1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/types.h> 26 #include <sys/param.h> 27 #include <sys/systm.h> 28 #include <sys/sysmacros.h> 29 #include <sys/kmem.h> 30 #include <sys/pathname.h> 31 #include <sys/vnode.h> 32 #include <sys/vfs.h> 33 #include <sys/vfs_opreg.h> 34 #include <sys/mntent.h> 35 #include <sys/mount.h> 36 #include <sys/cmn_err.h> 37 #include "fs/fs_subr.h" 38 #include <sys/zfs_znode.h> 39 #include <sys/zfs_dir.h> 40 #include <sys/zil.h> 41 #include <sys/fs/zfs.h> 42 #include <sys/dmu.h> 43 #include <sys/dsl_prop.h> 44 #include <sys/dsl_dataset.h> 45 #include <sys/dsl_deleg.h> 46 #include <sys/spa.h> 47 #include <sys/zap.h> 48 #include <sys/sa.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 #include <sys/sa.h> 64 #include "zfs_comutil.h" 65 66 int zfsfstype; 67 vfsops_t *zfs_vfsops = NULL; 68 static major_t zfs_major; 69 static minor_t zfs_minor; 70 static kmutex_t zfs_dev_mtx; 71 72 extern int sys_shutdown; 73 74 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 75 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 76 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 77 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 78 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 79 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 80 static void zfs_freevfs(vfs_t *vfsp); 81 82 static const fs_operation_def_t zfs_vfsops_template[] = { 83 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 84 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 85 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 86 VFSNAME_ROOT, { .vfs_root = zfs_root }, 87 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 88 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 89 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 90 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 91 NULL, NULL 92 }; 93 94 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 95 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 96 NULL, NULL 97 }; 98 99 /* 100 * We need to keep a count of active fs's. 101 * This is necessary to prevent our module 102 * from being unloaded after a umount -f 103 */ 104 static uint32_t zfs_active_fs_count = 0; 105 106 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 107 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 108 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 109 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 110 111 /* 112 * MO_DEFAULT is not used since the default value is determined 113 * by the equivalent property. 114 */ 115 static mntopt_t mntopts[] = { 116 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 117 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 118 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 119 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 120 }; 121 122 static mntopts_t zfs_mntopts = { 123 sizeof (mntopts) / sizeof (mntopt_t), 124 mntopts 125 }; 126 127 /*ARGSUSED*/ 128 int 129 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 130 { 131 /* 132 * Data integrity is job one. We don't want a compromised kernel 133 * writing to the storage pool, so we never sync during panic. 134 */ 135 if (panicstr) 136 return (0); 137 138 /* 139 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 140 * to sync metadata, which they would otherwise cache indefinitely. 141 * Semantically, the only requirement is that the sync be initiated. 142 * The DMU syncs out txgs frequently, so there's nothing to do. 143 */ 144 if (flag & SYNC_ATTR) 145 return (0); 146 147 if (vfsp != NULL) { 148 /* 149 * Sync a specific filesystem. 150 */ 151 zfsvfs_t *zfsvfs = vfsp->vfs_data; 152 dsl_pool_t *dp; 153 154 ZFS_ENTER(zfsvfs); 155 dp = dmu_objset_pool(zfsvfs->z_os); 156 157 /* 158 * If the system is shutting down, then skip any 159 * filesystems which may exist on a suspended pool. 160 */ 161 if (sys_shutdown && spa_suspended(dp->dp_spa)) { 162 ZFS_EXIT(zfsvfs); 163 return (0); 164 } 165 166 if (zfsvfs->z_log != NULL) 167 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 168 else 169 txg_wait_synced(dp, 0); 170 ZFS_EXIT(zfsvfs); 171 } else { 172 /* 173 * Sync all ZFS filesystems. This is what happens when you 174 * run sync(1M). Unlike other filesystems, ZFS honors the 175 * request by waiting for all pools to commit all dirty data. 176 */ 177 spa_sync_allpools(); 178 } 179 180 return (0); 181 } 182 183 static int 184 zfs_create_unique_device(dev_t *dev) 185 { 186 major_t new_major; 187 188 do { 189 ASSERT3U(zfs_minor, <=, MAXMIN32); 190 minor_t start = zfs_minor; 191 do { 192 mutex_enter(&zfs_dev_mtx); 193 if (zfs_minor >= MAXMIN32) { 194 /* 195 * If we're still using the real major 196 * keep out of /dev/zfs and /dev/zvol minor 197 * number space. If we're using a getudev()'ed 198 * major number, we can use all of its minors. 199 */ 200 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 201 zfs_minor = ZFS_MIN_MINOR; 202 else 203 zfs_minor = 0; 204 } else { 205 zfs_minor++; 206 } 207 *dev = makedevice(zfs_major, zfs_minor); 208 mutex_exit(&zfs_dev_mtx); 209 } while (vfs_devismounted(*dev) && zfs_minor != start); 210 if (zfs_minor == start) { 211 /* 212 * We are using all ~262,000 minor numbers for the 213 * current major number. Create a new major number. 214 */ 215 if ((new_major = getudev()) == (major_t)-1) { 216 cmn_err(CE_WARN, 217 "zfs_mount: Can't get unique major " 218 "device number."); 219 return (-1); 220 } 221 mutex_enter(&zfs_dev_mtx); 222 zfs_major = new_major; 223 zfs_minor = 0; 224 225 mutex_exit(&zfs_dev_mtx); 226 } else { 227 break; 228 } 229 /* CONSTANTCONDITION */ 230 } while (1); 231 232 return (0); 233 } 234 235 static void 236 atime_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 zfsvfs->z_atime = TRUE; 242 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 243 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 244 } else { 245 zfsvfs->z_atime = FALSE; 246 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 247 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 248 } 249 } 250 251 static void 252 xattr_changed_cb(void *arg, uint64_t newval) 253 { 254 zfsvfs_t *zfsvfs = arg; 255 256 if (newval == TRUE) { 257 /* XXX locking on vfs_flag? */ 258 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 259 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 260 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 261 } else { 262 /* XXX locking on vfs_flag? */ 263 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 264 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 265 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 266 } 267 } 268 269 static void 270 blksz_changed_cb(void *arg, uint64_t newval) 271 { 272 zfsvfs_t *zfsvfs = arg; 273 274 if (newval < SPA_MINBLOCKSIZE || 275 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 276 newval = SPA_MAXBLOCKSIZE; 277 278 zfsvfs->z_max_blksz = newval; 279 zfsvfs->z_vfs->vfs_bsize = newval; 280 } 281 282 static void 283 readonly_changed_cb(void *arg, uint64_t newval) 284 { 285 zfsvfs_t *zfsvfs = arg; 286 287 if (newval) { 288 /* XXX locking on vfs_flag? */ 289 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 290 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 291 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 292 } else { 293 /* XXX locking on vfs_flag? */ 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 297 } 298 } 299 300 static void 301 devices_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 313 } 314 } 315 316 static void 317 setuid_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 329 } 330 } 331 332 static void 333 exec_changed_cb(void *arg, uint64_t newval) 334 { 335 zfsvfs_t *zfsvfs = arg; 336 337 if (newval == FALSE) { 338 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 339 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 