1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 */ 57 58 #include <fs/fs_subr.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_vfsops.h> 62 #include <sys/gfs.h> 63 #include <sys/stat.h> 64 #include <sys/dmu.h> 65 #include <sys/mount.h> 66 67 typedef struct { 68 char *se_name; 69 vnode_t *se_root; 70 avl_node_t se_node; 71 } zfs_snapentry_t; 72 73 static int 74 snapentry_compare(const void *a, const void *b) 75 { 76 const zfs_snapentry_t *sa = a; 77 const zfs_snapentry_t *sb = b; 78 int ret = strcmp(sa->se_name, sb->se_name); 79 80 if (ret < 0) 81 return (-1); 82 else if (ret > 0) 83 return (1); 84 else 85 return (0); 86 } 87 88 vnodeops_t *zfsctl_ops_root; 89 vnodeops_t *zfsctl_ops_snapdir; 90 vnodeops_t *zfsctl_ops_snapshot; 91 92 static const fs_operation_def_t zfsctl_tops_root[]; 93 static const fs_operation_def_t zfsctl_tops_snapdir[]; 94 static const fs_operation_def_t zfsctl_tops_snapshot[]; 95 96 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 97 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 98 99 static gfs_opsvec_t zfsctl_opsvec[] = { 100 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 101 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 102 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 103 { NULL } 104 }; 105 106 typedef struct zfsctl_node { 107 gfs_dir_t zc_gfs_private; 108 uint64_t zc_id; 109 } zfsctl_node_t; 110 111 typedef struct zfsctl_snapdir { 112 zfsctl_node_t sd_node; 113 kmutex_t sd_lock; 114 avl_tree_t sd_snaps; 115 } zfsctl_snapdir_t; 116 117 /* 118 * Root directory elements. We have only a single static entry, 'snapshot'. 119 */ 120 static gfs_dirent_t zfsctl_root_entries[] = { 121 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 122 { NULL } 123 }; 124 125 /* include . and .. in the calculation */ 126 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 127 sizeof (gfs_dirent_t)) + 1) 128 129 130 /* 131 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 132 * directories. This is called from the ZFS init routine, and initializes the 133 * vnode ops vectors that we'll be using. 134 */ 135 void 136 zfsctl_init(void) 137 { 138 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 139 } 140 141 void 142 zfsctl_fini(void) 143 { 144 /* 145 * Remove vfsctl vnode ops 146 */ 147 if (zfsctl_ops_root) 148 vn_freevnodeops(zfsctl_ops_root); 149 if (zfsctl_ops_snapdir) 150 vn_freevnodeops(zfsctl_ops_snapdir); 151 if (zfsctl_ops_snapshot) 152 vn_freevnodeops(zfsctl_ops_snapshot); 153 154 zfsctl_ops_root = NULL; 155 zfsctl_ops_snapdir = NULL; 156 zfsctl_ops_snapshot = NULL; 157 } 158 159 /* 160 * Return the inode number associated with the 'snapshot' directory. 161 */ 162 /* ARGSUSED */ 163 static ino64_t 164 zfsctl_root_inode_cb(vnode_t *vp, int index) 165 { 166 ASSERT(index == 0); 167 return (ZFSCTL_INO_SNAPDIR); 168 } 169 170 /* 171 * Create the '.zfs' directory. This directory is cached as part of the VFS 172 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 173 * therefore checks against a vfs_count of 2 instead of 1. This reference 174 * is removed when the ctldir is destroyed in the unmount. 175 */ 176 void 177 zfsctl_create(zfsvfs_t *zfsvfs) 178 { 179 vnode_t *vp; 180 zfsctl_node_t *zcp; 181 182 ASSERT(zfsvfs->z_ctldir == NULL); 183 184 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 185 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 186 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 187 zcp = vp->v_data; 188 zcp->zc_id = ZFSCTL_INO_ROOT; 189 190 /* 191 * We're only faking the fact that we have a root of a filesystem for 192 * the sake of the GFS interfaces. Undo the flag manipulation it did 193 * for us. 194 */ 195 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 196 197 zfsvfs->z_ctldir = vp; 198 } 199 200 /* 201 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 202 * There might still be more references if we were force unmounted, but only 203 * new zfs_inactive() calls can occur and they don't reference .zfs 204 */ 205 void 206 zfsctl_destroy(zfsvfs_t *zfsvfs) 207 { 208 VN_RELE(zfsvfs->z_ctldir); 209 zfsvfs->z_ctldir = NULL; 210 } 211 212 /* 213 * Given a root znode, retrieve the associated .zfs directory. 