1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 */ 57 58 #include <fs/fs_subr.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_vfsops.h> 62 #include <sys/vfs_opreg.h> 63 #include <sys/gfs.h> 64 #include <sys/stat.h> 65 #include <sys/dmu.h> 66 #include <sys/mount.h> 67 68 typedef struct { 69 char *se_name; 70 vnode_t *se_root; 71 avl_node_t se_node; 72 } zfs_snapentry_t; 73 74 static int 75 snapentry_compare(const void *a, const void *b) 76 { 77 const zfs_snapentry_t *sa = a; 78 const zfs_snapentry_t *sb = b; 79 int ret = strcmp(sa->se_name, sb->se_name); 80 81 if (ret < 0) 82 return (-1); 83 else if (ret > 0) 84 return (1); 85 else 86 return (0); 87 } 88 89 vnodeops_t *zfsctl_ops_root; 90 vnodeops_t *zfsctl_ops_snapdir; 91 vnodeops_t *zfsctl_ops_snapshot; 92 93 static const fs_operation_def_t zfsctl_tops_root[]; 94 static const fs_operation_def_t zfsctl_tops_snapdir[]; 95 static const fs_operation_def_t zfsctl_tops_snapshot[]; 96 97 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 98 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 99 100 static gfs_opsvec_t zfsctl_opsvec[] = { 101 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 102 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 103 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 104 { NULL } 105 }; 106 107 typedef struct zfsctl_node { 108 gfs_dir_t zc_gfs_private; 109 uint64_t zc_id; 110 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 111 } zfsctl_node_t; 112 113 typedef struct zfsctl_snapdir { 114 zfsctl_node_t sd_node; 115 kmutex_t sd_lock; 116 avl_tree_t sd_snaps; 117 } zfsctl_snapdir_t; 118 119 /* 120 * Root directory elements. We have only a single static entry, 'snapshot'. 121 */ 122 static gfs_dirent_t zfsctl_root_entries[] = { 123 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 124 { NULL } 125 }; 126 127 /* include . and .. in the calculation */ 128 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 129 sizeof (gfs_dirent_t)) + 1) 130 131 132 /* 133 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 134 * directories. This is called from the ZFS init routine, and initializes the 135 * vnode ops vectors that we'll be using. 136 */ 137 void 138 zfsctl_init(void) 139 { 140 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 141 } 142 143 void 144 zfsctl_fini(void) 145 { 146 /* 147 * Remove vfsctl vnode ops 148 */ 149 if (zfsctl_ops_root) 150 vn_freevnodeops(zfsctl_ops_root); 151 if (zfsctl_ops_snapdir) 152 vn_freevnodeops(zfsctl_ops_snapdir); 153 if (zfsctl_ops_snapshot) 154 vn_freevnodeops(zfsctl_ops_snapshot); 155 156 zfsctl_ops_root = NULL; 157 zfsctl_ops_snapdir = NULL; 158 zfsctl_ops_snapshot = NULL; 159 } 160 161 /* 162 * Return the inode number associated with the 'snapshot' directory. 163 */ 164 /* ARGSUSED */ 165 static ino64_t 166 zfsctl_root_inode_cb(vnode_t *vp, int index) 167 { 168 ASSERT(index == 0); 169 return (ZFSCTL_INO_SNAPDIR); 170 } 171 172 /* 173 * Create the '.zfs' directory. This directory is cached as part of the VFS 174 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 175 * therefore checks against a vfs_count of 2 instead of 1. This reference 176 * is removed when the ctldir is destroyed in the unmount. 177 */ 178 void 179 zfsctl_create(zfsvfs_t *zfsvfs) 180 { 181 vnode_t *vp, *rvp; 182 zfsctl_node_t *zcp; 183 184 ASSERT(zfsvfs->z_ctldir == NULL); 185 186 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 187 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 188 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 189 zcp = vp->v_data; 190 zcp->zc_id = ZFSCTL_INO_ROOT; 191 192 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 193 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 194 VN_RELE(rvp); 195 196 /* 197 * We're only faking the fact that we have a root of a filesystem for 198 * the sake of the GFS interfaces. Undo the flag manipulation it did 199 * for us. 200 */ 201 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 202 203 zfsvfs->z_ctldir = vp; 204 } 205 206 /* 207 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 208 * There might still be more references if we were force unmounted, but only 209 * new zfs_inactive() calls can occur and they don't reference .zfs 210 */ 211 void 212 zfsctl_destroy(zfsvfs_t *zfsvfs) 213 { 214 VN_RELE(zfsvfs->z_ctldir); 215 zfsvfs->z_ctldir = NULL; 216 } 217 218 /* 219 * Given a root znode, retrieve the associated .zfs directory. 