xref: /titanic_52/usr/src/uts/common/fs/zfs/vdev_label.c (revision 23294c7da48c2eb5222bccedbefb1e06cf5c4df3)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Virtual Device Labels
28  * ---------------------
29  *
30  * The vdev label serves several distinct purposes:
31  *
32  *	1. Uniquely identify this device as part of a ZFS pool and confirm its
33  *	   identity within the pool.
34  *
35  * 	2. Verify that all the devices given in a configuration are present
36  *         within the pool.
37  *
38  * 	3. Determine the uberblock for the pool.
39  *
40  * 	4. In case of an import operation, determine the configuration of the
41  *         toplevel vdev of which it is a part.
42  *
43  * 	5. If an import operation cannot find all the devices in the pool,
44  *         provide enough information to the administrator to determine which
45  *         devices are missing.
46  *
47  * It is important to note that while the kernel is responsible for writing the
48  * label, it only consumes the information in the first three cases.  The
49  * latter information is only consumed in userland when determining the
50  * configuration to import a pool.
51  *
52  *
53  * Label Organization
54  * ------------------
55  *
56  * Before describing the contents of the label, it's important to understand how
57  * the labels are written and updated with respect to the uberblock.
58  *
59  * When the pool configuration is altered, either because it was newly created
60  * or a device was added, we want to update all the labels such that we can deal
61  * with fatal failure at any point.  To this end, each disk has two labels which
62  * are updated before and after the uberblock is synced.  Assuming we have
63  * labels and an uberblock with the following transaction groups:
64  *
65  *              L1          UB          L2
66  *           +------+    +------+    +------+
67  *           |      |    |      |    |      |
68  *           | t10  |    | t10  |    | t10  |
69  *           |      |    |      |    |      |
70  *           +------+    +------+    +------+
71  *
72  * In this stable state, the labels and the uberblock were all updated within
73  * the same transaction group (10).  Each label is mirrored and checksummed, so
74  * that we can detect when we fail partway through writing the label.
75  *
76  * In order to identify which labels are valid, the labels are written in the
77  * following manner:
78  *
79  * 	1. For each vdev, update 'L1' to the new label
80  * 	2. Update the uberblock
81  * 	3. For each vdev, update 'L2' to the new label
82  *
83  * Given arbitrary failure, we can determine the correct label to use based on
84  * the transaction group.  If we fail after updating L1 but before updating the
85  * UB, we will notice that L1's transaction group is greater than the uberblock,
86  * so L2 must be valid.  If we fail after writing the uberblock but before
87  * writing L2, we will notice that L2's transaction group is less than L1, and
88  * therefore L1 is valid.
89  *
90  * Another added complexity is that not every label is updated when the config
91  * is synced.  If we add a single device, we do not want to have to re-write
92  * every label for every device in the pool.  This means that both L1 and L2 may
93  * be older than the pool uberblock, because the necessary information is stored
94  * on another vdev.
95  *
96  *
97  * On-disk Format
98  * --------------
99  *
100  * The vdev label consists of two distinct parts, and is wrapped within the
101  * vdev_label_t structure.  The label includes 8k of padding to permit legacy
102  * VTOC disk labels, but is otherwise ignored.
103  *
104  * The first half of the label is a packed nvlist which contains pool wide
105  * properties, per-vdev properties, and configuration information.  It is
106  * described in more detail below.
107  *
108  * The latter half of the label consists of a redundant array of uberblocks.
109  * These uberblocks are updated whenever a transaction group is committed,
110  * or when the configuration is updated.  When a pool is loaded, we scan each
111  * vdev for the 'best' uberblock.
112  *
113  *
114  * Configuration Information
115  * -------------------------
116  *
117  * The nvlist describing the pool and vdev contains the following elements:
118  *
119  * 	version		ZFS on-disk version
120  * 	name		Pool name
121  * 	state		Pool state
122  * 	txg		Transaction group in which this label was written
123  * 	pool_guid	Unique identifier for this pool
124  * 	vdev_tree	An nvlist describing vdev tree.
125  *
126  * Each leaf device label also contains the following:
127  *
128  * 	top_guid	Unique ID for top-level vdev in which this is contained
129  * 	guid		Unique ID for the leaf vdev
130  *
131  * The 'vs' configuration follows the format described in 'spa_config.c'.
132  */
133 
134 #include <sys/zfs_context.h>
135 #include <sys/spa.h>
136 #include <sys/spa_impl.h>
137 #include <sys/dmu.h>
138 #include <sys/zap.h>
139 #include <sys/vdev.h>
140 #include <sys/vdev_impl.h>
141 #include <sys/uberblock_impl.h>
142 #include <sys/metaslab.h>
143 #include <sys/zio.h>
144 #include <sys/fs/zfs.h>
145 
146 /*
147  * Basic routines to read and write from a vdev label.
