xref: /titanic_52/usr/src/uts/common/fs/zfs/zap_micro.c (revision 6fec3791b5a9a5621db93bfef3a6514bc0511b5d)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License, Version 1.0 only
6  * (the "License").  You may not use this file except in compliance
7  * with the License.
8  *
9  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
10  * or http://www.opensolaris.org/os/licensing.
11  * See the License for the specific language governing permissions
12  * and limitations under the License.
13  *
14  * When distributing Covered Code, include this CDDL HEADER in each
15  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
16  * If applicable, add the following below this CDDL HEADER, with the
17  * fields enclosed by brackets "[]" replaced with your own identifying
18  * information: Portions Copyright [yyyy] [name of copyright owner]
19  *
20  * CDDL HEADER END
21  */
22 /*
23  * Copyright 2005 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/spa.h>
30 #include <sys/dmu.h>
31 #include <sys/zfs_context.h>
32 #include <sys/zap.h>
33 #include <sys/zap_impl.h>
34 #include <sys/avl.h>
35 
36 
37 static uint64_t mzap_write_cookie(zap_t *zap, uint64_t cookie,
38     uint64_t entptr);
39 static void mzap_upgrade(zap_t *zap, dmu_tx_t *tx);
40 
41 
42 static void
43 mzap_byteswap(mzap_phys_t *buf, size_t size)
44 {
45 	int i, max;
46 	buf->mz_block_type = BSWAP_64(buf->mz_block_type);
47 	buf->mz_salt = BSWAP_64(buf->mz_salt);
48 	max = (size / MZAP_ENT_LEN) - 1;
49 	for (i = 0; i < max; i++) {
50 		buf->mz_chunk[i].mze_value =
51 		    BSWAP_64(buf->mz_chunk[i].mze_value);
52 		buf->mz_chunk[i].mze_cd =
53 		    BSWAP_32(buf->mz_chunk[i].mze_cd);
54 	}
55 }
56 
57 void
58 zap_byteswap(void *buf, size_t size)
59 {
60 	uint64_t block_type;
61 
62 	block_type = *(uint64_t *)buf;
63 
64 	switch (block_type) {
65 	case ZBT_MICRO:
66 	case BSWAP_64(ZBT_MICRO):
67 		/* ASSERT(magic == ZAP_LEAF_MAGIC); */
68 		mzap_byteswap(buf, size);
69 		return;
70 	default:
71 		ASSERT(size == (1<<ZAP_BLOCK_SHIFT));
72 		fzap_byteswap(buf, size);
73 		return;
74 	}
75 }
76 
77 static int
78 mze_compare(const void *arg1, const void *arg2)
79 {
80 	const mzap_ent_t *mze1 = arg1;
81 	const mzap_ent_t *mze2 = arg2;
82 
83 	if (mze1->mze_hash > mze2->mze_hash)
84 		return (+1);
85 	if (mze1->mze_hash < mze2->mze_hash)
86 		return (-1);
87 	if (mze1->mze_phys.mze_cd > mze2->mze_phys.mze_cd)
88 		return (+1);
89 	if (mze1->mze_phys.mze_cd < mze2->mze_phys.mze_cd)
90 		return (-1);
91 	return (0);
92 }
93 
94 static void
95 mze_insert(zap_t *zap, int chunkid, uint64_t hash, mzap_ent_phys_t *mzep)
96 {
97 	mzap_ent_t *mze;
98 
99 	ASSERT(zap->zap_ismicro);
100 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
101 	ASSERT(mzep->mze_cd < ZAP_MAXCD);
102 	ASSERT3U(zap_hash(zap, mzep->mze_name), ==, hash);
103 
104 	mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