220 * Add a hold to the vnode and return it. 221 */ 222 vnode_t * 223 zfsctl_root(znode_t *zp) 224 { 225 ASSERT(zfs_has_ctldir(zp)); 226 VN_HOLD(zp->z_zfsvfs->z_ctldir); 227 return (zp->z_zfsvfs->z_ctldir); 228 } 229 230 /* 231 * Common open routine. Disallow any write access. 232 */ 233 /* ARGSUSED */ 234 static int 235 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) 236 { 237 if (flags & FWRITE) 238 return (EACCES); 239 240 return (0); 241 } 242 243 /* 244 * Common close routine. Nothing to do here. 245 */ 246 /* ARGSUSED */ 247 static int 248 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 249 cred_t *cr) 250 { 251 return (0); 252 } 253 254 /* 255 * Common access routine. Disallow writes. 256 */ 257 /* ARGSUSED */ 258 static int 259 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) 260 { 261 if (mode & VWRITE) 262 return (EACCES); 263 264 return (0); 265 } 266 267 /* 268 * Common getattr function. Fill in basic information. 269 */ 270 static void 271 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 272 { 273 zfsctl_node_t *zcp = vp->v_data; 274 timestruc_t now; 275 276 vap->va_uid = 0; 277 vap->va_gid = 0; 278 vap->va_rdev = 0; 279 /* 280 * We are a purly virtual object, so we have no 281 * blocksize or allocated blocks. 282 */ 283 vap->va_blksize = 0; 284 vap->va_nblocks = 0; 285 vap->va_seq = 0; 286 vap->va_fsid = vp->v_vfsp->vfs_dev; 287 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 288 S_IROTH | S_IXOTH; 289 vap->va_type = VDIR; 290 /* 291 * We live in the now (for atime). 292 */ 293 gethrestime(&now); 294 vap->va_atime = now; 295 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 296 } 297 298 static int 299 zfsctl_common_fid(vnode_t *vp, fid_t *fidp) 300 { 301 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 302 zfsctl_node_t *zcp = vp->v_data; 303 uint64_t object = zcp->zc_id; 304 zfid_short_t *zfid; 305 int i; 306 307 ZFS_ENTER(zfsvfs); 308 309 if (fidp->fid_len < SHORT_FID_LEN) { 310 fidp->fid_len = SHORT_FID_LEN; 311 ZFS_EXIT(zfsvfs); 312 return (ENOSPC); 313 } 314 315 zfid = (zfid_short_t *)fidp; 316 317 zfid->zf_len = SHORT_FID_LEN; 318 319 for (i = 0; i < sizeof (zfid->zf_object); i++) 320 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 321 322 /* .zfs znodes always have a generation number of 0 */ 323 for (i = 0; i < sizeof (zfid->zf_gen); i++) 324 zfid->zf_gen[i] = 0; 325 326 ZFS_EXIT(zfsvfs); 327 return (0); 328 } 329 330 /* 331 * .zfs inode namespace 332 * 333 * We need to generate unique inode numbers for all files and directories 334 * within the .zfs pseudo-filesystem. We use the following scheme: 335 * 336 * ENTRY ZFSCTL_INODE 337 * .zfs 1 338 * .zfs/snapshot 2 339 * .zfs/snapshot/<snap> objectid(snap) 340 */ 341 342 #define ZFSCTL_INO_SNAP(id) (id) 343 344 /* 345 * Get root directory attributes. 346 */ 347 /* ARGSUSED */ 348 static int 349 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 350 { 351 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 352 353 ZFS_ENTER(zfsvfs); 354 vap->va_nodeid = ZFSCTL_INO_ROOT; 355 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 356 357 zfsctl_common_getattr(vp, vap); 358 ZFS_EXIT(zfsvfs); 359 360 return (0); 361 } 362 363 /* 364 * Special case the handling of "..". 