1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 76 static void zfs_freevfs(vfs_t *vfsp); 77 78 static const fs_operation_def_t zfs_vfsops_template[] = { 79 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 80 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 81 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 82 VFSNAME_ROOT, { .vfs_root = zfs_root }, 83 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 84 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 85 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 86 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 87 NULL, NULL 88 }; 89 90 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 /* 96 * We need to keep a count of active fs's. 97 * This is necessary to prevent our module 98 * from being unloaded after a umount -f 99 */ 100 static uint32_t zfs_active_fs_count = 0; 101 102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 106 107 /* 108 * MO_DEFAULT is not used since the default value is determined 109 * by the equivalent property. 110 */ 111 static mntopt_t mntopts[] = { 112 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 115 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 116 }; 117 118 static mntopts_t zfs_mntopts = { 119 sizeof (mntopts) / sizeof (mntopt_t), 120 mntopts 121 }; 122 123 /*ARGSUSED*/ 124 int 125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 126 { 127 /* 128 * Data integrity is job one. We don't want a compromised kernel 129 * writing to the storage pool, so we never sync during panic. 130 */ 131 if (panicstr) 132 return (0); 133 134 /* 135 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 136 * to sync metadata, which they would otherwise cache indefinitely. 137 * Semantically, the only requirement is that the sync be initiated. 138 * The DMU syncs out txgs frequently, so there's nothing to do. 139 */ 140 if (flag & SYNC_ATTR) 141 return (0); 142 143 if (vfsp != NULL) { 144 /* 145 * Sync a specific filesystem. 146 */ 147 zfsvfs_t *zfsvfs = vfsp->vfs_data; 148 149 ZFS_ENTER(zfsvfs); 150 if (zfsvfs->z_log != NULL) 151 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 152 else 153 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 154 ZFS_EXIT(zfsvfs); 155 } else { 156 /* 157 * Sync all ZFS filesystems. This is what happens when you 158 * run sync(1M). Unlike other filesystems, ZFS honors the 159 * request by waiting for all pools to commit all dirty data. 160 */ 161 spa_sync_allpools(); 162 } 163 164 return (0); 165 } 166 167 static int 168 zfs_create_unique_device(dev_t *dev) 169 { 170 major_t new_major; 171 172 do { 173 ASSERT3U(zfs_minor, <=, MAXMIN32); 174 minor_t start = zfs_minor; 175 do { 176 mutex_enter(&zfs_dev_mtx); 177 if (zfs_minor >= MAXMIN32) { 178 /* 179 * If we're still using the real major 180 * keep out of /dev/zfs and /dev/zvol minor 181 * number space. If we're using a getudev()'ed 182 * major number, we can use all of its minors. 183 */ 184 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 185 zfs_minor = ZFS_MIN_MINOR; 186 else 187 zfs_minor = 0; 188 } else { 189 zfs_minor++; 190 } 191 *dev = makedevice(zfs_major, zfs_minor); 192 mutex_exit(&zfs_dev_mtx); 193 } while (vfs_devismounted(*dev) && zfs_minor != start); 194 if (zfs_minor == start) { 195 /* 196 * We are using all ~262,000 minor numbers for the 197 * current major number. Create a new major number. 198 */ 199 if ((new_major = getudev()) == (major_t)-1) { 200 cmn_err(CE_WARN, 201 "zfs_mount: Can't get unique major " 202 "device number."); 203 return (-1); 204 } 205 mutex_enter(&zfs_dev_mtx); 206 zfs_major = new_major; 207 zfs_minor = 0; 208 209 mutex_exit(&zfs_dev_mtx); 210 } else { 211 break; 212 } 213 /* CONSTANTCONDITION */ 214 } while (1); 215 216 return (0); 217 } 218 219 static void 220 atime_changed_cb(void *arg, uint64_t newval) 221 { 222 zfsvfs_t *zfsvfs = arg; 223 224 if (newval == TRUE) { 225 zfsvfs->z_atime = TRUE; 226 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 227 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 228 } else { 229 zfsvfs->z_atime = FALSE; 230 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 231 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 232 } 233 } 234 235 static void 236 xattr_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 /* XXX locking on vfs_flag? */ 242 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 245 } else { 246 /* XXX locking on vfs_flag? */ 247 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 250 } 251 } 252 253 static void 254 blksz_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval < SPA_MINBLOCKSIZE || 259 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 260 newval = SPA_MAXBLOCKSIZE; 261 262 zfsvfs->z_max_blksz = newval; 263 zfsvfs->z_vfs->vfs_bsize = newval; 264 } 265 