1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/types.h> 29 #include <sys/param.h> 30 #include <sys/systm.h> 31 #include <sys/sysmacros.h> 32 #include <sys/kmem.h> 33 #include <sys/pathname.h> 34 #include <sys/vnode.h> 35 #include <sys/vfs.h> 36 #include <sys/vfs_opreg.h> 37 #include <sys/mntent.h> 38 #include <sys/mount.h> 39 #include <sys/cmn_err.h> 40 #include "fs/fs_subr.h" 41 #include <sys/zfs_znode.h> 42 #include <sys/zfs_dir.h> 43 #include <sys/zil.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/dmu.h> 46 #include <sys/dsl_prop.h> 47 #include <sys/dsl_dataset.h> 48 #include <sys/dsl_deleg.h> 49 #include <sys/spa.h> 50 #include <sys/zap.h> 51 #include <sys/varargs.h> 52 #include <sys/policy.h> 53 #include <sys/atomic.h> 54 #include <sys/mkdev.h> 55 #include <sys/modctl.h> 56 #include <sys/refstr.h> 57 #include <sys/zfs_ioctl.h> 58 #include <sys/zfs_ctldir.h> 59 #include <sys/zfs_fuid.h> 60 #include <sys/bootconf.h> 61 #include <sys/sunddi.h> 62 #include <sys/dnlc.h> 63 #include <sys/dmu_objset.h> 64 #include <sys/spa_boot.h> 65 66 int zfsfstype; 67 vfsops_t *zfs_vfsops = NULL; 68 static major_t zfs_major; 69 static minor_t zfs_minor; 70 static kmutex_t zfs_dev_mtx; 71 72 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 73 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 74 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 75 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 76 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 77 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 78 static void zfs_freevfs(vfs_t *vfsp); 79 80 static const fs_operation_def_t zfs_vfsops_template[] = { 81 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 82 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 83 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 84 VFSNAME_ROOT, { .vfs_root = zfs_root }, 85 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 86 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 87 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 88 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 89 NULL, NULL 90 }; 91 92 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 93 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 94 NULL, NULL 95 }; 96 97 /* 98 * We need to keep a count of active fs's. 99 * This is necessary to prevent our module 100 * from being unloaded after a umount -f 101 */ 102 static uint32_t zfs_active_fs_count = 0; 103 104 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 105 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 106 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 107 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 108 109 /* 110 * MO_DEFAULT is not used since the default value is determined 111 * by the equivalent property. 112 */ 113 static mntopt_t mntopts[] = { 114 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 115 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 116 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 117 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 118 }; 119 120 static mntopts_t zfs_mntopts = { 121 sizeof (mntopts) / sizeof (mntopt_t), 122 mntopts 123 }; 124 125 /*ARGSUSED*/ 126 int 127 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 128 { 129 /* 130 * Data integrity is job one. We don't want a compromised kernel 131 * writing to the storage pool, so we never sync during panic. 132 */ 133 if (panicstr) 134 return (0); 135 136 /* 137 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 138 * to sync metadata, which they would otherwise cache indefinitely. 139 * Semantically, the only requirement is that the sync be initiated. 140 * The DMU syncs out txgs frequently, so there's nothing to do. 141 */ 142 if (flag & SYNC_ATTR) 143 return (0); 144 145 if (vfsp != NULL) { 146 /* 147 * Sync a specific filesystem. 148 */ 149 zfsvfs_t *zfsvfs = vfsp->vfs_data; 150 151 ZFS_ENTER(zfsvfs); 152 if (zfsvfs->z_log != NULL) 153 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 154 else 155 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 156 ZFS_EXIT(zfsvfs); 157 } else { 158 /* 159 * Sync all ZFS filesystems. This is what happens when you 160 * run sync(1M). Unlike other filesystems, ZFS honors the 161 * request by waiting for all pools to commit all dirty data. 162 */ 163 spa_sync_allpools(); 164 } 165 166 return (0); 167 } 168 169 static int 170 zfs_create_unique_device(dev_t *dev) 171 { 172 major_t new_major; 173 174 do { 175 ASSERT3U(zfs_minor, <=, MAXMIN32); 176 minor_t start = zfs_minor; 177 do { 178 mutex_enter(&zfs_dev_mtx); 179 if (zfs_minor >= MAXMIN32) { 180 /* 181 * If we're still using the real major 182 * keep out of /dev/zfs and /dev/zvol minor 183 * number space. If we're using a getudev()'ed 184 * major number, we can use all of its minors. 185 */ 186 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 187 zfs_minor = ZFS_MIN_MINOR; 188 else 189 zfs_minor = 0; 190 } else { 191 zfs_minor++; 192 } 193 *dev = makedevice(zfs_major, zfs_minor); 194 mutex_exit(&zfs_dev_mtx); 195 } while (vfs_devismounted(*dev) && zfs_minor != start); 196 if (zfs_minor == start) { 197 /* 198 * We are using all ~262,000 minor numbers for the 199 * current major number. Create a new major number. 