xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_vnops.c (revision 188eaed9d5f14c73dfba1cd0dabaa430bdfd4a9a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  */
24 
25 /* Portions Copyright 2007 Jeremy Teo */
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/time.h>
31 #include <sys/systm.h>
32 #include <sys/sysmacros.h>
33 #include <sys/resource.h>
34 #include <sys/vfs.h>
35 #include <sys/vfs_opreg.h>
36 #include <sys/vnode.h>
37 #include <sys/file.h>
38 #include <sys/stat.h>
39 #include <sys/kmem.h>
40 #include <sys/taskq.h>
41 #include <sys/uio.h>
42 #include <sys/vmsystm.h>
43 #include <sys/atomic.h>
44 #include <sys/vm.h>
45 #include <vm/seg_vn.h>
46 #include <vm/pvn.h>
47 #include <vm/as.h>
48 #include <vm/kpm.h>
49 #include <vm/seg_kpm.h>
50 #include <sys/mman.h>
51 #include <sys/pathname.h>
52 #include <sys/cmn_err.h>
53 #include <sys/errno.h>
54 #include <sys/unistd.h>
55 #include <sys/zfs_dir.h>
56 #include <sys/zfs_acl.h>
57 #include <sys/zfs_ioctl.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/dmu.h>
60 #include <sys/dmu_objset.h>
61 #include <sys/spa.h>
62 #include <sys/txg.h>
63 #include <sys/dbuf.h>
64 #include <sys/zap.h>
65 #include <sys/sa.h>
66 #include <sys/dirent.h>
67 #include <sys/policy.h>
68 #include <sys/sunddi.h>
69 #include <sys/filio.h>
70 #include <sys/sid.h>
71 #include "fs/fs_subr.h"
72 #include <sys/zfs_ctldir.h>
73 #include <sys/zfs_fuid.h>
74 #include <sys/zfs_sa.h>
75 #include <sys/dnlc.h>
76 #include <sys/zfs_rlock.h>
77 #include <sys/extdirent.h>
78 #include <sys/kidmap.h>
79 #include <sys/cred.h>
80 #include <sys/attr.h>
81 
82 /*
83  * Programming rules.
84  *
85  * Each vnode op performs some logical unit of work.  To do this, the ZPL must
86  * properly lock its in-core state, create a DMU transaction, do the work,
87  * record this work in the intent log (ZIL), commit the DMU transaction,
88  * and wait for the intent log to commit if it is a synchronous operation.
89  * Moreover, the vnode ops must work in both normal and log replay context.
90  * The ordering of events is important to avoid deadlocks and references
91  * to freed memory.  The example below illustrates the following Big Rules:
92  *
93  *  (1) A check must be made in each zfs thread for a mounted file system.
94  *	This is done avoiding races using ZFS_ENTER(zfsvfs).
95  *      A ZFS_EXIT(zfsvfs) is needed before all returns.  Any znodes
96  *      must be checked with ZFS_VERIFY_ZP(zp).  Both of these macros
97  *      can return EIO from the calling function.
98  *
99  *  (2)	VN_RELE() should always be the last thing except for zil_commit()
100  *	(if necessary) and ZFS_EXIT(). This is for 3 reasons:
101  *	First, if it's the last reference, the vnode/znode
102  *	can be freed, so the zp may point to freed memory.  Second, the last
103  *	reference will call zfs_zinactive(), which may induce a lot of work --
104  *	pushing cached pages (which acquires range locks) and syncing out
105  *	cached atime changes.  Third, zfs_zinactive() may require a new tx,
106  *	which could deadlock the system if you were already holding one.
107  *	If you must call VN_RELE() within a tx then use VN_RELE_ASYNC().
108  *
109  *  (3)	All range locks must be grabbed before calling dmu_tx_assign(),
110  *	as they can span dmu_tx_assign() calls.
111  *
112  *  (4)	Always pass TXG_NOWAIT as the second argument to dmu_tx_assign().
113  *	This is critical because we don't want to block while holding locks.
114  *	Note, in particular, that if a lock is sometimes acquired before
115  *	the tx assigns, and sometimes after (e.g. z_lock), then failing to
116  *	use a non-blocking assign can deadlock the system.  The scenario:
117  *
118  *	Thread A has grabbed a lock before calling dmu_tx_assign().
119  *	Thread B is in an already-assigned tx, and blocks for this lock.
120  *	Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
121  *	forever, because the previous txg can't quiesce until B's tx commits.
122  *
123  *	If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
124  *	then drop all locks, call dmu_tx_wait(), and try again.
125  *
126  *  (5)	If the operation succeeded, generate the intent log entry for it
127  *	before dropping locks.  This ensures that the ordering of events
128  *	in the intent log matches the order in which they actually occurred.
129  *      During ZIL replay the zfs_log_* functions will update the sequence
130  *	number to indicate the zil transaction has replayed.
131  *
132  *  (6)	At the end of each vnode op, the DMU tx must always commit,
133  *	regardless of whether there were any errors.
134  *
135  *  (7)	After dropping all locks, invoke zil_commit(zilog, seq, foid)
136  *	to ensure that synchronous semantics are provided when necessary.
137  *
138  * In general, this is how things should be ordered in each vnode op:
139  *
140  *	ZFS_ENTER(zfsvfs);		// exit if unmounted
141  * top:
142  *	zfs_dirent_lock(&dl, ...)	// lock directory entry (may VN_HOLD())
143  *	rw_enter(...);			// grab any other locks you need
144  *	tx = dmu_tx_create(...);	// get DMU tx
145  *	dmu_tx_hold_*();		// hold each object you might modify
146  *	error = dmu_tx_assign(tx, TXG_NOWAIT);	// try to assign
147  *	if (error) {
148  *		rw_exit(...);		// drop locks
149  *		zfs_dirent_unlock(dl);	// unlock directory entry
150  *		VN_RELE(...);		// release held vnodes
151  *		if (error == ERESTART) {
152  *			dmu_tx_wait(tx);
153  *			dmu_tx_abort(tx);
154  *			goto top;
155  *		}
156  *		dmu_tx_abort(tx);	// abort DMU tx
157  *		ZFS_EXIT(zfsvfs);	// finished in zfs
158  *		return (error);		// really out of space
159  *	}
160  *	error = do_real_work();		// do whatever this VOP does
161  *	if (error == 0)
162  *		zfs_log_*(...);		// on success, make ZIL entry
163  *	dmu_tx_commit(tx);		// commit DMU tx -- error or not
164  *	rw_exit(...);			// drop locks
165  *	zfs_dirent_unlock(dl);		// unlock directory entry
166  *	VN_RELE(...);			// release held vnodes
167  *	zil_commit(zilog, seq, foid);	// synchronous when necessary
168  *	ZFS_EXIT(zfsvfs);		// finished in zfs
169  *	return (error);			// done, report error
170  */
171 
172 /* ARGSUSED */
173 static int
174 zfs_open(vnode_t **vpp, int flag, cred_t *cr, caller_context_t *ct)
175 {
176 	znode_t	*zp = VTOZ(*vpp);
177 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
178 
179 	ZFS_ENTER(zfsvfs);
180 	ZFS_VERIFY_ZP(zp);
181 
182 	if ((flag & FWRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
183 	    ((flag & FAPPEND) == 0)) {
184 		ZFS_EXIT(zfsvfs);
185 		return (EPERM);
186 	}
187 
188 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
189 	    ZTOV(zp)->v_type == VREG &&
190 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0) {
191 		if (fs_vscan(*vpp, cr, 0) != 0) {
192 			ZFS_EXIT(zfsvfs);
193 			return (EACCES);
194 		}
195 	}
196 
197 	/* Keep a count of the synchronous opens in the znode */
198 	if (flag & (FSYNC | FDSYNC))
199 		atomic_inc_32(&zp->z_sync_cnt);
200 
201 	ZFS_EXIT(zfsvfs);
202 	return (0);
203 }
204 
205 /* ARGSUSED */
206 static int
207 zfs_close(vnode_t *vp, int flag, int count, offset_t offset, cred_t *cr,
208     caller_context_t *ct)
209 {
210 	znode_t	*zp = VTOZ(vp);
211 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
212 
213 	/*
214 	 * Clean up any locks held by this process on the vp.
215 	 */
216 	cleanlocks(vp, ddi_get_pid(), 0);
217 	cleanshares(vp, ddi_get_pid());
218 
219 	ZFS_ENTER(zfsvfs);
220 	ZFS_VERIFY_ZP(zp);
221 
222 	/* Decrement the synchronous opens in the znode */
223 	if ((flag & (FSYNC | FDSYNC)) && (count == 1))
224 		atomic_dec_32(&zp->z_sync_cnt);
225 
226 	if (!zfs_has_ctldir(zp) && zp->z_zfsvfs->z_vscan &&
227 	    ZTOV(zp)->v_type == VREG &&
228 	    !(zp->z_pflags & ZFS_AV_QUARANTINED) && zp->z_size > 0)
229 		VERIFY(fs_vscan(vp, cr, 1) == 0);
230 
231 	ZFS_EXIT(zfsvfs);
232 	return (0);
233 }
234 
235 /*
236  * Lseek support for finding holes (cmd == _FIO_SEEK_HOLE) and
237  * data (cmd == _FIO_SEEK_DATA). "off" is an in/out parameter.
238  */
239 static int
240 zfs_holey(vnode_t *vp, int cmd, offset_t *off)
241 {
242 	znode_t	*zp = VTOZ(vp);
243 	uint64_t noff = (uint64_t)*off; /* new offset */
244 	uint64_t file_sz;
245 	int error;
246 	boolean_t hole;
247 
248 	file_sz = zp->z_size;
249 	if (noff >= file_sz)  {
250 		return (ENXIO);
251 	}
252 
253 	if (cmd == _FIO_SEEK_HOLE)
254 		hole = B_TRUE;
255 	else
256 		hole = B_FALSE;
257 
258 	error = dmu_offset_next(zp->z_zfsvfs->z_os, zp->z_id, hole, &noff);
259 
260 	/* end of file? */
261 	if ((error == ESRCH) || (noff > file_sz)) {
262 		/*
263 		 * Handle the virtual hole at the end of file.
264 		 */
265 		if (hole) {
266 			*off = file_sz;
267 			return (0);
268 		}
269 		return (ENXIO);
270 	}
271 
272 	if (noff < *off)
273 		return (error);
274 	*off = noff;
275 	return (error);
276 }
277 
278 /* ARGSUSED */
279 static int
280 zfs_ioctl(vnode_t *vp, int com, intptr_t data, int flag, cred_t *cred,
281     int *rvalp, caller_context_t *ct)
282 {
283 	offset_t off;
284 	int error;
285 	zfsvfs_t *zfsvfs;
286 	znode_t *zp;
287 
288 	switch (com) {
289 	case _FIOFFS:
290 		return (zfs_sync(vp->v_vfsp, 0, cred));
291 
292 		/*
293 		 * The following two ioctls are used by bfu.  Faking out,
294 		 * necessary to avoid bfu errors.
295 		 */
296 	case _FIOGDIO:
297 	case _FIOSDIO:
298 		return (0);
299 
300 	case _FIO_SEEK_DATA:
301 	case _FIO_SEEK_HOLE:
302 		if (ddi_copyin((void *)data, &off, sizeof (off), flag))
303 			return (EFAULT);
304 
305 		zp = VTOZ(vp);
306 		zfsvfs = zp->z_zfsvfs;
307 		ZFS_ENTER(zfsvfs);
308 		ZFS_VERIFY_ZP(zp);
309 
310 		/* offset parameter is in/out */
311 		error = zfs_holey(vp, com, &off);
312 		ZFS_EXIT(zfsvfs);
313 		if (error)
314 			return (error);
315 		if (ddi_copyout(&off, (void *)data, sizeof (off), flag))
316 			return (EFAULT);
317 		return (0);
318 	}
319 	return (ENOTTY);
320 }
321 
322 /*
323  * Utility functions to map and unmap a single physical page.  These
324  * are used to manage the mappable copies of ZFS file data, and therefore
325  * do not update ref/mod bits.
326  */
327 caddr_t
328 zfs_map_page(page_t *pp, enum seg_rw rw)
329 {
330 	if (kpm_enable)
331 		return (hat_kpm_mapin(pp, 0));
332 	ASSERT(rw == S_READ || rw == S_WRITE);
333 	return (ppmapin(pp, PROT_READ | ((rw == S_WRITE) ? PROT_WRITE : 0),
334 	    (caddr_t)-1));
335 }
336 
337 void
338 zfs_unmap_page(page_t *pp, caddr_t addr)
339 {
340 	if (kpm_enable) {
341 		hat_kpm_mapout(pp, 0, addr);
342 	} else {
343 		ppmapout(addr);
344 	}
345 }
346 
347 /*
348  * When a file is memory mapped, we must keep the IO data synchronized
349  * between the DMU cache and the memory mapped pages.  What this means:
350  *
351  * On Write:	If we find a memory mapped page, we write to *both*
352  *		the page and the dmu buffer.
353  */
354 static void
355 update_pages(vnode_t *vp, int64_t start, int len, objset_t *os, uint64_t oid)
356 {
357 	int64_t	off;
358 
359 	off = start & PAGEOFFSET;
360 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
361 		page_t *pp;
362 		uint64_t nbytes = MIN(PAGESIZE - off, len);
363 
364 		if (pp = page_lookup(vp, start, SE_SHARED)) {
365 			caddr_t va;
366 
367 			va = zfs_map_page(pp, S_WRITE);
368 			(void) dmu_read(os, oid, start+off, nbytes, va+off,
369 			    DMU_READ_PREFETCH);
370 			zfs_unmap_page(pp, va);
371 			page_unlock(pp);
372 		}
373 		len -= nbytes;
374 		off = 0;
375 	}
376 }
377 
378 /*
379  * When a file is memory mapped, we must keep the IO data synchronized
380  * between the DMU cache and the memory mapped pages.  What this means:
381  *
382  * On Read:	We "read" preferentially from memory mapped pages,
383  *		else we default from the dmu buffer.
384  *
385  * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
386  *	the file is memory mapped.
387  */
388 static int
389 mappedread(vnode_t *vp, int nbytes, uio_t *uio)
390 {
391 	znode_t *zp = VTOZ(vp);
392 	objset_t *os = zp->z_zfsvfs->z_os;
393 	int64_t	start, off;
394 	int len = nbytes;
395 	int error = 0;
396 
397 	start = uio->uio_loffset;
398 	off = start & PAGEOFFSET;
399 	for (start &= PAGEMASK; len > 0; start += PAGESIZE) {
400 		page_t *pp;
401 		uint64_t bytes = MIN(PAGESIZE - off, len);
402 
403 		if (pp = page_lookup(vp, start, SE_SHARED)) {
404 			caddr_t va;
405 
406 			va = zfs_map_page(pp, S_READ);
407 			error = uiomove(va + off, bytes, UIO_READ, uio);
408 			zfs_unmap_page(pp, va);
409 			page_unlock(pp);
410 		} else {
411 			error = dmu_read_uio(os, zp->z_id, uio, bytes);
412 		}
413 		len -= bytes;
414 		off = 0;
415 		if (error)
416 			break;
417 	}
418 	return (error);
419 }
420 
421 offset_t zfs_read_chunk_size = 1024 * 1024; /* Tunable */
422 
423 /*
424  * Read bytes from specified file into supplied buffer.
425  *
426  *	IN:	vp	- vnode of file to be read from.
427  *		uio	- structure supplying read location, range info,
428  *			  and return buffer.
429  *		ioflag	- SYNC flags; used to provide FRSYNC semantics.
430  *		cr	- credentials of caller.
431  *		ct	- caller context
432  *
433  *	OUT:	uio	- updated offset and range, buffer filled.
434  *
435  *	RETURN:	0 if success
436  *		error code if failure
437  *
438  * Side Effects:
439  *	vp - atime updated if byte count > 0
440  */
441 /* ARGSUSED */
442 static int
443 zfs_read(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
444 {
445 	znode_t		*zp = VTOZ(vp);
446 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
447 	objset_t	*os;
448 	ssize_t		n, nbytes;
449 	int		error;
450 	rl_t		*rl;
451 	xuio_t		*xuio = NULL;
452 
453 	ZFS_ENTER(zfsvfs);
454 	ZFS_VERIFY_ZP(zp);
455 	os = zfsvfs->z_os;
456 
457 	if (zp->z_pflags & ZFS_AV_QUARANTINED) {
458 		ZFS_EXIT(zfsvfs);
459 		return (EACCES);
460 	}
461 
462 	/*
463 	 * Validate file offset
464 	 */
465 	if (uio->uio_loffset < (offset_t)0) {
466 		ZFS_EXIT(zfsvfs);
467 		return (EINVAL);
468 	}
469 
470 	/*
471 	 * Fasttrack empty reads
472 	 */
473 	if (uio->uio_resid == 0) {
474 		ZFS_EXIT(zfsvfs);
475 		return (0);
476 	}
477 
478 	/*
479 	 * Check for mandatory locks
480 	 */
481 	if (MANDMODE(zp->z_mode)) {
482 		if (error = chklock(vp, FREAD,
483 		    uio->uio_loffset, uio->uio_resid, uio->uio_fmode, ct)) {
484 			ZFS_EXIT(zfsvfs);
485 			return (error);
486 		}
487 	}
488 
489 	/*
490 	 * If we're in FRSYNC mode, sync out this znode before reading it.
491 	 */
492 	if (ioflag & FRSYNC || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
493 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
494 
495 	/*
496 	 * Lock the range against changes.
497 	 */
498 	rl = zfs_range_lock(zp, uio->uio_loffset, uio->uio_resid, RL_READER);
499 
500 	/*
501 	 * If we are reading past end-of-file we can skip
502 	 * to the end; but we might still need to set atime.
503 	 */
504 	if (uio->uio_loffset >= zp->z_size) {
505 		error = 0;
506 		goto out;
507 	}
508 
509 	ASSERT(uio->uio_loffset < zp->z_size);
510 	n = MIN(uio->uio_resid, zp->z_size - uio->uio_loffset);
511 
512 	if ((uio->uio_extflg == UIO_XUIO) &&
513 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY)) {
514 		int nblk;
515 		int blksz = zp->z_blksz;
516 		uint64_t offset = uio->uio_loffset;
517 
518 		xuio = (xuio_t *)uio;
519 		if ((ISP2(blksz))) {
520 			nblk = (P2ROUNDUP(offset + n, blksz) - P2ALIGN(offset,
521 			    blksz)) / blksz;
522 		} else {
523 			ASSERT(offset + n <= blksz);
524 			nblk = 1;
525 		}
526 		(void) dmu_xuio_init(xuio, nblk);
527 
528 		if (vn_has_cached_data(vp)) {
529 			/*
530 			 * For simplicity, we always allocate a full buffer
531 			 * even if we only expect to read a portion of a block.
532 			 */
533 			while (--nblk >= 0) {
534 				(void) dmu_xuio_add(xuio,
535 				    dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
536 				    blksz), 0, blksz);
537 			}
538 		}
539 	}
540 
541 	while (n > 0) {
542 		nbytes = MIN(n, zfs_read_chunk_size -
543 		    P2PHASE(uio->uio_loffset, zfs_read_chunk_size));
544 
545 		if (vn_has_cached_data(vp))
546 			error = mappedread(vp, nbytes, uio);
547 		else
548 			error = dmu_read_uio(os, zp->z_id, uio, nbytes);
549 		if (error) {
550 			/* convert checksum errors into IO errors */
551 			if (error == ECKSUM)
552 				error = EIO;
553 			break;
554 		}
555 
556 		n -= nbytes;
557 	}
558 out:
559 	zfs_range_unlock(rl);
560 
561 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
562 	ZFS_EXIT(zfsvfs);
563 	return (error);
564 }
565 
566 /*
567  * Write the bytes to a file.
568  *
569  *	IN:	vp	- vnode of file to be written to.
570  *		uio	- structure supplying write location, range info,
571  *			  and data buffer.
572  *		ioflag	- FAPPEND flag set if in append mode.
573  *		cr	- credentials of caller.
574  *		ct	- caller context (NFS/CIFS fem monitor only)
575  *
576  *	OUT:	uio	- updated offset and range.
577  *
578  *	RETURN:	0 if success
579  *		error code if failure
580  *
581  * Timestamps:
582  *	vp - ctime|mtime updated if byte count > 0
583  */
584 
585 /* ARGSUSED */
586 static int
587 zfs_write(vnode_t *vp, uio_t *uio, int ioflag, cred_t *cr, caller_context_t *ct)
588 {
589 	znode_t		*zp = VTOZ(vp);
590 	rlim64_t	limit = uio->uio_llimit;
591 	ssize_t		start_resid = uio->uio_resid;
592 	ssize_t		tx_bytes;
593 	uint64_t	end_size;
594 	dmu_tx_t	*tx;
595 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
596 	zilog_t		*zilog;
597 	offset_t	woff;
598 	ssize_t		n, nbytes;
599 	rl_t		*rl;
600 	int		max_blksz = zfsvfs->z_max_blksz;
601 	int		error;
602 	arc_buf_t	*abuf;
603 	iovec_t		*aiov;
604 	xuio_t		*xuio = NULL;
605 	int		i_iov = 0;
606 	int		iovcnt = uio->uio_iovcnt;
607 	iovec_t		*iovp = uio->uio_iov;
608 	int		write_eof;
609 	int		count = 0;
610 	sa_bulk_attr_t	bulk[4];
611 	uint64_t	mtime[2], ctime[2];
612 
613 	/*
614 	 * Fasttrack empty write
615 	 */
616 	n = start_resid;
617 	if (n == 0)
618 		return (0);
619 
620 	if (limit == RLIM64_INFINITY || limit > MAXOFFSET_T)
621 		limit = MAXOFFSET_T;
622 
623 	ZFS_ENTER(zfsvfs);
624 	ZFS_VERIFY_ZP(zp);
625 
626 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
627 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
628 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
629 	    &zp->z_size, 8);
630 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
631 	    &zp->z_pflags, 8);
632 
633 	/*
634 	 * If immutable or not appending then return EPERM
635 	 */
636 	if ((zp->z_pflags & (ZFS_IMMUTABLE | ZFS_READONLY)) ||
637 	    ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & FAPPEND) &&
638 	    (uio->uio_loffset < zp->z_size))) {
639 		ZFS_EXIT(zfsvfs);
640 		return (EPERM);
641 	}
642 
643 	zilog = zfsvfs->z_log;
644 
645 	/*
646 	 * Validate file offset
647 	 */
648 	woff = ioflag & FAPPEND ? zp->z_size : uio->uio_loffset;
649 	if (woff < 0) {
650 		ZFS_EXIT(zfsvfs);
651 		return (EINVAL);
652 	}
653 
654 	/*
655 	 * Check for mandatory locks before calling zfs_range_lock()
656 	 * in order to prevent a deadlock with locks set via fcntl().
657 	 */
658 	if (MANDMODE((mode_t)zp->z_mode) &&
659 	    (error = chklock(vp, FWRITE, woff, n, uio->uio_fmode, ct)) != 0) {
660 		ZFS_EXIT(zfsvfs);
661 		return (error);
662 	}
663 
664 	/*
665 	 * Pre-fault the pages to ensure slow (eg NFS) pages
666 	 * don't hold up txg.
667 	 * Skip this if uio contains loaned arc_buf.
