1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 /* 29 * ZFS control directory (a.k.a. ".zfs") 30 * 31 * This directory provides a common location for all ZFS meta-objects. 32 * Currently, this is only the 'snapshot' directory, but this may expand in the 33 * future. The elements are built using the GFS primitives, as the hierarchy 34 * does not actually exist on disk. 35 * 36 * For 'snapshot', we don't want to have all snapshots always mounted, because 37 * this would take up a huge amount of space in /etc/mnttab. We have three 38 * types of objects: 39 * 40 * ctldir ------> snapshotdir -------> snapshot 41 * | 42 * | 43 * V 44 * mounted fs 45 * 46 * The 'snapshot' node contains just enough information to lookup '..' and act 47 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we 48 * perform an automount of the underlying filesystem and return the 49 * corresponding vnode. 50 * 51 * All mounts are handled automatically by the kernel, but unmounts are 52 * (currently) handled from user land. The main reason is that there is no 53 * reliable way to auto-unmount the filesystem when it's "no longer in use". 54 * When the user unmounts a filesystem, we call zfsctl_unmount(), which 55 * unmounts any snapshots within the snapshot directory. 56 */ 57 58 #include <fs/fs_subr.h> 59 #include <sys/zfs_ctldir.h> 60 #include <sys/zfs_ioctl.h> 61 #include <sys/zfs_vfsops.h> 62 #include <sys/gfs.h> 63 #include <sys/stat.h> 64 #include <sys/dmu.h> 65 #include <sys/mount.h> 66 67 typedef struct { 68 char *se_name; 69 vnode_t *se_root; 70 avl_node_t se_node; 71 } zfs_snapentry_t; 72 73 static int 74 snapentry_compare(const void *a, const void *b) 75 { 76 const zfs_snapentry_t *sa = a; 77 const zfs_snapentry_t *sb = b; 78 int ret = strcmp(sa->se_name, sb->se_name); 79 80 if (ret < 0) 81 return (-1); 82 else if (ret > 0) 83 return (1); 84 else 85 return (0); 86 } 87 88 vnodeops_t *zfsctl_ops_root; 89 vnodeops_t *zfsctl_ops_snapdir; 90 vnodeops_t *zfsctl_ops_snapshot; 91 92 static const fs_operation_def_t zfsctl_tops_root[]; 93 static const fs_operation_def_t zfsctl_tops_snapdir[]; 94 static const fs_operation_def_t zfsctl_tops_snapshot[]; 95 96 static vnode_t *zfsctl_mknode_snapdir(vnode_t *); 97 static vnode_t *zfsctl_snapshot_mknode(vnode_t *, uint64_t objset); 98 99 static gfs_opsvec_t zfsctl_opsvec[] = { 100 { ".zfs", zfsctl_tops_root, &zfsctl_ops_root }, 101 { ".zfs/snapshot", zfsctl_tops_snapdir, &zfsctl_ops_snapdir }, 102 { ".zfs/snapshot/vnode", zfsctl_tops_snapshot, &zfsctl_ops_snapshot }, 103 { NULL } 104 }; 105 106 typedef struct zfsctl_node { 107 gfs_dir_t zc_gfs_private; 108 uint64_t zc_id; 109 timestruc_t zc_cmtime; /* ctime and mtime, always the same */ 110 } zfsctl_node_t; 111 112 typedef struct zfsctl_snapdir { 113 zfsctl_node_t sd_node; 114 kmutex_t sd_lock; 115 avl_tree_t sd_snaps; 116 } zfsctl_snapdir_t; 117 118 /* 119 * Root directory elements. We have only a single static entry, 'snapshot'. 