365 */ 366 /* ARGSUSED */ 367 int 368 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 369 int flags, vnode_t *rdir, cred_t *cr) 370 { 371 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 372 int err; 373 374 ZFS_ENTER(zfsvfs); 375 376 if (strcmp(nm, "..") == 0) { 377 err = VFS_ROOT(dvp->v_vfsp, vpp); 378 } else { 379 err = gfs_dir_lookup(dvp, nm, vpp); 380 } 381 382 ZFS_EXIT(zfsvfs); 383 384 return (err); 385 } 386 387 static const fs_operation_def_t zfsctl_tops_root[] = { 388 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 389 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 390 { VOPNAME_IOCTL, { .error = fs_inval } }, 391 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_root_getattr } }, 392 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 393 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 394 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_root_lookup } }, 395 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 396 { VOPNAME_INACTIVE, { .vop_inactive = gfs_vop_inactive } }, 397 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 398 { NULL } 399 }; 400 401 static int 402 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 403 { 404 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 405 406 dmu_objset_name(os, zname); 407 if (strlen(zname) + 1 + strlen(name) >= len) 408 return (ENAMETOOLONG); 409 (void) strcat(zname, "@"); 410 (void) strcat(zname, name); 411 return (0); 412 } 413 414 static int 415 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 416 { 417 zfsctl_snapdir_t *sdp = dvp->v_data; 418 zfs_snapentry_t search, *sep; 419 avl_index_t where; 420 int err; 421 422 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 423 424 search.se_name = (char *)name; 425 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 426 return (ENOENT); 427 428 ASSERT(vn_ismntpt(sep->se_root)); 429 430 /* this will be dropped by dounmount() */ 431 if ((err = vn_vfswlock(sep->se_root)) != 0) 432 return (err); 433 434 VN_HOLD(sep->se_root); 435 err = dounmount(vn_mountedvfs(sep->se_root), force, kcred); 436 if (err) { 437 VN_RELE(sep->se_root); 438 return (err); 439 } 440 ASSERT(sep->se_root->v_count == 1); 441 gfs_vop_inactive(sep->se_root, cr); 442 443 avl_remove(&sdp->sd_snaps, sep); 444 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 445 kmem_free(sep, sizeof (zfs_snapentry_t)); 446 447 return (0); 448 } 449 450 451 static void 452 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 453 { 454 avl_index_t where; 455 vfs_t *vfsp; 456 refstr_t *pathref; 457 char newpath[MAXNAMELEN]; 458 char *tail; 459 460 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 461 ASSERT(sep != NULL); 462 463 vfsp = vn_mountedvfs(sep->se_root); 464 ASSERT(vfsp != NULL); 465 466 vfs_lock_wait(vfsp); 467 468 /* 469 * Change the name in the AVL tree. 470 */ 471 avl_remove(&sdp->sd_snaps, sep); 472 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 473 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 474 (void) strcpy(sep->se_name, nm); 475 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 476 avl_insert(&sdp->sd_snaps, sep, where); 477 478 /* 479 * Change the current mountpoint info: 480 * - update the tail of the mntpoint path 481 * - update the tail of the resource path 482 */ 483 pathref = vfs_getmntpoint(vfsp); 484 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 485 VERIFY((tail = strrchr(newpath, '/')) != NULL); 486 *(tail+1) = '\0'; 487 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 488 (void) strcat(newpath, nm); 489 refstr_rele(pathref); 490 vfs_setmntpoint(vfsp, newpath); 491 492 pathref = vfs_getresource(vfsp); 493 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 494 VERIFY((tail = strrchr(newpath, '@')) != NULL); 495 *(tail+1) = '\0'; 496 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 497 (void) strcat(newpath, nm); 498 refstr_rele(pathref); 499 vfs_setresource(vfsp, newpath); 500 501 vfs_unlock(vfsp); 502 } 503 504 static int 505 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 506 cred_t *cr) 507 { 508 zfsctl_snapdir_t *sdp = sdvp->v_data; 509 zfs_snapentry_t search, *sep; 510 avl_index_t where; 511 char from[MAXNAMELEN], to[MAXNAMELEN]; 512 int err; 513 514 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 515 if (err) 516 return (err); 517 err = zfs_secpolicy_write(from, cr); 518 if (err) 519 return (err); 520 521 /* 522 * Cannot move snapshots out of the snapdir. 