xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 3e2514dc0f3dfbffad7bfb4744cf26707a910f26)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012 by Delphix. All rights reserved.
24  */
25 
26 /* Portions Copyright 2010 Robert Milkowski */
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/vnode.h>
35 #include <sys/vfs.h>
36 #include <sys/vfs_opreg.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zfs_dir.h>
43 #include <sys/zil.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/dmu.h>
46 #include <sys/dsl_prop.h>
47 #include <sys/dsl_dataset.h>
48 #include <sys/dsl_deleg.h>
49 #include <sys/spa.h>
50 #include <sys/zap.h>
51 #include <sys/sa.h>
52 #include <sys/varargs.h>
53 #include <sys/policy.h>
54 #include <sys/atomic.h>
55 #include <sys/mkdev.h>
56 #include <sys/modctl.h>
57 #include <sys/refstr.h>
58 #include <sys/zfs_ioctl.h>
59 #include <sys/zfs_ctldir.h>
60 #include <sys/zfs_fuid.h>
61 #include <sys/bootconf.h>
62 #include <sys/sunddi.h>
63 #include <sys/dnlc.h>
64 #include <sys/dmu_objset.h>
65 #include <sys/spa_boot.h>
66 #include <sys/sa.h>
67 #include "zfs_comutil.h"
68 
69 int zfsfstype;
70 vfsops_t *zfs_vfsops = NULL;
71 static major_t zfs_major;
72 static minor_t zfs_minor;
73 static kmutex_t	zfs_dev_mtx;
74 
75 extern int sys_shutdown;
76 
77 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
78 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
79 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
80 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
81 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
82 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
83 static void zfs_freevfs(vfs_t *vfsp);
84 
85 static const fs_operation_def_t zfs_vfsops_template[] = {
86 	VFSNAME_MOUNT,		{ .vfs_mount = zfs_mount },
87 	VFSNAME_MOUNTROOT,	{ .vfs_mountroot = zfs_mountroot },
88 	VFSNAME_UNMOUNT,	{ .vfs_unmount = zfs_umount },
89 	VFSNAME_ROOT,		{ .vfs_root = zfs_root },
90 	VFSNAME_STATVFS,	{ .vfs_statvfs = zfs_statvfs },
91 	VFSNAME_SYNC,		{ .vfs_sync = zfs_sync },
92 	VFSNAME_VGET,		{ .vfs_vget = zfs_vget },
93 	VFSNAME_FREEVFS,	{ .vfs_freevfs = zfs_freevfs },
94 	NULL,			NULL
95 };
96 
97 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
98 	VFSNAME_FREEVFS,	{ .vfs_freevfs =  zfs_freevfs },
99 	NULL,			NULL
100 };
101 
102 /*
103  * We need to keep a count of active fs's.
104  * This is necessary to prevent our module
105  * from being unloaded after a umount -f
106  */
107 static uint32_t	zfs_active_fs_count = 0;
108 
109 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
110 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
111 static char *noxattr_cancel[] = { MNTOPT_XATTR, NULL };
112 static char *xattr_cancel[] = { MNTOPT_NOXATTR, NULL };
113 
114 /*
115  * MO_DEFAULT is not used since the default value is determined
116  * by the equivalent property.
117  */
118 static mntopt_t mntopts[] = {
119 	{ MNTOPT_NOXATTR, noxattr_cancel, NULL, 0, NULL },
120 	{ MNTOPT_XATTR, xattr_cancel, NULL, 0, NULL },
121 	{ MNTOPT_NOATIME, noatime_cancel, NULL, 0, NULL },
122 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
123 };
124 
125 static mntopts_t zfs_mntopts = {
126 	sizeof (mntopts) / sizeof (mntopt_t),
127 	mntopts
128 };
129 
130 /*ARGSUSED*/
131 int
132 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
133 {
134 	/*
135 	 * Data integrity is job one.  We don't want a compromised kernel
136 	 * writing to the storage pool, so we never sync during panic.
137 	 */
138 	if (panicstr)
139 		return (0);
140 
141 	/*
142 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
143 	 * to sync metadata, which they would otherwise cache indefinitely.
144 	 * Semantically, the only requirement is that the sync be initiated.
145 	 * The DMU syncs out txgs frequently, so there's nothing to do.
146 	 */
147 	if (flag & SYNC_ATTR)
148 		return (0);
149 
150 	if (vfsp != NULL) {
151 		/*
152 		 * Sync a specific filesystem.
153 		 */
154 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
155 		dsl_pool_t *dp;
156 
157 		ZFS_ENTER(zfsvfs);
158 		dp = dmu_objset_pool(zfsvfs->z_os);
159 
160 		/*
161 		 * If the system is shutting down, then skip any
162 		 * filesystems which may exist on a suspended pool.
163 		 */
164 		if (sys_shutdown && spa_suspended(dp->dp_spa)) {
165 			ZFS_EXIT(zfsvfs);
166 			return (0);
167 		}
168 
169 		if (zfsvfs->z_log != NULL)
170 			zil_commit(zfsvfs->z_log, 0);
171 
172 		ZFS_EXIT(zfsvfs);
173 	} else {
174 		/*
175 		 * Sync all ZFS filesystems.  This is what happens when you
176 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
177 		 * request by waiting for all pools to commit all dirty data.
178 		 */
179 		spa_sync_allpools();
180 	}
181 
182 	return (0);
183 }
184 
185 static int
186 zfs_create_unique_device(dev_t *dev)
187 {
188 	major_t new_major;
189 
190 	do {
191 		ASSERT3U(zfs_minor, <=, MAXMIN32);
192 		minor_t start = zfs_minor;
193 		do {
194 			mutex_enter(&zfs_dev_mtx);
195 			if (zfs_minor >= MAXMIN32) {
196 				/*
197 				 * If we're still using the real major
198 				 * keep out of /dev/zfs and /dev/zvol minor
199 				 * number space.  If we're using a getudev()'ed
200 				 * major number, we can use all of its minors.
201 				 */
202 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
203 					zfs_minor = ZFS_MIN_MINOR;
204 				else
205 					zfs_minor = 0;
206 			} else {
207 				zfs_minor++;
208 			}
209 			*dev = makedevice(zfs_major, zfs_minor);
210 			mutex_exit(&zfs_dev_mtx);
211 		} while (vfs_devismounted(*dev) && zfs_minor != start);
212 		if (zfs_minor == start) {
213 			/*
214 			 * We are using all ~262,000 minor numbers for the
215 			 * current major number.  Create a new major number.
216 			 */
217 			if ((new_major = getudev()) == (major_t)-1) {
218 				cmn_err(CE_WARN,
219 				    "zfs_mount: Can't get unique major "
220 				    "device number.");
221 				return (-1);
222 			}
223 			mutex_enter(&zfs_dev_mtx);
224 			zfs_major = new_major;
225 			zfs_minor = 0;
226 
227 			mutex_exit(&zfs_dev_mtx);
228 		} else {
229 			break;
230 		}
231 		/* CONSTANTCONDITION */
232 	} while (1);
233 
234 	return (0);
235 }
236 
237 static void
238 atime_changed_cb(void *arg, uint64_t newval)
239 {
240 	zfsvfs_t *zfsvfs = arg;
241 
242 	if (newval == TRUE) {
243 		zfsvfs->z_atime = TRUE;
244 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
245 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
246 	} else {
247 		zfsvfs->z_atime = FALSE;
248 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
249 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
250 	}
251 }
252 
253 static void
254 xattr_changed_cb(void *arg, uint64_t newval)
255 {
256 	zfsvfs_t *zfsvfs = arg;
257 
258 	if (newval == TRUE) {
259 		/* XXX locking on vfs_flag? */
260 		zfsvfs->z_vfs->vfs_flag |= VFS_XATTR;
261 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR);
262 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_XATTR, NULL, 0);
263 	} else {
264 		/* XXX locking on vfs_flag? */
265 		zfsvfs->z_vfs->vfs_flag &= ~VFS_XATTR;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_XATTR);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOXATTR, NULL, 0);
268 	}
269 }
270 
271 static void
272 blksz_changed_cb(void *arg, uint64_t newval)
273 {
274 	zfsvfs_t *zfsvfs = arg;
275 
276 	if (newval < SPA_MINBLOCKSIZE ||
277 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
278 		newval = SPA_MAXBLOCKSIZE;
279 
280 	zfsvfs->z_max_blksz = newval;
281 	zfsvfs->z_vfs->vfs_bsize = newval;
282 }
283 
284 static void
285 readonly_changed_cb(void *arg, uint64_t newval)
286 {
287 	zfsvfs_t *zfsvfs = arg;
288 
289 	if (newval) {
290 		/* XXX locking on vfs_flag? */
291 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
292 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
293 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
294 	} else {
295 		/* XXX locking on vfs_flag? */
296 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
297 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
298 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
299 	}
300 }
301 
302 static void
303 devices_changed_cb(void *arg, uint64_t newval)
304 {
305 	zfsvfs_t *zfsvfs = arg;
306 
307 	if (newval == FALSE) {
308 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
309 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
310 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
311 	} else {
312 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
313 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
314 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
315 	}
316 }
317 
318 static void
319 setuid_changed_cb(void *arg, uint64_t newval)
320 {
321 	zfsvfs_t *zfsvfs = arg;
322 
323 	if (newval == FALSE) {
324 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
325 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
326 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
327 	} else {
328 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
329 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
330 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
331 	}
332 }
333 
334 static void
335 exec_changed_cb(void *arg, uint64_t newval)
336 {
337 	zfsvfs_t *zfsvfs = arg;
338 
339 	if (newval == FALSE) {
340 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
341 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
342 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
343 	} else {
344 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
345 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
346 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
347 	}
348 }
349 
350 /*
351  * The nbmand mount option can be changed at mount time.