120 */ 121 static gfs_dirent_t zfsctl_root_entries[] = { 122 { "snapshot", zfsctl_mknode_snapdir, GFS_CACHE_VNODE }, 123 { NULL } 124 }; 125 126 /* include . and .. in the calculation */ 127 #define NROOT_ENTRIES ((sizeof (zfsctl_root_entries) / \ 128 sizeof (gfs_dirent_t)) + 1) 129 130 131 /* 132 * Initialize the various GFS pieces we'll need to create and manipulate .zfs 133 * directories. This is called from the ZFS init routine, and initializes the 134 * vnode ops vectors that we'll be using. 135 */ 136 void 137 zfsctl_init(void) 138 { 139 VERIFY(gfs_make_opsvec(zfsctl_opsvec) == 0); 140 } 141 142 void 143 zfsctl_fini(void) 144 { 145 /* 146 * Remove vfsctl vnode ops 147 */ 148 if (zfsctl_ops_root) 149 vn_freevnodeops(zfsctl_ops_root); 150 if (zfsctl_ops_snapdir) 151 vn_freevnodeops(zfsctl_ops_snapdir); 152 if (zfsctl_ops_snapshot) 153 vn_freevnodeops(zfsctl_ops_snapshot); 154 155 zfsctl_ops_root = NULL; 156 zfsctl_ops_snapdir = NULL; 157 zfsctl_ops_snapshot = NULL; 158 } 159 160 /* 161 * Return the inode number associated with the 'snapshot' directory. 162 */ 163 /* ARGSUSED */ 164 static ino64_t 165 zfsctl_root_inode_cb(vnode_t *vp, int index) 166 { 167 ASSERT(index == 0); 168 return (ZFSCTL_INO_SNAPDIR); 169 } 170 171 /* 172 * Create the '.zfs' directory. This directory is cached as part of the VFS 173 * structure. This results in a hold on the vfs_t. The code in zfs_umount() 174 * therefore checks against a vfs_count of 2 instead of 1. This reference 175 * is removed when the ctldir is destroyed in the unmount. 176 */ 177 void 178 zfsctl_create(zfsvfs_t *zfsvfs) 179 { 180 vnode_t *vp, *rvp; 181 zfsctl_node_t *zcp; 182 183 ASSERT(zfsvfs->z_ctldir == NULL); 184 185 vp = gfs_root_create(sizeof (zfsctl_node_t), zfsvfs->z_vfs, 186 zfsctl_ops_root, ZFSCTL_INO_ROOT, zfsctl_root_entries, 187 zfsctl_root_inode_cb, MAXNAMELEN, NULL, NULL); 188 zcp = vp->v_data; 189 zcp->zc_id = ZFSCTL_INO_ROOT; 190 191 VERIFY(VFS_ROOT(zfsvfs->z_vfs, &rvp) == 0); 192 ZFS_TIME_DECODE(&zcp->zc_cmtime, VTOZ(rvp)->z_phys->zp_crtime); 193 VN_RELE(rvp); 194 195 /* 196 * We're only faking the fact that we have a root of a filesystem for 197 * the sake of the GFS interfaces. Undo the flag manipulation it did 198 * for us. 199 */ 200 vp->v_flag &= ~(VROOT | VNOCACHE | VNOMAP | VNOSWAP | VNOMOUNT); 201 202 zfsvfs->z_ctldir = vp; 203 } 204 205 /* 206 * Destroy the '.zfs' directory. Only called when the filesystem is unmounted. 207 * There might still be more references if we were force unmounted, but only 208 * new zfs_inactive() calls can occur and they don't reference .zfs 209 */ 210 void 211 zfsctl_destroy(zfsvfs_t *zfsvfs) 212 { 213 VN_RELE(zfsvfs->z_ctldir); 214 zfsvfs->z_ctldir = NULL; 215 } 216 217 /* 218 * Given a root znode, retrieve the associated .zfs directory. 219 * Add a hold to the vnode and return it. 220 */ 221 vnode_t * 222 zfsctl_root(znode_t *zp) 223 { 224 ASSERT(zfs_has_ctldir(zp)); 225 VN_HOLD(zp->z_zfsvfs->z_ctldir); 226 return (zp->z_zfsvfs->z_ctldir); 227 } 228 229 /* 230 * Common open routine. Disallow any write access. 231 */ 232 /* ARGSUSED */ 233 static int 234 zfsctl_common_open(vnode_t **vpp, int flags, cred_t *cr) 235 { 236 if (flags & FWRITE) 237 return (EACCES); 238 239 return (0); 240 } 241 242 /* 243 * Common close routine. Nothing to do here. 244 */ 245 /* ARGSUSED */ 246 static int 247 zfsctl_common_close(vnode_t *vpp, int flags, int count, offset_t off, 248 cred_t *cr) 249 { 250 return (0); 251 } 252 253 /* 254 * Common access routine. Disallow writes. 