1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 /* 27 * Copyright (c) 2013 by Delphix. All rights reserved. 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/vdev_impl.h> 32 #include <sys/spa_impl.h> 33 #include <sys/zio.h> 34 #include <sys/avl.h> 35 #include <sys/dsl_pool.h> 36 37 /* 38 * ZFS I/O Scheduler 39 * --------------- 40 * 41 * ZFS issues I/O operations to leaf vdevs to satisfy and complete zios. The 42 * I/O scheduler determines when and in what order those operations are 43 * issued. The I/O scheduler divides operations into five I/O classes 44 * prioritized in the following order: sync read, sync write, async read, 45 * async write, and scrub/resilver. Each queue defines the minimum and 46 * maximum number of concurrent operations that may be issued to the device. 47 * In addition, the device has an aggregate maximum. Note that the sum of the 48 * per-queue minimums must not exceed the aggregate maximum, and if the 49 * aggregate maximum is equal to or greater than the sum of the per-queue 50 * maximums, the per-queue minimum has no effect. 51 * 52 * For many physical devices, throughput increases with the number of 53 * concurrent operations, but latency typically suffers. Further, physical 54 * devices typically have a limit at which more concurrent operations have no 55 * effect on throughput or can actually cause it to decrease. 56 * 57 * The scheduler selects the next operation to issue by first looking for an 58 * I/O class whose minimum has not been satisfied. Once all are satisfied and 59 * the aggregate maximum has not been hit, the scheduler looks for classes 60 * whose maximum has not been satisfied. Iteration through the I/O classes is 61 * done in the order specified above. No further operations are issued if the 62 * aggregate maximum number of concurrent operations has been hit or if there 63 * are no operations queued for an I/O class that has not hit its maximum. 64 * Every time an i/o is queued or an operation completes, the I/O scheduler 65 * looks for new operations to issue. 66 * 67 * All I/O classes have a fixed maximum number of outstanding operations 68 * except for the async write class. Asynchronous writes represent the data 69 * that is committed to stable storage during the syncing stage for 70 * transaction groups (see txg.c). Transaction groups enter the syncing state 71 * periodically so the number of queued async writes will quickly burst up and 72 * then bleed down to zero. Rather than servicing them as quickly as possible, 73 * the I/O scheduler changes the maximum number of active async write i/os 74 * according to the amount of dirty data in the pool (see dsl_pool.c). Since 75 * both throughput and latency typically increase with the number of 76 * concurrent operations issued to physical devices, reducing the burstiness 77 * in the number of concurrent operations also stabilizes the response time of 78 * operations from other -- and in particular synchronous -- queues. In broad 79 * strokes, the I/O scheduler will issue more concurrent operations from the 80 * async write queue as there's more dirty data in the pool. 81 * 82 * Async Writes 83 * 84 * The number of concurrent operations issued for the async write I/O class 85 * follows a piece-wise linear function defined by a few adjustable points. 