340 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 341 } else { 342 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 343 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 344 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 345 } 346 } 347 348 /* 349 * The nbmand mount option can be changed at mount time. 350 * We can't allow it to be toggled on live file systems or incorrect 351 * behavior may be seen from cifs clients 352 * 353 * This property isn't registered via dsl_prop_register(), but this callback 354 * will be called when a file system is first mounted 355 */ 356 static void 357 nbmand_changed_cb(void *arg, uint64_t newval) 358 { 359 zfsvfs_t *zfsvfs = arg; 360 if (newval == FALSE) { 361 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 362 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 363 } else { 364 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 365 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 366 } 367 } 368 369 static void 370 snapdir_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_show_ctldir = newval; 375 } 376 377 static void 378 vscan_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_vscan = newval; 383 } 384 385 static void 386 acl_inherit_changed_cb(void *arg, uint64_t newval) 387 { 388 zfsvfs_t *zfsvfs = arg; 389 390 zfsvfs->z_acl_inherit = newval; 391 } 392 393 static int 394 zfs_register_callbacks(vfs_t *vfsp) 395 { 396 struct dsl_dataset *ds = NULL; 397 objset_t *os = NULL; 398 zfsvfs_t *zfsvfs = NULL; 399 uint64_t nbmand; 400 int readonly, do_readonly = B_FALSE; 401 int setuid, do_setuid = B_FALSE; 402 int exec, do_exec = B_FALSE; 403 int devices, do_devices = B_FALSE; 404 int xattr, do_xattr = B_FALSE; 405 int atime, do_atime = B_FALSE; 406 int error = 0; 407 408 ASSERT(vfsp); 409 zfsvfs = vfsp->vfs_data; 410 ASSERT(zfsvfs); 411 os = zfsvfs->z_os; 412 413 /* 414 * The act of registering our callbacks will destroy any mount 415 * options we may have. In order to enable temporary overrides 416 * of mount options, we stash away the current values and 417 * restore them after we register the callbacks. 418 */ 419 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 420 readonly = B_TRUE; 421 do_readonly = B_TRUE; 422 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 423 readonly = B_FALSE; 424 do_readonly = B_TRUE; 425 } 426 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 427 devices = B_FALSE; 428 setuid = B_FALSE; 429 do_devices = B_TRUE; 430 do_setuid = B_TRUE; 431 } else { 432 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 433 devices = B_FALSE; 434 do_devices = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 436 devices = B_TRUE; 437 do_devices = B_TRUE; 438 } 439 440 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 441 setuid = B_FALSE; 442 do_setuid = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 444 setuid = B_TRUE; 445 do_setuid = B_TRUE; 446 } 447 } 448 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 449 exec = B_FALSE; 450 do_exec = B_TRUE; 451 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 452 exec = B_TRUE; 453 do_exec = B_TRUE; 454 } 455 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 456 xattr = B_FALSE; 457 do_xattr = B_TRUE; 458 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 459 xattr = B_TRUE; 460 do_xattr = B_TRUE; 461 } 462 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 463 atime = B_FALSE; 464 do_atime = B_TRUE; 465 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 466 atime = B_TRUE; 467 do_atime = B_TRUE; 468 } 469 470 /* 471 * nbmand is a special property. It can only be changed at 472 * mount time. 473 * 474 * This is weird, but it is documented to only be changeable 475 * at mount time. 476 */ 477 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 478 nbmand = B_FALSE; 479 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 480 nbmand = B_TRUE; 481 } else { 482 char osname[MAXNAMELEN]; 483 484 dmu_objset_name(os, osname); 485 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 486 NULL)) { 487 return (error); 488 } 489 } 490 491 /* 492 * Register property callbacks. 493 * 494 * It would probably be fine to just check for i/o error from 495 * the first prop_register(), but I guess I like to go 496 * overboard... 497 */ 498 ds = dmu_objset_ds(os); 499 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "xattr", xattr_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "recordsize", blksz_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "readonly", readonly_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "devices", devices_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "setuid", setuid_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "exec", exec_changed_cb, zfsvfs); 512 error = error ? error : dsl_prop_register(ds, 513 "snapdir", snapdir_changed_cb, zfsvfs); 514 error = error ? error : dsl_prop_register(ds, 515 "aclinherit", acl_inherit_changed_cb, zfsvfs); 516 error = error ? error : dsl_prop_register(ds, 517 "vscan", vscan_changed_cb, zfsvfs); 518 if (error) 519 goto unregister; 520 521 /* 522 * Invoke our callbacks to restore temporary mount options. 523 */ 524 if (do_readonly) 525 readonly_changed_cb(zfsvfs, readonly); 526 if (do_setuid) 527 setuid_changed_cb(zfsvfs, setuid); 528 if (do_exec) 529 exec_changed_cb(zfsvfs, exec); 530 if (do_devices) 531 devices_changed_cb(zfsvfs, devices); 532 if (do_xattr) 533 xattr_changed_cb(zfsvfs, xattr); 534 if (do_atime) 535 atime_changed_cb(zfsvfs, atime); 536 537 nbmand_changed_cb(zfsvfs, nbmand); 538 539 return (0); 540 541 unregister: 542 /* 543 * We may attempt to unregister some callbacks that are not 544 * registered, but this is OK; it will simply return ENOMSG, 545 * which we will ignore. 546 */ 547 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 551 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 552 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 553 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 554 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 555 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 556 zfsvfs); 557 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 558 return (error); 559 560 } 561 562 static void 563 uidacct(objset_t *os, boolean_t isgroup, uint64_t fuid, 564 int64_t delta, dmu_tx_t *tx) 565 { 566 uint64_t used = 0; 567 char buf[32]; 568 int err; 569 uint64_t obj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 570 571 if (delta == 0) 572 return; 573 574 (void) snprintf(buf, sizeof (buf), "%llx", (longlong_t)fuid); 575 err = zap_lookup(os, obj, buf, 8, 1, &used); 576 577 ASSERT(err == 0 || err == ENOENT); 578 /* no underflow/overflow */ 579 ASSERT(delta > 0 || used >= -delta); 580 ASSERT(delta < 0 || used + delta > used); 581 used += delta; 582 if (used == 0) 583 err = zap_remove(os, obj, buf, tx); 584 else 585 err = zap_update(os, obj, buf, 8, 1, &used, tx); 586 ASSERT(err == 0); 587 588 } 589 590 static int 591 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data, 592 uint64_t *userp, uint64_t *groupp) 593 { 594 znode_phys_t *znp = data; 595 int error = 0; 596 597 if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA) 598 return (ENOENT); 599 600 if (bonustype == DMU_OT_ZNODE) { 601 *userp = znp->zp_uid; 602 *groupp = znp->zp_gid; 603 } else { 604 int hdrsize; 605 606 ASSERT(bonustype == DMU_OT_SA); 607 hdrsize = sa_hdrsize(data); 608 609 if (hdrsize != 0) { 610 *userp = *((uint64_t *)((uintptr_t)data + hdrsize + 611 SA_UID_OFFSET)); 612 *groupp = *((uint64_t *)((uintptr_t)data + hdrsize + 613 SA_GID_OFFSET)); 614 } else { 615 error = ENOENT; 616 } 617 } 618 return (error); 619 } 620 621 static void 622 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr, 623 char *domainbuf, int buflen, uid_t *ridp) 624 { 625 uint64_t fuid; 626 const