1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/types.h> 27 #include <sys/param.h> 28 #include <sys/systm.h> 29 #include <sys/sysmacros.h> 30 #include <sys/kmem.h> 31 #include <sys/pathname.h> 32 #include <sys/vnode.h> 33 #include <sys/vfs.h> 34 #include <sys/vfs_opreg.h> 35 #include <sys/mntent.h> 36 #include <sys/mount.h> 37 #include <sys/cmn_err.h> 38 #include "fs/fs_subr.h" 39 #include <sys/zfs_znode.h> 40 #include <sys/zfs_dir.h> 41 #include <sys/zil.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/dmu.h> 44 #include <sys/dsl_prop.h> 45 #include <sys/dsl_dataset.h> 46 #include <sys/dsl_deleg.h> 47 #include <sys/spa.h> 48 #include <sys/zap.h> 49 #include <sys/varargs.h> 50 #include <sys/policy.h> 51 #include <sys/atomic.h> 52 #include <sys/mkdev.h> 53 #include <sys/modctl.h> 54 #include <sys/refstr.h> 55 #include <sys/zfs_ioctl.h> 56 #include <sys/zfs_ctldir.h> 57 #include <sys/zfs_fuid.h> 58 #include <sys/bootconf.h> 59 #include <sys/sunddi.h> 60 #include <sys/dnlc.h> 61 #include <sys/dmu_objset.h> 62 #include <sys/spa_boot.h> 63 64 int zfsfstype; 65 vfsops_t *zfs_vfsops = NULL; 66 static major_t zfs_major; 67 static minor_t zfs_minor; 68 static kmutex_t zfs_dev_mtx; 69 70 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr); 71 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr); 72 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot); 73 static int zfs_root(vfs_t *vfsp, vnode_t **vpp); 74 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp); 75 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp); 76 static void zfs_freevfs(vfs_t *vfsp); 77 78 static const fs_operation_def_t zfs_vfsops_template[] = { 79 VFSNAME_MOUNT, { .vfs_mount = zfs_mount }, 80 VFSNAME_MOUNTROOT, { .vfs_mountroot = zfs_mountroot }, 81 VFSNAME_UNMOUNT, { .vfs_unmount = zfs_umount }, 82 VFSNAME_ROOT, { .vfs_root = zfs_root }, 83 VFSNAME_STATVFS, { .vfs_statvfs = zfs_statvfs }, 84 VFSNAME_SYNC, { .vfs_sync = zfs_sync }, 85 VFSNAME_VGET, { .vfs_vget = zfs_vget }, 86 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 87 NULL, NULL 88 }; 89 90 static const fs_operation_def_t zfs_vfsops_eio_template[] = { 91 VFSNAME_FREEVFS, { .vfs_freevfs = zfs_freevfs }, 92 NULL, NULL 93 }; 94 95 /* 96 * We need to keep a count of active fs's. 97 * This is necessary to prevent our module 98 * from being unloaded after a umount -f 99 */ 100 static uint32_t zfs_active_fs_count = 0; 101 102 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL }; 103 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL }; 104 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL }; 105 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL }; 106 107 /* 108 * MO_DEFAULT is not used since the default value is determined 109 * by the equivalent property. 110 */ 111 static mntopt_t mntopts[] = { 112 { MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL }, 113 { MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL }, 114 { MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL }, 115 { MNTOPT_ATIME, atime_cancel, NULL, 0, NULL } 116 }; 117 118 static mntopts_t zfs_mntopts = { 119 sizeof (mntopts) / sizeof (mntopt_t), 120 mntopts 121 }; 122 123 /*ARGSUSED*/ 124 int 125 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr) 126 { 127 /* 128 * Data integrity is job one. We don't want a compromised kernel 129 * writing to the storage pool, so we never sync during panic. 130 */ 131 if (panicstr) 132 return (0); 133 134 /* 135 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS 136 * to sync metadata, which they would otherwise cache indefinitely. 137 * Semantically, the only requirement is that the sync be initiated. 138 * The DMU syncs out txgs frequently, so there's nothing to do. 139 */ 140 if (flag & SYNC_ATTR) 141 return (0); 142 143 if (vfsp != NULL) { 144 /* 145 * Sync a specific filesystem. 146 */ 147 zfsvfs_t *zfsvfs = vfsp->vfs_data; 148 149 ZFS_ENTER(zfsvfs); 150 if (zfsvfs->z_log != NULL) 151 zil_commit(zfsvfs->z_log, UINT64_MAX, 0); 152 else 153 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 154 ZFS_EXIT(zfsvfs); 155 } else { 156 /* 157 * Sync all ZFS filesystems. This is what happens when you 158 * run sync(1M). Unlike other filesystems, ZFS honors the 159 * request by waiting for all pools to commit all dirty data. 160 */ 161 spa_sync_allpools(); 162 } 163 164 return (0); 165 } 166 167 static int 168 zfs_create_unique_device(dev_t *dev) 169 { 170 major_t new_major; 171 172 do { 173 ASSERT3U(zfs_minor, <=, MAXMIN32); 174 minor_t start = zfs_minor; 175 do { 176 mutex_enter(&zfs_dev_mtx); 177 if (zfs_minor >= MAXMIN32) { 178 /* 179 * If we're still using the real major 180 * keep out of /dev/zfs and /dev/zvol minor 181 * number space. If we're using a getudev()'ed 182 * major number, we can use all of its minors. 183 */ 184 if (zfs_major == ddi_name_to_major(ZFS_DRIVER)) 185 zfs_minor = ZFS_MIN_MINOR; 186 else 187 zfs_minor = 0; 188 } else { 189 zfs_minor++; 190 } 191 *dev = makedevice(zfs_major, zfs_minor); 192 mutex_exit(&zfs_dev_mtx); 193 } while (vfs_devismounted(*dev) && zfs_minor != start); 194 if (zfs_minor == start) { 195 /* 196 * We are using all ~262,000 minor numbers for the 197 * current major number. Create a new major number. 