352  * We can't allow it to be toggled on live file systems or incorrect
353  * behavior may be seen from cifs clients
354  *
355  * This property isn't registered via dsl_prop_register(), but this callback
356  * will be called when a file system is first mounted
357  */
358 static void
359 nbmand_changed_cb(void *arg, uint64_t newval)
360 {
361 	zfsvfs_t *zfsvfs = arg;
362 	if (newval == FALSE) {
363 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND);
364 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND, NULL, 0);
365 	} else {
366 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NONBMAND);
367 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NBMAND, NULL, 0);
368 	}
369 }
370 
371 static void
372 snapdir_changed_cb(void *arg, uint64_t newval)
373 {
374 	zfsvfs_t *zfsvfs = arg;
375 
376 	zfsvfs->z_show_ctldir = newval;
377 }
378 
379 static void
380 vscan_changed_cb(void *arg, uint64_t newval)
381 {
382 	zfsvfs_t *zfsvfs = arg;
383 
384 	zfsvfs->z_vscan = newval;
385 }
386 
387 static void
388 acl_mode_changed_cb(void *arg, uint64_t newval)
389 {
390 	zfsvfs_t *zfsvfs = arg;
391 
392 	zfsvfs->z_acl_mode = newval;
393 }
394 
395 static void
396 acl_inherit_changed_cb(void *arg, uint64_t newval)
397 {
398 	zfsvfs_t *zfsvfs = arg;
399 
400 	zfsvfs->z_acl_inherit = newval;
401 }
402 
403 static int
404 zfs_register_callbacks(vfs_t *vfsp)
405 {
406 	struct dsl_dataset *ds = NULL;
407 	objset_t *os = NULL;
408 	zfsvfs_t *zfsvfs = NULL;
409 	uint64_t nbmand;
410 	int readonly, do_readonly = B_FALSE;
411 	int setuid, do_setuid = B_FALSE;
412 	int exec, do_exec = B_FALSE;
413 	int devices, do_devices = B_FALSE;
414 	int xattr, do_xattr = B_FALSE;
415 	int atime, do_atime = B_FALSE;
416 	int error = 0;
417 
418 	ASSERT(vfsp);
419 	zfsvfs = vfsp->vfs_data;
420 	ASSERT(zfsvfs);
421 	os = zfsvfs->z_os;
422 
423 	/*
424 	 * The act of registering our callbacks will destroy any mount
425 	 * options we may have.  In order to enable temporary overrides
426 	 * of mount options, we stash away the current values and
427 	 * restore them after we register the callbacks.
428 	 */
429 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL) ||
430 	    !spa_writeable(dmu_objset_spa(os))) {
431 		readonly = B_TRUE;
432 		do_readonly = B_TRUE;
433 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
434 		readonly = B_FALSE;
435 		do_readonly = B_TRUE;
436 	}
437 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
438 		devices = B_FALSE;
439 		setuid = B_FALSE;
440 		do_devices = B_TRUE;
441 		do_setuid = B_TRUE;
442 	} else {
443 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
444 			devices = B_FALSE;
445 			do_devices = B_TRUE;
446 		} else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL)) {
447 			devices = B_TRUE;
448 			do_devices = B_TRUE;
449 		}
450 
451 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
452 			setuid = B_FALSE;
453 			do_setuid = B_TRUE;
454 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
455 			setuid = B_TRUE;
456 			do_setuid = B_TRUE;
457 		}
458 	}
459 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
460 		exec = B_FALSE;
461 		do_exec = B_TRUE;
462 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
463 		exec = B_TRUE;
464 		do_exec = B_TRUE;
465 	}
466 	if (vfs_optionisset(vfsp, MNTOPT_NOXATTR, NULL)) {
467 		xattr = B_FALSE;
468 		do_xattr = B_TRUE;
469 	} else if (vfs_optionisset(vfsp, MNTOPT_XATTR, NULL)) {
470 		xattr = B_TRUE;
471 		do_xattr = B_TRUE;
472 	}
473 	if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL)) {
474 		atime = B_FALSE;
475 		do_atime = B_TRUE;
476 	} else if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL)) {
477 		atime = B_TRUE;
478 		do_atime = B_TRUE;
479 	}
480 
481 	/*
482 	 * nbmand is a special property.  It can only be changed at
483 	 * mount time.
484 	 *
485 	 * This is weird, but it is documented to only be changeable
486 	 * at mount time.
487 	 */
488 	if (vfs_optionisset(vfsp, MNTOPT_NONBMAND, NULL)) {
489 		nbmand = B_FALSE;
490 	} else if (vfs_optionisset(vfsp, MNTOPT_NBMAND, NULL)) {
491 		nbmand = B_TRUE;
492 	} else {
493 		char osname[MAXNAMELEN];
494 
495 		dmu_objset_name(os, osname);
496 		if (error = dsl_prop_get_integer(osname, "nbmand", &nbmand,
497 		    NULL)) {
498 			return (error);
499 		}
500 	}
501 
502 	/*
503 	 * Register property callbacks.
504 	 *
505 	 * It would probably be fine to just check for i/o error from
506 	 * the first prop_register(), but I guess I like to go
507 	 * overboard...
508 	 */
509 	ds = dmu_objset_ds(os);
510 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
511 	error = error ? error : dsl_prop_register(ds,
512 	    "xattr", xattr_changed_cb, zfsvfs);
513 	error = error ? error : dsl_prop_register(ds,
514 	    "recordsize", blksz_changed_cb, zfsvfs);
515 	error = error ? error : dsl_prop_register(ds,
516 	    "readonly", readonly_changed_cb, zfsvfs);
517 	error = error ? error : dsl_prop_register(ds,
518 	    "devices", devices_changed_cb, zfsvfs);
519 	error = error ? error : dsl_prop_register(ds,
520 	    "setuid", setuid_changed_cb, zfsvfs);
521 	error = error ? error : dsl_prop_register(ds,
522 	    "exec", exec_changed_cb, zfsvfs);
523 	error = error ? error : dsl_prop_register(ds,
524 	    "snapdir", snapdir_changed_cb, zfsvfs);
525 	error = error ? error : dsl_prop_register(ds,
526 	    "aclmode", acl_mode_changed_cb, zfsvfs);
527 	error = error ? error : dsl_prop_register(ds,
528 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
529 	error = error ? error : dsl_prop_register(ds,
530 	    "vscan", vscan_changed_cb, zfsvfs);
531 	if (error)
532 		goto unregister;
533 
534 	/*
535 	 * Invoke our callbacks to restore temporary mount options.
536 	 */
537 	if (do_readonly)
538 		readonly_changed_cb(zfsvfs, readonly);
539 	if (do_setuid)
540 		setuid_changed_cb(zfsvfs, setuid);
541 	if (do_exec)
542 		exec_changed_cb(zfsvfs, exec);
543 	if (do_devices)
544 		devices_changed_cb(zfsvfs, devices);
545 	if (do_xattr)
546 		xattr_changed_cb(zfsvfs, xattr);
547 	if (do_atime)
548 		atime_changed_cb(zfsvfs, atime);
549 
550 	nbmand_changed_cb(zfsvfs, nbmand);
551 
552 	return (0);
553 
554 unregister:
555 	/*
556 	 * We may attempt to unregister some callbacks that are not
557 	 * registered, but this is OK; it will simply return ENOMSG,
558 	 * which we will ignore.
559 	 */
560 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
561 	(void) dsl_prop_unregister(ds, "xattr", xattr_changed_cb, zfsvfs);
562 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
563 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
564 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
565 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
566 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
567 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
568 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
569 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
570 	    zfsvfs);
571 	(void) dsl_prop_unregister(ds, "vscan", vscan_changed_cb, zfsvfs);
572 	return (error);
573 
574 }
575 
576 static int
577 zfs_space_delta_cb(dmu_object_type_t bonustype, void *data,
578     uint64_t *userp, uint64_t *groupp)
579 {
580 	znode_phys_t *znp = data;
581 	int error = 0;
582 
583 	/*
584 	 * Is it a valid type of object to track?
585 	 */
586 	if (bonustype != DMU_OT_ZNODE && bonustype != DMU_OT_SA)
587 		return (ENOENT);
588 
589 	/*
590 	 * If we have a NULL data pointer
591 	 * then assume the id's aren't changing and
592 	 * return EEXIST to the dmu to let it know to
593 	 * use the same ids
594 	 */
595 	if (data == NULL)
596 		return (EEXIST);
597 
598 	if (bonustype == DMU_OT_ZNODE) {
599 		*userp = znp->zp_uid;
600 		*groupp = znp->zp_gid;
601 	} else {
602 		int hdrsize;
603 
604 		ASSERT(bonustype == DMU_OT_SA);
605 		hdrsize = sa_hdrsize(data);
606 
607 		if (hdrsize != 0) {
608 			*userp = *((uint64_t *)((uintptr_t)data + hdrsize +
609 			    SA_UID_OFFSET));
610 			*groupp = *((uint64_t *)((uintptr_t)data + hdrsize +
611 			    SA_GID_OFFSET));
612 		} else {
613 			/*
614 			 * This should only happen for newly created
615 			 * files that haven't had the znode data filled
616 			 * in yet.