148  * Used throughout the rest of this file.
149  */
150 uint64_t
151 vdev_label_offset(uint64_t psize, int l, uint64_t offset)
152 {
153 	ASSERT(offset < sizeof (vdev_label_t));
154 	ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0);
155 
156 	return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ?
157 	    0 : psize - VDEV_LABELS * sizeof (vdev_label_t)));
158 }
159 
160 /*
161  * Returns back the vdev label associated with the passed in offset.
162  */
163 int
164 vdev_label_number(uint64_t psize, uint64_t offset)
165 {
166 	int l;
167 
168 	if (offset >= psize - VDEV_LABEL_END_SIZE) {
169 		offset -= psize - VDEV_LABEL_END_SIZE;
170 		offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t);
171 	}
172 	l = offset / sizeof (vdev_label_t);
173 	return (l < VDEV_LABELS ? l : -1);
174 }
175 
176 static void
177 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
178 	uint64_t size, zio_done_func_t *done, void *private, int flags)
179 {
180 	ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) ==
181 	    SCL_STATE_ALL);
182 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
183 
184 	zio_nowait(zio_read_phys(zio, vd,
185 	    vdev_label_offset(vd->vdev_psize, l, offset),
186 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
187 	    ZIO_PRIORITY_SYNC_READ, flags, B_TRUE));
188 }
189 
190 static void
191 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset,
192 	uint64_t size, zio_done_func_t *done, void *private, int flags)
193 {
194 	ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL ||
195 	    (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
196 	    (SCL_CONFIG | SCL_STATE) &&
197 	    dsl_pool_sync_context(spa_get_dsl(zio->io_spa))));
198 	ASSERT(flags & ZIO_FLAG_CONFIG_WRITER);
199 
200 	zio_nowait(zio_write_phys(zio, vd,
201 	    vdev_label_offset(vd->vdev_psize, l, offset),
202 	    size, buf, ZIO_CHECKSUM_LABEL, done, private,
203 	    ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE));
204 }
205 
206 /*
207  * Generate the nvlist representing this vdev's config.
208  */
209 nvlist_t *
210 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats,
211     boolean_t isspare, boolean_t isl2cache)
212 {
213 	nvlist_t *nv = NULL;
214 
215 	VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
216 
217 	VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE,
218 	    vd->vdev_ops->vdev_op_type) == 0);
219 	if (!isspare && !isl2cache)
220 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id)
221 		    == 0);
222 	VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0);
223 
224 	if (vd->vdev_path != NULL)
225 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH,
226 		    vd->vdev_path) == 0);
227 
228 	if (vd->vdev_devid != NULL)
229 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID,
230 		    vd->vdev_devid) == 0);
231 
232 	if (vd->vdev_physpath != NULL)
233 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH,
234 		    vd->vdev_physpath) == 0);
235 
236 	if (vd->vdev_fru != NULL)
237 		VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU,
238 		    vd->vdev_fru) == 0);
239 
240 	if (vd->vdev_nparity != 0) {
241 		ASSERT(strcmp(vd->vdev_ops->vdev_op_type,
242 		    VDEV_TYPE_RAIDZ) == 0);
243 
244 		/*
245 		 * Make sure someone hasn't managed to sneak a fancy new vdev
246 		 * into a crufty old storage pool.
247 		 */
248 		ASSERT(vd->vdev_nparity == 1 ||
249 		    (vd->vdev_nparity <= 2 &&
250 		    spa_version(spa) >= SPA_VERSION_RAIDZ2) ||
251 		    (vd->vdev_nparity <= 3 &&
252 		    spa_version(spa) >= SPA_VERSION_RAIDZ3));
253 
254 		/*
255 		 * Note that we'll add the nparity tag even on storage pools
256 		 * that only support a single parity device -- older software
257 		 * will just ignore it.