char *domain; 627 628 fuid = strtonum(fuidstr, NULL); 629 630 domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid)); 631 if (domain) 632 (void) strlcpy(domainbuf, domain, buflen); 633 else 634 domainbuf[0] = '\0'; 635 *ridp = FUID_RID(fuid); 636 } 637 638 static uint64_t 639 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type) 640 { 641 switch (type) { 642 case ZFS_PROP_USERUSED: 643 return (DMU_USERUSED_OBJECT); 644 case ZFS_PROP_GROUPUSED: 645 return (DMU_GROUPUSED_OBJECT); 646 case ZFS_PROP_USERQUOTA: 647 return (zfsvfs->z_userquota_obj); 648 case ZFS_PROP_GROUPQUOTA: 649 return (zfsvfs->z_groupquota_obj); 650 } 651 return (0); 652 } 653 654 int 655 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 656 uint64_t *cookiep, void *vbuf, uint64_t *bufsizep) 657 { 658 int error; 659 zap_cursor_t zc; 660 zap_attribute_t za; 661 zfs_useracct_t *buf = vbuf; 662 uint64_t obj; 663 664 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 665 return (ENOTSUP); 666 667 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 668 if (obj == 0) { 669 *bufsizep = 0; 670 return (0); 671 } 672 673 for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep); 674 (error = zap_cursor_retrieve(&zc, &za)) == 0; 675 zap_cursor_advance(&zc)) { 676 if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) > 677 *bufsizep) 678 break; 679 680 fuidstr_to_sid(zfsvfs, za.za_name, 681 buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid); 682 683 buf->zu_space = za.za_first_integer; 684 buf++; 685 } 686 if (error == ENOENT) 687 error = 0; 688 689 ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep); 690 *bufsizep = (uintptr_t)buf - (uintptr_t)vbuf; 691 *cookiep = zap_cursor_serialize(&zc); 692 zap_cursor_fini(&zc); 693 return (error); 694 } 695 696 /* 697 * buf must be big enough (eg, 32 bytes) 698 */ 699 static int 700 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid, 701 char *buf, boolean_t addok) 702 { 703 uint64_t fuid; 704 int domainid = 0; 705 706 if (domain && domain[0]) { 707 domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok); 708 if (domainid == -1) 709 return (ENOENT); 710 } 711 fuid = FUID_ENCODE(domainid, rid); 712 (void) sprintf(buf, "%llx", (longlong_t)fuid); 713 return (0); 714 } 715 716 int 717 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 718 const char *domain, uint64_t rid, uint64_t *valp) 719 { 720 char buf[32]; 721 int err; 722 uint64_t obj; 723 724 *valp = 0; 725 726 if (!dmu_objset_userspace_present(zfsvfs->z_os)) 727 return (ENOTSUP); 728 729 obj = zfs_userquota_prop_to_obj(zfsvfs, type); 730 if (obj == 0) 731 return (0); 732 733 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE); 734 if (err) 735 return (err); 736 737 err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp); 738 if (err == ENOENT) 739 err = 0; 740 return (err); 741 } 742 743 int 744 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type, 745 const char *domain, uint64_t rid, uint64_t quota) 746 { 747 char buf[32]; 748 int err; 749 dmu_tx_t *tx; 750 uint64_t *objp; 751 boolean_t fuid_dirtied; 752 753 if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA) 754 return (EINVAL); 755 756 if (zfsvfs->z_version < ZPL_VERSION_USERSPACE) 757 return (ENOTSUP); 758 759 objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj : 760 &zfsvfs->z_groupquota_obj; 761 762 err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE); 763 if (err) 764 return (err); 765 fuid_dirtied = zfsvfs->z_fuid_dirty; 766 767 tx = dmu_tx_create(zfsvfs->z_os); 768 dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL); 769 if (*objp == 0) { 770 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 771 zfs_userquota_prop_prefixes[type]); 772 } 773 if (fuid_dirtied) 774 zfs_fuid_txhold(zfsvfs, tx); 775 err = dmu_tx_assign(tx, TXG_WAIT); 776 if (err) { 777 dmu_tx_abort(tx); 778 return (err); 779 } 780 781 mutex_enter(&zfsvfs->z_lock); 782 if (*objp == 0) { 783 *objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA, 784 DMU_OT_NONE, 0, tx); 785 VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ, 786 zfs_userquota_prop_prefixes[type], 8, 1, objp, tx)); 787 } 788 mutex_exit(&zfsvfs->z_lock); 789 790 if (quota == 0) { 791 err = zap_remove(zfsvfs->z_os, *objp, buf, tx); 792 if (err == ENOENT) 793 err = 0; 794 } else { 795 err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, "a, tx); 796 } 797 ASSERT(err == 0); 798 if (fuid_dirtied) 799 zfs_fuid_sync(zfsvfs, tx); 800 dmu_tx_commit(tx); 801 return (err); 802 } 803 804 boolean_t 805 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid) 806 { 807 char buf[32]; 808 uint64_t used, quota, usedobj, quotaobj; 809 int err; 810 811 usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT; 812 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 813 814 if (quotaobj == 0 || zfsvfs->z_replay) 815 return (B_FALSE); 816 817 (void) sprintf(buf, "%llx", (longlong_t)fuid); 818 err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, "a); 819 if (err != 0) 820 return (B_FALSE); 821 822 err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used); 823 if (err != 0) 824 return (B_FALSE); 825 return (used >= quota); 826 } 827 828 boolean_t 829 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup) 830 { 831 uint64_t fuid; 832 uint64_t quotaobj; 833 uid_t id; 834 835 quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj; 836 837 id = isgroup ? zp->z_gid : zp->z_uid; 838 839 if (quotaobj == 0 || zfsvfs->z_replay) 840 return (B_FALSE); 841 842 if (IS_EPHEMERAL(id)) { 843 VERIFY(0 == sa_lookup(zp->z_sa_hdl, 844 isgroup ? SA_ZPL_GID(zfsvfs) : SA_ZPL_UID(zfsvfs), 845 &fuid, sizeof (fuid))); 846 } else { 847 fuid = (uint64_t)id; 848 } 849 850 return (zfs_fuid_overquota(zfsvfs, isgroup, fuid)); 851 } 852 853 int 854 zfsvfs_create(const char *osname, zfsvfs_t **zfvp) 855 { 856 objset_t *os; 857 zfsvfs_t *zfsvfs; 858 uint64_t zval; 859 int i, error; 860 uint64_t sa_obj; 861 862 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 863 864 /* 865 * We claim to always be readonly so we can open snapshots; 866 * other ZPL code will prevent us from writing to snapshots. 867 */ 868 error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os); 869 if (error) { 870 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 871 return (error); 872 } 873 874 /* 875 * Initialize the zfs-specific filesystem structure. 876 * Should probably make this a kmem cache, shuffle fields, 877 * and just bzero up to z_hold_mtx[]. 878 */ 879 zfsvfs->z_vfs = NULL; 880 zfsvfs->z_parent = zfsvfs; 881 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 882 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 883 zfsvfs->z_os = os; 884 885 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version); 886 if (error) { 887 goto out; 888 } else if (zfsvfs->z_version > 889 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) { 890 (void) printf("Can't mount a version %lld file system " 891 "on a version %lld pool\n. Pool must be upgraded to mount " 892 "this file system.", (u_longlong_t)zfsvfs->z_version, 893 (u_longlong_t)spa_version(dmu_objset_spa(os))); 894 error = ENOTSUP; 895 goto out; 896 } 897 if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0) 898 goto out; 899 zfsvfs->z_norm = (int)zval; 900 901 if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0) 902 goto out; 903 zfsvfs->z_utf8 = (zval != 0); 904 905 if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0) 906 goto out; 907 zfsvfs->z_case = (uint_t)zval; 908 909 /* 910 * Fold case on file systems that are always or sometimes case 911 * insensitive. 