266 static void 267 readonly_changed_cb(void *arg, uint64_t newval) 268 { 269 zfsvfs_t *zfsvfs = arg; 270 271 if (newval) { 272 /* XXX locking on vfs_flag? */ 273 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 274 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 275 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 276 } else { 277 /* XXX locking on vfs_flag? */ 278 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 279 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 280 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 /* 333 * The nbmand mount option can be changed at mount time. 334 * We can't allow it to be toggled on live file systems or incorrect 335 * behavior may be seen from cifs clients 336 * 337 * This property isn't registered via dsl_prop_register(), but this callback 338 * will be called when a file system is first mounted 339 */ 340 static void 341 nbmand_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 if (newval == FALSE) { 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 347 } else { 348 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 349 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 350 } 351 } 352 353 static void 354 snapdir_changed_cb(void *arg, uint64_t newval) 355 { 356 zfsvfs_t *zfsvfs = arg; 357 358 zfsvfs->z_show_ctldir = newval; 359 } 360 361 static void 362 vscan_changed_cb(void *arg, uint64_t newval) 363 { 364 zfsvfs_t *zfsvfs = arg; 365 366 zfsvfs->z_vscan = newval; 367 } 368 369 static void 370 acl_mode_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_acl_mode = newval; 375 } 376 377 static void 378 acl_inherit_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_acl_inherit = newval; 383 } 384 385 static int 386 zfs_register_callbacks(vfs_t *vfsp) 387 { 388 struct dsl_dataset *ds = NULL; 389 objset_t *os = NULL; 390 zfsvfs_t *zfsvfs = NULL; 391 uint64_t nbmand; 392 int readonly, do_readonly = B_FALSE; 393 int setuid, do_setuid = B_FALSE; 394 int exec, do_exec = B_FALSE; 395 int devices, do_devices = B_FALSE; 396 int xattr, do_xattr = B_FALSE; 397 int atime, do_atime = B_FALSE; 398 int error = 0; 399 400 ASSERT(vfsp); 401 zfsvfs = vfsp->vfs_data; 402 ASSERT(zfsvfs); 403 os = zfsvfs->z_os; 404 405 /* 406 * The act of registering our callbacks will destroy any mount 407 * options we may have. In order to enable temporary overrides 408 * of mount options, we stash away the current values and 409 * restore them after we register the callbacks. 410 */ 411 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 412 readonly = B_TRUE; 413 do_readonly = B_TRUE; 414 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 415 readonly = B_FALSE; 416 do_readonly = B_TRUE; 417 } 418 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 419 devices = B_FALSE; 420 setuid = B_FALSE; 421 do_devices = B_TRUE; 422 do_setuid = B_TRUE; 423 } else { 424 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 425 devices = B_FALSE; 426 do_devices = B_TRUE; 427 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 428 devices = B_TRUE; 429 do_devices = B_TRUE; 430 } 431 432 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 433 setuid = B_FALSE; 434 do_setuid = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 436 setuid = B_TRUE; 437 do_setuid = B_TRUE; 438 } 439 } 440 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 441 exec = B_FALSE; 442 do_exec = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 444 exec = B_TRUE; 445 do_exec = B_TRUE; 446 } 447 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 448 xattr = B_FALSE; 449 do_xattr = B_TRUE; 450 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 451 xattr = B_TRUE; 452 do_xattr = B_TRUE; 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 455 atime = B_FALSE; 456 do_atime = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 458 atime = B_TRUE; 459 do_atime = B_TRUE; 460 } 461 462 /* 463 * nbmand is a special property. It can only be changed at 464 * mount time. 465 * 466 * This is weird, but it is documented to only be changeable 467 * at mount time. 468 */ 469 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 470 nbmand = B_FALSE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 472 nbmand = B_TRUE; 473 } else { 474 char osname[MAXNAMELEN]; 475 476 dmu_objset_name(os, osname); 477 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 478 NULL)) { 479 return (error); 480 } 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 int error; 561 562 error = zfs_register_callbacks(zfsvfs->z_vfs); 563 if (error) 564 return (error); 565 566 /* 567 * Set the objset user_ptr to track its zfsvfs. 