105 	mze->mze_chunkid = chunkid;
106 	mze->mze_hash = hash;
107 	mze->mze_phys = *mzep;
108 	avl_add(&zap->zap_m.zap_avl, mze);
109 }
110 
111 static mzap_ent_t *
112 mze_find(zap_t *zap, const char *name, uint64_t hash)
113 {
114 	mzap_ent_t mze_tofind;
115 	mzap_ent_t *mze;
116 	avl_index_t idx;
117 	avl_tree_t *avl = &zap->zap_m.zap_avl;
118 
119 	ASSERT(zap->zap_ismicro);
120 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
121 	ASSERT3U(zap_hash(zap, name), ==, hash);
122 
123 	if (strlen(name) >= sizeof (mze_tofind.mze_phys.mze_name))
124 		return (NULL);
125 
126 	mze_tofind.mze_hash = hash;
127 	mze_tofind.mze_phys.mze_cd = 0;
128 
129 	mze = avl_find(avl, &mze_tofind, &idx);
130 	if (mze == NULL)
131 		mze = avl_nearest(avl, idx, AVL_AFTER);
132 	for (; mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
133 		if (strcmp(name, mze->mze_phys.mze_name) == 0)
134 			return (mze);
135 	}
136 	return (NULL);
137 }
138 
139 static uint32_t
140 mze_find_unused_cd(zap_t *zap, uint64_t hash)
141 {
142 	mzap_ent_t mze_tofind;
143 	mzap_ent_t *mze;
144 	avl_index_t idx;
145 	avl_tree_t *avl = &zap->zap_m.zap_avl;
146 	uint32_t cd;
147 
148 	ASSERT(zap->zap_ismicro);
149 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
150 
151 	mze_tofind.mze_hash = hash;
152 	mze_tofind.mze_phys.mze_cd = 0;
153 
154 	cd = 0;
155 	for (mze = avl_find(avl, &mze_tofind, &idx);
156 	    mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
157 		if (mze->mze_phys.mze_cd != cd)
158 			break;
159 		cd++;
160 	}
161 
162 	return (cd);
163 }
164 
165 static void
166 mze_remove(zap_t *zap, mzap_ent_t *mze)
167 {
168 	ASSERT(zap->zap_ismicro);
169 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
170 
171 	avl_remove(&zap->zap_m.zap_avl, mze);
172 	kmem_free(mze, sizeof (mzap_ent_t));
173 }
174 
175 static void
176 mze_destroy(zap_t *zap)
177 {
178 	mzap_ent_t *mze;
179 	void *avlcookie = NULL;
180 
181 	while (mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie))
182 		kmem_free(mze, sizeof (mzap_ent_t));
183 	avl_destroy(&zap->zap_m.zap_avl);
184 }
185 
186 static zap_t *
187 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
188 {
189 	zap_t *winner;
190 	zap_t *zap;
191 	int i;
192 
193 	ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
194 
195 	zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
196 	rw_init(&zap->zap_rwlock, 0, 0, 0);
197 	rw_enter(&zap->zap_rwlock, RW_WRITER);
198 	zap->zap_objset = os;
199 	zap->zap_object = obj;
200 	zap->zap_dbuf = db;
201 
202 	if (((uint64_t *)db->db_data)[0] != ZBT_MICRO) {
203 		mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, 0, 0);
204 	} else {
205 		zap->zap_ismicro = TRUE;
206 	}
207 
208 	/*
209 	 * Make sure that zap_ismicro is set before we let others see
210 	 * it, because zap_lockdir() checks zap_ismicro without the lock
211 	 * held.
