1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #include <sys/zfs_context.h> 27 #include <sys/spa.h> 28 #include <sys/refcount.h> 29 #include <sys/vdev_disk.h> 30 #include <sys/vdev_impl.h> 31 #include <sys/fs/zfs.h> 32 #include <sys/zio.h> 33 #include <sys/sunldi.h> 34 #include <sys/fm/fs/zfs.h> 35 36 /* 37 * Virtual device vector for disks. 38 */ 39 40 extern ldi_ident_t zfs_li; 41 42 typedef struct vdev_disk_buf { 43 buf_t vdb_buf; 44 zio_t *vdb_io; 45 } vdev_disk_buf_t; 46 47 static int 48 vdev_disk_open(vdev_t *vd, uint64_t *psize, uint64_t *ashift) 49 { 50 spa_t *spa = vd->vdev_spa; 51 vdev_disk_t *dvd; 52 struct dk_minfo dkm; 53 int error; 54 dev_t dev; 55 int otyp; 56 57 /* 58 * We must have a pathname, and it must be absolute. 59 */ 60 if (vd->vdev_path == NULL || vd->vdev_path[0] != '/') { 61 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 62 return (EINVAL); 63 } 64 65 dvd = vd->vdev_tsd = kmem_zalloc(sizeof (vdev_disk_t), KM_SLEEP); 66 67 /* 68 * When opening a disk device, we want to preserve the user's original 69 * intent. We always want to open the device by the path the user gave 70 * us, even if it is one of multiple paths to the save device. But we 71 * also want to be able to survive disks being removed/recabled. 72 * Therefore the sequence of opening devices is: 73 * 74 * 1. Try opening the device by path. For legacy pools without the 75 * 'whole_disk' property, attempt to fix the path by appending 's0'. 76 * 77 * 2. If the devid of the device matches the stored value, return 78 * success. 79 * 80 * 3. Otherwise, the device may have moved. Try opening the device 81 * by the devid instead. 82 * 83 * If the vdev is part of the root pool, we avoid opening it by path. 84 * We do this because there is no /dev path available early in boot, 85 * and if we try to open the device by path at a later point, we can 86 * deadlock when devfsadm attempts to open the underlying backing store 87 * file. 88 */ 89 if (vd->vdev_devid != NULL) { 90 if (ddi_devid_str_decode(vd->vdev_devid, &dvd->vd_devid, 91 &dvd->vd_minor) != 0) { 92 vd->vdev_stat.vs_aux = VDEV_AUX_BAD_LABEL; 93 return (EINVAL); 94 } 95 } 96 97 error = EINVAL; /* presume failure */ 98 99 if (vd->vdev_path != NULL && !spa_is_root(spa)) { 100 ddi_devid_t devid; 101 102 if (vd->vdev_wholedisk == -1ULL) { 103 size_t len = strlen(vd->vdev_path) + 3; 104 char *buf = kmem_alloc(len, KM_SLEEP); 105 ldi_handle_t lh; 106 107 (void) snprintf(buf, len, "%ss0", vd->vdev_path); 108 109 if (ldi_open_by_name(buf, spa_mode(spa), kcred, 110 &lh, zfs_li) == 0) { 111 spa_strfree(vd->vdev_path); 112 vd->vdev_path = buf; 113 vd->vdev_wholedisk = 1ULL; 114 (void) ldi_close(lh, spa_mode(spa), kcred); 115 } else { 116 kmem_free(buf, len); 117 } 118 } 119 120 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), kcred, 121 &dvd->vd_lh, zfs_li); 122 123 /* 124 * Compare the devid to the stored value. 125 */ 126 if (error == 0 && vd->vdev_devid != NULL && 127 ldi_get_devid(dvd->vd_lh, &devid) == 0) { 128 if (ddi_devid_compare(devid, dvd->vd_devid) != 0) { 129 error = EINVAL; 130 (void) ldi_close(dvd->vd_lh, spa_mode(spa), 131 kcred); 132 dvd->vd_lh = NULL; 133 } 134 ddi_devid_free(devid); 135 } 136 137 /* 138 * If we succeeded in opening the device, but 'vdev_wholedisk' 139 * is not yet set, then this must be a slice. 