255 */ 256 /* ARGSUSED */ 257 static int 258 zfsctl_common_access(vnode_t *vp, int mode, int flags, cred_t *cr) 259 { 260 if (mode & VWRITE) 261 return (EACCES); 262 263 return (0); 264 } 265 266 /* 267 * Common getattr function. Fill in basic information. 268 */ 269 static void 270 zfsctl_common_getattr(vnode_t *vp, vattr_t *vap) 271 { 272 zfsctl_node_t *zcp = vp->v_data; 273 timestruc_t now; 274 275 vap->va_uid = 0; 276 vap->va_gid = 0; 277 vap->va_rdev = 0; 278 /* 279 * We are a purly virtual object, so we have no 280 * blocksize or allocated blocks. 281 */ 282 vap->va_blksize = 0; 283 vap->va_nblocks = 0; 284 vap->va_seq = 0; 285 vap->va_fsid = vp->v_vfsp->vfs_dev; 286 vap->va_mode = S_IRUSR | S_IXUSR | S_IRGRP | S_IXGRP | 287 S_IROTH | S_IXOTH; 288 vap->va_type = VDIR; 289 /* 290 * We live in the now (for atime). 291 */ 292 gethrestime(&now); 293 vap->va_atime = now; 294 vap->va_mtime = vap->va_ctime = zcp->zc_cmtime; 295 } 296 297 static int 298 zfsctl_common_fid(vnode_t *vp, fid_t *fidp) 299 { 300 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 301 zfsctl_node_t *zcp = vp->v_data; 302 uint64_t object = zcp->zc_id; 303 zfid_short_t *zfid; 304 int i; 305 306 ZFS_ENTER(zfsvfs); 307 308 if (fidp->fid_len < SHORT_FID_LEN) { 309 fidp->fid_len = SHORT_FID_LEN; 310 ZFS_EXIT(zfsvfs); 311 return (ENOSPC); 312 } 313 314 zfid = (zfid_short_t *)fidp; 315 316 zfid->zf_len = SHORT_FID_LEN; 317 318 for (i = 0; i < sizeof (zfid->zf_object); i++) 319 zfid->zf_object[i] = (uint8_t)(object >> (8 * i)); 320 321 /* .zfs znodes always have a generation number of 0 */ 322 for (i = 0; i < sizeof (zfid->zf_gen); i++) 323 zfid->zf_gen[i] = 0; 324 325 ZFS_EXIT(zfsvfs); 326 return (0); 327 } 328 329 /* 330 * .zfs inode namespace 331 * 332 * We need to generate unique inode numbers for all files and directories 333 * within the .zfs pseudo-filesystem. We use the following scheme: 334 * 335 * ENTRY ZFSCTL_INODE 336 * .zfs 1 337 * .zfs/snapshot 2 338 * .zfs/snapshot/<snap> objectid(snap) 339 */ 340 341 #define ZFSCTL_INO_SNAP(id) (id) 342 343 /* 344 * Get root directory attributes. 345 */ 346 /* ARGSUSED */ 347 static int 348 zfsctl_root_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 349 { 350 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 351 352 ZFS_ENTER(zfsvfs); 353 vap->va_nodeid = ZFSCTL_INO_ROOT; 354 vap->va_nlink = vap->va_size = NROOT_ENTRIES; 355 356 zfsctl_common_getattr(vp, vap); 357 ZFS_EXIT(zfsvfs); 358 359 return (0); 360 } 361 362 /* 363 * Special case the handling of "..". 364 */ 365 /* ARGSUSED */ 366 int 367 zfsctl_root_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 368 int flags, vnode_t *rdir, cred_t *cr) 369 { 370 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 371 int err; 372 373 ZFS_ENTER(zfsvfs); 374 375 if (strcmp(nm, "..") == 0) { 376 err = VFS_ROOT(dvp->v_vfsp, vpp); 377 } else { 378 err = gfs_dir_lookup(dvp, nm, vpp); 379 } 380 381 ZFS_EXIT(zfsvfs); 382 383 return (err); 384 } 385 386 static const fs_operation_def_t zfsctl_tops_root[] = { 