198 */ 199 if ((new_major = getudev()) == (major_t)-1) { 200 cmn_err(CE_WARN, 201 "zfs_mount: Can't get unique major " 202 "device number."); 203 return (-1); 204 } 205 mutex_enter(&zfs_dev_mtx); 206 zfs_major = new_major; 207 zfs_minor = 0; 208 209 mutex_exit(&zfs_dev_mtx); 210 } else { 211 break; 212 } 213 /* CONSTANTCONDITION */ 214 } while (1); 215 216 return (0); 217 } 218 219 static void 220 atime_changed_cb(void *arg, uint64_t newval) 221 { 222 zfsvfs_t *zfsvfs = arg; 223 224 if (newval == TRUE) { 225 zfsvfs->z_atime = TRUE; 226 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME); 227 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0); 228 } else { 229 zfsvfs->z_atime = FALSE; 230 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME); 231 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0); 232 } 233 } 234 235 static void 236 xattr_changed_cb(void *arg, uint64_t newval) 237 { 238 zfsvfs_t *zfsvfs = arg; 239 240 if (newval == TRUE) { 241 /* XXX locking on vfs_flag? */ 242 zfsvfs->z_vfs->vfs_flag |= VFS_XATTR; 243 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR); 244 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0); 245 } else { 246 /* XXX locking on vfs_flag? */ 247 zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR; 248 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR); 249 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0); 250 } 251 } 252 253 static void 254 blksz_changed_cb(void *arg, uint64_t newval) 255 { 256 zfsvfs_t *zfsvfs = arg; 257 258 if (newval < SPA_MINBLOCKSIZE || 259 newval > SPA_MAXBLOCKSIZE || !ISP2(newval)) 260 newval = SPA_MAXBLOCKSIZE; 261 262 zfsvfs->z_max_blksz = newval; 263 zfsvfs->z_vfs->vfs_bsize = newval; 264 } 265 266 static void 267 readonly_changed_cb(void *arg, uint64_t newval) 268 { 269 zfsvfs_t *zfsvfs = arg; 270 271 if (newval) { 272 /* XXX locking on vfs_flag? */ 273 zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY; 274 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW); 275 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0); 276 } else { 277 /* XXX locking on vfs_flag? */ 278 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 279 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO); 280 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0); 281 } 282 } 283 284 static void 285 devices_changed_cb(void *arg, uint64_t newval) 286 { 287 zfsvfs_t *zfsvfs = arg; 288 289 if (newval == FALSE) { 290 zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES; 291 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES); 292 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0); 293 } else { 294 zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES; 295 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES); 296 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0); 297 } 298 } 299 300 static void 301 setuid_changed_cb(void *arg, uint64_t newval) 302 { 303 zfsvfs_t *zfsvfs = arg; 304 305 if (newval == FALSE) { 306 zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID; 307 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID); 308 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0); 309 } else { 310 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID; 311 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID); 312 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0); 313 } 314 } 315 316 static void 317 exec_changed_cb(void *arg, uint64_t newval) 318 { 319 zfsvfs_t *zfsvfs = arg; 320 321 if (newval == FALSE) { 322 zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC; 323 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC); 324 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0); 325 } else { 326 zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC; 327 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC); 328 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0); 329 } 330 } 331 332 /* 333 * The nbmand mount option can be changed at mount time. 334 * We can't allow it to be toggled on live file systems or incorrect 335 * behavior may be seen from cifs clients 336 * 337 * This property isn't registered via dsl_prop_register(), but this callback 338 * will be called when a file system is first mounted 339 */ 340 static void 341 nbmand_changed_cb(void *arg, uint64_t newval) 342 { 343 zfsvfs_t *zfsvfs = arg; 344 if (newval == FALSE) { 345 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND); 346 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0); 347 } else { 348 vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND); 349 vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0); 350 } 351 } 352 353 static void 354 snapdir_changed_cb(void *arg, uint64_t newval) 355 { 356 zfsvfs_t *zfsvfs = arg; 357 358 zfsvfs->z_show_ctldir = newval; 359 } 360 361 static void 362 vscan_changed_cb(void *arg, uint64_t newval) 363 { 364 zfsvfs_t *zfsvfs = arg; 365 366 zfsvfs->z_vscan = newval; 367 } 368 369 static void 370 acl_mode_changed_cb(void *arg, uint64_t newval) 371 { 372 zfsvfs_t *zfsvfs = arg; 373 374 zfsvfs->z_acl_mode = newval; 375 } 376 377 static void 378 acl_inherit_changed_cb(void *arg, uint64_t newval) 379 { 380 zfsvfs_t *zfsvfs = arg; 381 382 zfsvfs->z_acl_inherit = newval; 383 } 384 385 static int 386 zfs_register_callbacks(vfs_t *vfsp) 387 { 388 struct dsl_dataset *ds = NULL; 389 objset_t *os = NULL; 390 zfsvfs_t *zfsvfs = NULL; 391 uint64_t nbmand; 392 int readonly, do_readonly = B_FALSE; 393 int setuid, do_setuid = B_FALSE; 394 int exec, do_exec = B_FALSE; 395 int devices, do_devices = B_FALSE; 396 int xattr, do_xattr = B_FALSE; 397 int atime, do_atime = B_FALSE; 398 int error = 0; 399 400 ASSERT(vfsp); 401 zfsvfs = vfsp->vfs_data; 402 ASSERT(zfsvfs); 403 os = zfsvfs->z_os; 404 405 /* 406 * The act of registering our callbacks will destroy any mount 407 * options we may have. In order to enable temporary overrides 408 * of mount options, we stash away the current values and 409 * restore them after we register the callbacks. 