xref: /titanic_52/usr/src/uts/common/fs/zfs/zfs_vfsops.c (revision 18c2aff776a775d34a4c9893a4c72e0434d68e36)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/systm.h>
31 #include <sys/sysmacros.h>
32 #include <sys/kmem.h>
33 #include <sys/pathname.h>
34 #include <sys/acl.h>
35 #include <sys/vnode.h>
36 #include <sys/vfs.h>
37 #include <sys/mntent.h>
38 #include <sys/mount.h>
39 #include <sys/cmn_err.h>
40 #include "fs/fs_subr.h"
41 #include <sys/zfs_znode.h>
42 #include <sys/zil.h>
43 #include <sys/fs/zfs.h>
44 #include <sys/dmu.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/varargs.h>
49 #include <sys/policy.h>
50 #include <sys/atomic.h>
51 #include <sys/mkdev.h>
52 #include <sys/modctl.h>
53 #include <sys/zfs_ioctl.h>
54 #include <sys/zfs_ctldir.h>
55 #include <sys/bootconf.h>
56 #include <sys/sunddi.h>
57 #include <sys/dnlc.h>
58 
59 int zfsfstype;
60 vfsops_t *zfs_vfsops = NULL;
61 static major_t zfs_major;
62 static minor_t zfs_minor;
63 static kmutex_t	zfs_dev_mtx;
64 
65 extern char zfs_bootpath[BO_MAXOBJNAME];
66 
67 static int zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr);
68 static int zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr);
69 static int zfs_mountroot(vfs_t *vfsp, enum whymountroot);
70 static int zfs_root(vfs_t *vfsp, vnode_t **vpp);
71 static int zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp);
72 static int zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp);
73 static void zfs_freevfs(vfs_t *vfsp);
74 static void zfs_objset_close(zfsvfs_t *zfsvfs);
75 
76 static const fs_operation_def_t zfs_vfsops_template[] = {
77 	VFSNAME_MOUNT, zfs_mount,
78 	VFSNAME_MOUNTROOT, zfs_mountroot,
79 	VFSNAME_UNMOUNT, zfs_umount,
80 	VFSNAME_ROOT, zfs_root,
81 	VFSNAME_STATVFS, zfs_statvfs,
82 	VFSNAME_SYNC, (fs_generic_func_p) zfs_sync,
83 	VFSNAME_VGET, zfs_vget,
84 	VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs,
85 	NULL, NULL
86 };
87 
88 static const fs_operation_def_t zfs_vfsops_eio_template[] = {
89 	VFSNAME_FREEVFS, (fs_generic_func_p) zfs_freevfs,
90 	NULL, NULL
91 };
92 
93 /*
94  * We need to keep a count of active fs's.
95  * This is necessary to prevent our module
96  * from being unloaded after a umount -f
97  */
98 static uint32_t	zfs_active_fs_count = 0;
99 
100 static char *noatime_cancel[] = { MNTOPT_ATIME, NULL };
101 static char *atime_cancel[] = { MNTOPT_NOATIME, NULL };
102 
103 static mntopt_t mntopts[] = {
104 	{ MNTOPT_XATTR, NULL, NULL, MO_NODISPLAY|MO_DEFAULT, NULL },
105 	{ MNTOPT_NOATIME, noatime_cancel, NULL, MO_DEFAULT, NULL },
106 	{ MNTOPT_ATIME, atime_cancel, NULL, 0, NULL }
107 };
108 
109 static mntopts_t zfs_mntopts = {
110 	sizeof (mntopts) / sizeof (mntopt_t),
111 	mntopts
112 };
113 
114 /*ARGSUSED*/
115 int
116 zfs_sync(vfs_t *vfsp, short flag, cred_t *cr)
117 {
118 	/*
119 	 * Data integrity is job one.  We don't want a compromised kernel
120 	 * writing to the storage pool, so we never sync during panic.
121 	 */
122 	if (panicstr)
123 		return (0);
124 
125 	/*
126 	 * SYNC_ATTR is used by fsflush() to force old filesystems like UFS
127 	 * to sync metadata, which they would otherwise cache indefinitely.
128 	 * Semantically, the only requirement is that the sync be initiated.
129 	 * The DMU syncs out txgs frequently, so there's nothing to do.
130 	 */
131 	if (flag & SYNC_ATTR)
132 		return (0);
133 
134 	if (vfsp != NULL) {
135 		/*
136 		 * Sync a specific filesystem.
137 		 */
138 		zfsvfs_t *zfsvfs = vfsp->vfs_data;
139 
140 		ZFS_ENTER(zfsvfs);
141 		if (zfsvfs->z_log != NULL)
142 			zil_commit(zfsvfs->z_log, UINT64_MAX, 0);
143 		else
144 			txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
145 		ZFS_EXIT(zfsvfs);
146 	} else {
147 		/*
148 		 * Sync all ZFS filesystems.  This is what happens when you
149 		 * run sync(1M).  Unlike other filesystems, ZFS honors the
150 		 * request by waiting for all pools to commit all dirty data.
151 		 */
152 		spa_sync_allpools();
153 	}
154 
155 	return (0);
156 }
157 
158 static int
159 zfs_create_unique_device(dev_t *dev)
160 {
161 	major_t new_major;
162 
163 	do {
164 		ASSERT3U(zfs_minor, <=, MAXMIN32);
165 		minor_t start = zfs_minor;
166 		do {
167 			mutex_enter(&zfs_dev_mtx);
168 			if (zfs_minor >= MAXMIN32) {
169 				/*
170 				 * If we're still using the real major
171 				 * keep out of /dev/zfs and /dev/zvol minor
172 				 * number space.  If we're using a getudev()'ed
173 				 * major number, we can use all of its minors.