258 		 */
259 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY,
260 		    vd->vdev_nparity) == 0);
261 	}
262 
263 	if (vd->vdev_wholedisk != -1ULL)
264 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
265 		    vd->vdev_wholedisk) == 0);
266 
267 	if (vd->vdev_not_present)
268 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0);
269 
270 	if (vd->vdev_isspare)
271 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0);
272 
273 	if (!isspare && !isl2cache && vd == vd->vdev_top) {
274 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
275 		    vd->vdev_ms_array) == 0);
276 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
277 		    vd->vdev_ms_shift) == 0);
278 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT,
279 		    vd->vdev_ashift) == 0);
280 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE,
281 		    vd->vdev_asize) == 0);
282 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG,
283 		    vd->vdev_islog) == 0);
284 	}
285 
286 	if (vd->vdev_dtl_smo.smo_object != 0)
287 		VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL,
288 		    vd->vdev_dtl_smo.smo_object) == 0);
289 
290 	if (getstats) {
291 		vdev_stat_t vs;
292 		vdev_get_stats(vd, &vs);
293 		VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_STATS,
294 		    (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0);
295 	}
296 
297 	if (!vd->vdev_ops->vdev_op_leaf) {
298 		nvlist_t **child;
299 		int c;
300 
301 		child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *),
302 		    KM_SLEEP);
303 
304 		for (c = 0; c < vd->vdev_children; c++)
305 			child[c] = vdev_config_generate(spa, vd->vdev_child[c],
306 			    getstats, isspare, isl2cache);
307 
308 		VERIFY(nvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
309 		    child, vd->vdev_children) == 0);
310 
311 		for (c = 0; c < vd->vdev_children; c++)
312 			nvlist_free(child[c]);
313 
314 		kmem_free(child, vd->vdev_children * sizeof (nvlist_t *));
315 
316 	} else {
317 		if (vd->vdev_offline && !vd->vdev_tmpoffline)
318 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE,
319 			    B_TRUE) == 0);
320 		if (vd->vdev_faulted)
321 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED,
322 			    B_TRUE) == 0);
323 		if (vd->vdev_degraded)
324 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED,
325 			    B_TRUE) == 0);
326 		if (vd->vdev_removed)
327 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED,
328 			    B_TRUE) == 0);
329 		if (vd->vdev_unspare)
330 			VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE,
331 			    B_TRUE) == 0);
332 	}
333 
334 	return (nv);
335 }
336 
337 nvlist_t *
338 vdev_label_read_config(vdev_t *vd)
339 {
340 	spa_t *spa = vd->vdev_spa;
341 	nvlist_t *config = NULL;
342 	vdev_phys_t *vp;
343 	zio_t *zio;
344 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
345 	    ZIO_FLAG_SPECULATIVE;
346 
347 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
348 
349 	if (!vdev_readable(vd))
350 		return (NULL);
351 
352 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
353 
354 retry:
355 	for (int l = 0; l < VDEV_LABELS; l++) {
356 
357 		zio = zio_root(spa, NULL, NULL, flags);
358 
359 		vdev_label_read(zio, vd, l, vp,
360 		    offsetof(vdev_label_t, vl_vdev_phys),
361 		    sizeof (vdev_phys_t), NULL, NULL, flags);
362 
363 		if (zio_wait(zio) == 0 &&
364 		    nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist),
365 		    &config, 0) == 0)
366 			break;
367 
368 		if (config != NULL) {
369 			nvlist_free(config);
370 			config = NULL;
371 		}
372 	}
373 
374 	if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) {
375 		flags |= ZIO_FLAG_TRYHARD;
376 		goto retry;
377 	}
378 
379 	zio_buf_free(vp, sizeof (vdev_phys_t));
380 
381 	return (config);
382 }
383 
384 /*
385  * Determine if a device is in use.  The 'spare_guid' parameter will be filled
386  * in with the device guid if this spare is active elsewhere on the system.
387  */
388 static boolean_t
389 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason,
390     uint64_t *spare_guid, uint64_t *l2cache_guid)
391 {
392 	spa_t *spa = vd->vdev_spa;
393 	uint64_t state, pool_guid, device_guid, txg, spare_pool;
394 	uint64_t vdtxg = 0;
395 	nvlist_t *label;
396 
397 	if (spare_guid)
398 		*spare_guid = 0ULL;
399 	if (l2cache_guid)
400 		*l2cache_guid = 0ULL;
401 
402 	/*
403 	 * Read the label, if any, and perform some basic sanity checks.
404 	 */
405 	if ((label = vdev_label_read_config(vd)) == NULL)
406 		return (B_FALSE);
407 
408 	(void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
409 	    &vdtxg);
410 
411 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
412 	    &state) != 0 ||
413 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
414 	    &device_guid) != 0) {
415 		nvlist_free(label);
416 		return (B_FALSE);
417 	}
418 
419 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
420 	    (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
421 	    &pool_guid) != 0 ||
422 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
423 	    &txg) != 0)) {
424 		nvlist_free(label);
425 		return (B_FALSE);
426 	}
427 
428 	nvlist_free(label);
429 
430 	/*
431 	 * Check to see if this device indeed belongs to the pool it claims to
432 	 * be a part of.  The only way this is allowed is if the device is a hot
433 	 * spare (which we check for later on).