410 */ 411 if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) { 412 readonly = B_TRUE; 413 do_readonly = B_TRUE; 414 } else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) { 415 readonly = B_FALSE; 416 do_readonly = B_TRUE; 417 } 418 if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) { 419 devices = B_FALSE; 420 setuid = B_FALSE; 421 do_devices = B_TRUE; 422 do_setuid = B_TRUE; 423 } else { 424 if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) { 425 devices = B_FALSE; 426 do_devices = B_TRUE; 427 } else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) { 428 devices = B_TRUE; 429 do_devices = B_TRUE; 430 } 431 432 if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) { 433 setuid = B_FALSE; 434 do_setuid = B_TRUE; 435 } else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) { 436 setuid = B_TRUE; 437 do_setuid = B_TRUE; 438 } 439 } 440 if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) { 441 exec = B_FALSE; 442 do_exec = B_TRUE; 443 } else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) { 444 exec = B_TRUE; 445 do_exec = B_TRUE; 446 } 447 if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) { 448 xattr = B_FALSE; 449 do_xattr = B_TRUE; 450 } else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) { 451 xattr = B_TRUE; 452 do_xattr = B_TRUE; 453 } 454 if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) { 455 atime = B_FALSE; 456 do_atime = B_TRUE; 457 } else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) { 458 atime = B_TRUE; 459 do_atime = B_TRUE; 460 } 461 462 /* 463 * nbmand is a special property. It can only be changed at 464 * mount time. 465 * 466 * This is weird, but it is documented to only be changeable 467 * at mount time. 468 */ 469 if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) { 470 nbmand = B_FALSE; 471 } else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) { 472 nbmand = B_TRUE; 473 } else { 474 char osname[MAXNAMELEN]; 475 476 dmu_objset_name(os, osname); 477 if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand, 478 NULL)) { 479 return (error); 480 } 481 } 482 483 /* 484 * Register property callbacks. 485 * 486 * It would probably be fine to just check for i/o error from 487 * the first prop_register(), but I guess I like to go 488 * overboard... 489 */ 490 ds = dmu_objset_ds(os); 491 error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs); 492 error = error ? error : dsl_prop_register(ds, 493 "xattr", xattr_changed_cb, zfsvfs); 494 error = error ? error : dsl_prop_register(ds, 495 "recordsize", blksz_changed_cb, zfsvfs); 496 error = error ? error : dsl_prop_register(ds, 497 "readonly", readonly_changed_cb, zfsvfs); 498 error = error ? error : dsl_prop_register(ds, 499 "devices", devices_changed_cb, zfsvfs); 500 error = error ? error : dsl_prop_register(ds, 501 "setuid", setuid_changed_cb, zfsvfs); 502 error = error ? error : dsl_prop_register(ds, 503 "exec", exec_changed_cb, zfsvfs); 504 error = error ? error : dsl_prop_register(ds, 505 "snapdir", snapdir_changed_cb, zfsvfs); 506 error = error ? error : dsl_prop_register(ds, 507 "aclmode", acl_mode_changed_cb, zfsvfs); 508 error = error ? error : dsl_prop_register(ds, 509 "aclinherit", acl_inherit_changed_cb, zfsvfs); 510 error = error ? error : dsl_prop_register(ds, 511 "vscan", vscan_changed_cb, zfsvfs); 512 if (error) 513 goto unregister; 514 515 /* 516 * Invoke our callbacks to restore temporary mount options. 517 */ 518 if (do_readonly) 519 readonly_changed_cb(zfsvfs, readonly); 520 if (do_setuid) 521 setuid_changed_cb(zfsvfs, setuid); 522 if (do_exec) 523 exec_changed_cb(zfsvfs, exec); 524 if (do_devices) 525 devices_changed_cb(zfsvfs, devices); 526 if (do_xattr) 527 xattr_changed_cb(zfsvfs, xattr); 528 if (do_atime) 529 atime_changed_cb(zfsvfs, atime); 530 531 nbmand_changed_cb(zfsvfs, nbmand); 532 533 return (0); 534 535 unregister: 536 /* 537 * We may attempt to unregister some callbacks that are not 538 * registered, but this is OK; it will simply return ENOMSG, 539 * which we will ignore. 540 */ 541 (void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs); 542 (void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs); 543 (void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs); 544 (void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs); 545 (void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs); 546 (void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs); 547 (void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs); 548 (void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs); 549 (void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs); 550 (void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb, 551 zfsvfs); 552 (void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs); 553 return (error); 554 555 } 556 557 static int 558 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting) 559 { 560 int error; 561 562 error = zfs_register_callbacks(zfsvfs->z_vfs); 563 if (error) 564 return (error); 565 566 /* 567 * Set the objset user_ptr to track its zfsvfs. 568 */ 569 mutex_enter(&zfsvfs->z_os->os->os_user_ptr_lock); 570 dmu_objset_set_user(zfsvfs->z_os, zfsvfs); 571 mutex_exit(&zfsvfs->z_os->os->os_user_ptr_lock); 572 573 /* 574 * If we are not mounting (ie: online recv), then we don't 575 * have to worry about replaying the log as we blocked all 576 * operations out since we closed the ZIL. 577 */ 578 if (mounting) { 579 boolean_t readonly; 580 581 /* 582 * During replay we remove the read only flag to 583 * allow replays to succeed. 584 */ 585 readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY; 586 if (readonly != 0) 587 zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY; 588 else 589 zfs_unlinked_drain(zfsvfs); 590 591 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data); 592 if (zil_disable) { 593 zil_destroy(zfsvfs->z_log, 0); 594 zfsvfs->z_log = NULL; 595 } else { 596 /* 597 * Parse and replay the intent log. 598 * 599 * Because of ziltest, this must be done after 600 * zfs_unlinked_drain(). (Further note: ziltest 601 * doesn't use readonly mounts, where 602 * zfs_unlinked_drain() isn't called.) This is because 603 * ziltest causes spa_sync() to think it's committed, 604 * but actually it is not, so the intent log contains 605 * many txg's worth of changes. 