912 */ 913 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE || 914 zfsvfs->z_case == ZFS_CASE_MIXED) 915 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER; 916 917 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 918 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 919 920 if (zfsvfs->z_use_sa) { 921 /* should either have both of these objects or none */ 922 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1, 923 &sa_obj); 924 if (error) 925 return (error); 926 } else { 927 /* 928 * Pre SA versions file systems should never touch 929 * either the attribute registration or layout objects. 930 */ 931 sa_obj = 0; 932 } 933 934 zfsvfs->z_attr_table = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END); 935 936 if (zfsvfs->z_version >= ZPL_VERSION_SA) 937 sa_register_update_callback(os, zfs_sa_upgrade); 938 939 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1, 940 &zfsvfs->z_root); 941 if (error) 942 goto out; 943 ASSERT(zfsvfs->z_root != 0); 944 945 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1, 946 &zfsvfs->z_unlinkedobj); 947 if (error) 948 goto out; 949 950 error = zap_lookup(os, MASTER_NODE_OBJ, 951 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA], 952 8, 1, &zfsvfs->z_userquota_obj); 953 if (error && error != ENOENT) 954 goto out; 955 956 error = zap_lookup(os, MASTER_NODE_OBJ, 957 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA], 958 8, 1, &zfsvfs->z_groupquota_obj); 959 if (error && error != ENOENT) 960 goto out; 961 962 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1, 963 &zfsvfs->z_fuid_obj); 964 if (error && error != ENOENT) 965 goto out; 966 967 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1, 968 &zfsvfs->z_shares_dir); 969 if (error && error != ENOENT) 970 goto out; 971 972 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 973 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 974 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 975 offsetof(znode_t, z_link_node)); 976 rrw_init(&zfsvfs->z_teardown_lock); 977 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 978 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 979 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 980 mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL); 981 982 *zfvp = zfsvfs; 983 return (0); 984 985 out: 986 dmu_objset_disown(os, zfsvfs); 987 *zfvp = NULL; 988 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 989 return (error); 990 } 991 992 static int 993 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 994 { 995 int error; 996 997 error = zfs_register_callbacks(zfsvfs->z_vfs); 998 if (error) 999 return (error); 1000 1001 /* 1002 * Set the objset user_ptr to track its zfsvfs. 1003 */ 1004 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1005 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1006 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1007 1008 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 1009 if (zil_disable) { 1010 zil_destroy(zfsvfs->z_log, B_FALSE); 1011 zfsvfs->z_log = NULL; 1012 } 1013 1014 /* 1015 * If we are not mounting (ie: online recv), then we don't 1016 * have to worry about replaying the log as we blocked all 1017 * operations out since we closed the ZIL. 1018 */ 1019 if (mounting) { 1020 boolean_t readonly; 1021 1022 /* 1023 * During replay we remove the read only flag to 1024 * allow replays to succeed. 1025 */ 1026 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 1027 if (readonly != 0) 1028 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 1029 else 1030 zfs_unlinked_drain(zfsvfs); 1031 1032 if (zfsvfs->z_log) { 1033 /* 1034 * Parse and replay the intent log. 1035 * 1036 * Because of ziltest, this must be done after 1037 * zfs_unlinked_drain(). (Further note: ziltest 1038 * doesn't use readonly mounts, where 1039 * zfs_unlinked_drain() isn't called.) This is because 1040 * ziltest causes spa_sync() to think it's committed, 1041 * but actually it is not, so the intent log contains 1042 * many txg's worth of changes. 1043 * 1044 * In particular, if object N is in the unlinked set in 1045 * the last txg to actually sync, then it could be 1046 * actually freed in a later txg and then reallocated 1047 * in a yet later txg. This would write a "create 1048 * object N" record to the intent log. Normally, this 1049 * would be fine because the spa_sync() would have 1050 * written out the fact that object N is free, before 1051 * we could write the "create object N" intent log 1052 * record. 1053 * 1054 * But when we are in ziltest mode, we advance the "open 1055 * txg" without actually spa_sync()-ing the changes to 1056 * disk. So we would see that object N is still 1057 * allocated and in the unlinked set, and there is an 1058 * intent log record saying to allocate it. 1059 */ 1060 zfsvfs->z_replay = B_TRUE; 1061 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 1062 zfsvfs->z_replay = B_FALSE; 1063 } 1064 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 1065 } 1066 1067 return (0); 1068 } 1069 1070 void 1071 zfsvfs_free(zfsvfs_t *zfsvfs) 1072 { 1073 int i; 1074 extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */ 1075 1076 /* 1077 * This is a barrier to prevent the filesystem from going away in 1078 * zfs_znode_move() until we can safely ensure that the filesystem is 1079 * not unmounted. We consider the filesystem valid before the barrier 1080 * and invalid after the barrier. 1081 */ 1082 rw_enter(&zfsvfs_lock, RW_READER); 1083 rw_exit(&zfsvfs_lock); 1084 1085 zfs_fuid_destroy(zfsvfs); 1086 1087 mutex_destroy(&zfsvfs->z_znodes_lock); 1088 mutex_destroy(&zfsvfs->z_lock); 1089 list_destroy(&zfsvfs->z_all_znodes); 1090 rrw_destroy(&zfsvfs->z_teardown_lock); 1091 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 1092 rw_destroy(&zfsvfs->z_fuid_lock); 1093 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1094 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1095 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 1096 } 1097 1098 static void 1099 zfs_set_fuid_feature(zfsvfs_t *zfsvfs) 1100 { 1101 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 1102 if (zfsvfs->z_use_fuids && zfsvfs->z_vfs) { 1103 vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR); 1104 vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS); 1105 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS); 1106 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE); 1107 vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER); 1108 vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE); 1109 } 1110 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os); 1111 } 1112 1113 static int 1114 zfs_domount(vfs_t *vfsp, char *osname) 1115 { 1116 dev_t mount_dev; 1117 uint64_t recordsize, fsid_guid; 1118 int error = 0; 1119 zfsvfs_t *zfsvfs; 1120 1121 ASSERT(vfsp); 1122 ASSERT(osname); 1123 1124 error = zfsvfs_create(osname, &zfsvfs); 1125 if (error) 1126 return (error); 1127 zfsvfs->z_vfs = vfsp; 1128 1129 /* Initialize the generic filesystem structure. */ 1130 vfsp->vfs_bcount = 0; 1131 vfsp->vfs_data = NULL; 1132 1133 if (zfs_create_unique_device(&mount_dev) == -1) { 1134 error = ENODEV; 1135 goto out; 1136 } 1137 ASSERT(vfs_devismounted(mount_dev) == 0); 1138 1139 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 1140 NULL)) 1141 goto out; 1142 1143 vfsp->vfs_dev = mount_dev; 1144 vfsp->vfs_fstype = zfsfstype; 1145 vfsp->vfs_bsize = recordsize; 1146 vfsp->vfs_flag |= VFS_NOTRUNC; 1147 vfsp->vfs_data = zfsvfs; 1148 1149 /* 1150 * The fsid is 64 bits, composed of an 8-bit fs type, which 1151 * separates our fsid from any other filesystem types, and a 1152 * 56-bit objset unique ID. The objset unique ID is unique to 1153 * all objsets open on this system, provided by unique_create(). 1154 * The 8-bit fs type must be put in the low bits of fsid[1] 1155 * because that's where other Solaris filesystems put it. 1156 */ 1157 fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os); 1158 ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0); 1159 vfsp->vfs_fsid.val[0] = fsid_guid; 1160 vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) | 1161 zfsfstype & 0xFF; 1162 1163 /* 1164 * Set features for file system. 