668 	 */
669 	if ((uio->uio_extflg == UIO_XUIO) &&
670 	    (((xuio_t *)uio)->xu_type == UIOTYPE_ZEROCOPY))
671 		xuio = (xuio_t *)uio;
672 	else
673 		uio_prefaultpages(n, uio);
674 
675 	/*
676 	 * If in append mode, set the io offset pointer to eof.
677 	 */
678 	if (ioflag & FAPPEND) {
679 		/*
680 		 * Obtain an appending range lock to guarantee file append
681 		 * semantics.  We reset the write offset once we have the lock.
682 		 */
683 		rl = zfs_range_lock(zp, 0, n, RL_APPEND);
684 		woff = rl->r_off;
685 		if (rl->r_len == UINT64_MAX) {
686 			/*
687 			 * We overlocked the file because this write will cause
688 			 * the file block size to increase.
689 			 * Note that zp_size cannot change with this lock held.
690 			 */
691 			woff = zp->z_size;
692 		}
693 		uio->uio_loffset = woff;
694 	} else {
695 		/*
696 		 * Note that if the file block size will change as a result of
697 		 * this write, then this range lock will lock the entire file
698 		 * so that we can re-write the block safely.
699 		 */
700 		rl = zfs_range_lock(zp, woff, n, RL_WRITER);
701 	}
702 
703 	if (woff >= limit) {
704 		zfs_range_unlock(rl);
705 		ZFS_EXIT(zfsvfs);
706 		return (EFBIG);
707 	}
708 
709 	if ((woff + n) > limit || woff > (limit - n))
710 		n = limit - woff;
711 
712 	/* Will this write extend the file length? */
713 	write_eof = (woff + n > zp->z_size);
714 
715 	end_size = MAX(zp->z_size, woff + n);
716 
717 	/*
718 	 * Write the file in reasonable size chunks.  Each chunk is written
719 	 * in a separate transaction; this keeps the intent log records small
720 	 * and allows us to do more fine-grained space accounting.
721 	 */
722 	while (n > 0) {
723 		abuf = NULL;
724 		woff = uio->uio_loffset;
725 again:
726 		if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
727 		    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
728 			if (abuf != NULL)
729 				dmu_return_arcbuf(abuf);
730 			error = EDQUOT;
731 			break;
732 		}
733 
734 		if (xuio && abuf == NULL) {
735 			ASSERT(i_iov < iovcnt);
736 			aiov = &iovp[i_iov];
737 			abuf = dmu_xuio_arcbuf(xuio, i_iov);
738 			dmu_xuio_clear(xuio, i_iov);
739 			DTRACE_PROBE3(zfs_cp_write, int, i_iov,
740 			    iovec_t *, aiov, arc_buf_t *, abuf);
741 			ASSERT((aiov->iov_base == abuf->b_data) ||
742 			    ((char *)aiov->iov_base - (char *)abuf->b_data +
743 			    aiov->iov_len == arc_buf_size(abuf)));
744 			i_iov++;
745 		} else if (abuf == NULL && n >= max_blksz &&
746 		    woff >= zp->z_size &&
747 		    P2PHASE(woff, max_blksz) == 0 &&
748 		    zp->z_blksz == max_blksz) {
749 			/*
750 			 * This write covers a full block.  "Borrow" a buffer
751 			 * from the dmu so that we can fill it before we enter
752 			 * a transaction.  This avoids the possibility of
753 			 * holding up the transaction if the data copy hangs
754 			 * up on a pagefault (e.g., from an NFS server mapping).
755 			 */
756 			size_t cbytes;
757 
758 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
759 			    max_blksz);
760 			ASSERT(abuf != NULL);
761 			ASSERT(arc_buf_size(abuf) == max_blksz);
762 			if (error = uiocopy(abuf->b_data, max_blksz,
763 			    UIO_WRITE, uio, &cbytes)) {
764 				dmu_return_arcbuf(abuf);
765 				break;
766 			}
767 			ASSERT(cbytes == max_blksz);
768 		}
769 
770 		/*
771 		 * Start a transaction.
772 		 */
773 		tx = dmu_tx_create(zfsvfs->z_os);
774 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
775 		dmu_tx_hold_write(tx, zp->z_id, woff, MIN(n, max_blksz));
776 		zfs_sa_upgrade_txholds(tx, zp);
777 		error = dmu_tx_assign(tx, TXG_NOWAIT);
778 		if (error) {
779 			if (error == ERESTART) {
780 				dmu_tx_wait(tx);
781 				dmu_tx_abort(tx);
782 				goto again;
783 			}
784 			dmu_tx_abort(tx);
785 			if (abuf != NULL)
786 				dmu_return_arcbuf(abuf);
787 			break;
788 		}
789 
790 		/*
791 		 * If zfs_range_lock() over-locked we grow the blocksize
792 		 * and then reduce the lock range.  This will only happen
793 		 * on the first iteration since zfs_range_reduce() will
794 		 * shrink down r_len to the appropriate size.
795 		 */
796 		if (rl->r_len == UINT64_MAX) {
797 			uint64_t new_blksz;
798 
799 			if (zp->z_blksz > max_blksz) {
800 				ASSERT(!ISP2(zp->z_blksz));
801 				new_blksz = MIN(end_size, SPA_MAXBLOCKSIZE);
802 			} else {
803 				new_blksz = MIN(end_size, max_blksz);
804 			}
805 			zfs_grow_blocksize(zp, new_blksz, tx);
806 			zfs_range_reduce(rl, woff, n);
807 		}
808 
809 		/*
810 		 * XXX - should we really limit each write to z_max_blksz?
811 		 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
812 		 */
813 		nbytes = MIN(n, max_blksz - P2PHASE(woff, max_blksz));
814 
815 		if (abuf == NULL) {
816 			tx_bytes = uio->uio_resid;
817 			error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
818 			    uio, nbytes, tx);
819 			tx_bytes -= uio->uio_resid;
820 		} else {
821 			tx_bytes = nbytes;
822 			ASSERT(xuio == NULL || tx_bytes == aiov->iov_len);
823 			/*
824 			 * If this is not a full block write, but we are
825 			 * extending the file past EOF and this data starts
826 			 * block-aligned, use assign_arcbuf().  Otherwise,
827 			 * write via dmu_write().
828 			 */
829 			if (tx_bytes < max_blksz && (!write_eof ||
830 			    aiov->iov_base != abuf->b_data)) {
831 				ASSERT(xuio);
832 				dmu_write(zfsvfs->z_os, zp->z_id, woff,
833 				    aiov->iov_len, aiov->iov_base, tx);
834 				dmu_return_arcbuf(abuf);
835 				xuio_stat_wbuf_copied();
836 			} else {
837 				ASSERT(xuio || tx_bytes == max_blksz);
838 				dmu_assign_arcbuf(sa_get_db(zp->z_sa_hdl),
839 				    woff, abuf, tx);
840 			}
841 			ASSERT(tx_bytes <= uio->uio_resid);
842 			uioskip(uio, tx_bytes);
843 		}
844 		if (tx_bytes && vn_has_cached_data(vp)) {
845 			update_pages(vp, woff,
846 			    tx_bytes, zfsvfs->z_os, zp->z_id);
847 		}
848 
849 		/*
850 		 * If we made no progress, we're done.  If we made even
851 		 * partial progress, update the znode and ZIL accordingly.
852 		 */
853 		if (tx_bytes == 0) {
854 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
855 			    (void *)&zp->z_size, sizeof (uint64_t), tx);
856 			dmu_tx_commit(tx);
857 			ASSERT(error != 0);
858 			break;
859 		}
860 
861 		/*
862 		 * Clear Set-UID/Set-GID bits on successful write if not
863 		 * privileged and at least one of the excute bits is set.
864 		 *
865 		 * It would be nice to to this after all writes have
866 		 * been done, but that would still expose the ISUID/ISGID
867 		 * to another app after the partial write is committed.
868 		 *
869 		 */
870 		mutex_enter(&zp->z_acl_lock);
871 		if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) |
872 		    (S_IXUSR >> 6))) != 0 &&
873 		    (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
874 		    secpolicy_vnode_setid_retain(cr,
875 		    (zp->z_mode & S_ISUID) != 0 && zp->z_uid == 0) != 0) {
876 			uint64_t newmode;
877 			zp->z_mode &= ~(S_ISUID | S_ISGID);
878 			newmode = zp->z_mode;
879 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
880 			    (void *)&newmode, sizeof (uint64_t), tx);
881 		}
882 		mutex_exit(&zp->z_acl_lock);
883 
884 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
885 		    B_TRUE);
886 
887 		/*
888 		 * Update the file size (zp_size) if it has changed;
889 		 * account for possible concurrent updates.
890 		 */
891 		while ((end_size = zp->z_size) < uio->uio_loffset) {
892 			(void) atomic_cas_64(&zp->z_size, end_size,
893 			    uio->uio_loffset);
894 			ASSERT(error == 0);
895 		}
896 		error = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
897 
898 		zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag);
899 		dmu_tx_commit(tx);
900 
901 		if (error != 0)
902 			break;
903 		ASSERT(tx_bytes == nbytes);
904 		n -= nbytes;
905 	}
906 
907 	zfs_range_unlock(rl);
908 
909 	/*
910 	 * If we're in replay mode, or we made no progress, return error.
911 	 * Otherwise, it's at least a partial write, so it's successful.
912 	 */
913 	if (zfsvfs->z_replay || uio->uio_resid == start_resid) {
914 		ZFS_EXIT(zfsvfs);
915 		return (error);
916 	}
917 
918 	if (ioflag & (FSYNC | FDSYNC) ||
919 	    zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
920 		zil_commit(zilog, zp->z_last_itx, zp->z_id);
921 
922 	ZFS_EXIT(zfsvfs);
923 	return (0);
924 }
925 
926 void
927 zfs_get_done(zgd_t *zgd, int error)
928 {
929 	znode_t *zp = zgd->zgd_private;
930 	objset_t *os = zp->z_zfsvfs->z_os;
931 
932 	if (zgd->zgd_db)
933 		dmu_buf_rele(zgd->zgd_db, zgd);
934 
935 	zfs_range_unlock(zgd->zgd_rl);
936 
937 	/*
938 	 * Release the vnode asynchronously as we currently have the
939 	 * txg stopped from syncing.
940 	 */
941 	VN_RELE_ASYNC(ZTOV(zp), dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
942 
943 	if (error == 0 && zgd->zgd_bp)
944 		zil_add_block(zgd->zgd_zilog, zgd->zgd_bp);
945 
946 	kmem_free(zgd, sizeof (zgd_t));
947 }
948 
949 #ifdef DEBUG
950 static int zil_fault_io = 0;
951 #endif
952 
953 /*
954  * Get data to generate a TX_WRITE intent log record.
955  */
956 int
957 zfs_get_data(void *arg, lr_write_t *lr, char *buf, zio_t *zio)
958 {
959 	zfsvfs_t *zfsvfs = arg;
960 	objset_t *os = zfsvfs->z_os;
961 	znode_t *zp;
962 	uint64_t object = lr->lr_foid;
963 	uint64_t offset = lr->lr_offset;
964 	uint64_t size = lr->lr_length;
965 	blkptr_t *bp = &lr->lr_blkptr;
966 	dmu_buf_t *db;
967 	zgd_t *zgd;
968 	int error = 0;
969 
970 	ASSERT(zio != NULL);
971 	ASSERT(size != 0);
972 
973 	/*
974 	 * Nothing to do if the file has been removed
975 	 */
976 	if (zfs_zget(zfsvfs, object, &zp) != 0)
977 		return (ENOENT);
978 	if (zp->z_unlinked) {
979 		/*
980 		 * Release the vnode asynchronously as we currently have the
981 		 * txg stopped from syncing.
982 		 */
983 		VN_RELE_ASYNC(ZTOV(zp),
984 		    dsl_pool_vnrele_taskq(dmu_objset_pool(os)));
985 		return (ENOENT);
986 	}
987 
988 	zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
989 	zgd->zgd_zilog = zfsvfs->z_log;
990 	zgd->zgd_private = zp;
991 
992 	/*
993 	 * Write records come in two flavors: immediate and indirect.
994 	 * For small writes it's cheaper to store the data with the
995 	 * log record (immediate); for large writes it's cheaper to
996 	 * sync the data and get a pointer to it (indirect) so that
997 	 * we don't have to write the data twice.
998 	 */
999 	if (buf != NULL) { /* immediate write */
1000 		zgd->zgd_rl = zfs_range_lock(zp, offset, size, RL_READER);
1001 		/* test for truncation needs to be done while range locked */
1002 		if (offset >= zp->z_size) {
1003 			error = ENOENT;
1004 		} else {
1005 			error = dmu_read(os, object, offset, size, buf,
1006 			    DMU_READ_NO_PREFETCH);
1007 		}
1008 		ASSERT(error == 0 || error == ENOENT);
1009 	} else { /* indirect write */
1010 		/*
1011 		 * Have to lock the whole block to ensure when it's
1012 		 * written out and it's checksum is being calculated
1013 		 * that no one can change the data. We need to re-check
1014 		 * blocksize after we get the lock in case it's changed!
1015 		 */
1016 		for (;;) {
1017 			uint64_t blkoff;
1018 			size = zp->z_blksz;
1019 			blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
1020 			offset -= blkoff;
1021 			zgd->zgd_rl = zfs_range_lock(zp, offset, size,
1022 			    RL_READER);
1023 			if (zp->z_blksz == size)
1024 				break;
1025 			offset += blkoff;
1026 			zfs_range_unlock(zgd->zgd_rl);
1027 		}
1028 		/* test for truncation needs to be done while range locked */
1029 		if (lr->lr_offset >= zp->z_size)
1030 			error = ENOENT;
1031 #ifdef DEBUG
1032 		if (zil_fault_io) {
1033 			error = EIO;
1034 			zil_fault_io = 0;
1035 		}
1036 #endif
1037 		if (error == 0)
1038 			error = dmu_buf_hold(os, object, offset, zgd, &db,
1039 			    DMU_READ_NO_PREFETCH);
1040 
1041 		if (error == 0) {
1042 			zgd->zgd_db = db;
1043 			zgd->zgd_bp = bp;
1044 
1045 			ASSERT(db->db_offset == offset);
1046 			ASSERT(db->db_size == size);
1047 
1048 			error = dmu_sync(zio, lr->lr_common.lrc_txg,
1049 			    zfs_get_done, zgd);
1050 			ASSERT(error || lr->lr_length <= zp->z_blksz);
1051 
1052 			/*
1053 			 * On success, we need to wait for the write I/O
1054 			 * initiated by dmu_sync() to complete before we can
1055 			 * release this dbuf.  We will finish everything up
1056 			 * in the zfs_get_done() callback.
1057 			 */
1058 			if (error == 0)
1059 				return (0);
1060 
1061 			if (error == EALREADY) {
1062 				lr->lr_common.lrc_txtype = TX_WRITE2;
1063 				error = 0;
1064 			}
1065 		}
1066 	}
1067 
1068 	zfs_get_done(zgd, error);
1069 
1070 	return (error);
1071 }
1072 
1073 /*ARGSUSED*/
1074 static int
1075 zfs_access(vnode_t *vp, int mode, int flag, cred_t *cr,
1076     caller_context_t *ct)
1077 {
1078 	znode_t *zp = VTOZ(vp);
1079 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
1080 	int error;
1081 
1082 	ZFS_ENTER(zfsvfs);
1083 	ZFS_VERIFY_ZP(zp);
1084 
1085 	if (flag & V_ACE_MASK)
1086 		error = zfs_zaccess(zp, mode, flag, B_FALSE, cr);
1087 	else
1088 		error = zfs_zaccess_rwx(zp, mode, flag, cr);
1089 
1090 	ZFS_EXIT(zfsvfs);
1091 	return (error);
1092 }
1093 
1094 /*
1095  * If vnode is for a device return a specfs vnode instead.
1096  */
1097 static int
1098 specvp_check(vnode_t **vpp, cred_t *cr)
1099 {
1100 	int error = 0;
1101 
1102 	if (IS_DEVVP(*vpp)) {
1103 		struct vnode *svp;
1104 
1105 		svp = specvp(*vpp, (*vpp)->v_rdev, (*vpp)->v_type, cr);
1106 		VN_RELE(*vpp);
1107 		if (svp == NULL)
1108 			error = ENOSYS;
1109 		*vpp = svp;
1110 	}
1111 	return (error);
1112 }
1113 
1114 
1115 /*
1116  * Lookup an entry in a directory, or an extended attribute directory.
1117  * If it exists, return a held vnode reference for it.
1118  *
1119  *	IN:	dvp	- vnode of directory to search.
1120  *		nm	- name of entry to lookup.
1121  *		pnp	- full pathname to lookup [UNUSED].
1122  *		flags	- LOOKUP_XATTR set if looking for an attribute.
1123  *		rdir	- root directory vnode [UNUSED].
1124  *		cr	- credentials of caller.
1125  *		ct	- caller context
1126  *		direntflags - directory lookup flags
1127  *		realpnp - returned pathname.
1128  *
1129  *	OUT:	vpp	- vnode of located entry, NULL if not found.
1130  *
1131  *	RETURN:	0 if success
1132  *		error code if failure
1133  *
1134  * Timestamps:
1135  *	NA
1136  */
1137 /* ARGSUSED */
1138 static int
1139 zfs_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, struct pathname *pnp,
1140     int flags, vnode_t *rdir, cred_t *cr,  caller_context_t *ct,
1141     int *direntflags, pathname_t *realpnp)
1142 {
1143 	znode_t *zdp = VTOZ(dvp);
1144 	zfsvfs_t *zfsvfs = zdp->z_zfsvfs;
1145 	int	error = 0;
1146 
1147 	/* fast path */
1148 	if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
1149 
1150 		if (dvp->v_type != VDIR) {
1151 			return (ENOTDIR);
1152 		} else if (zdp->z_sa_hdl == NULL) {
1153 			return (EIO);
1154 		}
1155 
1156 		if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
1157 			error = zfs_fastaccesschk_execute(zdp, cr);
1158 			if (!error) {
1159 				*vpp = dvp;
1160 				VN_HOLD(*vpp);
1161 				return (0);
1162 			}
1163 			return (error);
1164 		} else {
1165 			vnode_t *tvp = dnlc_lookup(dvp, nm);
1166 
1167 			if (tvp) {
1168 				error = zfs_fastaccesschk_execute(zdp, cr);
1169 				if (error) {
1170 					VN_RELE(tvp);
1171 					return (error);
1172 				}
1173 				if (tvp == DNLC_NO_VNODE) {
1174 					VN_RELE(tvp);
1175 					return (ENOENT);
1176 				} else {
1177 					*vpp = tvp;
1178 					return (specvp_check(vpp, cr));
1179 				}
1180 			}
1181 		}
1182 	}
1183 
1184 	DTRACE_PROBE2(zfs__fastpath__lookup__miss, vnode_t *, dvp, char *, nm);
1185 
1186 	ZFS_ENTER(zfsvfs);
1187 	ZFS_VERIFY_ZP(zdp);
1188 
1189 	*vpp = NULL;
1190 
1191 	if (flags & LOOKUP_XATTR) {
1192 		/*
1193 		 * If the xattr property is off, refuse the lookup request.
1194 		 */
1195 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_XATTR)) {
1196 			ZFS_EXIT(zfsvfs);
1197 			return (EINVAL);
1198 		}
1199 
1200 		/*
1201 		 * We don't allow recursive attributes..
1202 		 * Maybe someday we will.
1203 		 */
1204 		if (zdp->z_pflags & ZFS_XATTR) {
1205 			ZFS_EXIT(zfsvfs);
1206 			return (EINVAL);
1207 		}
1208 
1209 		if (error = zfs_get_xattrdir(VTOZ(dvp), vpp, cr, flags)) {
1210 			ZFS_EXIT(zfsvfs);
1211 			return (error);
1212 		}
1213 
1214 		/*
1215 		 * Do we have permission to get into attribute directory?
1216 		 */
1217 
1218 		if (error = zfs_zaccess(VTOZ(*vpp), ACE_EXECUTE, 0,
1219 		    B_FALSE, cr)) {
1220 			VN_RELE(*vpp);
1221 			*vpp = NULL;
1222 		}
1223 
1224 		ZFS_EXIT(zfsvfs);
1225 		return (error);
1226 	}
1227 
1228 	if (dvp->v_type != VDIR) {
1229 		ZFS_EXIT(zfsvfs);
1230 		return (ENOTDIR);
1231 	}
1232 
1233 	/*
1234 	 * Check accessibility of directory.
1235 	 */
1236 
1237 	if (error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr)) {
1238 		ZFS_EXIT(zfsvfs);
1239 		return (error);
1240 	}
1241 
1242 	if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
1243 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1244 		ZFS_EXIT(zfsvfs);
1245 		return (EILSEQ);
1246 	}
1247 
1248 	error = zfs_dirlook(zdp, nm, vpp, flags, direntflags, realpnp);
1249 	if (error == 0)
1250 		error = specvp_check(vpp, cr);
1251 
1252 	ZFS_EXIT(zfsvfs);
1253 	return (error);
1254 }
1255 
1256 /*
1257  * Attempt to create a new entry in a directory.  If the entry
1258  * already exists, truncate the file if permissible, else return
1259  * an error.  Return the vp of the created or trunc'd file.
1260  *
1261  *	IN:	dvp	- vnode of directory to put new file entry in.
1262  *		name	- name of new file entry.
1263  *		vap	- attributes of new file.
1264  *		excl	- flag indicating exclusive or non-exclusive mode.
1265  *		mode	- mode to open file with.
1266  *		cr	- credentials of caller.
1267  *		flag	- large file flag [UNUSED].
1268  *		ct	- caller context
1269  *		vsecp 	- ACL to be set
1270  *
1271  *	OUT:	vpp	- vnode of created or trunc'd entry.
1272  *
1273  *	RETURN:	0 if success
1274  *		error code if failure
1275  *
1276  * Timestamps:
1277  *	dvp - ctime|mtime updated if new entry created
1278  *	 vp - ctime|mtime always, atime if new
1279  */
1280 
1281 /* ARGSUSED */
1282 static int
1283 zfs_create(vnode_t *dvp, char *name, vattr_t *vap, vcexcl_t excl,
1284     int mode, vnode_t **vpp, cred_t *cr, int flag, caller_context_t *ct,
1285     vsecattr_t *vsecp)
1286 {
1287 	znode_t		*zp, *dzp = VTOZ(dvp);
1288 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1289 	zilog_t		*zilog;
1290 	objset_t	*os;
1291 	zfs_dirlock_t	*dl;
1292 	dmu_tx_t	*tx;
1293 	int		error;
1294 	ksid_t		*ksid;
1295 	uid_t		uid;
1296 	gid_t		gid = crgetgid(cr);
1297 	zfs_acl_ids_t   acl_ids;
1298 	boolean_t	fuid_dirtied;
1299 	boolean_t	have_acl = B_FALSE;
1300 
1301 	/*
1302 	 * If we have an ephemeral id, ACL, or XVATTR then
1303 	 * make sure file system is at proper version
1304 	 */
1305 
1306 	ksid = crgetsid(cr, KSID_OWNER);
1307 	if (ksid)
1308 		uid = ksid_getid(ksid);
1309 	else
1310 		uid = crgetuid(cr);
1311 
1312 	if (zfsvfs->z_use_fuids == B_FALSE &&
1313 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1314 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1315 		return (EINVAL);
1316 
1317 	ZFS_ENTER(zfsvfs);
1318 	ZFS_VERIFY_ZP(dzp);
1319 	os = zfsvfs->z_os;
1320 	zilog = zfsvfs->z_log;
1321 
1322 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
1323 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1324 		ZFS_EXIT(zfsvfs);
1325 		return (EILSEQ);
1326 	}
1327 
1328 	if (vap->va_mask & AT_XVATTR) {
1329 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1330 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1331 			ZFS_EXIT(zfsvfs);
1332 			return (error);
1333 		}
1334 	}
1335 top:
1336 	*vpp = NULL;
1337 
1338 	if ((vap->va_mode & VSVTX) && secpolicy_vnode_stky_modify(cr))
1339 		vap->va_mode &= ~VSVTX;
1340 
1341 	if (*name == '\0') {
1342 		/*
1343 		 * Null component name refers to the directory itself.