568 */ 569 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 570 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 571 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 572 573 /* 574 * If we are not mounting (ie: online recv), then we don't 575 * have to worry about replaying the log as we blocked all 576 * operations out since we closed the ZIL. 577 */ 578 if (mounting) { 579 boolean_t readonly; 580 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 587 588 /* 589 * Parse and replay the intent log. 590 */ 591 zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign, 592 zfs_replay_vector, zfs_unlinked_drain); 593 594 zfs_unlinked_drain(zfsvfs); 595 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 596 } 597 598 if (!zil_disable) 599 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 600 601 return (0); 602 } 603 604 static void 605 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 606 { 607 mutex_destroy(&zfsvfs->z_znodes_lock); 608 mutex_destroy(&zfsvfs->z_online_recv_lock); 609 list_destroy(&zfsvfs->z_all_znodes); 610 rrw_destroy(&zfsvfs->z_teardown_lock); 611 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 612 rw_destroy(&zfsvfs->z_fuid_lock); 613 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 614 } 615 616 static int 617 zfs_domount(vfs_t *vfsp, char *osname) 618 { 619 dev_t mount_dev; 620 uint64_t recordsize, readonly; 621 int error = 0; 622 int mode; 623 zfsvfs_t *zfsvfs; 624 znode_t *zp = NULL; 625 626 ASSERT(vfsp); 627 ASSERT(osname); 628 629 /* 630 * Initialize the zfs-specific filesystem structure. 631 * Should probably make this a kmem cache, shuffle fields, 632 * and just bzero up to z_hold_mtx[]. 633 */ 634 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 635 zfsvfs->z_vfs = vfsp; 636 zfsvfs->z_parent = zfsvfs; 637 zfsvfs->z_assign = TXG_NOWAIT; 638 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 639 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 640 641 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 642 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 643 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 644 offsetof(znode_t, z_link_node)); 645 rrw_init(&zfsvfs->z_teardown_lock); 646 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 647 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 648 649 /* Initialize the generic filesystem structure. */ 650 vfsp->vfs_bcount = 0; 651 vfsp->vfs_data = NULL; 652 653 if (zfs_create_unique_device(&mount_dev) == -1) { 654 error = ENODEV; 655 goto out; 656 } 657 ASSERT(vfs_devismounted(mount_dev) == 0); 658 659 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 660 NULL)) 661 goto out; 662 663 vfsp->vfs_dev = mount_dev; 664 vfsp->vfs_fstype = zfsfstype; 665 vfsp->vfs_bsize = recordsize; 666 vfsp->vfs_flag |= VFS_NOTRUNC; 667 vfsp->vfs_data = zfsvfs; 668 669 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 670 goto out; 671 672 mode = DS_MODE_OWNER; 673 if (readonly) 674 mode |= DS_MODE_READONLY; 675 676 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 677 if (error == EROFS) { 678 mode = DS_MODE_OWNER | DS_MODE_READONLY; 679 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 680 &zfsvfs->z_os); 681 } 682 683 if (error) 684 goto out; 685 686 if (error = zfs_init_fs(zfsvfs, &zp)) 687 goto out; 688 689 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 690 VN_RELE(ZTOV(zp)); 691 692 /* 693 * Set features for file system. 694 */ 695 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 696 if (zfsvfs->z_use_fuids) { 697 vfs_set_feature(vfsp, VFSFT_XVATTR); 698 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 699 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 700 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 701 } 702 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 703 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 704 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 705 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 706 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 707 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 708 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 709 } 710 711 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 712 uint64_t pval; 713 714 ASSERT(mode & DS_MODE_READONLY); 715 atime_changed_cb(zfsvfs, B_FALSE); 716 readonly_changed_cb(zfsvfs, B_TRUE); 717 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 718 goto out; 719 xattr_changed_cb(zfsvfs, pval); 720 zfsvfs->z_issnap = B_TRUE; 721 } else { 722 error = zfsvfs_setup(zfsvfs, B_TRUE); 723 } 724 725 if (!zfsvfs->z_issnap) 726 zfsctl_create(zfsvfs); 727 out: 728 if (error) { 729 if (zfsvfs->z_os) 730 dmu_objset_close(zfsvfs->z_os); 731 zfs_freezfsvfs(zfsvfs); 732 } else { 733 atomic_add_32(&zfs_active_fs_count, 1); 734 } 735 736 return (error); 737 } 738 739 void 740 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 741 { 742 objset_t *os = zfsvfs->z_os; 743 struct dsl_dataset *ds; 744 745 /* 746 * Unregister properties. 