1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2012 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/avl.h> 35 36 /* 37 * These tunables are for performance analysis. 38 */ 39 /* 40 * zfs_vdev_max_pending is the maximum number of i/os concurrently 41 * pending to each device. zfs_vdev_min_pending is the initial number 42 * of i/os pending to each device (before it starts ramping up to 43 * max_pending). 44 */ 45 int zfs_vdev_max_pending = 10; 46 int zfs_vdev_min_pending = 4; 47 48 /* 49 * The deadlines are grouped into buckets based on zfs_vdev_time_shift: 50 * deadline = pri + gethrtime() >> time_shift) 51 */ 52 int zfs_vdev_time_shift = 29; /* each bucket is 0.537 seconds */ 53 54 /* exponential I/O issue ramp-up rate */ 55 int zfs_vdev_ramp_rate = 2; 56 57 /* 58 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 59 * For read I/Os, we also aggregate across small adjacency gaps; for writes 60 * we include spans of optional I/Os to aid aggregation at the disk even when 61 * they aren't able to help us aggregate at this level. 62 */ 63 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; 64 int zfs_vdev_read_gap_limit = 32 << 10; 65 int zfs_vdev_write_gap_limit = 4 << 10; 66 67 /* 68 * Virtual device vector for disk I/O scheduling. 69 */ 70 int 71 vdev_queue_deadline_compare(const void *x1, const void *x2) 72 { 73 const zio_t *z1 = x1; 74 const zio_t *z2 = x2; 75 76 if (z1->io_deadline < z2->io_deadline) 77 return (-1); 78 if (z1->io_deadline > z2->io_deadline) 79 return (1); 80 81 if (z1->io_offset < z2->io_offset) 82 return (-1); 83 if (z1->io_offset > z2->io_offset) 84 return (1); 85 86 if (z1 < z2) 87 return (-1); 88 if (z1 > z2) 89 return (1); 90 91 return (0); 92 } 93 94 int 95 vdev_queue_offset_compare(const void *x1, const void *x2) 96 { 97 const zio_t *z1 = x1; 98 const zio_t *z2 = x2; 99 100 if (z1->io_offset < z2->io_offset) 101 return (-1); 102 if (z1->io_offset > z2->io_offset) 103 return (1); 104 105 if (z1 < z2) 106 return (-1); 107 if (z1 > z2) 108 return (1); 109 110 return (0); 111 } 112 113 void 114 vdev_queue_init(vdev_t *vd) 115 { 116 vdev_queue_t *vq = &vd->vdev_queue; 117 118 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 119 120 avl_create(&vq->vq_deadline_tree, vdev_queue_deadline_compare, 121 sizeof (zio_t), offsetof(struct zio, io_deadline_node)); 122 123 avl_create(&vq->vq_read_tree, vdev_queue_offset_compare, 124 sizeof (zio_t), offsetof(struct zio, io_offset_node)); 125 126 avl_create(&vq->vq_write_tree, vdev_queue_offset_compare, 127 sizeof (zio_t), offsetof(struct zio, io_offset_node)); 128 129 avl_create(&vq->vq_pending_tree, vdev_queue_offset_compare, 130 sizeof (zio_t), offsetof(struct zio, io_offset_node)); 131 } 132 133 void 134 vdev_queue_fini(vdev_t *vd) 135 { 136 vdev_queue_t *vq = &vd->vdev_queue; 137 138 avl_destroy(&vq->vq_deadline_tree); 139 avl_destroy(&vq->vq_read_tree); 140 avl_destroy(&vq->vq_write_tree); 141 avl_destroy(&vq->vq_pending_tree); 142 143 mutex_destroy(&vq->vq_lock); 144 } 145 146 static void 147 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 148 { 149 spa_t *spa = zio->io_spa; 150 avl_add(&vq->vq_deadline_tree, zio); 151 avl_add(zio->io_vdev_tree, zio); 152 153 if (spa->spa_iokstat != NULL) { 154 mutex_enter(&spa->spa_iokstat_lock); 155 kstat_waitq_enter(spa->spa_iokstat->ks_data); 156 mutex_exit(&spa->spa_iokstat_lock); 157 } 158 } 159 160 static void 161 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 162 { 163 spa_t *spa = zio->io_spa; 164 avl_remove(&vq->vq_deadline_tree, zio); 165 avl_remove(zio->io_vdev_tree, zio); 166 167 if (spa->spa_iokstat != NULL) { 168 mutex_enter(&spa->spa_iokstat_lock); 169 kstat_waitq_exit(spa->spa_iokstat->ks_data); 170 mutex_exit(&spa->spa_iokstat_lock); 171 } 172 } 173 174 static void 175 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 176 { 177 spa_t *spa = zio->io_spa; 178 avl_add(&vq->vq_pending_tree, zio); 179 if (spa->spa_iokstat != NULL) { 180 mutex_enter(&spa->spa_iokstat_lock); 181 kstat_runq_enter(spa->spa_iokstat->ks_data); 