617 			 */
618 			*userp = 0;
619 			*groupp = 0;
620 		}
621 	}
622 	return (error);
623 }
624 
625 static void
626 fuidstr_to_sid(zfsvfs_t *zfsvfs, const char *fuidstr,
627     char *domainbuf, int buflen, uid_t *ridp)
628 {
629 	uint64_t fuid;
630 	const char *domain;
631 
632 	fuid = strtonum(fuidstr, NULL);
633 
634 	domain = zfs_fuid_find_by_idx(zfsvfs, FUID_INDEX(fuid));
635 	if (domain)
636 		(void) strlcpy(domainbuf, domain, buflen);
637 	else
638 		domainbuf[0] = '\0';
639 	*ridp = FUID_RID(fuid);
640 }
641 
642 static uint64_t
643 zfs_userquota_prop_to_obj(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type)
644 {
645 	switch (type) {
646 	case ZFS_PROP_USERUSED:
647 		return (DMU_USERUSED_OBJECT);
648 	case ZFS_PROP_GROUPUSED:
649 		return (DMU_GROUPUSED_OBJECT);
650 	case ZFS_PROP_USERQUOTA:
651 		return (zfsvfs->z_userquota_obj);
652 	case ZFS_PROP_GROUPQUOTA:
653 		return (zfsvfs->z_groupquota_obj);
654 	}
655 	return (0);
656 }
657 
658 int
659 zfs_userspace_many(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
660     uint64_t *cookiep, void *vbuf, uint64_t *bufsizep)
661 {
662 	int error;
663 	zap_cursor_t zc;
664 	zap_attribute_t za;
665 	zfs_useracct_t *buf = vbuf;
666 	uint64_t obj;
667 
668 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
669 		return (ENOTSUP);
670 
671 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
672 	if (obj == 0) {
673 		*bufsizep = 0;
674 		return (0);
675 	}
676 
677 	for (zap_cursor_init_serialized(&zc, zfsvfs->z_os, obj, *cookiep);
678 	    (error = zap_cursor_retrieve(&zc, &za)) == 0;
679 	    zap_cursor_advance(&zc)) {
680 		if ((uintptr_t)buf - (uintptr_t)vbuf + sizeof (zfs_useracct_t) >
681 		    *bufsizep)
682 			break;
683 
684 		fuidstr_to_sid(zfsvfs, za.za_name,
685 		    buf->zu_domain, sizeof (buf->zu_domain), &buf->zu_rid);
686 
687 		buf->zu_space = za.za_first_integer;
688 		buf++;
689 	}
690 	if (error == ENOENT)
691 		error = 0;
692 
693 	ASSERT3U((uintptr_t)buf - (uintptr_t)vbuf, <=, *bufsizep);
694 	*bufsizep = (uintptr_t)buf - (uintptr_t)vbuf;
695 	*cookiep = zap_cursor_serialize(&zc);
696 	zap_cursor_fini(&zc);
697 	return (error);
698 }
699 
700 /*
701  * buf must be big enough (eg, 32 bytes)
702  */
703 static int
704 id_to_fuidstr(zfsvfs_t *zfsvfs, const char *domain, uid_t rid,
705     char *buf, boolean_t addok)
706 {
707 	uint64_t fuid;
708 	int domainid = 0;
709 
710 	if (domain && domain[0]) {
711 		domainid = zfs_fuid_find_by_domain(zfsvfs, domain, NULL, addok);
712 		if (domainid == -1)
713 			return (ENOENT);
714 	}
715 	fuid = FUID_ENCODE(domainid, rid);
716 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
717 	return (0);
718 }
719 
720 int
721 zfs_userspace_one(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
722     const char *domain, uint64_t rid, uint64_t *valp)
723 {
724 	char buf[32];
725 	int err;
726 	uint64_t obj;
727 
728 	*valp = 0;
729 
730 	if (!dmu_objset_userspace_present(zfsvfs->z_os))
731 		return (ENOTSUP);
732 
733 	obj = zfs_userquota_prop_to_obj(zfsvfs, type);
734 	if (obj == 0)
735 		return (0);
736 
737 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_FALSE);
738 	if (err)
739 		return (err);
740 
741 	err = zap_lookup(zfsvfs->z_os, obj, buf, 8, 1, valp);
742 	if (err == ENOENT)
743 		err = 0;
744 	return (err);
745 }
746 
747 int
748 zfs_set_userquota(zfsvfs_t *zfsvfs, zfs_userquota_prop_t type,
749     const char *domain, uint64_t rid, uint64_t quota)
750 {
751 	char buf[32];
752 	int err;
753 	dmu_tx_t *tx;
754 	uint64_t *objp;
755 	boolean_t fuid_dirtied;
756 
757 	if (type != ZFS_PROP_USERQUOTA && type != ZFS_PROP_GROUPQUOTA)
758 		return (EINVAL);
759 
760 	if (zfsvfs->z_version < ZPL_VERSION_USERSPACE)
761 		return (ENOTSUP);
762 
763 	objp = (type == ZFS_PROP_USERQUOTA) ? &zfsvfs->z_userquota_obj :
764 	    &zfsvfs->z_groupquota_obj;
765 
766 	err = id_to_fuidstr(zfsvfs, domain, rid, buf, B_TRUE);
767 	if (err)
768 		return (err);
769 	fuid_dirtied = zfsvfs->z_fuid_dirty;
770 
771 	tx = dmu_tx_create(zfsvfs->z_os);
772 	dmu_tx_hold_zap(tx, *objp ? *objp : DMU_NEW_OBJECT, B_TRUE, NULL);
773 	if (*objp == 0) {
774 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
775 		    zfs_userquota_prop_prefixes[type]);
776 	}
777 	if (fuid_dirtied)
778 		zfs_fuid_txhold(zfsvfs, tx);
779 	err = dmu_tx_assign(tx, TXG_WAIT);
780 	if (err) {
781 		dmu_tx_abort(tx);
782 		return (err);
783 	}
784 
785 	mutex_enter(&zfsvfs->z_lock);
786 	if (*objp == 0) {
787 		*objp = zap_create(zfsvfs->z_os, DMU_OT_USERGROUP_QUOTA,
788 		    DMU_OT_NONE, 0, tx);
789 		VERIFY(0 == zap_add(zfsvfs->z_os, MASTER_NODE_OBJ,
790 		    zfs_userquota_prop_prefixes[type], 8, 1, objp, tx));
791 	}
792 	mutex_exit(&zfsvfs->z_lock);
793 
794 	if (quota == 0) {
795 		err = zap_remove(zfsvfs->z_os, *objp, buf, tx);
796 		if (err == ENOENT)
797 			err = 0;
798 	} else {
799 		err = zap_update(zfsvfs->z_os, *objp, buf, 8, 1, &quota, tx);
800 	}
801 	ASSERT(err == 0);
802 	if (fuid_dirtied)
803 		zfs_fuid_sync(zfsvfs, tx);
804 	dmu_tx_commit(tx);
805 	return (err);
806 }
807 
808 boolean_t
809 zfs_fuid_overquota(zfsvfs_t *zfsvfs, boolean_t isgroup, uint64_t fuid)
810 {
811 	char buf[32];
812 	uint64_t used, quota, usedobj, quotaobj;
813 	int err;
814 
815 	usedobj = isgroup ? DMU_GROUPUSED_OBJECT : DMU_USERUSED_OBJECT;
816 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
817 
818 	if (quotaobj == 0 || zfsvfs->z_replay)
819 		return (B_FALSE);
820 
821 	(void) sprintf(buf, "%llx", (longlong_t)fuid);
822 	err = zap_lookup(zfsvfs->z_os, quotaobj, buf, 8, 1, &quota);
823 	if (err != 0)
824 		return (B_FALSE);
825 
826 	err = zap_lookup(zfsvfs->z_os, usedobj, buf, 8, 1, &used);
827 	if (err != 0)
828 		return (B_FALSE);
829 	return (used >= quota);
830 }
831 
832 boolean_t
833 zfs_owner_overquota(zfsvfs_t *zfsvfs, znode_t *zp, boolean_t isgroup)
834 {
835 	uint64_t fuid;
836 	uint64_t quotaobj;
837 
838 	quotaobj = isgroup ? zfsvfs->z_groupquota_obj : zfsvfs->z_userquota_obj;
839 
840 	fuid = isgroup ? zp->z_gid : zp->z_uid;
841 
842 	if (quotaobj == 0 || zfsvfs->z_replay)
843 		return (B_FALSE);
844 
845 	return (zfs_fuid_overquota(zfsvfs, isgroup, fuid));
846 }
847 
848 int
849 zfsvfs_create(const char *osname, zfsvfs_t **zfvp)
850 {
851 	objset_t *os;
852 	zfsvfs_t *zfsvfs;
853 	uint64_t zval;
854 	int i, error;
855 	uint64_t sa_obj;
856 
857 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
858 
859 	/*
860 	 * We claim to always be readonly so we can open snapshots;
861 	 * other ZPL code will prevent us from writing to snapshots.
862 	 */
863 	error = dmu_objset_own(osname, DMU_OST_ZFS, B_TRUE, zfsvfs, &os);
864 	if (error) {
865 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
866 		return (error);
867 	}
868 
869 	/*
870 	 * Initialize the zfs-specific filesystem structure.
871 	 * Should probably make this a kmem cache, shuffle fields,
872 	 * and just bzero up to z_hold_mtx[].
873 	 */
874 	zfsvfs->z_vfs = NULL;
875 	zfsvfs->z_parent = zfsvfs;
876 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
877 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
878 	zfsvfs->z_os = os;
879 
880 	error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
881 	if (error) {
882 		goto out;
883 	} else if (zfsvfs->z_version >
884 	    zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
885 		(void) printf("Can't mount a version %lld file system "
886 		    "on a version %lld pool\n. Pool must be upgraded to mount "
887 		    "this file system.", (u_longlong_t)zfsvfs->z_version,
888 		    (u_longlong_t)spa_version(dmu_objset_spa(os)));
889 		error = ENOTSUP;
890 		goto out;
891 	}
892 	if ((error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &zval)) != 0)
893 		goto out;
894 	zfsvfs->z_norm = (int)zval;
895 
896 	if ((error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &zval)) != 0)
897 		goto out;
898 	zfsvfs->z_utf8 = (zval != 0);
899 
900 	if ((error = zfs_get_zplprop(os, ZFS_PROP_CASE, &zval)) != 0)
901 		goto out;
902 	zfsvfs->z_case = (uint_t)zval;
903 
904 	/*
905 	 * Fold case on file systems that are always or sometimes case
906 	 * insensitive.