747 */ 748 if (!dmu_objset_is_snapshot(os)) { 749 ds = dmu_objset_ds(os); 750 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 751 zfsvfs) == 0); 752 753 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 754 zfsvfs) == 0); 755 756 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 757 zfsvfs) == 0); 758 759 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 760 zfsvfs) == 0); 761 762 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 763 zfsvfs) == 0); 764 765 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 766 zfsvfs) == 0); 767 768 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 769 zfsvfs) == 0); 770 771 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 772 zfsvfs) == 0); 773 774 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 775 zfsvfs) == 0); 776 777 VERIFY(dsl_prop_unregister(ds, "aclinherit", 778 acl_inherit_changed_cb, zfsvfs) == 0); 779 780 VERIFY(dsl_prop_unregister(ds, "vscan", 781 vscan_changed_cb, zfsvfs) == 0); 782 } 783 } 784 785 /* 786 * Convert a decimal digit string to a uint64_t integer. 787 */ 788 static int 789 str_to_uint64(char *str, uint64_t *objnum) 790 { 791 uint64_t num = 0; 792 793 while (*str) { 794 if (*str < '0' || *str > '9') 795 return (EINVAL); 796 797 num = num*10 + *str++ - '0'; 798 } 799 800 *objnum = num; 801 return (0); 802 } 803 804 /* 805 * The boot path passed from the boot loader is in the form of 806 * "rootpool-name/root-filesystem-object-number'. Convert this 807 * string to a dataset name: "rootpool-name/root-filesystem-name". 808 */ 809 static int 810 zfs_parse_bootfs(char *bpath, char *outpath) 811 { 812 char *slashp; 813 uint64_t objnum; 814 int error; 815 816 if (*bpath == 0 || *bpath == '/') 817 return (EINVAL); 818 819 (void) strcpy(outpath, bpath); 820 821 slashp = strchr(bpath, '/'); 822 823 /* if no '/', just return the pool name */ 824 if (slashp == NULL) { 825 return (0); 826 } 827 828 /* if not a number, just return the root dataset name */ 829 if (str_to_uint64(slashp+1, &objnum)) { 830 return (0); 831 } 832 833 *slashp = '\0'; 834 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 835 *slashp = '/'; 836 837 return (error); 838 } 839 840 static int 841 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 842 { 843 int error = 0; 844 static int zfsrootdone = 0; 845 zfsvfs_t *zfsvfs = NULL; 846 znode_t *zp = NULL; 847 vnode_t *vp = NULL; 848 char *zfs_bootfs; 849 char *zfs_devid; 850 851 ASSERT(vfsp); 852 853 /* 854 * The filesystem that we mount as root is defined in the 855 * boot property "zfs-bootfs" with a format of 856 * "poolname/root-dataset-objnum". 857 */ 858 if (why == ROOT_INIT) { 859 if (zfsrootdone++) 860 return (EBUSY); 861 /* 862 * the process of doing a spa_load will require the 863 * clock to be set before we could (for example) do 864 * something better by looking at the timestamp on 865 * an uberblock, so just set it to -1. 866 */ 867 clkset(-1); 868 869 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 870 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 871 "bootfs name"); 872 return (EINVAL); 873 } 874 zfs_devid = spa_get_bootprop("diskdevid"); 875 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 876 if (zfs_devid) 877 spa_free_bootprop(zfs_devid); 878 if (error) { 879 spa_free_bootprop(zfs_bootfs); 880 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 881 error); 882 return (error); 883 } 884 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 885 spa_free_bootprop(zfs_bootfs); 886 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 887 error); 888 return (error); 889 } 890 891 spa_free_bootprop(zfs_bootfs); 892 893 if (error = vfs_lock(vfsp)) 894 return (error); 895 896 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 897 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 898 goto out; 899 } 900 901 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 902 ASSERT(zfsvfs); 903 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 904 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 905 goto out; 906 } 907 908 vp = ZTOV(zp); 909 mutex_enter(&vp->v_lock); 910 vp->v_flag |= VROOT; 911 mutex_exit(&vp->v_lock); 912 rootvp = vp; 913 914 /* 915 * Leave rootvp held. The root file system is never unmounted. 