174 				 */
175 				if (zfs_major == ddi_name_to_major(ZFS_DRIVER))
176 					zfs_minor = ZFS_MIN_MINOR;
177 				else
178 					zfs_minor = 0;
179 			} else {
180 				zfs_minor++;
181 			}
182 			*dev = makedevice(zfs_major, zfs_minor);
183 			mutex_exit(&zfs_dev_mtx);
184 		} while (vfs_devismounted(*dev) && zfs_minor != start);
185 		if (zfs_minor == start) {
186 			/*
187 			 * We are using all ~262,000 minor numbers for the
188 			 * current major number.  Create a new major number.
189 			 */
190 			if ((new_major = getudev()) == (major_t)-1) {
191 				cmn_err(CE_WARN,
192 				    "zfs_mount: Can't get unique major "
193 				    "device number.");
194 				return (-1);
195 			}
196 			mutex_enter(&zfs_dev_mtx);
197 			zfs_major = new_major;
198 			zfs_minor = 0;
199 
200 			mutex_exit(&zfs_dev_mtx);
201 		} else {
202 			break;
203 		}
204 		/* CONSTANTCONDITION */
205 	} while (1);
206 
207 	return (0);
208 }
209 
210 static void
211 atime_changed_cb(void *arg, uint64_t newval)
212 {
213 	zfsvfs_t *zfsvfs = arg;
214 
215 	if (newval == TRUE) {
216 		zfsvfs->z_atime = TRUE;
217 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME);
218 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_ATIME, NULL, 0);
219 	} else {
220 		zfsvfs->z_atime = FALSE;
221 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_ATIME);
222 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOATIME, NULL, 0);
223 	}
224 }
225 
226 static void
227 blksz_changed_cb(void *arg, uint64_t newval)
228 {
229 	zfsvfs_t *zfsvfs = arg;
230 
231 	if (newval < SPA_MINBLOCKSIZE ||
232 	    newval > SPA_MAXBLOCKSIZE || !ISP2(newval))
233 		newval = SPA_MAXBLOCKSIZE;
234 
235 	zfsvfs->z_max_blksz = newval;
236 	zfsvfs->z_vfs->vfs_bsize = newval;
237 }
238 
239 static void
240 readonly_changed_cb(void *arg, uint64_t newval)
241 {
242 	zfsvfs_t *zfsvfs = arg;
243 
244 	if (newval) {
245 		/* XXX locking on vfs_flag? */
246 		zfsvfs->z_vfs->vfs_flag |= VFS_RDONLY;
247 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RW);
248 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RO, NULL, 0);
249 		(void) zfs_delete_thread_target(zfsvfs, 0);
250 	} else {
251 		/* XXX locking on vfs_flag? */
252 		zfsvfs->z_vfs->vfs_flag &= ~VFS_RDONLY;
253 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_RO);
254 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_RW, NULL, 0);
255 		(void) zfs_delete_thread_target(zfsvfs, 1);
256 	}
257 }
258 
259 static void
260 devices_changed_cb(void *arg, uint64_t newval)
261 {
262 	zfsvfs_t *zfsvfs = arg;
263 
264 	if (newval == FALSE) {
265 		zfsvfs->z_vfs->vfs_flag |= VFS_NODEVICES;
266 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES);
267 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES, NULL, 0);
268 	} else {
269 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NODEVICES;
270 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NODEVICES);
271 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_DEVICES, NULL, 0);
272 	}
273 }
274 
275 static void
276 setuid_changed_cb(void *arg, uint64_t newval)
277 {
278 	zfsvfs_t *zfsvfs = arg;
279 
280 	if (newval == FALSE) {
281 		zfsvfs->z_vfs->vfs_flag |= VFS_NOSETUID;
282 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_SETUID);
283 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID, NULL, 0);
284 	} else {
285 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOSETUID;
286 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOSETUID);
287 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_SETUID, NULL, 0);
288 	}
289 }
290 
291 static void
292 exec_changed_cb(void *arg, uint64_t newval)
293 {
294 	zfsvfs_t *zfsvfs = arg;
295 
296 	if (newval == FALSE) {
297 		zfsvfs->z_vfs->vfs_flag |= VFS_NOEXEC;
298 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_EXEC);
299 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC, NULL, 0);
300 	} else {
301 		zfsvfs->z_vfs->vfs_flag &= ~VFS_NOEXEC;
302 		vfs_clearmntopt(zfsvfs->z_vfs, MNTOPT_NOEXEC);
303 		vfs_setmntopt(zfsvfs->z_vfs, MNTOPT_EXEC, NULL, 0);
304 	}
305 }
306 
307 static void
308 snapdir_changed_cb(void *arg, uint64_t newval)
309 {
310 	zfsvfs_t *zfsvfs = arg;
311 
312 	zfsvfs->z_show_ctldir = newval;
313 }
314 
315 static void
316 acl_mode_changed_cb(void *arg, uint64_t newval)
317 {
318 	zfsvfs_t *zfsvfs = arg;
319 
320 	zfsvfs->z_acl_mode = newval;
321 }
322 
323 static void
324 acl_inherit_changed_cb(void *arg, uint64_t newval)
325 {
326 	zfsvfs_t *zfsvfs = arg;
327 
328 	zfsvfs->z_acl_inherit = newval;
329 }
330 
331 static int
332 zfs_refresh_properties(vfs_t *vfsp)
333 {
334 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
335 
336 	/*
337 	 * Remount operations default to "rw" unless "ro" is explicitly
338 	 * specified.