907 	 */
908 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
909 	    zfsvfs->z_case == ZFS_CASE_MIXED)
910 		zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
911 
912 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
913 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
914 
915 	if (zfsvfs->z_use_sa) {
916 		/* should either have both of these objects or none */
917 		error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
918 		    &sa_obj);
919 		if (error)
920 			return (error);
921 	} else {
922 		/*
923 		 * Pre SA versions file systems should never touch
924 		 * either the attribute registration or layout objects.
925 		 */
926 		sa_obj = 0;
927 	}
928 
929 	error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
930 	    &zfsvfs->z_attr_table);
931 	if (error)
932 		goto out;
933 
934 	if (zfsvfs->z_version >= ZPL_VERSION_SA)
935 		sa_register_update_callback(os, zfs_sa_upgrade);
936 
937 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
938 	    &zfsvfs->z_root);
939 	if (error)
940 		goto out;
941 	ASSERT(zfsvfs->z_root != 0);
942 
943 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
944 	    &zfsvfs->z_unlinkedobj);
945 	if (error)
946 		goto out;
947 
948 	error = zap_lookup(os, MASTER_NODE_OBJ,
949 	    zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
950 	    8, 1, &zfsvfs->z_userquota_obj);
951 	if (error && error != ENOENT)
952 		goto out;
953 
954 	error = zap_lookup(os, MASTER_NODE_OBJ,
955 	    zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
956 	    8, 1, &zfsvfs->z_groupquota_obj);
957 	if (error && error != ENOENT)
958 		goto out;
959 
960 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
961 	    &zfsvfs->z_fuid_obj);
962 	if (error && error != ENOENT)
963 		goto out;
964 
965 	error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
966 	    &zfsvfs->z_shares_dir);
967 	if (error && error != ENOENT)
968 		goto out;
969 
970 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
971 	mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
972 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
973 	    offsetof(znode_t, z_link_node));
974 	rrw_init(&zfsvfs->z_teardown_lock);
975 	rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
976 	rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
977 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
978 		mutex_init(&zfsvfs->z_hold_mtx[i], NULL, MUTEX_DEFAULT, NULL);
979 
980 	*zfvp = zfsvfs;
981 	return (0);
982 
983 out:
984 	dmu_objset_disown(os, zfsvfs);
985 	*zfvp = NULL;
986 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
987 	return (error);
988 }
989 
990 static int
991 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
992 {
993 	int error;
994 
995 	error = zfs_register_callbacks(zfsvfs->z_vfs);
996 	if (error)
997 		return (error);
998 
999 	/*
1000 	 * Set the objset user_ptr to track its zfsvfs.
1001 	 */
1002 	mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1003 	dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1004 	mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1005 
1006 	zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
1007 
1008 	/*
1009 	 * If we are not mounting (ie: online recv), then we don't
1010 	 * have to worry about replaying the log as we blocked all
1011 	 * operations out since we closed the ZIL.
1012 	 */
1013 	if (mounting) {
1014 		boolean_t readonly;
1015 
1016 		/*
1017 		 * During replay we remove the read only flag to
1018 		 * allow replays to succeed.
1019 		 */
1020 		readonly = zfsvfs->z_vfs->vfs_flag & VFS_RDONLY;
1021 		if (readonly != 0)
1022 			zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
1023 		else
1024 			zfs_unlinked_drain(zfsvfs);
1025 
1026 		/*
1027 		 * Parse and replay the intent log.
1028 		 *
1029 		 * Because of ziltest, this must be done after
1030 		 * zfs_unlinked_drain().  (Further note: ziltest
1031 		 * doesn't use readonly mounts, where
1032 		 * zfs_unlinked_drain() isn't called.)  This is because
1033 		 * ziltest causes spa_sync() to think it's committed,
1034 		 * but actually it is not, so the intent log contains
1035 		 * many txg's worth of changes.
1036 		 *
1037 		 * In particular, if object N is in the unlinked set in
1038 		 * the last txg to actually sync, then it could be
1039 		 * actually freed in a later txg and then reallocated
1040 		 * in a yet later txg.  This would write a "create
1041 		 * object N" record to the intent log.  Normally, this
1042 		 * would be fine because the spa_sync() would have
1043 		 * written out the fact that object N is free, before
1044 		 * we could write the "create object N" intent log
1045 		 * record.
1046 		 *
1047 		 * But when we are in ziltest mode, we advance the "open
1048 		 * txg" without actually spa_sync()-ing the changes to
1049 		 * disk.  So we would see that object N is still
1050 		 * allocated and in the unlinked set, and there is an
1051 		 * intent log record saying to allocate it.
1052 		 */
1053 		if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
1054 			if (zil_replay_disable) {
1055 				zil_destroy(zfsvfs->z_log, B_FALSE);
1056 			} else {
1057 				zfsvfs->z_replay = B_TRUE;
1058 				zil_replay(zfsvfs->z_os, zfsvfs,
1059 				    zfs_replay_vector);
1060 				zfsvfs->z_replay = B_FALSE;
1061 			}
1062 		}
1063 		zfsvfs->z_vfs->vfs_flag |= readonly; /* restore readonly bit */
1064 	}
1065 
1066 	return (0);
1067 }
1068 
1069 void
1070 zfsvfs_free(zfsvfs_t *zfsvfs)
1071 {
1072 	int i;
1073 	extern krwlock_t zfsvfs_lock; /* in zfs_znode.c */
1074 
1075 	/*
1076 	 * This is a barrier to prevent the filesystem from going away in
1077 	 * zfs_znode_move() until we can safely ensure that the filesystem is
1078 	 * not unmounted. We consider the filesystem valid before the barrier
1079 	 * and invalid after the barrier.
1080 	 */
1081 	rw_enter(&zfsvfs_lock, RW_READER);
1082 	rw_exit(&zfsvfs_lock);
1083 
1084 	zfs_fuid_destroy(zfsvfs);
1085 
1086 	mutex_destroy(&zfsvfs->z_znodes_lock);
1087 	mutex_destroy(&zfsvfs->z_lock);
1088 	list_destroy(&zfsvfs->z_all_znodes);
1089 	rrw_destroy(&zfsvfs->z_teardown_lock);
1090 	rw_destroy(&zfsvfs->z_teardown_inactive_lock);
1091 	rw_destroy(&zfsvfs->z_fuid_lock);
1092 	for (i = 0; i != ZFS_OBJ_MTX_SZ; i++)
1093 		mutex_destroy(&zfsvfs->z_hold_mtx[i]);
1094 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1095 }
1096 
1097 static void
1098 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
1099 {
1100 	zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
1101 	if (zfsvfs->z_vfs) {
1102 		if (zfsvfs->z_use_fuids) {
1103 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1104 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1105 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1106 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1107 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1108 			vfs_set_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1109 		} else {
1110 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_XVATTR);
1111 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_SYSATTR_VIEWS);
1112 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACEMASKONACCESS);
1113 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACLONCREATE);
1114 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_ACCESS_FILTER);
1115 			vfs_clear_feature(zfsvfs->z_vfs, VFSFT_REPARSE);
1116 		}
1117 	}
1118 	zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
1119 }
1120 
1121 static int
1122 zfs_domount(vfs_t *vfsp, char *osname)
1123 {
1124 	dev_t mount_dev;
1125 	uint64_t recordsize, fsid_guid;
1126 	int error = 0;
1127 	zfsvfs_t *zfsvfs;
1128 
1129 	ASSERT(vfsp);
1130 	ASSERT(osname);
1131 
1132 	error = zfsvfs_create(osname, &zfsvfs);
1133 	if (error)
1134 		return (error);
1135 	zfsvfs->z_vfs = vfsp;
1136 
1137 	/* Initialize the generic filesystem structure. */
1138 	vfsp->vfs_bcount = 0;
1139 	vfsp->vfs_data = NULL;
1140 
1141 	if (zfs_create_unique_device(&mount_dev) == -1) {
1142 		error = ENODEV;
1143 		goto out;
1144 	}
1145 	ASSERT(vfs_devismounted(mount_dev) == 0);
1146 
1147 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
1148 	    NULL))
1149 		goto out;
1150 
1151 	vfsp->vfs_dev = mount_dev;
1152 	vfsp->vfs_fstype = zfsfstype;
1153 	vfsp->vfs_bsize = recordsize;
1154 	vfsp->vfs_flag |= VFS_NOTRUNC;
1155 	vfsp->vfs_data = zfsvfs;
1156 
1157 	/*
1158 	 * The fsid is 64 bits, composed of an 8-bit fs type, which
1159 	 * separates our fsid from any other filesystem types, and a
1160 	 * 56-bit objset unique ID.  The objset unique ID is unique to
1161 	 * all objsets open on this system, provided by unique_create().
1162 	 * The 8-bit fs type must be put in the low bits of fsid[1]
1163 	 * because that's where other Solaris filesystems put it.
1164 	 */
1165 	fsid_guid = dmu_objset_fsid_guid(zfsvfs->z_os);
1166 	ASSERT((fsid_guid & ~((1ULL<<56)-1)) == 0);
1167 	vfsp->vfs_fsid.val[0] = fsid_guid;
1168 	vfsp->vfs_fsid.val[1] = ((fsid_guid>>32) << 8) |
1169 	    zfsfstype & 0xFF;
1170 
1171 	/*
1172 	 * Set features for file system.
