1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 extern int sys_shutdown; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 dsl_pool_t *dp; 151 152 ZFS_ENTER(zfsvfs); 153 dp = dmu_objset_pool(zfsvfs->z_os); 154 155 /* 156 * If the system is shutting down, then skip any 157 * filesystems which may exist on a suspended pool. 158 */ 159 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 160 ZFS_EXIT(zfsvfs); 161 return (0); 162 } 163 164 if (zfsvfs->z_log != NULL) 165 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 166 else 167 txg_wait_synced(dp, 0); 168 ZFS_EXIT(zfsvfs); 169 } else { 170 /* 171 * Sync all ZFS filesystems. This is what happens when you 172 * run sync(1M). Unlike other filesystems, ZFS honors the 173 * request by waiting for all pools to commit all dirty data. 174 */ 175 spa_sync_allpools(); 176 } 177 178 return (0); 179 } 180 181 static int 182 zfs_create_unique_device(dev_t *dev) 183 { 184 major_t new_major; 185 186 do { 187 ASSERT3U(zfs_minor, <=, MAXMIN32); 188 minor_t start = zfs_minor; 189 do { 190 mutex_enter(&zfs_dev_mtx); 191 if (zfs_minor >= MAXMIN32) { 192 /* 193 * If we're still using the real major 194 * keep out of /dev/zfs and /dev/zvol minor 195 * number space. If we're using a getudev()'ed 196 * major number, we can use all of its minors. 197 */ 198 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 199 zfs_minor = ZFS_MIN_MINOR; 200 else 201 zfs_minor = 0; 202 } else { 203 zfs_minor++; 204 } 205 *dev = makedevice(zfs_major, zfs_minor); 206 mutex_exit(&zfs_dev_mtx); 207 } while (vfs_devismounted(*dev) && zfs_minor != start); 208 if (zfs_minor == start) { 209 /* 210 * We are using all ~262,000 minor numbers for the 211 * current major number. Create a new major number. 212 */ 213 if ((new_major = getudev()) == (major_t)-1) { 214 cmn_err(CE_WARN, 215 "zfs_mount: Can't get unique major " 216 "device number."); 217 return (-1); 218 } 219 mutex_enter(&zfs_dev_mtx); 220 zfs_major = new_major; 221 zfs_minor = 0; 222 223 mutex_exit(&zfs_dev_mtx); 224 } else { 225 break; 226 } 227 /* CONSTANTCONDITION */ 228 } while (1); 229 230 return (0); 231 } 232 233 static void 234 atime_changed_cb(void *arg, uint64_t newval) 235 { 236 zfsvfs_t *zfsvfs = arg; 237 238 if (newval == TRUE) { 239 zfsvfs->z_atime = TRUE; 240 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 241 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 242 } else { 243 zfsvfs->z_atime = FALSE; 244 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 245 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 246 } 247 } 248 249 static void 250 xattr_changed_cb(void *arg, uint64_t newval) 251 { 252 zfsvfs_t *zfsvfs = arg; 253 254 if (newval == TRUE) { 255 /* XXX locking on vfs_flag? */ 256 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 257 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 258 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 259 } else { 260 /* XXX locking on vfs_flag? */ 261 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 262 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 263 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 264 } 265 } 266 267 static void 268 blksz_changed_cb(void *arg, uint64_t newval) 269 { 270 zfsvfs_t *zfsvfs = arg; 271 272 if (newval < SPA_MINBLOCKSIZE || 273 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 274 newval = SPA_MAXBLOCKSIZE; 275 276 zfsvfs->z_max_blksz = newval; 277 zfsvfs->z_vfs->vfs_bsize = newval; 278 } 279 280 static void 281 readonly_changed_cb(void *arg, uint64_t newval) 282 { 283 zfsvfs_t *zfsvfs = arg; 284 285 if (newval) { 286 /* XXX locking on vfs_flag? */ 287 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 288 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 289 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 290 } else { 291 /* XXX locking on vfs_flag? */ 292 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 295 } 296 } 297 298 static void 299 devices_changed_cb(void *arg, uint64_t newval) 300 { 301 zfsvfs_t *zfsvfs = arg; 302 303 if (newval == FALSE) { 304 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 305 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 306 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 307 } else { 308 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 311 } 312 } 313 314 static void 315 setuid_changed_cb(void *arg, uint64_t newval) 316 { 317 zfsvfs_t *zfsvfs = arg; 318 319 if (newval == FALSE) { 320 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 321 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 322 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 323 } else { 324 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 327 } 328 } 329 330 static void 331 exec_changed_cb(void *arg, uint64_t newval) 332 { 333 zfsvfs_t *zfsvfs = arg; 334 335 if (newval == FALSE) { 336 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 337 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 338 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 339 } else { 340 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 341 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 342 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 343 } 344 } 345 346 /* 347 * The nbmand mount option can be changed at mount time. 348 * We can't allow it to be toggled on live file systems or incorrect 349 * behavior may be seen from cifs clients 350 * 351 * This property isn't registered via dsl_prop_register(), but this callback 352 * will be called when a file system is first mounted 353 */ 354 static void 355 nbmand_changed_cb(void *arg, uint64_t newval) 356 { 357 zfsvfs_t *zfsvfs = arg; 358 if (newval == FALSE) { 359 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 360 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 361 } else { 362 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 363 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 364 } 365 } 366 367 static void 368 snapdir_changed_cb(void *arg, uint64_t newval) 369 { 370 zfsvfs_t *zfsvfs = arg; 371 372 zfsvfs->z_show_ctldir = newval; 373 } 374 375 static void 376 vscan_changed_cb(void *arg, uint64_t newval) 377 { 378 zfsvfs_t *zfsvfs = arg; 379 380 zfsvfs->z_vscan = newval; 381 } 382 383 static void 384 acl_mode_changed_cb(void *arg, uint64_t newval) 385 { 386 zfsvfs_t *zfsvfs = arg; 387 388 zfsvfs->z_acl_mode = newval; 389 } 390 391 static void 392 acl_inherit_changed_cb(void *arg, uint64_t newval) 393 { 394 zfsvfs_t *zfsvfs = arg; 395 396 zfsvfs->z_acl_inherit = newval; 397 } 398 399 static int 400 zfs_register_callbacks(vfs_t *vfsp) 401 { 402 struct dsl_dataset *ds = NULL; 403 objset_t *os = NULL; 404 zfsvfs_t *zfsvfs = NULL; 405 uint64_t nbmand; 406 int readonly, do_readonly = B_FALSE; 407 int setuid, do_setuid = B_FALSE; 408 int exec, do_exec = B_FALSE; 409 int devices, do_devices = B_FALSE; 410 int xattr, do_xattr = B_FALSE; 411 int atime, do_atime = B_FALSE; 412 int error = 0; 413 414 ASSERT(vfsp); 415 zfsvfs = vfsp->vfs_data; 416 ASSERT(zfsvfs); 417 os = zfsvfs->z_os; 418 419 /* 420 * The act of registering our callbacks will destroy any mount 421 * options we may have. In order to enable temporary overrides 422 * of mount options, we stash away the current values and 423 * restore them after we register the callbacks. 