xref: /titanic_52/usr/src/uts/common/fs/zfs/vdev_cache.c (revision 922d2c76afbee21520ffa2088c4e60dcb80d3945)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa.h>
30 #include <sys/vdev_impl.h>
31 #include <sys/zio.h>
32 #include <sys/kstat.h>
33 
34 /*
35  * Virtual device read-ahead caching.
36  *
37  * This file implements a simple LRU read-ahead cache.  When the DMU reads
38  * a given block, it will often want other, nearby blocks soon thereafter.
39  * We take advantage of this by reading a larger disk region and caching
40  * the result.  In the best case, this can turn 128 back-to-back 512-byte
41  * reads into a single 64k read followed by 127 cache hits; this reduces
42  * latency dramatically.  In the worst case, it can turn an isolated 512-byte
43  * read into a 64k read, which doesn't affect latency all that much but is
44  * terribly wasteful of bandwidth.  A more intelligent version of the cache
45  * could keep track of access patterns and not do read-ahead unless it sees
46  * at least two temporally close I/Os to the same region.  Currently, only
47  * metadata I/O is inflated.  A futher enhancement could take advantage of
48  * more semantic information about the I/O.  And it could use something
49  * faster than an AVL tree; that was chosen solely for convenience.
50  *
51  * There are five cache operations: allocate, fill, read, write, evict.
52  *
53  * (1) Allocate.  This reserves a cache entry for the specified region.
54  *     We separate the allocate and fill operations so that multiple threads
55  *     don't generate I/O for the same cache miss.
56  *
57  * (2) Fill.  When the I/O for a cache miss completes, the fill routine
58  *     places the data in the previously allocated cache entry.
59  *
60  * (3) Read.  Read data from the cache.
61  *
62  * (4) Write.  Update cache contents after write completion.
63  *
64  * (5) Evict.  When allocating a new entry, we evict the oldest (LRU) entry
65  *     if the total cache size exceeds zfs_vdev_cache_size.
66  */
67 
68 /*
69  * These tunables are for performance analysis.
70  */
71 /*
72  * All i/os smaller than zfs_vdev_cache_max will be turned into
73  * 1<<zfs_vdev_cache_bshift byte reads by the vdev_cache (aka software
74  * track buffer).  At most zfs_vdev_cache_size bytes will be kept in each
75  * vdev's vdev_cache.
76  */
77 int zfs_vdev_cache_max = 1<<14;			/* 16KB */
78 int zfs_vdev_cache_size = 10ULL << 20;		/* 10MB */
79 int zfs_vdev_cache_bshift = 16;
80 
81 #define	VCBS (1 << zfs_vdev_cache_bshift)	/* 64KB */
82 
83 kstat_t	*vdc_ksp = NULL;
84 
85 typedef struct vdc_stats {
86 	kstat_named_t vdc_stat_delegations;
87 	kstat_named_t vdc_stat_hits;
88 	kstat_named_t vdc_stat_misses;
89 } vdc_stats_t;
90 
91 static vdc_stats_t vdc_stats = {
92 	{ "delegations",	KSTAT_DATA_UINT64 },
93 	{ "hits",		KSTAT_DATA_UINT64 },
94 	{ "misses",		KSTAT_DATA_UINT64 }
95 };
96 
97 #define	VDCSTAT_BUMP(stat)	atomic_add_64(&vdc_stats.stat.value.ui64, 1);
98 
99 static int
100 vdev_cache_offset_compare(const void *a1, const void *a2)
101 {
102 	const vdev_cache_entry_t *ve1 = a1;
103 	const vdev_cache_entry_t *ve2 = a2;
104 
105 	if (ve1->ve_offset < ve2->ve_offset)
106 		return (-1);
107 	if (ve1->ve_offset > ve2->ve_offset)
108 		return (1);
109 	return (0);
110 }
111 
112 static int
113 vdev_cache_lastused_compare(const void *a1, const void *a2)
114 {
115 	const vdev_cache_entry_t *ve1 = a1;
116 	const vdev_cache_entry_t *ve2 = a2;
117 
118 	if (ve1->ve_lastused < ve2->ve_lastused)
119 		return (-1);
120 	if (ve1->ve_lastused > ve2->ve_lastused)
121 		return (1);
122 
123 	/*
124 	 * Among equally old entries, sort by offset to ensure uniqueness.
125 	 */
126 	return (vdev_cache_offset_compare(a1, a2));
127 }
128 
129 /*
130  * Evict the specified entry from the cache.
131  */
132 static void
133 vdev_cache_evict(vdev_cache_t *vc, vdev_cache_entry_t *ve)
134 {
135 	ASSERT(MUTEX_HELD(&vc->vc_lock));
136 	ASSERT(ve->ve_fill_io == NULL);
137 	ASSERT(ve->ve_data != NULL);
138 
139 	dprintf("evicting %p, off %llx, LRU %llu, age %lu, hits %u, stale %u\n",
140 	    vc, ve->ve_offset, ve->ve_lastused, lbolt - ve->ve_lastused,
141 	    ve->ve_hits, ve->ve_missed_update);
142 
143 	avl_remove(&vc->vc_lastused_tree, ve);
144 	avl_remove(&vc->vc_offset_tree, ve);
145 	zio_buf_free(ve->ve_data, VCBS);
146 	kmem_free(ve, sizeof (vdev_cache_entry_t));
147 }
148 
149 /*
150  * Allocate an entry in the cache.  At the point we don't have the data,
151  * we're just creating a placeholder so that multiple threads don't all
152  * go off and read the same blocks.