434 	 */
435 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
436 	    !spa_guid_exists(pool_guid, device_guid) &&
437 	    !spa_spare_exists(device_guid, NULL, NULL) &&
438 	    !spa_l2cache_exists(device_guid, NULL))
439 		return (B_FALSE);
440 
441 	/*
442 	 * If the transaction group is zero, then this an initialized (but
443 	 * unused) label.  This is only an error if the create transaction
444 	 * on-disk is the same as the one we're using now, in which case the
445 	 * user has attempted to add the same vdev multiple times in the same
446 	 * transaction.
447 	 */
448 	if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE &&
449 	    txg == 0 && vdtxg == crtxg)
450 		return (B_TRUE);
451 
452 	/*
453 	 * Check to see if this is a spare device.  We do an explicit check for
454 	 * spa_has_spare() here because it may be on our pending list of spares
455 	 * to add.  We also check if it is an l2cache device.
456 	 */
457 	if (spa_spare_exists(device_guid, &spare_pool, NULL) ||
458 	    spa_has_spare(spa, device_guid)) {
459 		if (spare_guid)
460 			*spare_guid = device_guid;
461 
462 		switch (reason) {
463 		case VDEV_LABEL_CREATE:
464 		case VDEV_LABEL_L2CACHE:
465 			return (B_TRUE);
466 
467 		case VDEV_LABEL_REPLACE:
468 			return (!spa_has_spare(spa, device_guid) ||
469 			    spare_pool != 0ULL);
470 
471 		case VDEV_LABEL_SPARE:
472 			return (spa_has_spare(spa, device_guid));
473 		}
474 	}
475 
476 	/*
477 	 * Check to see if this is an l2cache device.
478 	 */
479 	if (spa_l2cache_exists(device_guid, NULL))
480 		return (B_TRUE);
481 
482 	/*
483 	 * If the device is marked ACTIVE, then this device is in use by another
484 	 * pool on the system.
485 	 */
486 	return (state == POOL_STATE_ACTIVE);
487 }
488 
489 /*
490  * Initialize a vdev label.  We check to make sure each leaf device is not in
491  * use, and writable.  We put down an initial label which we will later
492  * overwrite with a complete label.  Note that it's important to do this
493  * sequentially, not in parallel, so that we catch cases of multiple use of the
494  * same leaf vdev in the vdev we're creating -- e.g. mirroring a disk with
495  * itself.
496  */
497 int
498 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason)
499 {
500 	spa_t *spa = vd->vdev_spa;
501 	nvlist_t *label;
502 	vdev_phys_t *vp;
503 	char *pad2;
504 	uberblock_t *ub;
505 	zio_t *zio;
506 	char *buf;
507 	size_t buflen;
508 	int error;
509 	uint64_t spare_guid, l2cache_guid;
510 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
511 
512 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
513 
514 	for (int c = 0; c < vd->vdev_children; c++)
515 		if ((error = vdev_label_init(vd->vdev_child[c],
516 		    crtxg, reason)) != 0)
517 			return (error);
518 
519 	if (!vd->vdev_ops->vdev_op_leaf)
520 		return (0);
521 
522 	/*
523 	 * Dead vdevs cannot be initialized.
524 	 */
525 	if (vdev_is_dead(vd))
526 		return (EIO);
527 
528 	/*
529 	 * Determine if the vdev is in use.
530 	 */
531 	if (reason != VDEV_LABEL_REMOVE &&
532 	    vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid))
533 		return (EBUSY);
534 
535 	/*
536 	 * If this is a request to add or replace a spare or l2cache device
537 	 * that is in use elsewhere on the system, then we must update the
538 	 * guid (which was initialized to a random value) to reflect the
539 	 * actual GUID (which is shared between multiple pools).
540 	 */
541 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE &&
542 	    spare_guid != 0ULL) {
543 		uint64_t guid_delta = spare_guid - vd->vdev_guid;
544 
545 		vd->vdev_guid += guid_delta;
546 
547 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
548 			pvd->vdev_guid_sum += guid_delta;
549 
550 		/*
551 		 * If this is a replacement, then we want to fallthrough to the
552 		 * rest of the code.  If we're adding a spare, then it's already
553 		 * labeled appropriately and we can just return.
554 		 */
555 		if (reason == VDEV_LABEL_SPARE)
556 			return (0);
557 		ASSERT(reason == VDEV_LABEL_REPLACE);
558 	}
559 
560 	if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE &&
561 	    l2cache_guid != 0ULL) {
562 		uint64_t guid_delta = l2cache_guid - vd->vdev_guid;
563 
564 		vd->vdev_guid += guid_delta;
565 
566 		for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
567 			pvd->vdev_guid_sum += guid_delta;
568 
569 		/*
570 		 * If this is a replacement, then we want to fallthrough to the
571 		 * rest of the code.  If we're adding an l2cache, then it's
572 		 * already labeled appropriately and we can just return.