916 */ 917 918 vfs_add((struct vnode *)0, vfsp, 919 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 920 out: 921 vfs_unlock(vfsp); 922 return (error); 923 } else if (why == ROOT_REMOUNT) { 924 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 925 vfsp->vfs_flag |= VFS_REMOUNT; 926 927 /* refresh mount options */ 928 zfs_unregister_callbacks(vfsp->vfs_data); 929 return (zfs_register_callbacks(vfsp)); 930 931 } else if (why == ROOT_UNMOUNT) { 932 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 933 (void) zfs_sync(vfsp, 0, 0); 934 return (0); 935 } 936 937 /* 938 * if "why" is equal to anything else other than ROOT_INIT, 939 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 940 */ 941 return (ENOTSUP); 942 } 943 944 /*ARGSUSED*/ 945 static int 946 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 947 { 948 char *osname; 949 pathname_t spn; 950 int error = 0; 951 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 952 UIO_SYSSPACE : UIO_USERSPACE; 953 int canwrite; 954 955 if (mvp->v_type != VDIR) 956 return (ENOTDIR); 957 958 mutex_enter(&mvp->v_lock); 959 if ((uap->flags & MS_REMOUNT) == 0 && 960 (uap->flags & MS_OVERLAY) == 0 && 961 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 962 mutex_exit(&mvp->v_lock); 963 return (EBUSY); 964 } 965 mutex_exit(&mvp->v_lock); 966 967 /* 968 * ZFS does not support passing unparsed data in via MS_DATA. 969 * Users should use the MS_OPTIONSTR interface; this means 970 * that all option parsing is already done and the options struct 971 * can be interrogated. 972 */ 973 if ((uap->flags & MS_DATA) && uap->datalen > 0) 974 return (EINVAL); 975 976 /* 977 * Get the objset name (the "special" mount argument). 978 */ 979 if (error = pn_get(uap->spec, fromspace, &spn)) 980 return (error); 981 982 osname = spn.pn_path; 983 984 /* 985 * Check for mount privilege? 986 * 987 * If we don't have privilege then see if 988 * we have local permission to allow it 989 */ 990 error = secpolicy_fs_mount(cr, mvp, vfsp); 991 if (error) { 992 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 993 if (error == 0) { 994 vattr_t vattr; 995 996 /* 997 * Make sure user is the owner of the mount point 998 * or has sufficient privileges. 999 */ 1000 1001 vattr.va_mask = AT_UID; 1002 1003 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1004 goto out; 1005 } 1006 1007 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1008 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1009 error = EPERM; 1010 goto out; 1011 } 1012 1013 secpolicy_fs_mount_clearopts(cr, vfsp); 1014 } else { 1015 goto out; 1016 } 1017 } 1018 1019 /* 1020 * Refuse to mount a filesystem if we are in a local zone and the 1021 * dataset is not visible. 1022 */ 1023 if (!INGLOBALZONE(curproc) && 1024 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1025 error = EPERM; 1026 goto out; 1027 } 1028 1029 /* 1030 * When doing a remount, we simply refresh our temporary properties 1031 * according to those options set in the current VFS options. 1032 */ 1033 if (uap->flags & MS_REMOUNT) { 1034 /* refresh mount options */ 1035 zfs_unregister_callbacks(vfsp->vfs_data); 1036 error = zfs_register_callbacks(vfsp); 1037 goto out; 1038 } 1039 1040 error = zfs_domount(vfsp, osname); 1041 1042 out: 1043 pn_free(&spn); 1044 return (error); 1045 } 1046 1047 static int 1048 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1049 { 1050 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1051 dev32_t d32; 1052 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1053 1054 ZFS_ENTER(zfsvfs); 1055 1056 dmu_objset_space(zfsvfs->z_os, 1057 &refdbytes, &availbytes, &usedobjs, &availobjs); 1058 1059 /* 1060 * The underlying storage pool actually uses multiple block sizes. 1061 * We report the fragsize as the smallest block size we support, 1062 * and we report our blocksize as the filesystem's maximum blocksize. 1063 */ 1064 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1065 statp->f_bsize = zfsvfs->z_max_blksz; 1066 1067 /* 1068 * The following report "total" blocks of various kinds in the 1069 * file system, but reported in terms of f_frsize - the 1070 * "fragment" size. 1071 */ 1072 1073 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1074 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1075 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1076 1077 /* 1078 * statvfs() should really be called statufs(), because it assumes 1079 * static metadata. ZFS doesn't preallocate files, so the best 1080 * we can do is report the max that could possibly fit in f_files, 1081 * and that minus the number actually used in f_ffree. 1082 * For f_ffree, report the smaller of the number of object available 1083 * and the number of blocks (each object will take at least a block). 1084 */ 1085 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1086 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1087 statp->f_files = statp->f_ffree + usedobjs; 1088 1089 (void) cmpldev(&d32, vfsp->vfs_dev); 1090 statp->f_fsid = d32; 1091 1092 /* 1093 * We're a zfs filesystem. 1094 */ 1095 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1096 1097 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1098 1099 statp->f_namemax = ZFS_MAXNAMELEN; 1100 1101 /* 1102 * We have all of 32 characters to stuff a string here. 1103 * Is there anything useful we could/should provide? 