1344 		 */
1345 		VN_HOLD(dvp);
1346 		zp = dzp;
1347 		dl = NULL;
1348 		error = 0;
1349 	} else {
1350 		/* possible VN_HOLD(zp) */
1351 		int zflg = 0;
1352 
1353 		if (flag & FIGNORECASE)
1354 			zflg |= ZCILOOK;
1355 
1356 		error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1357 		    NULL, NULL);
1358 		if (error) {
1359 			if (strcmp(name, "..") == 0)
1360 				error = EISDIR;
1361 			ZFS_EXIT(zfsvfs);
1362 			return (error);
1363 		}
1364 	}
1365 
1366 	if (zp == NULL) {
1367 		uint64_t txtype;
1368 
1369 		/*
1370 		 * Create a new file object and update the directory
1371 		 * to reference it.
1372 		 */
1373 		if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
1374 			goto out;
1375 		}
1376 
1377 		/*
1378 		 * We only support the creation of regular files in
1379 		 * extended attribute directories.
1380 		 */
1381 
1382 		if ((dzp->z_pflags & ZFS_XATTR) &&
1383 		    (vap->va_type != VREG)) {
1384 			error = EINVAL;
1385 			goto out;
1386 		}
1387 
1388 		if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
1389 		    cr, vsecp, &acl_ids)) != 0)
1390 			goto out;
1391 		have_acl = B_TRUE;
1392 
1393 		if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1394 			zfs_acl_ids_free(&acl_ids);
1395 			error = EDQUOT;
1396 			goto out;
1397 		}
1398 
1399 		tx = dmu_tx_create(os);
1400 
1401 		dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1402 		    ZFS_SA_BASE_ATTR_SIZE);
1403 
1404 		fuid_dirtied = zfsvfs->z_fuid_dirty;
1405 		if (fuid_dirtied)
1406 			zfs_fuid_txhold(zfsvfs, tx);
1407 		dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
1408 		dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
1409 		if (!zfsvfs->z_use_sa &&
1410 		    acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1411 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
1412 			    0, acl_ids.z_aclp->z_acl_bytes);
1413 		}
1414 		error = dmu_tx_assign(tx, TXG_NOWAIT);
1415 		if (error) {
1416 			zfs_dirent_unlock(dl);
1417 			if (error == ERESTART) {
1418 				dmu_tx_wait(tx);
1419 				dmu_tx_abort(tx);
1420 				goto top;
1421 			}
1422 			zfs_acl_ids_free(&acl_ids);
1423 			dmu_tx_abort(tx);
1424 			ZFS_EXIT(zfsvfs);
1425 			return (error);
1426 		}
1427 		zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1428 
1429 		if (fuid_dirtied)
1430 			zfs_fuid_sync(zfsvfs, tx);
1431 
1432 		(void) zfs_link_create(dl, zp, tx, ZNEW);
1433 		txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
1434 		if (flag & FIGNORECASE)
1435 			txtype |= TX_CI;
1436 		zfs_log_create(zilog, tx, txtype, dzp, zp, name,
1437 		    vsecp, acl_ids.z_fuidp, vap);
1438 		zfs_acl_ids_free(&acl_ids);
1439 		dmu_tx_commit(tx);
1440 	} else {
1441 		int aflags = (flag & FAPPEND) ? V_APPEND : 0;
1442 
1443 		/*
1444 		 * A directory entry already exists for this name.
1445 		 */
1446 		/*
1447 		 * Can't truncate an existing file if in exclusive mode.
1448 		 */
1449 		if (excl == EXCL) {
1450 			error = EEXIST;
1451 			goto out;
1452 		}
1453 		/*
1454 		 * Can't open a directory for writing.
1455 		 */
1456 		if ((ZTOV(zp)->v_type == VDIR) && (mode & S_IWRITE)) {
1457 			error = EISDIR;
1458 			goto out;
1459 		}
1460 		/*
1461 		 * Verify requested access to file.
1462 		 */
1463 		if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
1464 			goto out;
1465 		}
1466 
1467 		mutex_enter(&dzp->z_lock);
1468 		dzp->z_seq++;
1469 		mutex_exit(&dzp->z_lock);
1470 
1471 		/*
1472 		 * Truncate regular files if requested.
1473 		 */
1474 		if ((ZTOV(zp)->v_type == VREG) &&
1475 		    (vap->va_mask & AT_SIZE) && (vap->va_size == 0)) {
1476 			/* we can't hold any locks when calling zfs_freesp() */
1477 			zfs_dirent_unlock(dl);
1478 			dl = NULL;
1479 			error = zfs_freesp(zp, 0, 0, mode, TRUE);
1480 			if (error == 0) {
1481 				vnevent_create(ZTOV(zp), ct);
1482 			}
1483 		}
1484 	}
1485 out:
1486 
1487 	if (dl)
1488 		zfs_dirent_unlock(dl);
1489 
1490 	if (error) {
1491 		if (zp)
1492 			VN_RELE(ZTOV(zp));
1493 	} else {
1494 		*vpp = ZTOV(zp);
1495 		error = specvp_check(vpp, cr);
1496 	}
1497 
1498 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1499 		zil_commit(zilog, UINT64_MAX, 0);
1500 
1501 	ZFS_EXIT(zfsvfs);
1502 	return (error);
1503 }
1504 
1505 /*
1506  * Remove an entry from a directory.
1507  *
1508  *	IN:	dvp	- vnode of directory to remove entry from.
1509  *		name	- name of entry to remove.
1510  *		cr	- credentials of caller.
1511  *		ct	- caller context
1512  *		flags	- case flags
1513  *
1514  *	RETURN:	0 if success
1515  *		error code if failure
1516  *
1517  * Timestamps:
1518  *	dvp - ctime|mtime
1519  *	 vp - ctime (if nlink > 0)
1520  */
1521 
1522 uint64_t null_xattr = 0;
1523 
1524 /*ARGSUSED*/
1525 static int
1526 zfs_remove(vnode_t *dvp, char *name, cred_t *cr, caller_context_t *ct,
1527     int flags)
1528 {
1529 	znode_t		*zp, *dzp = VTOZ(dvp);
1530 	znode_t		*xzp = NULL;
1531 	vnode_t		*vp;
1532 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1533 	zilog_t		*zilog;
1534 	uint64_t	acl_obj, xattr_obj = 0;
1535 	uint64_t 	xattr_obj_unlinked = 0;
1536 	zfs_dirlock_t	*dl;
1537 	dmu_tx_t	*tx;
1538 	boolean_t	may_delete_now, delete_now = FALSE;
1539 	boolean_t	unlinked, toobig = FALSE;
1540 	uint64_t	txtype;
1541 	pathname_t	*realnmp = NULL;
1542 	pathname_t	realnm;
1543 	int		error;
1544 	int		zflg = ZEXISTS;
1545 
1546 	ZFS_ENTER(zfsvfs);
1547 	ZFS_VERIFY_ZP(dzp);
1548 	zilog = zfsvfs->z_log;
1549 
1550 	if (flags & FIGNORECASE) {
1551 		zflg |= ZCILOOK;
1552 		pn_alloc(&realnm);
1553 		realnmp = &realnm;
1554 	}
1555 
1556 top:
1557 	/*
1558 	 * Attempt to lock directory; fail if entry doesn't exist.
1559 	 */
1560 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1561 	    NULL, realnmp)) {
1562 		if (realnmp)
1563 			pn_free(realnmp);
1564 		ZFS_EXIT(zfsvfs);
1565 		return (error);
1566 	}
1567 
1568 	vp = ZTOV(zp);
1569 
1570 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1571 		goto out;
1572 	}
1573 
1574 	/*
1575 	 * Need to use rmdir for removing directories.
1576 	 */
1577 	if (vp->v_type == VDIR) {
1578 		error = EPERM;
1579 		goto out;
1580 	}
1581 
1582 	vnevent_remove(vp, dvp, name, ct);
1583 
1584 	if (realnmp)
1585 		dnlc_remove(dvp, realnmp->pn_buf);
1586 	else
1587 		dnlc_remove(dvp, name);
1588 
1589 	mutex_enter(&vp->v_lock);
1590 	may_delete_now = vp->v_count == 1 && !vn_has_cached_data(vp);
1591 	mutex_exit(&vp->v_lock);
1592 
1593 	/*
1594 	 * We may delete the znode now, or we may put it in the unlinked set;
1595 	 * it depends on whether we're the last link, and on whether there are
1596 	 * other holds on the vnode.  So we dmu_tx_hold() the right things to
1597 	 * allow for either case.
1598 	 */
1599 	tx = dmu_tx_create(zfsvfs->z_os);
1600 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1601 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1602 	zfs_sa_upgrade_txholds(tx, zp);
1603 	zfs_sa_upgrade_txholds(tx, dzp);
1604 	if (may_delete_now) {
1605 		toobig =
1606 		    zp->z_size > zp->z_blksz * DMU_MAX_DELETEBLKCNT;
1607 		/* if the file is too big, only hold_free a token amount */
1608 		dmu_tx_hold_free(tx, zp->z_id, 0,
1609 		    (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1610 	}
1611 
1612 	/* are there any extended attributes? */
1613 	error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1614 	    &xattr_obj, sizeof (xattr_obj));
1615 	if (xattr_obj) {
1616 		error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1617 		ASSERT3U(error, ==, 0);
1618 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1619 		dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1620 	}
1621 
1622 	mutex_enter(&zp->z_lock);
1623 	if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1624 		dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1625 	mutex_exit(&zp->z_lock);
1626 
1627 	/* charge as an update -- would be nice not to charge at all */
1628 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1629 
1630 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1631 	if (error) {
1632 		zfs_dirent_unlock(dl);
1633 		VN_RELE(vp);
1634 		if (error == ERESTART) {
1635 			dmu_tx_wait(tx);
1636 			dmu_tx_abort(tx);
1637 			goto top;
1638 		}
1639 		if (realnmp)
1640 			pn_free(realnmp);
1641 		dmu_tx_abort(tx);
1642 		ZFS_EXIT(zfsvfs);
1643 		return (error);
1644 	}
1645 
1646 	/*
1647 	 * Remove the directory entry.
1648 	 */
1649 	error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1650 
1651 	if (error) {
1652 		dmu_tx_commit(tx);
1653 		goto out;
1654 	}
1655 
1656 	if (unlinked) {
1657 
1658 		/*
1659 		 * Hold z_lock so that we can make sure that the ACL obj
1660 		 * hasn't changed.  Could have been deleted due to
1661 		 * zfs_sa_upgrade().
1662 		 */
1663 		mutex_enter(&zp->z_lock);
1664 		mutex_enter(&vp->v_lock);
1665 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1666 		    &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1667 		delete_now = may_delete_now && !toobig &&
1668 		    vp->v_count == 1 && !vn_has_cached_data(vp) &&
1669 		    xattr_obj == xattr_obj_unlinked && zfs_external_acl(zp) ==
1670 		    acl_obj;
1671 		mutex_exit(&vp->v_lock);
1672 	}
1673 
1674 	if (delete_now) {
1675 		if (xattr_obj_unlinked) {
1676 			ASSERT3U(xzp->z_links, ==, 2);
1677 			mutex_enter(&xzp->z_lock);
1678 			xzp->z_unlinked = 1;
1679 			xzp->z_links = 0;
1680 			error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1681 			    &xzp->z_links, sizeof (xzp->z_links), tx);
1682 			ASSERT3U(error,  ==,  0);
1683 			mutex_exit(&xzp->z_lock);
1684 			zfs_unlinked_add(xzp, tx);
1685 
1686 			if (zp->z_is_sa)
1687 				error = sa_remove(zp->z_sa_hdl,
1688 				    SA_ZPL_XATTR(zfsvfs), tx);
1689 			else
1690 				error = sa_update(zp->z_sa_hdl,
1691 				    SA_ZPL_XATTR(zfsvfs), &null_xattr,
1692 				    sizeof (uint64_t), tx);
1693 			ASSERT3U(error, ==, 0);
1694 		}
1695 		mutex_enter(&vp->v_lock);
1696 		vp->v_count--;
1697 		ASSERT3U(vp->v_count, ==, 0);
1698 		mutex_exit(&vp->v_lock);
1699 		mutex_exit(&zp->z_lock);
1700 		zfs_znode_delete(zp, tx);
1701 	} else if (unlinked) {
1702 		mutex_exit(&zp->z_lock);
1703 		zfs_unlinked_add(zp, tx);
1704 	}
1705 
1706 	txtype = TX_REMOVE;
1707 	if (flags & FIGNORECASE)
1708 		txtype |= TX_CI;
1709 	zfs_log_remove(zilog, tx, txtype, dzp, name);
1710 
1711 	dmu_tx_commit(tx);
1712 out:
1713 	if (realnmp)
1714 		pn_free(realnmp);
1715 
1716 	zfs_dirent_unlock(dl);
1717 
1718 	if (!delete_now)
1719 		VN_RELE(vp);
1720 	if (xzp)
1721 		VN_RELE(ZTOV(xzp));
1722 
1723 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1724 		zil_commit(zilog, UINT64_MAX, 0);
1725 
1726 	ZFS_EXIT(zfsvfs);
1727 	return (error);
1728 }
1729 
1730 /*
1731  * Create a new directory and insert it into dvp using the name
1732  * provided.  Return a pointer to the inserted directory.
1733  *
1734  *	IN:	dvp	- vnode of directory to add subdir to.
1735  *		dirname	- name of new directory.
1736  *		vap	- attributes of new directory.
1737  *		cr	- credentials of caller.
1738  *		ct	- caller context
1739  *		vsecp	- ACL to be set
1740  *
1741  *	OUT:	vpp	- vnode of created directory.
1742  *
1743  *	RETURN:	0 if success
1744  *		error code if failure
1745  *
1746  * Timestamps:
1747  *	dvp - ctime|mtime updated
1748  *	 vp - ctime|mtime|atime updated
1749  */
1750 /*ARGSUSED*/
1751 static int
1752 zfs_mkdir(vnode_t *dvp, char *dirname, vattr_t *vap, vnode_t **vpp, cred_t *cr,
1753     caller_context_t *ct, int flags, vsecattr_t *vsecp)
1754 {
1755 	znode_t		*zp, *dzp = VTOZ(dvp);
1756 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1757 	zilog_t		*zilog;
1758 	zfs_dirlock_t	*dl;
1759 	uint64_t	txtype;
1760 	dmu_tx_t	*tx;
1761 	int		error;
1762 	int		zf = ZNEW;
1763 	ksid_t		*ksid;
1764 	uid_t		uid;
1765 	gid_t		gid = crgetgid(cr);
1766 	zfs_acl_ids_t   acl_ids;
1767 	boolean_t	fuid_dirtied;
1768 
1769 	ASSERT(vap->va_type == VDIR);
1770 
1771 	/*
1772 	 * If we have an ephemeral id, ACL, or XVATTR then
1773 	 * make sure file system is at proper version
1774 	 */
1775 
1776 	ksid = crgetsid(cr, KSID_OWNER);
1777 	if (ksid)
1778 		uid = ksid_getid(ksid);
1779 	else
1780 		uid = crgetuid(cr);
1781 	if (zfsvfs->z_use_fuids == B_FALSE &&
1782 	    (vsecp || (vap->va_mask & AT_XVATTR) ||
1783 	    IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1784 		return (EINVAL);
1785 
1786 	ZFS_ENTER(zfsvfs);
1787 	ZFS_VERIFY_ZP(dzp);
1788 	zilog = zfsvfs->z_log;
1789 
1790 	if (dzp->z_pflags & ZFS_XATTR) {
1791 		ZFS_EXIT(zfsvfs);
1792 		return (EINVAL);
1793 	}
1794 
1795 	if (zfsvfs->z_utf8 && u8_validate(dirname,
1796 	    strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1797 		ZFS_EXIT(zfsvfs);
1798 		return (EILSEQ);
1799 	}
1800 	if (flags & FIGNORECASE)
1801 		zf |= ZCILOOK;
1802 
1803 	if (vap->va_mask & AT_XVATTR) {
1804 		if ((error = secpolicy_xvattr((xvattr_t *)vap,
1805 		    crgetuid(cr), cr, vap->va_type)) != 0) {
1806 			ZFS_EXIT(zfsvfs);
1807 			return (error);
1808 		}
1809 	}
1810 
1811 	if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1812 	    vsecp, &acl_ids)) != 0) {
1813 		ZFS_EXIT(zfsvfs);
1814 		return (error);
1815 	}
1816 	/*
1817 	 * First make sure the new directory doesn't exist.
1818 	 *
1819 	 * Existence is checked first to make sure we don't return
1820 	 * EACCES instead of EEXIST which can cause some applications
1821 	 * to fail.
1822 	 */
1823 top:
1824 	*vpp = NULL;
1825 
1826 	if (error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1827 	    NULL, NULL)) {
1828 		zfs_acl_ids_free(&acl_ids);
1829 		ZFS_EXIT(zfsvfs);
1830 		return (error);
1831 	}
1832 
1833 	if (error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr)) {
1834 		zfs_acl_ids_free(&acl_ids);
1835 		zfs_dirent_unlock(dl);
1836 		ZFS_EXIT(zfsvfs);
1837 		return (error);
1838 	}
1839 
1840 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
1841 		zfs_acl_ids_free(&acl_ids);
1842 		zfs_dirent_unlock(dl);
1843 		ZFS_EXIT(zfsvfs);
1844 		return (EDQUOT);
1845 	}
1846 
1847 	/*
1848 	 * Add a new entry to the directory.
1849 	 */
1850 	tx = dmu_tx_create(zfsvfs->z_os);
1851 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1852 	dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1853 	fuid_dirtied = zfsvfs->z_fuid_dirty;
1854 	if (fuid_dirtied)
1855 		zfs_fuid_txhold(zfsvfs, tx);
1856 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1857 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1858 		    acl_ids.z_aclp->z_acl_bytes);
1859 	}
1860 
1861 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1862 	    ZFS_SA_BASE_ATTR_SIZE);
1863 
1864 	error = dmu_tx_assign(tx, TXG_NOWAIT);
1865 	if (error) {
1866 		zfs_dirent_unlock(dl);
1867 		if (error == ERESTART) {
1868 			dmu_tx_wait(tx);
1869 			dmu_tx_abort(tx);
1870 			goto top;
1871 		}
1872 		zfs_acl_ids_free(&acl_ids);
1873 		dmu_tx_abort(tx);
1874 		ZFS_EXIT(zfsvfs);
1875 		return (error);
1876 	}
1877 
1878 	/*
1879 	 * Create new node.
1880 	 */
1881 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1882 
1883 	if (fuid_dirtied)
1884 		zfs_fuid_sync(zfsvfs, tx);
1885 
1886 	/*
1887 	 * Now put new name in parent dir.
1888 	 */
1889 	(void) zfs_link_create(dl, zp, tx, ZNEW);
1890 
1891 	*vpp = ZTOV(zp);
1892 
1893 	txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1894 	if (flags & FIGNORECASE)
1895 		txtype |= TX_CI;
1896 	zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1897 	    acl_ids.z_fuidp, vap);
1898 
1899 	zfs_acl_ids_free(&acl_ids);
1900 
1901 	dmu_tx_commit(tx);
1902 
1903 	zfs_dirent_unlock(dl);
1904 
1905 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1906 		zil_commit(zilog, UINT64_MAX, 0);
1907 
1908 	ZFS_EXIT(zfsvfs);
1909 	return (0);
1910 }
1911 
1912 /*
1913  * Remove a directory subdir entry.  If the current working
1914  * directory is the same as the subdir to be removed, the
1915  * remove will fail.
1916  *
1917  *	IN:	dvp	- vnode of directory to remove from.
1918  *		name	- name of directory to be removed.
1919  *		cwd	- vnode of current working directory.
1920  *		cr	- credentials of caller.
1921  *		ct	- caller context
1922  *		flags	- case flags
1923  *
1924  *	RETURN:	0 if success
1925  *		error code if failure
1926  *
1927  * Timestamps:
1928  *	dvp - ctime|mtime updated
1929  */
1930 /*ARGSUSED*/
1931 static int
1932 zfs_rmdir(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr,
1933     caller_context_t *ct, int flags)
1934 {
1935 	znode_t		*dzp = VTOZ(dvp);
1936 	znode_t		*zp;
1937 	vnode_t		*vp;
1938 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
1939 	zilog_t		*zilog;
1940 	zfs_dirlock_t	*dl;
1941 	dmu_tx_t	*tx;
1942 	int		error;
1943 	int		zflg = ZEXISTS;
1944 
1945 	ZFS_ENTER(zfsvfs);
1946 	ZFS_VERIFY_ZP(dzp);
1947 	zilog = zfsvfs->z_log;
1948 
1949 	if (flags & FIGNORECASE)
1950 		zflg |= ZCILOOK;
1951 top:
1952 	zp = NULL;
1953 
1954 	/*
1955 	 * Attempt to lock directory; fail if entry doesn't exist.
1956 	 */
1957 	if (error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1958 	    NULL, NULL)) {
1959 		ZFS_EXIT(zfsvfs);
1960 		return (error);
1961 	}
1962 
1963 	vp = ZTOV(zp);
1964 
1965 	if (error = zfs_zaccess_delete(dzp, zp, cr)) {
1966 		goto out;
1967 	}
1968 
1969 	if (vp->v_type != VDIR) {
1970 		error = ENOTDIR;
1971 		goto out;
1972 	}
1973 
1974 	if (vp == cwd) {
1975 		error = EINVAL;
1976 		goto out;
1977 	}
1978 
1979 	vnevent_rmdir(vp, dvp, name, ct);
1980 
1981 	/*
1982 	 * Grab a lock on the directory to make sure that noone is
1983 	 * trying to add (or lookup) entries while we are removing it.
1984 	 */
1985 	rw_enter(&zp->z_name_lock, RW_WRITER);
1986 
1987 	/*
1988 	 * Grab a lock on the parent pointer to make sure we play well
1989 	 * with the treewalk and directory rename code.