424 */ 425 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 426 readonly = B_TRUE; 427 do_readonly = B_TRUE; 428 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 429 readonly = B_FALSE; 430 do_readonly = B_TRUE; 431 } 432 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 433 devices = B_FALSE; 434 setuid = B_FALSE; 435 do_devices = B_TRUE; 436 do_setuid = B_TRUE; 437 } else { 438 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 439 devices = B_FALSE; 440 do_devices = B_TRUE; 441 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 442 devices = B_TRUE; 443 do_devices = B_TRUE; 444 } 445 446 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 447 setuid = B_FALSE; 448 do_setuid = B_TRUE; 449 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 450 setuid = B_TRUE; 451 do_setuid = B_TRUE; 452 } 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 455 exec = B_FALSE; 456 do_exec = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 458 exec = B_TRUE; 459 do_exec = B_TRUE; 460 } 461 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 462 xattr = B_FALSE; 463 do_xattr = B_TRUE; 464 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 465 xattr = B_TRUE; 466 do_xattr = B_TRUE; 467 } 468 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 469 atime = B_FALSE; 470 do_atime = B_TRUE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 472 atime = B_TRUE; 473 do_atime = B_TRUE; 474 } 475 476 /* 477 * nbmand is a special property. It can only be changed at 478 * mount time. 479 * 480 * This is weird, but it is documented to only be changeable 481 * at mount time. 482 */ 483 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 484 nbmand = B_FALSE; 485 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 486 nbmand = B_TRUE; 487 } else { 488 char osname[MAXNAMELEN]; 489 490 dmu_objset_name(os, osname); 491 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 492 NULL)) { 493 return (error); 494 } 495 } 496 497 /* 498 * Register property callbacks. 499 * 500 * It would probably be fine to just check for i/o error from 501 * the first prop_register(), but I guess I like to go 502 * overboard... 503 */ 504 ds = dmu_objset_ds(os); 505 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "xattr", xattr_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "recordsize", blksz_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "readonly", readonly_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "devices", devices_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "setuid", setuid_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "exec", exec_changed_cb, zfsvfs); 518 error = error ? error : dsl_prop_register(ds, 519 "snapdir", snapdir_changed_cb, zfsvfs); 520 error = error ? error : dsl_prop_register(ds, 521 "aclmode", acl_mode_changed_cb, zfsvfs); 522 error = error ? error : dsl_prop_register(ds, 523 "aclinherit", acl_inherit_changed_cb, zfsvfs); 524 error = error ? error : dsl_prop_register(ds, 525 "vscan", vscan_changed_cb, zfsvfs); 526 if (error) 527 goto unregister; 528 529 /* 530 * Invoke our callbacks to restore temporary mount options. 531 */ 532 if (do_readonly) 533 readonly_changed_cb(zfsvfs, readonly); 534 if (do_setuid) 535 setuid_changed_cb(zfsvfs, setuid); 536 if (do_exec) 537 exec_changed_cb(zfsvfs, exec); 538 if (do_devices) 539 devices_changed_cb(zfsvfs, devices); 540 if (do_xattr) 541 xattr_changed_cb(zfsvfs, xattr); 542 if (do_atime) 543 atime_changed_cb(zfsvfs, atime); 544 545 nbmand_changed_cb(zfsvfs, nbmand); 546 547 return (0); 548 549 unregister: 550 /* 551 * We may attempt to unregister some callbacks that are not 552 * registered, but this is OK; it will simply return ENOMSG, 553 * which we will ignore. 554 */ 555 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 556 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 557 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 558 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 559 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 560 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 561 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 562 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 563 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 564 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 565 zfsvfs); 566 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 567 return (error); 568 569 } 570 571 static void 572 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 573 int64_t delta, dmu_tx_t *tx) 574 { 575 uint64_t used = 0; 576 char buf[32]; 577 int err; 578 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 579 580 if (delta == 0) 581 return; 582 583 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 584 err = zap_lookup(os, obj, buf, 8, 1, &used); 585 ASSERT(err == 0 || err == ENOENT); 586 /* no underflow/overflow */ 587 ASSERT(delta > 0 || used >= -delta); 588 ASSERT(delta < 0 || used + delta > used); 589 used += delta; 590 if (used == 0) 591 err = zap_remove(os, obj, buf, tx); 592 else 593 err = zap_update(os, obj, buf, 8, 1, &used, tx); 594 ASSERT(err == 0); 595 } 596 597 static int 598 zfs_space_delta_cb(dmu_object_type_t bonustype, void *bonus, 599 uint64_t *userp, uint64_t *groupp) 600 { 601 znode_phys_t *znp = bonus; 602 603 if (bonustype != DMU_OT_ZNODE) 604 return (ENOENT); 605 606 *userp = znp->zp_uid; 607 *groupp = znp->zp_gid; 608 return (0); 609 } 610 611 static void 612 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 613 char *domainbuf, int buflen, uid_t *ridp) 614 { 615 uint64_t fuid; 616 const char *domain; 617 618 fuid = strtonum(fuidstr, NULL); 619 620 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 621 if (domain) 622 (void) strlcpy(domainbuf, domain, buflen); 623 else 624 domainbuf[0] = '\0'; 625 *ridp = FUID_RID(fuid); 626 } 627 628 static uint64_t 629 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 630 { 631 switch (type) { 632 case ZFS_PROP_USERUSED: 633 return (DMU_USERUSED_OBJECT); 634 case ZFS_PROP_GROUPUSED: 635 return (DMU_GROUPUSED_OBJECT); 636 case ZFS_PROP_USERQUOTA: 637 return (zfsvfs->z_userquota_obj); 638 case ZFS_PROP_GROUPQUOTA: 639 return (zfsvfs->z_groupquota_obj); 640 } 641 return (0); 642 } 643 644 int 645 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 646 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 647 { 648 int error; 649 zap_cursor_t zc; 650 zap_attribute_t za; 651 zfs_useracct_t *buf = vbuf; 652 uint64_t obj; 653 654 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 655 return (ENOTSUP); 656 657 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 658 if (obj == 0) { 659 *bufsizep = 0; 660 return (0); 661 } 662 663 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 664 (error = zap_cursor_retrieve(&zc, &za)) == 0; 665 zap_cursor_advance(&zc)) { 666 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 667 *bufsizep) 668 break; 669 670 fuidstr_to_sid(zfsvfs, za.za_name, 