1104 */ 1105 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1106 1107 ZFS_EXIT(zfsvfs); 1108 return (0); 1109 } 1110 1111 static int 1112 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1113 { 1114 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1115 znode_t *rootzp; 1116 int error; 1117 1118 ZFS_ENTER(zfsvfs); 1119 1120 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1121 if (error == 0) 1122 *vpp = ZTOV(rootzp); 1123 1124 ZFS_EXIT(zfsvfs); 1125 return (error); 1126 } 1127 1128 /* 1129 * Teardown the zfsvfs::z_os. 1130 * 1131 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1132 * and 'z_teardown_inactive_lock' held. 1133 */ 1134 static int 1135 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1136 { 1137 znode_t *zp; 1138 1139 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1140 1141 if (!unmounting) { 1142 /* 1143 * We purge the parent filesystem's vfsp as the parent 1144 * filesystem and all of its snapshots have their vnode's 1145 * v_vfsp set to the parent's filesystem's vfsp. Note, 1146 * 'z_parent' is self referential for non-snapshots. 1147 */ 1148 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1149 } 1150 1151 /* 1152 * Close the zil. NB: Can't close the zil while zfs_inactive 1153 * threads are blocked as zil_close can call zfs_inactive. 1154 */ 1155 if (zfsvfs->z_log) { 1156 zil_close(zfsvfs->z_log); 1157 zfsvfs->z_log = NULL; 1158 } 1159 1160 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1161 1162 /* 1163 * If we are not unmounting (ie: online recv) and someone already 1164 * unmounted this file system while we were doing the switcheroo, 1165 * or a reopen of z_os failed then just bail out now. 1166 */ 1167 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1168 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1169 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1170 return (EIO); 1171 } 1172 1173 /* 1174 * At this point there are no vops active, and any new vops will 1175 * fail with EIO since we have z_teardown_lock for writer (only 1176 * relavent for forced unmount). 1177 * 1178 * Release all holds on dbufs. 1179 */ 1180 mutex_enter(&zfsvfs->z_znodes_lock); 1181 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1182 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1183 if (zp->z_dbuf) { 1184 ASSERT(ZTOV(zp)->v_count > 0); 1185 zfs_znode_dmu_fini(zp); 1186 } 1187 mutex_exit(&zfsvfs->z_znodes_lock); 1188 1189 /* 1190 * If we are unmounting, set the unmounted flag and let new vops 1191 * unblock. zfs_inactive will have the unmounted behavior, and all 1192 * other vops will fail with EIO. 1193 */ 1194 if (unmounting) { 1195 zfsvfs->z_unmounted = B_TRUE; 1196 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1197 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1198 } 1199 1200 /* 1201 * z_os will be NULL if there was an error in attempting to reopen 1202 * zfsvfs, so just return as the properties had already been 1203 * unregistered and cached data had been evicted before. 1204 */ 1205 if (zfsvfs->z_os == NULL) 1206 return (0); 1207 1208 /* 1209 * Unregister properties. 1210 */ 1211 zfs_unregister_callbacks(zfsvfs); 1212 1213 /* 1214 * Evict cached data 1215 */ 1216 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1217 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1218 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1219 } 1220 1221 return (0); 1222 } 1223 1224 /*ARGSUSED*/ 1225 static int 1226 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1227 { 1228 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1229 objset_t *os; 1230 int ret; 1231 1232 ret = secpolicy_fs_unmount(cr, vfsp); 1233 if (ret) { 1234 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1235 ZFS_DELEG_PERM_MOUNT, cr); 1236 if (ret) 1237 return (ret); 1238 } 1239 1240 /* 1241 * We purge the parent filesystem's vfsp as the parent filesystem 1242 * and all of its snapshots have their vnode's v_vfsp set to the 1243 * parent's filesystem's vfsp. Note, 'z_parent' is self 1244 * referential for non-snapshots. 1245 */ 1246 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1247 1248 /* 1249 * Unmount any snapshots mounted under .zfs before unmounting the 1250 * dataset itself. 1251 */ 1252 if (zfsvfs->z_ctldir != NULL && 1253 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1254 return (ret); 1255 } 1256 1257 if (!(fflag & MS_FORCE)) { 1258 /* 1259 * Check the number of active vnodes in the file system. 1260 * Our count is maintained in the vfs structure, but the 1261 * number is off by 1 to indicate a hold on the vfs 1262 * structure itself. 1263 * 1264 * The '.zfs' directory maintains a reference of its 1265 * own, and any active references underneath are 1266 * reflected in the vnode count. 