212 	 */
213 	winner = dmu_buf_set_user(db, zap, &zap->zap_m.zap_phys, zap_pageout);
214 
215 	if (winner != NULL) {
216 		kmem_free(zap, sizeof (zap_t));
217 		return (winner);
218 	}
219 
220 	if (zap->zap_ismicro) {
221 		zap->zap_salt = zap->zap_m.zap_phys->mz_salt;
222 		zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
223 		avl_create(&zap->zap_m.zap_avl, mze_compare,
224 		    sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
225 
226 		for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
227 			mzap_ent_phys_t *mze =
228 			    &zap->zap_m.zap_phys->mz_chunk[i];
229 			if (mze->mze_name[0]) {
230 				zap->zap_m.zap_num_entries++;
231 				mze_insert(zap, i,
232 				    zap_hash(zap, mze->mze_name), mze);
233 			}
234 		}
235 	} else {
236 		zap->zap_salt = zap->zap_f.zap_phys->zap_salt;
237 	}
238 	rw_exit(&zap->zap_rwlock);
239 	return (zap);
240 }
241 
242 int
243 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
244     krw_t lti, int fatreader, zap_t **zapp)
245 {
246 	zap_t *zap;
247 	dmu_buf_t *db;
248 	krw_t lt;
249 	int err;
250 
251 	*zapp = NULL;
252 
253 	db = dmu_buf_hold(os, obj, 0);
254 
255 #ifdef ZFS_DEBUG
256 	{
257 		dmu_object_info_t doi;
258 		dmu_object_info_from_db(db, &doi);
259 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
260 	}
261 #endif
262 
263 	/*
264 	 * The zap can deal with EIO here, but its callers don't yet, so
265 	 * spare them by doing a mustsucceed read.
266 	 */
267 	dmu_buf_read(db);
268 
269 	zap = dmu_buf_get_user(db);
270 	if (zap == NULL)
271 		zap = mzap_open(os, obj, db);
272 
273 	/*
274 	 * We're checking zap_ismicro without the lock held, in order to
275 	 * tell what type of lock we want.  Once we have some sort of
276 	 * lock, see if it really is the right type.  In practice this
277 	 * can only be different if it was upgraded from micro to fat,
278 	 * and micro wanted WRITER but fat only needs READER.
279 	 */
280 	lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
281 	rw_enter(&zap->zap_rwlock, lt);
282 	if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
283 		/* it was upgraded, now we only need reader */
284 		ASSERT(lt == RW_WRITER);
285 		ASSERT(RW_READER ==
286 		    (!zap->zap_ismicro && fatreader) ? RW_READER : lti);
287 		rw_downgrade(&zap->zap_rwlock);
288 		lt = RW_READER;
289 	}
290 
291 	zap->zap_objset = os;
292 
293 	if (lt == RW_WRITER)
294 		dmu_buf_will_dirty(db, tx);
295 
296 	ASSERT3P(zap->zap_dbuf, ==, db);
297 
298 	ASSERT(!zap->zap_ismicro ||
299 	    zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
300 	if (zap->zap_ismicro && tx &&
301 	    zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
302 		uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
303 		if (newsz > MZAP_MAX_BLKSZ) {
304 			dprintf("upgrading obj %llu: num_entries=%u\n",
305 			    obj, zap->zap_m.zap_num_entries);
306 			mzap_upgrade(zap, tx);
307 			*zapp = zap;
308 			return (0);
309 		}
310 		err = dmu_object_set_blocksize(os, obj, newsz, 0, tx);
311 		ASSERT3U(err, ==, 0);
312 		zap->zap_m.zap_num_chunks =
313 		    db->db_size / MZAP_ENT_LEN - 1;
314 	}
315 
316 	*zapp = zap;
317 	return (0);
318 }
319 
320 void
321 zap_unlockdir(zap_t *zap)
322 {
323 	rw_exit(&zap->zap_rwlock);
324 	dmu_buf_rele(zap->zap_dbuf);
325 }
326 
327 static void
328 mzap_upgrade(zap_t *zap, dmu_tx_t *tx)
329 {
330 	mzap_phys_t *mzp;
331 	int i, sz, nchunks, err;
332 
333 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
334 
335 	sz = zap->zap_dbuf->db_size;
336 	mzp = kmem_alloc(sz, KM_SLEEP);
337 	bcopy(zap->zap_dbuf->db_data, mzp, sz);
338 	nchunks = zap->zap_m.zap_num_chunks;
339 