523 */ 524 if (sdvp != tdvp) 525 return (EINVAL); 526 527 if (strcmp(snm, tnm) == 0) 528 return (0); 529 530 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 531 if (err) 532 return (err); 533 534 mutex_enter(&sdp->sd_lock); 535 536 search.se_name = (char *)snm; 537 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 538 mutex_exit(&sdp->sd_lock); 539 return (ENOENT); 540 } 541 542 err = dmu_objset_rename(from, to, B_FALSE); 543 if (err == 0) 544 zfsctl_rename_snap(sdp, sep, tnm); 545 546 mutex_exit(&sdp->sd_lock); 547 548 return (err); 549 } 550 551 /* ARGSUSED */ 552 static int 553 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 554 { 555 zfsctl_snapdir_t *sdp = dvp->v_data; 556 char snapname[MAXNAMELEN]; 557 int err; 558 559 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 560 if (err) 561 return (err); 562 err = zfs_secpolicy_write(snapname, cr); 563 if (err) 564 return (err); 565 566 mutex_enter(&sdp->sd_lock); 567 568 err = zfsctl_unmount_snap(dvp, name, 0, cr); 569 if (err) { 570 mutex_exit(&sdp->sd_lock); 571 return (err); 572 } 573 574 err = dmu_objset_destroy(snapname); 575 576 mutex_exit(&sdp->sd_lock); 577 578 return (err); 579 } 580 581 /* 582 * Lookup entry point for the 'snapshot' directory. Try to open the 583 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 584 * Perform a mount of the associated dataset on top of the vnode. 585 */ 586 /* ARGSUSED */ 587 static int 588 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 589 int flags, vnode_t *rdir, cred_t *cr) 590 { 591 zfsctl_snapdir_t *sdp = dvp->v_data; 592 objset_t *snap; 593 char snapname[MAXNAMELEN]; 594 char *mountpoint; 595 zfs_snapentry_t *sep, search; 596 struct mounta margs; 597 vfs_t *vfsp; 598 size_t mountpoint_len; 599 avl_index_t where; 600 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 601 int err; 602 603 ASSERT(dvp->v_type == VDIR); 604 605 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 606 return (0); 607 608 /* 609 * If we get a recursive call, that means we got called 610 * from the domount() code while it was trying to look up the 611 * spec (which looks like a local path for zfs). We need to 612 * add some flag to domount() to tell it not to do this lookup. 613 */ 614 if (MUTEX_HELD(&sdp->sd_lock)) 615 return (ENOENT); 616 617 ZFS_ENTER(zfsvfs); 618 619 mutex_enter(&sdp->sd_lock); 620 search.se_name = (char *)nm; 621 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 622 *vpp = sep->se_root; 623 VN_HOLD(*vpp); 624 err = traverse(vpp); 625 if (err) { 626 VN_RELE(*vpp); 627 *vpp = NULL; 628 } else if (*vpp == sep->se_root) { 629 /* 630 * The snapshot was unmounted behind our backs, 631 * try to remount it. 632 */ 633 goto domount; 634 } 635 mutex_exit(&sdp->sd_lock); 636 ZFS_EXIT(zfsvfs); 637 return (err); 638 } 639 640 /* 641 * The requested snapshot is not currently mounted, look it up. 642 */ 643 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 644 if (err) { 645 mutex_exit(&sdp->sd_lock); 646 ZFS_EXIT(zfsvfs); 647 return (err); 648 } 649 if (dmu_objset_open(snapname, DMU_OST_ZFS, 650 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 651 mutex_exit(&sdp->sd_lock); 652 ZFS_EXIT(zfsvfs); 653 return (ENOENT); 654 } 655 656 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 657 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 658 (void) strcpy(sep->se_name, nm); 659 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 660 avl_insert(&sdp->sd_snaps, sep, where); 661 662 dmu_objset_close(snap); 663 domount: 664 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 665 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 666 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 667 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 668 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 669 670 margs.spec = snapname; 671 margs.dir = mountpoint; 672 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 673 margs.fstype = "zfs"; 674 margs.dataptr = NULL; 675 margs.datalen = 0; 676 margs.optptr = NULL; 677 margs.optlen = 0; 678 679 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 680 kmem_free(mountpoint, mountpoint_len); 681 682 if (err == 0) { 683 /* 684 * Return the mounted root rather than the covered mount point. 