606 * 607 * In particular, if object N is in the unlinked set in 608 * the last txg to actually sync, then it could be 609 * actually freed in a later txg and then reallocated 610 * in a yet later txg. This would write a "create 611 * object N" record to the intent log. Normally, this 612 * would be fine because the spa_sync() would have 613 * written out the fact that object N is free, before 614 * we could write the "create object N" intent log 615 * record. 616 * 617 * But when we are in ziltest mode, we advance the "open 618 * txg" without actually spa_sync()-ing the changes to 619 * disk. So we would see that object N is still 620 * allocated and in the unlinked set, and there is an 621 * intent log record saying to allocate it. 622 */ 623 zfsvfs->z_replay = B_TRUE; 624 zil_replay(zfsvfs->z_os, zfsvfs, zfs_replay_vector); 625 zfsvfs->z_replay = B_FALSE; 626 } 627 zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */ 628 } 629 630 return (0); 631 } 632 633 static void 634 zfs_freezfsvfs(zfsvfs_t *zfsvfs) 635 { 636 mutex_destroy(&zfsvfs->z_znodes_lock); 637 mutex_destroy(&zfsvfs->z_online_recv_lock); 638 mutex_destroy(&zfsvfs->z_lock); 639 list_destroy(&zfsvfs->z_all_znodes); 640 rrw_destroy(&zfsvfs->z_teardown_lock); 641 rw_destroy(&zfsvfs->z_teardown_inactive_lock); 642 rw_destroy(&zfsvfs->z_fuid_lock); 643 kmem_free(zfsvfs, sizeof (zfsvfs_t)); 644 } 645 646 static int 647 zfs_domount(vfs_t *vfsp, char *osname) 648 { 649 dev_t mount_dev; 650 uint64_t recordsize, readonly; 651 int error = 0; 652 int mode; 653 zfsvfs_t *zfsvfs; 654 znode_t *zp = NULL; 655 656 ASSERT(vfsp); 657 ASSERT(osname); 658 659 /* 660 * Initialize the zfs-specific filesystem structure. 661 * Should probably make this a kmem cache, shuffle fields, 662 * and just bzero up to z_hold_mtx[]. 663 */ 664 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP); 665 zfsvfs->z_vfs = vfsp; 666 zfsvfs->z_parent = zfsvfs; 667 zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE; 668 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE; 669 670 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL); 671 mutex_init(&zfsvfs->z_online_recv_lock, NULL, MUTEX_DEFAULT, NULL); 672 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL); 673 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t), 674 offsetof(znode_t, z_link_node)); 675 rrw_init(&zfsvfs->z_teardown_lock); 676 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL); 677 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL); 678 679 /* Initialize the generic filesystem structure. */ 680 vfsp->vfs_bcount = 0; 681 vfsp->vfs_data = NULL; 682 683 if (zfs_create_unique_device(&mount_dev) == -1) { 684 error = ENODEV; 685 goto out; 686 } 687 ASSERT(vfs_devismounted(mount_dev) == 0); 688 689 if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize, 690 NULL)) 691 goto out; 692 693 vfsp->vfs_dev = mount_dev; 694 vfsp->vfs_fstype = zfsfstype; 695 vfsp->vfs_bsize = recordsize; 696 vfsp->vfs_flag |= VFS_NOTRUNC; 697 vfsp->vfs_data = zfsvfs; 698 699 if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL)) 700 goto out; 701 702 mode = DS_MODE_OWNER; 703 if (readonly) 704 mode |= DS_MODE_READONLY; 705 706 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 707 if (error == EROFS) { 708 mode = DS_MODE_OWNER | DS_MODE_READONLY; 709 error = dmu_objset_open(osname, DMU_OST_ZFS, mode, 710 &zfsvfs->z_os); 711 } 712 713 if (error) 714 goto out; 715 716 if (error = zfs_init_fs(zfsvfs, &zp)) 717 goto out; 718 719 /* The call to zfs_init_fs leaves the vnode held, release it here. */ 720 VN_RELE(ZTOV(zp)); 721 722 /* 723 * Set features for file system. 724 */ 725 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os); 726 if (zfsvfs->z_use_fuids) { 727 vfs_set_feature(vfsp, VFSFT_XVATTR); 728 vfs_set_feature(vfsp, VFSFT_SYSATTR_VIEWS); 729 vfs_set_feature(vfsp, VFSFT_ACEMASKONACCESS); 730 vfs_set_feature(vfsp, VFSFT_ACLONCREATE); 731 } 732 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) { 733 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 734 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 735 vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE); 736 } else if (zfsvfs->z_case == ZFS_CASE_MIXED) { 737 vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS); 738 vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE); 739 } 740 741 if (dmu_objset_is_snapshot(zfsvfs->z_os)) { 742 uint64_t pval; 743 744 ASSERT(mode & DS_MODE_READONLY); 745 atime_changed_cb(zfsvfs, B_FALSE); 746 readonly_changed_cb(zfsvfs, B_TRUE); 747 if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL)) 748 goto out; 749 xattr_changed_cb(zfsvfs, pval); 750 zfsvfs->z_issnap = B_TRUE; 751 } else { 752 error = zfsvfs_setup(zfsvfs, B_TRUE); 753 } 754 755 if (!zfsvfs->z_issnap) 756 zfsctl_create(zfsvfs); 757 out: 758 if (error) { 759 if (zfsvfs->z_os) 760 dmu_objset_close(zfsvfs->z_os); 761 zfs_freezfsvfs(zfsvfs); 762 } else { 763 atomic_add_32(&zfs_active_fs_count, 1); 764 } 765 766 return (error); 767 } 768 769 void 770 zfs_unregister_callbacks(zfsvfs_t *zfsvfs) 771 { 772 objset_t *os = zfsvfs->z_os; 773 struct dsl_dataset *ds; 774 775 /* 776 * Unregister properties. 777 */ 778 if (!dmu_objset_is_snapshot(os)) { 779 ds = dmu_objset_ds(os); 780 VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb, 781 zfsvfs) == 0); 782 783 VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb, 784 zfsvfs) == 0); 785 786 VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, 787 zfsvfs) == 0); 788 789 VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb, 790 zfsvfs) == 0); 791 792 VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb, 793 zfsvfs) == 0); 794 795 VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb, 796 zfsvfs) == 0); 797 798 VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb, 799 zfsvfs) == 0); 800 801 VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, 802 zfsvfs) == 0); 803 804 VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, 805 zfsvfs) == 0); 806 807 VERIFY(dsl_prop_unregister(ds, "aclinherit", 808 acl_inherit_changed_cb, zfsvfs) == 0); 809 810 VERIFY(dsl_prop_unregister(ds, "vscan", 811 vscan_changed_cb, zfsvfs) == 0); 812 } 813 } 814 815 /* 816 * Convert a decimal digit string to a uint64_t integer. 