340 	err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
341 	    1ULL << ZAP_BLOCK_SHIFT, 0, tx);
342 	ASSERT(err == 0);
343 
344 	dprintf("upgrading obj=%llu with %u chunks\n",
345 	    zap->zap_object, nchunks);
346 	mze_destroy(zap);
347 
348 	fzap_upgrade(zap, tx);
349 
350 	for (i = 0; i < nchunks; i++) {
351 		int err;
352 		mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
353 		if (mze->mze_name[0] == 0)
354 			continue;
355 		dprintf("adding %s=%llu\n",
356 		    mze->mze_name, mze->mze_value);
357 		err = fzap_add_cd(zap,
358 		    mze->mze_name, 8, 1, &mze->mze_value,
359 		    mze->mze_cd, tx, NULL);
360 		ASSERT3U(err, ==, 0);
361 	}
362 	kmem_free(mzp, sz);
363 }
364 
365 uint64_t
366 zap_hash(zap_t *zap, const char *name)
367 {
368 	const uint8_t *cp;
369 	uint8_t c;
370 	uint64_t crc = zap->zap_salt;
371 
372 	ASSERT(crc != 0);
373 	ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
374 	for (cp = (const uint8_t *)name; (c = *cp) != '\0'; cp++)
375 		crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ c) & 0xFF];
376 
377 	/*
378 	 * Only use 28 bits, since we need 4 bits in the cookie for the
379 	 * collision differentiator.  We MUST use the high bits, since
380 	 * those are the onces that we first pay attention to when
381 	 * chosing the bucket.
382 	 */
383 	crc &= ~((1ULL << (64 - ZAP_HASHBITS)) - 1);
384 
385 	return (crc);
386 }
387 
388 
389 static void
390 mzap_create_impl(objset_t *os, uint64_t obj, dmu_tx_t *tx)
391 {
392 	dmu_buf_t *db;
393 	mzap_phys_t *zp;
394 
395 	db = dmu_buf_hold(os, obj, 0);
396 
397 #ifdef ZFS_DEBUG
398 	{
399 		dmu_object_info_t doi;
400 		dmu_object_info_from_db(db, &doi);
401 		ASSERT(dmu_ot[doi.doi_type].ot_byteswap == zap_byteswap);
402 	}
403 #endif
404 
405 	dmu_buf_will_dirty(db, tx);
406 	zp = db->db_data;
407 	zp->mz_block_type = ZBT_MICRO;
408 	zp->mz_salt = ((uintptr_t)db ^ (uintptr_t)tx ^ (obj << 1)) | 1ULL;
409 	ASSERT(zp->mz_salt != 0);
410 	dmu_buf_rele(db);
411 }
412 
413 int
414 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
415     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
416 {
417 	int err;
418 
419 	err = dmu_object_claim(os, obj, ot, 0, bonustype, bonuslen, tx);
420 	if (err != 0)
421 		return (err);
422 	mzap_create_impl(os, obj, tx);
423 	return (0);
424 }
425 
426 uint64_t
427 zap_create(objset_t *os, dmu_object_type_t ot,
428     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
429 {
430 	uint64_t obj = dmu_object_alloc(os, ot, 0, bonustype, bonuslen, tx);
431 
432 	mzap_create_impl(os, obj, tx);
433 	return (obj);
434 }
435 
436 int
437 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
438 {
439 	/*
440 	 * dmu_object_free will free the object number and free the
441 	 * data.  Freeing the data will cause our pageout function to be
442 	 * called, which will destroy our data (zap_leaf_t's and zap_t).
443 	 */
444 
445 	return (dmu_object_free(os, zapobj, tx));
446 }
447 
448 _NOTE(ARGSUSED(0))
449 void
450 zap_pageout(dmu_buf_t *db, void *vmzap)
451 {
452 	zap_t *zap = vmzap;
453 
454 	rw_destroy(&zap->zap_rwlock);
455 
456 	if (zap->zap_ismicro) {
457 		mze_destroy(zap);
458 	}
459 
460 	kmem_free(zap, sizeof (zap_t));
461 }
462 
463 
464 int
465 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
466 {
467 	zap_t *zap;
468 	int err;
469 
470 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
471 	if (err)
472 		return (err);
473 	if (!zap->zap_ismicro) {
474 		err = fzap_count(zap, count);
475 	} else {
476 		*count = zap->zap_m.zap_num_entries;
477 	}
478 	zap_unlockdir(zap);
479 	return (err);
480 }
481 
482 /*
483  * Routines for maniplulating attributes.