671 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 672 673 buf->zu_space = za.za_first_integer; 674 buf++; 675 } 676 if (error == ENOENT) 677 error = 0; 678 679 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 680 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 681 *cookiep = zap_cursor_serialize(&zc); 682 zap_cursor_fini(&zc); 683 return (error); 684 } 685 686 /* 687 * buf must be big enough (eg, 32 bytes) 688 */ 689 static int 690 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 691 char *buf, boolean_t addok) 692 { 693 uint64_t fuid; 694 int domainid = 0; 695 696 if (domain && domain[0]) { 697 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 698 if (domainid == -1) 699 return (ENOENT); 700 } 701 fuid = FUID_ENCODE(domainid, rid); 702 (void) sprintf(buf, "%llx", (longlong_t)fuid); 703 return (0); 704 } 705 706 int 707 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 708 const char *domain, uint64_t rid, uint64_t *valp) 709 { 710 char buf[32]; 711 int err; 712 uint64_t obj; 713 714 *valp = 0; 715 716 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 717 return (ENOTSUP); 718 719 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 720 if (obj == 0) 721 return (0); 722 723 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 724 if (err) 725 return (err); 726 727 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 728 if (err == ENOENT) 729 err = 0; 730 return (err); 731 } 732 733 int 734 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 735 const char *domain, uint64_t rid, uint64_t quota) 736 { 737 char buf[32]; 738 int err; 739 dmu_tx_t *tx; 740 uint64_t *objp; 741 boolean_t fuid_dirtied; 742 743 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 744 return (EINVAL); 745 746 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 747 return (ENOTSUP); 748 749 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 750 &zfsvfs->z_groupquota_obj; 751 752 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 753 if (err) 754 return (err); 755 fuid_dirtied = zfsvfs->z_fuid_dirty; 756 757 tx = dmu_tx_create(zfsvfs->z_os); 758 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 759 if (*objp == 0) { 760 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 761 zfs_userquota_prop_prefixes[type]); 762 } 763 if (fuid_dirtied) 764 zfs_fuid_txhold(zfsvfs, tx); 765 err = dmu_tx_assign(tx, TXG_WAIT); 766 if (err) { 767 dmu_tx_abort(tx); 768 return (err); 769 } 770 771 mutex_enter(&zfsvfs->z_lock); 772 if (*objp == 0) { 773 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 774 DMU_OT_NONE, 0, tx); 775 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 776 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 777 } 778 mutex_exit(&zfsvfs->z_lock); 779 780 if (quota == 0) { 781 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 782 if (err == ENOENT) 783 err = 0; 784 } else { 785 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 786 } 787 ASSERT(err == 0); 788 if (fuid_dirtied) 789 zfs_fuid_sync(zfsvfs, tx); 790 dmu_tx_commit(tx); 791 return (err); 792 } 793 794 boolean_t 795 zfs_usergroup_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 796 { 797 char buf[32]; 798 uint64_t used, quota, usedobj, quotaobj; 799 int err; 800 801 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 802 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 803 804 if (quotaobj == 0 || zfsvfs->z_replay) 805 return (B_FALSE); 806 807 (void) sprintf(buf, "%llx", (longlong_t)fuid); 808 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 809 if (err != 0) 810 return (B_FALSE); 811 812 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 813 if (err != 0) 814 return (B_FALSE); 815 return (used >= quota); 816 } 817 818 int 819 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 820 { 821 objset_t *os; 822 zfsvfs_t *zfsvfs; 823 uint64_t zval; 824 int i, error; 825 826 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 827 828 /* 829 * We claim to always be readonly so we can open snapshots; 830 * other ZPL code will prevent us from writing to snapshots. 831 */ 832 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 833 if (error) { 834 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 835 return (error); 836 } 837 838 /* 839 * Initialize the zfs-specific filesystem structure. 840 * Should probably make this a kmem cache, shuffle fields, 841 * and just bzero up to z_hold_mtx[]. 842 */ 843 zfsvfs->z_vfs = NULL; 844 zfsvfs->z_parent = zfsvfs; 845 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 846 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 847 zfsvfs->z_os = os; 848 849 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 850 if (error) { 851 goto out; 852 } else if (zfsvfs->z_version > ZPL_VERSION) { 853 (void) printf("Mismatched versions: File system " 854 "is version %llu on-disk format, which is " 855 "incompatible with this software version %lld!", 856 (u_longlong_t)zfsvfs->z_version, ZPL_VERSION); 857 error = ENOTSUP; 858 goto out; 859 } 860 861 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 862 goto out; 863 zfsvfs->z_norm = (int)zval; 864 865 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 866 goto out; 867 zfsvfs->z_utf8 = (zval != 0); 868 869 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 870 goto out; 871 zfsvfs->z_case = (uint_t)zval; 872 873 /* 874 * Fold case on file systems that are always or sometimes case 875 * insensitive. 876 */ 877 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 878 zfsvfs->z_case == ZFS_CASE_MIXED) 879 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 880 881 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 882 883 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 884 &zfsvfs->z_root); 885 if (error) 886 goto out; 887 ASSERT(zfsvfs->z_root != 0); 888 889 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 890 &zfsvfs->z_unlinkedobj); 891 if (error) 892 goto out; 893 894 error = zap_lookup(os, MASTER_NODE_OBJ, 895 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 896 8, 1, &zfsvfs->z_userquota_obj); 897 if (error && error != ENOENT) 898 goto out; 899 900 error = zap_lookup(os, MASTER_NODE_OBJ, 901 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 902 8, 1, &zfsvfs->z_groupquota_obj); 903 if (error && error != ENOENT) 904 goto out; 905 906 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 907 &zfsvfs->z_fuid_obj); 908 if (error && error != ENOENT) 909 goto out; 910 911 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 912 &zfsvfs->z_shares_dir); 913 if (error && error != ENOENT) 914 goto out; 915 916 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 917 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 918 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 919 offsetof(znode_t, z_link_node)); 920 rrw_init(&zfsvfs->z_teardown_lock); 921 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 922 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 923 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 924 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 925 926 *zfvp = zfsvfs; 927 return (0); 928 929 out: 930 dmu_objset_disown(os, zfsvfs); 931 *zfvp = NULL; 932 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 933 return (error); 934 } 935 936 static int 937 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 938 { 939 int error; 940 941 error = zfs_register_callbacks(zfsvfs->z_vfs); 942 if (error) 943 return (error); 944 945 /* 946 * Set the objset user_ptr to track its zfsvfs. 