140 */ 141 if (error == 0 && vd->vdev_wholedisk == -1ULL) 142 vd->vdev_wholedisk = 0; 143 } 144 145 /* 146 * If we were unable to open by path, or the devid check fails, open by 147 * devid instead. 148 */ 149 if (error != 0 && vd->vdev_devid != NULL) 150 error = ldi_open_by_devid(dvd->vd_devid, dvd->vd_minor, 151 spa_mode(spa), kcred, &dvd->vd_lh, zfs_li); 152 153 /* 154 * If all else fails, then try opening by physical path (if available) 155 * or the logical path (if we failed due to the devid check). While not 156 * as reliable as the devid, this will give us something, and the higher 157 * level vdev validation will prevent us from opening the wrong device. 158 */ 159 if (error) { 160 if (vd->vdev_physpath != NULL && 161 (dev = ddi_pathname_to_dev_t(vd->vdev_physpath)) != NODEV) 162 error = ldi_open_by_dev(&dev, OTYP_BLK, spa_mode(spa), 163 kcred, &dvd->vd_lh, zfs_li); 164 165 /* 166 * Note that we don't support the legacy auto-wholedisk support 167 * as above. This hasn't been used in a very long time and we 168 * don't need to propagate its oddities to this edge condition. 169 */ 170 if (error && vd->vdev_path != NULL && !spa_is_root(spa)) 171 error = ldi_open_by_name(vd->vdev_path, spa_mode(spa), 172 kcred, &dvd->vd_lh, zfs_li); 173 } 174 175 if (error) { 176 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 177 return (error); 178 } 179 180 /* 181 * Once a device is opened, verify that the physical device path (if 182 * available) is up to date. 183 */ 184 if (ldi_get_dev(dvd->vd_lh, &dev) == 0 && 185 ldi_get_otyp(dvd->vd_lh, &otyp) == 0) { 186 char *physpath, *minorname; 187 188 physpath = kmem_alloc(MAXPATHLEN, KM_SLEEP); 189 minorname = NULL; 190 if (ddi_dev_pathname(dev, otyp, physpath) == 0 && 191 ldi_get_minor_name(dvd->vd_lh, &minorname) == 0 && 192 (vd->vdev_physpath == NULL || 193 strcmp(vd->vdev_physpath, physpath) != 0)) { 194 if (vd->vdev_physpath) 195 spa_strfree(vd->vdev_physpath); 196 (void) strlcat(physpath, ":", MAXPATHLEN); 197 (void) strlcat(physpath, minorname, MAXPATHLEN); 198 vd->vdev_physpath = spa_strdup(physpath); 199 } 200 if (minorname) 201 kmem_free(minorname, strlen(minorname) + 1); 202 kmem_free(physpath, MAXPATHLEN); 203 } 204 205 /* 206 * Determine the actual size of the device. 207 */ 208 if (ldi_get_size(dvd->vd_lh, psize) != 0) { 209 vd->vdev_stat.vs_aux = VDEV_AUX_OPEN_FAILED; 210 return (EINVAL); 211 } 212 213 /* 214 * If we own the whole disk, try to enable disk write caching. 215 * We ignore errors because it's OK if we can't do it. 216 */ 217 if (vd->vdev_wholedisk == 1) { 218 int wce = 1; 219 (void) ldi_ioctl(dvd->vd_lh, DKIOCSETWCE, (intptr_t)&wce, 220 FKIOCTL, kcred, NULL); 221 } 222 223 /* 224 * Determine the device's minimum transfer size. 225 * If the ioctl isn't supported, assume DEV_BSIZE. 226 */ 227 if (ldi_ioctl(dvd->vd_lh, DKIOCGMEDIAINFO, (intptr_t)&dkm, 228 FKIOCTL, kcred, NULL) != 0) 229 dkm.dki_lbsize = DEV_BSIZE; 230 231 *ashift = highbit(MAX(dkm.dki_lbsize, SPA_MINBLOCKSIZE)) - 1; 232 233 /* 234 * Clear the nowritecache bit, so that on a vdev_reopen() we will 235 * try again. 