1267 */ 1268 if (zfsvfs->z_ctldir == NULL) { 1269 if (vfsp->vfs_count > 1) 1270 return (EBUSY); 1271 } else { 1272 if (vfsp->vfs_count > 2 || 1273 zfsvfs->z_ctldir->v_count > 1) 1274 return (EBUSY); 1275 } 1276 } 1277 1278 vfsp->vfs_flag |= VFS_UNMOUNTED; 1279 1280 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1281 os = zfsvfs->z_os; 1282 1283 /* 1284 * z_os will be NULL if there was an error in 1285 * attempting to reopen zfsvfs. 1286 */ 1287 if (os != NULL) { 1288 /* 1289 * Unset the objset user_ptr. 1290 */ 1291 mutex_enter(&os->os->os_user_ptr_lock); 1292 dmu_objset_set_user(os, NULL); 1293 mutex_exit(&os->os->os_user_ptr_lock); 1294 1295 /* 1296 * Finally release the objset 1297 */ 1298 dmu_objset_close(os); 1299 } 1300 1301 /* 1302 * We can now safely destroy the '.zfs' directory node. 1303 */ 1304 if (zfsvfs->z_ctldir != NULL) 1305 zfsctl_destroy(zfsvfs); 1306 1307 return (0); 1308 } 1309 1310 static int 1311 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1312 { 1313 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1314 znode_t *zp; 1315 uint64_t object = 0; 1316 uint64_t fid_gen = 0; 1317 uint64_t gen_mask; 1318 uint64_t zp_gen; 1319 int i, err; 1320 1321 *vpp = NULL; 1322 1323 ZFS_ENTER(zfsvfs); 1324 1325 if (fidp->fid_len == LONG_FID_LEN) { 1326 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1327 uint64_t objsetid = 0; 1328 uint64_t setgen = 0; 1329 1330 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1331 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1332 1333 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1334 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1335 1336 ZFS_EXIT(zfsvfs); 1337 1338 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1339 if (err) 1340 return (EINVAL); 1341 ZFS_ENTER(zfsvfs); 1342 } 1343 1344 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1345 zfid_short_t *zfid = (zfid_short_t *)fidp; 1346 1347 for (i = 0; i < sizeof (zfid->zf_object); i++) 1348 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1349 1350 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1351 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1352 } else { 1353 ZFS_EXIT(zfsvfs); 1354 return (EINVAL); 1355 } 1356 1357 /* A zero fid_gen means we are in the .zfs control directories */ 1358 if (fid_gen == 0 && 1359 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1360 *vpp = zfsvfs->z_ctldir; 1361 ASSERT(*vpp != NULL); 1362 if (object == ZFSCTL_INO_SNAPDIR) { 1363 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1364 0, NULL, NULL, NULL, NULL, NULL) == 0); 1365 } else { 1366 VN_HOLD(*vpp); 1367 } 1368 ZFS_EXIT(zfsvfs); 1369 return (0); 1370 } 1371 1372 gen_mask = -1ULL >> (64 - 8 * i); 1373 1374 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1375 if (err = zfs_zget(zfsvfs, object, &zp)) { 1376 ZFS_EXIT(zfsvfs); 1377 return (err); 1378 } 1379 zp_gen = zp->z_phys->zp_gen & gen_mask; 1380 if (zp_gen == 0) 1381 zp_gen = 1; 1382 if (zp->z_unlinked || zp_gen != fid_gen) { 1383 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1384 VN_RELE(ZTOV(zp)); 1385 ZFS_EXIT(zfsvfs); 1386 return (EINVAL); 1387 } 1388 1389 *vpp = ZTOV(zp); 1390 ZFS_EXIT(zfsvfs); 1391 return (0); 1392 } 1393 1394 /* 1395 * Block out VOPs and close zfsvfs_t::z_os 1396 * 1397 * Note, if successful, then we return with the 'z_teardown_lock' and 1398 * 'z_teardown_inactive_lock' write held. 1399 */ 1400 int 1401 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1402 { 1403 int error; 1404 1405 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1406 return (error); 1407 1408 *mode = zfsvfs->z_os->os_mode; 1409 dmu_objset_name(zfsvfs->z_os, name); 1410 dmu_objset_close(zfsvfs->z_os); 1411 1412 return (0); 1413 } 1414 1415 /* 1416 * Reopen zfsvfs_t::z_os and release VOPs. 1417 */ 1418 int 1419 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1420 { 1421 int err; 1422 1423 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1424 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1425 1426 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1427 if (err) { 1428 zfsvfs->z_os = NULL; 1429 } else { 1430 znode_t *zp; 1431 1432 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1433 1434 /* 1435 * Attempt to re-establish all the active znodes with 1436 * their dbufs. If a zfs_rezget() fails, then we'll let 1437 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1438 * when they try to use their znode. 1439 */ 1440 mutex_enter(&zfsvfs->z_znodes_lock); 1441 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1442 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1443 (void) zfs_rezget(zp); 1444 } 1445 mutex_exit(&zfsvfs->z_znodes_lock); 1446 1447 } 1448 1449 /* release the VOPs */ 1450 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1451 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1452 1453 if (err) { 1454 /* 1455 * Since we couldn't reopen zfsvfs::z_os, force 1456 * unmount this file system. 