947 */ 948 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 949 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 950 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 951 952 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 953 if (zil_disable) { 954 zil_destroy(zfsvfs->z_log, B_FALSE); 955 zfsvfs->z_log = NULL; 956 } 957 958 /* 959 * If we are not mounting (ie: online recv), then we don't 960 * have to worry about replaying the log as we blocked all 961 * operations out since we closed the ZIL. 962 */ 963 if (mounting) { 964 boolean_t readonly; 965 966 /* 967 * During replay we remove the read only flag to 968 * allow replays to succeed. 969 */ 970 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 971 if (readonly != 0) 972 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 973 else 974 zfs_unlinked_drain(zfsvfs); 975 976 if (zfsvfs->z_log) { 977 /* 978 * Parse and replay the intent log. 979 * 980 * Because of ziltest, this must be done after 981 * zfs_unlinked_drain(). (Further note: ziltest 982 * doesn't use readonly mounts, where 983 * zfs_unlinked_drain() isn't called.) This is because 984 * ziltest causes spa_sync() to think it's committed, 985 * but actually it is not, so the intent log contains 986 * many txg's worth of changes. 987 * 988 * In particular, if object N is in the unlinked set in 989 * the last txg to actually sync, then it could be 990 * actually freed in a later txg and then reallocated 991 * in a yet later txg. This would write a "create 992 * object N" record to the intent log. Normally, this 993 * would be fine because the spa_sync() would have 994 * written out the fact that object N is free, before 995 * we could write the "create object N" intent log 996 * record. 997 * 998 * But when we are in ziltest mode, we advance the "open 999 * txg" without actually spa_sync()-ing the changes to 1000 * disk. So we would see that object N is still 1001 * allocated and in the unlinked set, and there is an 1002 * intent log record saying to allocate it. 1003 */ 1004 zfsvfs->z_replay = B_TRUE; 1005 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1006 zfsvfs->z_replay = B_FALSE; 1007 } 1008 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1009 } 1010 1011 return (0); 1012 } 1013 1014 void 1015 zfsvfs_free(zfsvfs_t *zfsvfs) 1016 { 1017 int i; 1018 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1019 1020 /* 1021 * This is a barrier to prevent the filesystem from going away in 1022 * zfs_znode_move() until we can safely ensure that the filesystem is 1023 * not unmounted. We consider the filesystem valid before the barrier 1024 * and invalid after the barrier. 1025 */ 1026 rw_enter(&zfsvfs_lock, RW_READER); 1027 rw_exit(&zfsvfs_lock); 1028 1029 zfs_fuid_destroy(zfsvfs); 1030 1031 mutex_destroy(&zfsvfs->z_znodes_lock); 1032 mutex_destroy(&zfsvfs->z_lock); 1033 list_destroy(&zfsvfs->z_all_znodes); 1034 rrw_destroy(&zfsvfs->z_teardown_lock); 1035 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1036 rw_destroy(&zfsvfs->z_fuid_lock); 1037 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1038 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1039 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1040 } 1041 1042 static void 1043 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1044 { 1045 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1046 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1047 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1048 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1049 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1050 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1051 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1052 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1053 } 1054 } 1055 1056 static int 1057 zfs_domount(vfs_t *vfsp, char *osname) 1058 { 1059 dev_t mount_dev; 1060 uint64_t recordsize, fsid_guid; 1061 int error = 0; 1062 zfsvfs_t *zfsvfs; 1063 1064 ASSERT(vfsp); 1065 ASSERT(osname); 1066 1067 error = zfsvfs_create(osname, &zfsvfs); 1068 if (error) 1069 return (error); 1070 zfsvfs->z_vfs = vfsp; 1071 1072 /* Initialize the generic filesystem structure. */ 1073 vfsp->vfs_bcount = 0; 1074 vfsp->vfs_data = NULL; 1075 1076 if (zfs_create_unique_device(&mount_dev) == -1) { 1077 error = ENODEV; 1078 goto out; 1079 } 1080 ASSERT(vfs_devismounted(mount_dev) == 0); 1081 1082 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1083 NULL)) 1084 goto out; 1085 1086 vfsp->vfs_dev = mount_dev; 1087 vfsp->vfs_fstype = zfsfstype; 1088 vfsp->vfs_bsize = recordsize; 1089 vfsp->vfs_flag |= VFS_NOTRUNC; 1090 vfsp->vfs_data = zfsvfs; 1091 1092 /* 1093 * The fsid is 64 bits, composed of an 8-bit fs type, which 1094 * separates our fsid from any other filesystem types, and a 1095 * 56-bit objset unique ID. The objset unique ID is unique to 1096 * all objsets open on this system, provided by unique_create(). 1097 * The 8-bit fs type must be put in the low bits of fsid[1] 1098 * because that's where other Solaris filesystems put it. 1099 */ 1100 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1101 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1102 vfsp->vfs_fsid.val[0] = fsid_guid; 1103 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1104 zfsfstype & 0xFF; 1105 1106 /* 1107 * Set features for file system. 1108 */ 1109 zfs_set_fuid_feature(zfsvfs); 1110 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1111 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1112 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1113 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1114 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1115 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1116 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1117 } 1118 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1119 1120 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1121 uint64_t pval; 1122 1123 atime_changed_cb(zfsvfs, B_FALSE); 1124 readonly_changed_cb(zfsvfs, B_TRUE); 1125 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1126 goto out; 1127 xattr_changed_cb(zfsvfs, pval); 1128 zfsvfs->z_issnap = B_TRUE; 1129 1130 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1131 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1132 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1133 } else { 1134 error = zfsvfs_setup(zfsvfs, B_TRUE); 1135 } 1136 1137 if (!zfsvfs->z_issnap) 1138 zfsctl_create(zfsvfs); 1139 out: 1140 if (error) { 1141 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1142 zfsvfs_free(zfsvfs); 1143 } else { 1144 atomic_add_32(&zfs_active_fs_count, 1); 1145 } 1146 1147 return (error); 1148 } 1149 1150 void 1151 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1152 { 1153 objset_t *os = zfsvfs->z_os; 1154 struct dsl_dataset *ds; 1155 1156 /* 1157 * Unregister properties. 