1173 	 */
1174 	zfs_set_fuid_feature(zfsvfs);
1175 	if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
1176 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1177 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1178 		vfs_set_feature(vfsp, VFSFT_NOCASESENSITIVE);
1179 	} else if (zfsvfs->z_case == ZFS_CASE_MIXED) {
1180 		vfs_set_feature(vfsp, VFSFT_DIRENTFLAGS);
1181 		vfs_set_feature(vfsp, VFSFT_CASEINSENSITIVE);
1182 	}
1183 	vfs_set_feature(vfsp, VFSFT_ZEROCOPY_SUPPORTED);
1184 
1185 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1186 		uint64_t pval;
1187 
1188 		atime_changed_cb(zfsvfs, B_FALSE);
1189 		readonly_changed_cb(zfsvfs, B_TRUE);
1190 		if (error = dsl_prop_get_integer(osname, "xattr", &pval, NULL))
1191 			goto out;
1192 		xattr_changed_cb(zfsvfs, pval);
1193 		zfsvfs->z_issnap = B_TRUE;
1194 		zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1195 
1196 		mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1197 		dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1198 		mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1199 	} else {
1200 		error = zfsvfs_setup(zfsvfs, B_TRUE);
1201 	}
1202 
1203 	if (!zfsvfs->z_issnap)
1204 		zfsctl_create(zfsvfs);
1205 out:
1206 	if (error) {
1207 		dmu_objset_disown(zfsvfs->z_os, zfsvfs);
1208 		zfsvfs_free(zfsvfs);
1209 	} else {
1210 		atomic_add_32(&zfs_active_fs_count, 1);
1211 	}
1212 
1213 	return (error);
1214 }
1215 
1216 void
1217 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
1218 {
1219 	objset_t *os = zfsvfs->z_os;
1220 	struct dsl_dataset *ds;
1221 
1222 	/*
1223 	 * Unregister properties.
1224 	 */
1225 	if (!dmu_objset_is_snapshot(os)) {
1226 		ds = dmu_objset_ds(os);
1227 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
1228 		    zfsvfs) == 0);
1229 
1230 		VERIFY(dsl_prop_unregister(ds, "xattr", xattr_changed_cb,
1231 		    zfsvfs) == 0);
1232 
1233 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
1234 		    zfsvfs) == 0);
1235 
1236 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
1237 		    zfsvfs) == 0);
1238 
1239 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
1240 		    zfsvfs) == 0);
1241 
1242 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
1243 		    zfsvfs) == 0);
1244 
1245 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
1246 		    zfsvfs) == 0);
1247 
1248 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
1249 		    zfsvfs) == 0);
1250 
1251 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
1252 		    zfsvfs) == 0);
1253 
1254 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
1255 		    acl_inherit_changed_cb, zfsvfs) == 0);
1256 
1257 		VERIFY(dsl_prop_unregister(ds, "vscan",
1258 		    vscan_changed_cb, zfsvfs) == 0);
1259 	}
1260 }
1261 
1262 /*
1263  * Convert a decimal digit string to a uint64_t integer.
1264  */
1265 static int
1266 str_to_uint64(char *str, uint64_t *objnum)
1267 {
1268 	uint64_t num = 0;
1269 
1270 	while (*str) {
1271 		if (*str < '0' || *str > '9')
1272 			return (EINVAL);
1273 
1274 		num = num*10 + *str++ - '0';
1275 	}
1276 
1277 	*objnum = num;
1278 	return (0);
1279 }
1280 
1281 /*
1282  * The boot path passed from the boot loader is in the form of
1283  * "rootpool-name/root-filesystem-object-number'. Convert this
1284  * string to a dataset name: "rootpool-name/root-filesystem-name".
1285  */
1286 static int
1287 zfs_parse_bootfs(char *bpath, char *outpath)
1288 {
1289 	char *slashp;
1290 	uint64_t objnum;
1291 	int error;
1292 
1293 	if (*bpath == 0 || *bpath == '/')
1294 		return (EINVAL);
1295 
1296 	(void) strcpy(outpath, bpath);
1297 
1298 	slashp = strchr(bpath, '/');
1299 
1300 	/* if no '/', just return the pool name */
1301 	if (slashp == NULL) {
1302 		return (0);
1303 	}
1304 
1305 	/* if not a number, just return the root dataset name */
1306 	if (str_to_uint64(slashp+1, &objnum)) {
1307 		return (0);
1308 	}
1309 
1310 	*slashp = '\0';
1311 	error = dsl_dsobj_to_dsname(bpath, objnum, outpath);
1312 	*slashp = '/';
1313 
1314 	return (error);
1315 }
1316 
1317 /*
1318  * zfs_check_global_label:
1319  *	Check that the hex label string is appropriate for the dataset
1320  *	being mounted into the global_zone proper.
1321  *
1322  *	Return an error if the hex label string is not default or
1323  *	admin_low/admin_high.  For admin_low labels, the corresponding
1324  *	dataset must be readonly.
1325  */
1326 int
1327 zfs_check_global_label(const char *dsname, const char *hexsl)
1328 {
1329 	if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1330 		return (0);
1331 	if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
1332 		return (0);
1333 	if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1334 		/* must be readonly */
1335 		uint64_t rdonly;
1336 
1337 		if (dsl_prop_get_integer(dsname,
1338 		    zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1339 			return (EACCES);
1340 		return (rdonly ? 0 : EACCES);
1341 	}
1342 	return (EACCES);
1343 }
1344 
1345 /*
1346  * zfs_mount_label_policy:
1347  *	Determine whether the mount is allowed according to MAC check.
1348  *	by comparing (where appropriate) label of the dataset against
1349  *	the label of the zone being mounted into.  If the dataset has
1350  *	no label, create one.
1351  *
1352  *	Returns:
1353  *		 0 :	access allowed
1354  *		>0 :	error code, such as EACCES
1355  */
1356 static int
1357 zfs_mount_label_policy(vfs_t *vfsp, char *osname)
1358 {
1359 	int		error, retv;
1360 	zone_t		*mntzone = NULL;
1361 	ts_label_t	*mnt_tsl;
1362 	bslabel_t	*mnt_sl;
1363 	bslabel_t	ds_sl;
1364 	char		ds_hexsl[MAXNAMELEN];
1365 
1366 	retv = EACCES;				/* assume the worst */
1367 
1368 	/*
1369 	 * Start by getting the dataset label if it exists.
1370 	 */
1371 	error = dsl_prop_get(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1372 	    1, sizeof (ds_hexsl), &ds_hexsl, NULL);
1373 	if (error)
1374 		return (EACCES);
1375 
1376 	/*
1377 	 * If labeling is NOT enabled, then disallow the mount of datasets
1378 	 * which have a non-default label already.  No other label checks
1379 	 * are needed.
1380 	 */
1381 	if (!is_system_labeled()) {
1382 		if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
1383 			return (0);
1384 		return (EACCES);
1385 	}
1386 
1387 	/*
1388 	 * Get the label of the mountpoint.  If mounting into the global
1389 	 * zone (i.e. mountpoint is not within an active zone and the
1390 	 * zoned property is off), the label must be default or
1391 	 * admin_low/admin_high only; no other checks are needed.
1392 	 */
1393 	mntzone = zone_find_by_any_path(refstr_value(vfsp->vfs_mntpt), B_FALSE);
1394 	if (mntzone->zone_id == GLOBAL_ZONEID) {
1395 		uint64_t zoned;
1396 
1397 		zone_rele(mntzone);
1398 
1399 		if (dsl_prop_get_integer(osname,
1400 		    zfs_prop_to_name(ZFS_PROP_ZONED), &zoned, NULL))
1401 			return (EACCES);
1402 		if (!zoned)
1403 			return (zfs_check_global_label(osname, ds_hexsl));
1404 		else
1405 			/*
1406 			 * This is the case of a zone dataset being mounted
1407 			 * initially, before the zone has been fully created;
1408 			 * allow this mount into global zone.
1409 			 */
1410 			return (0);
1411 	}
1412 
1413 	mnt_tsl = mntzone->zone_slabel;
1414 	ASSERT(mnt_tsl != NULL);
1415 	label_hold(mnt_tsl);
1416 	mnt_sl = label2bslabel(mnt_tsl);
1417 
1418 	if (strcasecmp(ds_hexsl, ZFS_MLSLABEL_DEFAULT) == 0) {
1419 		/*
1420 		 * The dataset doesn't have a real label, so fabricate one.
1421 		 */
1422 		char *str = NULL;
1423 
1424 		if (l_to_str_internal(mnt_sl, &str) == 0 &&
1425 		    dsl_prop_set(osname, zfs_prop_to_name(ZFS_PROP_MLSLABEL),
1426 		    ZPROP_SRC_LOCAL, 1, strlen(str) + 1, str) == 0)
1427 			retv = 0;
1428 		if (str != NULL)
1429 			kmem_free(str, strlen(str) + 1);
1430 	} else if (hexstr_to_label(ds_hexsl, &ds_sl) == 0) {
1431 		/*
1432 		 * Now compare labels to complete the MAC check.  If the
1433 		 * labels are equal then allow access.  If the mountpoint
1434 		 * label dominates the dataset label, allow readonly access.
1435 		 * Otherwise, access is denied.