573 		 */
574 		if (reason == VDEV_LABEL_L2CACHE)
575 			return (0);
576 		ASSERT(reason == VDEV_LABEL_REPLACE);
577 	}
578 
579 	/*
580 	 * Initialize its label.
581 	 */
582 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
583 	bzero(vp, sizeof (vdev_phys_t));
584 
585 	/*
586 	 * Generate a label describing the pool and our top-level vdev.
587 	 * We mark it as being from txg 0 to indicate that it's not
588 	 * really part of an active pool just yet.  The labels will
589 	 * be written again with a meaningful txg by spa_sync().
590 	 */
591 	if (reason == VDEV_LABEL_SPARE ||
592 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) {
593 		/*
594 		 * For inactive hot spares, we generate a special label that
595 		 * identifies as a mutually shared hot spare.  We write the
596 		 * label if we are adding a hot spare, or if we are removing an
597 		 * active hot spare (in which case we want to revert the
598 		 * labels).
599 		 */
600 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
601 
602 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
603 		    spa_version(spa)) == 0);
604 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
605 		    POOL_STATE_SPARE) == 0);
606 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
607 		    vd->vdev_guid) == 0);
608 	} else if (reason == VDEV_LABEL_L2CACHE ||
609 	    (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) {
610 		/*
611 		 * For level 2 ARC devices, add a special label.
612 		 */
613 		VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0);
614 
615 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION,
616 		    spa_version(spa)) == 0);
617 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE,
618 		    POOL_STATE_L2CACHE) == 0);
619 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID,
620 		    vd->vdev_guid) == 0);
621 	} else {
622 		label = spa_config_generate(spa, vd, 0ULL, B_FALSE);
623 
624 		/*
625 		 * Add our creation time.  This allows us to detect multiple
626 		 * vdev uses as described above, and automatically expires if we
627 		 * fail.
628 		 */
629 		VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG,
630 		    crtxg) == 0);
631 	}
632 
633 	buf = vp->vp_nvlist;
634 	buflen = sizeof (vp->vp_nvlist);
635 
636 	error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP);
637 	if (error != 0) {
638 		nvlist_free(label);
639 		zio_buf_free(vp, sizeof (vdev_phys_t));
640 		/* EFAULT means nvlist_pack ran out of room */
641 		return (error == EFAULT ? ENAMETOOLONG : EINVAL);
642 	}
643 
644 	/*
645 	 * Initialize uberblock template.
646 	 */
647 	ub = zio_buf_alloc(VDEV_UBERBLOCK_RING);
648 	bzero(ub, VDEV_UBERBLOCK_RING);
649 	*ub = spa->spa_uberblock;
650 	ub->ub_txg = 0;
651 
652 	/* Initialize the 2nd padding area. */
653 	pad2 = zio_buf_alloc(VDEV_PAD_SIZE);
654 	bzero(pad2, VDEV_PAD_SIZE);
655 
656 	/*
657 	 * Write everything in parallel.
658 	 */
659 retry:
660 	zio = zio_root(spa, NULL, NULL, flags);
661 
662 	for (int l = 0; l < VDEV_LABELS; l++) {
663 
664 		vdev_label_write(zio, vd, l, vp,
665 		    offsetof(vdev_label_t, vl_vdev_phys),
666 		    sizeof (vdev_phys_t), NULL, NULL, flags);
667 
668 		/*
669 		 * Skip the 1st padding area.
670 		 * Zero out the 2nd padding area where it might have
671 		 * left over data from previous filesystem format.
672 		 */
673 		vdev_label_write(zio, vd, l, pad2,
674 		    offsetof(vdev_label_t, vl_pad2),
675 		    VDEV_PAD_SIZE, NULL, NULL, flags);
676 
677 		vdev_label_write(zio, vd, l, ub,
678 		    offsetof(vdev_label_t, vl_uberblock),
679 		    VDEV_UBERBLOCK_RING, NULL, NULL, flags);
680 	}
681 
682 	error = zio_wait(zio);
683 
684 	if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) {
685 		flags |= ZIO_FLAG_TRYHARD;
686 		goto retry;
687 	}
688 
689 	nvlist_free(label);
690 	zio_buf_free(pad2, VDEV_PAD_SIZE);
691 	zio_buf_free(ub, VDEV_UBERBLOCK_RING);
692 	zio_buf_free(vp, sizeof (vdev_phys_t));
693 
694 	/*
695 	 * If this vdev hasn't been previously identified as a spare, then we
696 	 * mark it as such only if a) we are labeling it as a spare, or b) it
697 	 * exists as a spare elsewhere in the system.  Do the same for
698 	 * level 2 ARC devices.