200 */ 201 if ((new_major = getudev()) == (major_t)-1) { 202 cmn_err(CE_WARN, 203 "zfs_mount: Can't get unique major " 204 "device number."); 205 return (-1); 206 } 207 mutex_enter(&zfs_dev_mtx); 208 zfs_major = new_major; 209 zfs_minor = 0; 210 211 mutex_exit(&zfs_dev_mtx); 212 } else { 213 break; 214 } 215 /* CONSTANTCONDITION */ 216 } while (1); 217 218 return (0); 219 } 220 221 static void 222 atime_changed_cb(void *arg, uint64_t newval) 223 { 224 zfsvfs_t *zfsvfs = arg; 225 226 if (newval == TRUE) { 227 zfsvfs->z_atime = TRUE; 228 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 229 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 230 } else { 231 zfsvfs->z_atime = FALSE; 232 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 233 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 234 } 235 } 236 237 static void 238 xattr_changed_cb(void *arg, uint64_t newval) 239 { 240 zfsvfs_t *zfsvfs = arg; 241 242 if (newval == TRUE) { 243 /* XXX locking on vfs_flag? */ 244 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 245 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 246 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 247 } else { 248 /* XXX locking on vfs_flag? */ 249 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 250 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 251 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 252 } 253 } 254 255 static void 256 blksz_changed_cb(void *arg, uint64_t newval) 257 { 258 zfsvfs_t *zfsvfs = arg; 259 260 if (newval < SPA_MINBLOCKSIZE || 261 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 262 newval = SPA_MAXBLOCKSIZE; 263 264 zfsvfs->z_max_blksz = newval; 265 zfsvfs->z_vfs->vfs_bsize = newval; 266 } 267 268 static void 269 readonly_changed_cb(void *arg, uint64_t newval) 270 { 271 zfsvfs_t *zfsvfs = arg; 272 273 if (newval) { 274 /* XXX locking on vfs_flag? */ 275 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 276 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 277 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 278 } else { 279 /* XXX locking on vfs_flag? */ 280 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 281 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 282 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 283 } 284 } 285 286 static void 287 devices_changed_cb(void *arg, uint64_t newval) 288 { 289 zfsvfs_t *zfsvfs = arg; 290 291 if (newval == FALSE) { 292 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 293 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 294 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 295 } else { 296 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 297 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 298 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 299 } 300 } 301 302 static void 303 setuid_changed_cb(void *arg, uint64_t newval) 304 { 305 zfsvfs_t *zfsvfs = arg; 306 307 if (newval == FALSE) { 308 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 309 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 310 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 311 } else { 312 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 313 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 314 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 315 } 316 } 317 318 static void 319 exec_changed_cb(void *arg, uint64_t newval) 320 { 321 zfsvfs_t *zfsvfs = arg; 322 323 if (newval == FALSE) { 324 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 325 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 326 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 327 } else { 328 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 329 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 330 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 331 } 332 } 333 334 /* 335 * The nbmand mount option can be changed at mount time. 336 * We can't allow it to be toggled on live file systems or incorrect 337 * behavior may be seen from cifs clients 338 * 339 * This property isn't registered via dsl_prop_register(), but this callback 340 * will be called when a file system is first mounted 341 */ 342 static void 343 nbmand_changed_cb(void *arg, uint64_t newval) 344 { 345 zfsvfs_t *zfsvfs = arg; 346 if (newval == FALSE) { 347 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 348 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 349 } else { 350 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 351 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 352 } 353 } 354 355 static void 356 snapdir_changed_cb(void *arg, uint64_t newval) 357 { 358 zfsvfs_t *zfsvfs = arg; 359 360 zfsvfs->z_show_ctldir = newval; 361 } 362 363 static void 364 vscan_changed_cb(void *arg, uint64_t newval) 365 { 366 zfsvfs_t *zfsvfs = arg; 367 368 zfsvfs->z_vscan = newval; 369 } 370 371 static void 372 acl_mode_changed_cb(void *arg, uint64_t newval) 373 { 374 zfsvfs_t *zfsvfs = arg; 375 376 zfsvfs->z_acl_mode = newval; 377 } 378 379 static void 380 acl_inherit_changed_cb(void *arg, uint64_t newval) 381 { 382 zfsvfs_t *zfsvfs = arg; 383 384 zfsvfs->z_acl_inherit = newval; 385 } 386 387 static int 388 zfs_register_callbacks(vfs_t *vfsp) 389 { 390 struct dsl_dataset *ds = NULL; 391 objset_t *os = NULL; 392 zfsvfs_t *zfsvfs = NULL; 393 uint64_t nbmand; 394 int readonly, do_readonly = B_FALSE; 395 int setuid, do_setuid = B_FALSE; 396 int exec, do_exec = B_FALSE; 397 int devices, do_devices = B_FALSE; 398 int xattr, do_xattr = B_FALSE; 399 int atime, do_atime = B_FALSE; 400 int error = 0; 401 402 ASSERT(vfsp); 403 zfsvfs = vfsp->vfs_data; 404 ASSERT(zfsvfs); 405 os = zfsvfs->z_os; 406 407 /* 408 * The act of registering our callbacks will destroy any mount 409 * options we may have. In order to enable temporary overrides 410 * of mount options, we stash away the current values and 411 * restore them after we register the callbacks. 