86 * 87 * | o---------| <-- zfs_vdev_async_write_max_active 88 * ^ | /^ | 89 * | | / | | 90 * active | / | | 91 * I/O | / | | 92 * count | / | | 93 * | / | | 94 * |------------o | | <-- zfs_vdev_async_write_min_active 95 * 0|____________^______|_________| 96 * 0% | | 100% of zfs_dirty_data_max 97 * | | 98 * | `-- zfs_vdev_async_write_active_max_dirty_percent 99 * `--------- zfs_vdev_async_write_active_min_dirty_percent 100 * 101 * Until the amount of dirty data exceeds a minimum percentage of the dirty 102 * data allowed in the pool, the I/O scheduler will limit the number of 103 * concurrent operations to the minimum. As that threshold is crossed, the 104 * number of concurrent operations issued increases linearly to the maximum at 105 * the specified maximum percentage of the dirty data allowed in the pool. 106 * 107 * Ideally, the amount of dirty data on a busy pool will stay in the sloped 108 * part of the function between zfs_vdev_async_write_active_min_dirty_percent 109 * and zfs_vdev_async_write_active_max_dirty_percent. If it exceeds the 110 * maximum percentage, this indicates that the rate of incoming data is 111 * greater than the rate that the backend storage can handle. In this case, we 112 * must further throttle incoming writes (see dmu_tx_delay() for details). 113 */ 114 115 /* 116 * The maximum number of i/os active to each device. Ideally, this will be >= 117 * the sum of each queue's max_active. It must be at least the sum of each 118 * queue's min_active. 119 */ 120 uint32_t zfs_vdev_max_active = 1000; 121 122 /* 123 * Per-queue limits on the number of i/os active to each device. If the 124 * sum of the queue's max_active is < zfs_vdev_max_active, then the 125 * min_active comes into play. We will send min_active from each queue, 126 * and then select from queues in the order defined by zio_priority_t. 127 * 128 * In general, smaller max_active's will lead to lower latency of synchronous 129 * operations. Larger max_active's may lead to higher overall throughput, 130 * depending on underlying storage. 131 * 132 * The ratio of the queues' max_actives determines the balance of performance 133 * between reads, writes, and scrubs. E.g., increasing 134 * zfs_vdev_scrub_max_active will cause the scrub or resilver to complete 135 * more quickly, but reads and writes to have higher latency and lower 136 * throughput. 137 */ 138 uint32_t zfs_vdev_sync_read_min_active = 10; 139 uint32_t zfs_vdev_sync_read_max_active = 10; 140 uint32_t zfs_vdev_sync_write_min_active = 10; 141 uint32_t zfs_vdev_sync_write_max_active = 10; 142 uint32_t zfs_vdev_async_read_min_active = 1; 143 uint32_t zfs_vdev_async_read_max_active = 3; 144 uint32_t zfs_vdev_async_write_min_active = 1; 145 uint32_t zfs_vdev_async_write_max_active = 10; 146 uint32_t zfs_vdev_scrub_min_active = 1; 147 uint32_t zfs_vdev_scrub_max_active = 2; 148 149 /* 150 * When the pool has less than zfs_vdev_async_write_active_min_dirty_percent 151 * dirty data, use zfs_vdev_async_write_min_active. When it has more than 152 * zfs_vdev_async_write_active_max_dirty_percent, use 153 * zfs_vdev_async_write_max_active. The value is linearly interpolated 154 * between min and max. 155 */ 156 int zfs_vdev_async_write_active_min_dirty_percent = 30; 157 int zfs_vdev_async_write_active_max_dirty_percent = 60; 158 159 /* 160 * To reduce IOPs, we aggregate small adjacent I/Os into one large I/O. 161 * For read I/Os, we also aggregate across small adjacency gaps; for writes 162 * we include spans of optional I/Os to aid aggregation at the disk even when 163 * they aren't able to help us aggregate at this level. 