214 * Add a hold to the vnode and return it. 215 */ 216 vnode_t * 217 zfsctl_root(znode_t *zp) 218 { 219 ASSERT(zfs_has_ctldir(zp)); 220 VN_HOLD(zp->z_zfsvfs->z_ctldir); 221 return (zp->z_zfsvfs->z_ctldir); 222 } 223 224 /* 225 * Common open routine. Disallow any write access. 226 */ 227 /* ARGSUSED */ 228 static int 229 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) 230 { 231 if (flags & FWRITE) 232 return (EACCES); 233 234 return (0); 235 } 236 237 /* 238 * Common close routine. Nothing to do here. 239 */ 240 /* ARGSUSED */ 241 static int 242 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 243 cred_t *cr) 244 { 245 return (0); 246 } 247 248 /* 249 * Common access routine. Disallow writes. 250 */ 251 /* ARGSUSED */ 252 static int 253 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) 254 { 255 if (mode & VWRITE) 256 return (EACCES); 257 258 return (0); 259 } 260 261 /* 262 * Common getattr function. Fill in basic information. 263 */ 264 static void 265 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 266 { 267 timestruc_t now; 268 269 vap->va_uid = 0; 270 vap->va_gid = 0; 271 vap->va_rdev = 0; 272 /* 273 * We are a purly virtual object, so we have no 274 * blocksize or allocated blocks. 275 */ 276 vap->va_blksize = 0; 277 vap->va_nblocks = 0; 278 vap->va_seq = 0; 279 vap->va_fsid = vp->v_vfsp->vfs_dev; 280 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 281 S_IROTH | S_IXOTH; 282 vap->va_type = VDIR; 283 /* 284 * We live in the now. 285 */ 286 gethrestime(&now); 287 vap->va_mtime = vap->va_ctime = vap->va_atime = now; 288 } 289 290 static int 291 zfsctl_common_fid(vnode_t *vp, fid_t *fidp) 292 { 293 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 294 zfsctl_node_t *zcp = vp->v_data; 295 uint64_t object = zcp->zc_id; 296 zfid_short_t *zfid; 297 int i; 298 299 ZFS_ENTER(zfsvfs); 300 301 if (fidp->fid_len < SHORT_FID_LEN) { 302 fidp->fid_len = SHORT_FID_LEN; 303 ZFS_EXIT(zfsvfs); 304 return (ENOSPC); 305 } 306 307 zfid = (zfid_short_t *)fidp; 308 309 zfid->zf_len = SHORT_FID_LEN; 310 311 for (i = 0; i < sizeof (zfid->zf_object); i++) 312 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 313 314 /* .zfs znodes always have a generation number of 0 */ 315 for (i = 0; i < sizeof (zfid->zf_gen); i++) 316 zfid->zf_gen[i] = 0; 317 318 ZFS_EXIT(zfsvfs); 319 return (0); 320 } 321 322 /* 323 * .zfs inode namespace 324 * 325 * We need to generate unique inode numbers for all files and directories 326 * within the .zfs pseudo-filesystem. We use the following scheme: 327 * 328 * ENTRY ZFSCTL_INODE 329 * .zfs 1 330 * .zfs/snapshot 2 331 * .zfs/snapshot/<snap> objectid(snap) 332 */ 333 334 #define ZFSCTL_INO_SNAP(id) (id) 335 336 /* 337 * Get root directory attributes. 338 */ 339 /* ARGSUSED */ 340 static int 341 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 342 { 343 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 344 345 ZFS_ENTER(zfsvfs); 346 vap->va_nodeid = ZFSCTL_INO_ROOT; 347 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 348 349 zfsctl_common_getattr(vp, vap); 350 ZFS_EXIT(zfsvfs); 351 352 return (0); 353 } 354 355 /* 356 * Special case the handling of "..". 