1457 */ 1458 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1459 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1460 } 1461 return (err); 1462 } 1463 1464 static void 1465 zfs_freevfs(vfs_t *vfsp) 1466 { 1467 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1468 int i; 1469 1470 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1471 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1472 1473 zfs_fuid_destroy(zfsvfs); 1474 zfs_freezfsvfs(zfsvfs); 1475 1476 atomic_add_32(&zfs_active_fs_count, -1); 1477 } 1478 1479 /* 1480 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1481 * so we can't safely do any non-idempotent initialization here. 1482 * Leave that to zfs_init() and zfs_fini(), which are called 1483 * from the module's _init() and _fini() entry points. 1484 */ 1485 /*ARGSUSED*/ 1486 static int 1487 zfs_vfsinit(int fstype, char *name) 1488 { 1489 int error; 1490 1491 zfsfstype = fstype; 1492 1493 /* 1494 * Setup vfsops and vnodeops tables. 1495 */ 1496 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1497 if (error != 0) { 1498 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1499 } 1500 1501 error = zfs_create_op_tables(); 1502 if (error) { 1503 zfs_remove_op_tables(); 1504 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1505 (void) vfs_freevfsops_by_type(zfsfstype); 1506 return (error); 1507 } 1508 1509 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1510 1511 /* 1512 * Unique major number for all zfs mounts. 1513 * If we run out of 32-bit minors, we'll getudev() another major. 1514 */ 1515 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1516 zfs_minor = ZFS_MIN_MINOR; 1517 1518 return (0); 1519 } 1520 1521 void 1522 zfs_init(void) 1523 { 1524 /* 1525 * Initialize .zfs directory structures 1526 */ 1527 zfsctl_init(); 1528 1529 /* 1530 * Initialize znode cache, vnode ops, etc... 1531 */ 1532 zfs_znode_init(); 1533 } 1534 1535 void 1536 zfs_fini(void) 1537 { 1538 zfsctl_fini(); 1539 zfs_znode_fini(); 1540 } 1541 1542 int 1543 zfs_busy(void) 1544 { 1545 return (zfs_active_fs_count != 0); 1546 } 1547 1548 int 1549 zfs_set_version(const char *name, uint64_t newvers) 1550 { 1551 int error; 1552 objset_t *os; 1553 dmu_tx_t *tx; 1554 uint64_t curvers; 1555 1556 /* 1557 * XXX for now, require that the filesystem be unmounted. Would 1558 * be nice to find the zfsvfs_t and just update that if 1559 * possible. 1560 */ 1561 1562 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1563 return (EINVAL); 1564 1565 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1566 if (error) 1567 return (error); 1568 1569 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1570 8, 1, &curvers); 1571 if (error) 1572 goto out; 1573 if (newvers < curvers) { 1574 error = EINVAL; 1575 goto out; 1576 } 1577 1578 tx = dmu_tx_create(os); 1579 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1580 error = dmu_tx_assign(tx, TXG_WAIT); 1581 if (error) { 1582 dmu_tx_abort(tx); 1583 goto out; 1584 } 1585 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1586 &newvers, tx); 1587 1588 spa_history_internal_log(LOG_DS_UPGRADE, 1589 dmu_objset_spa(os), tx, CRED(), 1590 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1591 dmu_objset_id(os)); 1592 dmu_tx_commit(tx); 1593 1594 out: 1595 dmu_objset_close(os); 1596 return (error); 1597 } 1598 1599 /* 1600 * Read a property stored within the master node. 1601 */ 1602 int 1603 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1604 { 1605 const char *pname; 1606 int error = ENOENT; 1607 1608 /* 1609 * Look up the file system's value for the property. For the 1610 * version property, we look up a slightly different string. 1611 */ 1612 if (prop == ZFS_PROP_VERSION) 1613 pname = ZPL_VERSION_STR; 1614 else 1615 pname = zfs_prop_to_name(prop); 1616 1617 if (os != NULL) 1618 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1619 1620 if (error == ENOENT) { 1621 /* No value set, use the default value */ 1622 switch (prop) { 1623 case ZFS_PROP_VERSION: 1624 *value = ZPL_VERSION; 1625 break; 1626 case ZFS_PROP_NORMALIZE: 1627 case ZFS_PROP_UTF8ONLY: 1628 *value = 0; 1629 break; 1630 case ZFS_PROP_CASE: 1631 *value = ZFS_CASE_SENSITIVE; 1632 break; 1633 default: 1634 return (error); 1635 } 1636 error = 0; 1637 } 1638 return (error); 1639 } 1640 1641 static vfsdef_t vfw = { 1642 VFSDEF_VERSION, 1643 MNTTYPE_ZFS, 1644 zfs_vfsinit, 1645 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1646 VSW_XID, 1647 &zfs_mntopts 1648 }; 1649 1650 struct modlfs zfs_modlfs = { 1651 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1652 }; 1653