412 */ 413 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 414 readonly = B_TRUE; 415 do_readonly = B_TRUE; 416 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 417 readonly = B_FALSE; 418 do_readonly = B_TRUE; 419 } 420 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 421 devices = B_FALSE; 422 setuid = B_FALSE; 423 do_devices = B_TRUE; 424 do_setuid = B_TRUE; 425 } else { 426 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 427 devices = B_FALSE; 428 do_devices = B_TRUE; 429 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 430 devices = B_TRUE; 431 do_devices = B_TRUE; 432 } 433 434 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 435 setuid = B_FALSE; 436 do_setuid = B_TRUE; 437 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 438 setuid = B_TRUE; 439 do_setuid = B_TRUE; 440 } 441 } 442 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 443 exec = B_FALSE; 444 do_exec = B_TRUE; 445 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 446 exec = B_TRUE; 447 do_exec = B_TRUE; 448 } 449 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 450 xattr = B_FALSE; 451 do_xattr = B_TRUE; 452 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 453 xattr = B_TRUE; 454 do_xattr = B_TRUE; 455 } 456 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 457 atime = B_FALSE; 458 do_atime = B_TRUE; 459 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 460 atime = B_TRUE; 461 do_atime = B_TRUE; 462 } 463 464 /* 465 * nbmand is a special property. It can only be changed at 466 * mount time. 467 * 468 * This is weird, but it is documented to only be changeable 469 * at mount time. 470 */ 471 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 472 nbmand = B_FALSE; 473 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 474 nbmand = B_TRUE; 475 } else { 476 char osname[MAXNAMELEN]; 477 478 dmu_objset_name(os, osname); 479 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 480 NULL)) 481 return (error); 482 } 483 484 /* 485 * Register property callbacks. 486 * 487 * It would probably be fine to just check for i/o error from 488 * the first prop_register(), but I guess I like to go 489 * overboard... 490 */ 491 ds = dmu_objset_ds(os); 492 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 493 error = error ? error : dsl_prop_register(ds, 494 "xattr", xattr_changed_cb, zfsvfs); 495 error = error ? error : dsl_prop_register(ds, 496 "recordsize", blksz_changed_cb, zfsvfs); 497 error = error ? error : dsl_prop_register(ds, 498 "readonly", readonly_changed_cb, zfsvfs); 499 error = error ? error : dsl_prop_register(ds, 500 "devices", devices_changed_cb, zfsvfs); 501 error = error ? error : dsl_prop_register(ds, 502 "setuid", setuid_changed_cb, zfsvfs); 503 error = error ? error : dsl_prop_register(ds, 504 "exec", exec_changed_cb, zfsvfs); 505 error = error ? error : dsl_prop_register(ds, 506 "snapdir", snapdir_changed_cb, zfsvfs); 507 error = error ? error : dsl_prop_register(ds, 508 "aclmode", acl_mode_changed_cb, zfsvfs); 509 error = error ? error : dsl_prop_register(ds, 510 "aclinherit", acl_inherit_changed_cb, zfsvfs); 511 error = error ? error : dsl_prop_register(ds, 512 "vscan", vscan_changed_cb, zfsvfs); 513 if (error) 514 goto unregister; 515 516 /* 517 * Invoke our callbacks to restore temporary mount options. 518 */ 519 if (do_readonly) 520 readonly_changed_cb(zfsvfs, readonly); 521 if (do_setuid) 522 setuid_changed_cb(zfsvfs, setuid); 523 if (do_exec) 524 exec_changed_cb(zfsvfs, exec); 525 if (do_devices) 526 devices_changed_cb(zfsvfs, devices); 527 if (do_xattr) 528 xattr_changed_cb(zfsvfs, xattr); 529 if (do_atime) 530 atime_changed_cb(zfsvfs, atime); 531 532 nbmand_changed_cb(zfsvfs, nbmand); 533 534 return (0); 535 536 unregister: 537 /* 538 * We may attempt to unregister some callbacks that are not 539 * registered, but this is OK; it will simply return ENOMSG, 540 * which we will ignore. 541 */ 542 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 552 zfsvfs); 553 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 554 return (error); 555 556 } 557 558 static int 559 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 560 { 561 uint_t readonly; 562 int error; 563 564 error = zfs_register_callbacks(zfsvfs->z_vfs); 565 if (error) 566 return (error); 567 568 /* 569 * Set the objset user_ptr to track its zfsvfs. 570 */ 571 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 572 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 573 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 574 575 /* 576 * If we are not mounting (ie: online recv), then we don't 577 * have to worry about replaying the log as we blocked all 578 * operations out since we closed the ZIL. 579 */ 580 if (mounting) { 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 if (readonly != 0) 587 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 588 else 589 zfs_unlinked_drain(zfsvfs); 590 591 /* 592 * Parse and replay the intent log. 593 * 594 * Because of ziltest, this must be done after 595 * zfs_unlinked_drain(). (Further note: ziltest doesn't 596 * use readonly mounts, where zfs_unlinked_drain() isn't 597 * called.) This is because ziltest causes spa_sync() 598 * to think it's committed, but actually it is not, so 599 * the intent log contains many txg's worth of changes. 600 * 601 * In particular, if object N is in the unlinked set in 602 * the last txg to actually sync, then it could be 603 * actually freed in a later txg and then reallocated in 604 * a yet later txg. This would write a "create object 605 * N" record to the intent log. Normally, this would be 606 * fine because the spa_sync() would have written out 607 * the fact that object N is free, before we could write 608 * the "create object N" intent log record. 