1165 */ 1166 zfs_set_fuid_feature(zfsvfs); 1167 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 1168 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1169 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1170 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 1171 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 1172 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 1173 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 1174 } 1175 vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED); 1176 1177 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 1178 uint64_t pval; 1179 1180 atime_changed_cb(zfsvfs, B_FALSE); 1181 readonly_changed_cb(zfsvfs, B_TRUE); 1182 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 1183 goto out; 1184 xattr_changed_cb(zfsvfs, pval); 1185 zfsvfs->z_issnap = B_TRUE; 1186 1187 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock); 1188 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 1189 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock); 1190 } else { 1191 error = zfsvfs_setup(zfsvfs, B_TRUE); 1192 } 1193 1194 if (!zfsvfs->z_issnap) 1195 zfsctl_create(zfsvfs); 1196 out: 1197 if (error) { 1198 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 1199 zfsvfs_free(zfsvfs); 1200 } else { 1201 atomic_add_32(&zfs_active_fs_count, 1); 1202 } 1203 1204 return (error); 1205 } 1206 1207 void 1208 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 1209 { 1210 objset_t *os = zfsvfs->z_os; 1211 struct dsl_dataset *ds; 1212 1213 /* 1214 * Unregister properties. 1215 */ 1216 if (!dmu_objset_is_snapshot(os)) { 1217 ds = dmu_objset_ds(os); 1218 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 1219 zfsvfs) == 0); 1220 1221 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 1222 zfsvfs) == 0); 1223 1224 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 1225 zfsvfs) == 0); 1226 1227 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 1228 zfsvfs) == 0); 1229 1230 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 1231 zfsvfs) == 0); 1232 1233 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 1234 zfsvfs) == 0); 1235 1236 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 1237 zfsvfs) == 0); 1238 1239 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 1240 zfsvfs) == 0); 1241 1242 VERIFY(dsl_prop_unregister(ds, "aclinherit", 1243 acl_inherit_changed_cb, zfsvfs) == 0); 1244 1245 VERIFY(dsl_prop_unregister(ds, "vscan", 1246 vscan_changed_cb, zfsvfs) == 0); 1247 } 1248 } 1249 1250 /* 1251 * Convert a decimal digit string to a uint64_t integer. 1252 */ 1253 static int 1254 str_to_uint64(char *str, uint64_t *objnum) 1255 { 1256 uint64_t num = 0; 1257 1258 while (*str) { 1259 if (*str < '0' || *str > '9') 1260 return (EINVAL); 1261 1262 num = num*10 + *str++ - '0'; 1263 } 1264 1265 *objnum = num; 1266 return (0); 1267 } 1268 1269 /* 1270 * The boot path passed from the boot loader is in the form of 1271 * "rootpool-name/root-filesystem-object-number'. Convert this 1272 * string to a dataset name: "rootpool-name/root-filesystem-name". 1273 */ 1274 static int 1275 zfs_parse_bootfs(char *bpath, char *outpath) 1276 { 1277 char *slashp; 1278 uint64_t objnum; 1279 int error; 1280 1281 if (*bpath == 0 || *bpath == '/') 1282 return (EINVAL); 1283 1284 (void) strcpy(outpath, bpath); 1285 1286 slashp = strchr(bpath, '/'); 1287 1288 /* if no '/', just return the pool name */ 1289 if (slashp == NULL) { 1290 return (0); 1291 } 1292 1293 /* if not a number, just return the root dataset name */ 1294 if (str_to_uint64(slashp+1, &objnum)) { 1295 return (0); 1296 } 1297 1298 *slashp = '\0'; 1299 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 1300 *slashp = '/'; 1301 1302 return (error); 1303 } 1304 1305 /* 1306 * zfs_check_global_label: 1307 * Check that the hex label string is appropriate for the dataset 1308 * being mounted into the global_zone proper. 1309 * 1310 * Return an error if the hex label string is not default or 1311 * admin_low/admin_high. For admin_low labels, the corresponding 1312 * dataset must be readonly. 1313 */ 1314 int 1315 zfs_check_global_label(const char *dsname, const char *hexsl) 1316 { 1317 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1318 return (0); 1319 if (strcasecmp(hexsl, ADMIN_HIGH) == 0) 1320 return (0); 1321 if (strcasecmp(hexsl, ADMIN_LOW) == 0) { 1322 /* must be readonly */ 1323 uint64_t rdonly; 1324 1325 if (dsl_prop_get_integer(dsname, 1326 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL)) 1327 return (EACCES); 1328 return (rdonly ? 0 : EACCES); 1329 } 1330 return (EACCES); 1331 } 1332 1333 /* 1334 * zfs_mount_label_policy: 1335 * Determine whether the mount is allowed according to MAC check. 1336 * by comparing (where appropriate) label of the dataset against 1337 * the label of the zone being mounted into. If the dataset has 1338 * no label, create one. 1339 * 1340 * Returns: 1341 * 0 : access allowed 1342 * >0 : error code, such as EACCES 1343 */ 1344 static int 1345 zfs_mount_label_policy(vfs_t *vfsp, char *osname) 1346 { 1347 int error, retv; 1348 zone_t *mntzone = NULL; 1349 ts_label_t *mnt_tsl; 1350 bslabel_t *mnt_sl; 1351 bslabel_t ds_sl; 1352 char ds_hexsl[MAXNAMELEN]; 1353 1354 retv = EACCES; /* assume the worst */ 1355 1356 /* 1357 * Start by getting the dataset label if it exists. 1358 */ 1359 error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1360 1, sizeof (ds_hexsl), &ds_hexsl, NULL); 1361 if (error) 1362 return (EACCES); 1363 1364 /* 1365 * If labeling is NOT enabled, then disallow the mount of datasets 1366 * which have a non-default label already. No other label checks 1367 * are needed. 1368 */ 1369 if (!is_system_labeled()) { 1370 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) 1371 return (0); 1372 return (EACCES); 1373 } 1374 1375 /* 1376 * Get the label of the mountpoint. If mounting into the global 1377 * zone (i.e. mountpoint is not within an active zone and the 1378 * zoned property is off), the label must be default or 1379 * admin_low/admin_high only; no other checks are needed. 1380 */ 1381 mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE); 1382 if (mntzone->zone_id == GLOBAL_ZONEID) { 1383 uint64_t zoned; 1384 1385 zone_rele(mntzone); 1386 1387 if (dsl_prop_get_integer(osname, 1388 zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL)) 1389 return (EACCES); 1390 if (!zoned) 1391 return (zfs_check_global_label(osname, ds_hexsl)); 1392 else 1393 /* 1394 * This is the case of a zone dataset being mounted 1395 * initially, before the zone has been fully created; 1396 * allow this mount into global zone. 1397 */ 1398 return (0); 1399 } 1400 1401 mnt_tsl = mntzone->zone_slabel; 1402 ASSERT(mnt_tsl != NULL); 1403 label_hold(mnt_tsl); 1404 mnt_sl = label2bslabel(mnt_tsl); 1405 1406 if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) { 1407 /* 1408 * The dataset doesn't have a real label, so fabricate one. 1409 */ 1410 char *str = NULL; 1411 1412 if (l_to_str_internal(mnt_sl, &str) == 0 && 1413 dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL), 1414 ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0) 1415 retv = 0; 1416 if (str != NULL) 1417 kmem_free(str, strlen(str) + 1); 1418 } else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) { 1419 /* 1420 * Now compare labels to complete the MAC check. If the 1421 * labels are equal then allow access. If the mountpoint 1422 * label dominates the dataset label, allow readonly access. 1423 * Otherwise, access is denied. 