387 { VOPNAME_OPEN, zfsctl_common_open }, 388 { VOPNAME_CLOSE, zfsctl_common_close }, 389 { VOPNAME_IOCTL, fs_inval }, 390 { VOPNAME_GETATTR, zfsctl_root_getattr }, 391 { VOPNAME_ACCESS, zfsctl_common_access }, 392 { VOPNAME_READDIR, gfs_vop_readdir }, 393 { VOPNAME_LOOKUP, zfsctl_root_lookup }, 394 { VOPNAME_SEEK, fs_seek }, 395 { VOPNAME_INACTIVE, (fs_generic_func_p) gfs_vop_inactive }, 396 { VOPNAME_FID, zfsctl_common_fid }, 397 { NULL } 398 }; 399 400 static int 401 zfsctl_snapshot_zname(vnode_t *vp, const char *name, int len, char *zname) 402 { 403 objset_t *os = ((zfsvfs_t *)((vp)->v_vfsp->vfs_data))->z_os; 404 405 dmu_objset_name(os, zname); 406 if (strlen(zname) + 1 + strlen(name) >= len) 407 return (ENAMETOOLONG); 408 (void) strcat(zname, "@"); 409 (void) strcat(zname, name); 410 return (0); 411 } 412 413 static int 414 zfsctl_unmount_snap(vnode_t *dvp, const char *name, int force, cred_t *cr) 415 { 416 zfsctl_snapdir_t *sdp = dvp->v_data; 417 zfs_snapentry_t search, *sep; 418 avl_index_t where; 419 int err; 420 421 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 422 423 search.se_name = (char *)name; 424 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) 425 return (ENOENT); 426 427 ASSERT(vn_ismntpt(sep->se_root)); 428 429 /* this will be dropped by dounmount() */ 430 if ((err = vn_vfswlock(sep->se_root)) != 0) 431 return (err); 432 433 VN_HOLD(sep->se_root); 434 err = dounmount(vn_mountedvfs(sep->se_root), force, kcred); 435 if (err) { 436 VN_RELE(sep->se_root); 437 return (err); 438 } 439 ASSERT(sep->se_root->v_count == 1); 440 gfs_vop_inactive(sep->se_root, cr); 441 442 avl_remove(&sdp->sd_snaps, sep); 443 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 444 kmem_free(sep, sizeof (zfs_snapentry_t)); 445 446 return (0); 447 } 448 449 450 static void 451 zfsctl_rename_snap(zfsctl_snapdir_t *sdp, zfs_snapentry_t *sep, const char *nm) 452 { 453 avl_index_t where; 454 vfs_t *vfsp; 455 refstr_t *pathref; 456 char newpath[MAXNAMELEN]; 457 char *tail; 458 459 ASSERT(MUTEX_HELD(&sdp->sd_lock)); 460 ASSERT(sep != NULL); 461 462 vfsp = vn_mountedvfs(sep->se_root); 463 ASSERT(vfsp != NULL); 464 465 vfs_lock_wait(vfsp); 466 467 /* 468 * Change the name in the AVL tree. 469 */ 470 avl_remove(&sdp->sd_snaps, sep); 471 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 472 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 473 (void) strcpy(sep->se_name, nm); 474 VERIFY(avl_find(&sdp->sd_snaps, sep, &where) == NULL); 475 avl_insert(&sdp->sd_snaps, sep, where); 476 477 /* 478 * Change the current mountpoint info: 479 * - update the tail of the mntpoint path 480 * - update the tail of the resource path 481 */ 482 pathref = vfs_getmntpoint(vfsp); 483 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 484 VERIFY((tail = strrchr(newpath, '/')) != NULL); 485 *(tail+1) = '\0'; 486 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 487 (void) strcat(newpath, nm); 488 refstr_rele(pathref); 489 vfs_setmntpoint(vfsp, newpath); 490 491 pathref = vfs_getresource(vfsp); 492 (void) strncpy(newpath, refstr_value(pathref), sizeof (newpath)); 493 VERIFY((tail = strrchr(newpath, '@')) != NULL); 494 *(tail+1) = '\0'; 