1158 */ 1159 if (!dmu_objset_is_snapshot(os)) { 1160 ds = dmu_objset_ds(os); 1161 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1162 zfsvfs) == 0); 1163 1164 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1165 zfsvfs) == 0); 1166 1167 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1168 zfsvfs) == 0); 1169 1170 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1171 zfsvfs) == 0); 1172 1173 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1174 zfsvfs) == 0); 1175 1176 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1177 zfsvfs) == 0); 1178 1179 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1180 zfsvfs) == 0); 1181 1182 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1183 zfsvfs) == 0); 1184 1185 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 1186 zfsvfs) == 0); 1187 1188 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1189 acl_inherit_changed_cb, zfsvfs) == 0); 1190 1191 VERIFY(dsl_prop_unregister(ds, "vscan", 1192 vscan_changed_cb, zfsvfs) == 0); 1193 } 1194 } 1195 1196 /* 1197 * Convert a decimal digit string to a uint64_t integer. 1198 */ 1199 static int 1200 str_to_uint64(char *str, uint64_t *objnum) 1201 { 1202 uint64_t num = 0; 1203 1204 while (*str) { 1205 if (*str < '0' || *str > '9') 1206 return (EINVAL); 1207 1208 num = num*10 + *str++ - '0'; 1209 } 1210 1211 *objnum = num; 1212 return (0); 1213 } 1214 1215 /* 1216 * The boot path passed from the boot loader is in the form of 1217 * "rootpool-name/root-filesystem-object-number'. Convert this 1218 * string to a dataset name: "rootpool-name/root-filesystem-name". 1219 */ 1220 static int 1221 zfs_parse_bootfs(char *bpath, char *outpath) 1222 { 1223 char *slashp; 1224 uint64_t objnum; 1225 int error; 1226 1227 if (*bpath == 0 || *bpath == '/') 1228 return (EINVAL); 1229 1230 (void) strcpy(outpath, bpath); 1231 1232 slashp = strchr(bpath, '/'); 1233 1234 /* if no '/', just return the pool name */ 1235 if (slashp == NULL) { 1236 return (0); 1237 } 1238 1239 /* if not a number, just return the root dataset name */ 1240 if (str_to_uint64(slashp+1, &objnum)) { 1241 return (0); 1242 } 1243 1244 *slashp = '\0'; 1245 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1246 *slashp = '/'; 1247 1248 return (error); 1249 } 1250 1251 /* 1252 * zfs_check_global_label: 1253 * Check that the hex label string is appropriate for the dataset 1254 * being mounted into the global_zone proper. 1255 * 1256 * Return an error if the hex label string is not default or 1257 * admin_low/admin_high. For admin_low labels, the corresponding 1258 * dataset must be readonly. 1259 */ 1260 int 1261 zfs_check_global_label(const char *dsname, const char *hexsl) 1262 { 1263 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1264 return (0); 1265 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1266 return (0); 1267 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1268 /* must be readonly */ 1269 uint64_t rdonly; 1270 1271 if (dsl_prop_get_integer(dsname, 1272 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1273 return (EACCES); 1274 return (rdonly ? 0 : EACCES); 1275 } 1276 return (EACCES); 1277 } 1278 1279 /* 1280 * zfs_mount_label_policy: 1281 * Determine whether the mount is allowed according to MAC check. 1282 * by comparing (where appropriate) label of the dataset against 1283 * the label of the zone being mounted into. If the dataset has 1284 * no label, create one. 1285 * 1286 * Returns: 1287 * 0 : access allowed 1288 * >0 : error code, such as EACCES 1289 */ 1290 static int 1291 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1292 { 1293 int error, retv; 1294 zone_t *mntzone = NULL; 1295 ts_label_t *mnt_tsl; 1296 bslabel_t *mnt_sl; 1297 bslabel_t ds_sl; 1298 char ds_hexsl[MAXNAMELEN]; 1299 1300 retv = EACCES; /* assume the worst */ 1301 1302 /* 1303 * Start by getting the dataset label if it exists. 1304 */ 1305 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1306 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1307 if (error) 1308 return (EACCES); 1309 1310 /* 1311 * If labeling is NOT enabled, then disallow the mount of datasets 1312 * which have a non-default label already. No other label checks 1313 * are needed. 1314 */ 1315 if (!is_system_labeled()) { 1316 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1317 return (0); 1318 return (EACCES); 1319 } 1320 1321 /* 1322 * Get the label of the mountpoint. If mounting into the global 1323 * zone (i.e. mountpoint is not within an active zone and the 1324 * zoned property is off), the label must be default or 1325 * admin_low/admin_high only; no other checks are needed. 1326 */ 1327 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1328 if (mntzone->zone_id == GLOBAL_ZONEID) { 1329 uint64_t zoned; 1330 1331 zone_rele(mntzone); 1332 1333 if (dsl_prop_get_integer(osname, 1334 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1335 return (EACCES); 1336 if (!zoned) 1337 return (zfs_check_global_label(osname, ds_hexsl)); 1338 else 1339 /* 1340 * This is the case of a zone dataset being mounted 1341 * initially, before the zone has been fully created; 1342 * allow this mount into global zone. 1343 */ 1344 return (0); 1345 } 1346 1347 mnt_tsl = mntzone->zone_slabel; 1348 ASSERT(mnt_tsl != NULL); 1349 label_hold(mnt_tsl); 1350 mnt_sl = label2bslabel(mnt_tsl); 1351 1352 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1353 /* 1354 * The dataset doesn't have a real label, so fabricate one. 1355 */ 1356 char *str = NULL; 1357 1358 if (l_to_str_internal(mnt_sl, &str) == 0 && 1359 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1360 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1361 retv = 0; 1362 if (str != NULL) 1363 kmem_free(str, strlen(str) + 1); 1364 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1365 /* 1366 * Now compare labels to complete the MAC check. If the 1367 * labels are equal then allow access. If the mountpoint 1368 * label dominates the dataset label, allow readonly access. 1369 * Otherwise, access is denied. 1370 */ 1371 if (blequal(mnt_sl, &ds_sl)) 1372 retv = 0; 1373 else if (bldominates(mnt_sl, &ds_sl)) { 1374 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1375 retv = 0; 1376 } 1377 } 1378 1379 label_rele(mnt_tsl); 1380 zone_rele(mntzone); 1381 return (retv); 1382 } 1383 1384 static int 1385 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1386 { 1387 int error = 0; 1388 static int zfsrootdone = 0; 1389 zfsvfs_t *zfsvfs = NULL; 1390 znode_t *zp = NULL; 1391 vnode_t *vp = NULL; 1392 char *zfs_bootfs; 1393 char *zfs_devid; 1394 1395 ASSERT(vfsp); 1396 1397 /* 1398 * The filesystem that we mount as root is defined in the 1399 * boot property "zfs-bootfs" with a format of 1400 * "poolname/root-dataset-objnum". 1401 */ 1402 if (why == ROOT_INIT) { 1403 if (zfsrootdone++) 1404 return (EBUSY); 1405 /* 1406 * the process of doing a spa_load will require the 1407 * clock to be set before we could (for example) do 1408 * something better by looking at the timestamp on 1409 * an uberblock, so just set it to -1. 