1990 	 */
1991 	rw_enter(&zp->z_parent_lock, RW_WRITER);
1992 
1993 	tx = dmu_tx_create(zfsvfs->z_os);
1994 	dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1995 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1996 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1997 	zfs_sa_upgrade_txholds(tx, zp);
1998 	zfs_sa_upgrade_txholds(tx, dzp);
1999 	error = dmu_tx_assign(tx, TXG_NOWAIT);
2000 	if (error) {
2001 		rw_exit(&zp->z_parent_lock);
2002 		rw_exit(&zp->z_name_lock);
2003 		zfs_dirent_unlock(dl);
2004 		VN_RELE(vp);
2005 		if (error == ERESTART) {
2006 			dmu_tx_wait(tx);
2007 			dmu_tx_abort(tx);
2008 			goto top;
2009 		}
2010 		dmu_tx_abort(tx);
2011 		ZFS_EXIT(zfsvfs);
2012 		return (error);
2013 	}
2014 
2015 	error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
2016 
2017 	if (error == 0) {
2018 		uint64_t txtype = TX_RMDIR;
2019 		if (flags & FIGNORECASE)
2020 			txtype |= TX_CI;
2021 		zfs_log_remove(zilog, tx, txtype, dzp, name);
2022 	}
2023 
2024 	dmu_tx_commit(tx);
2025 
2026 	rw_exit(&zp->z_parent_lock);
2027 	rw_exit(&zp->z_name_lock);
2028 out:
2029 	zfs_dirent_unlock(dl);
2030 
2031 	VN_RELE(vp);
2032 
2033 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2034 		zil_commit(zilog, UINT64_MAX, 0);
2035 
2036 	ZFS_EXIT(zfsvfs);
2037 	return (error);
2038 }
2039 
2040 /*
2041  * Read as many directory entries as will fit into the provided
2042  * buffer from the given directory cursor position (specified in
2043  * the uio structure.
2044  *
2045  *	IN:	vp	- vnode of directory to read.
2046  *		uio	- structure supplying read location, range info,
2047  *			  and return buffer.
2048  *		cr	- credentials of caller.
2049  *		ct	- caller context
2050  *		flags	- case flags
2051  *
2052  *	OUT:	uio	- updated offset and range, buffer filled.
2053  *		eofp	- set to true if end-of-file detected.
2054  *
2055  *	RETURN:	0 if success
2056  *		error code if failure
2057  *
2058  * Timestamps:
2059  *	vp - atime updated
2060  *
2061  * Note that the low 4 bits of the cookie returned by zap is always zero.
2062  * This allows us to use the low range for "special" directory entries:
2063  * We use 0 for '.', and 1 for '..'.  If this is the root of the filesystem,
2064  * we use the offset 2 for the '.zfs' directory.
2065  */
2066 /* ARGSUSED */
2067 static int
2068 zfs_readdir(vnode_t *vp, uio_t *uio, cred_t *cr, int *eofp,
2069     caller_context_t *ct, int flags)
2070 {
2071 	znode_t		*zp = VTOZ(vp);
2072 	iovec_t		*iovp;
2073 	edirent_t	*eodp;
2074 	dirent64_t	*odp;
2075 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2076 	objset_t	*os;
2077 	caddr_t		outbuf;
2078 	size_t		bufsize;
2079 	zap_cursor_t	zc;
2080 	zap_attribute_t	zap;
2081 	uint_t		bytes_wanted;
2082 	uint64_t	offset; /* must be unsigned; checks for < 1 */
2083 	uint64_t	parent;
2084 	int		local_eof;
2085 	int		outcount;
2086 	int		error;
2087 	uint8_t		prefetch;
2088 	boolean_t	check_sysattrs;
2089 
2090 	ZFS_ENTER(zfsvfs);
2091 	ZFS_VERIFY_ZP(zp);
2092 
2093 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
2094 	    &parent, sizeof (parent))) != 0) {
2095 		ZFS_EXIT(zfsvfs);
2096 		return (error);
2097 	}
2098 
2099 	/*
2100 	 * If we are not given an eof variable,
2101 	 * use a local one.
2102 	 */
2103 	if (eofp == NULL)
2104 		eofp = &local_eof;
2105 
2106 	/*
2107 	 * Check for valid iov_len.
2108 	 */
2109 	if (uio->uio_iov->iov_len <= 0) {
2110 		ZFS_EXIT(zfsvfs);
2111 		return (EINVAL);
2112 	}
2113 
2114 	/*
2115 	 * Quit if directory has been removed (posix)
2116 	 */
2117 	if ((*eofp = zp->z_unlinked) != 0) {
2118 		ZFS_EXIT(zfsvfs);
2119 		return (0);
2120 	}
2121 
2122 	error = 0;
2123 	os = zfsvfs->z_os;
2124 	offset = uio->uio_loffset;
2125 	prefetch = zp->z_zn_prefetch;
2126 
2127 	/*
2128 	 * Initialize the iterator cursor.
2129 	 */
2130 	if (offset <= 3) {
2131 		/*
2132 		 * Start iteration from the beginning of the directory.
2133 		 */
2134 		zap_cursor_init(&zc, os, zp->z_id);
2135 	} else {
2136 		/*
2137 		 * The offset is a serialized cursor.
2138 		 */
2139 		zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
2140 	}
2141 
2142 	/*
2143 	 * Get space to change directory entries into fs independent format.
2144 	 */
2145 	iovp = uio->uio_iov;
2146 	bytes_wanted = iovp->iov_len;
2147 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1) {
2148 		bufsize = bytes_wanted;
2149 		outbuf = kmem_alloc(bufsize, KM_SLEEP);
2150 		odp = (struct dirent64 *)outbuf;
2151 	} else {
2152 		bufsize = bytes_wanted;
2153 		odp = (struct dirent64 *)iovp->iov_base;
2154 	}
2155 	eodp = (struct edirent *)odp;
2156 
2157 	/*
2158 	 * If this VFS supports the system attribute view interface; and
2159 	 * we're looking at an extended attribute directory; and we care
2160 	 * about normalization conflicts on this vfs; then we must check
2161 	 * for normalization conflicts with the sysattr name space.
2162 	 */
2163 	check_sysattrs = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
2164 	    (vp->v_flag & V_XATTRDIR) && zfsvfs->z_norm &&
2165 	    (flags & V_RDDIR_ENTFLAGS);
2166 
2167 	/*
2168 	 * Transform to file-system independent format
2169 	 */
2170 	outcount = 0;
2171 	while (outcount < bytes_wanted) {
2172 		ino64_t objnum;
2173 		ushort_t reclen;
2174 		off64_t *next;
2175 
2176 		/*
2177 		 * Special case `.', `..', and `.zfs'.
2178 		 */
2179 		if (offset == 0) {
2180 			(void) strcpy(zap.za_name, ".");
2181 			zap.za_normalization_conflict = 0;
2182 			objnum = zp->z_id;
2183 		} else if (offset == 1) {
2184 			(void) strcpy(zap.za_name, "..");
2185 			zap.za_normalization_conflict = 0;
2186 			objnum = parent;
2187 		} else if (offset == 2 && zfs_show_ctldir(zp)) {
2188 			(void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
2189 			zap.za_normalization_conflict = 0;
2190 			objnum = ZFSCTL_INO_ROOT;
2191 		} else {
2192 			/*
2193 			 * Grab next entry.
2194 			 */
2195 			if (error = zap_cursor_retrieve(&zc, &zap)) {
2196 				if ((*eofp = (error == ENOENT)) != 0)
2197 					break;
2198 				else
2199 					goto update;
2200 			}
2201 
2202 			if (zap.za_integer_length != 8 ||
2203 			    zap.za_num_integers != 1) {
2204 				cmn_err(CE_WARN, "zap_readdir: bad directory "
2205 				    "entry, obj = %lld, offset = %lld\n",
2206 				    (u_longlong_t)zp->z_id,
2207 				    (u_longlong_t)offset);
2208 				error = ENXIO;
2209 				goto update;
2210 			}
2211 
2212 			objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
2213 			/*
2214 			 * MacOS X can extract the object type here such as:
2215 			 * uint8_t type = ZFS_DIRENT_TYPE(zap.za_first_integer);
2216 			 */
2217 
2218 			if (check_sysattrs && !zap.za_normalization_conflict) {
2219 				zap.za_normalization_conflict =
2220 				    xattr_sysattr_casechk(zap.za_name);
2221 			}
2222 		}
2223 
2224 		if (flags & V_RDDIR_ACCFILTER) {
2225 			/*
2226 			 * If we have no access at all, don't include
2227 			 * this entry in the returned information
2228 			 */
2229 			znode_t	*ezp;
2230 			if (zfs_zget(zp->z_zfsvfs, objnum, &ezp) != 0)
2231 				goto skip_entry;
2232 			if (!zfs_has_access(ezp, cr)) {
2233 				VN_RELE(ZTOV(ezp));
2234 				goto skip_entry;
2235 			}
2236 			VN_RELE(ZTOV(ezp));
2237 		}
2238 
2239 		if (flags & V_RDDIR_ENTFLAGS)
2240 			reclen = EDIRENT_RECLEN(strlen(zap.za_name));
2241 		else
2242 			reclen = DIRENT64_RECLEN(strlen(zap.za_name));
2243 
2244 		/*
2245 		 * Will this entry fit in the buffer?
2246 		 */
2247 		if (outcount + reclen > bufsize) {
2248 			/*
2249 			 * Did we manage to fit anything in the buffer?
2250 			 */
2251 			if (!outcount) {
2252 				error = EINVAL;
2253 				goto update;
2254 			}
2255 			break;
2256 		}
2257 		if (flags & V_RDDIR_ENTFLAGS) {
2258 			/*
2259 			 * Add extended flag entry:
2260 			 */
2261 			eodp->ed_ino = objnum;
2262 			eodp->ed_reclen = reclen;
2263 			/* NOTE: ed_off is the offset for the *next* entry */
2264 			next = &(eodp->ed_off);
2265 			eodp->ed_eflags = zap.za_normalization_conflict ?
2266 			    ED_CASE_CONFLICT : 0;
2267 			(void) strncpy(eodp->ed_name, zap.za_name,
2268 			    EDIRENT_NAMELEN(reclen));
2269 			eodp = (edirent_t *)((intptr_t)eodp + reclen);
2270 		} else {
2271 			/*
2272 			 * Add normal entry:
2273 			 */
2274 			odp->d_ino = objnum;
2275 			odp->d_reclen = reclen;
2276 			/* NOTE: d_off is the offset for the *next* entry */
2277 			next = &(odp->d_off);
2278 			(void) strncpy(odp->d_name, zap.za_name,
2279 			    DIRENT64_NAMELEN(reclen));
2280 			odp = (dirent64_t *)((intptr_t)odp + reclen);
2281 		}
2282 		outcount += reclen;
2283 
2284 		ASSERT(outcount <= bufsize);
2285 
2286 		/* Prefetch znode */
2287 		if (prefetch)
2288 			dmu_prefetch(os, objnum, 0, 0);
2289 
2290 	skip_entry:
2291 		/*
2292 		 * Move to the next entry, fill in the previous offset.
2293 		 */
2294 		if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
2295 			zap_cursor_advance(&zc);
2296 			offset = zap_cursor_serialize(&zc);
2297 		} else {
2298 			offset += 1;
2299 		}
2300 		*next = offset;
2301 	}
2302 	zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
2303 
2304 	if (uio->uio_segflg == UIO_SYSSPACE && uio->uio_iovcnt == 1) {
2305 		iovp->iov_base += outcount;
2306 		iovp->iov_len -= outcount;
2307 		uio->uio_resid -= outcount;
2308 	} else if (error = uiomove(outbuf, (long)outcount, UIO_READ, uio)) {
2309 		/*
2310 		 * Reset the pointer.
2311 		 */
2312 		offset = uio->uio_loffset;
2313 	}
2314 
2315 update:
2316 	zap_cursor_fini(&zc);
2317 	if (uio->uio_segflg != UIO_SYSSPACE || uio->uio_iovcnt != 1)
2318 		kmem_free(outbuf, bufsize);
2319 
2320 	if (error == ENOENT)
2321 		error = 0;
2322 
2323 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
2324 
2325 	uio->uio_loffset = offset;
2326 	ZFS_EXIT(zfsvfs);
2327 	return (error);
2328 }
2329 
2330 ulong_t zfs_fsync_sync_cnt = 4;
2331 
2332 static int
2333 zfs_fsync(vnode_t *vp, int syncflag, cred_t *cr, caller_context_t *ct)
2334 {
2335 	znode_t	*zp = VTOZ(vp);
2336 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2337 
2338 	/*
2339 	 * Regardless of whether this is required for standards conformance,
2340 	 * this is the logical behavior when fsync() is called on a file with
2341 	 * dirty pages.  We use B_ASYNC since the ZIL transactions are already
2342 	 * going to be pushed out as part of the zil_commit().
2343 	 */
2344 	if (vn_has_cached_data(vp) && !(syncflag & FNODSYNC) &&
2345 	    (vp->v_type == VREG) && !(IS_SWAPVP(vp)))
2346 		(void) VOP_PUTPAGE(vp, (offset_t)0, (size_t)0, B_ASYNC, cr, ct);
2347 
2348 	(void) tsd_set(zfs_fsyncer_key, (void *)zfs_fsync_sync_cnt);
2349 
2350 	if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
2351 		ZFS_ENTER(zfsvfs);
2352 		ZFS_VERIFY_ZP(zp);
2353 		zil_commit(zfsvfs->z_log, zp->z_last_itx, zp->z_id);
2354 		ZFS_EXIT(zfsvfs);
2355 	}
2356 	return (0);
2357 }
2358 
2359 
2360 /*
2361  * Get the requested file attributes and place them in the provided
2362  * vattr structure.
2363  *
2364  *	IN:	vp	- vnode of file.
2365  *		vap	- va_mask identifies requested attributes.
2366  *			  If AT_XVATTR set, then optional attrs are requested
2367  *		flags	- ATTR_NOACLCHECK (CIFS server context)
2368  *		cr	- credentials of caller.
2369  *		ct	- caller context
2370  *
2371  *	OUT:	vap	- attribute values.
2372  *
2373  *	RETURN:	0 (always succeeds)
2374  */
2375 /* ARGSUSED */
2376 static int
2377 zfs_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2378     caller_context_t *ct)
2379 {
2380 	znode_t *zp = VTOZ(vp);
2381 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
2382 	int	error = 0;
2383 	uint64_t links;
2384 	uint64_t mtime[2], ctime[2];
2385 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2386 	xoptattr_t *xoap = NULL;
2387 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2388 	sa_bulk_attr_t bulk[2];
2389 	int count = 0;
2390 
2391 	ZFS_ENTER(zfsvfs);
2392 	ZFS_VERIFY_ZP(zp);
2393 
2394 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
2395 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
2396 
2397 	if ((error = sa_bulk_lookup(zp->z_sa_hdl, bulk, count)) != 0) {
2398 		ZFS_EXIT(zfsvfs);
2399 		return (error);
2400 	}
2401 
2402 	/*
2403 	 * If ACL is trivial don't bother looking for ACE_READ_ATTRIBUTES.
2404 	 * Also, if we are the owner don't bother, since owner should
2405 	 * always be allowed to read basic attributes of file.
2406 	 */
2407 	if (!(zp->z_pflags & ZFS_ACL_TRIVIAL) && (zp->z_uid != crgetuid(cr))) {
2408 		if (error = zfs_zaccess(zp, ACE_READ_ATTRIBUTES, 0,
2409 		    skipaclchk, cr)) {
2410 			ZFS_EXIT(zfsvfs);
2411 			return (error);
2412 		}
2413 	}
2414 
2415 	/*
2416 	 * Return all attributes.  It's cheaper to provide the answer
2417 	 * than to determine whether we were asked the question.
2418 	 */
2419 
2420 	mutex_enter(&zp->z_lock);
2421 	vap->va_type = vp->v_type;
2422 	vap->va_mode = zp->z_mode & MODEMASK;
2423 	vap->va_uid = zp->z_uid;
2424 	vap->va_gid = zp->z_gid;
2425 	vap->va_fsid = zp->z_zfsvfs->z_vfs->vfs_dev;
2426 	vap->va_nodeid = zp->z_id;
2427 	if ((vp->v_flag & VROOT) && zfs_show_ctldir(zp))
2428 		links = zp->z_links + 1;
2429 	else
2430 		links = zp->z_links;
2431 	vap->va_nlink = MIN(links, UINT32_MAX);	/* nlink_t limit! */
2432 	vap->va_size = zp->z_size;
2433 	vap->va_rdev = vp->v_rdev;
2434 	vap->va_seq = zp->z_seq;
2435 
2436 	/*
2437 	 * Add in any requested optional attributes and the create time.
2438 	 * Also set the corresponding bits in the returned attribute bitmap.
2439 	 */
2440 	if ((xoap = xva_getxoptattr(xvap)) != NULL && zfsvfs->z_use_fuids) {
2441 		if (XVA_ISSET_REQ(xvap, XAT_ARCHIVE)) {
2442 			xoap->xoa_archive =
2443 			    ((zp->z_pflags & ZFS_ARCHIVE) != 0);
2444 			XVA_SET_RTN(xvap, XAT_ARCHIVE);
2445 		}
2446 
2447 		if (XVA_ISSET_REQ(xvap, XAT_READONLY)) {
2448 			xoap->xoa_readonly =
2449 			    ((zp->z_pflags & ZFS_READONLY) != 0);
2450 			XVA_SET_RTN(xvap, XAT_READONLY);
2451 		}
2452 
2453 		if (XVA_ISSET_REQ(xvap, XAT_SYSTEM)) {
2454 			xoap->xoa_system =
2455 			    ((zp->z_pflags & ZFS_SYSTEM) != 0);
2456 			XVA_SET_RTN(xvap, XAT_SYSTEM);
2457 		}
2458 
2459 		if (XVA_ISSET_REQ(xvap, XAT_HIDDEN)) {
2460 			xoap->xoa_hidden =
2461 			    ((zp->z_pflags & ZFS_HIDDEN) != 0);
2462 			XVA_SET_RTN(xvap, XAT_HIDDEN);
2463 		}
2464 
2465 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2466 			xoap->xoa_nounlink =
2467 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0);
2468 			XVA_SET_RTN(xvap, XAT_NOUNLINK);
2469 		}
2470 
2471 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2472 			xoap->xoa_immutable =
2473 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0);
2474 			XVA_SET_RTN(xvap, XAT_IMMUTABLE);
2475 		}
2476 
2477 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2478 			xoap->xoa_appendonly =
2479 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0);
2480 			XVA_SET_RTN(xvap, XAT_APPENDONLY);
2481 		}
2482 
2483 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2484 			xoap->xoa_nodump =
2485 			    ((zp->z_pflags & ZFS_NODUMP) != 0);
2486 			XVA_SET_RTN(xvap, XAT_NODUMP);
2487 		}
2488 
2489 		if (XVA_ISSET_REQ(xvap, XAT_OPAQUE)) {
2490 			xoap->xoa_opaque =
2491 			    ((zp->z_pflags & ZFS_OPAQUE) != 0);
2492 			XVA_SET_RTN(xvap, XAT_OPAQUE);
2493 		}
2494 
2495 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2496 			xoap->xoa_av_quarantined =
2497 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0);
2498 			XVA_SET_RTN(xvap, XAT_AV_QUARANTINED);
2499 		}
2500 
2501 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2502 			xoap->xoa_av_modified =
2503 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0);
2504 			XVA_SET_RTN(xvap, XAT_AV_MODIFIED);
2505 		}
2506 
2507 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) &&
2508 		    vp->v_type == VREG) {
2509 			zfs_sa_get_scanstamp(zp, xvap);
2510 		}
2511 
2512 		if (XVA_ISSET_REQ(xvap, XAT_CREATETIME)) {
2513 			uint64_t times[2];
2514 
2515 			(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_CRTIME(zfsvfs),
2516 			    times, sizeof (times));
2517 			ZFS_TIME_DECODE(&xoap->xoa_createtime, times);
2518 			XVA_SET_RTN(xvap, XAT_CREATETIME);
2519 		}
2520 
2521 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2522 			xoap->xoa_reparse = ((zp->z_pflags & ZFS_REPARSE) != 0);
2523 			XVA_SET_RTN(xvap, XAT_REPARSE);
2524 		}
2525 	}
2526 
2527 	ZFS_TIME_DECODE(&vap->va_atime, zp->z_atime);
2528 	ZFS_TIME_DECODE(&vap->va_mtime, mtime);
2529 	ZFS_TIME_DECODE(&vap->va_ctime, ctime);
2530 
2531 	mutex_exit(&zp->z_lock);
2532 
2533 	sa_object_size(zp->z_sa_hdl, &vap->va_blksize, &vap->va_nblocks);
2534 
2535 	if (zp->z_blksz == 0) {
2536 		/*
2537 		 * Block size hasn't been set; suggest maximal I/O transfers.
2538 		 */
2539 		vap->va_blksize = zfsvfs->z_max_blksz;
2540 	}
2541 
2542 	ZFS_EXIT(zfsvfs);
2543 	return (0);
2544 }
2545 
2546 /*
2547  * Set the file attributes to the values contained in the
2548  * vattr structure.
2549  *
2550  *	IN:	vp	- vnode of file to be modified.
2551  *		vap	- new attribute values.
2552  *			  If AT_XVATTR set, then optional attrs are being set
2553  *		flags	- ATTR_UTIME set if non-default time values provided.
2554  *			- ATTR_NOACLCHECK (CIFS context only).
2555  *		cr	- credentials of caller.
2556  *		ct	- caller context
2557  *
2558  *	RETURN:	0 if success
2559  *		error code if failure
2560  *
2561  * Timestamps:
2562  *	vp - ctime updated, mtime updated if size changed.
2563  */
2564 /* ARGSUSED */
2565 static int
2566 zfs_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr,
2567 	caller_context_t *ct)
2568 {
2569 	znode_t		*zp = VTOZ(vp);
2570 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
2571 	zilog_t		*zilog;
2572 	dmu_tx_t	*tx;
2573 	vattr_t		oldva;
2574 	xvattr_t	tmpxvattr;
2575 	uint_t		mask = vap->va_mask;
2576 	uint_t		saved_mask;
2577 	int		trim_mask = 0;
2578 	uint64_t	new_mode;
2579 	uint64_t	new_uid, new_gid;
2580 	uint64_t	xattr_obj = 0;
2581 	uint64_t	mtime[2], ctime[2];
2582 	znode_t		*attrzp;
2583 	int		need_policy = FALSE;
2584 	int		err, err2;
2585 	zfs_fuid_info_t *fuidp = NULL;
2586 	xvattr_t *xvap = (xvattr_t *)vap;	/* vap may be an xvattr_t * */
2587 	xoptattr_t	*xoap;
2588 	zfs_acl_t	*aclp = NULL;
2589 	boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
2590 	boolean_t	fuid_dirtied = B_FALSE;
2591 	sa_bulk_attr_t	bulk[7], xattr_bulk[7];
2592 	int		count = 0, xattr_count = 0;
2593 
2594 	if (mask == 0)
2595 		return (0);
2596 
2597 	if (mask & AT_NOSET)
2598 		return (EINVAL);
2599 
2600 	ZFS_ENTER(zfsvfs);
2601 	ZFS_VERIFY_ZP(zp);
2602 
2603 	zilog = zfsvfs->z_log;
2604 
2605 	/*
2606 	 * Make sure that if we have ephemeral uid/gid or xvattr specified
2607 	 * that file system is at proper version level
2608 	 */
2609 
2610 	if (zfsvfs->z_use_fuids == B_FALSE &&
2611 	    (((mask & AT_UID) && IS_EPHEMERAL(vap->va_uid)) ||
2612 	    ((mask & AT_GID) && IS_EPHEMERAL(vap->va_gid)) ||
2613 	    (mask & AT_XVATTR))) {
2614 		ZFS_EXIT(zfsvfs);
2615 		return (EINVAL);
2616 	}
2617 
2618 	if (mask & AT_SIZE && vp->v_type == VDIR) {
2619 		ZFS_EXIT(zfsvfs);
2620 		return (EISDIR);
2621 	}
2622 
2623 	if (mask & AT_SIZE && vp->v_type != VREG && vp->v_type != VFIFO) {
2624 		ZFS_EXIT(zfsvfs);
2625 		return (EINVAL);
2626 	}
2627 
2628 	/*
2629 	 * If this is an xvattr_t, then get a pointer to the structure of
2630 	 * optional attributes.  If this is NULL, then we have a vattr_t.