339 	 */
340 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
341 		readonly_changed_cb(zfsvfs, B_TRUE);
342 	} else {
343 		if (!dmu_objset_is_snapshot(zfsvfs->z_os))
344 			readonly_changed_cb(zfsvfs, B_FALSE);
345 		else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL))
346 			    return (EROFS);
347 	}
348 
349 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
350 		devices_changed_cb(zfsvfs, B_FALSE);
351 		setuid_changed_cb(zfsvfs, B_FALSE);
352 	} else {
353 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL))
354 			devices_changed_cb(zfsvfs, B_FALSE);
355 		else if (vfs_optionisset(vfsp, MNTOPT_DEVICES, NULL))
356 			devices_changed_cb(zfsvfs, B_TRUE);
357 
358 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL))
359 			setuid_changed_cb(zfsvfs, B_FALSE);
360 		else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL))
361 			setuid_changed_cb(zfsvfs, B_TRUE);
362 	}
363 
364 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL))
365 		exec_changed_cb(zfsvfs, B_FALSE);
366 	else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL))
367 		exec_changed_cb(zfsvfs, B_TRUE);
368 
369 	if (vfs_optionisset(vfsp, MNTOPT_ATIME, NULL))
370 		atime_changed_cb(zfsvfs, B_TRUE);
371 	else if (vfs_optionisset(vfsp, MNTOPT_NOATIME, NULL))
372 		atime_changed_cb(zfsvfs, B_FALSE);
373 
374 	return (0);
375 }
376 
377 static int
378 zfs_register_callbacks(vfs_t *vfsp)
379 {
380 	struct dsl_dataset *ds = NULL;
381 	objset_t *os = NULL;
382 	zfsvfs_t *zfsvfs = NULL;
383 	int do_readonly = FALSE, readonly;
384 	int do_setuid = FALSE, setuid;
385 	int do_exec = FALSE, exec;
386 	int do_devices = FALSE, devices;
387 	int error = 0;
388 
389 	ASSERT(vfsp);
390 	zfsvfs = vfsp->vfs_data;
391 	ASSERT(zfsvfs);
392 	os = zfsvfs->z_os;
393 
394 	/*
395 	 * The act of registering our callbacks will destroy any mount
396 	 * options we may have.  In order to enable temporary overrides
397 	 * of mount options, we stash away the current values and restore
398 	 * restore them after we register the callbacks.
399 	 */
400 	if (vfs_optionisset(vfsp, MNTOPT_RO, NULL)) {
401 		readonly = B_TRUE;
402 		do_readonly = B_TRUE;
403 	} else if (vfs_optionisset(vfsp, MNTOPT_RW, NULL)) {
404 		readonly = B_FALSE;
405 		do_readonly = B_TRUE;
406 	}
407 	if (vfs_optionisset(vfsp, MNTOPT_NOSUID, NULL)) {
408 		devices = B_FALSE;
409 		setuid = B_FALSE;
410 		do_devices = B_TRUE;
411 		do_setuid = B_TRUE;
412 	} else {
413 		if (vfs_optionisset(vfsp, MNTOPT_NODEVICES, NULL)) {
414 			devices = B_FALSE;
415 			do_devices = B_TRUE;
416 		} else if (vfs_optionisset(vfsp,
417 			    MNTOPT_DEVICES, NULL)) {
418 			devices = B_TRUE;
419 			do_devices = B_TRUE;
420 		}
421 
422 		if (vfs_optionisset(vfsp, MNTOPT_NOSETUID, NULL)) {
423 			setuid = B_FALSE;
424 			do_setuid = B_TRUE;
425 		} else if (vfs_optionisset(vfsp, MNTOPT_SETUID, NULL)) {
426 			setuid = B_TRUE;
427 			do_setuid = B_TRUE;
428 		}
429 	}
430 	if (vfs_optionisset(vfsp, MNTOPT_NOEXEC, NULL)) {
431 		exec = B_FALSE;
432 		do_exec = B_TRUE;
433 	} else if (vfs_optionisset(vfsp, MNTOPT_EXEC, NULL)) {
434 		exec = B_TRUE;
435 		do_exec = B_TRUE;
436 	}
437 
438 	/*
439 	 * Register property callbacks.
440 	 *
441 	 * It would probably be fine to just check for i/o error from
442 	 * the first prop_register(), but I guess I like to go
443 	 * overboard...
444 	 */
445 	ds = dmu_objset_ds(os);
446 	error = dsl_prop_register(ds, "atime", atime_changed_cb, zfsvfs);
447 	error = error ? error : dsl_prop_register(ds,
448 	    "recordsize", blksz_changed_cb, zfsvfs);
449 	error = error ? error : dsl_prop_register(ds,
450 	    "readonly", readonly_changed_cb, zfsvfs);
451 	error = error ? error : dsl_prop_register(ds,
452 	    "devices", devices_changed_cb, zfsvfs);
453 	error = error ? error : dsl_prop_register(ds,
454 	    "setuid", setuid_changed_cb, zfsvfs);
455 	error = error ? error : dsl_prop_register(ds,
456 	    "exec", exec_changed_cb, zfsvfs);
457 	error = error ? error : dsl_prop_register(ds,
458 	    "snapdir", snapdir_changed_cb, zfsvfs);
459 	error = error ? error : dsl_prop_register(ds,
460 	    "aclmode", acl_mode_changed_cb, zfsvfs);
461 	error = error ? error : dsl_prop_register(ds,
462 	    "aclinherit", acl_inherit_changed_cb, zfsvfs);
463 	if (error)
464 		goto unregister;
465 
466 	/*
467 	 * Invoke our callbacks to restore temporary mount options.
468 	 */
469 	if (do_readonly)
470 		readonly_changed_cb(zfsvfs, readonly);
471 	if (do_setuid)
472 		setuid_changed_cb(zfsvfs, setuid);
473 	if (do_exec)
474 		exec_changed_cb(zfsvfs, exec);
475 	if (do_devices)
476 		devices_changed_cb(zfsvfs, devices);
477 
478 	return (0);
479 
480 unregister:
481 	/*
482 	 * We may attempt to unregister some callbacks that are not
483 	 * registered, but this is OK; it will simply return ENOMSG,
484 	 * which we will ignore.