1410 */ 1411 clkset(-1); 1412 1413 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1414 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1415 "bootfs name"); 1416 return (EINVAL); 1417 } 1418 zfs_devid = spa_get_bootprop("diskdevid"); 1419 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1420 if (zfs_devid) 1421 spa_free_bootprop(zfs_devid); 1422 if (error) { 1423 spa_free_bootprop(zfs_bootfs); 1424 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1425 error); 1426 return (error); 1427 } 1428 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1429 spa_free_bootprop(zfs_bootfs); 1430 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1431 error); 1432 return (error); 1433 } 1434 1435 spa_free_bootprop(zfs_bootfs); 1436 1437 if (error = vfs_lock(vfsp)) 1438 return (error); 1439 1440 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1441 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1442 goto out; 1443 } 1444 1445 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1446 ASSERT(zfsvfs); 1447 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1448 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1449 goto out; 1450 } 1451 1452 vp = ZTOV(zp); 1453 mutex_enter(&vp->v_lock); 1454 vp->v_flag |= VROOT; 1455 mutex_exit(&vp->v_lock); 1456 rootvp = vp; 1457 1458 /* 1459 * Leave rootvp held. The root file system is never unmounted. 1460 */ 1461 1462 vfs_add((struct vnode *)0, vfsp, 1463 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1464 out: 1465 vfs_unlock(vfsp); 1466 return (error); 1467 } else if (why == ROOT_REMOUNT) { 1468 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1469 vfsp->vfs_flag |= VFS_REMOUNT; 1470 1471 /* refresh mount options */ 1472 zfs_unregister_callbacks(vfsp->vfs_data); 1473 return (zfs_register_callbacks(vfsp)); 1474 1475 } else if (why == ROOT_UNMOUNT) { 1476 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1477 (void) zfs_sync(vfsp, 0, 0); 1478 return (0); 1479 } 1480 1481 /* 1482 * if "why" is equal to anything else other than ROOT_INIT, 1483 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1484 */ 1485 return (ENOTSUP); 1486 } 1487 1488 /*ARGSUSED*/ 1489 static int 1490 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1491 { 1492 char *osname; 1493 pathname_t spn; 1494 int error = 0; 1495 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1496 UIO_SYSSPACE : UIO_USERSPACE; 1497 int canwrite; 1498 1499 if (mvp->v_type != VDIR) 1500 return (ENOTDIR); 1501 1502 mutex_enter(&mvp->v_lock); 1503 if ((uap->flags & MS_REMOUNT) == 0 && 1504 (uap->flags & MS_OVERLAY) == 0 && 1505 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1506 mutex_exit(&mvp->v_lock); 1507 return (EBUSY); 1508 } 1509 mutex_exit(&mvp->v_lock); 1510 1511 /* 1512 * ZFS does not support passing unparsed data in via MS_DATA. 1513 * Users should use the MS_OPTIONSTR interface; this means 1514 * that all option parsing is already done and the options struct 1515 * can be interrogated. 1516 */ 1517 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1518 return (EINVAL); 1519 1520 /* 1521 * Get the objset name (the "special" mount argument). 1522 */ 1523 if (error = pn_get(uap->spec, fromspace, &spn)) 1524 return (error); 1525 1526 osname = spn.pn_path; 1527 1528 /* 1529 * Check for mount privilege? 1530 * 1531 * If we don't have privilege then see if 1532 * we have local permission to allow it 1533 */ 1534 error = secpolicy_fs_mount(cr, mvp, vfsp); 1535 if (error) { 1536 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1537 if (error == 0) { 1538 vattr_t vattr; 1539 1540 /* 1541 * Make sure user is the owner of the mount point 1542 * or has sufficient privileges. 1543 */ 1544 1545 vattr.va_mask = AT_UID; 1546 1547 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1548 goto out; 1549 } 1550 1551 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1552 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1553 error = EPERM; 1554 goto out; 1555 } 1556 1557 secpolicy_fs_mount_clearopts(cr, vfsp); 1558 } else { 1559 goto out; 1560 } 1561 } 1562 1563 /* 1564 * Refuse to mount a filesystem if we are in a local zone and the 1565 * dataset is not visible. 1566 */ 1567 if (!INGLOBALZONE(curproc) && 1568 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1569 error = EPERM; 1570 goto out; 1571 } 1572 1573 error = zfs_mount_label_policy(vfsp, osname); 1574 if (error) 1575 goto out; 1576 1577 /* 1578 * When doing a remount, we simply refresh our temporary properties 1579 * according to those options set in the current VFS options. 1580 */ 1581 if (uap->flags & MS_REMOUNT) { 1582 /* refresh mount options */ 1583 zfs_unregister_callbacks(vfsp->vfs_data); 1584 error = zfs_register_callbacks(vfsp); 1585 goto out; 1586 } 1587 1588 error = zfs_domount(vfsp, osname); 1589 1590 /* 1591 * Add an extra VFS_HOLD on our parent vfs so that it can't 1592 * disappear due to a forced unmount. 1593 */ 1594 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1595 VFS_HOLD(mvp->v_vfsp); 1596 1597 out: 1598 pn_free(&spn); 1599 return (error); 1600 } 1601 1602 static int 1603 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1604 { 1605 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1606 dev32_t d32; 1607 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1608 1609 ZFS_ENTER(zfsvfs); 1610 1611 dmu_objset_space(zfsvfs->z_os, 1612 &refdbytes, &availbytes, &usedobjs, &availobjs); 1613 1614 /* 1615 * The underlying storage pool actually uses multiple block sizes. 1616 * We report the fragsize as the smallest block size we support, 1617 * and we report our blocksize as the filesystem's maximum blocksize. 1618 */ 1619 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1620 statp->f_bsize = zfsvfs->z_max_blksz; 1621 1622 /* 1623 * The following report "total" blocks of various kinds in the 1624 * file system, but reported in terms of f_frsize - the 1625 * "fragment" size. 1626 */ 1627 1628 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1629 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1630 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1631 1632 /* 1633 * statvfs() should really be called statufs(), because it assumes 1634 * static metadata. ZFS doesn't preallocate files, so the best 1635 * we can do is report the max that could possibly fit in f_files, 1636 * and that minus the number actually used in f_ffree. 1637 * For f_ffree, report the smaller of the number of object available 1638 * and the number of blocks (each object will take at least a block). 1639 */ 1640 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1641 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1642 statp->f_files = statp->f_ffree + usedobjs; 1643 1644 (void) cmpldev(&d32, vfsp->vfs_dev); 1645 statp->f_fsid = d32; 1646 1647 /* 1648 * We're a zfs filesystem. 1649 */ 1650 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1651 1652 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1653 1654 statp->f_namemax = ZFS_MAXNAMELEN; 1655 1656 /* 1657 * We have all of 32 characters to stuff a string here. 1658 * Is there anything useful we could/should provide? 