609 * 610 * But when we are in ziltest mode, we advance the "open 611 * txg" without actually spa_sync()-ing the changes to 612 * disk. So we would see that object N is still 613 * allocated and in the unlinked set, and there is an 614 * intent log record saying to allocate it. 615 */ 616 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 617 zfs_replay_vector); 618 619 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 620 } 621 622 if (!zil_disable) 623 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 624 625 return (0); 626 } 627 628 static void 629 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 630 { 631 mutex_destroy(&zfsvfs->z_znodes_lock); 632 mutex_destroy(&zfsvfs->z_online_recv_lock); 633 list_destroy(&zfsvfs->z_all_znodes); 634 rrw_destroy(&zfsvfs->z_teardown_lock); 635 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 636 rw_destroy(&zfsvfs->z_fuid_lock); 637 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 638 } 639 640 static int 641 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr) 642 { 643 dev_t mount_dev; 644 uint64_t recordsize, readonly; 645 int error = 0; 646 int mode; 647 zfsvfs_t *zfsvfs; 648 znode_t *zp = NULL; 649 650 ASSERT(vfsp); 651 ASSERT(osname); 652 653 /* 654 * Initialize the zfs-specific filesystem structure. 655 * Should probably make this a kmem cache, shuffle fields, 656 * and just bzero up to z_hold_mtx[]. 657 */ 658 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 659 zfsvfs->z_vfs = vfsp; 660 zfsvfs->z_parent = zfsvfs; 661 zfsvfs->z_assign = TXG_NOWAIT; 662 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 663 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 664 665 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 666 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 667 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 668 offsetof(znode_t, z_link_node)); 669 rrw_init(&zfsvfs->z_teardown_lock); 670 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 671 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 672 673 /* Initialize the generic filesystem structure. */ 674 vfsp->vfs_bcount = 0; 675 vfsp->vfs_data = NULL; 676 677 if (zfs_create_unique_device(&mount_dev) == -1) { 678 error = ENODEV; 679 goto out; 680 } 681 ASSERT(vfs_devismounted(mount_dev) == 0); 682 683 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 684 NULL)) 685 goto out; 686 687 vfsp->vfs_dev = mount_dev; 688 vfsp->vfs_fstype = zfsfstype; 689 vfsp->vfs_bsize = recordsize; 690 vfsp->vfs_flag |= VFS_NOTRUNC; 691 vfsp->vfs_data = zfsvfs; 692 693 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 694 goto out; 695 696 mode = DS_MODE_OWNER; 697 if (readonly) 698 mode |= DS_MODE_READONLY; 699 700 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 701 if (error == EROFS) { 702 mode = DS_MODE_OWNER | DS_MODE_READONLY; 703 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 704 &zfsvfs->z_os); 705 } 706 707 if (error) 708 goto out; 709 710 if (error = zfs_init_fs(zfsvfs, &zp, cr)) 711 goto out; 712 713 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 714 VN_RELE(ZTOV(zp)); 715 716 /* 717 * Set features for file system. 718 */ 719 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 720 if (zfsvfs->z_use_fuids) { 721 vfs_set_feature(vfsp, VFSFT_XVATTR); 722 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 723 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 724 } 725 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 726 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 727 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 728 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 729 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 730 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 731 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 732 } 733 734 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 735 uint64_t pval; 736 737 ASSERT(mode & DS_MODE_READONLY); 738 atime_changed_cb(zfsvfs, B_FALSE); 739 readonly_changed_cb(zfsvfs, B_TRUE); 740 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 741 goto out; 742 xattr_changed_cb(zfsvfs, pval); 743 zfsvfs->z_issnap = B_TRUE; 744 } else { 745 error = zfsvfs_setup(zfsvfs, B_TRUE); 746 } 747 748 if (!zfsvfs->z_issnap) 749 zfsctl_create(zfsvfs); 750 out: 751 if (error) { 752 if (zfsvfs->z_os) 753 dmu_objset_close(zfsvfs->z_os); 754 zfs_freezfsvfs(zfsvfs); 755 } else { 756 atomic_add_32(&zfs_active_fs_count, 1); 757 } 758 759 return (error); 760 } 761 762 void 763 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 764 { 765 objset_t *os = zfsvfs->z_os; 766 struct dsl_dataset *ds; 767 768 /* 769 * Unregister properties. 770 */ 771 if (!dmu_objset_is_snapshot(os)) { 772 ds = dmu_objset_ds(os); 773 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 774 zfsvfs) == 0); 775 776 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 777 zfsvfs) == 0); 778 779 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 780 zfsvfs) == 0); 781 782 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 783 zfsvfs) == 0); 784 785 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 786 zfsvfs) == 0); 787 788 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 789 zfsvfs) == 0); 790 791 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 792 zfsvfs) == 0); 793 794 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 795 zfsvfs) == 0); 796 797 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 798 zfsvfs) == 0); 799 800 VERIFY(dsl_prop_unregister(ds, "aclinherit", 801 acl_inherit_changed_cb, zfsvfs) == 0); 802 803 VERIFY(dsl_prop_unregister(ds, "vscan", 804 vscan_changed_cb, zfsvfs) == 0); 805 } 806 } 807 808 /* 809 * Convert a decimal digit string to a uint64_t integer. 