485 	 */
486 	(void) dsl_prop_unregister(ds, "atime", atime_changed_cb, zfsvfs);
487 	(void) dsl_prop_unregister(ds, "recordsize", blksz_changed_cb, zfsvfs);
488 	(void) dsl_prop_unregister(ds, "readonly", readonly_changed_cb, zfsvfs);
489 	(void) dsl_prop_unregister(ds, "devices", devices_changed_cb, zfsvfs);
490 	(void) dsl_prop_unregister(ds, "setuid", setuid_changed_cb, zfsvfs);
491 	(void) dsl_prop_unregister(ds, "exec", exec_changed_cb, zfsvfs);
492 	(void) dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb, zfsvfs);
493 	(void) dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb, zfsvfs);
494 	(void) dsl_prop_unregister(ds, "aclinherit", acl_inherit_changed_cb,
495 	    zfsvfs);
496 	return (error);
497 
498 }
499 
500 static int
501 zfs_domount(vfs_t *vfsp, char *osname, cred_t *cr)
502 {
503 	dev_t mount_dev;
504 	uint64_t recordsize, readonly;
505 	int error = 0;
506 	int mode;
507 	zfsvfs_t *zfsvfs;
508 	znode_t *zp = NULL;
509 
510 	ASSERT(vfsp);
511 	ASSERT(osname);
512 
513 	/*
514 	 * Initialize the zfs-specific filesystem structure.
515 	 * Should probably make this a kmem cache, shuffle fields,
516 	 * and just bzero up to z_hold_mtx[].
517 	 */
518 	zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
519 	zfsvfs->z_vfs = vfsp;
520 	zfsvfs->z_parent = zfsvfs;
521 	zfsvfs->z_assign = TXG_NOWAIT;
522 	zfsvfs->z_max_blksz = SPA_MAXBLOCKSIZE;
523 	zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
524 
525 	mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
526 	list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
527 	    offsetof(znode_t, z_link_node));
528 	rw_init(&zfsvfs->z_um_lock, NULL, RW_DEFAULT, NULL);
529 
530 	/* Initialize the generic filesystem structure. */
531 	vfsp->vfs_bcount = 0;
532 	vfsp->vfs_data = NULL;
533 
534 	if (zfs_create_unique_device(&mount_dev) == -1) {
535 		error = ENODEV;
536 		goto out;
537 	}
538 	ASSERT(vfs_devismounted(mount_dev) == 0);
539 
540 	if (error = dsl_prop_get_integer(osname, "recordsize", &recordsize,
541 	    NULL))
542 		goto out;
543 
544 	vfsp->vfs_dev = mount_dev;
545 	vfsp->vfs_fstype = zfsfstype;
546 	vfsp->vfs_bsize = recordsize;
547 	vfsp->vfs_flag |= VFS_NOTRUNC;
548 	vfsp->vfs_data = zfsvfs;
549 
550 	if (error = dsl_prop_get_integer(osname, "readonly", &readonly, NULL))
551 		goto out;
552 
553 	if (readonly)
554 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
555 	else
556 		mode = DS_MODE_PRIMARY;
557 
558 	error = dmu_objset_open(osname, DMU_OST_ZFS, mode, &zfsvfs->z_os);
559 	if (error == EROFS) {
560 		mode = DS_MODE_PRIMARY | DS_MODE_READONLY;
561 		error = dmu_objset_open(osname, DMU_OST_ZFS, mode,
562 		    &zfsvfs->z_os);
563 	}
564 
565 	if (error)
566 		goto out;
567 
568 	if (error = zfs_init_fs(zfsvfs, &zp, cr))
569 		goto out;
570 
571 	/* The call to zfs_init_fs leaves the vnode held, release it here. */
572 	VN_RELE(ZTOV(zp));
573 
574 	if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
575 		ASSERT(mode & DS_MODE_READONLY);
576 		atime_changed_cb(zfsvfs, B_FALSE);
577 		readonly_changed_cb(zfsvfs, B_TRUE);
578 		zfsvfs->z_issnap = B_TRUE;
579 	} else {
580 		error = zfs_register_callbacks(vfsp);
581 		if (error)
582 			goto out;
583 
584 		/*
585 		 * Start a delete thread running.
586 		 */
587 		(void) zfs_delete_thread_target(zfsvfs, 1);
588 
589 		/*
590 		 * Parse and replay the intent log.
591 		 */
592 		zil_replay(zfsvfs->z_os, zfsvfs, &zfsvfs->z_assign,
593 		    zfs_replay_vector, (void (*)(void *))zfs_delete_wait_empty);
594 
595 		if (!zil_disable)
596 			zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
597 	}
598 
599 	if (!zfsvfs->z_issnap)
600 		zfsctl_create(zfsvfs);
601 out:
602 	if (error) {
603 		if (zfsvfs->z_os)
604 			dmu_objset_close(zfsvfs->z_os);
605 		kmem_free(zfsvfs, sizeof (zfsvfs_t));
606 	} else {
607 		atomic_add_32(&zfs_active_fs_count, 1);
608 	}
609 
610 	return (error);
611 
612 }
613 
614 void
615 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
616 {
617 	objset_t *os = zfsvfs->z_os;
618 	struct dsl_dataset *ds;
619 
620 	/*
621 	 * Unregister properties.