1659 */ 1660 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1661 1662 ZFS_EXIT(zfsvfs); 1663 return (0); 1664 } 1665 1666 static int 1667 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1668 { 1669 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1670 znode_t *rootzp; 1671 int error; 1672 1673 ZFS_ENTER(zfsvfs); 1674 1675 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1676 if (error == 0) 1677 *vpp = ZTOV(rootzp); 1678 1679 ZFS_EXIT(zfsvfs); 1680 return (error); 1681 } 1682 1683 /* 1684 * Teardown the zfsvfs::z_os. 1685 * 1686 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1687 * and 'z_teardown_inactive_lock' held. 1688 */ 1689 static int 1690 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1691 { 1692 znode_t *zp; 1693 1694 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1695 1696 if (!unmounting) { 1697 /* 1698 * We purge the parent filesystem's vfsp as the parent 1699 * filesystem and all of its snapshots have their vnode's 1700 * v_vfsp set to the parent's filesystem's vfsp. Note, 1701 * 'z_parent' is self referential for non-snapshots. 1702 */ 1703 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1704 } 1705 1706 /* 1707 * Close the zil. NB: Can't close the zil while zfs_inactive 1708 * threads are blocked as zil_close can call zfs_inactive. 1709 */ 1710 if (zfsvfs->z_log) { 1711 zil_close(zfsvfs->z_log); 1712 zfsvfs->z_log = NULL; 1713 } 1714 1715 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1716 1717 /* 1718 * If we are not unmounting (ie: online recv) and someone already 1719 * unmounted this file system while we were doing the switcheroo, 1720 * or a reopen of z_os failed then just bail out now. 1721 */ 1722 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1723 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1724 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1725 return (EIO); 1726 } 1727 1728 /* 1729 * At this point there are no vops active, and any new vops will 1730 * fail with EIO since we have z_teardown_lock for writer (only 1731 * relavent for forced unmount). 1732 * 1733 * Release all holds on dbufs. 1734 */ 1735 mutex_enter(&zfsvfs->z_znodes_lock); 1736 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1737 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1738 if (zp->z_dbuf) { 1739 ASSERT(ZTOV(zp)->v_count > 0); 1740 zfs_znode_dmu_fini(zp); 1741 } 1742 mutex_exit(&zfsvfs->z_znodes_lock); 1743 1744 /* 1745 * If we are unmounting, set the unmounted flag and let new vops 1746 * unblock. zfs_inactive will have the unmounted behavior, and all 1747 * other vops will fail with EIO. 1748 */ 1749 if (unmounting) { 1750 zfsvfs->z_unmounted = B_TRUE; 1751 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1752 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1753 } 1754 1755 /* 1756 * z_os will be NULL if there was an error in attempting to reopen 1757 * zfsvfs, so just return as the properties had already been 1758 * unregistered and cached data had been evicted before. 1759 */ 1760 if (zfsvfs->z_os == NULL) 1761 return (0); 1762 1763 /* 1764 * Unregister properties. 1765 */ 1766 zfs_unregister_callbacks(zfsvfs); 1767 1768 /* 1769 * Evict cached data 1770 */ 1771 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1772 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1773 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1774 } 1775 1776 return (0); 1777 } 1778 1779 /*ARGSUSED*/ 1780 static int 1781 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1782 { 1783 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1784 objset_t *os; 1785 int ret; 1786 1787 ret = secpolicy_fs_unmount(cr, vfsp); 1788 if (ret) { 1789 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1790 ZFS_DELEG_PERM_MOUNT, cr); 1791 if (ret) 1792 return (ret); 1793 } 1794 1795 /* 1796 * We purge the parent filesystem's vfsp as the parent filesystem 1797 * and all of its snapshots have their vnode's v_vfsp set to the 1798 * parent's filesystem's vfsp. Note, 'z_parent' is self 1799 * referential for non-snapshots. 1800 */ 1801 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1802 1803 /* 1804 * Unmount any snapshots mounted under .zfs before unmounting the 1805 * dataset itself. 1806 */ 1807 if (zfsvfs->z_ctldir != NULL && 1808 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1809 return (ret); 1810 } 1811 1812 if (!(fflag & MS_FORCE)) { 1813 /* 1814 * Check the number of active vnodes in the file system. 1815 * Our count is maintained in the vfs structure, but the 1816 * number is off by 1 to indicate a hold on the vfs 1817 * structure itself. 1818 * 1819 * The '.zfs' directory maintains a reference of its 1820 * own, and any active references underneath are 1821 * reflected in the vnode count. 1822 */ 1823 if (zfsvfs->z_ctldir == NULL) { 1824 if (vfsp->vfs_count > 1) 1825 return (EBUSY); 1826 } else { 1827 if (vfsp->vfs_count > 2 || 1828 zfsvfs->z_ctldir->v_count > 1) 1829 return (EBUSY); 1830 } 1831 } 1832 1833 vfsp->vfs_flag |= VFS_UNMOUNTED; 1834 1835 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1836 os = zfsvfs->z_os; 1837 1838 /* 1839 * z_os will be NULL if there was an error in 1840 * attempting to reopen zfsvfs. 1841 */ 1842 if (os != NULL) { 1843 /* 1844 * Unset the objset user_ptr. 1845 */ 1846 mutex_enter(&os->os_user_ptr_lock); 1847 dmu_objset_set_user(os, NULL); 1848 mutex_exit(&os->os_user_ptr_lock); 1849 1850 /* 1851 * Finally release the objset 1852 */ 1853 dmu_objset_disown(os, zfsvfs); 1854 } 1855 1856 /* 1857 * We can now safely destroy the '.zfs' directory node. 1858 */ 1859 if (zfsvfs->z_ctldir != NULL) 1860 zfsctl_destroy(zfsvfs); 1861 1862 return (0); 1863 } 1864 1865 static int 1866 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1867 { 1868 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1869 znode_t *zp; 1870 uint64_t object = 0; 1871 uint64_t fid_gen = 0; 1872 uint64_t gen_mask; 1873 uint64_t zp_gen; 1874 int i, err; 1875 1876 *vpp = NULL; 1877 1878 ZFS_ENTER(zfsvfs); 1879 1880 if (fidp->fid_len == LONG_FID_LEN) { 1881 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1882 uint64_t objsetid = 0; 1883 uint64_t setgen = 0; 1884 1885 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1886 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1887 1888 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1889 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1890 1891 ZFS_EXIT(zfsvfs); 1892 1893 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1894 if (err) 1895 return (EINVAL); 1896 ZFS_ENTER(zfsvfs); 1897 } 1898 1899 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1900 zfid_short_t *zfid = (zfid_short_t *)fidp; 1901 1902 for (i = 0; i < sizeof (zfid->zf_object); i++) 1903 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1904 1905 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1906 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1907 } else { 1908 ZFS_EXIT(zfsvfs); 1909 return (EINVAL); 1910 } 1911 1912 /* A zero fid_gen means we are in