1424 */ 1425 if (blequal(mnt_sl, &ds_sl)) 1426 retv = 0; 1427 else if (bldominates(mnt_sl, &ds_sl)) { 1428 vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0); 1429 retv = 0; 1430 } 1431 } 1432 1433 label_rele(mnt_tsl); 1434 zone_rele(mntzone); 1435 return (retv); 1436 } 1437 1438 static int 1439 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 1440 { 1441 int error = 0; 1442 static int zfsrootdone = 0; 1443 zfsvfs_t *zfsvfs = NULL; 1444 znode_t *zp = NULL; 1445 vnode_t *vp = NULL; 1446 char *zfs_bootfs; 1447 char *zfs_devid; 1448 1449 ASSERT(vfsp); 1450 1451 /* 1452 * The filesystem that we mount as root is defined in the 1453 * boot property "zfs-bootfs" with a format of 1454 * "poolname/root-dataset-objnum". 1455 */ 1456 if (why == ROOT_INIT) { 1457 if (zfsrootdone++) 1458 return (EBUSY); 1459 /* 1460 * the process of doing a spa_load will require the 1461 * clock to be set before we could (for example) do 1462 * something better by looking at the timestamp on 1463 * an uberblock, so just set it to -1. 1464 */ 1465 clkset(-1); 1466 1467 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 1468 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 1469 "bootfs name"); 1470 return (EINVAL); 1471 } 1472 zfs_devid = spa_get_bootprop("diskdevid"); 1473 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 1474 if (zfs_devid) 1475 spa_free_bootprop(zfs_devid); 1476 if (error) { 1477 spa_free_bootprop(zfs_bootfs); 1478 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 1479 error); 1480 return (error); 1481 } 1482 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 1483 spa_free_bootprop(zfs_bootfs); 1484 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 1485 error); 1486 return (error); 1487 } 1488 1489 spa_free_bootprop(zfs_bootfs); 1490 1491 if (error = vfs_lock(vfsp)) 1492 return (error); 1493 1494 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 1495 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 1496 goto out; 1497 } 1498 1499 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 1500 ASSERT(zfsvfs); 1501 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 1502 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 1503 goto out; 1504 } 1505 1506 vp = ZTOV(zp); 1507 mutex_enter(&vp->v_lock); 1508 vp->v_flag |= VROOT; 1509 mutex_exit(&vp->v_lock); 1510 rootvp = vp; 1511 1512 /* 1513 * Leave rootvp held. The root file system is never unmounted. 1514 */ 1515 1516 vfs_add((struct vnode *)0, vfsp, 1517 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 1518 out: 1519 vfs_unlock(vfsp); 1520 return (error); 1521 } else if (why == ROOT_REMOUNT) { 1522 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 1523 vfsp->vfs_flag |= VFS_REMOUNT; 1524 1525 /* refresh mount options */ 1526 zfs_unregister_callbacks(vfsp->vfs_data); 1527 return (zfs_register_callbacks(vfsp)); 1528 1529 } else if (why == ROOT_UNMOUNT) { 1530 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 1531 (void) zfs_sync(vfsp, 0, 0); 1532 return (0); 1533 } 1534 1535 /* 1536 * if "why" is equal to anything else other than ROOT_INIT, 1537 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 1538 */ 1539 return (ENOTSUP); 1540 } 1541 1542 /*ARGSUSED*/ 1543 static int 1544 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 1545 { 1546 char *osname; 1547 pathname_t spn; 1548 int error = 0; 1549 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 1550 UIO_SYSSPACE : UIO_USERSPACE; 1551 int canwrite; 1552 1553 if (mvp->v_type != VDIR) 1554 return (ENOTDIR); 1555 1556 mutex_enter(&mvp->v_lock); 1557 if ((uap->flags & MS_REMOUNT) == 0 && 1558 (uap->flags & MS_OVERLAY) == 0 && 1559 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 1560 mutex_exit(&mvp->v_lock); 1561 return (EBUSY); 1562 } 1563 mutex_exit(&mvp->v_lock); 1564 1565 /* 1566 * ZFS does not support passing unparsed data in via MS_DATA. 1567 * Users should use the MS_OPTIONSTR interface; this means 1568 * that all option parsing is already done and the options struct 1569 * can be interrogated. 1570 */ 1571 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1572 return (EINVAL); 1573 1574 /* 1575 * Get the objset name (the "special" mount argument). 1576 */ 1577 if (error = pn_get(uap->spec, fromspace, &spn)) 1578 return (error); 1579 1580 osname = spn.pn_path; 1581 1582 /* 1583 * Check for mount privilege? 1584 * 1585 * If we don't have privilege then see if 1586 * we have local permission to allow it 1587 */ 1588 error = secpolicy_fs_mount(cr, mvp, vfsp); 1589 if (error) { 1590 if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) { 1591 vattr_t vattr; 1592 1593 /* 1594 * Make sure user is the owner of the mount point 1595 * or has sufficient privileges. 1596 */ 1597 1598 vattr.va_mask = AT_UID; 1599 1600 if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1601 goto out; 1602 } 1603 1604 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1605 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1606 goto out; 1607 } 1608 secpolicy_fs_mount_clearopts(cr, vfsp); 1609 } else { 1610 goto out; 1611 } 1612 } 1613 1614 /* 1615 * Refuse to mount a filesystem if we are in a local zone and the 1616 * dataset is not visible. 1617 */ 1618 if (!INGLOBALZONE(curproc) && 1619 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1620 error = EPERM; 1621 goto out; 1622 } 1623 1624 error = zfs_mount_label_policy(vfsp, osname); 1625 if (error) 1626 goto out; 1627 1628 /* 1629 * When doing a remount, we simply refresh our temporary properties 1630 * according to those options set in the current VFS options. 1631 */ 1632 if (uap->flags & MS_REMOUNT) { 1633 /* refresh mount options */ 1634 zfs_unregister_callbacks(vfsp->vfs_data); 1635 error = zfs_register_callbacks(vfsp); 1636 goto out; 1637 } 1638 1639 error = zfs_domount(vfsp, osname); 1640 1641 /* 1642 * Add an extra VFS_HOLD on our parent vfs so that it can't 1643 * disappear due to a forced unmount. 1644 */ 1645 if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap) 1646 VFS_HOLD(mvp->v_vfsp); 1647 1648 out: 1649 pn_free(&spn); 1650 return (error); 1651 } 1652 1653 static int 1654 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1655 { 1656 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1657 dev32_t d32; 1658 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1659 1660 ZFS_ENTER(zfsvfs); 1661 1662 dmu_objset_space(zfsvfs->z_os, 1663 &refdbytes, &availbytes, &usedobjs, &availobjs); 1664 1665 /* 1666 * The underlying storage pool actually uses multiple block sizes. 1667 * We report the fragsize as the smallest block size we support, 1668 * and we report our blocksize as the filesystem's maximum blocksize. 1669 */ 1670 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1671 statp->f_bsize = zfsvfs->z_max_blksz; 1672 1673 /* 1674 * The following report "total" blocks of various kinds in the 1675 * file system, but reported in terms of f_frsize - the 1676 * "fragment" size. 1677 */ 1678 1679 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1680 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1681 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1682 1683 /* 1684 * statvfs() should really be called statufs(), because it assumes 1685 * static metadata. ZFS doesn't preallocate files, so the best 1686 * we can do is report the max that could possibly fit in f_files, 1687 * and that minus the number actually used in f_ffree. 1688 * For f_ffree, report the smaller of the number of object available 1689 * and the number of blocks (each object will take at least a block). 1690 */ 1691 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1692 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1693 statp->f_files = statp->f_ffree + usedobjs; 1694 1695 (void) cmpldev(&d32, vfsp->vfs_dev); 1696 statp->f_fsid = d32; 1697 1698 /* 1699 * We're a zfs filesystem. 1700 */ 1701 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1702 1703 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1704 1705 statp->f_namemax = ZFS_MAXNAMELEN; 1706 1707 /* 1708 * We have all of 32 characters to stuff a string here. 1709 * Is there anything useful we could/should provide? 