685 */ 686 VFS_RELE(vfsp); 687 err = traverse(vpp); 688 } 689 690 if (err == 0) { 691 /* 692 * Fix up the root vnode. 693 */ 694 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 695 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 696 (*vpp)->v_vfsp = zfsvfs->z_vfs; 697 (*vpp)->v_flag &= ~VROOT; 698 } 699 mutex_exit(&sdp->sd_lock); 700 ZFS_EXIT(zfsvfs); 701 702 /* 703 * If we had an error, drop our hold on the vnode and 704 * zfsctl_snapshot_inactive() will clean up. 705 */ 706 if (err) { 707 VN_RELE(*vpp); 708 *vpp = NULL; 709 } 710 return (err); 711 } 712 713 /* ARGSUSED */ 714 static int 715 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 716 offset_t *offp, offset_t *nextp, void *data) 717 { 718 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 719 char snapname[MAXNAMELEN]; 720 uint64_t id, cookie; 721 722 ZFS_ENTER(zfsvfs); 723 724 cookie = *offp; 725 if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 726 &cookie) == ENOENT) { 727 *eofp = 1; 728 ZFS_EXIT(zfsvfs); 729 return (0); 730 } 731 732 (void) strcpy(dp->d_name, snapname); 733 dp->d_ino = ZFSCTL_INO_SNAP(id); 734 *nextp = cookie; 735 736 ZFS_EXIT(zfsvfs); 737 738 return (0); 739 } 740 741 vnode_t * 742 zfsctl_mknode_snapdir(vnode_t *pvp) 743 { 744 vnode_t *vp; 745 zfsctl_snapdir_t *sdp; 746 747 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 748 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 749 zfsctl_snapdir_readdir_cb, NULL); 750 sdp = vp->v_data; 751 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 752 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 753 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 754 avl_create(&sdp->sd_snaps, snapentry_compare, 755 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 756 return (vp); 757 } 758 759 /* ARGSUSED */ 760 static int 761 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 762 { 763 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 764 zfsctl_snapdir_t *sdp = vp->v_data; 765 766 ZFS_ENTER(zfsvfs); 767 zfsctl_common_getattr(vp, vap); 768 vap->va_nodeid = gfs_file_inode(vp); 769 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 770 ZFS_EXIT(zfsvfs); 771 772 return (0); 773 } 774 775 /* ARGSUSED */ 776 static void 777 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) 778 { 779 zfsctl_snapdir_t *sdp = vp->v_data; 780 void *private; 781 782 private = gfs_dir_inactive(vp); 783 if (private != NULL) { 784 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 785 mutex_destroy(&sdp->sd_lock); 786 avl_destroy(&sdp->sd_snaps); 787 kmem_free(private, sizeof (zfsctl_snapdir_t)); 788 } 789 } 790 791 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 792 { VOPNAME_OPEN, { .vop_open = zfsctl_common_open } }, 793 { VOPNAME_CLOSE, { .vop_close = zfsctl_common_close } }, 794 { VOPNAME_IOCTL, { .error = fs_inval } }, 795 { VOPNAME_GETATTR, { .vop_getattr = zfsctl_snapdir_getattr } }, 796 { VOPNAME_ACCESS, { .vop_access = zfsctl_common_access } }, 797 { VOPNAME_RENAME, { .vop_rename = zfsctl_snapdir_rename } }, 798 { VOPNAME_RMDIR, { .vop_rmdir = zfsctl_snapdir_remove } }, 799 { VOPNAME_READDIR, { .vop_readdir = gfs_vop_readdir } }, 800 { VOPNAME_LOOKUP, { .vop_lookup = zfsctl_snapdir_lookup } }, 801 { VOPNAME_SEEK, { .vop_seek = fs_seek } }, 802 { VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapdir_inactive } }, 803 { VOPNAME_FID, { .vop_fid = zfsctl_common_fid } }, 804 { NULL } 805 }; 806 807 static vnode_t * 808 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 809 { 810 vnode_t *vp; 811 zfsctl_node_t *zcp; 812 813 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 814 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 815 zcp = vp->v_data; 816 zcp->zc_id = objset; 817 818 return (vp); 819 } 820 821 static void 822 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) 