997 default: 4998 ZFS_EXIT(zfsvfs); 4999 return (EINVAL); 5000 } 5001 5002 uio->uio_extflg = UIO_XUIO; 5003 XUIO_XUZC_RW(xuio) = ioflag; 5004 ZFS_EXIT(zfsvfs); 5005 return (0); 5006 } 5007 5008 /*ARGSUSED*/ 5009 static int 5010 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct) 5011 { 5012 int i; 5013 arc_buf_t *abuf; 5014 int ioflag = XUIO_XUZC_RW(xuio); 5015 5016 ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY); 5017 5018 i = dmu_xuio_cnt(xuio); 5019 while (i-- > 0) { 5020 abuf = dmu_xuio_arcbuf(xuio, i); 5021 /* 5022 * if abuf == NULL, it must be a write buffer 5023 * that has been returned in zfs_write(). 5024 */ 5025 if (abuf) 5026 dmu_return_arcbuf(abuf); 5027 ASSERT(abuf || ioflag == UIO_WRITE); 5028 } 5029 5030 dmu_xuio_fini(xuio); 5031 return (0); 5032 } 5033 5034 /* 5035 * Predeclare these here so that the compiler assumes that 5036 * this is an "old style" function declaration that does 5037 * not include arguments => we won't get type mismatch errors 5038 * in the initializations that follow. 5039 */ 5040 static int zfs_inval(); 5041 static int zfs_isdir(); 5042 5043 static int 5044 zfs_inval() 5045 { 5046 return (EINVAL); 5047 } 5048 5049 static int 5050 zfs_isdir() 5051 { 5052 return (EISDIR); 5053 } 5054 /* 5055 * Directory vnode operations template 5056 */ 5057 vnodeops_t *zfs_dvnodeops; 5058 const fs_operation_def_t zfs_dvnodeops_template[] = { 5059 VOPNAME_OPEN, { .vop_open = zfs_open }, 5060 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5061 VOPNAME_READ, { .error = zfs_isdir }, 5062 VOPNAME_WRITE, { .error = zfs_isdir }, 5063 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5064 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5065 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5066 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5067 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5068 VOPNAME_CREATE, { .vop_create = zfs_create }, 5069 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5070 VOPNAME_LINK, { .vop_link = zfs_link }, 5071 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5072 VOPNAME_MKDIR, { .vop_mkdir = zfs_mkdir }, 5073 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5074 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5075 VOPNAME_SYMLINK, { .vop_symlink = zfs_symlink }, 5076 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5077 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5078 VOPNAME_FID, { .vop_fid = zfs_fid }, 5079 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5080 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5081 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5082 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5083 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5084 NULL, NULL 5085 }; 5086 5087 /* 5088 * Regular file vnode operations template 5089 */ 5090 vnodeops_t *zfs_fvnodeops; 5091 const fs_operation_def_t zfs_fvnodeops_template[] = { 5092 VOPNAME_OPEN, { .vop_open = zfs_open }, 5093 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5094 VOPNAME_READ, { .vop_read = zfs_read }, 5095 VOPNAME_WRITE, { .vop_write = zfs_write }, 5096 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5097 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5098 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5099 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5100 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5101 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5102 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5103 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5104 VOPNAME_FID, { .vop_fid = zfs_fid }, 5105 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5106 VOPNAME_FRLOCK, { .vop_frlock = zfs_frlock }, 5107 VOPNAME_SPACE, { .vop_space = zfs_space }, 5108 VOPNAME_GETPAGE, { .vop_getpage = zfs_getpage }, 5109 VOPNAME_PUTPAGE, { .vop_putpage = zfs_putpage }, 