495 ASSERT3U(strlen(newpath) + strlen(nm), <, sizeof (newpath)); 496 (void) strcat(newpath, nm); 497 refstr_rele(pathref); 498 vfs_setresource(vfsp, newpath); 499 500 vfs_unlock(vfsp); 501 } 502 503 static int 504 zfsctl_snapdir_rename(vnode_t *sdvp, char *snm, vnode_t *tdvp, char *tnm, 505 cred_t *cr) 506 { 507 zfsctl_snapdir_t *sdp = sdvp->v_data; 508 zfs_snapentry_t search, *sep; 509 avl_index_t where; 510 char from[MAXNAMELEN], to[MAXNAMELEN]; 511 int err; 512 513 err = zfsctl_snapshot_zname(sdvp, snm, MAXNAMELEN, from); 514 if (err) 515 return (err); 516 err = zfs_secpolicy_write(from, NULL, cr); 517 if (err) 518 return (err); 519 520 /* 521 * Cannot move snapshots out of the snapdir. 522 */ 523 if (sdvp != tdvp) 524 return (EINVAL); 525 526 if (strcmp(snm, tnm) == 0) 527 return (0); 528 529 err = zfsctl_snapshot_zname(tdvp, tnm, MAXNAMELEN, to); 530 if (err) 531 return (err); 532 533 mutex_enter(&sdp->sd_lock); 534 535 search.se_name = (char *)snm; 536 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) == NULL) { 537 mutex_exit(&sdp->sd_lock); 538 return (ENOENT); 539 } 540 541 err = dmu_objset_rename(from, to); 542 if (err == 0) 543 zfsctl_rename_snap(sdp, sep, tnm); 544 545 mutex_exit(&sdp->sd_lock); 546 547 return (err); 548 } 549 550 /* ARGSUSED */ 551 static int 552 zfsctl_snapdir_remove(vnode_t *dvp, char *name, vnode_t *cwd, cred_t *cr) 553 { 554 zfsctl_snapdir_t *sdp = dvp->v_data; 555 char snapname[MAXNAMELEN]; 556 int err; 557 558 err = zfsctl_snapshot_zname(dvp, name, MAXNAMELEN, snapname); 559 if (err) 560 return (err); 561 err = zfs_secpolicy_write(snapname, NULL, cr); 562 if (err) 563 return (err); 564 565 mutex_enter(&sdp->sd_lock); 566 567 err = zfsctl_unmount_snap(dvp, name, 0, cr); 568 if (err) { 569 mutex_exit(&sdp->sd_lock); 570 return (err); 571 } 572 573 err = dmu_objset_destroy(snapname); 574 575 mutex_exit(&sdp->sd_lock); 576 577 return (err); 578 } 579 580 /* 581 * Lookup entry point for the 'snapshot' directory. Try to open the 582 * snapshot if it exist, creating the pseudo filesystem vnode as necessary. 583 * Perform a mount of the associated dataset on top of the vnode. 584 */ 585 /* ARGSUSED */ 586 static int 587 zfsctl_snapdir_lookup(vnode_t *dvp, char *nm, vnode_t **vpp, pathname_t *pnp, 588 int flags, vnode_t *rdir, cred_t *cr) 589 { 590 zfsctl_snapdir_t *sdp = dvp->v_data; 591 objset_t *snap; 592 char snapname[MAXNAMELEN]; 593 char *mountpoint; 594 zfs_snapentry_t *sep, search; 595 struct mounta margs; 596 vfs_t *vfsp; 597 size_t mountpoint_len; 598 avl_index_t where; 599 zfsvfs_t *zfsvfs = dvp->v_vfsp->vfs_data; 600 int err; 601 602 ASSERT(dvp->v_type == VDIR); 603 604 if (gfs_lookup_dot(vpp, dvp, zfsvfs->z_ctldir, nm) == 0) 605 return (0); 606 607 /* 608 * If we get a recursive call, that means we got called 609 * from the domount() code while it was trying to look up the 610 * spec (which looks like a local path for zfs). We need to 611 * add some flag to domount() to tell it not to do this lookup. 