the .zfs control directories */ 1913 if (fid_gen == 0 && 1914 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1915 *vpp = zfsvfs->z_ctldir; 1916 ASSERT(*vpp != NULL); 1917 if (object == ZFSCTL_INO_SNAPDIR) { 1918 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1919 0, NULL, NULL, NULL, NULL, NULL) == 0); 1920 } else { 1921 VN_HOLD(*vpp); 1922 } 1923 ZFS_EXIT(zfsvfs); 1924 return (0); 1925 } 1926 1927 gen_mask = -1ULL >> (64 - 8 * i); 1928 1929 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1930 if (err = zfs_zget(zfsvfs, object, &zp)) { 1931 ZFS_EXIT(zfsvfs); 1932 return (err); 1933 } 1934 zp_gen = zp->z_phys->zp_gen & gen_mask; 1935 if (zp_gen == 0) 1936 zp_gen = 1; 1937 if (zp->z_unlinked || zp_gen != fid_gen) { 1938 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1939 VN_RELE(ZTOV(zp)); 1940 ZFS_EXIT(zfsvfs); 1941 return (EINVAL); 1942 } 1943 1944 *vpp = ZTOV(zp); 1945 ZFS_EXIT(zfsvfs); 1946 return (0); 1947 } 1948 1949 /* 1950 * Block out VOPs and close zfsvfs_t::z_os 1951 * 1952 * Note, if successful, then we return with the 'z_teardown_lock' and 1953 * 'z_teardown_inactive_lock' write held. 1954 */ 1955 int 1956 zfs_suspend_fs(zfsvfs_t *zfsvfs) 1957 { 1958 int error; 1959 1960 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1961 return (error); 1962 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1963 1964 return (0); 1965 } 1966 1967 /* 1968 * Reopen zfsvfs_t::z_os and release VOPs. 1969 */ 1970 int 1971 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 1972 { 1973 int err; 1974 1975 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1976 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1977 1978 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 1979 &zfsvfs->z_os); 1980 if (err) { 1981 zfsvfs->z_os = NULL; 1982 } else { 1983 znode_t *zp; 1984 1985 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1986 1987 /* 1988 * Attempt to re-establish all the active znodes with 1989 * their dbufs. If a zfs_rezget() fails, then we'll let 1990 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1991 * when they try to use their znode. 1992 */ 1993 mutex_enter(&zfsvfs->z_znodes_lock); 1994 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1995 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1996 (void) zfs_rezget(zp); 1997 } 1998 mutex_exit(&zfsvfs->z_znodes_lock); 1999 2000 } 2001 2002 /* release the VOPs */ 2003 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2004 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2005 2006 if (err) { 2007 /* 2008 * Since we couldn't reopen zfsvfs::z_os, force 2009 * unmount this file system. 2010 */ 2011 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2012 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2013 } 2014 return (err); 2015 } 2016 2017 static void 2018 zfs_freevfs(vfs_t *vfsp) 2019 { 2020 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2021 2022 /* 2023 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2024 * from zfs_mount(). Release it here. 2025 */ 2026 if (zfsvfs->z_issnap) 2027 VFS_RELE(zfsvfs->z_parent->z_vfs); 2028 2029 zfsvfs_free(zfsvfs); 2030 2031 atomic_add_32(&zfs_active_fs_count, -1); 2032 } 2033 2034 /* 2035 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2036 * so we can't safely do any non-idempotent initialization here. 2037 * Leave that to zfs_init() and zfs_fini(), which are called 2038 * from the module's _init() and _fini() entry points. 2039 */ 2040 /*ARGSUSED*/ 2041 static int 2042 zfs_vfsinit(int fstype, char *name) 2043 { 2044 int error; 2045 2046 zfsfstype = fstype; 2047 2048 /* 2049 * Setup vfsops and vnodeops tables. 2050 */ 2051 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2052 if (error != 0) { 2053 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2054 } 2055 2056 error = zfs_create_op_tables(); 2057 if (error) { 2058 zfs_remove_op_tables(); 2059 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2060 (void) vfs_freevfsops_by_type(zfsfstype); 2061 return (error); 2062 } 2063 2064 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2065 2066 /* 2067 * Unique major number for all zfs mounts. 2068 * If we run out of 32-bit minors, we'll getudev() another major. 2069 */ 2070 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2071 zfs_minor = ZFS_MIN_MINOR; 2072 2073 return (0); 2074 } 2075 2076 void 2077 zfs_init(void) 2078 { 2079 /* 2080 * Initialize .zfs directory structures 2081 */ 2082 zfsctl_init(); 2083 2084 /* 2085 * Initialize znode cache, vnode ops, etc... 2086 */ 2087 zfs_znode_init(); 2088 2089 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2090 } 2091 2092 void 2093 zfs_fini(void) 2094 { 2095 zfsctl_fini(); 2096 zfs_znode_fini(); 2097 } 2098 2099 int 2100 zfs_busy(void) 2101 { 2102 return (zfs_active_fs_count != 0); 2103 } 2104 2105 int 2106 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2107 { 2108 int error; 2109 objset_t *os = zfsvfs->z_os; 2110 dmu_tx_t *tx; 2111 2112 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2113 return (EINVAL); 2114 2115 if (newvers < zfsvfs->z_version) 2116 return (EINVAL); 2117 2118 tx = dmu_tx_create(os); 2119 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2120 error = dmu_tx_assign(tx, TXG_WAIT); 2121 if (error) { 2122 dmu_tx_abort(tx); 2123 return (error); 2124 } 2125 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2126 8, 1, &newvers, tx); 2127 2128 if (error) { 2129 dmu_tx_commit(tx); 2130 return (error); 2131 } 2132 2133 spa_history_internal_log(LOG_DS_UPGRADE, 2134 dmu_objset_spa(os), tx, CRED(), 2135 "oldver=%llu newver=%llu dataset = %llu", 2136 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2137 2138 dmu_tx_commit(tx); 2139 2140 zfsvfs->z_version = newvers; 2141 2142 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2143 zfs_set_fuid_feature(zfsvfs); 2144 2145 return (0); 2146 } 2147 2148 /* 2149 * Read a property stored within the master node. 2150 */ 2151 int 2152 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2153 { 2154 const char *pname; 2155 int error = ENOENT; 2156 2157 /* 2158 * Look up the file system's value for the property. For the 2159 * version property, we look up a slightly different string. 2160 */ 2161 if (prop == ZFS_PROP_VERSION) 2162 pname = ZPL_VERSION_STR; 2163 else 2164 pname = zfs_prop_to_name(prop); 2165 2166 if (os != NULL) 2167 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2168 2169 if (error == ENOENT) { 2170 /* No value set, use the default value */ 2171 switch (prop) { 2172 case ZFS_PROP_VERSION: 2173 *value = ZPL_VERSION; 2174 break; 2175 case ZFS_PROP_NORMALIZE: 2176 case ZFS_PROP_UTF8ONLY: 2177 *value = 0; 2178 break; 2179 case ZFS_PROP_CASE: 2180 *value = ZFS_CASE_SENSITIVE; 2181 break; 2182 default: 2183 return (error); 2184 } 2185 error = 0; 2186 } 2187 return (error); 2188 } 2189 2190 static vfsdef_t vfw = { 2191 VFSDEF_VERSION, 2192 MNTTYPE_ZFS, 2193 zfs_vfsinit, 2194 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2195 VSW_XID, 2196 &zfs_mntopts 2197 }; 2198 2199 struct modlfs zfs_modlfs = { 2200 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2201 }; 2202