357 */ 358 /* ARGSUSED */ 359 int 360 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 361 int flags, vnode_t *rdir, cred_t *cr) 362 { 363 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 364 int err; 365 366 ZFS_ENTER(zfsvfs); 367 368 if (strcmp(nm, "..") == 0) { 369 err = VFS_ROOT(dvp->v_vfsp, vpp); 370 } else { 371 err = gfs_dir_lookup(dvp, nm, vpp); 372 } 373 374 ZFS_EXIT(zfsvfs); 375 376 return (err); 377 } 378 379 static const fs_operation_def_t zfsctl_tops_root[] = { 380 { VOPNAME_OPEN, zfsctl_common_open }, 381 { VOPNAME_CLOSE, zfsctl_common_close }, 382 { VOPNAME_IOCTL, fs_inval }, 383 { VOPNAME_GETATTR, zfsctl_root_getattr }, 384 { VOPNAME_ACCESS, zfsctl_common_access }, 385 { VOPNAME_READDIR, gfs_vop_readdir }, 386 { VOPNAME_LOOKUP, zfsctl_root_lookup }, 387 { VOPNAME_SEEK, fs_seek }, 388 { VOPNAME_INACTIVE, (fs_generic_func_p) gfs_vop_inactive }, 389 { VOPNAME_FID, zfsctl_common_fid }, 390 { NULL } 391 }; 392 393 static int 394 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 395 { 396 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 397 398 dmu_objset_name(os, zname); 399 if (strlen(zname) + 1 + strlen(name) >= len) 400 return (ENAMETOOLONG); 401 (void) strcat(zname, "@"); 402 (void) strcat(zname, name); 403 return (0); 404 } 405 406 static int 407 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 408 { 409 zfsctl_snapdir_t *sdp = dvp->v_data; 410 zfs_snapentry_t search, *sep; 411 avl_index_t where; 412 int err; 413 414 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 415 416 search.se_name = (char *)name; 417 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 418 return (ENOENT); 419 420 ASSERT(vn_ismntpt(sep->se_root)); 421 422 /* this will be dropped by dounmount() */ 423 if ((err = vn_vfswlock(sep->se_root)) != 0) 424 return (err); 425 426 VN_HOLD(sep->se_root); 427 if ((err = dounmount(vn_mountedvfs(sep->se_root), force, kcred)) != 0) 428 return (err); 429 ASSERT(sep->se_root->v_count == 1); 430 gfs_vop_inactive(sep->se_root, cr); 431 432 avl_remove(&sdp->sd_snaps, sep); 433 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 434 kmem_free(sep, sizeof (zfs_snapentry_t)); 435 436 return (0); 437 } 438 439 440 static void 441 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 442 { 443 avl_index_t where; 444 vfs_t *vfsp; 445 refstr_t *pathref; 446 char newpath[MAXNAMELEN]; 447 const char *oldpath; 448 char *tail; 449 450 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 451 ASSERT(sep != NULL); 452 453 vfsp = vn_mountedvfs(sep->se_root); 454 ASSERT(vfsp != NULL); 455 456 vfs_lock_wait(vfsp); 457 458 /* 459 * Change the name in the AVL tree. 460 */ 461 avl_remove(&sdp->sd_snaps, sep); 462 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 463 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 464 (void) strcpy(sep->se_name, nm); 465 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 466 avl_insert(&sdp->sd_snaps, sep, where); 467 468 /* 469 * Change the current mountpoint info: 470 * - update the tail of the mntpoint path 471 * - update the tail of the resource path 472 */ 473 pathref = vfs_getmntpoint(vfsp); 474 oldpath = refstr_value(pathref); 475 VERIFY((tail = strrchr(oldpath, '/')) != NULL); 476 ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); 477 (void) strncpy(newpath, oldpath, tail - oldpath + 1); 478 (void) strcat(newpath, nm); 479 refstr_rele(pathref); 480 vfs_setmntpoint(vfsp, newpath); 481 482 pathref = vfs_getresource(vfsp); 483 oldpath = refstr_value(pathref); 484 VERIFY((tail = strrchr(oldpath, '@')) != NULL); 485 ASSERT((tail - oldpath) + strlen(nm) + 2 < MAXNAMELEN); 486 (void) strncpy(newpath, oldpath, tail - oldpath + 1); 487 (void) strcat(newpath, nm); 488 refstr_rele(pathref); 489 vfs_setresource(vfsp, newpath); 490 491 vfs_unlock(vfsp); 492 } 493 494 static int 495 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 496 cred_t *cr) 497 { 498 zfsctl_snapdir_t *sdp = sdvp->v_data; 499 zfs_snapentry_t search, *sep; 500 avl_index_t where; 501 char from[MAXNAMELEN], to[MAXNAMELEN]; 502 int err; 503 504 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 505 if (err) 506 return (err); 507 err = zfs_secpolicy_write(from, NULL, cr); 508 if (err) 509 return (err); 510 511 /* 512 * Cannot move snapshots out of the snapdir. 