810 */ 811 static int 812 str_to_uint64(char *str, uint64_t *objnum) 813 { 814 uint64_t num = 0; 815 816 while (*str) { 817 if (*str < '0' || *str > '9') 818 return (EINVAL); 819 820 num = num*10 + *str++ - '0'; 821 } 822 823 *objnum = num; 824 return (0); 825 } 826 827 /* 828 * The boot path passed from the boot loader is in the form of 829 * "rootpool-name/root-filesystem-object-number'. Convert this 830 * string to a dataset name: "rootpool-name/root-filesystem-name". 831 */ 832 static int 833 zfs_parse_bootfs(char *bpath, char *outpath) 834 { 835 char *slashp; 836 uint64_t objnum; 837 int error; 838 839 if (*bpath == 0 || *bpath == '/') 840 return (EINVAL); 841 842 slashp = strchr(bpath, '/'); 843 844 /* if no '/', just return the pool name */ 845 if (slashp == NULL) { 846 (void) strcpy(outpath, bpath); 847 return (0); 848 } 849 850 if (error = str_to_uint64(slashp+1, &objnum)) 851 return (error); 852 853 *slashp = '\0'; 854 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 855 *slashp = '/'; 856 857 return (error); 858 } 859 860 static int 861 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 862 { 863 int error = 0; 864 static int zfsrootdone = 0; 865 zfsvfs_t *zfsvfs = NULL; 866 znode_t *zp = NULL; 867 vnode_t *vp = NULL; 868 char *zfs_bootfs; 869 870 ASSERT(vfsp); 871 872 /* 873 * The filesystem that we mount as root is defined in the 874 * boot property "zfs-bootfs" with a format of 875 * "poolname/root-dataset-objnum". 876 */ 877 if (why == ROOT_INIT) { 878 if (zfsrootdone++) 879 return (EBUSY); 880 /* 881 * the process of doing a spa_load will require the 882 * clock to be set before we could (for example) do 883 * something better by looking at the timestamp on 884 * an uberblock, so just set it to -1. 885 */ 886 clkset(-1); 887 888 if ((zfs_bootfs = spa_get_bootfs()) == NULL) { 889 cmn_err(CE_NOTE, "\nspa_get_bootfs: can not get " 890 "bootfs name \n"); 891 return (EINVAL); 892 } 893 894 if (error = spa_import_rootpool(rootfs.bo_name)) { 895 spa_free_bootfs(zfs_bootfs); 896 cmn_err(CE_NOTE, "\nspa_import_rootpool: error %d\n", 897 error); 898 return (error); 899 } 900 901 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 902 spa_free_bootfs(zfs_bootfs); 903 cmn_err(CE_NOTE, "\nzfs_parse_bootfs: error %d\n", 904 error); 905 return (error); 906 } 907 908 spa_free_bootfs(zfs_bootfs); 909 910 if (error = vfs_lock(vfsp)) 911 return (error); 912 913 if (error = zfs_domount(vfsp, rootfs.bo_name, CRED())) { 914 cmn_err(CE_NOTE, "\nzfs_domount: error %d\n", error); 915 goto out; 916 } 917 918 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 919 ASSERT(zfsvfs); 920 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 921 cmn_err(CE_NOTE, "\nzfs_zget: error %d\n", error); 922 goto out; 923 } 924 925 vp = ZTOV(zp); 926 mutex_enter(&vp->v_lock); 927 vp->v_flag |= VROOT; 928 mutex_exit(&vp->v_lock); 929 rootvp = vp; 930 931 /* 932 * Leave rootvp held. The root file system is never unmounted. 933 */ 934 935 vfs_add((struct vnode *)0, vfsp, 936 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 937 out: 938 vfs_unlock(vfsp); 939 return (error); 940 } else if (why == ROOT_REMOUNT) { 941 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 942 vfsp->vfs_flag |= VFS_REMOUNT; 943 944 /* refresh mount options */ 945 zfs_unregister_callbacks(vfsp->vfs_data); 946 return (zfs_register_callbacks(vfsp)); 947 948 } else if (why == ROOT_UNMOUNT) { 949 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 950 (void) zfs_sync(vfsp, 0, 0); 951 return (0); 952 } 953 954 /* 955 * if "why" is equal to anything else other than ROOT_INIT, 956 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 957 */ 958 return (ENOTSUP); 959 } 960 961 /*ARGSUSED*/ 962 static int 963 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 964 { 965 char *osname; 966 pathname_t spn; 967 int error = 0; 968 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 969 UIO_SYSSPACE : UIO_USERSPACE; 970 int canwrite; 971 972 if (mvp->v_type != VDIR) 973 return (ENOTDIR); 974 975 mutex_enter(&mvp->v_lock); 976 if ((uap->flags & MS_REMOUNT) == 0 && 977 (uap->flags & MS_OVERLAY) == 0 && 978 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 979 mutex_exit(&mvp->v_lock); 980 return (EBUSY); 981 } 982 mutex_exit(&mvp->v_lock); 983 984 /* 985 * ZFS does not support passing unparsed data in via MS_DATA. 986 * Users should use the MS_OPTIONSTR interface; this means 987 * that all option parsing is already done and the options struct 988 * can be interrogated. 989 */ 990 if ((uap->flags & MS_DATA) && uap->datalen > 0) 991 return (EINVAL); 992 993 /* 994 * Get the objset name (the "special" mount argument). 995 */ 996 if (error = pn_get(uap->spec, fromspace, &spn)) 997 return (error); 998 999 osname = spn.pn_path; 1000 1001 /* 1002 * Check for mount privilege? 1003 * 1004 * If we don't have privilege then see if 1005 * we have local permission to allow it 1006 */ 1007 error = secpolicy_fs_mount(cr, mvp, vfsp); 1008 if (error) { 1009 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1010 if (error == 0) { 1011 vattr_t vattr; 1012 1013 /* 1014 * Make sure user is the owner of the mount point 1015 * or has sufficient privileges. 1016 */ 1017 1018 vattr.va_mask = AT_UID; 1019 1020 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1021 goto out; 1022 } 1023 1024 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1025 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1026 error = EPERM; 1027 goto out; 1028 } 1029 1030 secpolicy_fs_mount_clearopts(cr, vfsp); 1031 } else { 1032 goto out; 1033 } 1034 } 1035 1036 /* 1037 * Refuse to mount a filesystem if we are in a local zone and the 1038 * dataset is not visible. 