1436 		 */
1437 		if (blequal(mnt_sl, &ds_sl))
1438 			retv = 0;
1439 		else if (bldominates(mnt_sl, &ds_sl)) {
1440 			vfs_setmntopt(vfsp, MNTOPT_RO, NULL, 0);
1441 			retv = 0;
1442 		}
1443 	}
1444 
1445 	label_rele(mnt_tsl);
1446 	zone_rele(mntzone);
1447 	return (retv);
1448 }
1449 
1450 static int
1451 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
1452 {
1453 	int error = 0;
1454 	static int zfsrootdone = 0;
1455 	zfsvfs_t *zfsvfs = NULL;
1456 	znode_t *zp = NULL;
1457 	vnode_t *vp = NULL;
1458 	char *zfs_bootfs;
1459 	char *zfs_devid;
1460 
1461 	ASSERT(vfsp);
1462 
1463 	/*
1464 	 * The filesystem that we mount as root is defined in the
1465 	 * boot property "zfs-bootfs" with a format of
1466 	 * "poolname/root-dataset-objnum".
1467 	 */
1468 	if (why == ROOT_INIT) {
1469 		if (zfsrootdone++)
1470 			return (EBUSY);
1471 		/*
1472 		 * the process of doing a spa_load will require the
1473 		 * clock to be set before we could (for example) do
1474 		 * something better by looking at the timestamp on
1475 		 * an uberblock, so just set it to -1.
1476 		 */
1477 		clkset(-1);
1478 
1479 		if ((zfs_bootfs = spa_get_bootprop("zfs-bootfs")) == NULL) {
1480 			cmn_err(CE_NOTE, "spa_get_bootfs: can not get "
1481 			    "bootfs name");
1482 			return (EINVAL);
1483 		}
1484 		zfs_devid = spa_get_bootprop("diskdevid");
1485 		error = spa_import_rootpool(rootfs.bo_name, zfs_devid);
1486 		if (zfs_devid)
1487 			spa_free_bootprop(zfs_devid);
1488 		if (error) {
1489 			spa_free_bootprop(zfs_bootfs);
1490 			cmn_err(CE_NOTE, "spa_import_rootpool: error %d",
1491 			    error);
1492 			return (error);
1493 		}
1494 		if (error = zfs_parse_bootfs(zfs_bootfs, rootfs.bo_name)) {
1495 			spa_free_bootprop(zfs_bootfs);
1496 			cmn_err(CE_NOTE, "zfs_parse_bootfs: error %d",
1497 			    error);
1498 			return (error);
1499 		}
1500 
1501 		spa_free_bootprop(zfs_bootfs);
1502 
1503 		if (error = vfs_lock(vfsp))
1504 			return (error);
1505 
1506 		if (error = zfs_domount(vfsp, rootfs.bo_name)) {
1507 			cmn_err(CE_NOTE, "zfs_domount: error %d", error);
1508 			goto out;
1509 		}
1510 
1511 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
1512 		ASSERT(zfsvfs);
1513 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp)) {
1514 			cmn_err(CE_NOTE, "zfs_zget: error %d", error);
1515 			goto out;
1516 		}
1517 
1518 		vp = ZTOV(zp);
1519 		mutex_enter(&vp->v_lock);
1520 		vp->v_flag |= VROOT;
1521 		mutex_exit(&vp->v_lock);
1522 		rootvp = vp;
1523 
1524 		/*
1525 		 * Leave rootvp held.  The root file system is never unmounted.
1526 		 */
1527 
1528 		vfs_add((struct vnode *)0, vfsp,
1529 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
1530 out:
1531 		vfs_unlock(vfsp);
1532 		return (error);
1533 	} else if (why == ROOT_REMOUNT) {
1534 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
1535 		vfsp->vfs_flag |= VFS_REMOUNT;
1536 
1537 		/* refresh mount options */
1538 		zfs_unregister_callbacks(vfsp->vfs_data);
1539 		return (zfs_register_callbacks(vfsp));
1540 
1541 	} else if (why == ROOT_UNMOUNT) {
1542 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
1543 		(void) zfs_sync(vfsp, 0, 0);
1544 		return (0);
1545 	}
1546 
1547 	/*
1548 	 * if "why" is equal to anything else other than ROOT_INIT,
1549 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
1550 	 */
1551 	return (ENOTSUP);
1552 }
1553 
1554 /*ARGSUSED*/
1555 static int
1556 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
1557 {
1558 	char		*osname;
1559 	pathname_t	spn;
1560 	int		error = 0;
1561 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
1562 	    UIO_SYSSPACE : UIO_USERSPACE;
1563 	int		canwrite;
1564 
1565 	if (mvp->v_type != VDIR)
1566 		return (ENOTDIR);
1567 
1568 	mutex_enter(&mvp->v_lock);
1569 	if ((uap->flags & MS_REMOUNT) == 0 &&
1570 	    (uap->flags & MS_OVERLAY) == 0 &&
1571 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
1572 		mutex_exit(&mvp->v_lock);
1573 		return (EBUSY);
1574 	}
1575 	mutex_exit(&mvp->v_lock);
1576 
1577 	/*
1578 	 * ZFS does not support passing unparsed data in via MS_DATA.
1579 	 * Users should use the MS_OPTIONSTR interface; this means
1580 	 * that all option parsing is already done and the options struct
1581 	 * can be interrogated.
1582 	 */
1583 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
1584 		return (EINVAL);
1585 
1586 	/*
1587 	 * Get the objset name (the "special" mount argument).
1588 	 */
1589 	if (error = pn_get(uap->spec, fromspace, &spn))
1590 		return (error);
1591 
1592 	osname = spn.pn_path;
1593 
1594 	/*
1595 	 * Check for mount privilege?
1596 	 *
1597 	 * If we don't have privilege then see if
1598 	 * we have local permission to allow it
1599 	 */
1600 	error = secpolicy_fs_mount(cr, mvp, vfsp);
1601 	if (error) {
1602 		if (dsl_deleg_access(osname, ZFS_DELEG_PERM_MOUNT, cr) == 0) {
1603 			vattr_t		vattr;
1604 
1605 			/*
1606 			 * Make sure user is the owner of the mount point
1607 			 * or has sufficient privileges.
1608 			 */
1609 
1610 			vattr.va_mask = AT_UID;
1611 
1612 			if (VOP_GETATTR(mvp, &vattr, 0, cr, NULL)) {
1613 				goto out;
1614 			}
1615 
1616 			if (secpolicy_vnode_owner(cr, vattr.va_uid) != 0 &&
1617 			    VOP_ACCESS(mvp, VWRITE, 0, cr, NULL) != 0) {
1618 				goto out;
1619 			}
1620 			secpolicy_fs_mount_clearopts(cr, vfsp);
1621 		} else {
1622 			goto out;
1623 		}
1624 	}
1625 
1626 	/*
1627 	 * Refuse to mount a filesystem if we are in a local zone and the
1628 	 * dataset is not visible.
1629 	 */
1630 	if (!INGLOBALZONE(curproc) &&
1631 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
1632 		error = EPERM;
1633 		goto out;
1634 	}
1635 
1636 	error = zfs_mount_label_policy(vfsp, osname);
1637 	if (error)
1638 		goto out;
1639 
1640 	/*
1641 	 * When doing a remount, we simply refresh our temporary properties
1642 	 * according to those options set in the current VFS options.
1643 	 */
1644 	if (uap->flags & MS_REMOUNT) {
1645 		/* refresh mount options */
1646 		zfs_unregister_callbacks(vfsp->vfs_data);
1647 		error = zfs_register_callbacks(vfsp);
1648 		goto out;
1649 	}
1650 
1651 	error = zfs_domount(vfsp, osname);
1652 
1653 	/*
1654 	 * Add an extra VFS_HOLD on our parent vfs so that it can't
1655 	 * disappear due to a forced unmount.
1656 	 */
1657 	if (error == 0 && ((zfsvfs_t *)vfsp->vfs_data)->z_issnap)
1658 		VFS_HOLD(mvp->v_vfsp);
1659 
1660 out:
1661 	pn_free(&spn);
1662 	return (error);
1663 }
1664 
1665 static int
1666 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
1667 {
1668 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1669 	dev32_t d32;
1670 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
1671 
1672 	ZFS_ENTER(zfsvfs);
1673 
1674 	dmu_objset_space(zfsvfs->z_os,
1675 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
1676 
1677 	/*
1678 	 * The underlying storage pool actually uses multiple block sizes.
1679 	 * We report the fragsize as the smallest block size we support,
1680 	 * and we report our blocksize as the filesystem's maximum blocksize.
1681 	 */
1682 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
1683 	statp->f_bsize = zfsvfs->z_max_blksz;
1684 
1685 	/*
1686 	 * The following report "total" blocks of various kinds in the
1687 	 * file system, but reported in terms of f_frsize - the
1688 	 * "fragment" size.
1689 	 */
1690 
1691 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
1692 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
1693 	statp->f_bavail = statp->f_bfree; /* no root reservation */
1694 
1695 	/*
1696 	 * statvfs() should really be called statufs(), because it assumes
1697 	 * static metadata.  ZFS doesn't preallocate files, so the best
1698 	 * we can do is report the max that could possibly fit in f_files,
1699 	 * and that minus the number actually used in f_ffree.
1700 	 * For f_ffree, report the smaller of the number of object available
1701 	 * and the number of blocks (each object will take at least a block).
1702 	 */
1703 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
1704 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
1705 	statp->f_files = statp->f_ffree + usedobjs;
1706 
1707 	(void) cmpldev(&d32, vfsp->vfs_dev);
1708 	statp->f_fsid = d32;
1709 
1710 	/*
1711 	 * We're a zfs filesystem.
1712 	 */
1713 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
1714 
1715 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
1716 
1717 	statp->f_namemax = ZFS_MAXNAMELEN;
1718 
1719 	/*
1720 	 * We have all of 32 characters to stuff a string here.
1721 	 * Is there anything useful we could/should provide?