164 */ 165 int zfs_vdev_aggregation_limit = SPA_MAXBLOCKSIZE; 166 int zfs_vdev_read_gap_limit = 32 << 10; 167 int zfs_vdev_write_gap_limit = 4 << 10; 168 169 int 170 vdev_queue_offset_compare(const void *x1, const void *x2) 171 { 172 const zio_t *z1 = x1; 173 const zio_t *z2 = x2; 174 175 if (z1->io_offset < z2->io_offset) 176 return (-1); 177 if (z1->io_offset > z2->io_offset) 178 return (1); 179 180 if (z1 < z2) 181 return (-1); 182 if (z1 > z2) 183 return (1); 184 185 return (0); 186 } 187 188 int 189 vdev_queue_timestamp_compare(const void *x1, const void *x2) 190 { 191 const zio_t *z1 = x1; 192 const zio_t *z2 = x2; 193 194 if (z1->io_timestamp < z2->io_timestamp) 195 return (-1); 196 if (z1->io_timestamp > z2->io_timestamp) 197 return (1); 198 199 if (z1 < z2) 200 return (-1); 201 if (z1 > z2) 202 return (1); 203 204 return (0); 205 } 206 207 void 208 vdev_queue_init(vdev_t *vd) 209 { 210 vdev_queue_t *vq = &vd->vdev_queue; 211 212 mutex_init(&vq->vq_lock, NULL, MUTEX_DEFAULT, NULL); 213 vq->vq_vdev = vd; 214 215 avl_create(&vq->vq_active_tree, vdev_queue_offset_compare, 216 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 217 218 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 219 /* 220 * The synchronous i/o queues are FIFO rather than LBA ordered. 221 * This provides more consistent latency for these i/os, and 222 * they tend to not be tightly clustered anyway so there is 223 * little to no throughput loss. 224 */ 225 boolean_t fifo = (p == ZIO_PRIORITY_SYNC_READ || 226 p == ZIO_PRIORITY_SYNC_WRITE); 227 avl_create(&vq->vq_class[p].vqc_queued_tree, 228 fifo ? vdev_queue_timestamp_compare : 229 vdev_queue_offset_compare, 230 sizeof (zio_t), offsetof(struct zio, io_queue_node)); 231 } 232 } 233 234 void 235 vdev_queue_fini(vdev_t *vd) 236 { 237 vdev_queue_t *vq = &vd->vdev_queue; 238 239 for (zio_priority_t p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) 240 avl_destroy(&vq->vq_class[p].vqc_queued_tree); 241 avl_destroy(&vq->vq_active_tree); 242 243 mutex_destroy(&vq->vq_lock); 244 } 245 246 static void 247 vdev_queue_io_add(vdev_queue_t *vq, zio_t *zio) 248 { 249 spa_t *spa = zio->io_spa; 250 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 251 avl_add(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); 252 253 mutex_enter(&spa->spa_iokstat_lock); 254 spa->spa_queue_stats[zio->io_priority].spa_queued++; 255 if (spa->spa_iokstat != NULL) 256 kstat_waitq_enter(spa->spa_iokstat->ks_data); 257 mutex_exit(&spa->spa_iokstat_lock); 258 } 259 260 static void 261 vdev_queue_io_remove(vdev_queue_t *vq, zio_t *zio) 262 { 263 spa_t *spa = zio->io_spa; 264 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 265 avl_remove(&vq->vq_class[zio->io_priority].vqc_queued_tree, zio); 266 267 mutex_enter(&spa->spa_iokstat_lock); 268 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_queued, >, 0); 269 spa->spa_queue_stats[zio->io_priority].spa_queued--; 270 if (spa->spa_iokstat != NULL) 271 kstat_waitq_exit(spa->spa_iokstat->ks_data); 272 mutex_exit(&spa->spa_iokstat_lock); 273 } 274 275 static void 276 vdev_queue_pending_add(vdev_queue_t *vq, zio_t *zio) 277 { 278 spa_t *spa = zio->io_spa; 279 ASSERT(MUTEX_HELD(&vq->vq_lock)); 280 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 281 vq->vq_class[zio->io_priority].vqc_active++; 282 avl_add(&vq->vq_active_tree, zio); 283 284 mutex_enter(&spa->spa_iokstat_lock); 285 spa->spa_queue_stats[zio->io_priority].spa_active++; 286 if (spa->spa_iokstat != NULL) 287 kstat_runq_enter(spa->spa_iokstat->ks_data); 288 mutex_exit(&spa->spa_iokstat_lock); 289 } 290 291 static void 292 vdev_queue_pending_remove(vdev_queue_t *vq, zio_t *zio) 293 { 294 spa_t *spa = zio->io_spa; 295 ASSERT(MUTEX_HELD(&vq->vq_lock)); 296 ASSERT3U(zio->io_priority, <, ZIO_PRIORITY_NUM_QUEUEABLE); 297 vq->vq_class[zio->io_priority].vqc_active--; 298 avl_remove(&vq->vq_active_tree, zio); 299 300 mutex_enter(&spa->spa_iokstat_lock); 301 ASSERT3U(spa->spa_queue_stats[zio->io_priority].spa_active, >, 0); 302 spa->spa_queue_stats[zio->io_priority].spa_active--; 303 if (spa->spa_iokstat != NULL) { 304 kstat_io_t *ksio = spa->spa_iokstat->ks_data; 305 306 kstat_runq_exit(spa->spa_iokstat->ks_data); 307 if (zio->io_type == ZIO_TYPE_READ) { 308 ksio->reads++; 309 ksio->nread += zio->io_size; 310 } else if (zio->io_type == ZIO_TYPE_WRITE) { 311 ksio->writes++; 312 ksio->nwritten += zio->io_size; 313 } 314 } 315 mutex_exit(&spa->spa_iokstat_lock); 316 } 317 318 static void 319 vdev_queue_agg_io_done(zio_t *aio) 320 { 321 if (aio->io_type == ZIO_TYPE_READ) { 322 zio_t *pio; 323 while ((pio = zio_walk_parents(aio)) != NULL) { 324 bcopy((char *)aio->io_data + (pio->io_offset - 325 aio->io_offset), pio->io_data, pio->io_size); 326 } 327 } 328 329 zio_buf_free(aio->io_data, aio->io_size); 330 } 331 332 static int 333 vdev_queue_class_min_active(zio_priority_t p) 334 { 335 switch (p) { 336 case ZIO_PRIORITY_SYNC_READ: 337 return (zfs_vdev_sync_read_min_active); 338 case ZIO_PRIORITY_SYNC_WRITE: 339 return (zfs_vdev_sync_write_min_active); 340 case ZIO_PRIORITY_ASYNC_READ: 341 return (zfs_vdev_async_read_min_active); 342 case ZIO_PRIORITY_ASYNC_WRITE: 343 return (zfs_vdev_async_write_min_active); 344 case ZIO_PRIORITY_SCRUB: 345 return (zfs_vdev_scrub_min_active); 346 default: 347 panic("invalid priority %u", p); 348 return (0); 349 } 350 } 351 352 static int 353 vdev_queue_max_async_writes(uint64_t dirty) 354 { 355 int writes; 356 uint64_t min_bytes = zfs_dirty_data_max * 357 zfs_vdev_async_write_active_min_dirty_percent / 100; 358 uint64_t max_bytes = zfs_dirty_data_max * 359 zfs_vdev_async_write_active_max_dirty_percent / 100; 360 361 if (dirty < min_bytes) 362 return (zfs_vdev_async_write_min_active); 363 if (dirty > max_bytes) 364 return (zfs_vdev_async_write_max_active); 365 366 /* 367 * linear interpolation: 368 * slope = (max_writes - min_writes) / (max_bytes - min_bytes) 369 * move right by min_bytes 370 * move up by min_writes 371 */ 372 writes = (dirty - min_bytes) * 373 (zfs_vdev_async_write_max_active - 374 zfs_vdev_async_write_min_active) / 375 (max_bytes - min_bytes) + 376 zfs_vdev_async_write_min_active; 377 ASSERT3U(writes, >=, zfs_vdev_async_write_min_active); 378 ASSERT3U(writes, <=, zfs_vdev_async_write_max_active); 379 return (writes); 380 } 381 382 static int 383 vdev_queue_class_max_active(spa_t *spa, zio_priority_t p) 384 { 385 switch (p) { 386 case ZIO_PRIORITY_SYNC_READ: 387 return (zfs_vdev_sync_read_max_active); 388 case ZIO_PRIORITY_SYNC_WRITE: 