484  */
485 
486 int
487 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
488     uint64_t integer_size, uint64_t num_integers, void *buf)
489 {
490 	zap_t *zap;
491 	int err;
492 	mzap_ent_t *mze;
493 
494 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
495 	if (err)
496 		return (err);
497 	if (!zap->zap_ismicro) {
498 		err = fzap_lookup(zap, name,
499 		    integer_size, num_integers, buf);
500 	} else {
501 		mze = mze_find(zap, name, zap_hash(zap, name));
502 		if (mze == NULL) {
503 			err = ENOENT;
504 		} else {
505 			if (num_integers < 1)
506 				err = EOVERFLOW;
507 			else if (integer_size != 8)
508 				err = EINVAL;
509 			else
510 				*(uint64_t *)buf = mze->mze_phys.mze_value;
511 		}
512 	}
513 	zap_unlockdir(zap);
514 	return (err);
515 }
516 
517 int
518 zap_length(objset_t *os, uint64_t zapobj, const char *name,
519     uint64_t *integer_size, uint64_t *num_integers)
520 {
521 	zap_t *zap;
522 	int err;
523 	mzap_ent_t *mze;
524 
525 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
526 	if (err)
527 		return (err);
528 	if (!zap->zap_ismicro) {
529 		err = fzap_length(zap, name, integer_size, num_integers);
530 	} else {
531 		mze = mze_find(zap, name, zap_hash(zap, name));
532 		if (mze == NULL) {
533 			err = ENOENT;
534 		} else {
535 			if (integer_size)
536 				*integer_size = 8;
537 			if (num_integers)
538 				*num_integers = 1;
539 		}
540 	}
541 	zap_unlockdir(zap);
542 	return (err);
543 }
544 
545 static void
546 mzap_addent(zap_t *zap, const char *name, uint64_t hash, uint64_t value)
547 {
548 	int i;
549 	int start = zap->zap_m.zap_alloc_next;
550 	uint32_t cd;
551 
552 	dprintf("obj=%llu %s=%llu\n", zap->zap_object, name, value);
553 	ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
554 
555 #ifdef ZFS_DEBUG
556 	for (i = 0; i < zap->zap_m.zap_num_chunks; i++) {
557 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
558 		ASSERT(strcmp(name, mze->mze_name) != 0);
559 	}
560 #endif
561 
562 	cd = mze_find_unused_cd(zap, hash);
563 	/* given the limited size of the microzap, this can't happen */
564 	ASSERT(cd != ZAP_MAXCD);
565 
566 again:
567 	for (i = start; i < zap->zap_m.zap_num_chunks; i++) {
568 		mzap_ent_phys_t *mze = &zap->zap_m.zap_phys->mz_chunk[i];
569 		if (mze->mze_name[0] == 0) {
570 			mze->mze_value = value;
571 			mze->mze_cd = cd;
572 			(void) strcpy(mze->mze_name, name);
573 			zap->zap_m.zap_num_entries++;
574 			zap->zap_m.zap_alloc_next = i+1;
575 			if (zap->zap_m.zap_alloc_next ==
576 			    zap->zap_m.zap_num_chunks)
577 				zap->zap_m.zap_alloc_next = 0;
578 			mze_insert(zap, i, hash, mze);
579 			return;
580 		}
581 	}
582 	if (start != 0) {
583 		start = 0;
584 		goto again;
585 	}
586 	ASSERT(!"out of entries!");
587 }
588 
589 int
590 zap_add(objset_t *os, uint64_t zapobj, const char *name,
591     int integer_size, uint64_t num_integers,
592     const void *val, dmu_tx_t *tx)
593 {
594 	zap_t *zap;
595 	int err;
596 	mzap_ent_t *mze;
597 	const uint64_t *intval = val;
598 	uint64_t hash;
599 
600 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap);
601 	if (err)