182 mutex_exit(&spa->spa_iokstat_lock); 183 } 184 } 185 186 static void 187 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 188 { 189 spa_t *spa = zio->io_spa; 190 avl_remove(&vq->vq_pending_tree, zio); 191 if (spa->spa_iokstat != NULL) { 192 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 193 194 mutex_enter(&spa->spa_iokstat_lock); 195 kstat_runq_exit(spa->spa_iokstat->ks_data); 196 if (zio->io_type == ZIO_TYPE_READ) { 197 ksio->reads++; 198 ksio->nread += zio->io_size; 199 } else if (zio->io_type == ZIO_TYPE_WRITE) { 200 ksio->writes++; 201 ksio->nwritten += zio->io_size; 202 } 203 mutex_exit(&spa->spa_iokstat_lock); 204 } 205 } 206 207 static void 208 vdev_queue_agg_io_done(zio_t *aio) 209 { 210 zio_t *pio; 211 212 while ((pio = zio_walk_parents(aio)) != NULL) 213 if (aio->io_type == ZIO_TYPE_READ) 214 bcopy((char *)aio->io_data + (pio->io_offset - 215 aio->io_offset), pio->io_data, pio->io_size); 216 217 zio_buf_free(aio->io_data, aio->io_size); 218 } 219 220 /* 221 * Compute the range spanned by two i/os, which is the endpoint of the last 222 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 223 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 224 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 225 */ 226 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 227 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 228 229 static zio_t * 230 vdev_queue_io_to_issue(vdev_queue_t *vq, uint64_t pending_limit) 231 { 232 zio_t *fio, *lio, *aio, *dio, *nio, *mio; 233 avl_tree_t *t; 234 int flags; 235 uint64_t maxspan = zfs_vdev_aggregation_limit; 236 uint64_t maxgap; 237 int stretch; 238 239 again: 240 ASSERT(MUTEX_HELD(&vq->vq_lock)); 241 242 if (avl_numnodes(&vq->vq_pending_tree) >= pending_limit || 243 avl_numnodes(&vq->vq_deadline_tree) == 0) 244 return (NULL); 245 246 fio = lio = avl_first(&vq->vq_deadline_tree); 247 248 t = fio->io_vdev_tree; 249 flags = fio->io_flags & ZIO_FLAG_AGG_INHERIT; 250 maxgap = (t == &vq->vq_read_tree) ? zfs_vdev_read_gap_limit : 0; 251 252 if (!(flags & ZIO_FLAG_DONT_AGGREGATE)) { 253 /* 254 * We can aggregate I/Os that are sufficiently adjacent and of 255 * the same flavor, as expressed by the AGG_INHERIT flags. 256 * The latter requirement is necessary so that certain 257 * attributes of the I/O, such as whether it's a normal I/O 258 * or a scrub/resilver, can be preserved in the aggregate. 259 * We can include optional I/Os, but don't allow them 260 * to begin a range as they add no benefit in that situation. 261 */ 262 263 /* 264 * We keep track of the last non-optional I/O. 265 */ 266 mio = (fio->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : fio; 267 268 /* 269 * Walk backwards through sufficiently contiguous I/Os 270 * recording the last non-option I/O. 271 */ 272 while ((dio = AVL_PREV(t, fio)) != NULL && 273 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 274 IO_SPAN(dio, lio) <= maxspan && 275 IO_GAP(dio, fio) <= maxgap) { 276 fio = dio; 277 if (mio == NULL && !(fio->io_flags & ZIO_FLAG_OPTIONAL)) 278 mio = fio; 279 } 280 281 /* 282 * Skip any initial optional I/Os. 283 */ 284 while ((fio->io_flags & ZIO_FLAG_OPTIONAL) && fio != lio) { 285 fio = AVL_NEXT(t, fio); 286 ASSERT(fio != NULL); 287 } 288 289 /* 290 * Walk forward through sufficiently contiguous I/Os. 291 */ 292 while ((dio = AVL_NEXT(t, lio)) != NULL && 293 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 294 IO_SPAN(fio, dio) <= maxspan && 295 IO_GAP(lio, dio) <= maxgap) { 296 lio = dio; 297 if (!(lio->io_flags & ZIO_FLAG_OPTIONAL)) 298 mio = lio; 299 } 300 301 /* 302 * Now that we've established the range of the I/O aggregation 303 * we must decide what to do with trailing optional I/Os. 304 * For reads, there's nothing to do. While we are unable to 305 * aggregate further, it's possible that a trailing optional 306 * I/O would allow the underlying device to aggregate with 307 * subsequent I/Os. We must therefore determine if the next 308 * non-optional I/O is close enough to make aggregation 309 * worthwhile. 