236 */ 237 vd->vdev_nowritecache = B_FALSE; 238 239 return (0); 240 } 241 242 static void 243 vdev_disk_close(vdev_t *vd) 244 { 245 vdev_disk_t *dvd = vd->vdev_tsd; 246 247 if (dvd == NULL) 248 return; 249 250 if (dvd->vd_minor != NULL) 251 ddi_devid_str_free(dvd->vd_minor); 252 253 if (dvd->vd_devid != NULL) 254 ddi_devid_free(dvd->vd_devid); 255 256 if (dvd->vd_lh != NULL) 257 (void) ldi_close(dvd->vd_lh, spa_mode(vd->vdev_spa), kcred); 258 259 kmem_free(dvd, sizeof (vdev_disk_t)); 260 vd->vdev_tsd = NULL; 261 } 262 263 int 264 vdev_disk_physio(ldi_handle_t vd_lh, caddr_t data, size_t size, 265 uint64_t offset, int flags) 266 { 267 buf_t *bp; 268 int error = 0; 269 270 if (vd_lh == NULL) 271 return (EINVAL); 272 273 ASSERT(flags & B_READ || flags & B_WRITE); 274 275 bp = getrbuf(KM_SLEEP); 276 bp->b_flags = flags | B_BUSY | B_NOCACHE | B_FAILFAST; 277 bp->b_bcount = size; 278 bp->b_un.b_addr = (void *)data; 279 bp->b_lblkno = lbtodb(offset); 280 bp->b_bufsize = size; 281 282 error = ldi_strategy(vd_lh, bp); 283 ASSERT(error == 0); 284 if ((error = biowait(bp)) == 0 && bp->b_resid != 0) 285 error = EIO; 286 freerbuf(bp); 287 288 return (error); 289 } 290 291 static void 292 vdev_disk_io_intr(buf_t *bp) 293 { 294 vdev_disk_buf_t *vdb = (vdev_disk_buf_t *)bp; 295 zio_t *zio = vdb->vdb_io; 296 297 /* 298 * The rest of the zio stack only deals with EIO, ECKSUM, and ENXIO. 299 * Rather than teach the rest of the stack about other error 300 * possibilities (EFAULT, etc), we normalize the error value here. 301 */ 302 zio->io_error = (geterror(bp) != 0 ? EIO : 0); 303 304 if (zio->io_error == 0 && bp->b_resid != 0) 305 zio->io_error = EIO; 306 307 kmem_free(vdb, sizeof (vdev_disk_buf_t)); 308 309 zio_interrupt(zio); 310 } 311 312 static void 313 vdev_disk_ioctl_free(zio_t *zio) 314 { 315 kmem_free(zio->io_vsd, sizeof (struct dk_callback)); 316 } 317 318 static void 319 vdev_disk_ioctl_done(void *zio_arg, int error) 320 { 321 zio_t *zio = zio_arg; 322 323 zio->io_error = error; 324 325 zio_interrupt(zio); 326 } 327 328 static int 329 vdev_disk_io_start(zio_t *zio) 330 { 331 vdev_t *vd = zio->io_vd; 332 vdev_disk_t *dvd = vd->vdev_tsd; 333 vdev_disk_buf_t *vdb; 334 struct dk_callback *dkc; 335 buf_t *bp; 336 int error; 337 338 if (zio->io_type == ZIO_TYPE_IOCTL) { 339 /* XXPOLICY */ 340 if (!vdev_readable(vd)) { 341 zio->io_error = ENXIO; 342 return (ZIO_PIPELINE_CONTINUE); 343 } 344 345 switch (zio->io_cmd) { 346 347 case DKIOCFLUSHWRITECACHE: 348 349 if (zfs_nocacheflush) 350 break; 351 352 if (vd->vdev_nowritecache) { 353 zio->io_error = ENOTSUP; 354 break; 355 } 356 357 zio->io_vsd = dkc = kmem_alloc(sizeof (*dkc), KM_SLEEP); 358 zio->io_vsd_free = vdev_disk_ioctl_free; 359 360 dkc->dkc_callback = vdev_disk_ioctl_done; 361 dkc->dkc_flag = FLUSH_VOLATILE; 362 dkc->dkc_cookie = zio; 363 364 error = ldi_ioctl(dvd->vd_lh, zio->io_cmd, 365 (uintptr_t)dkc, FKIOCTL, kcred, NULL); 366 367 if (error == 0) { 368 /* 369 * The ioctl will be done asychronously, 370 * and will call vdev_disk_ioctl_done() 371 * upon completion. 372 */ 373 return (ZIO_PIPELINE_STOP); 374 } 375 376 if (error == ENOTSUP || error == ENOTTY) { 377 /* 378 * If we get ENOTSUP or ENOTTY, we know that 379 * no future attempts will ever succeed. 380 * In this case we set a persistent bit so 381 * that we don't bother with the ioctl in the 382 * future. 383 */ 384 vd->vdev_nowritecache = B_TRUE; 385 } 386 zio->io_error = error; 387 388 break; 389 390 default: 391 zio->io_error = ENOTSUP; 392 } 393 394 return (ZIO_PIPELINE_CONTINUE); 395 } 396 397 vdb = kmem_alloc(sizeof (vdev_disk_buf_t), KM_SLEEP); 398 399 vdb->vdb_io = zio; 400 bp = &vdb->vdb_buf; 401 402 bioinit(bp); 403 bp->b_flags = B_BUSY | B_NOCACHE | 404 (zio->io_type == ZIO_TYPE_READ ? B_READ : B_WRITE); 405 if (!