2631 	 */
2632 	xoap = xva_getxoptattr(xvap);
2633 
2634 	xva_init(&tmpxvattr);
2635 
2636 	/*
2637 	 * Immutable files can only alter immutable bit and atime
2638 	 */
2639 	if ((zp->z_pflags & ZFS_IMMUTABLE) &&
2640 	    ((mask & (AT_SIZE|AT_UID|AT_GID|AT_MTIME|AT_MODE)) ||
2641 	    ((mask & AT_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
2642 		ZFS_EXIT(zfsvfs);
2643 		return (EPERM);
2644 	}
2645 
2646 	if ((mask & AT_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
2647 		ZFS_EXIT(zfsvfs);
2648 		return (EPERM);
2649 	}
2650 
2651 	/*
2652 	 * Verify timestamps doesn't overflow 32 bits.
2653 	 * ZFS can handle large timestamps, but 32bit syscalls can't
2654 	 * handle times greater than 2039.  This check should be removed
2655 	 * once large timestamps are fully supported.
2656 	 */
2657 	if (mask & (AT_ATIME | AT_MTIME)) {
2658 		if (((mask & AT_ATIME) && TIMESPEC_OVERFLOW(&vap->va_atime)) ||
2659 		    ((mask & AT_MTIME) && TIMESPEC_OVERFLOW(&vap->va_mtime))) {
2660 			ZFS_EXIT(zfsvfs);
2661 			return (EOVERFLOW);
2662 		}
2663 	}
2664 
2665 top:
2666 	attrzp = NULL;
2667 
2668 	/* Can this be moved to before the top label? */
2669 	if (zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) {
2670 		ZFS_EXIT(zfsvfs);
2671 		return (EROFS);
2672 	}
2673 
2674 	/*
2675 	 * First validate permissions
2676 	 */
2677 
2678 	if (mask & AT_SIZE) {
2679 		err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
2680 		if (err) {
2681 			ZFS_EXIT(zfsvfs);
2682 			return (err);
2683 		}
2684 		/*
2685 		 * XXX - Note, we are not providing any open
2686 		 * mode flags here (like FNDELAY), so we may
2687 		 * block if there are locks present... this
2688 		 * should be addressed in openat().
2689 		 */
2690 		/* XXX - would it be OK to generate a log record here? */
2691 		err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
2692 		if (err) {
2693 			ZFS_EXIT(zfsvfs);
2694 			return (err);
2695 		}
2696 	}
2697 
2698 	if (mask & (AT_ATIME|AT_MTIME) ||
2699 	    ((mask & AT_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
2700 	    XVA_ISSET_REQ(xvap, XAT_READONLY) ||
2701 	    XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
2702 	    XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
2703 	    XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
2704 		need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
2705 		    skipaclchk, cr);
2706 	}
2707 
2708 	if (mask & (AT_UID|AT_GID)) {
2709 		int	idmask = (mask & (AT_UID|AT_GID));
2710 		int	take_owner;
2711 		int	take_group;
2712 
2713 		/*
2714 		 * NOTE: even if a new mode is being set,
2715 		 * we may clear S_ISUID/S_ISGID bits.
2716 		 */
2717 
2718 		if (!(mask & AT_MODE))
2719 			vap->va_mode = zp->z_mode;
2720 
2721 		/*
2722 		 * Take ownership or chgrp to group we are a member of
2723 		 */
2724 
2725 		take_owner = (mask & AT_UID) && (vap->va_uid == crgetuid(cr));
2726 		take_group = (mask & AT_GID) &&
2727 		    zfs_groupmember(zfsvfs, vap->va_gid, cr);
2728 
2729 		/*
2730 		 * If both AT_UID and AT_GID are set then take_owner and
2731 		 * take_group must both be set in order to allow taking
2732 		 * ownership.
2733 		 *
2734 		 * Otherwise, send the check through secpolicy_vnode_setattr()
2735 		 *
2736 		 */
2737 
2738 		if (((idmask == (AT_UID|AT_GID)) && take_owner && take_group) ||
2739 		    ((idmask == AT_UID) && take_owner) ||
2740 		    ((idmask == AT_GID) && take_group)) {
2741 			if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2742 			    skipaclchk, cr) == 0) {
2743 				/*
2744 				 * Remove setuid/setgid for non-privileged users
2745 				 */
2746 				secpolicy_setid_clear(vap, cr);
2747 				trim_mask = (mask & (AT_UID|AT_GID));
2748 			} else {
2749 				need_policy =  TRUE;
2750 			}
2751 		} else {
2752 			need_policy =  TRUE;
2753 		}
2754 	}
2755 
2756 	mutex_enter(&zp->z_lock);
2757 	oldva.va_mode = zp->z_mode;
2758 	oldva.va_uid = zp->z_uid;
2759 	oldva.va_gid = zp->z_gid;
2760 	if (mask & AT_XVATTR) {
2761 		/*
2762 		 * Update xvattr mask to include only those attributes
2763 		 * that are actually changing.
2764 		 *
2765 		 * the bits will be restored prior to actually setting
2766 		 * the attributes so the caller thinks they were set.
2767 		 */
2768 		if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2769 			if (xoap->xoa_appendonly !=
2770 			    ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2771 				need_policy = TRUE;
2772 			} else {
2773 				XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2774 				XVA_SET_REQ(&tmpxvattr, XAT_APPENDONLY);
2775 			}
2776 		}
2777 
2778 		if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2779 			if (xoap->xoa_nounlink !=
2780 			    ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2781 				need_policy = TRUE;
2782 			} else {
2783 				XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2784 				XVA_SET_REQ(&tmpxvattr, XAT_NOUNLINK);
2785 			}
2786 		}
2787 
2788 		if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2789 			if (xoap->xoa_immutable !=
2790 			    ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2791 				need_policy = TRUE;
2792 			} else {
2793 				XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2794 				XVA_SET_REQ(&tmpxvattr, XAT_IMMUTABLE);
2795 			}
2796 		}
2797 
2798 		if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2799 			if (xoap->xoa_nodump !=
2800 			    ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2801 				need_policy = TRUE;
2802 			} else {
2803 				XVA_CLR_REQ(xvap, XAT_NODUMP);
2804 				XVA_SET_REQ(&tmpxvattr, XAT_NODUMP);
2805 			}
2806 		}
2807 
2808 		if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2809 			if (xoap->xoa_av_modified !=
2810 			    ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2811 				need_policy = TRUE;
2812 			} else {
2813 				XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2814 				XVA_SET_REQ(&tmpxvattr, XAT_AV_MODIFIED);
2815 			}
2816 		}
2817 
2818 		if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2819 			if ((vp->v_type != VREG &&
2820 			    xoap->xoa_av_quarantined) ||
2821 			    xoap->xoa_av_quarantined !=
2822 			    ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2823 				need_policy = TRUE;
2824 			} else {
2825 				XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2826 				XVA_SET_REQ(&tmpxvattr, XAT_AV_QUARANTINED);
2827 			}
2828 		}
2829 
2830 		if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2831 			mutex_exit(&zp->z_lock);
2832 			ZFS_EXIT(zfsvfs);
2833 			return (EPERM);
2834 		}
2835 
2836 		if (need_policy == FALSE &&
2837 		    (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2838 		    XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2839 			need_policy = TRUE;
2840 		}
2841 	}
2842 
2843 	mutex_exit(&zp->z_lock);
2844 
2845 	if (mask & AT_MODE) {
2846 		if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2847 			err = secpolicy_setid_setsticky_clear(vp, vap,
2848 			    &oldva, cr);
2849 			if (err) {
2850 				ZFS_EXIT(zfsvfs);
2851 				return (err);
2852 			}
2853 			trim_mask |= AT_MODE;
2854 		} else {
2855 			need_policy = TRUE;
2856 		}
2857 	}
2858 
2859 	if (need_policy) {
2860 		/*
2861 		 * If trim_mask is set then take ownership
2862 		 * has been granted or write_acl is present and user
2863 		 * has the ability to modify mode.  In that case remove
2864 		 * UID|GID and or MODE from mask so that
2865 		 * secpolicy_vnode_setattr() doesn't revoke it.
2866 		 */
2867 
2868 		if (trim_mask) {
2869 			saved_mask = vap->va_mask;
2870 			vap->va_mask &= ~trim_mask;
2871 		}
2872 		err = secpolicy_vnode_setattr(cr, vp, vap, &oldva, flags,
2873 		    (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2874 		if (err) {
2875 			ZFS_EXIT(zfsvfs);
2876 			return (err);
2877 		}
2878 
2879 		if (trim_mask)
2880 			vap->va_mask |= saved_mask;
2881 	}
2882 
2883 	/*
2884 	 * secpolicy_vnode_setattr, or take ownership may have
2885 	 * changed va_mask
2886 	 */
2887 	mask = vap->va_mask;
2888 
2889 	if ((mask & (AT_UID | AT_GID))) {
2890 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs), &xattr_obj,
2891 		    sizeof (xattr_obj));
2892 
2893 		if (xattr_obj) {
2894 			err = zfs_zget(zp->z_zfsvfs, xattr_obj, &attrzp);
2895 			if (err)
2896 				goto out2;
2897 		}
2898 		if (mask & AT_UID) {
2899 			new_uid = zfs_fuid_create(zfsvfs,
2900 			    (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2901 			if (vap->va_uid != zp->z_uid &&
2902 			    zfs_fuid_overquota(zfsvfs, B_FALSE, new_uid)) {
2903 				err = EDQUOT;
2904 				goto out2;
2905 			}
2906 		}
2907 
2908 		if (mask & AT_GID) {
2909 			new_gid = zfs_fuid_create(zfsvfs, (uint64_t)vap->va_gid,
2910 			    cr, ZFS_GROUP, &fuidp);
2911 			if (new_gid != zp->z_gid &&
2912 			    zfs_fuid_overquota(zfsvfs, B_TRUE, new_gid)) {
2913 				err = EDQUOT;
2914 				goto out2;
2915 			}
2916 		}
2917 	}
2918 	tx = dmu_tx_create(zfsvfs->z_os);
2919 
2920 	if (mask & AT_MODE) {
2921 		uint64_t pmode = zp->z_mode;
2922 		uint64_t acl_obj;
2923 		new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2924 
2925 		if (err = zfs_acl_chmod_setattr(zp, &aclp, new_mode))
2926 			goto out;
2927 
2928 		mutex_enter(&zp->z_lock);
2929 		if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2930 			/*
2931 			 * Are we upgrading ACL from old V0 format
2932 			 * to V1 format?
2933 			 */
2934 			if (zfsvfs->z_version <= ZPL_VERSION_FUID &&
2935 			    zfs_znode_acl_version(zp) ==
2936 			    ZFS_ACL_VERSION_INITIAL) {
2937 				dmu_tx_hold_free(tx, acl_obj, 0,
2938 				    DMU_OBJECT_END);
2939 				dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2940 				    0, aclp->z_acl_bytes);
2941 			} else {
2942 				dmu_tx_hold_write(tx, acl_obj, 0,
2943 				    aclp->z_acl_bytes);
2944 			}
2945 		} else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2946 			dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2947 			    0, aclp->z_acl_bytes);
2948 		}
2949 		mutex_exit(&zp->z_lock);
2950 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2951 	} else {
2952 		if ((mask & AT_XVATTR) &&
2953 		    XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2954 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2955 		else
2956 			dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2957 	}
2958 
2959 	if (attrzp) {
2960 		dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2961 	}
2962 
2963 	fuid_dirtied = zfsvfs->z_fuid_dirty;
2964 	if (fuid_dirtied)
2965 		zfs_fuid_txhold(zfsvfs, tx);
2966 
2967 	zfs_sa_upgrade_txholds(tx, zp);
2968 
2969 	err = dmu_tx_assign(tx, TXG_NOWAIT);
2970 	if (err) {
2971 		if (err == ERESTART)
2972 			dmu_tx_wait(tx);
2973 		goto out;
2974 	}
2975 
2976 	count = 0;
2977 	/*
2978 	 * Set each attribute requested.
2979 	 * We group settings according to the locks they need to acquire.
2980 	 *
2981 	 * Note: you cannot set ctime directly, although it will be
2982 	 * updated as a side-effect of calling this function.
2983 	 */
2984 
2985 
2986 	if (mask & (AT_UID|AT_GID|AT_MODE))
2987 		mutex_enter(&zp->z_acl_lock);
2988 	mutex_enter(&zp->z_lock);
2989 
2990 	SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2991 	    &zp->z_pflags, sizeof (zp->z_pflags));
2992 
2993 	if (attrzp) {
2994 		if (mask & (AT_UID|AT_GID|AT_MODE))
2995 			mutex_enter(&attrzp->z_acl_lock);
2996 		mutex_enter(&attrzp->z_lock);
2997 		SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2998 		    SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2999 		    sizeof (attrzp->z_pflags));
3000 	}
3001 
3002 	if (mask & (AT_UID|AT_GID)) {
3003 
3004 		if (mask & AT_UID) {
3005 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
3006 			    &new_uid, sizeof (new_uid));
3007 			zp->z_uid = zfs_fuid_map_id(zfsvfs, new_uid,
3008 			    cr, ZFS_OWNER);
3009 			if (attrzp) {
3010 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3011 				    SA_ZPL_UID(zfsvfs), NULL, &new_uid,
3012 				    sizeof (new_uid));
3013 				attrzp->z_uid = zp->z_uid;
3014 			}
3015 		}
3016 
3017 		if (mask & AT_GID) {
3018 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
3019 			    NULL, &new_gid, sizeof (new_gid));
3020 			zp->z_gid = zfs_fuid_map_id(zfsvfs, new_gid, cr,
3021 			    ZFS_GROUP);
3022 			if (attrzp) {
3023 				SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3024 				    SA_ZPL_GID(zfsvfs), NULL, &new_gid,
3025 				    sizeof (new_gid));
3026 				attrzp->z_gid = zp->z_gid;
3027 			}
3028 		}
3029 		if (!(mask & AT_MODE)) {
3030 			SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
3031 			    NULL, &new_mode, sizeof (new_mode));
3032 			new_mode = zp->z_mode;
3033 		}
3034 		err = zfs_acl_chown_setattr(zp);
3035 		ASSERT(err == 0);
3036 		if (attrzp) {
3037 			err = zfs_acl_chown_setattr(attrzp);
3038 			ASSERT(err == 0);
3039 		}
3040 	}
3041 
3042 	if (mask & AT_MODE) {
3043 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
3044 		    &new_mode, sizeof (new_mode));
3045 		zp->z_mode = new_mode;
3046 		ASSERT3U((uintptr_t)aclp, !=, NULL);
3047 		err = zfs_aclset_common(zp, aclp, cr, tx);
3048 		ASSERT3U(err, ==, 0);
3049 		zp->z_acl_cached = aclp;
3050 		aclp = NULL;
3051 	}
3052 
3053 
3054 	if (mask & AT_ATIME) {
3055 		ZFS_TIME_ENCODE(&vap->va_atime, zp->z_atime);
3056 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
3057 		    &zp->z_atime, sizeof (zp->z_atime));
3058 	}
3059 
3060 	if (mask & AT_MTIME) {
3061 		ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
3062 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
3063 		    mtime, sizeof (mtime));
3064 	}
3065 
3066 	/* XXX - shouldn't this be done *before* the ATIME/MTIME checks? */
3067 	if (mask & AT_SIZE && !(mask & AT_MTIME)) {
3068 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs),
3069 		    NULL, mtime, sizeof (mtime));
3070 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3071 		    &ctime, sizeof (ctime));
3072 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
3073 		    B_TRUE);
3074 	} else if (mask != 0) {
3075 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
3076 		    &ctime, sizeof (ctime));
3077 		zfs_tstamp_update_setup(zp, STATE_CHANGED, mtime, ctime,
3078 		    B_TRUE);
3079 		if (attrzp) {
3080 			SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
3081 			    SA_ZPL_CTIME(zfsvfs), NULL,
3082 			    &ctime, sizeof (ctime));
3083 			zfs_tstamp_update_setup(attrzp, STATE_CHANGED,
3084 			    mtime, ctime, B_TRUE);
3085 		}
3086 	}
3087 	/*
3088 	 * Do this after setting timestamps to prevent timestamp
3089 	 * update from toggling bit
3090 	 */
3091 
3092 	if (xoap && (mask & AT_XVATTR)) {
3093 
3094 		/*
3095 		 * restore trimmed off masks
3096 		 * so that return masks can be set for caller.
3097 		 */
3098 
3099 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_APPENDONLY)) {
3100 			XVA_SET_REQ(xvap, XAT_APPENDONLY);
3101 		}
3102 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NOUNLINK)) {
3103 			XVA_SET_REQ(xvap, XAT_NOUNLINK);
3104 		}
3105 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_IMMUTABLE)) {
3106 			XVA_SET_REQ(xvap, XAT_IMMUTABLE);
3107 		}
3108 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_NODUMP)) {
3109 			XVA_SET_REQ(xvap, XAT_NODUMP);
3110 		}
3111 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_MODIFIED)) {
3112 			XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
3113 		}
3114 		if (XVA_ISSET_REQ(&tmpxvattr, XAT_AV_QUARANTINED)) {
3115 			XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
3116 		}
3117 
3118 		if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
3119 			ASSERT(vp->v_type == VREG);
3120 
3121 		zfs_xvattr_set(zp, xvap, tx);
3122 	}
3123 
3124 	if (fuid_dirtied)
3125 		zfs_fuid_sync(zfsvfs, tx);
3126 
3127 	if (mask != 0)
3128 		zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
3129 
3130 	mutex_exit(&zp->z_lock);
3131 	if (mask & (AT_UID|AT_GID|AT_MODE))
3132 		mutex_exit(&zp->z_acl_lock);
3133 
3134 	if (attrzp) {
3135 		if (mask & (AT_UID|AT_GID|AT_MODE))
3136 			mutex_exit(&attrzp->z_acl_lock);
3137 		mutex_exit(&attrzp->z_lock);
3138 	}
3139 out:
3140 	if (err == 0 && attrzp) {
3141 		err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
3142 		    xattr_count, tx);
3143 		ASSERT(err2 == 0);
3144 	}
3145 
3146 	if (attrzp)
3147 		VN_RELE(ZTOV(attrzp));
3148 	if (aclp)
3149 		zfs_acl_free(aclp);
3150 
3151 	if (fuidp) {
3152 		zfs_fuid_info_free(fuidp);
3153 		fuidp = NULL;
3154 	}
3155 
3156 	if (err) {
3157 		dmu_tx_abort(tx);
3158 		if (err == ERESTART)
3159 			goto top;
3160 	} else {
3161 		err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
3162 		dmu_tx_commit(tx);
3163 	}
3164 
3165 
3166 out2:
3167 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3168 		zil_commit(zilog, UINT64_MAX, 0);
3169 
3170 	ZFS_EXIT(zfsvfs);
3171 	return (err);
3172 }
3173 
3174 typedef struct zfs_zlock {
3175 	krwlock_t	*zl_rwlock;	/* lock we acquired */
3176 	znode_t		*zl_znode;	/* znode we held */
3177 	struct zfs_zlock *zl_next;	/* next in list */
3178 } zfs_zlock_t;
3179 
3180 /*
3181  * Drop locks and release vnodes that were held by zfs_rename_lock().
3182  */
3183 static void
3184 zfs_rename_unlock(zfs_zlock_t **zlpp)
3185 {
3186 	zfs_zlock_t *zl;
3187 
3188 	while ((zl = *zlpp) != NULL) {
3189 		if (zl->zl_znode != NULL)
3190 			VN_RELE(ZTOV(zl->zl_znode));
3191 		rw_exit(zl->zl_rwlock);
3192 		*zlpp = zl->zl_next;
3193 		kmem_free(zl, sizeof (*zl));
3194 	}
3195 }
3196 
3197 /*
3198  * Search back through the directory tree, using the ".." entries.
3199  * Lock each directory in the chain to prevent concurrent renames.
3200  * Fail any attempt to move a directory into one of its own descendants.
3201  * XXX - z_parent_lock can overlap with map or grow locks
3202  */
3203 static int
3204 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
3205 {
3206 	zfs_zlock_t	*zl;
3207 	znode_t		*zp = tdzp;
3208 	uint64_t	rootid = zp->z_zfsvfs->z_root;
3209 	uint64_t	oidp = zp->z_id;
3210 	krwlock_t	*rwlp = &szp->z_parent_lock;
3211 	krw_t		rw = RW_WRITER;
3212 
3213 	/*
3214 	 * First pass write-locks szp and compares to zp->z_id.
3215 	 * Later passes read-lock zp and compare to zp->z_parent.
3216 	 */
3217 	do {
3218 		if (!rw_tryenter(rwlp, rw)) {
3219 			/*
3220 			 * Another thread is renaming in this path.
3221 			 * Note that if we are a WRITER, we don't have any
3222 			 * parent_locks held yet.
3223 			 */
3224 			if (rw == RW_READER && zp->z_id > szp->z_id) {
3225 				/*
3226 				 * Drop our locks and restart
3227 				 */
3228 				zfs_rename_unlock(&zl);
3229 				*zlpp = NULL;
3230 				zp = tdzp;
3231 				oidp = zp->z_id;
3232 				rwlp = &szp->z_parent_lock;
3233 				rw = RW_WRITER;
3234 				continue;
3235 			} else {
3236 				/*
3237 				 * Wait for other thread to drop its locks
3238 				 */
3239 				rw_enter(rwlp, rw);
3240 			}
3241 		}
3242 
3243 		zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
3244 		zl->zl_rwlock = rwlp;
3245 		zl->zl_znode = NULL;
3246 		zl->zl_next = *zlpp;
3247 		*zlpp = zl;
3248 
3249 		if (oidp == szp->z_id)		/* We're a descendant of szp */
3250 			return (EINVAL);
3251 
3252 		if (oidp == rootid)		/* We've hit the top */
3253 			return (0);
3254 
3255 		if (rw == RW_READER) {		/* i.e. not the first pass */
3256 			int error = zfs_zget(zp->z_zfsvfs, oidp, &zp);
3257 			if (error)
3258 				return (error);
3259 			zl->zl_znode = zp;
3260 		}
3261 		(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zp->z_zfsvfs),
3262 		    &oidp, sizeof (oidp));
3263 		rwlp = &zp->z_parent_lock;
3264 		rw = RW_READER;
3265 
3266 	} while (zp->z_id != sdzp->z_id);
3267 
3268 	return (0);
3269 }
3270 
3271 /*
3272  * Move an entry from the provided source directory to the target
3273  * directory.  Change the entry name as indicated.
3274  *
3275  *	IN:	sdvp	- Source directory containing the "old entry".
3276  *		snm	- Old entry name.
3277  *		tdvp	- Target directory to contain the "new entry".
3278  *		tnm	- New entry name.