817 */ 818 static int 819 str_to_uint64(char *str, uint64_t *objnum) 820 { 821 uint64_t num = 0; 822 823 while (*str) { 824 if (*str < '0' || *str > '9') 825 return (EINVAL); 826 827 num = num*10 + *str++ - '0'; 828 } 829 830 *objnum = num; 831 return (0); 832 } 833 834 /* 835 * The boot path passed from the boot loader is in the form of 836 * "rootpool-name/root-filesystem-object-number'. Convert this 837 * string to a dataset name: "rootpool-name/root-filesystem-name". 838 */ 839 static int 840 zfs_parse_bootfs(char *bpath, char *outpath) 841 { 842 char *slashp; 843 uint64_t objnum; 844 int error; 845 846 if (*bpath == 0 || *bpath == '/') 847 return (EINVAL); 848 849 (void) strcpy(outpath, bpath); 850 851 slashp = strchr(bpath, '/'); 852 853 /* if no '/', just return the pool name */ 854 if (slashp == NULL) { 855 return (0); 856 } 857 858 /* if not a number, just return the root dataset name */ 859 if (str_to_uint64(slashp+1, &objnum)) { 860 return (0); 861 } 862 863 *slashp = '\0'; 864 error = dsl_dsobj_to_dsname(bpath, objnum, outpath); 865 *slashp = '/'; 866 867 return (error); 868 } 869 870 static int 871 zfs_mountroot(vfs_t *vfsp, enum whymountroot why) 872 { 873 int error = 0; 874 static int zfsrootdone = 0; 875 zfsvfs_t *zfsvfs = NULL; 876 znode_t *zp = NULL; 877 vnode_t *vp = NULL; 878 char *zfs_bootfs; 879 char *zfs_devid; 880 881 ASSERT(vfsp); 882 883 /* 884 * The filesystem that we mount as root is defined in the 885 * boot property "zfs-bootfs" with a format of 886 * "poolname/root-dataset-objnum". 887 */ 888 if (why == ROOT_INIT) { 889 if (zfsrootdone++) 890 return (EBUSY); 891 /* 892 * the process of doing a spa_load will require the 893 * clock to be set before we could (for example) do 894 * something better by looking at the timestamp on 895 * an uberblock, so just set it to -1. 896 */ 897 clkset(-1); 898 899 if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) { 900 cmn_err(CE_NOTE, "spa_get_bootfs: can not get " 901 "bootfs name"); 902 return (EINVAL); 903 } 904 zfs_devid = spa_get_bootprop("diskdevid"); 905 error = spa_import_rootpool(rootfs.bo_name, zfs_devid); 906 if (zfs_devid) 907 spa_free_bootprop(zfs_devid); 908 if (error) { 909 spa_free_bootprop(zfs_bootfs); 910 cmn_err(CE_NOTE, "spa_import_rootpool: error %d", 911 error); 912 return (error); 913 } 914 if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) { 915 spa_free_bootprop(zfs_bootfs); 916 cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d", 917 error); 918 return (error); 919 } 920 921 spa_free_bootprop(zfs_bootfs); 922 923 if (error = vfs_lock(vfsp)) 924 return (error); 925 926 if (error = zfs_domount(vfsp, rootfs.bo_name)) { 927 cmn_err(CE_NOTE, "zfs_domount: error %d", error); 928 goto out; 929 } 930 931 zfsvfs = (zfsvfs_t *)vfsp->vfs_data; 932 ASSERT(zfsvfs); 933 if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) { 934 cmn_err(CE_NOTE, "zfs_zget: error %d", error); 935 goto out; 936 } 937 938 vp = ZTOV(zp); 939 mutex_enter(&vp->v_lock); 940 vp->v_flag |= VROOT; 941 mutex_exit(&vp->v_lock); 942 rootvp = vp; 943 944 /* 945 * Leave rootvp held. The root file system is never unmounted. 946 */ 947 948 vfs_add((struct vnode *)0, vfsp, 949 (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0); 950 out: 951 vfs_unlock(vfsp); 952 return (error); 953 } else if (why == ROOT_REMOUNT) { 954 readonly_changed_cb(vfsp->vfs_data, B_FALSE); 955 vfsp->vfs_flag |= VFS_REMOUNT; 956 957 /* refresh mount options */ 958 zfs_unregister_callbacks(vfsp->vfs_data); 959 return (zfs_register_callbacks(vfsp)); 960 961 } else if (why == ROOT_UNMOUNT) { 962 zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data); 963 (void) zfs_sync(vfsp, 0, 0); 964 return (0); 965 } 966 967 /* 968 * if "why" is equal to anything else other than ROOT_INIT, 969 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it. 970 */ 971 return (ENOTSUP); 972 } 973 974 /*ARGSUSED*/ 975 static int 976 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr) 977 { 978 char *osname; 979 pathname_t spn; 980 int error = 0; 981 uio_seg_t fromspace = (uap->flags & MS_SYSSPACE) ? 982 UIO_SYSSPACE : UIO_USERSPACE; 983 int canwrite; 984 985 if (mvp->v_type != VDIR) 986 return (ENOTDIR); 987 988 mutex_enter(&mvp->v_lock); 989 if ((uap->flags & MS_REMOUNT) == 0 && 990 (uap->flags & MS_OVERLAY) == 0 && 991 (mvp->v_count != 1 || (mvp->v_flag & VROOT))) { 992 mutex_exit(&mvp->v_lock); 993 return (EBUSY); 994 } 995 mutex_exit(&mvp->v_lock); 996 997 /* 998 * ZFS does not support passing unparsed data in via MS_DATA. 999 * Users should use the MS_OPTIONSTR interface; this means 1000 * that all option parsing is already done and the options struct 1001 * can be interrogated. 1002 */ 1003 if ((uap->flags & MS_DATA) && uap->datalen > 0) 1004 return (EINVAL); 1005 1006 /* 1007 * Get the objset name (the "special" mount argument). 1008 */ 1009 if (error = pn_get(uap->spec, fromspace, &spn)) 1010 return (error); 1011 1012 osname = spn.pn_path; 1013 1014 /* 1015 * Check for mount privilege? 1016 * 1017 * If we don't have privilege then see if 1018 * we have local permission to allow it 1019 */ 1020 error = secpolicy_fs_mount(cr, mvp, vfsp); 1021 if (error) { 1022 error = dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr); 1023 if (error == 0) { 1024 vattr_t vattr; 1025 1026 /* 1027 * Make sure user is the owner of the mount point 1028 * or has sufficient privileges. 