612 */ 613 if (MUTEX_HELD(&sdp->sd_lock)) 614 return (ENOENT); 615 616 ZFS_ENTER(zfsvfs); 617 618 mutex_enter(&sdp->sd_lock); 619 search.se_name = (char *)nm; 620 if ((sep = avl_find(&sdp->sd_snaps, &search, &where)) != NULL) { 621 *vpp = sep->se_root; 622 VN_HOLD(*vpp); 623 err = traverse(vpp); 624 if (err) { 625 VN_RELE(*vpp); 626 *vpp = NULL; 627 } else if (*vpp == sep->se_root) { 628 /* 629 * The snapshot was unmounted behind our backs, 630 * try to remount it. 631 */ 632 goto domount; 633 } 634 mutex_exit(&sdp->sd_lock); 635 ZFS_EXIT(zfsvfs); 636 return (err); 637 } 638 639 /* 640 * The requested snapshot is not currently mounted, look it up. 641 */ 642 err = zfsctl_snapshot_zname(dvp, nm, MAXNAMELEN, snapname); 643 if (err) { 644 mutex_exit(&sdp->sd_lock); 645 ZFS_EXIT(zfsvfs); 646 return (err); 647 } 648 if (dmu_objset_open(snapname, DMU_OST_ZFS, 649 DS_MODE_STANDARD | DS_MODE_READONLY, &snap) != 0) { 650 mutex_exit(&sdp->sd_lock); 651 ZFS_EXIT(zfsvfs); 652 return (ENOENT); 653 } 654 655 sep = kmem_alloc(sizeof (zfs_snapentry_t), KM_SLEEP); 656 sep->se_name = kmem_alloc(strlen(nm) + 1, KM_SLEEP); 657 (void) strcpy(sep->se_name, nm); 658 *vpp = sep->se_root = zfsctl_snapshot_mknode(dvp, dmu_objset_id(snap)); 659 avl_insert(&sdp->sd_snaps, sep, where); 660 661 dmu_objset_close(snap); 662 domount: 663 mountpoint_len = strlen(refstr_value(dvp->v_vfsp->vfs_mntpt)) + 664 strlen("/.zfs/snapshot/") + strlen(nm) + 1; 665 mountpoint = kmem_alloc(mountpoint_len, KM_SLEEP); 666 (void) snprintf(mountpoint, mountpoint_len, "%s/.zfs/snapshot/%s", 667 refstr_value(dvp->v_vfsp->vfs_mntpt), nm); 668 669 margs.spec = snapname; 670 margs.dir = mountpoint; 671 margs.flags = MS_SYSSPACE | MS_NOMNTTAB; 672 margs.fstype = "zfs"; 673 margs.dataptr = NULL; 674 margs.datalen = 0; 675 margs.optptr = NULL; 676 margs.optlen = 0; 677 678 err = domount("zfs", &margs, *vpp, kcred, &vfsp); 679 kmem_free(mountpoint, mountpoint_len); 680 681 if (err == 0) { 682 /* 683 * Return the mounted root rather than the covered mount point. 684 */ 685 VFS_RELE(vfsp); 686 err = traverse(vpp); 687 } 688 689 if (err == 0) { 690 /* 691 * Fix up the root vnode. 692 */ 693 ASSERT(VTOZ(*vpp)->z_zfsvfs != zfsvfs); 694 VTOZ(*vpp)->z_zfsvfs->z_parent = zfsvfs; 695 (*vpp)->v_vfsp = zfsvfs->z_vfs; 696 (*vpp)->v_flag &= ~VROOT; 697 } 698 mutex_exit(&sdp->sd_lock); 699 ZFS_EXIT(zfsvfs); 700 701 /* 702 * If we had an error, drop our hold on the vnode and 703 * zfsctl_snapshot_inactive() will clean up. 704 */ 705 if (err) { 706 VN_RELE(*vpp); 707 *vpp = NULL; 708 } 709 return (err); 710 } 711 712 /* ARGSUSED */ 713 static int 714 zfsctl_snapdir_readdir_cb(vnode_t *vp, struct dirent64 *dp, int *eofp, 715 offset_t *offp, offset_t *nextp, void *data) 716 { 717 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 718 char snapname[MAXNAMELEN]; 719 uint64_t id, cookie; 720 721 ZFS_ENTER(zfsvfs); 722 723 cookie = *offp; 724 if (dmu_snapshot_list_next(zfsvfs->z_os, MAXNAMELEN, snapname, &id, 725 &cookie) == ENOENT) { 726 *eofp = 1; 727 ZFS_EXIT(zfsvfs); 728 return (0); 729 } 730 731 (void) strcpy(dp->d_name, snapname); 732 dp->d_ino = ZFSCTL_INO_SNAP(id); 733 *nextp = cookie; 734 735 ZFS_EXIT(zfsvfs); 736 737 return (0); 738 } 739 740 vnode_t * 741 zfsctl_mknode_snapdir(vnode_t *pvp) 742 { 743 vnode_t *vp; 744 zfsctl_snapdir_t *sdp; 745 