1039 */ 1040 if (!INGLOBALZONE(curproc) && 1041 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1042 error = EPERM; 1043 goto out; 1044 } 1045 1046 /* 1047 * When doing a remount, we simply refresh our temporary properties 1048 * according to those options set in the current VFS options. 1049 */ 1050 if (uap->flags & MS_REMOUNT) { 1051 /* refresh mount options */ 1052 zfs_unregister_callbacks(vfsp->vfs_data); 1053 error = zfs_register_callbacks(vfsp); 1054 goto out; 1055 } 1056 1057 error = zfs_domount(vfsp, osname, cr); 1058 1059 out: 1060 pn_free(&spn); 1061 return (error); 1062 } 1063 1064 static int 1065 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1066 { 1067 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1068 dev32_t d32; 1069 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1070 1071 ZFS_ENTER(zfsvfs); 1072 1073 dmu_objset_space(zfsvfs->z_os, 1074 &refdbytes, &availbytes, &usedobjs, &availobjs); 1075 1076 /* 1077 * The underlying storage pool actually uses multiple block sizes. 1078 * We report the fragsize as the smallest block size we support, 1079 * and we report our blocksize as the filesystem's maximum blocksize. 1080 */ 1081 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1082 statp->f_bsize = zfsvfs->z_max_blksz; 1083 1084 /* 1085 * The following report "total" blocks of various kinds in the 1086 * file system, but reported in terms of f_frsize - the 1087 * "fragment" size. 1088 */ 1089 1090 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1091 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1092 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1093 1094 /* 1095 * statvfs() should really be called statufs(), because it assumes 1096 * static metadata. ZFS doesn't preallocate files, so the best 1097 * we can do is report the max that could possibly fit in f_files, 1098 * and that minus the number actually used in f_ffree. 1099 * For f_ffree, report the smaller of the number of object available 1100 * and the number of blocks (each object will take at least a block). 1101 */ 1102 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1103 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1104 statp->f_files = statp->f_ffree + usedobjs; 1105 1106 (void) cmpldev(&d32, vfsp->vfs_dev); 1107 statp->f_fsid = d32; 1108 1109 /* 1110 * We're a zfs filesystem. 1111 */ 1112 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1113 1114 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1115 1116 statp->f_namemax = ZFS_MAXNAMELEN; 1117 1118 /* 1119 * We have all of 32 characters to stuff a string here. 1120 * Is there anything useful we could/should provide? 1121 */ 1122 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1123 1124 ZFS_EXIT(zfsvfs); 1125 return (0); 1126 } 1127 1128 static int 1129 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1130 { 1131 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1132 znode_t *rootzp; 1133 int error; 1134 1135 ZFS_ENTER(zfsvfs); 1136 1137 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1138 if (error == 0) 1139 *vpp = ZTOV(rootzp); 1140 1141 ZFS_EXIT(zfsvfs); 1142 return (error); 1143 } 1144 1145 /* 1146 * Teardown the zfsvfs::z_os. 1147 * 1148 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1149 * and 'z_teardown_inactive_lock' held. 1150 */ 1151 static int 1152 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1153 { 1154 znode_t *zp; 1155 1156 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1157 1158 if (!unmounting) { 1159 /* 1160 * We purge the parent filesystem's vfsp as the parent 1161 * filesystem and all of its snapshots have their vnode's 1162 * v_vfsp set to the parent's filesystem's vfsp. Note, 1163 * 'z_parent' is self referential for non-snapshots. 1164 */ 1165 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1166 } 1167 1168 /* 1169 * Close the zil. NB: Can't close the zil while zfs_inactive 1170 * threads are blocked as zil_close can call zfs_inactive. 1171 */ 1172 if (zfsvfs->z_log) { 1173 zil_close(zfsvfs->z_log); 1174 zfsvfs->z_log = NULL; 1175 } 1176 1177 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1178 1179 /* 1180 * If we are not unmounting (ie: online recv) and someone already 1181 * unmounted this file system while we were doing the switcheroo, 1182 * or a reopen of z_os failed then just bail out now. 1183 */ 1184 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1185 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1186 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1187 return (EIO); 1188 } 1189 1190 /* 1191 * At this point there are no vops active, and any new vops will 1192 * fail with EIO since we have z_teardown_lock for writer (only 1193 * relavent for forced unmount). 1194 * 1195 * Release all holds on dbufs. 1196 */ 1197 mutex_enter(&zfsvfs->z_znodes_lock); 1198 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1199 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1200 if (zp->z_dbuf) { 1201 ASSERT(ZTOV(zp)->v_count > 0); 1202 zfs_znode_dmu_fini(zp); 1203 } 1204 mutex_exit(&zfsvfs->z_znodes_lock); 1205 1206 /* 1207 * If we are unmounting, set the unmounted flag and let new vops 1208 * unblock. zfs_inactive will have the unmounted behavior, and all 1209 * other vops will fail with EIO. 1210 */ 1211 if (unmounting) { 1212 zfsvfs->z_unmounted = B_TRUE; 1213 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1214 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1215 } 1216 1217 /* 1218 * z_os will be NULL if there was an error in attempting to reopen 1219 * zfsvfs, so just return as the properties had already been 1220 * unregistered and cached data had been evicted before. 