602 		return (err);
603 	if (!zap->zap_ismicro) {
604 		err = fzap_add(zap, name, integer_size, num_integers, val, tx);
605 	} else if (integer_size != 8 || num_integers != 1 ||
606 	    strlen(name) >= MZAP_NAME_LEN) {
607 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
608 		    zapobj, integer_size, num_integers, name);
609 		mzap_upgrade(zap, tx);
610 		err = fzap_add(zap, name, integer_size, num_integers, val, tx);
611 	} else {
612 		hash = zap_hash(zap, name);
613 		mze = mze_find(zap, name, hash);
614 		if (mze != NULL) {
615 			err = EEXIST;
616 		} else {
617 			mzap_addent(zap, name, hash, *intval);
618 		}
619 	}
620 	zap_unlockdir(zap);
621 	return (err);
622 }
623 
624 int
625 zap_update(objset_t *os, uint64_t zapobj, const char *name,
626     int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
627 {
628 	zap_t *zap;
629 	mzap_ent_t *mze;
630 	const uint64_t *intval = val;
631 	uint64_t hash;
632 	int err;
633 
634 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap);
635 	if (err)
636 		return (err);
637 	ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
638 	if (!zap->zap_ismicro) {
639 		err = fzap_update(zap, name,
640 		    integer_size, num_integers, val, tx);
641 	} else if (integer_size != 8 || num_integers != 1 ||
642 	    strlen(name) >= MZAP_NAME_LEN) {
643 		dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
644 		    zapobj, integer_size, num_integers, name);
645 		mzap_upgrade(zap, tx);
646 		err = fzap_update(zap, name,
647 		    integer_size, num_integers, val, tx);
648 	} else {
649 		hash = zap_hash(zap, name);
650 		mze = mze_find(zap, name, hash);
651 		if (mze != NULL) {
652 			mze->mze_phys.mze_value = *intval;
653 			zap->zap_m.zap_phys->mz_chunk
654 			    [mze->mze_chunkid].mze_value = *intval;
655 		} else {
656 			mzap_addent(zap, name, hash, *intval);
657 		}
658 	}
659 	zap_unlockdir(zap);
660 	return (0);
661 }
662 
663 int
664 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
665 {
666 	zap_t *zap;
667 	int err;
668 	mzap_ent_t *mze;
669 
670 	err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, &zap);
671 	if (err)
672 		return (err);
673 	if (!zap->zap_ismicro) {
674 		err = fzap_remove(zap, name, tx);
675 	} else {
676 		mze = mze_find(zap, name, zap_hash(zap, name));
677 		if (mze == NULL) {
678 			dprintf("fail: %s\n", name);
679 			err = ENOENT;
680 		} else {
681 			dprintf("success: %s\n", name);
682 			zap->zap_m.zap_num_entries--;
683 			bzero(&zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
684 			    sizeof (mzap_ent_phys_t));
685 			mze_remove(zap, mze);
686 		}
687 	}
688 	zap_unlockdir(zap);
689 	return (err);
690 }
691 
692 
693 /*
694  * Routines for iterating over the attributes.
695  */
696 
697 void
698 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
699 {
700 	zc->zc_objset = os;
701 	zc->zc_zapobj = zapobj;
702 	zc->zc_hash = 0;
703 	zc->zc_cd = 0;
704 }
705 
706 /*
707  * We want to keep the high 32 bits of the cursor zero if we can, so
708  * that 32-bit programs can access this.  So use a small hash value so
709  * we can fit 4 bits of cd into the 32-bit cursor.