3279  *		cr	- credentials of caller.
3280  *		ct	- caller context
3281  *		flags	- case flags
3282  *
3283  *	RETURN:	0 if success
3284  *		error code if failure
3285  *
3286  * Timestamps:
3287  *	sdvp,tdvp - ctime|mtime updated
3288  */
3289 /*ARGSUSED*/
3290 static int
3291 zfs_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, cred_t *cr,
3292     caller_context_t *ct, int flags)
3293 {
3294 	znode_t		*tdzp, *szp, *tzp;
3295 	znode_t		*sdzp = VTOZ(sdvp);
3296 	zfsvfs_t	*zfsvfs = sdzp->z_zfsvfs;
3297 	zilog_t		*zilog;
3298 	vnode_t		*realvp;
3299 	zfs_dirlock_t	*sdl, *tdl;
3300 	dmu_tx_t	*tx;
3301 	zfs_zlock_t	*zl;
3302 	int		cmp, serr, terr;
3303 	int		error = 0;
3304 	int		zflg = 0;
3305 
3306 	ZFS_ENTER(zfsvfs);
3307 	ZFS_VERIFY_ZP(sdzp);
3308 	zilog = zfsvfs->z_log;
3309 
3310 	/*
3311 	 * Make sure we have the real vp for the target directory.
3312 	 */
3313 	if (VOP_REALVP(tdvp, &realvp, ct) == 0)
3314 		tdvp = realvp;
3315 
3316 	if (tdvp->v_vfsp != sdvp->v_vfsp || zfsctl_is_node(tdvp)) {
3317 		ZFS_EXIT(zfsvfs);
3318 		return (EXDEV);
3319 	}
3320 
3321 	tdzp = VTOZ(tdvp);
3322 	ZFS_VERIFY_ZP(tdzp);
3323 	if (zfsvfs->z_utf8 && u8_validate(tnm,
3324 	    strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3325 		ZFS_EXIT(zfsvfs);
3326 		return (EILSEQ);
3327 	}
3328 
3329 	if (flags & FIGNORECASE)
3330 		zflg |= ZCILOOK;
3331 
3332 top:
3333 	szp = NULL;
3334 	tzp = NULL;
3335 	zl = NULL;
3336 
3337 	/*
3338 	 * This is to prevent the creation of links into attribute space
3339 	 * by renaming a linked file into/outof an attribute directory.
3340 	 * See the comment in zfs_link() for why this is considered bad.
3341 	 */
3342 	if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
3343 		ZFS_EXIT(zfsvfs);
3344 		return (EINVAL);
3345 	}
3346 
3347 	/*
3348 	 * Lock source and target directory entries.  To prevent deadlock,
3349 	 * a lock ordering must be defined.  We lock the directory with
3350 	 * the smallest object id first, or if it's a tie, the one with
3351 	 * the lexically first name.
3352 	 */
3353 	if (sdzp->z_id < tdzp->z_id) {
3354 		cmp = -1;
3355 	} else if (sdzp->z_id > tdzp->z_id) {
3356 		cmp = 1;
3357 	} else {
3358 		/*
3359 		 * First compare the two name arguments without
3360 		 * considering any case folding.
3361 		 */
3362 		int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
3363 
3364 		cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
3365 		ASSERT(error == 0 || !zfsvfs->z_utf8);
3366 		if (cmp == 0) {
3367 			/*
3368 			 * POSIX: "If the old argument and the new argument
3369 			 * both refer to links to the same existing file,
3370 			 * the rename() function shall return successfully
3371 			 * and perform no other action."
3372 			 */
3373 			ZFS_EXIT(zfsvfs);
3374 			return (0);
3375 		}
3376 		/*
3377 		 * If the file system is case-folding, then we may
3378 		 * have some more checking to do.  A case-folding file
3379 		 * system is either supporting mixed case sensitivity
3380 		 * access or is completely case-insensitive.  Note
3381 		 * that the file system is always case preserving.
3382 		 *
3383 		 * In mixed sensitivity mode case sensitive behavior
3384 		 * is the default.  FIGNORECASE must be used to
3385 		 * explicitly request case insensitive behavior.
3386 		 *
3387 		 * If the source and target names provided differ only
3388 		 * by case (e.g., a request to rename 'tim' to 'Tim'),
3389 		 * we will treat this as a special case in the
3390 		 * case-insensitive mode: as long as the source name
3391 		 * is an exact match, we will allow this to proceed as
3392 		 * a name-change request.
3393 		 */
3394 		if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
3395 		    (zfsvfs->z_case == ZFS_CASE_MIXED &&
3396 		    flags & FIGNORECASE)) &&
3397 		    u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
3398 		    &error) == 0) {
3399 			/*
3400 			 * case preserving rename request, require exact
3401 			 * name matches
3402 			 */
3403 			zflg |= ZCIEXACT;
3404 			zflg &= ~ZCILOOK;
3405 		}
3406 	}
3407 
3408 	/*
3409 	 * If the source and destination directories are the same, we should
3410 	 * grab the z_name_lock of that directory only once.
3411 	 */
3412 	if (sdzp == tdzp) {
3413 		zflg |= ZHAVELOCK;
3414 		rw_enter(&sdzp->z_name_lock, RW_READER);
3415 	}
3416 
3417 	if (cmp < 0) {
3418 		serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
3419 		    ZEXISTS | zflg, NULL, NULL);
3420 		terr = zfs_dirent_lock(&tdl,
3421 		    tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
3422 	} else {
3423 		terr = zfs_dirent_lock(&tdl,
3424 		    tdzp, tnm, &tzp, zflg, NULL, NULL);
3425 		serr = zfs_dirent_lock(&sdl,
3426 		    sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
3427 		    NULL, NULL);
3428 	}
3429 
3430 	if (serr) {
3431 		/*
3432 		 * Source entry invalid or not there.
3433 		 */
3434 		if (!terr) {
3435 			zfs_dirent_unlock(tdl);
3436 			if (tzp)
3437 				VN_RELE(ZTOV(tzp));
3438 		}
3439 
3440 		if (sdzp == tdzp)
3441 			rw_exit(&sdzp->z_name_lock);
3442 
3443 		if (strcmp(snm, "..") == 0)
3444 			serr = EINVAL;
3445 		ZFS_EXIT(zfsvfs);
3446 		return (serr);
3447 	}
3448 	if (terr) {
3449 		zfs_dirent_unlock(sdl);
3450 		VN_RELE(ZTOV(szp));
3451 
3452 		if (sdzp == tdzp)
3453 			rw_exit(&sdzp->z_name_lock);
3454 
3455 		if (strcmp(tnm, "..") == 0)
3456 			terr = EINVAL;
3457 		ZFS_EXIT(zfsvfs);
3458 		return (terr);
3459 	}
3460 
3461 	/*
3462 	 * Must have write access at the source to remove the old entry
3463 	 * and write access at the target to create the new entry.
3464 	 * Note that if target and source are the same, this can be
3465 	 * done in a single check.
3466 	 */
3467 
3468 	if (error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr))
3469 		goto out;
3470 
3471 	if (ZTOV(szp)->v_type == VDIR) {
3472 		/*
3473 		 * Check to make sure rename is valid.
3474 		 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
3475 		 */
3476 		if (error = zfs_rename_lock(szp, tdzp, sdzp, &zl))
3477 			goto out;
3478 	}
3479 
3480 	/*
3481 	 * Does target exist?
3482 	 */
3483 	if (tzp) {
3484 		/*
3485 		 * Source and target must be the same type.
3486 		 */
3487 		if (ZTOV(szp)->v_type == VDIR) {
3488 			if (ZTOV(tzp)->v_type != VDIR) {
3489 				error = ENOTDIR;
3490 				goto out;
3491 			}
3492 		} else {
3493 			if (ZTOV(tzp)->v_type == VDIR) {
3494 				error = EISDIR;
3495 				goto out;
3496 			}
3497 		}
3498 		/*
3499 		 * POSIX dictates that when the source and target
3500 		 * entries refer to the same file object, rename
3501 		 * must do nothing and exit without error.
3502 		 */
3503 		if (szp->z_id == tzp->z_id) {
3504 			error = 0;
3505 			goto out;
3506 		}
3507 	}
3508 
3509 	vnevent_rename_src(ZTOV(szp), sdvp, snm, ct);
3510 	if (tzp)
3511 		vnevent_rename_dest(ZTOV(tzp), tdvp, tnm, ct);
3512 
3513 	/*
3514 	 * notify the target directory if it is not the same
3515 	 * as source directory.
3516 	 */
3517 	if (tdvp != sdvp) {
3518 		vnevent_rename_dest_dir(tdvp, ct);
3519 	}
3520 
3521 	tx = dmu_tx_create(zfsvfs->z_os);
3522 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3523 	dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
3524 	dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
3525 	dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
3526 	if (sdzp != tdzp) {
3527 		dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
3528 		zfs_sa_upgrade_txholds(tx, tdzp);
3529 	}
3530 	if (tzp) {
3531 		dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
3532 		zfs_sa_upgrade_txholds(tx, tzp);
3533 	}
3534 
3535 	zfs_sa_upgrade_txholds(tx, szp);
3536 	dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3537 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3538 	if (error) {
3539 		if (zl != NULL)
3540 			zfs_rename_unlock(&zl);
3541 		zfs_dirent_unlock(sdl);
3542 		zfs_dirent_unlock(tdl);
3543 
3544 		if (sdzp == tdzp)
3545 			rw_exit(&sdzp->z_name_lock);
3546 
3547 		VN_RELE(ZTOV(szp));
3548 		if (tzp)
3549 			VN_RELE(ZTOV(tzp));
3550 		if (error == ERESTART) {
3551 			dmu_tx_wait(tx);
3552 			dmu_tx_abort(tx);
3553 			goto top;
3554 		}
3555 		dmu_tx_abort(tx);
3556 		ZFS_EXIT(zfsvfs);
3557 		return (error);
3558 	}
3559 
3560 	if (tzp)	/* Attempt to remove the existing target */
3561 		error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
3562 
3563 	if (error == 0) {
3564 		error = zfs_link_create(tdl, szp, tx, ZRENAMING);
3565 		if (error == 0) {
3566 			szp->z_pflags |= ZFS_AV_MODIFIED;
3567 
3568 			error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
3569 			    (void *)&szp->z_pflags, sizeof (uint64_t), tx);
3570 			ASSERT3U(error, ==, 0);
3571 
3572 			error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
3573 			if (error == 0) {
3574 				zfs_log_rename(zilog, tx, TX_RENAME |
3575 				    (flags & FIGNORECASE ? TX_CI : 0),
3576 				    sdzp, sdl->dl_name, tdzp, tdl->dl_name,
3577 				    szp);
3578 
3579 				/*
3580 				 * Update path information for the target vnode
3581 				 */
3582 				vn_renamepath(tdvp, ZTOV(szp), tnm,
3583 				    strlen(tnm));
3584 			} else {
3585 				/*
3586 				 * At this point, we have successfully created
3587 				 * the target name, but have failed to remove
3588 				 * the source name.  Since the create was done
3589 				 * with the ZRENAMING flag, there are
3590 				 * complications; for one, the link count is
3591 				 * wrong.  The easiest way to deal with this
3592 				 * is to remove the newly created target, and
3593 				 * return the original error.  This must
3594 				 * succeed; fortunately, it is very unlikely to
3595 				 * fail, since we just created it.
3596 				 */
3597 				VERIFY3U(zfs_link_destroy(tdl, szp, tx,
3598 				    ZRENAMING, NULL), ==, 0);
3599 			}
3600 		}
3601 	}
3602 
3603 	dmu_tx_commit(tx);
3604 out:
3605 	if (zl != NULL)
3606 		zfs_rename_unlock(&zl);
3607 
3608 	zfs_dirent_unlock(sdl);
3609 	zfs_dirent_unlock(tdl);
3610 
3611 	if (sdzp == tdzp)
3612 		rw_exit(&sdzp->z_name_lock);
3613 
3614 
3615 	VN_RELE(ZTOV(szp));
3616 	if (tzp)
3617 		VN_RELE(ZTOV(tzp));
3618 
3619 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3620 		zil_commit(zilog, UINT64_MAX, 0);
3621 
3622 	ZFS_EXIT(zfsvfs);
3623 	return (error);
3624 }
3625 
3626 /*
3627  * Insert the indicated symbolic reference entry into the directory.
3628  *
3629  *	IN:	dvp	- Directory to contain new symbolic link.
3630  *		link	- Name for new symlink entry.
3631  *		vap	- Attributes of new entry.
3632  *		target	- Target path of new symlink.
3633  *		cr	- credentials of caller.
3634  *		ct	- caller context
3635  *		flags	- case flags
3636  *
3637  *	RETURN:	0 if success
3638  *		error code if failure
3639  *
3640  * Timestamps:
3641  *	dvp - ctime|mtime updated
3642  */
3643 /*ARGSUSED*/
3644 static int
3645 zfs_symlink(vnode_t *dvp, char *name, vattr_t *vap, char *link, cred_t *cr,
3646     caller_context_t *ct, int flags)
3647 {
3648 	znode_t		*zp, *dzp = VTOZ(dvp);
3649 	zfs_dirlock_t	*dl;
3650 	dmu_tx_t	*tx;
3651 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3652 	zilog_t		*zilog;
3653 	uint64_t	len = strlen(link);
3654 	int		error;
3655 	int		zflg = ZNEW;
3656 	zfs_acl_ids_t	acl_ids;
3657 	boolean_t	fuid_dirtied;
3658 	uint64_t	txtype = TX_SYMLINK;
3659 
3660 	ASSERT(vap->va_type == VLNK);
3661 
3662 	ZFS_ENTER(zfsvfs);
3663 	ZFS_VERIFY_ZP(dzp);
3664 	zilog = zfsvfs->z_log;
3665 
3666 	if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3667 	    NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3668 		ZFS_EXIT(zfsvfs);
3669 		return (EILSEQ);
3670 	}
3671 	if (flags & FIGNORECASE)
3672 		zflg |= ZCILOOK;
3673 
3674 	if (len > MAXPATHLEN) {
3675 		ZFS_EXIT(zfsvfs);
3676 		return (ENAMETOOLONG);
3677 	}
3678 
3679 	if ((error = zfs_acl_ids_create(dzp, 0,
3680 	    vap, cr, NULL, &acl_ids)) != 0) {
3681 		ZFS_EXIT(zfsvfs);
3682 		return (error);
3683 	}
3684 top:
3685 	/*
3686 	 * Attempt to lock directory; fail if entry already exists.
3687 	 */
3688 	error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3689 	if (error) {
3690 		zfs_acl_ids_free(&acl_ids);
3691 		ZFS_EXIT(zfsvfs);
3692 		return (error);
3693 	}
3694 
3695 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3696 		zfs_acl_ids_free(&acl_ids);
3697 		zfs_dirent_unlock(dl);
3698 		ZFS_EXIT(zfsvfs);
3699 		return (error);
3700 	}
3701 
3702 	if (zfs_acl_ids_overquota(zfsvfs, &acl_ids)) {
3703 		zfs_acl_ids_free(&acl_ids);
3704 		zfs_dirent_unlock(dl);
3705 		ZFS_EXIT(zfsvfs);
3706 		return (EDQUOT);
3707 	}
3708 	tx = dmu_tx_create(zfsvfs->z_os);
3709 	fuid_dirtied = zfsvfs->z_fuid_dirty;
3710 	dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3711 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3712 	dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3713 	    ZFS_SA_BASE_ATTR_SIZE + len);
3714 	dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3715 	if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3716 		dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3717 		    acl_ids.z_aclp->z_acl_bytes);
3718 	}
3719 	if (fuid_dirtied)
3720 		zfs_fuid_txhold(zfsvfs, tx);
3721 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3722 	if (error) {
3723 		zfs_dirent_unlock(dl);
3724 		if (error == ERESTART) {
3725 			dmu_tx_wait(tx);
3726 			dmu_tx_abort(tx);
3727 			goto top;
3728 		}
3729 		zfs_acl_ids_free(&acl_ids);
3730 		dmu_tx_abort(tx);
3731 		ZFS_EXIT(zfsvfs);
3732 		return (error);
3733 	}
3734 
3735 	/*
3736 	 * Create a new object for the symlink.
3737 	 * for version 4 ZPL datsets the symlink will be an SA attribute
3738 	 */
3739 	zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3740 
3741 	if (fuid_dirtied)
3742 		zfs_fuid_sync(zfsvfs, tx);
3743 
3744 	mutex_enter(&zp->z_lock);
3745 	if (zp->z_is_sa)
3746 		error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3747 		    link, len, tx);
3748 	else
3749 		zfs_sa_symlink(zp, link, len, tx);
3750 	mutex_exit(&zp->z_lock);
3751 
3752 	zp->z_size = len;
3753 	(void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3754 	    &zp->z_size, sizeof (zp->z_size), tx);
3755 	/*
3756 	 * Insert the new object into the directory.
3757 	 */
3758 	(void) zfs_link_create(dl, zp, tx, ZNEW);
3759 
3760 	if (flags & FIGNORECASE)
3761 		txtype |= TX_CI;
3762 	zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3763 
3764 	zfs_acl_ids_free(&acl_ids);
3765 
3766 	dmu_tx_commit(tx);
3767 
3768 	zfs_dirent_unlock(dl);
3769 
3770 	VN_RELE(ZTOV(zp));
3771 
3772 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3773 		zil_commit(zilog, UINT64_MAX, 0);
3774 
3775 	ZFS_EXIT(zfsvfs);
3776 	return (error);
3777 }
3778 
3779 /*
3780  * Return, in the buffer contained in the provided uio structure,
3781  * the symbolic path referred to by vp.
3782  *
3783  *	IN:	vp	- vnode of symbolic link.
3784  *		uoip	- structure to contain the link path.
3785  *		cr	- credentials of caller.
3786  *		ct	- caller context
3787  *
3788  *	OUT:	uio	- structure to contain the link path.
3789  *
3790  *	RETURN:	0 if success
3791  *		error code if failure
3792  *
3793  * Timestamps:
3794  *	vp - atime updated
3795  */
3796 /* ARGSUSED */
3797 static int
3798 zfs_readlink(vnode_t *vp, uio_t *uio, cred_t *cr, caller_context_t *ct)
3799 {
3800 	znode_t		*zp = VTOZ(vp);
3801 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
3802 	int		error;
3803 
3804 	ZFS_ENTER(zfsvfs);
3805 	ZFS_VERIFY_ZP(zp);
3806 
3807 	mutex_enter(&zp->z_lock);
3808 	if (zp->z_is_sa)
3809 		error = sa_lookup_uio(zp->z_sa_hdl,
3810 		    SA_ZPL_SYMLINK(zfsvfs), uio);
3811 	else
3812 		error = zfs_sa_readlink(zp, uio);
3813 	mutex_exit(&zp->z_lock);
3814 
3815 	ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
3816 
3817 	ZFS_EXIT(zfsvfs);
3818 	return (error);
3819 }
3820 
3821 /*
3822  * Insert a new entry into directory tdvp referencing svp.
3823  *
3824  *	IN:	tdvp	- Directory to contain new entry.
3825  *		svp	- vnode of new entry.
3826  *		name	- name of new entry.
3827  *		cr	- credentials of caller.
3828  *		ct	- caller context
3829  *
3830  *	RETURN:	0 if success
3831  *		error code if failure
3832  *
3833  * Timestamps:
3834  *	tdvp - ctime|mtime updated
3835  *	 svp - ctime updated
3836  */
3837 /* ARGSUSED */
3838 static int
3839 zfs_link(vnode_t *tdvp, vnode_t *svp, char *name, cred_t *cr,
3840     caller_context_t *ct, int flags)
3841 {
3842 	znode_t		*dzp = VTOZ(tdvp);
3843 	znode_t		*tzp, *szp;
3844 	zfsvfs_t	*zfsvfs = dzp->z_zfsvfs;
3845 	zilog_t		*zilog;
3846 	zfs_dirlock_t	*dl;
3847 	dmu_tx_t	*tx;
3848 	vnode_t		*realvp;
3849 	int		error;
3850 	int		zf = ZNEW;
3851 	uint64_t	parent;
3852 
3853 	ASSERT(tdvp->v_type == VDIR);
3854 
3855 	ZFS_ENTER(zfsvfs);
3856 	ZFS_VERIFY_ZP(dzp);
3857 	zilog = zfsvfs->z_log;
3858 
3859 	if (VOP_REALVP(svp, &realvp, ct) == 0)
3860 		svp = realvp;
3861 
3862 	/*
3863 	 * POSIX dictates that we return EPERM here.
3864 	 * Better choices include ENOTSUP or EISDIR.
3865 	 */
3866 	if (svp->v_type == VDIR) {
3867 		ZFS_EXIT(zfsvfs);
3868 		return (EPERM);
3869 	}
3870 
3871 	if (svp->v_vfsp != tdvp->v_vfsp || zfsctl_is_node(svp)) {
3872 		ZFS_EXIT(zfsvfs);
3873 		return (EXDEV);
3874 	}
3875 
3876 	szp = VTOZ(svp);
3877 	ZFS_VERIFY_ZP(szp);
3878 
3879 	/* Prevent links to .zfs/shares files */
3880 
3881 	if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3882 	    &parent, sizeof (uint64_t))) != 0) {
3883 		ZFS_EXIT(zfsvfs);
3884 		return (error);
3885 	}
3886 	if (parent == zfsvfs->z_shares_dir) {
3887 		ZFS_EXIT(zfsvfs);
3888 		return (EPERM);
3889 	}
3890 
3891 	if (zfsvfs->z_utf8 && u8_validate(name,
3892 	    strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3893 		ZFS_EXIT(zfsvfs);
3894 		return (EILSEQ);
3895 	}
3896 	if (flags & FIGNORECASE)
3897 		zf |= ZCILOOK;
3898 
3899 	/*
3900 	 * We do not support links between attributes and non-attributes
3901 	 * because of the potential security risk of creating links
3902 	 * into "normal" file space in order to circumvent restrictions
3903 	 * imposed in attribute space.
3904 	 */
3905 	if ((szp->z_pflags & ZFS_XATTR) != (dzp->z_pflags & ZFS_XATTR)) {
3906 		ZFS_EXIT(zfsvfs);
3907 		return (EINVAL);
3908 	}
3909 
3910 
3911 	if (szp->z_uid != crgetuid(cr) &&
3912 	    secpolicy_basic_link(cr) != 0) {
3913 		ZFS_EXIT(zfsvfs);
3914 		return (EPERM);
3915 	}
3916 
3917 	if (error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr)) {
3918 		ZFS_EXIT(zfsvfs);
3919 		return (error);
3920 	}
3921 
3922 top:
3923 	/*
3924 	 * Attempt to lock directory; fail if entry already exists.