1221 */ 1222 if (zfsvfs->z_os == NULL) 1223 return (0); 1224 1225 /* 1226 * Unregister properties. 1227 */ 1228 zfs_unregister_callbacks(zfsvfs); 1229 1230 /* 1231 * Evict cached data 1232 */ 1233 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1234 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1235 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1236 } 1237 1238 return (0); 1239 } 1240 1241 /*ARGSUSED*/ 1242 static int 1243 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1244 { 1245 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1246 objset_t *os; 1247 int ret; 1248 1249 ret = secpolicy_fs_unmount(cr, vfsp); 1250 if (ret) { 1251 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1252 ZFS_DELEG_PERM_MOUNT, cr); 1253 if (ret) 1254 return (ret); 1255 } 1256 1257 /* 1258 * We purge the parent filesystem's vfsp as the parent filesystem 1259 * and all of its snapshots have their vnode's v_vfsp set to the 1260 * parent's filesystem's vfsp. Note, 'z_parent' is self 1261 * referential for non-snapshots. 1262 */ 1263 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1264 1265 /* 1266 * Unmount any snapshots mounted under .zfs before unmounting the 1267 * dataset itself. 1268 */ 1269 if (zfsvfs->z_ctldir != NULL && 1270 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1271 return (ret); 1272 } 1273 1274 if (!(fflag & MS_FORCE)) { 1275 /* 1276 * Check the number of active vnodes in the file system. 1277 * Our count is maintained in the vfs structure, but the 1278 * number is off by 1 to indicate a hold on the vfs 1279 * structure itself. 1280 * 1281 * The '.zfs' directory maintains a reference of its 1282 * own, and any active references underneath are 1283 * reflected in the vnode count. 1284 */ 1285 if (zfsvfs->z_ctldir == NULL) { 1286 if (vfsp->vfs_count > 1) 1287 return (EBUSY); 1288 } else { 1289 if (vfsp->vfs_count > 2 || 1290 zfsvfs->z_ctldir->v_count > 1) 1291 return (EBUSY); 1292 } 1293 } 1294 1295 vfsp->vfs_flag |= VFS_UNMOUNTED; 1296 1297 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1298 os = zfsvfs->z_os; 1299 1300 /* 1301 * z_os will be NULL if there was an error in 1302 * attempting to reopen zfsvfs. 1303 */ 1304 if (os != NULL) { 1305 /* 1306 * Unset the objset user_ptr. 1307 */ 1308 mutex_enter(&os->os->os_user_ptr_lock); 1309 dmu_objset_set_user(os, NULL); 1310 mutex_exit(&os->os->os_user_ptr_lock); 1311 1312 /* 1313 * Finally release the objset 1314 */ 1315 dmu_objset_close(os); 1316 } 1317 1318 /* 1319 * We can now safely destroy the '.zfs' directory node. 1320 */ 1321 if (zfsvfs->z_ctldir != NULL) 1322 zfsctl_destroy(zfsvfs); 1323 1324 return (0); 1325 } 1326 1327 static int 1328 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1329 { 1330 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1331 znode_t *zp; 1332 uint64_t object = 0; 1333 uint64_t fid_gen = 0; 1334 uint64_t gen_mask; 1335 uint64_t zp_gen; 1336 int i, err; 1337 1338 *vpp = NULL; 1339 1340 ZFS_ENTER(zfsvfs); 1341 1342 if (fidp->fid_len == LONG_FID_LEN) { 1343 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1344 uint64_t objsetid = 0; 1345 uint64_t setgen = 0; 1346 1347 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1348 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1349 1350 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1351 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1352 1353 ZFS_EXIT(zfsvfs); 1354 1355 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1356 if (err) 1357 return (EINVAL); 1358 ZFS_ENTER(zfsvfs); 1359 } 1360 1361 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1362 zfid_short_t *zfid = (zfid_short_t *)fidp; 1363 1364 for (i = 0; i < sizeof (zfid->zf_object); i++) 1365 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1366 1367 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1368 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1369 } else { 1370 ZFS_EXIT(zfsvfs); 1371 return (EINVAL); 1372 } 1373 1374 /* A zero fid_gen means we are in the .zfs control directories */ 1375 if (fid_gen == 0 && 1376 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1377 *vpp = zfsvfs->z_ctldir; 1378 ASSERT(*vpp != NULL); 1379 if (object == ZFSCTL_INO_SNAPDIR) { 1380 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1381 0, NULL, NULL, NULL, NULL, NULL) == 0); 1382 } else { 1383 VN_HOLD(*vpp); 1384 } 1385 ZFS_EXIT(zfsvfs); 1386 return (0); 1387 } 1388 1389 gen_mask = -1ULL >> (64 - 8 * i); 1390 1391 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1392 if (err = zfs_zget(zfsvfs, object, &zp)) { 1393 ZFS_EXIT(zfsvfs); 1394 return (err); 1395 } 1396 zp_gen = zp->z_phys->zp_gen & gen_mask; 1397 if (zp_gen == 0) 1398 zp_gen = 1; 1399 if (zp->z_unlinked || zp_gen != fid_gen) { 1400 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1401 VN_RELE(ZTOV(zp)); 1402 ZFS_EXIT(zfsvfs); 1403 return (EINVAL); 1404 } 1405 1406 *vpp = ZTOV(zp); 1407 ZFS_EXIT(zfsvfs); 1408 return (0); 1409 } 1410 1411 /* 1412 * Block out VOPs and close zfsvfs_t::z_os 1413 * 1414 * Note, if successful, then we return with the 'z_teardown_lock' and 1415 * 'z_teardown_inactive_lock' write held. 1416 */ 1417 int 1418 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1419 { 1420 int error; 1421 1422 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1423 return (error); 1424 1425 *mode = zfsvfs->z_os->os_mode; 1426 dmu_objset_name(zfsvfs->z_os, name); 1427 dmu_objset_close(zfsvfs->z_os); 1428 1429 return (0); 1430 } 1431 1432 /* 1433 * Reopen zfsvfs_t::z_os and release VOPs. 1434 */ 1435 int 1436 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1437 { 1438 int err; 1439 1440 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1441 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1442 1443 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1444 if (err) { 1445 zfsvfs->z_os = NULL; 1446 } else { 1447 znode_t *zp; 1448 1449 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1450 1451 /* 1452 * Attempt to re-establish all the active znodes with 1453 * their dbufs. If a zfs_rezget() fails, then we'll let 1454 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1455 * when they try to use their znode. 