710  *
711  * [ 4 zero bits | 32-bit collision differentiator | 28-bit hash value ]
712  */
713 void
714 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
715     uint64_t serialized)
716 {
717 	zc->zc_objset = os;
718 	zc->zc_zapobj = zapobj;
719 	if (serialized == -1ULL) {
720 		zc->zc_hash = -1ULL;
721 		zc->zc_cd = 0;
722 	} else {
723 		zc->zc_hash = serialized << (64-ZAP_HASHBITS);
724 		zc->zc_cd = serialized >> ZAP_HASHBITS;
725 		if (zc->zc_cd >= ZAP_MAXCD) /* corrupt serialized */
726 			zc->zc_cd = 0;
727 	}
728 }
729 
730 uint64_t
731 zap_cursor_serialize(zap_cursor_t *zc)
732 {
733 	if (zc->zc_hash == -1ULL)
734 		return (-1ULL);
735 	ASSERT((zc->zc_hash & (ZAP_MAXCD-1)) == 0);
736 	ASSERT(zc->zc_cd < ZAP_MAXCD);
737 	return ((zc->zc_hash >> (64-ZAP_HASHBITS)) |
738 	    ((uint64_t)zc->zc_cd << ZAP_HASHBITS));
739 }
740 
741 int
742 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
743 {
744 	zap_t *zap;
745 	int err;
746 	avl_index_t idx;
747 	mzap_ent_t mze_tofind;
748 	mzap_ent_t *mze;
749 
750 	if (zc->zc_hash == -1ULL)
751 		return (ENOENT);
752 
753 	err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
754 	    RW_READER, TRUE, &zap);
755 	if (err)
756 		return (err);
757 	if (!zap->zap_ismicro) {
758 		err = fzap_cursor_retrieve(zap, zc, za);
759 	} else {
760 		err = ENOENT;
761 
762 		mze_tofind.mze_hash = zc->zc_hash;
763 		mze_tofind.mze_phys.mze_cd = zc->zc_cd;
764 
765 		mze = avl_find(&zap->zap_m.zap_avl, &mze_tofind, &idx);
766 		ASSERT(mze == NULL || 0 == bcmp(&mze->mze_phys,
767 		    &zap->zap_m.zap_phys->mz_chunk[mze->mze_chunkid],
768 		    sizeof (mze->mze_phys)));
769 		if (mze == NULL)
770 			mze = avl_nearest(&zap->zap_m.zap_avl, idx, AVL_AFTER);
771 
772 		if (mze) {
773 			za->za_integer_length = 8;
774 			za->za_num_integers = 1;
775 			za->za_first_integer = mze->mze_phys.mze_value;
776 			(void) strcpy(za->za_name, mze->mze_phys.mze_name);
777 			zc->zc_hash = mze->mze_hash;
778 			zc->zc_cd = mze->mze_phys.mze_cd;
779 			err = 0;
780 		} else {
781 			zc->zc_hash = -1ULL;
782 		}
783 	}
784 	zap_unlockdir(zap);
785 	return (err);
786 }
787 
788 void
789 zap_cursor_advance(zap_cursor_t *zc)
790 {
791 	if (zc->zc_hash == -1ULL)
792 		return;
793 	zc->zc_cd++;
794 	if (zc->zc_cd >= ZAP_MAXCD) {
795 		zc->zc_cd = 0;
796 		zc->zc_hash += 1ULL<<(64-ZAP_HASHBITS);
797 		if (zc->zc_hash == 0) /* EOF */
798 			zc->zc_hash = -1ULL;
799 	}
800 }
801 
802 int
803 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
804 {
805 	int err;
806 	zap_t *zap;
807 
808 	err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, &zap);
809 	if (err)
810 		return (err);
811 
812 	bzero(zs, sizeof (zap_stats_t));
813 
814 	if (zap->zap_ismicro) {
815 		zs->zs_blocksize = zap->zap_dbuf->db_size;
816 		zs->zs_num_entries = zap->zap_m.zap_num_entries;
817 		zs->zs_num_blocks = 1;
818 	} else {
819 		fzap_get_stats(zap, zs);
820 	}
821 	zap_unlockdir(zap);
822 	return (0);
823 }
824