3925 	 */
3926 	error = zfs_dirent_lock(&dl, dzp, name, &tzp, zf, NULL, NULL);
3927 	if (error) {
3928 		ZFS_EXIT(zfsvfs);
3929 		return (error);
3930 	}
3931 
3932 	tx = dmu_tx_create(zfsvfs->z_os);
3933 	dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3934 	dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3935 	zfs_sa_upgrade_txholds(tx, szp);
3936 	zfs_sa_upgrade_txholds(tx, dzp);
3937 	error = dmu_tx_assign(tx, TXG_NOWAIT);
3938 	if (error) {
3939 		zfs_dirent_unlock(dl);
3940 		if (error == ERESTART) {
3941 			dmu_tx_wait(tx);
3942 			dmu_tx_abort(tx);
3943 			goto top;
3944 		}
3945 		dmu_tx_abort(tx);
3946 		ZFS_EXIT(zfsvfs);
3947 		return (error);
3948 	}
3949 
3950 	error = zfs_link_create(dl, szp, tx, 0);
3951 
3952 	if (error == 0) {
3953 		uint64_t txtype = TX_LINK;
3954 		if (flags & FIGNORECASE)
3955 			txtype |= TX_CI;
3956 		zfs_log_link(zilog, tx, txtype, dzp, szp, name);
3957 	}
3958 
3959 	dmu_tx_commit(tx);
3960 
3961 	zfs_dirent_unlock(dl);
3962 
3963 	if (error == 0) {
3964 		vnevent_link(svp, ct);
3965 	}
3966 
3967 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3968 		zil_commit(zilog, UINT64_MAX, 0);
3969 
3970 	ZFS_EXIT(zfsvfs);
3971 	return (error);
3972 }
3973 
3974 /*
3975  * zfs_null_putapage() is used when the file system has been force
3976  * unmounted. It just drops the pages.
3977  */
3978 /* ARGSUSED */
3979 static int
3980 zfs_null_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
3981 		size_t *lenp, int flags, cred_t *cr)
3982 {
3983 	pvn_write_done(pp, B_INVAL|B_FORCE|B_ERROR);
3984 	return (0);
3985 }
3986 
3987 /*
3988  * Push a page out to disk, klustering if possible.
3989  *
3990  *	IN:	vp	- file to push page to.
3991  *		pp	- page to push.
3992  *		flags	- additional flags.
3993  *		cr	- credentials of caller.
3994  *
3995  *	OUT:	offp	- start of range pushed.
3996  *		lenp	- len of range pushed.
3997  *
3998  *	RETURN:	0 if success
3999  *		error code if failure
4000  *
4001  * NOTE: callers must have locked the page to be pushed.  On
4002  * exit, the page (and all other pages in the kluster) must be
4003  * unlocked.
4004  */
4005 /* ARGSUSED */
4006 static int
4007 zfs_putapage(vnode_t *vp, page_t *pp, u_offset_t *offp,
4008 		size_t *lenp, int flags, cred_t *cr)
4009 {
4010 	znode_t		*zp = VTOZ(vp);
4011 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4012 	dmu_tx_t	*tx;
4013 	u_offset_t	off, koff;
4014 	size_t		len, klen;
4015 	int		err;
4016 
4017 	off = pp->p_offset;
4018 	len = PAGESIZE;
4019 	/*
4020 	 * If our blocksize is bigger than the page size, try to kluster
4021 	 * multiple pages so that we write a full block (thus avoiding
4022 	 * a read-modify-write).
4023 	 */
4024 	if (off < zp->z_size && zp->z_blksz > PAGESIZE) {
4025 		klen = P2ROUNDUP((ulong_t)zp->z_blksz, PAGESIZE);
4026 		koff = ISP2(klen) ? P2ALIGN(off, (u_offset_t)klen) : 0;
4027 		ASSERT(koff <= zp->z_size);
4028 		if (koff + klen > zp->z_size)
4029 			klen = P2ROUNDUP(zp->z_size - koff, (uint64_t)PAGESIZE);
4030 		pp = pvn_write_kluster(vp, pp, &off, &len, koff, klen, flags);
4031 	}
4032 	ASSERT3U(btop(len), ==, btopr(len));
4033 
4034 	/*
4035 	 * Can't push pages past end-of-file.
4036 	 */
4037 	if (off >= zp->z_size) {
4038 		/* ignore all pages */
4039 		err = 0;
4040 		goto out;
4041 	} else if (off + len > zp->z_size) {
4042 		int npages = btopr(zp->z_size - off);
4043 		page_t *trunc;
4044 
4045 		page_list_break(&pp, &trunc, npages);
4046 		/* ignore pages past end of file */
4047 		if (trunc)
4048 			pvn_write_done(trunc, flags);
4049 		len = zp->z_size - off;
4050 	}
4051 
4052 	if (zfs_owner_overquota(zfsvfs, zp, B_FALSE) ||
4053 	    zfs_owner_overquota(zfsvfs, zp, B_TRUE)) {
4054 		err = EDQUOT;
4055 		goto out;
4056 	}
4057 top:
4058 	tx = dmu_tx_create(zfsvfs->z_os);
4059 	dmu_tx_hold_write(tx, zp->z_id, off, len);
4060 
4061 	dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4062 	zfs_sa_upgrade_txholds(tx, zp);
4063 	err = dmu_tx_assign(tx, TXG_NOWAIT);
4064 	if (err != 0) {
4065 		if (err == ERESTART) {
4066 			dmu_tx_wait(tx);
4067 			dmu_tx_abort(tx);
4068 			goto top;
4069 		}
4070 		dmu_tx_abort(tx);
4071 		goto out;
4072 	}
4073 
4074 	if (zp->z_blksz <= PAGESIZE) {
4075 		caddr_t va = zfs_map_page(pp, S_READ);
4076 		ASSERT3U(len, <=, PAGESIZE);
4077 		dmu_write(zfsvfs->z_os, zp->z_id, off, len, va, tx);
4078 		zfs_unmap_page(pp, va);
4079 	} else {
4080 		err = dmu_write_pages(zfsvfs->z_os, zp->z_id, off, len, pp, tx);
4081 	}
4082 
4083 	if (err == 0) {
4084 		uint64_t mtime[2], ctime[2];
4085 		sa_bulk_attr_t bulk[3];
4086 		int count = 0;
4087 
4088 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
4089 		    &mtime, 16);
4090 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
4091 		    &ctime, 16);
4092 		SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
4093 		    &zp->z_pflags, 8);
4094 		zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime,
4095 		    B_TRUE);
4096 		zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, off, len, 0);
4097 	}
4098 	dmu_tx_commit(tx);
4099 
4100 out:
4101 	pvn_write_done(pp, (err ? B_ERROR : 0) | flags);
4102 	if (offp)
4103 		*offp = off;
4104 	if (lenp)
4105 		*lenp = len;
4106 
4107 	return (err);
4108 }
4109 
4110 /*
4111  * Copy the portion of the file indicated from pages into the file.
4112  * The pages are stored in a page list attached to the files vnode.
4113  *
4114  *	IN:	vp	- vnode of file to push page data to.
4115  *		off	- position in file to put data.
4116  *		len	- amount of data to write.
4117  *		flags	- flags to control the operation.
4118  *		cr	- credentials of caller.
4119  *		ct	- caller context.
4120  *
4121  *	RETURN:	0 if success
4122  *		error code if failure
4123  *
4124  * Timestamps:
4125  *	vp - ctime|mtime updated
4126  */
4127 /*ARGSUSED*/
4128 static int
4129 zfs_putpage(vnode_t *vp, offset_t off, size_t len, int flags, cred_t *cr,
4130     caller_context_t *ct)
4131 {
4132 	znode_t		*zp = VTOZ(vp);
4133 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4134 	page_t		*pp;
4135 	size_t		io_len;
4136 	u_offset_t	io_off;
4137 	uint_t		blksz;
4138 	rl_t		*rl;
4139 	int		error = 0;
4140 
4141 	ZFS_ENTER(zfsvfs);
4142 	ZFS_VERIFY_ZP(zp);
4143 
4144 	/*
4145 	 * Align this request to the file block size in case we kluster.
4146 	 * XXX - this can result in pretty aggresive locking, which can
4147 	 * impact simultanious read/write access.  One option might be
4148 	 * to break up long requests (len == 0) into block-by-block
4149 	 * operations to get narrower locking.
4150 	 */
4151 	blksz = zp->z_blksz;
4152 	if (ISP2(blksz))
4153 		io_off = P2ALIGN_TYPED(off, blksz, u_offset_t);
4154 	else
4155 		io_off = 0;
4156 	if (len > 0 && ISP2(blksz))
4157 		io_len = P2ROUNDUP_TYPED(len + (off - io_off), blksz, size_t);
4158 	else
4159 		io_len = 0;
4160 
4161 	if (io_len == 0) {
4162 		/*
4163 		 * Search the entire vp list for pages >= io_off.
4164 		 */
4165 		rl = zfs_range_lock(zp, io_off, UINT64_MAX, RL_WRITER);
4166 		error = pvn_vplist_dirty(vp, io_off, zfs_putapage, flags, cr);
4167 		goto out;
4168 	}
4169 	rl = zfs_range_lock(zp, io_off, io_len, RL_WRITER);
4170 
4171 	if (off > zp->z_size) {
4172 		/* past end of file */
4173 		zfs_range_unlock(rl);
4174 		ZFS_EXIT(zfsvfs);
4175 		return (0);
4176 	}
4177 
4178 	len = MIN(io_len, P2ROUNDUP(zp->z_size, PAGESIZE) - io_off);
4179 
4180 	for (off = io_off; io_off < off + len; io_off += io_len) {
4181 		if ((flags & B_INVAL) || ((flags & B_ASYNC) == 0)) {
4182 			pp = page_lookup(vp, io_off,
4183 			    (flags & (B_INVAL | B_FREE)) ? SE_EXCL : SE_SHARED);
4184 		} else {
4185 			pp = page_lookup_nowait(vp, io_off,
4186 			    (flags & B_FREE) ? SE_EXCL : SE_SHARED);
4187 		}
4188 
4189 		if (pp != NULL && pvn_getdirty(pp, flags)) {
4190 			int err;
4191 
4192 			/*
4193 			 * Found a dirty page to push
4194 			 */
4195 			err = zfs_putapage(vp, pp, &io_off, &io_len, flags, cr);
4196 			if (err)
4197 				error = err;
4198 		} else {
4199 			io_len = PAGESIZE;
4200 		}
4201 	}
4202 out:
4203 	zfs_range_unlock(rl);
4204 	if ((flags & B_ASYNC) == 0 || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4205 		zil_commit(zfsvfs->z_log, UINT64_MAX, zp->z_id);
4206 	ZFS_EXIT(zfsvfs);
4207 	return (error);
4208 }
4209 
4210 /*ARGSUSED*/
4211 void
4212 zfs_inactive(vnode_t *vp, cred_t *cr, caller_context_t *ct)
4213 {
4214 	znode_t	*zp = VTOZ(vp);
4215 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4216 	int error;
4217 
4218 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
4219 	if (zp->z_sa_hdl == NULL) {
4220 		/*
4221 		 * The fs has been unmounted, or we did a
4222 		 * suspend/resume and this file no longer exists.
4223 		 */
4224 		if (vn_has_cached_data(vp)) {
4225 			(void) pvn_vplist_dirty(vp, 0, zfs_null_putapage,
4226 			    B_INVAL, cr);
4227 		}
4228 
4229 		mutex_enter(&zp->z_lock);
4230 		mutex_enter(&vp->v_lock);
4231 		ASSERT(vp->v_count == 1);
4232 		vp->v_count = 0;
4233 		mutex_exit(&vp->v_lock);
4234 		mutex_exit(&zp->z_lock);
4235 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
4236 		zfs_znode_free(zp);
4237 		return;
4238 	}
4239 
4240 	/*
4241 	 * Attempt to push any data in the page cache.  If this fails
4242 	 * we will get kicked out later in zfs_zinactive().
4243 	 */
4244 	if (vn_has_cached_data(vp)) {
4245 		(void) pvn_vplist_dirty(vp, 0, zfs_putapage, B_INVAL|B_ASYNC,
4246 		    cr);
4247 	}
4248 
4249 	if (zp->z_atime_dirty && zp->z_unlinked == 0) {
4250 		dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
4251 
4252 		dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
4253 		zfs_sa_upgrade_txholds(tx, zp);
4254 		error = dmu_tx_assign(tx, TXG_WAIT);
4255 		if (error) {
4256 			dmu_tx_abort(tx);
4257 		} else {
4258 			mutex_enter(&zp->z_lock);
4259 			(void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
4260 			    (void *)&zp->z_atime, sizeof (zp->z_atime), tx);
4261 			zp->z_atime_dirty = 0;
4262 			mutex_exit(&zp->z_lock);
4263 			dmu_tx_commit(tx);
4264 		}
4265 	}
4266 
4267 	zfs_zinactive(zp);
4268 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
4269 }
4270 
4271 /*
4272  * Bounds-check the seek operation.
4273  *
4274  *	IN:	vp	- vnode seeking within
4275  *		ooff	- old file offset
4276  *		noffp	- pointer to new file offset
4277  *		ct	- caller context
4278  *
4279  *	RETURN:	0 if success
4280  *		EINVAL if new offset invalid
4281  */
4282 /* ARGSUSED */
4283 static int
4284 zfs_seek(vnode_t *vp, offset_t ooff, offset_t *noffp,
4285     caller_context_t *ct)
4286 {
4287 	if (vp->v_type == VDIR)
4288 		return (0);
4289 	return ((*noffp < 0 || *noffp > MAXOFFSET_T) ? EINVAL : 0);
4290 }
4291 
4292 /*
4293  * Pre-filter the generic locking function to trap attempts to place
4294  * a mandatory lock on a memory mapped file.
4295  */
4296 static int
4297 zfs_frlock(vnode_t *vp, int cmd, flock64_t *bfp, int flag, offset_t offset,
4298     flk_callback_t *flk_cbp, cred_t *cr, caller_context_t *ct)
4299 {
4300 	znode_t *zp = VTOZ(vp);
4301 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4302 
4303 	ZFS_ENTER(zfsvfs);
4304 	ZFS_VERIFY_ZP(zp);
4305 
4306 	/*
4307 	 * We are following the UFS semantics with respect to mapcnt
4308 	 * here: If we see that the file is mapped already, then we will
4309 	 * return an error, but we don't worry about races between this
4310 	 * function and zfs_map().
4311 	 */
4312 	if (zp->z_mapcnt > 0 && MANDMODE(zp->z_mode)) {
4313 		ZFS_EXIT(zfsvfs);
4314 		return (EAGAIN);
4315 	}
4316 	ZFS_EXIT(zfsvfs);
4317 	return (fs_frlock(vp, cmd, bfp, flag, offset, flk_cbp, cr, ct));
4318 }
4319 
4320 /*
4321  * If we can't find a page in the cache, we will create a new page
4322  * and fill it with file data.  For efficiency, we may try to fill
4323  * multiple pages at once (klustering) to fill up the supplied page
4324  * list.  Note that the pages to be filled are held with an exclusive
4325  * lock to prevent access by other threads while they are being filled.
4326  */
4327 static int
4328 zfs_fillpage(vnode_t *vp, u_offset_t off, struct seg *seg,
4329     caddr_t addr, page_t *pl[], size_t plsz, enum seg_rw rw)
4330 {
4331 	znode_t *zp = VTOZ(vp);
4332 	page_t *pp, *cur_pp;
4333 	objset_t *os = zp->z_zfsvfs->z_os;
4334 	u_offset_t io_off, total;
4335 	size_t io_len;
4336 	int err;
4337 
4338 	if (plsz == PAGESIZE || zp->z_blksz <= PAGESIZE) {
4339 		/*
4340 		 * We only have a single page, don't bother klustering
4341 		 */
4342 		io_off = off;
4343 		io_len = PAGESIZE;
4344 		pp = page_create_va(vp, io_off, io_len,
4345 		    PG_EXCL | PG_WAIT, seg, addr);
4346 	} else {
4347 		/*
4348 		 * Try to find enough pages to fill the page list
4349 		 */
4350 		pp = pvn_read_kluster(vp, off, seg, addr, &io_off,
4351 		    &io_len, off, plsz, 0);
4352 	}
4353 	if (pp == NULL) {
4354 		/*
4355 		 * The page already exists, nothing to do here.
4356 		 */
4357 		*pl = NULL;
4358 		return (0);
4359 	}
4360 
4361 	/*
4362 	 * Fill the pages in the kluster.
4363 	 */
4364 	cur_pp = pp;
4365 	for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
4366 		caddr_t va;
4367 
4368 		ASSERT3U(io_off, ==, cur_pp->p_offset);
4369 		va = zfs_map_page(cur_pp, S_WRITE);
4370 		err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
4371 		    DMU_READ_PREFETCH);
4372 		zfs_unmap_page(cur_pp, va);
4373 		if (err) {
4374 			/* On error, toss the entire kluster */
4375 			pvn_read_done(pp, B_ERROR);
4376 			/* convert checksum errors into IO errors */
4377 			if (err == ECKSUM)
4378 				err = EIO;
4379 			return (err);
4380 		}
4381 		cur_pp = cur_pp->p_next;
4382 	}
4383 
4384 	/*
4385 	 * Fill in the page list array from the kluster starting
4386 	 * from the desired offset `off'.
4387 	 * NOTE: the page list will always be null terminated.
4388 	 */
4389 	pvn_plist_init(pp, pl, plsz, off, io_len, rw);
4390 	ASSERT(pl == NULL || (*pl)->p_offset == off);
4391 
4392 	return (0);
4393 }
4394 
4395 /*
4396  * Return pointers to the pages for the file region [off, off + len]
4397  * in the pl array.  If plsz is greater than len, this function may
4398  * also return page pointers from after the specified region
4399  * (i.e. the region [off, off + plsz]).  These additional pages are
4400  * only returned if they are already in the cache, or were created as
4401  * part of a klustered read.
4402  *
4403  *	IN:	vp	- vnode of file to get data from.
4404  *		off	- position in file to get data from.
4405  *		len	- amount of data to retrieve.
4406  *		plsz	- length of provided page list.
4407  *		seg	- segment to obtain pages for.
4408  *		addr	- virtual address of fault.
4409  *		rw	- mode of created pages.
4410  *		cr	- credentials of caller.
4411  *		ct	- caller context.
4412  *
4413  *	OUT:	protp	- protection mode of created pages.
4414  *		pl	- list of pages created.
4415  *
4416  *	RETURN:	0 if success
4417  *		error code if failure
4418  *
4419  * Timestamps:
4420  *	vp - atime updated
4421  */
4422 /* ARGSUSED */
4423 static int
4424 zfs_getpage(vnode_t *vp, offset_t off, size_t len, uint_t *protp,
4425 	page_t *pl[], size_t plsz, struct seg *seg, caddr_t addr,
4426 	enum seg_rw rw, cred_t *cr, caller_context_t *ct)
4427 {
4428 	znode_t		*zp = VTOZ(vp);
4429 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4430 	page_t		**pl0 = pl;
4431 	int		err = 0;
4432 
4433 	/* we do our own caching, faultahead is unnecessary */
4434 	if (pl == NULL)
4435 		return (0);
4436 	else if (len > plsz)
4437 		len = plsz;
4438 	else
4439 		len = P2ROUNDUP(len, PAGESIZE);
4440 	ASSERT(plsz >= len);
4441 
4442 	ZFS_ENTER(zfsvfs);
4443 	ZFS_VERIFY_ZP(zp);
4444 
4445 	if (protp)
4446 		*protp = PROT_ALL;
4447 
4448 	/*
4449 	 * Loop through the requested range [off, off + len) looking
4450 	 * for pages.  If we don't find a page, we will need to create
4451 	 * a new page and fill it with data from the file.
4452 	 */
4453 	while (len > 0) {
4454 		if (*pl = page_lookup(vp, off, SE_SHARED))
4455 			*(pl+1) = NULL;
4456 		else if (err = zfs_fillpage(vp, off, seg, addr, pl, plsz, rw))
4457 			goto out;
4458 		while (*pl) {
4459 			ASSERT3U((*pl)->p_offset, ==, off);
4460 			off += PAGESIZE;
4461 			addr += PAGESIZE;
4462 			if (len > 0) {
4463 				ASSERT3U(len, >=, PAGESIZE);
4464 				len -= PAGESIZE;
4465 			}
4466 			ASSERT3U(plsz, >=, PAGESIZE);
4467 			plsz -= PAGESIZE;
4468 			pl++;
4469 		}
4470 	}
4471 
4472 	/*
4473 	 * Fill out the page array with any pages already in the cache.
4474 	 */
4475 	while (plsz > 0 &&
4476 	    (*pl++ = page_lookup_nowait(vp, off, SE_SHARED))) {
4477 			off += PAGESIZE;
4478 			plsz -= PAGESIZE;
4479 	}
4480 out:
4481 	if (err) {
4482 		/*
4483 		 * Release any pages we have previously locked.
4484 		 */
4485 		while (pl > pl0)
4486 			page_unlock(*--pl);
4487 	} else {
4488 		ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
4489 	}
4490 
4491 	*pl = NULL;
4492 
4493 	ZFS_EXIT(zfsvfs);
4494 	return (err);
4495 }
4496 
4497 /*
4498  * Request a memory map for a section of a file.  This code interacts
4499  * with common code and the VM system as follows:
4500  *
4501  *	common code calls mmap(), which ends up in smmap_common()
4502  *
4503  *	this calls VOP_MAP(), which takes you into (say) zfs
4504  *
4505  *	zfs_map() calls as_map(), passing segvn_create() as the callback
4506  *
4507  *	segvn_create() creates the new segment and calls VOP_ADDMAP()
4508  *
4509  *	zfs_addmap() updates z_mapcnt
4510  */
4511 /*ARGSUSED*/
4512 static int
4513 zfs_map(vnode_t *vp, offset_t off, struct as *as, caddr_t *addrp,
4514     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4515     caller_context_t *ct)
4516 {
4517 	znode_t *zp = VTOZ(vp);
4518 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4519 	segvn_crargs_t	vn_a;
4520 	int		error;
4521 
4522 	ZFS_ENTER(zfsvfs);
4523 	ZFS_VERIFY_ZP(zp);
4524 
4525 	if ((prot & PROT_WRITE) && (zp->z_pflags &
4526 	    (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
4527 		ZFS_EXIT(zfsvfs);
4528 		return (EPERM);
4529 	}
4530 
4531 	if ((prot & (PROT_READ | PROT_EXEC)) &&
4532 	    (zp->z_pflags & ZFS_AV_QUARANTINED)) {
4533 		ZFS_EXIT(zfsvfs);
4534 		return (EACCES);
4535 	}
4536 
4537 	if (vp->v_flag & VNOMAP) {
4538 		ZFS_EXIT(zfsvfs);
4539 		return (ENOSYS);
4540 	}
4541 
4542 	if (off < 0 || len > MAXOFFSET_T - off) {
4543 		ZFS_EXIT(zfsvfs);
4544 		return (ENXIO);
4545 	}
4546 
4547 	if (vp->v_type != VREG) {
4548 		ZFS_EXIT(zfsvfs);
4549 		return (ENODEV);
4550 	}
4551 
4552 	/*
4553 	 * If file is locked, disallow mapping.