622 	 */
623 	if (!dmu_objset_is_snapshot(os)) {
624 		ds = dmu_objset_ds(os);
625 		VERIFY(dsl_prop_unregister(ds, "atime", atime_changed_cb,
626 		    zfsvfs) == 0);
627 
628 		VERIFY(dsl_prop_unregister(ds, "recordsize", blksz_changed_cb,
629 		    zfsvfs) == 0);
630 
631 		VERIFY(dsl_prop_unregister(ds, "readonly", readonly_changed_cb,
632 		    zfsvfs) == 0);
633 
634 		VERIFY(dsl_prop_unregister(ds, "devices", devices_changed_cb,
635 		    zfsvfs) == 0);
636 
637 		VERIFY(dsl_prop_unregister(ds, "setuid", setuid_changed_cb,
638 		    zfsvfs) == 0);
639 
640 		VERIFY(dsl_prop_unregister(ds, "exec", exec_changed_cb,
641 		    zfsvfs) == 0);
642 
643 		VERIFY(dsl_prop_unregister(ds, "snapdir", snapdir_changed_cb,
644 		    zfsvfs) == 0);
645 
646 		VERIFY(dsl_prop_unregister(ds, "aclmode", acl_mode_changed_cb,
647 		    zfsvfs) == 0);
648 
649 		VERIFY(dsl_prop_unregister(ds, "aclinherit",
650 		    acl_inherit_changed_cb, zfsvfs) == 0);
651 	}
652 }
653 
654 static int
655 zfs_mountroot(vfs_t *vfsp, enum whymountroot why)
656 {
657 	int error = 0;
658 	int ret = 0;
659 	static int zfsrootdone = 0;
660 	zfsvfs_t *zfsvfs = NULL;
661 	znode_t *zp = NULL;
662 	vnode_t *vp = NULL;
663 
664 	ASSERT(vfsp);
665 
666 	/*
667 	 * The filesystem that we mount as root is defined in
668 	 * /etc/system using the zfsroot variable.  The value defined
669 	 * there is copied early in startup code to zfs_bootpath
670 	 * (defined in modsysfile.c).
671 	 */
672 	if (why == ROOT_INIT) {
673 		if (zfsrootdone++)
674 			return (EBUSY);
675 
676 		/*
677 		 * This needs to be done here, so that when we return from
678 		 * mountroot, the vfs resource name will be set correctly.
679 		 */
680 		if (snprintf(rootfs.bo_name, BO_MAXOBJNAME, "%s", zfs_bootpath)
681 		    >= BO_MAXOBJNAME)
682 			return (ENAMETOOLONG);
683 
684 		if (error = vfs_lock(vfsp))
685 			return (error);
686 
687 		if (error = zfs_domount(vfsp, zfs_bootpath, CRED()))
688 			goto out;
689 
690 		zfsvfs = (zfsvfs_t *)vfsp->vfs_data;
691 		ASSERT(zfsvfs);
692 		if (error = zfs_zget(zfsvfs, zfsvfs->z_root, &zp))
693 			goto out;
694 
695 		vp = ZTOV(zp);
696 		mutex_enter(&vp->v_lock);
697 		vp->v_flag |= VROOT;
698 		mutex_exit(&vp->v_lock);
699 		rootvp = vp;
700 
701 		/*
702 		 * The zfs_zget call above returns with a hold on vp, we release
703 		 * it here.
704 		 */
705 		VN_RELE(vp);
706 
707 		/*
708 		 * Mount root as readonly initially, it will be remouted
709 		 * read/write by /lib/svc/method/fs-usr.
710 		 */
711 		readonly_changed_cb(vfsp->vfs_data, B_TRUE);
712 		vfs_add((struct vnode *)0, vfsp,
713 		    (vfsp->vfs_flag & VFS_RDONLY) ? MS_RDONLY : 0);
714 out:
715 		vfs_unlock(vfsp);
716 		ret = (error) ? error : 0;
717 		return (ret);
718 
719 	} else if (why == ROOT_REMOUNT) {
720 
721 		readonly_changed_cb(vfsp->vfs_data, B_FALSE);
722 		vfsp->vfs_flag |= VFS_REMOUNT;
723 		return (zfs_refresh_properties(vfsp));
724 
725 	} else if (why == ROOT_UNMOUNT) {
726 		zfs_unregister_callbacks((zfsvfs_t *)vfsp->vfs_data);
727 		(void) zfs_sync(vfsp, 0, 0);
728 		return (0);
729 	}
730 
731 	/*
732 	 * if "why" is equal to anything else other than ROOT_INIT,
733 	 * ROOT_REMOUNT, or ROOT_UNMOUNT, we do not support it.
734 	 */
735 	return (ENOTSUP);
736 }
737 
738 /*ARGSUSED*/
739 static int
740 zfs_mount(vfs_t *vfsp, vnode_t *mvp, struct mounta *uap, cred_t *cr)
741 {
742 	char		*osname;
743 	pathname_t	spn;
744 	int		error = 0;
745 	uio_seg_t	fromspace = (uap->flags & MS_SYSSPACE) ?
746 				UIO_SYSSPACE : UIO_USERSPACE;
747 	int		canwrite;
748 
749 	if (mvp->v_type != VDIR)
750 		return (ENOTDIR);
751 
752 	mutex_enter(&mvp->v_lock);
753 	if ((uap->flags & MS_REMOUNT) == 0 &&
754 	    (uap->flags & MS_OVERLAY) == 0 &&
755 	    (mvp->v_count != 1 || (mvp->v_flag & VROOT))) {
756 		mutex_exit(&mvp->v_lock);
757 		return (EBUSY);
758 	}
759 	mutex_exit(&mvp->v_lock);
760 
761 	/*
762 	 * ZFS does not support passing unparsed data in via MS_DATA.
763 	 * Users should use the MS_OPTIONSTR interface; this means
764 	 * that all option parsing is already done and the options struct
765 	 * can be interrogated.
766 	 */
767 	if ((uap->flags & MS_DATA) && uap->datalen > 0)
768 		return (EINVAL);
769 
770 	/*
771 	 * When doing a remount, we simply refresh our temporary properties
772 	 * according to those options set in the current VFS options.
773 	 */
774 	if (uap->flags & MS_REMOUNT) {
775 		return (zfs_refresh_properties(vfsp));
776 	}
777 
778 	/*
779 	 * Get the objset name (the "special" mount argument).