513 */ 514 if (sdvp != tdvp) 515 return (EINVAL); 516 517 if (strcmp(snm, tnm) == 0) 518 return (0); 519 520 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 521 if (err) 522 return (err); 523 524 mutex_enter(&sdp->sd_lock); 525 526 search.se_name = (char *)snm; 527 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 528 mutex_exit(&sdp->sd_lock); 529 return (ENOENT); 530 } 531 532 err = dmu_objset_rename(from, to); 533 if (err == 0) 534 zfsctl_rename_snap(sdp, sep, tnm); 535 536 mutex_exit(&sdp->sd_lock); 537 538 return (err); 539 } 540 541 /* ARGSUSED */ 542 static int 543 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 544 { 545 zfsctl_snapdir_t *sdp = dvp->v_data; 546 char snapname[MAXNAMELEN]; 547 int err; 548 549 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 550 if (err) 551 return (err); 552 err = zfs_secpolicy_write(snapname, NULL, cr); 553 if (err) 554 return (err); 555 556 mutex_enter(&sdp->sd_lock); 557 558 err = zfsctl_unmount_snap(dvp, name, 0, cr); 559 if (err) { 560 mutex_exit(&sdp->sd_lock); 561 return (err); 562 } 563 564 err = dmu_objset_destroy(snapname); 565 566 mutex_exit(&sdp->sd_lock); 567 568 return (err); 569 } 570 571 /* 572 * Lookup entry point for the 'snapshot' directory. Try to open the 573 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 574 * Perform a mount of the associated dataset on top of the vnode. 575 */ 576 /* ARGSUSED */ 577 static int 578 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 579 int flags, vnode_t *rdir, cred_t *cr) 580 { 581 zfsctl_snapdir_t *sdp = dvp->v_data; 582 objset_t *snap; 583 char snapname[MAXNAMELEN]; 584 char *mountpoint; 585 zfs_snapentry_t *sep, search; 586 struct mounta margs; 587 vfs_t *vfsp; 588 size_t mountpoint_len; 589 avl_index_t where; 590 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 591 int err; 592 593 ASSERT(dvp->v_type == VDIR); 594 595 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 596 return (0); 597 598 /* 599 * If we get a recursive call, that means we got called 600 * from the domount() code while it was trying to look up the 601 * spec (which looks like a local path for zfs). We need to 602 * add some flag to domount() to tell it not to do this lookup. 603 */ 604 if (MUTEX_HELD(&sdp->sd_lock)) 605 return (ENOENT); 606 607 ZFS_ENTER(zfsvfs); 608 609 mutex_enter(&sdp->sd_lock); 610 search.se_name = (char *)nm; 611 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 612 *vpp = sep->se_root; 613 VN_HOLD(*vpp); 614 /* 615 * If the snapshot was unmounted behind our backs, 616 * try to remount it. 617 */ 618 if (traverse(vpp) != 0) { 619 ASSERT(!vn_ismntpt(*vpp)); 620 goto domount; 621 } 622 mutex_exit(&sdp->sd_lock); 623 ZFS_EXIT(zfsvfs); 624 return (0); 625 } 626 627 /* 628 * The requested snapshot is not currently mounted, look it up. 629 */ 630 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 631 if (err) { 632 mutex_exit(&sdp->sd_lock); 633 ZFS_EXIT(zfsvfs); 634 return (err); 635 } 636 if (dmu_objset_open(snapname, DMU_OST_ZFS, 637 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 638 mutex_exit(&sdp->sd_lock); 639 ZFS_EXIT(zfsvfs); 640 return (ENOENT); 641 } 642 643 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 644 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 645 (void) strcpy(sep->se_name, nm); 646 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 647 avl_insert(&sdp->sd_snaps, sep, where); 648 649 dmu_objset_close(snap); 650 domount: 651 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 652 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 653 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 654 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 655 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 656 657 margs.spec = snapname; 658 margs.dir = mountpoint; 659 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 660 margs.fstype = "zfs"; 661 margs.dataptr = NULL; 662 margs.datalen = 0; 663 margs.optptr = NULL; 664 margs.optlen = 0; 665 666 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 667 kmem_free(mountpoint, mountpoint_len); 668 669 if (err == 0) { 670 /* 671 * Return the mounted root rather than the covered mount point. 