4554 	 */
4555 	if (MANDMODE(zp->z_mode) && vn_has_flocks(vp)) {
4556 		ZFS_EXIT(zfsvfs);
4557 		return (EAGAIN);
4558 	}
4559 
4560 	as_rangelock(as);
4561 	error = choose_addr(as, addrp, len, off, ADDR_VACALIGN, flags);
4562 	if (error != 0) {
4563 		as_rangeunlock(as);
4564 		ZFS_EXIT(zfsvfs);
4565 		return (error);
4566 	}
4567 
4568 	vn_a.vp = vp;
4569 	vn_a.offset = (u_offset_t)off;
4570 	vn_a.type = flags & MAP_TYPE;
4571 	vn_a.prot = prot;
4572 	vn_a.maxprot = maxprot;
4573 	vn_a.cred = cr;
4574 	vn_a.amp = NULL;
4575 	vn_a.flags = flags & ~MAP_TYPE;
4576 	vn_a.szc = 0;
4577 	vn_a.lgrp_mem_policy_flags = 0;
4578 
4579 	error = as_map(as, *addrp, len, segvn_create, &vn_a);
4580 
4581 	as_rangeunlock(as);
4582 	ZFS_EXIT(zfsvfs);
4583 	return (error);
4584 }
4585 
4586 /* ARGSUSED */
4587 static int
4588 zfs_addmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4589     size_t len, uchar_t prot, uchar_t maxprot, uint_t flags, cred_t *cr,
4590     caller_context_t *ct)
4591 {
4592 	uint64_t pages = btopr(len);
4593 
4594 	atomic_add_64(&VTOZ(vp)->z_mapcnt, pages);
4595 	return (0);
4596 }
4597 
4598 /*
4599  * The reason we push dirty pages as part of zfs_delmap() is so that we get a
4600  * more accurate mtime for the associated file.  Since we don't have a way of
4601  * detecting when the data was actually modified, we have to resort to
4602  * heuristics.  If an explicit msync() is done, then we mark the mtime when the
4603  * last page is pushed.  The problem occurs when the msync() call is omitted,
4604  * which by far the most common case:
4605  *
4606  * 	open()
4607  * 	mmap()
4608  * 	<modify memory>
4609  * 	munmap()
4610  * 	close()
4611  * 	<time lapse>
4612  * 	putpage() via fsflush
4613  *
4614  * If we wait until fsflush to come along, we can have a modification time that
4615  * is some arbitrary point in the future.  In order to prevent this in the
4616  * common case, we flush pages whenever a (MAP_SHARED, PROT_WRITE) mapping is
4617  * torn down.
4618  */
4619 /* ARGSUSED */
4620 static int
4621 zfs_delmap(vnode_t *vp, offset_t off, struct as *as, caddr_t addr,
4622     size_t len, uint_t prot, uint_t maxprot, uint_t flags, cred_t *cr,
4623     caller_context_t *ct)
4624 {
4625 	uint64_t pages = btopr(len);
4626 
4627 	ASSERT3U(VTOZ(vp)->z_mapcnt, >=, pages);
4628 	atomic_add_64(&VTOZ(vp)->z_mapcnt, -pages);
4629 
4630 	if ((flags & MAP_SHARED) && (prot & PROT_WRITE) &&
4631 	    vn_has_cached_data(vp))
4632 		(void) VOP_PUTPAGE(vp, off, len, B_ASYNC, cr, ct);
4633 
4634 	return (0);
4635 }
4636 
4637 /*
4638  * Free or allocate space in a file.  Currently, this function only
4639  * supports the `F_FREESP' command.  However, this command is somewhat
4640  * misnamed, as its functionality includes the ability to allocate as
4641  * well as free space.
4642  *
4643  *	IN:	vp	- vnode of file to free data in.
4644  *		cmd	- action to take (only F_FREESP supported).
4645  *		bfp	- section of file to free/alloc.
4646  *		flag	- current file open mode flags.
4647  *		offset	- current file offset.
4648  *		cr	- credentials of caller [UNUSED].
4649  *		ct	- caller context.
4650  *
4651  *	RETURN:	0 if success
4652  *		error code if failure
4653  *
4654  * Timestamps:
4655  *	vp - ctime|mtime updated
4656  */
4657 /* ARGSUSED */
4658 static int
4659 zfs_space(vnode_t *vp, int cmd, flock64_t *bfp, int flag,
4660     offset_t offset, cred_t *cr, caller_context_t *ct)
4661 {
4662 	znode_t		*zp = VTOZ(vp);
4663 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4664 	uint64_t	off, len;
4665 	int		error;
4666 
4667 	ZFS_ENTER(zfsvfs);
4668 	ZFS_VERIFY_ZP(zp);
4669 
4670 	if (cmd != F_FREESP) {
4671 		ZFS_EXIT(zfsvfs);
4672 		return (EINVAL);
4673 	}
4674 
4675 	if (error = convoff(vp, bfp, 0, offset)) {
4676 		ZFS_EXIT(zfsvfs);
4677 		return (error);
4678 	}
4679 
4680 	if (bfp->l_len < 0) {
4681 		ZFS_EXIT(zfsvfs);
4682 		return (EINVAL);
4683 	}
4684 
4685 	off = bfp->l_start;
4686 	len = bfp->l_len; /* 0 means from off to end of file */
4687 
4688 	error = zfs_freesp(zp, off, len, flag, TRUE);
4689 
4690 	ZFS_EXIT(zfsvfs);
4691 	return (error);
4692 }
4693 
4694 /*ARGSUSED*/
4695 static int
4696 zfs_fid(vnode_t *vp, fid_t *fidp, caller_context_t *ct)
4697 {
4698 	znode_t		*zp = VTOZ(vp);
4699 	zfsvfs_t	*zfsvfs = zp->z_zfsvfs;
4700 	uint32_t	gen;
4701 	uint64_t	gen64;
4702 	uint64_t	object = zp->z_id;
4703 	zfid_short_t	*zfid;
4704 	int		size, i, error;
4705 
4706 	ZFS_ENTER(zfsvfs);
4707 	ZFS_VERIFY_ZP(zp);
4708 
4709 	if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
4710 	    &gen64, sizeof (uint64_t))) != 0) {
4711 		ZFS_EXIT(zfsvfs);
4712 		return (error);
4713 	}
4714 
4715 	gen = (uint32_t)gen64;
4716 
4717 	size = (zfsvfs->z_parent != zfsvfs) ? LONG_FID_LEN : SHORT_FID_LEN;
4718 	if (fidp->fid_len < size) {
4719 		fidp->fid_len = size;
4720 		ZFS_EXIT(zfsvfs);
4721 		return (ENOSPC);
4722 	}
4723 
4724 	zfid = (zfid_short_t *)fidp;
4725 
4726 	zfid->zf_len = size;
4727 
4728 	for (i = 0; i < sizeof (zfid->zf_object); i++)
4729 		zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4730 
4731 	/* Must have a non-zero generation number to distinguish from .zfs */
4732 	if (gen == 0)
4733 		gen = 1;
4734 	for (i = 0; i < sizeof (zfid->zf_gen); i++)
4735 		zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4736 
4737 	if (size == LONG_FID_LEN) {
4738 		uint64_t	objsetid = dmu_objset_id(zfsvfs->z_os);
4739 		zfid_long_t	*zlfid;
4740 
4741 		zlfid = (zfid_long_t *)fidp;
4742 
4743 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
4744 			zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
4745 
4746 		/* XXX - this should be the generation number for the objset */
4747 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
4748 			zlfid->zf_setgen[i] = 0;
4749 	}
4750 
4751 	ZFS_EXIT(zfsvfs);
4752 	return (0);
4753 }
4754 
4755 static int
4756 zfs_pathconf(vnode_t *vp, int cmd, ulong_t *valp, cred_t *cr,
4757     caller_context_t *ct)
4758 {
4759 	znode_t		*zp, *xzp;
4760 	zfsvfs_t	*zfsvfs;
4761 	zfs_dirlock_t	*dl;
4762 	int		error;
4763 
4764 	switch (cmd) {
4765 	case _PC_LINK_MAX:
4766 		*valp = ULONG_MAX;
4767 		return (0);
4768 
4769 	case _PC_FILESIZEBITS:
4770 		*valp = 64;
4771 		return (0);
4772 
4773 	case _PC_XATTR_EXISTS:
4774 		zp = VTOZ(vp);
4775 		zfsvfs = zp->z_zfsvfs;
4776 		ZFS_ENTER(zfsvfs);
4777 		ZFS_VERIFY_ZP(zp);
4778 		*valp = 0;
4779 		error = zfs_dirent_lock(&dl, zp, "", &xzp,
4780 		    ZXATTR | ZEXISTS | ZSHARED, NULL, NULL);
4781 		if (error == 0) {
4782 			zfs_dirent_unlock(dl);
4783 			if (!zfs_dirempty(xzp))
4784 				*valp = 1;
4785 			VN_RELE(ZTOV(xzp));
4786 		} else if (error == ENOENT) {
4787 			/*
4788 			 * If there aren't extended attributes, it's the
4789 			 * same as having zero of them.
4790 			 */
4791 			error = 0;
4792 		}
4793 		ZFS_EXIT(zfsvfs);
4794 		return (error);
4795 
4796 	case _PC_SATTR_ENABLED:
4797 	case _PC_SATTR_EXISTS:
4798 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_SYSATTR_VIEWS) &&
4799 		    (vp->v_type == VREG || vp->v_type == VDIR);
4800 		return (0);
4801 
4802 	case _PC_ACCESS_FILTERING:
4803 		*valp = vfs_has_feature(vp->v_vfsp, VFSFT_ACCESS_FILTER) &&
4804 		    vp->v_type == VDIR;
4805 		return (0);
4806 
4807 	case _PC_ACL_ENABLED:
4808 		*valp = _ACL_ACE_ENABLED;
4809 		return (0);
4810 
4811 	case _PC_MIN_HOLE_SIZE:
4812 		*valp = (ulong_t)SPA_MINBLOCKSIZE;
4813 		return (0);
4814 
4815 	case _PC_TIMESTAMP_RESOLUTION:
4816 		/* nanosecond timestamp resolution */
4817 		*valp = 1L;
4818 		return (0);
4819 
4820 	default:
4821 		return (fs_pathconf(vp, cmd, valp, cr, ct));
4822 	}
4823 }
4824 
4825 /*ARGSUSED*/
4826 static int
4827 zfs_getsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4828     caller_context_t *ct)
4829 {
4830 	znode_t *zp = VTOZ(vp);
4831 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4832 	int error;
4833 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4834 
4835 	ZFS_ENTER(zfsvfs);
4836 	ZFS_VERIFY_ZP(zp);
4837 	error = zfs_getacl(zp, vsecp, skipaclchk, cr);
4838 	ZFS_EXIT(zfsvfs);
4839 
4840 	return (error);
4841 }
4842 
4843 /*ARGSUSED*/
4844 static int
4845 zfs_setsecattr(vnode_t *vp, vsecattr_t *vsecp, int flag, cred_t *cr,
4846     caller_context_t *ct)
4847 {
4848 	znode_t *zp = VTOZ(vp);
4849 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4850 	int error;
4851 	boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
4852 	zilog_t	*zilog = zfsvfs->z_log;
4853 
4854 	ZFS_ENTER(zfsvfs);
4855 	ZFS_VERIFY_ZP(zp);
4856 
4857 	error = zfs_setacl(zp, vsecp, skipaclchk, cr);
4858 
4859 	if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
4860 		zil_commit(zilog, UINT64_MAX, 0);
4861 
4862 	ZFS_EXIT(zfsvfs);
4863 	return (error);
4864 }
4865 
4866 /*
4867  * Tunable, both must be a power of 2.
4868  *
4869  * zcr_blksz_min: the smallest read we may consider to loan out an arcbuf
4870  * zcr_blksz_max: if set to less than the file block size, allow loaning out of
4871  *                an arcbuf for a partial block read
4872  */
4873 int zcr_blksz_min = (1 << 10);	/* 1K */
4874 int zcr_blksz_max = (1 << 17);	/* 128K */
4875 
4876 /*ARGSUSED*/
4877 static int
4878 zfs_reqzcbuf(vnode_t *vp, enum uio_rw ioflag, xuio_t *xuio, cred_t *cr,
4879     caller_context_t *ct)
4880 {
4881 	znode_t	*zp = VTOZ(vp);
4882 	zfsvfs_t *zfsvfs = zp->z_zfsvfs;
4883 	int max_blksz = zfsvfs->z_max_blksz;
4884 	uio_t *uio = &xuio->xu_uio;
4885 	ssize_t size = uio->uio_resid;
4886 	offset_t offset = uio->uio_loffset;
4887 	int blksz;
4888 	int fullblk, i;
4889 	arc_buf_t *abuf;
4890 	ssize_t maxsize;
4891 	int preamble, postamble;
4892 
4893 	if (xuio->xu_type != UIOTYPE_ZEROCOPY)
4894 		return (EINVAL);
4895 
4896 	ZFS_ENTER(zfsvfs);
4897 	ZFS_VERIFY_ZP(zp);
4898 	switch (ioflag) {
4899 	case UIO_WRITE:
4900 		/*
4901 		 * Loan out an arc_buf for write if write size is bigger than
4902 		 * max_blksz, and the file's block size is also max_blksz.
4903 		 */
4904 		blksz = max_blksz;
4905 		if (size < blksz || zp->z_blksz != blksz) {
4906 			ZFS_EXIT(zfsvfs);
4907 			return (EINVAL);
4908 		}
4909 		/*
4910 		 * Caller requests buffers for write before knowing where the
4911 		 * write offset might be (e.g. NFS TCP write).
4912 		 */
4913 		if (offset == -1) {
4914 			preamble = 0;
4915 		} else {
4916 			preamble = P2PHASE(offset, blksz);
4917 			if (preamble) {
4918 				preamble = blksz - preamble;
4919 				size -= preamble;
4920 			}
4921 		}
4922 
4923 		postamble = P2PHASE(size, blksz);
4924 		size -= postamble;
4925 
4926 		fullblk = size / blksz;
4927 		(void) dmu_xuio_init(xuio,
4928 		    (preamble != 0) + fullblk + (postamble != 0));
4929 		DTRACE_PROBE3(zfs_reqzcbuf_align, int, preamble,
4930 		    int, postamble, int,
4931 		    (preamble != 0) + fullblk + (postamble != 0));
4932 
4933 		/*
4934 		 * Have to fix iov base/len for partial buffers.  They
4935 		 * currently represent full arc_buf's.
4936 		 */
4937 		if (preamble) {
4938 			/* data begins in the middle of the arc_buf */
4939 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4940 			    blksz);
4941 			ASSERT(abuf);
4942 			(void) dmu_xuio_add(xuio, abuf,
4943 			    blksz - preamble, preamble);
4944 		}
4945 
4946 		for (i = 0; i < fullblk; i++) {
4947 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4948 			    blksz);
4949 			ASSERT(abuf);
4950 			(void) dmu_xuio_add(xuio, abuf, 0, blksz);
4951 		}
4952 
4953 		if (postamble) {
4954 			/* data ends in the middle of the arc_buf */
4955 			abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
4956 			    blksz);
4957 			ASSERT(abuf);
4958 			(void) dmu_xuio_add(xuio, abuf, 0, postamble);
4959 		}
4960 		break;
4961 	case UIO_READ:
4962 		/*
4963 		 * Loan out an arc_buf for read if the read size is larger than
4964 		 * the current file block size.  Block alignment is not
4965 		 * considered.  Partial arc_buf will be loaned out for read.
4966 		 */
4967 		blksz = zp->z_blksz;
4968 		if (blksz < zcr_blksz_min)
4969 			blksz = zcr_blksz_min;
4970 		if (blksz > zcr_blksz_max)
4971 			blksz = zcr_blksz_max;
4972 		/* avoid potential complexity of dealing with it */
4973 		if (blksz > max_blksz) {
4974 			ZFS_EXIT(zfsvfs);
4975 			return (EINVAL);
4976 		}
4977 
4978 		maxsize = zp->z_size - uio->uio_loffset;
4979 		if (size > maxsize)
4980 			size = maxsize;
4981 
4982 		if (size < blksz || vn_has_cached_data(vp)) {
4983 			ZFS_EXIT(zfsvfs);
4984 			return (EINVAL);
4985 		}
4986 		break;
4987 	default:
4988 		ZFS_EXIT(zfsvfs);
4989 		return (EINVAL);
4990 	}
4991 
4992 	uio->uio_extflg = UIO_XUIO;
4993 	XUIO_XUZC_RW(xuio) = ioflag;
4994 	ZFS_EXIT(zfsvfs);
4995 	return (0);
4996 }
4997 
4998 /*ARGSUSED*/
4999 static int
5000 zfs_retzcbuf(vnode_t *vp, xuio_t *xuio, cred_t *cr, caller_context_t *ct)
5001 {
5002 	int i;
5003 	arc_buf_t *abuf;
5004 	int ioflag = XUIO_XUZC_RW(xuio);
5005 
5006 	ASSERT(xuio->xu_type == UIOTYPE_ZEROCOPY);
5007 
5008 	i = dmu_xuio_cnt(xuio);
5009 	while (i-- > 0) {
5010 		abuf = dmu_xuio_arcbuf(xuio, i);
5011 		/*
5012 		 * if abuf == NULL, it must be a write buffer
5013 		 * that has been returned in zfs_write().
5014 		 */
5015 		if (abuf)
5016 			dmu_return_arcbuf(abuf);
5017 		ASSERT(abuf || ioflag == UIO_WRITE);
5018 	}
5019 
5020 	dmu_xuio_fini(xuio);
5021 	return (0);
5022 }
5023 
5024 /*
5025  * Predeclare these here so that the compiler assumes that
5026  * this is an "old style" function declaration that does
5027  * not include arguments => we won't get type mismatch errors
5028  * in the initializations that follow.
5029  */
5030 static int zfs_inval();
5031 static int zfs_isdir();
5032 
5033 static int
5034 zfs_inval()
5035 {
5036 	return (EINVAL);
5037 }
5038 
5039 static int
5040 zfs_isdir()
5041 {
5042 	return (EISDIR);
5043 }
5044 /*
5045  * Directory vnode operations template
5046  */
5047 vnodeops_t *zfs_dvnodeops;
5048 const fs_operation_def_t zfs_dvnodeops_template[] = {
5049 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5050 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5051 	VOPNAME_READ,		{ .error = zfs_isdir },
5052 	VOPNAME_WRITE,		{ .error = zfs_isdir },
5053 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5054 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5055 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5056 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5057 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5058 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5059 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5060 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5061 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5062 	VOPNAME_MKDIR,		{ .vop_mkdir = zfs_mkdir },
5063 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5064 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5065 	VOPNAME_SYMLINK,	{ .vop_symlink = zfs_symlink },
5066 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5067 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5068 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5069 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5070 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5071 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5072 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5073 	VOPNAME_VNEVENT, 	{ .vop_vnevent = fs_vnevent_support },
5074 	NULL,			NULL
5075 };
5076 
5077 /*
5078  * Regular file vnode operations template
5079  */
5080 vnodeops_t *zfs_fvnodeops;
5081 const fs_operation_def_t zfs_fvnodeops_template[] = {
5082 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5083 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5084 	VOPNAME_READ,		{ .vop_read = zfs_read },
5085 	VOPNAME_WRITE,		{ .vop_write = zfs_write },
5086 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5087 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5088 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5089 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5090 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5091 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5092 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5093 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5094 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5095 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5096 	VOPNAME_FRLOCK,		{ .vop_frlock = zfs_frlock },
5097 	VOPNAME_SPACE,		{ .vop_space = zfs_space },
5098 	VOPNAME_GETPAGE,	{ .vop_getpage = zfs_getpage },
5099 	VOPNAME_PUTPAGE,	{ .vop_putpage = zfs_putpage },
5100 	VOPNAME_MAP,		{ .vop_map = zfs_map },
5101 	VOPNAME_ADDMAP,		{ .vop_addmap = zfs_addmap },
5102 	VOPNAME_DELMAP,		{ .vop_delmap = zfs_delmap },
5103 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5104 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5105 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5106 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5107 	VOPNAME_REQZCBUF, 	{ .vop_reqzcbuf = zfs_reqzcbuf },
5108 	VOPNAME_RETZCBUF, 	{ .vop_retzcbuf = zfs_retzcbuf },
5109 	NULL,			NULL
5110 };
5111 
5112 /*
5113  * Symbolic link vnode operations template
5114  */
5115 vnodeops_t *zfs_symvnodeops;
5116 const fs_operation_def_t zfs_symvnodeops_template[] = {
5117 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5118 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5119 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5120 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5121 	VOPNAME_READLINK,	{ .vop_readlink = zfs_readlink },
5122 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5123 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5124 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5125 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5126 	NULL,			NULL
5127 };
5128 
5129 /*
5130  * special share hidden files vnode operations template
5131  */
5132 vnodeops_t *zfs_sharevnodeops;
5133 const fs_operation_def_t zfs_sharevnodeops_template[] = {
5134 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5135 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5136 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5137 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5138 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5139 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5140 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5141 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5142 	NULL,			NULL
5143 };
5144 
5145 /*
5146  * Extended attribute directory vnode operations template
5147  *	This template is identical to the directory vnodes
5148  *	operation template except for restricted operations:
5149  *		VOP_MKDIR()
5150  *		VOP_SYMLINK()
5151  * Note that there are other restrictions embedded in:
5152  *	zfs_create()	- restrict type to VREG
5153  *	zfs_link()	- no links into/out of attribute space
5154  *	zfs_rename()	- no moves into/out of attribute space
5155  */
5156 vnodeops_t *zfs_xdvnodeops;
5157 const fs_operation_def_t zfs_xdvnodeops_template[] = {
5158 	VOPNAME_OPEN,		{ .vop_open = zfs_open },
5159 	VOPNAME_CLOSE,		{ .vop_close = zfs_close },
5160 	VOPNAME_IOCTL,		{ .vop_ioctl = zfs_ioctl },
5161 	VOPNAME_GETATTR,	{ .vop_getattr = zfs_getattr },
5162 	VOPNAME_SETATTR,	{ .vop_setattr = zfs_setattr },
5163 	VOPNAME_ACCESS,		{ .vop_access = zfs_access },
5164 	VOPNAME_LOOKUP,		{ .vop_lookup = zfs_lookup },
5165 	VOPNAME_CREATE,		{ .vop_create = zfs_create },
5166 	VOPNAME_REMOVE,		{ .vop_remove = zfs_remove },
5167 	VOPNAME_LINK,		{ .vop_link = zfs_link },
5168 	VOPNAME_RENAME,		{ .vop_rename = zfs_rename },
5169 	VOPNAME_MKDIR,		{ .error = zfs_inval },
5170 	VOPNAME_RMDIR,		{ .vop_rmdir = zfs_rmdir },
5171 	VOPNAME_READDIR,	{ .vop_readdir = zfs_readdir },
5172 	VOPNAME_SYMLINK,	{ .error = zfs_inval },
5173 	VOPNAME_FSYNC,		{ .vop_fsync = zfs_fsync },
5174 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5175 	VOPNAME_FID,		{ .vop_fid = zfs_fid },
5176 	VOPNAME_SEEK,		{ .vop_seek = zfs_seek },
5177 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5178 	VOPNAME_GETSECATTR,	{ .vop_getsecattr = zfs_getsecattr },
5179 	VOPNAME_SETSECATTR,	{ .vop_setsecattr = zfs_setsecattr },
5180 	VOPNAME_VNEVENT,	{ .vop_vnevent = fs_vnevent_support },
5181 	NULL,			NULL
5182 };
5183 
5184 /*
5185  * Error vnode operations template
5186  */
5187 vnodeops_t *zfs_evnodeops;
5188 const fs_operation_def_t zfs_evnodeops_template[] = {
5189 	VOPNAME_INACTIVE,	{ .vop_inactive = zfs_inactive },
5190 	VOPNAME_PATHCONF,	{ .vop_pathconf = zfs_pathconf },
5191 	NULL,			NULL
5192 };
5193