(zio->io_flags & (ZIO_FLAG_IO_RETRY | ZIO_FLAG_TRYHARD))) 406 bp->b_flags |= B_FAILFAST; 407 bp->b_bcount = zio->io_size; 408 bp->b_un.b_addr = zio->io_data; 409 bp->b_lblkno = lbtodb(zio->io_offset); 410 bp->b_bufsize = zio->io_size; 411 bp->b_iodone = (int (*)())vdev_disk_io_intr; 412 413 /* ldi_strategy() will return non-zero only on programming errors */ 414 VERIFY(ldi_strategy(dvd->vd_lh, bp) == 0); 415 416 return (ZIO_PIPELINE_STOP); 417 } 418 419 static void 420 vdev_disk_io_done(zio_t *zio) 421 { 422 vdev_t *vd = zio->io_vd; 423 424 /* 425 * If the device returned EIO, then attempt a DKIOCSTATE ioctl to see if 426 * the device has been removed. If this is the case, then we trigger an 427 * asynchronous removal of the device. Otherwise, probe the device and 428 * make sure it's still accessible. 429 */ 430 if (zio->io_error == EIO) { 431 vdev_disk_t *dvd = vd->vdev_tsd; 432 int state = DKIO_NONE; 433 434 if (ldi_ioctl(dvd->vd_lh, DKIOCSTATE, (intptr_t)&state, 435 FKIOCTL, kcred, NULL) == 0 && state != DKIO_INSERTED) { 436 vd->vdev_remove_wanted = B_TRUE; 437 spa_async_request(zio->io_spa, SPA_ASYNC_REMOVE); 438 } 439 } 440 } 441 442 vdev_ops_t vdev_disk_ops = { 443 vdev_disk_open, 444 vdev_disk_close, 445 vdev_default_asize, 446 vdev_disk_io_start, 447 vdev_disk_io_done, 448 NULL, 449 VDEV_TYPE_DISK, /* name of this vdev type */ 450 B_TRUE /* leaf vdev */ 451 }; 452 453 /* 454 * Given the root disk device devid or pathname, read the label from 455 * the device, and construct a configuration nvlist. 456 */ 457 int 458 vdev_disk_read_rootlabel(char *devpath, char *devid, nvlist_t **config) 459 { 460 ldi_handle_t vd_lh; 461 vdev_label_t *label; 462 uint64_t s, size; 463 int l; 464 ddi_devid_t tmpdevid; 465 int error = -1; 466 char *minor_name; 467 468 /* 469 * Read the device label and build the nvlist. 470 */ 471 if (devid != NULL && ddi_devid_str_decode(devid, &tmpdevid, 472 &minor_name) == 0) { 473 error = ldi_open_by_devid(tmpdevid, minor_name, 474 FREAD, kcred, &vd_lh, zfs_li); 475 ddi_devid_free(tmpdevid); 476 ddi_devid_str_free(minor_name); 477 } 478 479 if (error && (error = ldi_open_by_name(devpath, FREAD, kcred, &vd_lh, 480 zfs_li))) 481 return (error); 482 483 if (ldi_get_size(vd_lh, &s)) { 484 (void) ldi_close(vd_lh, FREAD, kcred); 485 return (EIO); 486 } 487 488 size = P2ALIGN_TYPED(s, sizeof (vdev_label_t), uint64_t); 489 label = kmem_alloc(sizeof (vdev_label_t), KM_SLEEP); 490 491 *config = NULL; 492 for (l = 0; l < VDEV_LABELS; l++) { 493 uint64_t offset, state, txg = 0; 494 495 /* read vdev label */ 496 offset = vdev_label_offset(size, l, 0); 497 if (vdev_disk_physio(vd_lh, (caddr_t)label, 498 VDEV_SKIP_SIZE + VDEV_PHYS_SIZE, offset, B_READ) != 0) 499 continue; 500 501 if (nvlist_unpack(label->vl_vdev_phys.vp_nvlist, 502 sizeof (label->vl_vdev_phys.vp_nvlist), config, 0) != 0) { 503 *config = NULL; 504 continue; 505 } 506 507 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_STATE, 508 &state) != 0 || state >= POOL_STATE_DESTROYED) { 509 nvlist_free(*config); 510 *config = NULL; 511 continue; 512 } 513 514 if (nvlist_lookup_uint64(*config, ZPOOL_CONFIG_POOL_TXG, 515 &txg) != 0 || txg == 0) { 516 nvlist_free(*config); 517 *config = NULL; 518 continue; 519 } 520 521 break; 522 } 523 524 kmem_free(label, sizeof (vdev_label_t)); 525 (void) ldi_close(vd_lh, FREAD, kcred); 526 if (*config == NULL) 527 error = EIDRM; 528 529 return (error); 530 } 531