310 */ 311 stretch = B_FALSE; 312 if (t != &vq->vq_read_tree && mio != NULL) { 313 nio = lio; 314 while ((dio = AVL_NEXT(t, nio)) != NULL && 315 IO_GAP(nio, dio) == 0 && 316 IO_GAP(mio, dio) <= zfs_vdev_write_gap_limit) { 317 nio = dio; 318 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 319 stretch = B_TRUE; 320 break; 321 } 322 } 323 } 324 325 if (stretch) { 326 /* This may be a no-op. */ 327 VERIFY((dio = AVL_NEXT(t, lio)) != NULL); 328 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 329 } else { 330 while (lio != mio && lio != fio) { 331 ASSERT(lio->io_flags & ZIO_FLAG_OPTIONAL); 332 lio = AVL_PREV(t, lio); 333 ASSERT(lio != NULL); 334 } 335 } 336 } 337 338 if (fio != lio) { 339 uint64_t size = IO_SPAN(fio, lio); 340 ASSERT(size <= zfs_vdev_aggregation_limit); 341 342 aio = zio_vdev_delegated_io(fio->io_vd, fio->io_offset, 343 zio_buf_alloc(size), size, fio->io_type, ZIO_PRIORITY_AGG, 344 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 345 vdev_queue_agg_io_done, NULL); 346 aio->io_timestamp = fio->io_timestamp; 347 348 nio = fio; 349 do { 350 dio = nio; 351 nio = AVL_NEXT(t, dio); 352 ASSERT(dio->io_type == aio->io_type); 353 ASSERT(dio->io_vdev_tree == t); 354 355 if (dio->io_flags & ZIO_FLAG_NODATA) { 356 ASSERT(dio->io_type == ZIO_TYPE_WRITE); 357 bzero((char *)aio->io_data + (dio->io_offset - 358 aio->io_offset), dio->io_size); 359 } else if (dio->io_type == ZIO_TYPE_WRITE) { 360 bcopy(dio->io_data, (char *)aio->io_data + 361 (dio->io_offset - aio->io_offset), 362 dio->io_size); 363 } 364 365 zio_add_child(dio, aio); 366 vdev_queue_io_remove(vq, dio); 367 zio_vdev_io_bypass(dio); 368 zio_execute(dio); 369 } while (dio != lio); 370 371 vdev_queue_pending_add(vq, aio); 372 373 return (aio); 374 } 375 376 ASSERT(fio->io_vdev_tree == t); 377 vdev_queue_io_remove(vq, fio); 378 379 /* 380 * If the I/O is or was optional and therefore has no data, we need to 381 * simply discard it. We need to drop the vdev queue's lock to avoid a 382 * deadlock that we could encounter since this I/O will complete 383 * immediately. 384 */ 385 if (fio->io_flags & ZIO_FLAG_NODATA) { 386 mutex_exit(&vq->vq_lock); 387 zio_vdev_io_bypass(fio); 388 zio_execute(fio); 389 mutex_enter(&vq->vq_lock); 390 goto again; 391 } 392 393 vdev_queue_pending_add(vq, fio); 394 395 return (fio); 396 } 397 398 zio_t * 399 vdev_queue_io(zio_t *zio) 400 { 401 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 402 zio_t *nio; 403 404 ASSERT(zio->io_type == ZIO_TYPE_READ || zio->io_type == ZIO_TYPE_WRITE); 405 406 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 407 return (zio); 408 409 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 410 411 if (zio->io_type == ZIO_TYPE_READ) 412 zio->io_vdev_tree = &vq->vq_read_tree; 413 else 414 zio->io_vdev_tree = &vq->vq_write_tree; 415 416 mutex_enter(&vq->vq_lock); 417 418 zio->io_timestamp = gethrtime(); 419 zio->io_deadline = (zio->io_timestamp >> zfs_vdev_time_shift) + 420 zio->io_priority; 421 422 vdev_queue_io_add(vq, zio); 423 424 nio = vdev_queue_io_to_issue(vq, zfs_vdev_min_pending); 425 426 mutex_exit(&vq->vq_lock); 427 428 if (nio == NULL) 429 return (NULL); 430 431 if (nio->io_done == vdev_queue_agg_io_done) { 432 zio_nowait(nio); 433 return (NULL); 434 } 435 436 return (nio); 437 } 438 439 void 440 vdev_queue_io_done(zio_t *zio) 441 { 442 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 443 444 if (zio_injection_enabled) 445 delay(SEC_TO_TICK(zio_handle_io_delay(zio))); 446 447 mutex_enter(&vq->vq_lock); 448 449 vdev_queue_pending_remove(vq, zio); 450 451 vq->vq_io_complete_ts = gethrtime(); 452 453 for (int i = 0; i < zfs_vdev_ramp_rate; i++) { 454 zio_t *nio = vdev_queue_io_to_issue(vq, zfs_vdev_max_pending); 455 if (nio == NULL) 456 break; 457 mutex_exit(&vq->vq_lock); 458 if (nio->io_done == vdev_queue_agg_io_done) { 459 zio_nowait(nio); 460 } else { 461 zio_vdev_io_reissue(nio); 462 zio_execute(nio); 463 } 464 mutex_enter(&vq->vq_lock); 465 } 466 467 mutex_exit(&vq->vq_lock); 468 } 469