1029 */ 1030 1031 vattr.va_mask = AT_UID; 1032 1033 if (error = VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) { 1034 goto out; 1035 } 1036 1037 if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 && 1038 VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) { 1039 error = EPERM; 1040 goto out; 1041 } 1042 1043 secpolicy_fs_mount_clearopts(cr, vfsp); 1044 } else { 1045 goto out; 1046 } 1047 } 1048 1049 /* 1050 * Refuse to mount a filesystem if we are in a local zone and the 1051 * dataset is not visible. 1052 */ 1053 if (!INGLOBALZONE(curproc) && 1054 (!zone_dataset_visible(osname, &canwrite) || !canwrite)) { 1055 error = EPERM; 1056 goto out; 1057 } 1058 1059 /* 1060 * When doing a remount, we simply refresh our temporary properties 1061 * according to those options set in the current VFS options. 1062 */ 1063 if (uap->flags & MS_REMOUNT) { 1064 /* refresh mount options */ 1065 zfs_unregister_callbacks(vfsp->vfs_data); 1066 error = zfs_register_callbacks(vfsp); 1067 goto out; 1068 } 1069 1070 error = zfs_domount(vfsp, osname); 1071 1072 out: 1073 pn_free(&spn); 1074 return (error); 1075 } 1076 1077 static int 1078 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp) 1079 { 1080 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1081 dev32_t d32; 1082 uint64_t refdbytes, availbytes, usedobjs, availobjs; 1083 1084 ZFS_ENTER(zfsvfs); 1085 1086 dmu_objset_space(zfsvfs->z_os, 1087 &refdbytes, &availbytes, &usedobjs, &availobjs); 1088 1089 /* 1090 * The underlying storage pool actually uses multiple block sizes. 1091 * We report the fragsize as the smallest block size we support, 1092 * and we report our blocksize as the filesystem's maximum blocksize. 1093 */ 1094 statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT; 1095 statp->f_bsize = zfsvfs->z_max_blksz; 1096 1097 /* 1098 * The following report "total" blocks of various kinds in the 1099 * file system, but reported in terms of f_frsize - the 1100 * "fragment" size. 1101 */ 1102 1103 statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT; 1104 statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT; 1105 statp->f_bavail = statp->f_bfree; /* no root reservation */ 1106 1107 /* 1108 * statvfs() should really be called statufs(), because it assumes 1109 * static metadata. ZFS doesn't preallocate files, so the best 1110 * we can do is report the max that could possibly fit in f_files, 1111 * and that minus the number actually used in f_ffree. 1112 * For f_ffree, report the smaller of the number of object available 1113 * and the number of blocks (each object will take at least a block). 1114 */ 1115 statp->f_ffree = MIN(availobjs, statp->f_bfree); 1116 statp->f_favail = statp->f_ffree; /* no "root reservation" */ 1117 statp->f_files = statp->f_ffree + usedobjs; 1118 1119 (void) cmpldev(&d32, vfsp->vfs_dev); 1120 statp->f_fsid = d32; 1121 1122 /* 1123 * We're a zfs filesystem. 1124 */ 1125 (void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name); 1126 1127 statp->f_flag = vf_to_stf(vfsp->vfs_flag); 1128 1129 statp->f_namemax = ZFS_MAXNAMELEN; 1130 1131 /* 1132 * We have all of 32 characters to stuff a string here. 1133 * Is there anything useful we could/should provide? 1134 */ 1135 bzero(statp->f_fstr, sizeof (statp->f_fstr)); 1136 1137 ZFS_EXIT(zfsvfs); 1138 return (0); 1139 } 1140 1141 static int 1142 zfs_root(vfs_t *vfsp, vnode_t **vpp) 1143 { 1144 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1145 znode_t *rootzp; 1146 int error; 1147 1148 ZFS_ENTER(zfsvfs); 1149 1150 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp); 1151 if (error == 0) 1152 *vpp = ZTOV(rootzp); 1153 1154 ZFS_EXIT(zfsvfs); 1155 return (error); 1156 } 1157 1158 /* 1159 * Teardown the zfsvfs::z_os. 1160 * 1161 * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock' 1162 * and 'z_teardown_inactive_lock' held. 1163 */ 1164 static int 1165 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting) 1166 { 1167 znode_t *zp; 1168 1169 rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG); 1170 1171 if (!unmounting) { 1172 /* 1173 * We purge the parent filesystem's vfsp as the parent 1174 * filesystem and all of its snapshots have their vnode's 1175 * v_vfsp set to the parent's filesystem's vfsp. Note, 1176 * 'z_parent' is self referential for non-snapshots. 1177 */ 1178 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1179 } 1180 1181 /* 1182 * Close the zil. NB: Can't close the zil while zfs_inactive 1183 * threads are blocked as zil_close can call zfs_inactive. 1184 */ 1185 if (zfsvfs->z_log) { 1186 zil_close(zfsvfs->z_log); 1187 zfsvfs->z_log = NULL; 1188 } 1189 1190 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER); 1191 1192 /* 1193 * If we are not unmounting (ie: online recv) and someone already 1194 * unmounted this file system while we were doing the switcheroo, 1195 * or a reopen of z_os failed then just bail out now. 1196 */ 1197 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) { 1198 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1199 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1200 return (EIO); 1201 } 1202 1203 /* 1204 * At this point there are no vops active, and any new vops will 1205 * fail with EIO since we have z_teardown_lock for writer (only 1206 * relavent for forced unmount). 1207 * 1208 * Release all holds on dbufs. 1209 */ 1210 mutex_enter(&zfsvfs->z_znodes_lock); 1211 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL; 1212 zp = list_next(&zfsvfs->z_all_znodes, zp)) 1213 if (zp->z_dbuf) { 1214 ASSERT(ZTOV(zp)->v_count > 0); 1215 zfs_znode_dmu_fini(zp); 1216 } 1217 mutex_exit(&zfsvfs->z_znodes_lock); 1218 1219 /* 1220 * If we are unmounting, set the unmounted flag and let new vops 1221 * unblock. zfs_inactive will have the unmounted behavior, and all 1222 * other vops will fail with EIO. 1223 */ 1224 if (unmounting) { 1225 zfsvfs->z_unmounted = B_TRUE; 1226 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1227 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1228 } 1229 1230 /* 1231 * z_os will be NULL if there was an error in attempting to reopen 1232 * zfsvfs, so just return as the properties had already been 1233 * unregistered and cached data had been evicted before. 