1710 */ 1711 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1712 1713 ZFS_EXIT(zfsvfs); 1714 return (0); 1715 } 1716 1717 static int 1718 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1719 { 1720 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1721 znode_t *rootzp; 1722 int error; 1723 1724 ZFS_ENTER(zfsvfs); 1725 1726 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1727 if (error == 0) 1728 *vpp = ZTOV(rootzp); 1729 1730 ZFS_EXIT(zfsvfs); 1731 return (error); 1732 } 1733 1734 /* 1735 * Teardown the zfsvfs::z_os. 1736 * 1737 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1738 * and 'z_teardown_inactive_lock' held. 1739 */ 1740 static int 1741 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1742 { 1743 znode_t *zp; 1744 1745 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1746 1747 if (!unmounting) { 1748 /* 1749 * We purge the parent filesystem's vfsp as the parent 1750 * filesystem and all of its snapshots have their vnode's 1751 * v_vfsp set to the parent's filesystem's vfsp. Note, 1752 * 'z_parent' is self referential for non-snapshots. 1753 */ 1754 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1755 } 1756 1757 /* 1758 * Close the zil. NB: Can't close the zil while zfs_inactive 1759 * threads are blocked as zil_close can call zfs_inactive. 1760 */ 1761 if (zfsvfs->z_log) { 1762 zil_close(zfsvfs->z_log); 1763 zfsvfs->z_log = NULL; 1764 } 1765 1766 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1767 1768 /* 1769 * If we are not unmounting (ie: online recv) and someone already 1770 * unmounted this file system while we were doing the switcheroo, 1771 * or a reopen of z_os failed then just bail out now. 1772 */ 1773 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1774 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1775 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1776 return (EIO); 1777 } 1778 1779 /* 1780 * At this point there are no vops active, and any new vops will 1781 * fail with EIO since we have z_teardown_lock for writer (only 1782 * relavent for forced unmount). 1783 * 1784 * Release all holds on dbufs. 1785 */ 1786 mutex_enter(&zfsvfs->z_znodes_lock); 1787 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1788 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1789 if (zp->z_sa_hdl) { 1790 ASSERT(ZTOV(zp)->v_count > 0); 1791 zfs_znode_dmu_fini(zp); 1792 } 1793 mutex_exit(&zfsvfs->z_znodes_lock); 1794 1795 /* 1796 * If we are unmounting, set the unmounted flag and let new vops 1797 * unblock. zfs_inactive will have the unmounted behavior, and all 1798 * other vops will fail with EIO. 1799 */ 1800 if (unmounting) { 1801 zfsvfs->z_unmounted = B_TRUE; 1802 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1803 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1804 } 1805 1806 /* 1807 * z_os will be NULL if there was an error in attempting to reopen 1808 * zfsvfs, so just return as the properties had already been 1809 * unregistered and cached data had been evicted before. 1810 */ 1811 if (zfsvfs->z_os == NULL) 1812 return (0); 1813 1814 /* 1815 * Unregister properties. 1816 */ 1817 zfs_unregister_callbacks(zfsvfs); 1818 1819 /* 1820 * Evict cached data 1821 */ 1822 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1823 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1824 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1825 } 1826 1827 return (0); 1828 } 1829 1830 /*ARGSUSED*/ 1831 static int 1832 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1833 { 1834 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1835 objset_t *os; 1836 int ret; 1837 1838 ret = secpolicy_fs_unmount(cr, vfsp); 1839 if (ret) { 1840 if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1841 ZFS_DELEG_PERM_MOUNT, cr)) 1842 return (ret); 1843 } 1844 1845 /* 1846 * We purge the parent filesystem's vfsp as the parent filesystem 1847 * and all of its snapshots have their vnode's v_vfsp set to the 1848 * parent's filesystem's vfsp. Note, 'z_parent' is self 1849 * referential for non-snapshots. 1850 */ 1851 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1852 1853 /* 1854 * Unmount any snapshots mounted under .zfs before unmounting the 1855 * dataset itself. 1856 */ 1857 if (zfsvfs->z_ctldir != NULL && 1858 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1859 return (ret); 1860 } 1861 1862 if (!(fflag & MS_FORCE)) { 1863 /* 1864 * Check the number of active vnodes in the file system. 1865 * Our count is maintained in the vfs structure, but the 1866 * number is off by 1 to indicate a hold on the vfs 1867 * structure itself. 1868 * 1869 * The '.zfs' directory maintains a reference of its 1870 * own, and any active references underneath are 1871 * reflected in the vnode count. 1872 */ 1873 if (zfsvfs->z_ctldir == NULL) { 1874 if (vfsp->vfs_count > 1) 1875 return (EBUSY); 1876 } else { 1877 if (vfsp->vfs_count > 2 || 1878 zfsvfs->z_ctldir->v_count > 1) 1879 return (EBUSY); 1880 } 1881 } 1882 1883 vfsp->vfs_flag |= VFS_UNMOUNTED; 1884 1885 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1886 os = zfsvfs->z_os; 1887 1888 /* 1889 * z_os will be NULL if there was an error in 1890 * attempting to reopen zfsvfs. 1891 */ 1892 if (os != NULL) { 1893 /* 1894 * Unset the objset user_ptr. 1895 */ 1896 mutex_enter(&os->os_user_ptr_lock); 1897 dmu_objset_set_user(os, NULL); 1898 mutex_exit(&os->os_user_ptr_lock); 1899 1900 /* 1901 * Finally release the objset 1902 */ 1903 dmu_objset_disown(os, zfsvfs); 1904 } 1905 1906 /* 1907 * We can now safely destroy the '.zfs' directory node. 1908 */ 1909 if (zfsvfs->z_ctldir != NULL) 1910 zfsctl_destroy(zfsvfs); 1911 1912 return (0); 1913 } 1914 1915 static int 1916 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1917 { 1918 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1919 znode_t *zp; 1920 uint64_t object = 0; 1921 uint64_t fid_gen = 0; 1922 uint64_t gen_mask; 1923 uint64_t zp_gen; 1924 int i, err; 1925 1926 *vpp = NULL; 1927 1928 ZFS_ENTER(zfsvfs); 1929 1930 if (fidp->fid_len == LONG_FID_LEN) { 1931 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1932 uint64_t objsetid = 0; 1933 uint64_t setgen = 0; 1934 1935 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1936 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1937 1938 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1939 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1940 1941 ZFS_EXIT(zfsvfs); 1942 1943 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1944 if (err) 1945 return (EINVAL); 1946 ZFS_ENTER(zfsvfs); 1947 } 1948 1949 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1950 zfid_short_t *zfid = (zfid_short_t *)fidp; 1951 1952 for (i = 0; i < sizeof (zfid->zf_object); i++) 1953 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1954 1955 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1956 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1957 } else { 1958 ZFS_EXIT(zfsvfs); 1959 return (EINVAL); 1960 } 1961 1962 /* A zero fid_gen means we are in the .zfs control directories */ 1963 if (fid_gen == 0 && 1964 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1965 *vpp = zfsvfs->z_ctldir; 1966 ASSERT(*vpp != NULL); 1967 if (object == ZFSCTL_INO_SNAPDIR) { 1968 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1969 0, NULL, NULL, NULL, NULL, NULL) == 0); 1970 } else { 1971 VN_HOLD(*vpp); 1972 } 1973 ZFS_EXIT(zfsvfs); 1974 return (0); 1975 } 1976 1977 gen_mask = -1ULL >> (64 - 8 * i); 1978 1979 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1980 if (err = zfs_zget(zfsvfs, object, &zp)) { 1981 ZFS_EXIT(zfsvfs); 1982 return (err); 1983 } 1984 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen, 1985 sizeof (uint64_t)); 1986 zp_gen = zp_gen & gen_mask; 1987 if (zp_gen == 0) 1988 zp_gen = 1; 1989 if (zp->z_unlinked || zp_gen != fid_gen) { 1990 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1991 VN_RELE(ZTOV(zp)); 1992 ZFS_EXIT(zfsvfs); 1993 return (EINVAL); 1994 } 1995 1996 *vpp = ZTOV(zp); 1997 ZFS_EXIT(zfsvfs); 1998 return (0); 1999 } 2000 2001 /* 2002 * Block out VOPs and close zfsvfs_t::z_os 2003 * 2004 * Note, if successful, then we return with the 'z_teardown_lock' and 2005 * 'z_teardown_inactive_lock' write held. 2006 */ 2007 int 2008 zfs_suspend_fs(zfsvfs_t *zfsvfs) 2009 { 2010 int error; 2011 2012 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 2013 return (error); 2014 dmu_objset_disown(zfsvfs->z_os, zfsvfs); 2015 2016 return (0); 2017 } 2018 2019 /* 2020 * Reopen zfsvfs_t::z_os and release VOPs. 2021 */ 2022 int 2023 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname) 2024 { 2025 int err, err2; 2026 2027 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 2028 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 2029 2030 err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs, 2031 &zfsvfs->z_os); 2032 if (err) { 2033 zfsvfs->z_os = NULL; 2034 } else { 2035 znode_t *zp; 2036 uint64_t sa_obj = 0; 2037 2038 err2 = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ, 2039 ZFS_SA_ATTRS, 8, 1, &sa_obj); 2040 2041 if ((err || err2) && zfsvfs->z_version >= ZPL_VERSION_SA) 2042 goto bail; 2043 2044 2045 zfsvfs->z_attr_table = sa_setup(zfsvfs->z_os, sa_obj, 2046 zfs_attr_table, ZPL_END); 2047 2048 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 2049 2050 /* 2051 * Attempt to re-establish all the active znodes with 2052 * their dbufs. If a zfs_rezget() fails, then we'll let 2053 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 2054 * when they try to use their znode. 2055 */ 2056 mutex_enter(&zfsvfs->z_znodes_lock); 2057 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 2058 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 2059 (void) zfs_rezget(zp); 2060 } 2061 mutex_exit(&zfsvfs->z_znodes_lock); 2062 2063 } 2064 2065 bail: 2066 /* release the VOPs */ 2067 rw_exit(&zfsvfs->z_teardown_inactive_lock); 2068 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 2069 2070 if (err) { 2071 /* 2072 * Since we couldn't reopen zfsvfs::z_os, force 2073 * unmount this file system. 2074 */ 2075 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 2076 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 2077 } 2078 return (err); 2079 } 2080 2081 static void 2082 zfs_freevfs(vfs_t *vfsp) 2083 { 2084 zfsvfs_t *zfsvfs = vfsp->vfs_data; 2085 2086 /* 2087 * If this is a snapshot, we have an extra VFS_HOLD on our parent 2088 * from zfs_mount(). Release it here. If we came through 2089 * zfs_mountroot() instead, we didn't grab an extra hold, so 2090 * skip the VFS_RELE for rootvfs. 2091 */ 2092 if (zfsvfs->z_issnap && (vfsp != rootvfs)) 2093 VFS_RELE(zfsvfs->z_parent->z_vfs); 2094 2095 zfsvfs_free(zfsvfs); 2096 2097 atomic_add_32(&zfs_active_fs_count, -1); 2098 } 2099 2100 /* 2101 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 2102 * so we can't safely do any non-idempotent initialization here. 2103 * Leave that to zfs_init() and zfs_fini(), which are called 2104 * from the module's _init() and _fini() entry points. 2105 */ 2106 /*ARGSUSED*/ 2107 static int 2108 zfs_vfsinit(int fstype, char *name) 2109 { 2110 int error; 2111 2112 zfsfstype = fstype; 2113 2114 /* 2115 * Setup vfsops and vnodeops tables. 2116 */ 2117 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 2118 if (error != 0) { 2119 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 2120 } 2121 2122 error = zfs_create_op_tables(); 2123 if (error) { 2124 zfs_remove_op_tables(); 2125 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 2126 (void) vfs_freevfsops_by_type(zfsfstype); 2127 return (error); 2128 } 2129 2130 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 2131 2132 /* 2133 * Unique major number for all zfs mounts. 2134 * If we run out of 32-bit minors, we'll getudev() another major. 2135 */ 2136 zfs_major = ddi_name_to_major(ZFS_DRIVER); 2137 zfs_minor = ZFS_MIN_MINOR; 2138 2139 return (0); 2140 } 2141 2142 void 2143 zfs_init(void) 2144 { 2145 /* 2146 * Initialize .zfs directory structures 2147 */ 2148 zfsctl_init(); 2149 2150 /* 2151 * Initialize znode cache, vnode ops, etc... 2152 */ 2153 zfs_znode_init(); 2154 2155 dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb); 2156 } 2157 2158 void 2159 zfs_fini(void) 2160 { 2161 zfsctl_fini(); 2162 zfs_znode_fini(); 2163 } 2164 2165 int 2166 zfs_busy(void) 2167 { 2168 return (zfs_active_fs_count != 0); 2169 } 2170 2171 int 2172 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers) 2173 { 2174 int error; 2175 objset_t *os = zfsvfs->z_os; 2176 dmu_tx_t *tx; 2177 2178 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 2179 return (EINVAL); 2180 2181 if (newvers < zfsvfs->z_version) 2182 return (EINVAL); 2183 2184 if (zfs_spa_version_map(newvers) > 2185 spa_version(dmu_objset_spa(zfsvfs->z_os))) 2186 return (ENOTSUP); 2187 2188 tx = dmu_tx_create(os); 2189 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR); 2190 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2191 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE, 2192 ZFS_SA_ATTRS); 2193 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL); 2194 } 2195 error = dmu_tx_assign(tx, TXG_WAIT); 2196 if (error) { 2197 dmu_tx_abort(tx); 2198 return (error); 2199 } 2200 2201 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 2202 8, 1, &newvers, tx); 2203 2204 if (error) { 2205 dmu_tx_commit(tx); 2206 return (error); 2207 } 2208 2209 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) { 2210 uint64_t sa_obj; 2211 2212 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=, 2213 SPA_VERSION_SA); 2214 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE, 2215 DMU_OT_NONE, 0, tx); 2216 2217 error = zap_add(os, MASTER_NODE_OBJ, 2218 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx); 2219 ASSERT3U(error, ==, 0); 2220 2221 VERIFY(0 == sa_set_sa_object(os, sa_obj)); 2222 sa_register_update_callback(os, zfs_sa_upgrade); 2223 } 2224 2225 spa_history_internal_log(LOG_DS_UPGRADE, 2226 dmu_objset_spa(os), tx, CRED(), 2227 "oldver=%llu newver=%llu dataset = %llu", 2228 zfsvfs->z_version, newvers, dmu_objset_id(os)); 2229 2230 dmu_tx_commit(tx); 2231 2232 zfsvfs->z_version = newvers; 2233 2234 if (zfsvfs->z_version >= ZPL_VERSION_FUID) 2235 zfs_set_fuid_feature(zfsvfs); 2236 2237 return (0); 2238 } 2239 2240 /* 2241 * Read a property stored within the master node. 2242 */ 2243 int 2244 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 2245 { 2246 const char *pname; 2247 int error = ENOENT; 2248 2249 /* 2250 * Look up the file system's value for the property. For the 2251 * version property, we look up a slightly different string. 2252 */ 2253 if (prop == ZFS_PROP_VERSION) 2254 pname = ZPL_VERSION_STR; 2255 else 2256 pname = zfs_prop_to_name(prop); 2257 2258 if (os != NULL) 2259 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 2260 2261 if (error == ENOENT) { 2262 /* No value set, use the default value */ 2263 switch (prop) { 2264 case ZFS_PROP_VERSION: 2265 *value = ZPL_VERSION; 2266 break; 2267 case ZFS_PROP_NORMALIZE: 2268 case ZFS_PROP_UTF8ONLY: 2269 *value = 0; 2270 break; 2271 case ZFS_PROP_CASE: 2272 *value = ZFS_CASE_SENSITIVE; 2273 break; 2274 default: 2275 return (error); 2276 } 2277 error = 0; 2278 } 2279 return (error); 2280 } 2281 2282 static vfsdef_t vfw = { 2283 VFSDEF_VERSION, 2284 MNTTYPE_ZFS, 2285 zfs_vfsinit, 2286 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 2287 VSW_XID, 2288 &zfs_mntopts 2289 }; 2290 2291 struct modlfs zfs_modlfs = { 2292 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 2293 }; 2294