389 return (zfs_vdev_sync_write_max_active); 390 case ZIO_PRIORITY_ASYNC_READ: 391 return (zfs_vdev_async_read_max_active); 392 case ZIO_PRIORITY_ASYNC_WRITE: 393 return (vdev_queue_max_async_writes( 394 spa->spa_dsl_pool->dp_dirty_total)); 395 case ZIO_PRIORITY_SCRUB: 396 return (zfs_vdev_scrub_max_active); 397 default: 398 panic("invalid priority %u", p); 399 return (0); 400 } 401 } 402 403 /* 404 * Return the i/o class to issue from, or ZIO_PRIORITY_MAX_QUEUEABLE if 405 * there is no eligible class. 406 */ 407 static zio_priority_t 408 vdev_queue_class_to_issue(vdev_queue_t *vq) 409 { 410 spa_t *spa = vq->vq_vdev->vdev_spa; 411 zio_priority_t p; 412 413 if (avl_numnodes(&vq->vq_active_tree) >= zfs_vdev_max_active) 414 return (ZIO_PRIORITY_NUM_QUEUEABLE); 415 416 /* find a queue that has not reached its minimum # outstanding i/os */ 417 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 418 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && 419 vq->vq_class[p].vqc_active < 420 vdev_queue_class_min_active(p)) 421 return (p); 422 } 423 424 /* 425 * If we haven't found a queue, look for one that hasn't reached its 426 * maximum # outstanding i/os. 427 */ 428 for (p = 0; p < ZIO_PRIORITY_NUM_QUEUEABLE; p++) { 429 if (avl_numnodes(&vq->vq_class[p].vqc_queued_tree) > 0 && 430 vq->vq_class[p].vqc_active < 431 vdev_queue_class_max_active(spa, p)) 432 return (p); 433 } 434 435 /* No eligible queued i/os */ 436 return (ZIO_PRIORITY_NUM_QUEUEABLE); 437 } 438 439 /* 440 * Compute the range spanned by two i/os, which is the endpoint of the last 441 * (lio->io_offset + lio->io_size) minus start of the first (fio->io_offset). 442 * Conveniently, the gap between fio and lio is given by -IO_SPAN(lio, fio); 443 * thus fio and lio are adjacent if and only if IO_SPAN(lio, fio) == 0. 444 */ 445 #define IO_SPAN(fio, lio) ((lio)->io_offset + (lio)->io_size - (fio)->io_offset) 446 #define IO_GAP(fio, lio) (-IO_SPAN(lio, fio)) 447 448 static zio_t * 449 vdev_queue_aggregate(vdev_queue_t *vq, zio_t *zio) 450 { 451 zio_t *first, *last, *aio, *dio, *mandatory, *nio; 452 uint64_t maxgap = 0; 453 uint64_t size; 454 boolean_t stretch = B_FALSE; 455 vdev_queue_class_t *vqc = &vq->vq_class[zio->io_priority]; 456 avl_tree_t *t = &vqc->vqc_queued_tree; 457 enum zio_flag flags = zio->io_flags & ZIO_FLAG_AGG_INHERIT; 458 459 if (zio->io_flags & ZIO_FLAG_DONT_AGGREGATE) 460 return (NULL); 461 462 /* 463 * The synchronous i/o queues are not sorted by LBA, so we can't 464 * find adjacent i/os. These i/os tend to not be tightly clustered, 465 * or too large to aggregate, so this has little impact on performance. 466 */ 467 if (zio->io_priority == ZIO_PRIORITY_SYNC_READ || 468 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) 469 return (NULL); 470 471 first = last = zio; 472 473 if (zio->io_type == ZIO_TYPE_READ) 474 maxgap = zfs_vdev_read_gap_limit; 475 476 /* 477 * We can aggregate I/Os that are sufficiently adjacent and of 478 * the same flavor, as expressed by the AGG_INHERIT flags. 479 * The latter requirement is necessary so that certain 480 * attributes of the I/O, such as whether it's a normal I/O 481 * or a scrub/resilver, can be preserved in the aggregate. 482 * We can include optional I/Os, but don't allow them 483 * to begin a range as they add no benefit in that situation. 