699 	 */
700 	if (error == 0 && !vd->vdev_isspare &&
701 	    (reason == VDEV_LABEL_SPARE ||
702 	    spa_spare_exists(vd->vdev_guid, NULL, NULL)))
703 		spa_spare_add(vd);
704 
705 	if (error == 0 && !vd->vdev_isl2cache &&
706 	    (reason == VDEV_LABEL_L2CACHE ||
707 	    spa_l2cache_exists(vd->vdev_guid, NULL)))
708 		spa_l2cache_add(vd);
709 
710 	return (error);
711 }
712 
713 /*
714  * ==========================================================================
715  * uberblock load/sync
716  * ==========================================================================
717  */
718 
719 /*
720  * For use by zdb and debugging purposes only
721  */
722 uint64_t ub_max_txg = UINT64_MAX;
723 
724 /*
725  * Consider the following situation: txg is safely synced to disk.  We've
726  * written the first uberblock for txg + 1, and then we lose power.  When we
727  * come back up, we fail to see the uberblock for txg + 1 because, say,
728  * it was on a mirrored device and the replica to which we wrote txg + 1
729  * is now offline.  If we then make some changes and sync txg + 1, and then
730  * the missing replica comes back, then for a new seconds we'll have two
731  * conflicting uberblocks on disk with the same txg.  The solution is simple:
732  * among uberblocks with equal txg, choose the one with the latest timestamp.
733  */
734 static int
735 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2)
736 {
737 	if (ub1->ub_txg < ub2->ub_txg)
738 		return (-1);
739 	if (ub1->ub_txg > ub2->ub_txg)
740 		return (1);
741 
742 	if (ub1->ub_timestamp < ub2->ub_timestamp)
743 		return (-1);
744 	if (ub1->ub_timestamp > ub2->ub_timestamp)
745 		return (1);
746 
747 	return (0);
748 }
749 
750 static void
751 vdev_uberblock_load_done(zio_t *zio)
752 {
753 	zio_t *rio = zio->io_private;
754 	uberblock_t *ub = zio->io_data;
755 	uberblock_t *ubbest = rio->io_private;
756 
757 	ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(zio->io_vd));
758 
759 	if (zio->io_error == 0 && uberblock_verify(ub) == 0) {
760 		mutex_enter(&rio->io_lock);
761 		if (ub->ub_txg <= ub_max_txg &&
762 		    vdev_uberblock_compare(ub, ubbest) > 0)
763 			*ubbest = *ub;
764 		mutex_exit(&rio->io_lock);
765 	}
766 
767 	zio_buf_free(zio->io_data, zio->io_size);
768 }
769 
770 void
771 vdev_uberblock_load(zio_t *zio, vdev_t *vd, uberblock_t *ubbest)
772 {
773 	spa_t *spa = vd->vdev_spa;
774 	vdev_t *rvd = spa->spa_root_vdev;
775 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL |
776 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD;
777 
778 	if (vd == rvd) {
779 		ASSERT(zio == NULL);
780 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
781 		zio = zio_root(spa, NULL, ubbest, flags);
782 		bzero(ubbest, sizeof (uberblock_t));
783 	}
784 
785 	ASSERT(zio != NULL);
786 
787 	for (int c = 0; c < vd->vdev_children; c++)
788 		vdev_uberblock_load(zio, vd->vdev_child[c], ubbest);
789 
790 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
791 		for (int l = 0; l < VDEV_LABELS; l++) {
792 			for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) {
793 				vdev_label_read(zio, vd, l,
794 				    zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)),
795 				    VDEV_UBERBLOCK_OFFSET(vd, n),
796 				    VDEV_UBERBLOCK_SIZE(vd),
797 				    vdev_uberblock_load_done, zio, flags);
798 			}
799 		}
800 	}
801 
802 	if (vd == rvd) {
803 		(void) zio_wait(zio);
804 		spa_config_exit(spa, SCL_ALL, FTAG);
805 	}
806 }
807 
808 /*
809  * On success, increment root zio's count of good writes.
810  * We only get credit for writes to known-visible vdevs; see spa_vdev_add().
811  */
812 static void
813 vdev_uberblock_sync_done(zio_t *zio)
814 {
815 	uint64_t *good_writes = zio->io_private;
816 
817 	if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0)
818 		atomic_add_64(good_writes, 1);
819 }
820 
821 /*
822  * Write the uberblock to all labels of all leaves of the specified vdev.