823 { 824 zfsctl_snapdir_t *sdp; 825 zfs_snapentry_t *sep, *next; 826 vnode_t *dvp; 827 828 VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); 829 sdp = dvp->v_data; 830 831 mutex_enter(&sdp->sd_lock); 832 833 if (vp->v_count > 1) { 834 mutex_exit(&sdp->sd_lock); 835 return; 836 } 837 ASSERT(!vn_ismntpt(vp)); 838 839 sep = avl_first(&sdp->sd_snaps); 840 while (sep != NULL) { 841 next = AVL_NEXT(&sdp->sd_snaps, sep); 842 843 if (sep->se_root == vp) { 844 avl_remove(&sdp->sd_snaps, sep); 845 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 846 kmem_free(sep, sizeof (zfs_snapentry_t)); 847 break; 848 } 849 sep = next; 850 } 851 ASSERT(sep != NULL); 852 853 mutex_exit(&sdp->sd_lock); 854 VN_RELE(dvp); 855 856 /* 857 * Dispose of the vnode for the snapshot mount point. 858 * This is safe to do because once this entry has been removed 859 * from the AVL tree, it can't be found again, so cannot become 860 * "active". If we lookup the same name again we will end up 861 * creating a new vnode. 862 */ 863 gfs_vop_inactive(vp, cr); 864 } 865 866 867 /* 868 * These VP's should never see the light of day. They should always 869 * be covered. 870 */ 871 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 872 VOPNAME_INACTIVE, { .vop_inactive = zfsctl_snapshot_inactive }, 873 NULL, NULL 874 }; 875 876 int 877 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 878 { 879 zfsvfs_t *zfsvfs = vfsp->vfs_data; 880 vnode_t *dvp, *vp; 881 zfsctl_snapdir_t *sdp; 882 zfsctl_node_t *zcp; 883 zfs_snapentry_t *sep; 884 int error; 885 886 ASSERT(zfsvfs->z_ctldir != NULL); 887 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 888 NULL, 0, NULL, kcred); 889 if (error != 0) 890 return (error); 891 sdp = dvp->v_data; 892 893 mutex_enter(&sdp->sd_lock); 894 sep = avl_first(&sdp->sd_snaps); 895 while (sep != NULL) { 896 vp = sep->se_root; 897 zcp = vp->v_data; 898 if (zcp->zc_id == objsetid) 899 break; 900 901 sep = AVL_NEXT(&sdp->sd_snaps, sep); 902 } 903 904 if (sep != NULL) { 905 VN_HOLD(vp); 906 error = traverse(&vp); 907 if (error == 0) { 908 if (vp == sep->se_root) 909 error = EINVAL; 910 else 911 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 912 } 913 mutex_exit(&sdp->sd_lock); 914 VN_RELE(vp); 915 } else { 916 error = EINVAL; 917 mutex_exit(&sdp->sd_lock); 918 } 919 920 VN_RELE(dvp); 921 922 return (error); 923 } 924 925 /* 926 * Unmount any snapshots for the given filesystem. This is called from 927 * zfs_umount() - if we have a ctldir, then go through and unmount all the 928 * snapshots. 929 */ 930 int 931 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 932 { 933 zfsvfs_t *zfsvfs = vfsp->vfs_data; 934 vnode_t *dvp, *svp; 935 zfsctl_snapdir_t *sdp; 936 zfs_snapentry_t *sep, *next; 937 int error; 938 939 ASSERT(zfsvfs->z_ctldir != NULL); 940 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 941 NULL, 0, NULL, cr); 942 if (error != 0) 943 return (error); 944 sdp = dvp->v_data; 945 946 mutex_enter(&sdp->sd_lock); 947 948 sep = avl_first(&sdp->sd_snaps); 949 while (sep != NULL) { 950 svp = sep->se_root; 951 next = AVL_NEXT(&sdp->sd_snaps, sep); 952 953 /* 954 * If this snapshot is not mounted, then it must 955 * have just been unmounted by somebody else, and 956 * will be cleaned up by zfsctl_snapdir_inactive(). 957 */ 958 if (vn_ismntpt(svp)) { 959 if ((error = vn_vfswlock(svp)) != 0) 960 goto out; 961 962 VN_HOLD(svp); 963 error = dounmount(vn_mountedvfs(svp), fflags, cr); 964 if (error) { 965 VN_RELE(svp); 966 goto out; 967 } 968 969 avl_remove(&sdp->sd_snaps, sep); 970 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 971 kmem_free(sep, sizeof (zfs_snapentry_t)); 972 973 /* 974 * We can't use VN_RELE(), as that will try to 975 * invoke zfsctl_snapdir_inactive(), and that 976 * would lead to an attempt to re-grab the sd_lock. 977 */ 978 ASSERT3U(svp->v_count, ==, 1); 979 gfs_vop_inactive(svp, cr); 980 } 981 sep = next; 982 } 983 out: 984 mutex_exit(&sdp->sd_lock); 985 VN_RELE(dvp); 986 987 return (error); 988 } 989