484 */ 485 486 /* 487 * We keep track of the last non-optional I/O. 488 */ 489 mandatory = (first->io_flags & ZIO_FLAG_OPTIONAL) ? NULL : first; 490 491 /* 492 * Walk backwards through sufficiently contiguous I/Os 493 * recording the last non-option I/O. 494 */ 495 while ((dio = AVL_PREV(t, first)) != NULL && 496 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 497 IO_SPAN(dio, last) <= zfs_vdev_aggregation_limit && 498 IO_GAP(dio, first) <= maxgap) { 499 first = dio; 500 if (mandatory == NULL && !(first->io_flags & ZIO_FLAG_OPTIONAL)) 501 mandatory = first; 502 } 503 504 /* 505 * Skip any initial optional I/Os. 506 */ 507 while ((first->io_flags & ZIO_FLAG_OPTIONAL) && first != last) { 508 first = AVL_NEXT(t, first); 509 ASSERT(first != NULL); 510 } 511 512 /* 513 * Walk forward through sufficiently contiguous I/Os. 514 */ 515 while ((dio = AVL_NEXT(t, last)) != NULL && 516 (dio->io_flags & ZIO_FLAG_AGG_INHERIT) == flags && 517 IO_SPAN(first, dio) <= zfs_vdev_aggregation_limit && 518 IO_GAP(last, dio) <= maxgap) { 519 last = dio; 520 if (!(last->io_flags & ZIO_FLAG_OPTIONAL)) 521 mandatory = last; 522 } 523 524 /* 525 * Now that we've established the range of the I/O aggregation 526 * we must decide what to do with trailing optional I/Os. 527 * For reads, there's nothing to do. While we are unable to 528 * aggregate further, it's possible that a trailing optional 529 * I/O would allow the underlying device to aggregate with 530 * subsequent I/Os. We must therefore determine if the next 531 * non-optional I/O is close enough to make aggregation 532 * worthwhile. 533 */ 534 if (zio->io_type == ZIO_TYPE_WRITE && mandatory != NULL) { 535 zio_t *nio = last; 536 while ((dio = AVL_NEXT(t, nio)) != NULL && 537 IO_GAP(nio, dio) == 0 && 538 IO_GAP(mandatory, dio) <= zfs_vdev_write_gap_limit) { 539 nio = dio; 540 if (!(nio->io_flags & ZIO_FLAG_OPTIONAL)) { 541 stretch = B_TRUE; 542 break; 543 } 544 } 545 } 546 547 if (stretch) { 548 /* This may be a no-op. */ 549 dio = AVL_NEXT(t, last); 550 dio->io_flags &= ~ZIO_FLAG_OPTIONAL; 551 } else { 552 while (last != mandatory && last != first) { 553 ASSERT(last->io_flags & ZIO_FLAG_OPTIONAL); 554 last = AVL_PREV(t, last); 555 ASSERT(last != NULL); 556 } 557 } 558 559 if (first == last) 560 return (NULL); 561 562 size = IO_SPAN(first, last); 563 ASSERT3U(size, <=, zfs_vdev_aggregation_limit); 564 565 aio = zio_vdev_delegated_io(first->io_vd, first->io_offset, 566 zio_buf_alloc(size), size, first->io_type, zio->io_priority, 567 flags | ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE, 568 vdev_queue_agg_io_done, NULL); 569 aio->io_timestamp = first->io_timestamp; 570 571 nio = first; 572 do { 573 dio = nio; 574 nio = AVL_NEXT(t, dio); 575 ASSERT3U(dio->io_type, ==, aio->io_type); 576 577 if (dio->io_flags & ZIO_FLAG_NODATA) { 578 ASSERT3U(dio->io_type, ==, ZIO_TYPE_WRITE); 579 bzero((char *)aio->io_data + (dio->io_offset - 580 aio->io_offset), dio->io_size); 581 } else if (dio->io_type == ZIO_TYPE_WRITE) { 582 bcopy(dio->io_data, (char *)aio->io_data + 583 (dio->io_offset - aio->io_offset), 584 dio->io_size); 585 } 586 587 zio_add_child(dio, aio); 588 vdev_queue_io_remove(vq, dio); 589 zio_vdev_io_bypass(dio); 590 zio_execute(dio); 591 } while (dio != last); 592 593 return (aio); 594 } 595 596 static zio_t * 597 vdev_queue_io_to_issue(vdev_queue_t *vq) 598 { 599 zio_t *zio, *aio; 600 zio_priority_t p; 601 avl_index_t idx; 602 vdev_queue_class_t *vqc; 603 zio_t search; 604 605 again: 606 ASSERT(MUTEX_HELD(&vq->vq_lock)); 607 608 p = vdev_queue_class_to_issue(vq); 609 610 if (p == ZIO_PRIORITY_NUM_QUEUEABLE) { 611 /* No eligible queued i/os */ 612 return (NULL); 613 } 614 615 /* 616 * For LBA-ordered queues (async / scrub), issue the i/o which follows 617 * the most recently issued i/o in LBA (offset) order. 