780 	 */
781 	if (error = pn_get(uap->spec, fromspace, &spn))
782 		return (error);
783 
784 	osname = spn.pn_path;
785 
786 	if ((error = secpolicy_fs_mount(cr, mvp, vfsp)) != 0)
787 		goto out;
788 
789 	/*
790 	 * Refuse to mount a filesystem if we are in a local zone and the
791 	 * dataset is not visible.
792 	 */
793 	if (!INGLOBALZONE(curproc) &&
794 	    (!zone_dataset_visible(osname, &canwrite) || !canwrite)) {
795 		error = EPERM;
796 		goto out;
797 	}
798 
799 	error = zfs_domount(vfsp, osname, cr);
800 
801 out:
802 	pn_free(&spn);
803 	return (error);
804 }
805 
806 static int
807 zfs_statvfs(vfs_t *vfsp, struct statvfs64 *statp)
808 {
809 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
810 	dev32_t d32;
811 	uint64_t refdbytes, availbytes, usedobjs, availobjs;
812 
813 	ZFS_ENTER(zfsvfs);
814 
815 	dmu_objset_space(zfsvfs->z_os,
816 	    &refdbytes, &availbytes, &usedobjs, &availobjs);
817 
818 	/*
819 	 * The underlying storage pool actually uses multiple block sizes.
820 	 * We report the fragsize as the smallest block size we support,
821 	 * and we report our blocksize as the filesystem's maximum blocksize.
822 	 */
823 	statp->f_frsize = 1UL << SPA_MINBLOCKSHIFT;
824 	statp->f_bsize = zfsvfs->z_max_blksz;
825 
826 	/*
827 	 * The following report "total" blocks of various kinds in the
828 	 * file system, but reported in terms of f_frsize - the
829 	 * "fragment" size.
830 	 */
831 
832 	statp->f_blocks = (refdbytes + availbytes) >> SPA_MINBLOCKSHIFT;
833 	statp->f_bfree = availbytes >> SPA_MINBLOCKSHIFT;
834 	statp->f_bavail = statp->f_bfree; /* no root reservation */
835 
836 	/*
837 	 * statvfs() should really be called statufs(), because it assumes
838 	 * static metadata.  ZFS doesn't preallocate files, so the best
839 	 * we can do is report the max that could possibly fit in f_files,
840 	 * and that minus the number actually used in f_ffree.
841 	 * For f_ffree, report the smaller of the number of object available
842 	 * and the number of blocks (each object will take at least a block).
843 	 */
844 	statp->f_ffree = MIN(availobjs, statp->f_bfree);
845 	statp->f_favail = statp->f_ffree;	/* no "root reservation" */
846 	statp->f_files = statp->f_ffree + usedobjs;
847 
848 	(void) cmpldev(&d32, vfsp->vfs_dev);
849 	statp->f_fsid = d32;
850 
851 	/*
852 	 * We're a zfs filesystem.
853 	 */
854 	(void) strcpy(statp->f_basetype, vfssw[vfsp->vfs_fstype].vsw_name);
855 
856 	statp->f_flag = vf_to_stf(vfsp->vfs_flag);
857 
858 	statp->f_namemax = ZFS_MAXNAMELEN;
859 
860 	/*
861 	 * We have all of 32 characters to stuff a string here.
862 	 * Is there anything useful we could/should provide?
863 	 */
864 	bzero(statp->f_fstr, sizeof (statp->f_fstr));
865 
866 	ZFS_EXIT(zfsvfs);
867 	return (0);
868 }
869 
870 static int
871 zfs_root(vfs_t *vfsp, vnode_t **vpp)
872 {
873 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
874 	znode_t *rootzp;
875 	int error;
876 
877 	ZFS_ENTER(zfsvfs);
878 
879 	error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
880 	if (error == 0)
881 		*vpp = ZTOV(rootzp);
882 
883 	ZFS_EXIT(zfsvfs);
884 	return (error);
885 }
886 
887 /*ARGSUSED*/
888 static int
889 zfs_umount(vfs_t *vfsp, int fflag, cred_t *cr)
890 {
891 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
892 	int ret;
893 
894 	if ((ret = secpolicy_fs_unmount(cr, vfsp)) != 0)
895 		return (ret);
896 
897 
898 	(void) dnlc_purge_vfsp(vfsp, 0);
899 
900 	/*
901 	 * Unmount any snapshots mounted under .zfs before unmounting the
902 	 * dataset itself.
903 	 */
904 	if (zfsvfs->z_ctldir != NULL &&
905 	    (ret = zfsctl_umount_snapshots(vfsp, fflag, cr)) != 0)
906 		return (ret);
907 
908 	if (fflag & MS_FORCE) {
909 		vfsp->vfs_flag |= VFS_UNMOUNTED;
910 		zfsvfs->z_unmounted1 = B_TRUE;
911 
912 		/*
913 		 * Wait for all zfs threads to leave zfs.
914 		 * Grabbing a rwlock as reader in all vops and
915 		 * as writer here doesn't work because it too easy to get
916 		 * multiple reader enters as zfs can re-enter itself.
917 		 * This can lead to deadlock if there is an intervening
918 		 * rw_enter as writer.
919 		 * So a file system threads ref count (z_op_cnt) is used.
920 		 * A polling loop on z_op_cnt may seem inefficient, but
921 		 * - this saves all threads on exit from having to grab a
922 		 *   mutex in order to cv_signal
923 		 * - only occurs on forced unmount in the rare case when
924 		 *   there are outstanding threads within the file system.
925 		 */
926 		while (zfsvfs->z_op_cnt) {
927 			delay(1);
928 		}
929 
930 		zfs_objset_close(zfsvfs);
931 
932 		return (0);
933 	}
934 	/*
935 	 * Stop all delete threads.
936 	 */
937 	(void) zfs_delete_thread_target(zfsvfs, 0);
938 
939 	/*
940 	 * Check the number of active vnodes in the file system.
941 	 * Our count is maintained in the vfs structure, but the number
942 	 * is off by 1 to indicate a hold on the vfs structure itself.