823  */
824 static void
825 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags)
826 {
827 	uberblock_t *ubbuf;
828 	int n;
829 
830 	for (int c = 0; c < vd->vdev_children; c++)
831 		vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags);
832 
833 	if (!vd->vdev_ops->vdev_op_leaf)
834 		return;
835 
836 	if (!vdev_writeable(vd))
837 		return;
838 
839 	n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1);
840 
841 	ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd));
842 	bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
843 	*ubbuf = *ub;
844 
845 	for (int l = 0; l < VDEV_LABELS; l++)
846 		vdev_label_write(zio, vd, l, ubbuf,
847 		    VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd),
848 		    vdev_uberblock_sync_done, zio->io_private,
849 		    flags | ZIO_FLAG_DONT_PROPAGATE);
850 
851 	zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd));
852 }
853 
854 int
855 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags)
856 {
857 	spa_t *spa = svd[0]->vdev_spa;
858 	zio_t *zio;
859 	uint64_t good_writes = 0;
860 
861 	zio = zio_root(spa, NULL, &good_writes, flags);
862 
863 	for (int v = 0; v < svdcount; v++)
864 		vdev_uberblock_sync(zio, ub, svd[v], flags);
865 
866 	(void) zio_wait(zio);
867 
868 	/*
869 	 * Flush the uberblocks to disk.  This ensures that the odd labels
870 	 * are no longer needed (because the new uberblocks and the even
871 	 * labels are safely on disk), so it is safe to overwrite them.
872 	 */
873 	zio = zio_root(spa, NULL, NULL, flags);
874 
875 	for (int v = 0; v < svdcount; v++)
876 		zio_flush(zio, svd[v]);
877 
878 	(void) zio_wait(zio);
879 
880 	return (good_writes >= 1 ? 0 : EIO);
881 }
882 
883 /*
884  * On success, increment the count of good writes for our top-level vdev.
885  */
886 static void
887 vdev_label_sync_done(zio_t *zio)
888 {
889 	uint64_t *good_writes = zio->io_private;
890 
891 	if (zio->io_error == 0)
892 		atomic_add_64(good_writes, 1);
893 }
894 
895 /*
896  * If there weren't enough good writes, indicate failure to the parent.
897  */
898 static void
899 vdev_label_sync_top_done(zio_t *zio)
900 {
901 	uint64_t *good_writes = zio->io_private;
902 
903 	if (*good_writes == 0)
904 		zio->io_error = EIO;
905 
906 	kmem_free(good_writes, sizeof (uint64_t));
907 }
908 
909 /*
910  * We ignore errors for log and cache devices, simply free the private data.
911  */
912 static void
913 vdev_label_sync_ignore_done(zio_t *zio)
914 {
915 	kmem_free(zio->io_private, sizeof (uint64_t));
916 }
917 
918 /*
919  * Write all even or odd labels to all leaves of the specified vdev.
920  */
921 static void
922 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags)
923 {
924 	nvlist_t *label;
925 	vdev_phys_t *vp;
926 	char *buf;
927 	size_t buflen;
928 
929 	for (int c = 0; c < vd->vdev_children; c++)
930 		vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags);
931 
932 	if (!vd->vdev_ops->vdev_op_leaf)
933 		return;
934 
935 	if (!vdev_writeable(vd))
936 		return;
937 
938 	/*
939 	 * Generate a label describing the top-level config to which we belong.
940 	 */
941 	label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE);
942 
943 	vp = zio_buf_alloc(sizeof (vdev_phys_t));
944 	bzero(vp, sizeof (vdev_phys_t));
945 
946 	buf = vp->vp_nvlist;
947 	buflen = sizeof (vp->vp_nvlist);
948 
949 	if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) {
950 		for (; l < VDEV_LABELS; l += 2) {
951 			vdev_label_write(zio, vd, l, vp,
952 			    offsetof(vdev_label_t, vl_vdev_phys),
953 			    sizeof (vdev_phys_t),
954 			    vdev_label_sync_done, zio->io_private,
955 			    flags | ZIO_FLAG_DONT_PROPAGATE);
956 		}
957 	}
958 
959 	zio_buf_free(vp, sizeof (vdev_phys_t));
960 	nvlist_free(label);
961 }
962 
963 int
964 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags)
965 {
966 	list_t *dl = &spa->spa_config_dirty_list;
967 	vdev_t *vd;
968 	zio_t *zio;
969 	int error;
970 
971 	/*
972 	 * Write the new labels to disk.
973 	 */
974 	zio = zio_root(spa, NULL, NULL, flags);
975 
976 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) {
977 		uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t),
978 		    KM_SLEEP);
979 		zio_t *vio = zio_null(zio, spa, NULL,
980 		    (vd->vdev_islog || vd->vdev_aux != NULL) ?
981 		    vdev_label_sync_ignore_done : vdev_label_sync_top_done,
982 		    good_writes, flags);
983 		vdev_label_sync(vio, vd, l, txg, flags);
984 		zio_nowait(vio);
985 	}
986 
987 	error = zio_wait(zio);
988 
989 	/*
990 	 * Flush the new labels to disk.