746 vp = gfs_dir_create(sizeof (zfsctl_snapdir_t), pvp, 747 zfsctl_ops_snapdir, NULL, NULL, MAXNAMELEN, 748 zfsctl_snapdir_readdir_cb, NULL); 749 sdp = vp->v_data; 750 sdp->sd_node.zc_id = ZFSCTL_INO_SNAPDIR; 751 sdp->sd_node.zc_cmtime = ((zfsctl_node_t *)pvp->v_data)->zc_cmtime; 752 mutex_init(&sdp->sd_lock, NULL, MUTEX_DEFAULT, NULL); 753 avl_create(&sdp->sd_snaps, snapentry_compare, 754 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t, se_node)); 755 return (vp); 756 } 757 758 /* ARGSUSED */ 759 static int 760 zfsctl_snapdir_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr) 761 { 762 zfsvfs_t *zfsvfs = vp->v_vfsp->vfs_data; 763 zfsctl_snapdir_t *sdp = vp->v_data; 764 765 ZFS_ENTER(zfsvfs); 766 zfsctl_common_getattr(vp, vap); 767 vap->va_nodeid = gfs_file_inode(vp); 768 vap->va_nlink = vap->va_size = avl_numnodes(&sdp->sd_snaps) + 2; 769 ZFS_EXIT(zfsvfs); 770 771 return (0); 772 } 773 774 /* ARGSUSED */ 775 static void 776 zfsctl_snapdir_inactive(vnode_t *vp, cred_t *cr) 777 { 778 zfsctl_snapdir_t *sdp = vp->v_data; 779 void *private; 780 781 private = gfs_dir_inactive(vp); 782 if (private != NULL) { 783 ASSERT(avl_numnodes(&sdp->sd_snaps) == 0); 784 mutex_destroy(&sdp->sd_lock); 785 avl_destroy(&sdp->sd_snaps); 786 kmem_free(private, sizeof (zfsctl_snapdir_t)); 787 } 788 } 789 790 static const fs_operation_def_t zfsctl_tops_snapdir[] = { 791 { VOPNAME_OPEN, zfsctl_common_open }, 792 { VOPNAME_CLOSE, zfsctl_common_close }, 793 { VOPNAME_IOCTL, fs_inval }, 794 { VOPNAME_GETATTR, zfsctl_snapdir_getattr }, 795 { VOPNAME_ACCESS, zfsctl_common_access }, 796 { VOPNAME_RENAME, zfsctl_snapdir_rename }, 797 { VOPNAME_RMDIR, zfsctl_snapdir_remove }, 798 { VOPNAME_READDIR, gfs_vop_readdir }, 799 { VOPNAME_LOOKUP, zfsctl_snapdir_lookup }, 800 { VOPNAME_SEEK, fs_seek }, 801 { VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapdir_inactive }, 802 { VOPNAME_FID, zfsctl_common_fid }, 803 { NULL } 804 }; 805 806 static vnode_t * 807 zfsctl_snapshot_mknode(vnode_t *pvp, uint64_t objset) 808 { 809 vnode_t *vp; 810 zfsctl_node_t *zcp; 811 812 vp = gfs_dir_create(sizeof (zfsctl_node_t), pvp, 813 zfsctl_ops_snapshot, NULL, NULL, MAXNAMELEN, NULL, NULL); 814 zcp = vp->v_data; 815 zcp->zc_id = objset; 816 817 return (vp); 818 } 819 820 static void 821 zfsctl_snapshot_inactive(vnode_t *vp, cred_t *cr) 822 { 823 zfsctl_snapdir_t *sdp; 824 zfs_snapentry_t *sep, *next; 825 vnode_t *dvp; 826 827 VERIFY(gfs_dir_lookup(vp, "..", &dvp) == 0); 828 sdp = dvp->v_data; 829 830 mutex_enter(&sdp->sd_lock); 831 832 if (vp->v_count > 1) { 833 mutex_exit(&sdp->sd_lock); 834 return; 835 } 836 ASSERT(!vn_ismntpt(vp)); 837 838 sep = avl_first(&sdp->sd_snaps); 839 while (sep != NULL) { 840 next = AVL_NEXT(&sdp->sd_snaps, sep); 841 842 if (sep->se_root == vp) { 843 avl_remove(&sdp->sd_snaps, sep); 844 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 845 kmem_free(sep, sizeof (zfs_snapentry_t)); 846 break; 847 } 848 sep = next; 849 } 850 ASSERT(sep != NULL); 851 852 mutex_exit(&sdp->sd_lock); 853 VN_RELE(dvp); 854 855 /* 856 * Dispose of the vnode for the snapshot mount point. 