618 * 619 * For FIFO queues (sync), issue the i/o with the lowest timestamp. 620 */ 621 vqc = &vq->vq_class[p]; 622 search.io_timestamp = 0; 623 search.io_offset = vq->vq_last_offset + 1; 624 VERIFY3P(avl_find(&vqc->vqc_queued_tree, &search, &idx), ==, NULL); 625 zio = avl_nearest(&vqc->vqc_queued_tree, idx, AVL_AFTER); 626 if (zio == NULL) 627 zio = avl_first(&vqc->vqc_queued_tree); 628 ASSERT3U(zio->io_priority, ==, p); 629 630 aio = vdev_queue_aggregate(vq, zio); 631 if (aio != NULL) 632 zio = aio; 633 else 634 vdev_queue_io_remove(vq, zio); 635 636 /* 637 * If the I/O is or was optional and therefore has no data, we need to 638 * simply discard it. We need to drop the vdev queue's lock to avoid a 639 * deadlock that we could encounter since this I/O will complete 640 * immediately. 641 */ 642 if (zio->io_flags & ZIO_FLAG_NODATA) { 643 mutex_exit(&vq->vq_lock); 644 zio_vdev_io_bypass(zio); 645 zio_execute(zio); 646 mutex_enter(&vq->vq_lock); 647 goto again; 648 } 649 650 vdev_queue_pending_add(vq, zio); 651 vq->vq_last_offset = zio->io_offset; 652 653 return (zio); 654 } 655 656 zio_t * 657 vdev_queue_io(zio_t *zio) 658 { 659 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 660 zio_t *nio; 661 662 if (zio->io_flags & ZIO_FLAG_DONT_QUEUE) 663 return (zio); 664 665 /* 666 * Children i/os inherent their parent's priority, which might 667 * not match the child's i/o type. Fix it up here. 668 */ 669 if (zio->io_type == ZIO_TYPE_READ) { 670 if (zio->io_priority != ZIO_PRIORITY_SYNC_READ && 671 zio->io_priority != ZIO_PRIORITY_ASYNC_READ && 672 zio->io_priority != ZIO_PRIORITY_SCRUB) 673 zio->io_priority = ZIO_PRIORITY_ASYNC_READ; 674 } else { 675 ASSERT(zio->io_type == ZIO_TYPE_WRITE); 676 if (zio->io_priority != ZIO_PRIORITY_SYNC_WRITE && 677 zio->io_priority != ZIO_PRIORITY_ASYNC_WRITE) 678 zio->io_priority = ZIO_PRIORITY_ASYNC_WRITE; 679 } 680 681 zio->io_flags |= ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_QUEUE; 682 683 mutex_enter(&vq->vq_lock); 684 zio->io_timestamp = gethrtime(); 685 vdev_queue_io_add(vq, zio); 686 nio = vdev_queue_io_to_issue(vq); 687 mutex_exit(&vq->vq_lock); 688 689 if (nio == NULL) 690 return (NULL); 691 692 if (nio->io_done == vdev_queue_agg_io_done) { 693 zio_nowait(nio); 694 return (NULL); 695 } 696 697 return (nio); 698 } 699 700 void 701 vdev_queue_io_done(zio_t *zio) 702 { 703 vdev_queue_t *vq = &zio->io_vd->vdev_queue; 704 zio_t *nio; 705 706 if (zio_injection_enabled) 707 delay(SEC_TO_TICK(zio_handle_io_delay(zio))); 708 709 mutex_enter(&vq->vq_lock); 710 711 vdev_queue_pending_remove(vq, zio); 712 713 vq->vq_io_complete_ts = gethrtime(); 714 715 while ((nio = vdev_queue_io_to_issue(vq)) != NULL) { 716 mutex_exit(&vq->vq_lock); 717 if (nio->io_done == vdev_queue_agg_io_done) { 718 zio_nowait(nio); 719 } else { 720 zio_vdev_io_reissue(nio); 721 zio_execute(nio); 722 } 723 mutex_enter(&vq->vq_lock); 724 } 725 726 mutex_exit(&vq->vq_lock); 727 } 728