672 */ 673 VFS_RELE(vfsp); 674 err = traverse(vpp); 675 } 676 677 if (err == 0) { 678 /* 679 * Fix up the root vnode. 680 */ 681 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 682 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 683 (*vpp)->v_vfsp = zfsvfs->z_vfs; 684 (*vpp)->v_flag &= ~VROOT; 685 } 686 mutex_exit(&sdp->sd_lock); 687 ZFS_EXIT(zfsvfs); 688 689 /* 690 * If we had an error, drop our hold on the vnode and 691 * zfsctl_snapshot_inactive() will clean up. 692 */ 693 if (err) { 694 VN_RELE(*vpp); 695 *vpp = NULL; 696 } 697 return (err); 698 } 699 700 /* ARGSUSED */ 701 static int 702 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 703 offset_t *offp, offset_t *nextp, void *data) 704 { 705 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 706 char snapname[MAXNAMELEN]; 707 uint64_t id, cookie; 708 709 ZFS_ENTER(zfsvfs); 710 711 cookie = *offp; 712 if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 713 &cookie) == ENOENT) { 714 *eofp = 1; 715 ZFS_EXIT(zfsvfs); 716 return (0); 717 } 718 719 (void) strcpy(dp->d_name, snapname); 720 dp->d_ino = ZFSCTL_INO_SNAP(id); 721 *nextp = cookie; 722 723 ZFS_EXIT(zfsvfs); 724 725 return (0); 726 } 727 728 vnode_t * 729 zfsctl_mknode_snapdir(vnode_t *pvp) 730 { 731 vnode_t *vp; 732 zfsctl_snapdir_t *sdp; 733 734 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 735 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 736 zfsctl_snapdir_readdir_cb, NULL); 737 sdp = vp->v_data; 738 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 739 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 740 avl_create(&sdp->sd_snaps, snapentry_compare, 741 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 742 return (vp); 743 } 744 745 /* ARGSUSED */ 746 static int 747 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 748 { 749 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 750 zfsctl_snapdir_t *sdp = vp->v_data; 751 752 ZFS_ENTER(zfsvfs); 753 zfsctl_common_getattr(vp, vap); 754 vap->va_nodeid = gfs_file_inode(vp); 755 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 756 ZFS_EXIT(zfsvfs); 757 758 return (0); 759 } 760 761 /* ARGSUSED */ 762 static void 763 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) 764 { 765 zfsctl_snapdir_t *sdp = vp->v_data; 766 void *private; 767 768 private = gfs_dir_inactive(vp); 769 if (private != NULL) { 770 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 771 mutex_destroy(&sdp->sd_lock); 772 avl_destroy(&sdp->sd_snaps); 773 kmem_free(private, sizeof (zfsctl_snapdir_t)); 774 } 775 } 776 777 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 778 { VOPNAME_OPEN, zfsctl_common_open }, 779 { VOPNAME_CLOSE, zfsctl_common_close }, 780 { VOPNAME_IOCTL, fs_inval }, 781 { VOPNAME_GETATTR, zfsctl_snapdir_getattr }, 782 { VOPNAME_ACCESS, zfsctl_common_access }, 783 { VOPNAME_RENAME, zfsctl_snapdir_rename }, 784 { VOPNAME_RMDIR, zfsctl_snapdir_remove }, 785 { VOPNAME_READDIR, gfs_vop_readdir }, 786 { VOPNAME_LOOKUP, zfsctl_snapdir_lookup }, 787 { VOPNAME_SEEK, fs_seek }, 788 { VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapdir_inactive }, 789 { VOPNAME_FID, zfsctl_common_fid }, 790 { NULL } 791 }; 792 793 static vnode_t * 794 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 795 { 796 vnode_t *vp; 797 zfsctl_node_t *zcp; 798 799 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 800 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 801 zcp = vp->v_data; 802 zcp->zc_id = objset; 803 804 return (vp); 805 } 806 807 static void 808 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) 809 { 810 zfsctl_snapdir_t *sdp; 811 zfs_snapentry_t *sep, *next; 812 vnode_t *dvp; 813 814 VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); 815 sdp = dvp->v_data; 816 817 mutex_enter(&sdp->sd_lock); 818 819 if (vp->v_count > 1) { 820 mutex_exit(&sdp->sd_lock); 821 return; 822 } 823 ASSERT(!vn_ismntpt(vp)); 824 825 sep = avl_first(&sdp->sd_snaps); 826 while (sep != NULL) { 827 next = AVL_NEXT(&sdp->sd_snaps, sep); 828 829 if (sep->se_root == vp) { 830 avl_remove(&sdp->sd_snaps, sep); 831 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 832 kmem_free(sep, sizeof (zfs_snapentry_t)); 833 break; 834 } 835 sep = next; 836 } 837 ASSERT(sep != NULL); 838 839 mutex_exit(&sdp->sd_lock); 840 VN_RELE(dvp); 841 842 /* 843 * Dispose of the vnode for the snapshot mount point. 844 * This is safe to do because once this entry has been removed 845 * from the AVL tree, it can't be found again, so cannot become 846 * "active". If we lookup the same name again we will end up 847 * creating a new vnode. 848 */ 849 gfs_vop_inactive(vp, cr); 850 } 851 852 853 /* 854 * These VP's should never see the light of day. They should always 855 * be covered. 856 */ 857 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 858 VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapshot_inactive, 859 NULL, NULL 860 }; 861 862 int 863 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 864 { 865 zfsvfs_t *zfsvfs = vfsp->vfs_data; 866 vnode_t *dvp, *vp; 867 zfsctl_snapdir_t *sdp; 868 zfsctl_node_t *zcp; 869 zfs_snapentry_t *sep; 870 int error; 871 872 ASSERT(zfsvfs->z_ctldir != NULL); 873 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 874 NULL, 0, NULL, kcred); 875 if (error != 0) 876 return (error); 877 sdp = dvp->v_data; 878 879 mutex_enter(&sdp->sd_lock); 880 sep = avl_first(&sdp->sd_snaps); 881 while (sep != NULL) { 882 vp = sep->se_root; 883 zcp = vp->v_data; 884 if (zcp->zc_id == objsetid) 885 break; 886 887 sep = AVL_NEXT(&sdp->sd_snaps, sep); 888 } 889 890 if (sep != NULL) { 891 VN_HOLD(vp); 892 error = traverse(&vp); 893 if (error == 0) 894 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 895 VN_RELE(vp); 896 } else { 897 error = EINVAL; 898 } 899 900 mutex_exit(&sdp->sd_lock); 901 VN_RELE(dvp); 902 903 return (error); 904 } 905 906 /* 907 * Unmount any snapshots for the given filesystem. This is called from 908 * zfs_umount() - if we have a ctldir, then go through and unmount all the 909 * snapshots. 910 */ 911 int 912 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 913 { 914 zfsvfs_t *zfsvfs = vfsp->vfs_data; 915 vnode_t *dvp, *svp; 916 zfsctl_snapdir_t *sdp; 917 zfs_snapentry_t *sep, *next; 918 int error; 919 920 ASSERT(zfsvfs->z_ctldir != NULL); 921 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 922 NULL, 0, NULL, cr); 923 if (error != 0) 924 return (error); 925 sdp = dvp->v_data; 926 927 mutex_enter(&sdp->sd_lock); 928 929 sep = avl_first(&sdp->sd_snaps); 930 while (sep != NULL) { 931 svp = sep->se_root; 932 next = AVL_NEXT(&sdp->sd_snaps, sep); 933 934 /* 935 * If this snapshot is not mounted, then it must 936 * have just been unmounted by somebody else, and 937 * will be cleaned up by zfsctl_snapdir_inactive(). 938 */ 939 if (vn_ismntpt(svp)) { 940 if ((error = vn_vfswlock(svp)) != 0) 941 goto out; 942 943 VN_HOLD(svp); 944 error = dounmount(vn_mountedvfs(svp), fflags, cr); 945 if (error) { 946 VN_RELE(svp); 947 goto out; 948 } 949 950 avl_remove(&sdp->sd_snaps, sep); 951 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 952 kmem_free(sep, sizeof (zfs_snapentry_t)); 953 954 /* 955 * We can't use VN_RELE(), as that will try to 956 * invoke zfsctl_snapdir_inactive(), and that 957 * would lead to an attempt to re-grab the sd_lock. 958 */ 959 ASSERT3U(svp->v_count, ==, 1); 960 gfs_vop_inactive(svp, cr); 961 } 962 sep = next; 963 } 964 out: 965 mutex_exit(&sdp->sd_lock); 966 VN_RELE(dvp); 967 968 return (error); 969 } 970