1722 	 */
1723 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
1724 
1725 	ZFS_EXIT(zfsvfs);
1726 	return (0);
1727 }
1728 
1729 static int
1730 zfs_root(vfs_t *vfsp, vnode_t **vpp)
1731 {
1732 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1733 	znode_t *rootzp;
1734 	int error;
1735 
1736 	ZFS_ENTER(zfsvfs);
1737 
1738 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1739 	if (error == 0)
1740 		*vpp = ZTOV(rootzp);
1741 
1742 	ZFS_EXIT(zfsvfs);
1743 	return (error);
1744 }
1745 
1746 /*
1747  * Teardown the zfsvfs::z_os.
1748  *
1749  * Note, if 'unmounting' if FALSE, we return with the 'z_teardown_lock'
1750  * and 'z_teardown_inactive_lock' held.
1751  */
1752 static int
1753 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1754 {
1755 	znode_t	*zp;
1756 
1757 	rrw_enter(&zfsvfs->z_teardown_lock, RW_WRITER, FTAG);
1758 
1759 	if (!unmounting) {
1760 		/*
1761 		 * We purge the parent filesystem's vfsp as the parent
1762 		 * filesystem and all of its snapshots have their vnode's
1763 		 * v_vfsp set to the parent's filesystem's vfsp.  Note,
1764 		 * 'z_parent' is self referential for non-snapshots.
1765 		 */
1766 		(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1767 	}
1768 
1769 	/*
1770 	 * Close the zil. NB: Can't close the zil while zfs_inactive
1771 	 * threads are blocked as zil_close can call zfs_inactive.
1772 	 */
1773 	if (zfsvfs->z_log) {
1774 		zil_close(zfsvfs->z_log);
1775 		zfsvfs->z_log = NULL;
1776 	}
1777 
1778 	rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1779 
1780 	/*
1781 	 * If we are not unmounting (ie: online recv) and someone already
1782 	 * unmounted this file system while we were doing the switcheroo,
1783 	 * or a reopen of z_os failed then just bail out now.
1784 	 */
1785 	if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1786 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1787 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1788 		return (EIO);
1789 	}
1790 
1791 	/*
1792 	 * At this point there are no vops active, and any new vops will
1793 	 * fail with EIO since we have z_teardown_lock for writer (only
1794 	 * relavent for forced unmount).
1795 	 *
1796 	 * Release all holds on dbufs.
1797 	 */
1798 	mutex_enter(&zfsvfs->z_znodes_lock);
1799 	for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1800 	    zp = list_next(&zfsvfs->z_all_znodes, zp))
1801 		if (zp->z_sa_hdl) {
1802 			ASSERT(ZTOV(zp)->v_count > 0);
1803 			zfs_znode_dmu_fini(zp);
1804 		}
1805 	mutex_exit(&zfsvfs->z_znodes_lock);
1806 
1807 	/*
1808 	 * If we are unmounting, set the unmounted flag and let new vops
1809 	 * unblock.  zfs_inactive will have the unmounted behavior, and all
1810 	 * other vops will fail with EIO.
1811 	 */
1812 	if (unmounting) {
1813 		zfsvfs->z_unmounted = B_TRUE;
1814 		rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
1815 		rw_exit(&zfsvfs->z_teardown_inactive_lock);
1816 	}
1817 
1818 	/*
1819 	 * z_os will be NULL if there was an error in attempting to reopen
1820 	 * zfsvfs, so just return as the properties had already been
1821 	 * unregistered and cached data had been evicted before.
1822 	 */
1823 	if (zfsvfs->z_os == NULL)
1824 		return (0);
1825 
1826 	/*
1827 	 * Unregister properties.
1828 	 */
1829 	zfs_unregister_callbacks(zfsvfs);
1830 
1831 	/*
1832 	 * Evict cached data
1833 	 */
1834 	if (dmu_objset_is_dirty_anywhere(zfsvfs->z_os))
1835 		if (!(zfsvfs->z_vfs->vfs_flag & VFS_RDONLY))
1836 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1837 	(void) dmu_objset_evict_dbufs(zfsvfs->z_os);
1838 
1839 	return (0);
1840 }
1841 
1842 /*ARGSUSED*/
1843 static int
1844 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
1845 {
1846 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1847 	objset_t *os;
1848 	int ret;
1849 
1850 	ret = secpolicy_fs_unmount(cr, vfsp);
1851 	if (ret) {
1852 		if (dsl_deleg_access((char *)refstr_value(vfsp->vfs_resource),
1853 		    ZFS_DELEG_PERM_MOUNT, cr))
1854 			return (ret);
1855 	}
1856 
1857 	/*
1858 	 * We purge the parent filesystem's vfsp as the parent filesystem
1859 	 * and all of its snapshots have their vnode's v_vfsp set to the
1860 	 * parent's filesystem's vfsp.  Note, 'z_parent' is self
1861 	 * referential for non-snapshots.
1862 	 */
1863 	(void) dnlc_purge_vfsp(zfsvfs->z_parent->z_vfs, 0);
1864 
1865 	/*
1866 	 * Unmount any snapshots mounted under .zfs before unmounting the
1867 	 * dataset itself.
1868 	 */
1869 	if (zfsvfs->z_ctldir != NULL &&
1870 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0) {
1871 		return (ret);
1872 	}
1873 
1874 	if (!(fflag & MS_FORCE)) {
1875 		/*
1876 		 * Check the number of active vnodes in the file system.
1877 		 * Our count is maintained in the vfs structure, but the
1878 		 * number is off by 1 to indicate a hold on the vfs
1879 		 * structure itself.
1880 		 *
1881 		 * The '.zfs' directory maintains a reference of its
1882 		 * own, and any active references underneath are
1883 		 * reflected in the vnode count.
1884 		 */
1885 		if (zfsvfs->z_ctldir == NULL) {
1886 			if (vfsp->vfs_count > 1)
1887 				return (EBUSY);
1888 		} else {
1889 			if (vfsp->vfs_count > 2 ||
1890 			    zfsvfs->z_ctldir->v_count > 1)
1891 				return (EBUSY);
1892 		}
1893 	}
1894 
1895 	vfsp->vfs_flag |= VFS_UNMOUNTED;
1896 
1897 	VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1898 	os = zfsvfs->z_os;
1899 
1900 	/*
1901 	 * z_os will be NULL if there was an error in
1902 	 * attempting to reopen zfsvfs.
1903 	 */
1904 	if (os != NULL) {
1905 		/*
1906 		 * Unset the objset user_ptr.
1907 		 */
1908 		mutex_enter(&os->os_user_ptr_lock);
1909 		dmu_objset_set_user(os, NULL);
1910 		mutex_exit(&os->os_user_ptr_lock);
1911 
1912 		/*
1913 		 * Finally release the objset
1914 		 */
1915 		dmu_objset_disown(os, zfsvfs);
1916 	}
1917 
1918 	/*
1919 	 * We can now safely destroy the '.zfs' directory node.
1920 	 */
1921 	if (zfsvfs->z_ctldir != NULL)
1922 		zfsctl_destroy(zfsvfs);
1923 
1924 	return (0);
1925 }
1926 
1927 static int
1928 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
1929 {
1930 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
1931 	znode_t		*zp;
1932 	uint64_t	object = 0;
1933 	uint64_t	fid_gen = 0;
1934 	uint64_t	gen_mask;
1935 	uint64_t	zp_gen;
1936 	int 		i, err;
1937 
1938 	*vpp = NULL;
1939 
1940 	ZFS_ENTER(zfsvfs);
1941 
1942 	if (fidp->fid_len == LONG_FID_LEN) {
1943 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
1944 		uint64_t	objsetid = 0;
1945 		uint64_t	setgen = 0;
1946 
1947 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1948 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1949 
1950 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1951 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1952 
1953 		ZFS_EXIT(zfsvfs);
1954 
1955 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
1956 		if (err)
1957 			return (EINVAL);
1958 		ZFS_ENTER(zfsvfs);
1959 	}
1960 
1961 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1962 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1963 
1964 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1965 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1966 
1967 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1968 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1969 	} else {
1970 		ZFS_EXIT(zfsvfs);
1971 		return (EINVAL);
1972 	}
1973 
1974 	/* A zero fid_gen means we are in the .zfs control directories */
1975 	if (fid_gen == 0 &&
1976 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1977 		*vpp = zfsvfs->z_ctldir;
1978 		ASSERT(*vpp != NULL);
1979 		if (object == ZFSCTL_INO_SNAPDIR) {
1980 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1981 			    0, NULL, NULL, NULL, NULL, NULL) == 0);
1982 		} else {
1983 			VN_HOLD(*vpp);
1984 		}
1985 		ZFS_EXIT(zfsvfs);
1986 		return (0);
1987 	}
1988 
1989 	gen_mask = -1ULL >> (64 - 8 * i);
1990 
1991 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1992 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1993 		ZFS_EXIT(zfsvfs);
1994 		return (err);
1995 	}
1996 	(void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1997 	    sizeof (uint64_t));
1998 	zp_gen = zp_gen & gen_mask;
1999 	if (zp_gen == 0)
2000 		zp_gen = 1;
2001 	if (zp->z_unlinked || zp_gen != fid_gen) {
2002 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
2003 		VN_RELE(ZTOV(zp));
2004 		ZFS_EXIT(zfsvfs);
2005 		return (EINVAL);
2006 	}
2007 
2008 	*vpp = ZTOV(zp);
2009 	ZFS_EXIT(zfsvfs);
2010 	return (0);
2011 }
2012 
2013 /*
2014  * Block out VOPs and close zfsvfs_t::z_os
2015  *
2016  * Note, if successful, then we return with the 'z_teardown_lock' and
2017  * 'z_teardown_inactive_lock' write held.