1456 */ 1457 mutex_enter(&zfsvfs->z_znodes_lock); 1458 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1459 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1460 (void) zfs_rezget(zp); 1461 } 1462 mutex_exit(&zfsvfs->z_znodes_lock); 1463 1464 } 1465 1466 /* release the VOPs */ 1467 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1468 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1469 1470 if (err) { 1471 /* 1472 * Since we couldn't reopen zfsvfs::z_os, force 1473 * unmount this file system. 1474 */ 1475 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1476 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1477 } 1478 return (err); 1479 } 1480 1481 static void 1482 zfs_freevfs(vfs_t *vfsp) 1483 { 1484 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1485 int i; 1486 1487 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1488 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1489 1490 zfs_fuid_destroy(zfsvfs); 1491 zfs_freezfsvfs(zfsvfs); 1492 1493 atomic_add_32(&zfs_active_fs_count, -1); 1494 } 1495 1496 /* 1497 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1498 * so we can't safely do any non-idempotent initialization here. 1499 * Leave that to zfs_init() and zfs_fini(), which are called 1500 * from the module's _init() and _fini() entry points. 1501 */ 1502 /*ARGSUSED*/ 1503 static int 1504 zfs_vfsinit(int fstype, char *name) 1505 { 1506 int error; 1507 1508 zfsfstype = fstype; 1509 1510 /* 1511 * Setup vfsops and vnodeops tables. 1512 */ 1513 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1514 if (error != 0) { 1515 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1516 } 1517 1518 error = zfs_create_op_tables(); 1519 if (error) { 1520 zfs_remove_op_tables(); 1521 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1522 (void) vfs_freevfsops_by_type(zfsfstype); 1523 return (error); 1524 } 1525 1526 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1527 1528 /* 1529 * Unique major number for all zfs mounts. 1530 * If we run out of 32-bit minors, we'll getudev() another major. 1531 */ 1532 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1533 zfs_minor = ZFS_MIN_MINOR; 1534 1535 return (0); 1536 } 1537 1538 void 1539 zfs_init(void) 1540 { 1541 /* 1542 * Initialize .zfs directory structures 1543 */ 1544 zfsctl_init(); 1545 1546 /* 1547 * Initialize znode cache, vnode ops, etc... 1548 */ 1549 zfs_znode_init(); 1550 } 1551 1552 void 1553 zfs_fini(void) 1554 { 1555 zfsctl_fini(); 1556 zfs_znode_fini(); 1557 } 1558 1559 int 1560 zfs_busy(void) 1561 { 1562 return (zfs_active_fs_count != 0); 1563 } 1564 1565 int 1566 zfs_set_version(const char *name, uint64_t newvers) 1567 { 1568 int error; 1569 objset_t *os; 1570 dmu_tx_t *tx; 1571 uint64_t curvers; 1572 1573 /* 1574 * XXX for now, require that the filesystem be unmounted. Would 1575 * be nice to find the zfsvfs_t and just update that if 1576 * possible. 1577 */ 1578 1579 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1580 return (EINVAL); 1581 1582 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1583 if (error) 1584 return (error); 1585 1586 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1587 8, 1, &curvers); 1588 if (error) 1589 goto out; 1590 if (newvers < curvers) { 1591 error = EINVAL; 1592 goto out; 1593 } 1594 1595 tx = dmu_tx_create(os); 1596 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1597 error = dmu_tx_assign(tx, TXG_WAIT); 1598 if (error) { 1599 dmu_tx_abort(tx); 1600 goto out; 1601 } 1602 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1603 &newvers, tx); 1604 1605 spa_history_internal_log(LOG_DS_UPGRADE, 1606 dmu_objset_spa(os), tx, CRED(), 1607 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1608 dmu_objset_id(os)); 1609 dmu_tx_commit(tx); 1610 1611 out: 1612 dmu_objset_close(os); 1613 return (error); 1614 } 1615 1616 /* 1617 * Read a property stored within the master node. 1618 */ 1619 int 1620 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1621 { 1622 const char *pname; 1623 int error; 1624 1625 /* 1626 * Look up the file system's value for the property. For the 1627 * version property, we look up a slightly different string. 1628 */ 1629 if (prop == ZFS_PROP_VERSION) 1630 pname = ZPL_VERSION_STR; 1631 else 1632 pname = zfs_prop_to_name(prop); 1633 1634 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1635 1636 if (error == ENOENT) { 1637 /* No value set, use the default value */ 1638 switch (prop) { 1639 case ZFS_PROP_VERSION: 1640 *value = ZPL_VERSION; 1641 break; 1642 case ZFS_PROP_NORMALIZE: 1643 case ZFS_PROP_UTF8ONLY: 1644 *value = 0; 1645 break; 1646 case ZFS_PROP_CASE: 1647 *value = ZFS_CASE_SENSITIVE; 1648 break; 1649 default: 1650 return (error); 1651 } 1652 error = 0; 1653 } 1654 return (error); 1655 } 1656 1657 static vfsdef_t vfw = { 1658 VFSDEF_VERSION, 1659 MNTTYPE_ZFS, 1660 zfs_vfsinit, 1661 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1662 VSW_XID, 1663 &zfs_mntopts 1664 }; 1665 1666 struct modlfs zfs_modlfs = { 1667 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1668 }; 1669