1234 */ 1235 if (zfsvfs->z_os == NULL) 1236 return (0); 1237 1238 /* 1239 * Unregister properties. 1240 */ 1241 zfs_unregister_callbacks(zfsvfs); 1242 1243 /* 1244 * Evict cached data 1245 */ 1246 if (dmu_objset_evict_dbufs(zfsvfs->z_os)) { 1247 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0); 1248 (void) dmu_objset_evict_dbufs(zfsvfs->z_os); 1249 } 1250 1251 return (0); 1252 } 1253 1254 /*ARGSUSED*/ 1255 static int 1256 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr) 1257 { 1258 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1259 objset_t *os; 1260 int ret; 1261 1262 ret = secpolicy_fs_unmount(cr, vfsp); 1263 if (ret) { 1264 ret = dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource), 1265 ZFS_DELEG_PERM_MOUNT, cr); 1266 if (ret) 1267 return (ret); 1268 } 1269 1270 /* 1271 * We purge the parent filesystem's vfsp as the parent filesystem 1272 * and all of its snapshots have their vnode's v_vfsp set to the 1273 * parent's filesystem's vfsp. Note, 'z_parent' is self 1274 * referential for non-snapshots. 1275 */ 1276 (void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0); 1277 1278 /* 1279 * Unmount any snapshots mounted under .zfs before unmounting the 1280 * dataset itself. 1281 */ 1282 if (zfsvfs->z_ctldir != NULL && 1283 (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) { 1284 return (ret); 1285 } 1286 1287 if (!(fflag & MS_FORCE)) { 1288 /* 1289 * Check the number of active vnodes in the file system. 1290 * Our count is maintained in the vfs structure, but the 1291 * number is off by 1 to indicate a hold on the vfs 1292 * structure itself. 1293 * 1294 * The '.zfs' directory maintains a reference of its 1295 * own, and any active references underneath are 1296 * reflected in the vnode count. 1297 */ 1298 if (zfsvfs->z_ctldir == NULL) { 1299 if (vfsp->vfs_count > 1) 1300 return (EBUSY); 1301 } else { 1302 if (vfsp->vfs_count > 2 || 1303 zfsvfs->z_ctldir->v_count > 1) 1304 return (EBUSY); 1305 } 1306 } 1307 1308 vfsp->vfs_flag |= VFS_UNMOUNTED; 1309 1310 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0); 1311 os = zfsvfs->z_os; 1312 1313 /* 1314 * z_os will be NULL if there was an error in 1315 * attempting to reopen zfsvfs. 1316 */ 1317 if (os != NULL) { 1318 /* 1319 * Unset the objset user_ptr. 1320 */ 1321 mutex_enter(&os->os->os_user_ptr_lock); 1322 dmu_objset_set_user(os, NULL); 1323 mutex_exit(&os->os->os_user_ptr_lock); 1324 1325 /* 1326 * Finally release the objset 1327 */ 1328 dmu_objset_close(os); 1329 } 1330 1331 /* 1332 * We can now safely destroy the '.zfs' directory node. 1333 */ 1334 if (zfsvfs->z_ctldir != NULL) 1335 zfsctl_destroy(zfsvfs); 1336 1337 return (0); 1338 } 1339 1340 static int 1341 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp) 1342 { 1343 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1344 znode_t *zp; 1345 uint64_t object = 0; 1346 uint64_t fid_gen = 0; 1347 uint64_t gen_mask; 1348 uint64_t zp_gen; 1349 int i, err; 1350 1351 *vpp = NULL; 1352 1353 ZFS_ENTER(zfsvfs); 1354 1355 if (fidp->fid_len == LONG_FID_LEN) { 1356 zfid_long_t *zlfid = (zfid_long_t *)fidp; 1357 uint64_t objsetid = 0; 1358 uint64_t setgen = 0; 1359 1360 for (i = 0; i < sizeof (zlfid->zf_setid); i++) 1361 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i); 1362 1363 for (i = 0; i < sizeof (zlfid->zf_setgen); i++) 1364 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i); 1365 1366 ZFS_EXIT(zfsvfs); 1367 1368 err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs); 1369 if (err) 1370 return (EINVAL); 1371 ZFS_ENTER(zfsvfs); 1372 } 1373 1374 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) { 1375 zfid_short_t *zfid = (zfid_short_t *)fidp; 1376 1377 for (i = 0; i < sizeof (zfid->zf_object); i++) 1378 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i); 1379 1380 for (i = 0; i < sizeof (zfid->zf_gen); i++) 1381 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i); 1382 } else { 1383 ZFS_EXIT(zfsvfs); 1384 return (EINVAL); 1385 } 1386 1387 /* A zero fid_gen means we are in the .zfs control directories */ 1388 if (fid_gen == 0 && 1389 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) { 1390 *vpp = zfsvfs->z_ctldir; 1391 ASSERT(*vpp != NULL); 1392 if (object == ZFSCTL_INO_SNAPDIR) { 1393 VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL, 1394 0, NULL, NULL, NULL, NULL, NULL) == 0); 1395 } else { 1396 VN_HOLD(*vpp); 1397 } 1398 ZFS_EXIT(zfsvfs); 1399 return (0); 1400 } 1401 1402 gen_mask = -1ULL >> (64 - 8 * i); 1403 1404 dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask); 1405 if (err = zfs_zget(zfsvfs, object, &zp)) { 1406 ZFS_EXIT(zfsvfs); 1407 return (err); 1408 } 1409 zp_gen = zp->z_phys->zp_gen & gen_mask; 1410 if (zp_gen == 0) 1411 zp_gen = 1; 1412 if (zp->z_unlinked || zp_gen != fid_gen) { 1413 dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen); 1414 VN_RELE(ZTOV(zp)); 1415 ZFS_EXIT(zfsvfs); 1416 return (EINVAL); 1417 } 1418 1419 *vpp = ZTOV(zp); 1420 ZFS_EXIT(zfsvfs); 1421 return (0); 1422 } 1423 1424 /* 1425 * Block out VOPs and close zfsvfs_t::z_os 1426 * 1427 * Note, if successful, then we return with the 'z_teardown_lock' and 1428 * 'z_teardown_inactive_lock' write held. 1429 */ 1430 int 1431 zfs_suspend_fs(zfsvfs_t *zfsvfs, char *name, int *mode) 1432 { 1433 int error; 1434 1435 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0) 1436 return (error); 1437 1438 *mode = zfsvfs->z_os->os_mode; 1439 dmu_objset_name(zfsvfs->z_os, name); 1440 dmu_objset_close(zfsvfs->z_os); 1441 1442 return (0); 1443 } 1444 1445 /* 1446 * Reopen zfsvfs_t::z_os and release VOPs. 1447 */ 1448 int 1449 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname, int mode) 1450 { 1451 int err; 1452 1453 ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock)); 1454 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)); 1455 1456 err = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os); 1457 if (err) { 1458 zfsvfs->z_os = NULL; 1459 } else { 1460 znode_t *zp; 1461 1462 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0); 1463 1464 /* 1465 * Attempt to re-establish all the active znodes with 1466 * their dbufs. If a zfs_rezget() fails, then we'll let 1467 * any potential callers discover that via ZFS_ENTER_VERIFY_VP 1468 * when they try to use their znode. 