943 	 *
944 	 * The '.zfs' directory maintains a reference of its own, and any active
945 	 * references underneath are reflected in the vnode count.
946 	 */
947 	if (zfsvfs->z_ctldir == NULL) {
948 		if (vfsp->vfs_count > 1) {
949 			if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0)
950 				(void) zfs_delete_thread_target(zfsvfs, 1);
951 			return (EBUSY);
952 		}
953 	} else {
954 		if (vfsp->vfs_count > 2 ||
955 		    (zfsvfs->z_ctldir->v_count > 1 && !(fflag & MS_FORCE))) {
956 			if ((zfsvfs->z_vfs->vfs_flag & VFS_RDONLY) == 0)
957 				(void) zfs_delete_thread_target(zfsvfs, 1);
958 			return (EBUSY);
959 		}
960 	}
961 
962 	vfsp->vfs_flag |= VFS_UNMOUNTED;
963 	zfs_objset_close(zfsvfs);
964 
965 	return (0);
966 }
967 
968 static int
969 zfs_vget(vfs_t *vfsp, vnode_t **vpp, fid_t *fidp)
970 {
971 	zfsvfs_t	*zfsvfs = vfsp->vfs_data;
972 	znode_t		*zp;
973 	uint64_t	object = 0;
974 	uint64_t	fid_gen = 0;
975 	uint64_t	gen_mask;
976 	uint64_t	zp_gen;
977 	int 		i, err;
978 
979 	*vpp = NULL;
980 
981 	ZFS_ENTER(zfsvfs);
982 
983 	if (fidp->fid_len == LONG_FID_LEN) {
984 		zfid_long_t	*zlfid = (zfid_long_t *)fidp;
985 		uint64_t	objsetid = 0;
986 		uint64_t	setgen = 0;
987 
988 		for (i = 0; i < sizeof (zlfid->zf_setid); i++)
989 			objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
990 
991 		for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
992 			setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
993 
994 		ZFS_EXIT(zfsvfs);
995 
996 		err = zfsctl_lookup_objset(vfsp, objsetid, &zfsvfs);
997 		if (err)
998 			return (EINVAL);
999 		ZFS_ENTER(zfsvfs);
1000 	}
1001 
1002 	if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1003 		zfid_short_t	*zfid = (zfid_short_t *)fidp;
1004 
1005 		for (i = 0; i < sizeof (zfid->zf_object); i++)
1006 			object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1007 
1008 		for (i = 0; i < sizeof (zfid->zf_gen); i++)
1009 			fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1010 	} else {
1011 		ZFS_EXIT(zfsvfs);
1012 		return (EINVAL);
1013 	}
1014 
1015 	/* A zero fid_gen means we are in the .zfs control directories */
1016 	if (fid_gen == 0 &&
1017 	    (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1018 		*vpp = zfsvfs->z_ctldir;
1019 		ASSERT(*vpp != NULL);
1020 		if (object == ZFSCTL_INO_SNAPDIR) {
1021 			VERIFY(zfsctl_root_lookup(*vpp, "snapshot", vpp, NULL,
1022 			    0, NULL, NULL) == 0);
1023 		} else {
1024 			VN_HOLD(*vpp);
1025 		}
1026 		ZFS_EXIT(zfsvfs);
1027 		return (0);
1028 	}
1029 
1030 	gen_mask = -1ULL >> (64 - 8 * i);
1031 
1032 	dprintf("getting %llu [%u mask %llx]\n", object, fid_gen, gen_mask);
1033 	if (err = zfs_zget(zfsvfs, object, &zp)) {
1034 		ZFS_EXIT(zfsvfs);
1035 		return (err);
1036 	}
1037 	zp_gen = zp->z_phys->zp_gen & gen_mask;
1038 	if (zp_gen == 0)
1039 		zp_gen = 1;
1040 	if (zp->z_reap || zp_gen != fid_gen) {
1041 		dprintf("znode gen (%u) != fid gen (%u)\n", zp_gen, fid_gen);
1042 		VN_RELE(ZTOV(zp));
1043 		ZFS_EXIT(zfsvfs);
1044 		return (EINVAL);
1045 	}
1046 
1047 	*vpp = ZTOV(zp);
1048 	ZFS_EXIT(zfsvfs);
1049 	return (0);
1050 }
1051 
1052 static void
1053 zfs_objset_close(zfsvfs_t *zfsvfs)
1054 {
1055 	zfs_delete_t	*zd = &zfsvfs->z_delete_head;
1056 	znode_t		*zp, *nextzp;
1057 	objset_t	*os = zfsvfs->z_os;
1058 
1059 	/*
1060 	 * Stop all delete threads.
1061 	 */
1062 	(void) zfs_delete_thread_target(zfsvfs, 0);
1063 
1064 	/*
1065 	 * For forced unmount, at this point all vops except zfs_inactive
1066 	 * are erroring EIO. We need to now suspend zfs_inactive threads
1067 	 * while we are freeing dbufs before switching zfs_inactive
1068 	 * to use behaviour without a objset.
1069 	 */
1070 	rw_enter(&zfsvfs->z_um_lock, RW_WRITER);
1071 
1072 	/*
1073 	 * Release all delete in progress znodes
1074 	 * They will be processed when the file system remounts.
1075 	 */
1076 	mutex_enter(&zd->z_mutex);
1077 	while (zp = list_head(&zd->z_znodes)) {
1078 		list_remove(&zd->z_znodes, zp);
1079 		zp->z_dbuf_held = 0;
1080 		dmu_buf_rele(zp->z_dbuf, NULL);
1081 	}
1082 	mutex_exit(&zd->z_mutex);
1083 
1084 	/*
1085 	 * Release all holds on dbufs
1086 	 * Note, although we have stopped all other vop threads and
1087 	 * zfs_inactive(), the dmu can callback via znode_pageout_func()
1088 	 * which can zfs_znode_free() the znode.