991 	 */
992 	zio = zio_root(spa, NULL, NULL, flags);
993 
994 	for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd))
995 		zio_flush(zio, vd);
996 
997 	(void) zio_wait(zio);
998 
999 	return (error);
1000 }
1001 
1002 /*
1003  * Sync the uberblock and any changes to the vdev configuration.
1004  *
1005  * The order of operations is carefully crafted to ensure that
1006  * if the system panics or loses power at any time, the state on disk
1007  * is still transactionally consistent.  The in-line comments below
1008  * describe the failure semantics at each stage.
1009  *
1010  * Moreover, vdev_config_sync() is designed to be idempotent: if it fails
1011  * at any time, you can just call it again, and it will resume its work.
1012  */
1013 int
1014 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard)
1015 {
1016 	spa_t *spa = svd[0]->vdev_spa;
1017 	uberblock_t *ub = &spa->spa_uberblock;
1018 	vdev_t *vd;
1019 	zio_t *zio;
1020 	int error;
1021 	int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL;
1022 
1023 	/*
1024 	 * Normally, we don't want to try too hard to write every label and
1025 	 * uberblock.  If there is a flaky disk, we don't want the rest of the
1026 	 * sync process to block while we retry.  But if we can't write a
1027 	 * single label out, we should retry with ZIO_FLAG_TRYHARD before
1028 	 * bailing out and declaring the pool faulted.
1029 	 */
1030 	if (tryhard)
1031 		flags |= ZIO_FLAG_TRYHARD;
1032 
1033 	ASSERT(ub->ub_txg <= txg);
1034 
1035 	/*
1036 	 * If this isn't a resync due to I/O errors,
1037 	 * and nothing changed in this transaction group,
1038 	 * and the vdev configuration hasn't changed,
1039 	 * then there's nothing to do.
1040 	 */
1041 	if (ub->ub_txg < txg &&
1042 	    uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE &&
1043 	    list_is_empty(&spa->spa_config_dirty_list))
1044 		return (0);
1045 
1046 	if (txg > spa_freeze_txg(spa))
1047 		return (0);
1048 
1049 	ASSERT(txg <= spa->spa_final_txg);
1050 
1051 	/*
1052 	 * Flush the write cache of every disk that's been written to
1053 	 * in this transaction group.  This ensures that all blocks
1054 	 * written in this txg will be committed to stable storage
1055 	 * before any uberblock that references them.
1056 	 */
1057 	zio = zio_root(spa, NULL, NULL, flags);
1058 
1059 	for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd;
1060 	    vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)))
1061 		zio_flush(zio, vd);
1062 
1063 	(void) zio_wait(zio);
1064 
1065 	/*
1066 	 * Sync out the even labels (L0, L2) for every dirty vdev.  If the
1067 	 * system dies in the middle of this process, that's OK: all of the
1068 	 * even labels that made it to disk will be newer than any uberblock,
1069 	 * and will therefore be considered invalid.  The odd labels (L1, L3),
1070 	 * which have not yet been touched, will still be valid.  We flush
1071 	 * the new labels to disk to ensure that all even-label updates
1072 	 * are committed to stable storage before the uberblock update.
1073 	 */
1074 	if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0)
1075 		return (error);
1076 
1077 	/*
1078 	 * Sync the uberblocks to all vdevs in svd[].
1079 	 * If the system dies in the middle of this step, there are two cases
1080 	 * to consider, and the on-disk state is consistent either way:
1081 	 *
1082 	 * (1)	If none of the new uberblocks made it to disk, then the
1083 	 *	previous uberblock will be the newest, and the odd labels
1084 	 *	(which had not yet been touched) will be valid with respect
1085 	 *	to that uberblock.
1086 	 *
1087 	 * (2)	If one or more new uberblocks made it to disk, then they
1088 	 *	will be the newest, and the even labels (which had all
1089 	 *	been successfully committed) will be valid with respect
1090 	 *	to the new uberblocks.
1091 	 */
1092 	if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0)
1093 		return (error);
1094 
1095 	/*
1096 	 * Sync out odd labels for every dirty vdev.  If the system dies
1097 	 * in the middle of this process, the even labels and the new
1098 	 * uberblocks will suffice to open the pool.  The next time
1099 	 * the pool is opened, the first thing we'll do -- before any
1100 	 * user data is modified -- is mark every vdev dirty so that
1101 	 * all labels will be brought up to date.  We flush the new labels
1102 	 * to disk to ensure that all odd-label updates are committed to
1103 	 * stable storage before the next transaction group begins.
1104 	 */
1105 	return (vdev_label_sync_list(spa, 1, txg, flags));
1106 }
1107