1469 */ 1470 mutex_enter(&zfsvfs->z_znodes_lock); 1471 for (zp = list_head(&zfsvfs->z_all_znodes); zp; 1472 zp = list_next(&zfsvfs->z_all_znodes, zp)) { 1473 (void) zfs_rezget(zp); 1474 } 1475 mutex_exit(&zfsvfs->z_znodes_lock); 1476 1477 } 1478 1479 /* release the VOPs */ 1480 rw_exit(&zfsvfs->z_teardown_inactive_lock); 1481 rrw_exit(&zfsvfs->z_teardown_lock, FTAG); 1482 1483 if (err) { 1484 /* 1485 * Since we couldn't reopen zfsvfs::z_os, force 1486 * unmount this file system. 1487 */ 1488 if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0) 1489 (void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED()); 1490 } 1491 return (err); 1492 } 1493 1494 static void 1495 zfs_freevfs(vfs_t *vfsp) 1496 { 1497 zfsvfs_t *zfsvfs = vfsp->vfs_data; 1498 int i; 1499 1500 for (i = 0; i != ZFS_OBJ_MTX_SZ; i++) 1501 mutex_destroy(&zfsvfs->z_hold_mtx[i]); 1502 1503 zfs_fuid_destroy(zfsvfs); 1504 zfs_freezfsvfs(zfsvfs); 1505 1506 atomic_add_32(&zfs_active_fs_count, -1); 1507 } 1508 1509 /* 1510 * VFS_INIT() initialization. Note that there is no VFS_FINI(), 1511 * so we can't safely do any non-idempotent initialization here. 1512 * Leave that to zfs_init() and zfs_fini(), which are called 1513 * from the module's _init() and _fini() entry points. 1514 */ 1515 /*ARGSUSED*/ 1516 static int 1517 zfs_vfsinit(int fstype, char *name) 1518 { 1519 int error; 1520 1521 zfsfstype = fstype; 1522 1523 /* 1524 * Setup vfsops and vnodeops tables. 1525 */ 1526 error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops); 1527 if (error != 0) { 1528 cmn_err(CE_WARN, "zfs: bad vfs ops template"); 1529 } 1530 1531 error = zfs_create_op_tables(); 1532 if (error) { 1533 zfs_remove_op_tables(); 1534 cmn_err(CE_WARN, "zfs: bad vnode ops template"); 1535 (void) vfs_freevfsops_by_type(zfsfstype); 1536 return (error); 1537 } 1538 1539 mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL); 1540 1541 /* 1542 * Unique major number for all zfs mounts. 1543 * If we run out of 32-bit minors, we'll getudev() another major. 1544 */ 1545 zfs_major = ddi_name_to_major(ZFS_DRIVER); 1546 zfs_minor = ZFS_MIN_MINOR; 1547 1548 return (0); 1549 } 1550 1551 void 1552 zfs_init(void) 1553 { 1554 /* 1555 * Initialize .zfs directory structures 1556 */ 1557 zfsctl_init(); 1558 1559 /* 1560 * Initialize znode cache, vnode ops, etc... 1561 */ 1562 zfs_znode_init(); 1563 } 1564 1565 void 1566 zfs_fini(void) 1567 { 1568 zfsctl_fini(); 1569 zfs_znode_fini(); 1570 } 1571 1572 int 1573 zfs_busy(void) 1574 { 1575 return (zfs_active_fs_count != 0); 1576 } 1577 1578 int 1579 zfs_set_version(const char *name, uint64_t newvers) 1580 { 1581 int error; 1582 objset_t *os; 1583 dmu_tx_t *tx; 1584 uint64_t curvers; 1585 1586 /* 1587 * XXX for now, require that the filesystem be unmounted. Would 1588 * be nice to find the zfsvfs_t and just update that if 1589 * possible. 1590 */ 1591 1592 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION) 1593 return (EINVAL); 1594 1595 error = dmu_objset_open(name, DMU_OST_ZFS, DS_MODE_OWNER, &os); 1596 if (error) 1597 return (error); 1598 1599 error = zap_lookup(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 1600 8, 1, &curvers); 1601 if (error) 1602 goto out; 1603 if (newvers < curvers) { 1604 error = EINVAL; 1605 goto out; 1606 } 1607 1608 tx = dmu_tx_create(os); 1609 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, 0, ZPL_VERSION_STR); 1610 error = dmu_tx_assign(tx, TXG_WAIT); 1611 if (error) { 1612 dmu_tx_abort(tx); 1613 goto out; 1614 } 1615 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR, 8, 1, 1616 &newvers, tx); 1617 1618 spa_history_internal_log(LOG_DS_UPGRADE, 1619 dmu_objset_spa(os), tx, CRED(), 1620 "oldver=%llu newver=%llu dataset = %llu", curvers, newvers, 1621 dmu_objset_id(os)); 1622 dmu_tx_commit(tx); 1623 1624 out: 1625 dmu_objset_close(os); 1626 return (error); 1627 } 1628 1629 /* 1630 * Read a property stored within the master node. 1631 */ 1632 int 1633 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value) 1634 { 1635 const char *pname; 1636 int error = ENOENT; 1637 1638 /* 1639 * Look up the file system's value for the property. For the 1640 * version property, we look up a slightly different string. 1641 */ 1642 if (prop == ZFS_PROP_VERSION) 1643 pname = ZPL_VERSION_STR; 1644 else 1645 pname = zfs_prop_to_name(prop); 1646 1647 if (os != NULL) 1648 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value); 1649 1650 if (error == ENOENT) { 1651 /* No value set, use the default value */ 1652 switch (prop) { 1653 case ZFS_PROP_VERSION: 1654 *value = ZPL_VERSION; 1655 break; 1656 case ZFS_PROP_NORMALIZE: 1657 case ZFS_PROP_UTF8ONLY: 1658 *value = 0; 1659 break; 1660 case ZFS_PROP_CASE: 1661 *value = ZFS_CASE_SENSITIVE; 1662 break; 1663 default: 1664 return (error); 1665 } 1666 error = 0; 1667 } 1668 return (error); 1669 } 1670 1671 static vfsdef_t vfw = { 1672 VFSDEF_VERSION, 1673 MNTTYPE_ZFS, 1674 zfs_vfsinit, 1675 VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS| 1676 VSW_XID, 1677 &zfs_mntopts 1678 }; 1679 1680 struct modlfs zfs_modlfs = { 1681 &mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw 1682 }; 1683