1089 	 * So we lock z_all_znodes; search the list for a held
1090 	 * dbuf; drop the lock (we know zp can't disappear if we hold
1091 	 * a dbuf lock; then regrab the lock and restart.
1092 	 */
1093 	mutex_enter(&zfsvfs->z_znodes_lock);
1094 	for (zp = list_head(&zfsvfs->z_all_znodes); zp; zp = nextzp) {
1095 		nextzp = list_next(&zfsvfs->z_all_znodes, zp);
1096 		if (zp->z_dbuf_held) {
1097 			/* dbufs should only be held when force unmounting */
1098 			zp->z_dbuf_held = 0;
1099 			mutex_exit(&zfsvfs->z_znodes_lock);
1100 			dmu_buf_rele(zp->z_dbuf, NULL);
1101 			/* Start again */
1102 			mutex_enter(&zfsvfs->z_znodes_lock);
1103 			nextzp = list_head(&zfsvfs->z_all_znodes);
1104 		}
1105 	}
1106 	mutex_exit(&zfsvfs->z_znodes_lock);
1107 
1108 	/*
1109 	 * Unregister properties.
1110 	 */
1111 	if (!dmu_objset_is_snapshot(os))
1112 		zfs_unregister_callbacks(zfsvfs);
1113 
1114 	/*
1115 	 * Switch zfs_inactive to behaviour without an objset.
1116 	 * It just tosses cached pages and frees the znode & vnode.
1117 	 * Then re-enable zfs_inactive threads in that new behaviour.
1118 	 */
1119 	zfsvfs->z_unmounted2 = B_TRUE;
1120 	rw_exit(&zfsvfs->z_um_lock); /* re-enable any zfs_inactive threads */
1121 
1122 	/*
1123 	 * Close the zil. Can't close the zil while zfs_inactive
1124 	 * threads are blocked as zil_close can call zfs_inactive.
1125 	 */
1126 	if (zfsvfs->z_log) {
1127 		zil_close(zfsvfs->z_log);
1128 		zfsvfs->z_log = NULL;
1129 	}
1130 
1131 	/*
1132 	 * Evict all dbufs so that cached znodes will be freed
1133 	 */
1134 	if (dmu_objset_evict_dbufs(os, 1)) {
1135 		txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1136 		(void) dmu_objset_evict_dbufs(os, 0);
1137 	}
1138 
1139 	/*
1140 	 * Finally close the objset
1141 	 */
1142 	dmu_objset_close(os);
1143 
1144 	/*
1145 	 * We can now safely destroy the '.zfs' directory node.
1146 	 */
1147 	if (zfsvfs->z_ctldir != NULL)
1148 		zfsctl_destroy(zfsvfs);
1149 
1150 }
1151 
1152 static void
1153 zfs_freevfs(vfs_t *vfsp)
1154 {
1155 	zfsvfs_t *zfsvfs = vfsp->vfs_data;
1156 
1157 	kmem_free(zfsvfs, sizeof (zfsvfs_t));
1158 
1159 	atomic_add_32(&zfs_active_fs_count, -1);
1160 }
1161 
1162 /*
1163  * VFS_INIT() initialization.  Note that there is no VFS_FINI(),
1164  * so we can't safely do any non-idempotent initialization here.
1165  * Leave that to zfs_init() and zfs_fini(), which are called
1166  * from the module's _init() and _fini() entry points.
1167  */
1168 /*ARGSUSED*/
1169 static int
1170 zfs_vfsinit(int fstype, char *name)
1171 {
1172 	int error;
1173 
1174 	zfsfstype = fstype;
1175 
1176 	/*
1177 	 * Setup vfsops and vnodeops tables.
1178 	 */
1179 	error = vfs_setfsops(fstype, zfs_vfsops_template, &zfs_vfsops);
1180 	if (error != 0) {
1181 		cmn_err(CE_WARN, "zfs: bad vfs ops template");
1182 	}
1183 
1184 	error = zfs_create_op_tables();
1185 	if (error) {
1186 		zfs_remove_op_tables();
1187 		cmn_err(CE_WARN, "zfs: bad vnode ops template");
1188 		(void) vfs_freevfsops_by_type(zfsfstype);
1189 		return (error);
1190 	}
1191 
1192 	mutex_init(&zfs_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
1193 
1194 	/*
1195 	 * Unique major number for all zfs mounts.
1196 	 * If we run out of 32-bit minors, we'll getudev() another major.
1197 	 */
1198 	zfs_major = ddi_name_to_major(ZFS_DRIVER);
1199 	zfs_minor = ZFS_MIN_MINOR;
1200 
1201 	return (0);
1202 }
1203 
1204 void
1205 zfs_init(void)
1206 {
1207 	/*
1208 	 * Initialize .zfs directory structures
1209 	 */
1210 	zfsctl_init();
1211 
1212 	/*
1213 	 * Initialize znode cache, vnode ops, etc...
1214 	 */
1215 	zfs_znode_init();
1216 }
1217 
1218 void
1219 zfs_fini(void)
1220 {
1221 	zfsctl_fini();
1222 	zfs_znode_fini();
1223 }
1224 
1225 int
1226 zfs_busy(void)
1227 {
1228 	return (zfs_active_fs_count != 0);
1229 }
1230 
1231 static vfsdef_t vfw = {
1232 	VFSDEF_VERSION,
1233 	MNTTYPE_ZFS,
1234 	zfs_vfsinit,
1235 	VSW_HASPROTO|VSW_CANRWRO|VSW_CANREMOUNT|VSW_VOLATILEDEV|VSW_STATS,
1236 	&zfs_mntopts
1237 };
1238 
1239 struct modlfs zfs_modlfs = {
1240 	&mod_fsops, "ZFS filesystem version " ZFS_VERSION_STRING, &vfw
1241 };
1242