5110 VOPNAME_MAP, { .vop_map = zfs_map }, 5111 VOPNAME_ADDMAP, { .vop_addmap = zfs_addmap }, 5112 VOPNAME_DELMAP, { .vop_delmap = zfs_delmap }, 5113 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5114 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5115 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5116 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5117 VOPNAME_REQZCBUF, { .vop_reqzcbuf = zfs_reqzcbuf }, 5118 VOPNAME_RETZCBUF, { .vop_retzcbuf = zfs_retzcbuf }, 5119 NULL, NULL 5120 }; 5121 5122 /* 5123 * Symbolic link vnode operations template 5124 */ 5125 vnodeops_t *zfs_symvnodeops; 5126 const fs_operation_def_t zfs_symvnodeops_template[] = { 5127 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5128 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5129 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5130 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5131 VOPNAME_READLINK, { .vop_readlink = zfs_readlink }, 5132 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5133 VOPNAME_FID, { .vop_fid = zfs_fid }, 5134 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5135 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5136 NULL, NULL 5137 }; 5138 5139 /* 5140 * special share hidden files vnode operations template 5141 */ 5142 vnodeops_t *zfs_sharevnodeops; 5143 const fs_operation_def_t zfs_sharevnodeops_template[] = { 5144 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5145 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5146 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5147 VOPNAME_FID, { .vop_fid = zfs_fid }, 5148 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5149 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5150 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5151 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5152 NULL, NULL 5153 }; 5154 5155 /* 5156 * Extended attribute directory vnode operations template 5157 * This template is identical to the directory vnodes 5158 * operation template except for restricted operations: 5159 * VOP_MKDIR() 5160 * VOP_SYMLINK() 5161 * Note that there are other restrictions embedded in: 5162 * zfs_create() - restrict type to VREG 5163 * zfs_link() - no links into/out of attribute space 5164 * zfs_rename() - no moves into/out of attribute space 5165 */ 5166 vnodeops_t *zfs_xdvnodeops; 5167 const fs_operation_def_t zfs_xdvnodeops_template[] = { 5168 VOPNAME_OPEN, { .vop_open = zfs_open }, 5169 VOPNAME_CLOSE, { .vop_close = zfs_close }, 5170 VOPNAME_IOCTL, { .vop_ioctl = zfs_ioctl }, 5171 VOPNAME_GETATTR, { .vop_getattr = zfs_getattr }, 5172 VOPNAME_SETATTR, { .vop_setattr = zfs_setattr }, 5173 VOPNAME_ACCESS, { .vop_access = zfs_access }, 5174 VOPNAME_LOOKUP, { .vop_lookup = zfs_lookup }, 5175 VOPNAME_CREATE, { .vop_create = zfs_create }, 5176 VOPNAME_REMOVE, { .vop_remove = zfs_remove }, 5177 VOPNAME_LINK, { .vop_link = zfs_link }, 5178 VOPNAME_RENAME, { .vop_rename = zfs_rename }, 5179 VOPNAME_MKDIR, { .error = zfs_inval }, 5180 VOPNAME_RMDIR, { .vop_rmdir = zfs_rmdir }, 5181 VOPNAME_READDIR, { .vop_readdir = zfs_readdir }, 5182 VOPNAME_SYMLINK, { .error = zfs_inval }, 5183 VOPNAME_FSYNC, { .vop_fsync = zfs_fsync }, 5184 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5185 VOPNAME_FID, { .vop_fid = zfs_fid }, 5186 VOPNAME_SEEK, { .vop_seek = zfs_seek }, 5187 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5188 VOPNAME_GETSECATTR, { .vop_getsecattr = zfs_getsecattr }, 5189 VOPNAME_SETSECATTR, { .vop_setsecattr = zfs_setsecattr }, 5190 VOPNAME_VNEVENT, { .vop_vnevent = fs_vnevent_support }, 5191 NULL, NULL 5192 }; 5193 5194 /* 5195 * Error vnode operations template 5196 */ 5197 vnodeops_t *zfs_evnodeops; 5198 const fs_operation_def_t zfs_evnodeops_template[] = { 5199 VOPNAME_INACTIVE, { .vop_inactive = zfs_inactive }, 5200 VOPNAME_PATHCONF, { .vop_pathconf = zfs_pathconf }, 5201 NULL, NULL 5202 }; 5203