857 * This is safe to do because once this entry has been removed 858 * from the AVL tree, it can't be found again, so cannot become 859 * "active". If we lookup the same name again we will end up 860 * creating a new vnode. 861 */ 862 gfs_vop_inactive(vp, cr); 863 } 864 865 866 /* 867 * These VP's should never see the light of day. They should always 868 * be covered. 869 */ 870 static const fs_operation_def_t zfsctl_tops_snapshot[] = { 871 VOPNAME_INACTIVE, (fs_generic_func_p) zfsctl_snapshot_inactive, 872 NULL, NULL 873 }; 874 875 int 876 zfsctl_lookup_objset(vfs_t *vfsp, uint64_t objsetid, zfsvfs_t **zfsvfsp) 877 { 878 zfsvfs_t *zfsvfs = vfsp->vfs_data; 879 vnode_t *dvp, *vp; 880 zfsctl_snapdir_t *sdp; 881 zfsctl_node_t *zcp; 882 zfs_snapentry_t *sep; 883 int error; 884 885 ASSERT(zfsvfs->z_ctldir != NULL); 886 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 887 NULL, 0, NULL, kcred); 888 if (error != 0) 889 return (error); 890 sdp = dvp->v_data; 891 892 mutex_enter(&sdp->sd_lock); 893 sep = avl_first(&sdp->sd_snaps); 894 while (sep != NULL) { 895 vp = sep->se_root; 896 zcp = vp->v_data; 897 if (zcp->zc_id == objsetid) 898 break; 899 900 sep = AVL_NEXT(&sdp->sd_snaps, sep); 901 } 902 903 if (sep != NULL) { 904 VN_HOLD(vp); 905 error = traverse(&vp); 906 if (error == 0) { 907 if (vp == sep->se_root) 908 error = EINVAL; 909 else 910 *zfsvfsp = VTOZ(vp)->z_zfsvfs; 911 } 912 mutex_exit(&sdp->sd_lock); 913 VN_RELE(vp); 914 } else { 915 error = EINVAL; 916 mutex_exit(&sdp->sd_lock); 917 } 918 919 VN_RELE(dvp); 920 921 return (error); 922 } 923 924 /* 925 * Unmount any snapshots for the given filesystem. This is called from 926 * zfs_umount() - if we have a ctldir, then go through and unmount all the 927 * snapshots. 928 */ 929 int 930 zfsctl_umount_snapshots(vfs_t *vfsp, int fflags, cred_t *cr) 931 { 932 zfsvfs_t *zfsvfs = vfsp->vfs_data; 933 vnode_t *dvp, *svp; 934 zfsctl_snapdir_t *sdp; 935 zfs_snapentry_t *sep, *next; 936 int error; 937 938 ASSERT(zfsvfs->z_ctldir != NULL); 939 error = zfsctl_root_lookup(zfsvfs->z_ctldir, "snapshot", &dvp, 940 NULL, 0, NULL, cr); 941 if (error != 0) 942 return (error); 943 sdp = dvp->v_data; 944 945 mutex_enter(&sdp->sd_lock); 946 947 sep = avl_first(&sdp->sd_snaps); 948 while (sep != NULL) { 949 svp = sep->se_root; 950 next = AVL_NEXT(&sdp->sd_snaps, sep); 951 952 /* 953 * If this snapshot is not mounted, then it must 954 * have just been unmounted by somebody else, and 955 * will be cleaned up by zfsctl_snapdir_inactive(). 956 */ 957 if (vn_ismntpt(svp)) { 958 if ((error = vn_vfswlock(svp)) != 0) 959 goto out; 960 961 VN_HOLD(svp); 962 error = dounmount(vn_mountedvfs(svp), fflags, cr); 963 if (error) { 964 VN_RELE(svp); 965 goto out; 966 } 967 968 avl_remove(&sdp->sd_snaps, sep); 969 kmem_free(sep->se_name, strlen(sep->se_name) + 1); 970 kmem_free(sep, sizeof (zfs_snapentry_t)); 971 972 /* 973 * We can't use VN_RELE(), as that will try to 974 * invoke zfsctl_snapdir_inactive(), and that 975 * would lead to an attempt to re-grab the sd_lock. 976 */ 977 ASSERT3U(svp->v_count, ==, 1); 978 gfs_vop_inactive(svp, cr); 979 } 980 sep = next; 981 } 982 out: 983 mutex_exit(&sdp->sd_lock); 984 VN_RELE(dvp); 985 986 return (error); 987 } 988