2018  */
2019 int
2020 zfs_suspend_fs(zfsvfs_t *zfsvfs)
2021 {
2022 	int error;
2023 
2024 	if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
2025 		return (error);
2026 	dmu_objset_disown(zfsvfs->z_os, zfsvfs);
2027 
2028 	return (0);
2029 }
2030 
2031 /*
2032  * Reopen zfsvfs_t::z_os and release VOPs.
2033  */
2034 int
2035 zfs_resume_fs(zfsvfs_t *zfsvfs, const char *osname)
2036 {
2037 	int err;
2038 
2039 	ASSERT(RRW_WRITE_HELD(&zfsvfs->z_teardown_lock));
2040 	ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
2041 
2042 	err = dmu_objset_own(osname, DMU_OST_ZFS, B_FALSE, zfsvfs,
2043 	    &zfsvfs->z_os);
2044 	if (err) {
2045 		zfsvfs->z_os = NULL;
2046 	} else {
2047 		znode_t *zp;
2048 		uint64_t sa_obj = 0;
2049 
2050 		/*
2051 		 * Make sure version hasn't changed
2052 		 */
2053 
2054 		err = zfs_get_zplprop(zfsvfs->z_os, ZFS_PROP_VERSION,
2055 		    &zfsvfs->z_version);
2056 
2057 		if (err)
2058 			goto bail;
2059 
2060 		err = zap_lookup(zfsvfs->z_os, MASTER_NODE_OBJ,
2061 		    ZFS_SA_ATTRS, 8, 1, &sa_obj);
2062 
2063 		if (err && zfsvfs->z_version >= ZPL_VERSION_SA)
2064 			goto bail;
2065 
2066 		if ((err = sa_setup(zfsvfs->z_os, sa_obj,
2067 		    zfs_attr_table,  ZPL_END, &zfsvfs->z_attr_table)) != 0)
2068 			goto bail;
2069 
2070 		if (zfsvfs->z_version >= ZPL_VERSION_SA)
2071 			sa_register_update_callback(zfsvfs->z_os,
2072 			    zfs_sa_upgrade);
2073 
2074 		VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
2075 
2076 		zfs_set_fuid_feature(zfsvfs);
2077 
2078 		/*
2079 		 * Attempt to re-establish all the active znodes with
2080 		 * their dbufs.  If a zfs_rezget() fails, then we'll let
2081 		 * any potential callers discover that via ZFS_ENTER_VERIFY_VP
2082 		 * when they try to use their znode.
2083 		 */
2084 		mutex_enter(&zfsvfs->z_znodes_lock);
2085 		for (zp = list_head(&zfsvfs->z_all_znodes); zp;
2086 		    zp = list_next(&zfsvfs->z_all_znodes, zp)) {
2087 			(void) zfs_rezget(zp);
2088 		}
2089 		mutex_exit(&zfsvfs->z_znodes_lock);
2090 	}
2091 
2092 bail:
2093 	/* release the VOPs */
2094 	rw_exit(&zfsvfs->z_teardown_inactive_lock);
2095 	rrw_exit(&zfsvfs->z_teardown_lock, FTAG);
2096 
2097 	if (err) {
2098 		/*
2099 		 * Since we couldn't reopen zfsvfs::z_os, or
2100 		 * setup the sa framework force unmount this file system.
2101 		 */
2102 		if (vn_vfswlock(zfsvfs->z_vfs->vfs_vnodecovered) == 0)
2103 			(void) dounmount(zfsvfs->z_vfs, MS_FORCE, CRED());
2104 	}
2105 	return (err);
2106 }
2107 
2108 static void
2109 zfs_freevfs(vfs_t *vfsp)
2110 {
2111 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
2112 
2113 	/*
2114 	 * If this is a snapshot, we have an extra VFS_HOLD on our parent
2115 	 * from zfs_mount().  Release it here.  If we came through
2116 	 * zfs_mountroot() instead, we didn't grab an extra hold, so
2117 	 * skip the VFS_RELE for rootvfs.
2118 	 */
2119 	if (zfsvfs->z_issnap && (vfsp != rootvfs))
2120 		VFS_RELE(zfsvfs->z_parent->z_vfs);
2121 
2122 	zfsvfs_free(zfsvfs);
2123 
2124 	atomic_add_32(&zfs_active_fs_count, -1);
2125 }
2126 
2127 /*
2128  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
2129  * so we can't safely do any non-idempotent initialization here.
2130  * Leave that to zfs_init() and zfs_fini(), which are called
2131  * from the module's _init() and _fini() entry points.
2132  */
2133 /*ARGSUSED*/
2134 static int
2135 zfs_vfsinit(int fstype, char *name)
2136 {
2137 	int error;
2138 
2139 	zfsfstype = fstype;
2140 
2141 	/*
2142 	 * Setup vfsops and vnodeops tables.
2143 	 */
2144 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
2145 	if (error != 0) {
2146 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
2147 	}
2148 
2149 	error = zfs_create_op_tables();
2150 	if (error) {
2151 		zfs_remove_op_tables();
2152 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
2153 		(void) vfs_freevfsops_by_type(zfsfstype);
2154 		return (error);
2155 	}
2156 
2157 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
2158 
2159 	/*
2160 	 * Unique major number for all zfs mounts.
2161 	 * If we run out of 32-bit minors, we'll getudev() another major.
2162 	 */
2163 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
2164 	zfs_minor = ZFS_MIN_MINOR;
2165 
2166 	return (0);
2167 }
2168 
2169 void
2170 zfs_init(void)
2171 {
2172 	/*
2173 	 * Initialize .zfs directory structures
2174 	 */
2175 	zfsctl_init();
2176 
2177 	/*
2178 	 * Initialize znode cache, vnode ops, etc...
2179 	 */
2180 	zfs_znode_init();
2181 
2182 	dmu_objset_register_type(DMU_OST_ZFS, zfs_space_delta_cb);
2183 }
2184 
2185 void
2186 zfs_fini(void)
2187 {
2188 	zfsctl_fini();
2189 	zfs_znode_fini();
2190 }
2191 
2192 int
2193 zfs_busy(void)
2194 {
2195 	return (zfs_active_fs_count != 0);
2196 }
2197 
2198 int
2199 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
2200 {
2201 	int error;
2202 	objset_t *os = zfsvfs->z_os;
2203 	dmu_tx_t *tx;
2204 
2205 	if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
2206 		return (EINVAL);
2207 
2208 	if (newvers < zfsvfs->z_version)
2209 		return (EINVAL);
2210 
2211 	if (zfs_spa_version_map(newvers) >
2212 	    spa_version(dmu_objset_spa(zfsvfs->z_os)))
2213 		return (ENOTSUP);
2214 
2215 	tx = dmu_tx_create(os);
2216 	dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2217 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2218 		dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2219 		    ZFS_SA_ATTRS);
2220 		dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2221 	}
2222 	error = dmu_tx_assign(tx, TXG_WAIT);
2223 	if (error) {
2224 		dmu_tx_abort(tx);
2225 		return (error);
2226 	}
2227 
2228 	error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2229 	    8, 1, &newvers, tx);
2230 
2231 	if (error) {
2232 		dmu_tx_commit(tx);
2233 		return (error);
2234 	}
2235 
2236 	if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2237 		uint64_t sa_obj;
2238 
2239 		ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2240 		    SPA_VERSION_SA);
2241 		sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2242 		    DMU_OT_NONE, 0, tx);
2243 
2244 		error = zap_add(os, MASTER_NODE_OBJ,
2245 		    ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2246 		ASSERT3U(error, ==, 0);
2247 
2248 		VERIFY(0 == sa_set_sa_object(os, sa_obj));
2249 		sa_register_update_callback(os, zfs_sa_upgrade);
2250 	}
2251 
2252 	spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2253 	    "from %llu to %llu", zfsvfs->z_version, newvers);
2254 
2255 	dmu_tx_commit(tx);
2256 
2257 	zfsvfs->z_version = newvers;
2258 
2259 	zfs_set_fuid_feature(zfsvfs);
2260 
2261 	return (0);
2262 }
2263 
2264 /*
2265  * Read a property stored within the master node.
2266  */
2267 int
2268 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2269 {
2270 	const char *pname;
2271 	int error = ENOENT;
2272 
2273 	/*
2274 	 * Look up the file system's value for the property.  For the
2275 	 * version property, we look up a slightly different string.
2276 	 */
2277 	if (prop == ZFS_PROP_VERSION)
2278 		pname = ZPL_VERSION_STR;
2279 	else
2280 		pname = zfs_prop_to_name(prop);
2281 
2282 	if (os != NULL)
2283 		error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2284 
2285 	if (error == ENOENT) {
2286 		/* No value set, use the default value */
2287 		switch (prop) {
2288 		case ZFS_PROP_VERSION:
2289 			*value = ZPL_VERSION;
2290 			break;
2291 		case ZFS_PROP_NORMALIZE:
2292 		case ZFS_PROP_UTF8ONLY:
2293 			*value = 0;
2294 			break;
2295 		case ZFS_PROP_CASE:
2296 			*value = ZFS_CASE_SENSITIVE;
2297 			break;
2298 		default:
2299 			return (error);
2300 		}
2301 		error = 0;
2302 	}
2303 	return (error);
2304 }
2305 
2306 static vfsdef_t vfw = {
2307 	VFSDEF_VERSION,
2308 	MNTTYPE_ZFS,
2309 	zfs_vfsinit,
2310 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS|
2311 	    VSW_XID|VSW_ZMOUNT,
2312 	&zfs_mntopts
2313 };
2314 
2315 struct modlfs zfs_modlfs = {
2316 	&mod_fsops, "ZFS filesystem version " SPA_VERSION_STRING, &vfw
2317 };
2318