153  */
154 static vdev_cache_entry_t *
155 vdev_cache_allocate(zio_t *zio)
156 {
157 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
158 	uint64_t offset = P2ALIGN(zio->io_offset, VCBS);
159 	vdev_cache_entry_t *ve;
160 
161 	ASSERT(MUTEX_HELD(&vc->vc_lock));
162 
163 	if (zfs_vdev_cache_size == 0)
164 		return (NULL);
165 
166 	/*
167 	 * If adding a new entry would exceed the cache size,
168 	 * evict the oldest entry (LRU).
169 	 */
170 	if ((avl_numnodes(&vc->vc_lastused_tree) << zfs_vdev_cache_bshift) >
171 	    zfs_vdev_cache_size) {
172 		ve = avl_first(&vc->vc_lastused_tree);
173 		if (ve->ve_fill_io != NULL) {
174 			dprintf("can't evict in %p, still filling\n", vc);
175 			return (NULL);
176 		}
177 		ASSERT(ve->ve_hits != 0);
178 		vdev_cache_evict(vc, ve);
179 	}
180 
181 	ve = kmem_zalloc(sizeof (vdev_cache_entry_t), KM_SLEEP);
182 	ve->ve_offset = offset;
183 	ve->ve_lastused = lbolt;
184 	ve->ve_data = zio_buf_alloc(VCBS);
185 
186 	avl_add(&vc->vc_offset_tree, ve);
187 	avl_add(&vc->vc_lastused_tree, ve);
188 
189 	return (ve);
190 }
191 
192 static void
193 vdev_cache_hit(vdev_cache_t *vc, vdev_cache_entry_t *ve, zio_t *zio)
194 {
195 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
196 
197 	ASSERT(MUTEX_HELD(&vc->vc_lock));
198 	ASSERT(ve->ve_fill_io == NULL);
199 
200 	if (ve->ve_lastused != lbolt) {
201 		avl_remove(&vc->vc_lastused_tree, ve);
202 		ve->ve_lastused = lbolt;
203 		avl_add(&vc->vc_lastused_tree, ve);
204 	}
205 
206 	ve->ve_hits++;
207 	bcopy(ve->ve_data + cache_phase, zio->io_data, zio->io_size);
208 }
209 
210 /*
211  * Fill a previously allocated cache entry with data.
212  */
213 static void
214 vdev_cache_fill(zio_t *zio)
215 {
216 	vdev_t *vd = zio->io_vd;
217 	vdev_cache_t *vc = &vd->vdev_cache;
218 	vdev_cache_entry_t *ve = zio->io_private;
219 	zio_t *dio;
220 
221 	ASSERT(zio->io_size == VCBS);
222 
223 	/*
224 	 * Add data to the cache.
225 	 */
226 	mutex_enter(&vc->vc_lock);
227 
228 	ASSERT(ve->ve_fill_io == zio);
229 	ASSERT(ve->ve_offset == zio->io_offset);
230 	ASSERT(ve->ve_data == zio->io_data);
231 
232 	ve->ve_fill_io = NULL;
233 
234 	/*
235 	 * Even if this cache line was invalidated by a missed write update,
236 	 * any reads that were queued up before the missed update are still
237 	 * valid, so we can satisfy them from this line before we evict it.
238 	 */
239 	for (dio = zio->io_delegate_list; dio; dio = dio->io_delegate_next)
240 		vdev_cache_hit(vc, ve, dio);
241 
242 	if (zio->io_error || ve->ve_missed_update)
243 		vdev_cache_evict(vc, ve);
244 
245 	mutex_exit(&vc->vc_lock);
246 
247 	while ((dio = zio->io_delegate_list) != NULL) {
248 		zio->io_delegate_list = dio->io_delegate_next;
249 		dio->io_delegate_next = NULL;
250 		dio->io_error = zio->io_error;
251 		zio_execute(dio);
252 	}
253 }
254 
255 /*
256  * Read data from the cache.  Returns 0 on cache hit, errno on a miss.
257  */
258 int
259 vdev_cache_read(zio_t *zio)
260 {
261 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
262 	vdev_cache_entry_t *ve, ve_search;
263 	uint64_t cache_offset = P2ALIGN(zio->io_offset, VCBS);
264 	uint64_t cache_phase = P2PHASE(zio->io_offset, VCBS);
265 	zio_t *fio;
266 
267 	ASSERT(zio->io_type == ZIO_TYPE_READ);
268 
269 	if (zio->io_flags & ZIO_FLAG_DONT_CACHE)
270 		return (EINVAL);
271 
272 	if (zio->io_size > zfs_vdev_cache_max)
273 		return (EOVERFLOW);
274 
275 	/*
276 	 * If the I/O straddles two or more cache blocks, don't cache it.
277 	 */
278 	if (P2CROSS(zio->io_offset, zio->io_offset + zio->io_size - 1, VCBS))
279 		return (EXDEV);
280 
281 	ASSERT(cache_phase + zio->io_size <= VCBS);
282 
283 	mutex_enter(&vc->vc_lock);
284 
285 	ve_search.ve_offset = cache_offset;
286 	ve = avl_find(&vc->vc_offset_tree, &ve_search, NULL);
287 
288 	if (ve != NULL) {
289 		if (ve->ve_missed_update) {
290 			mutex_exit(&vc->vc_lock);
291 			return (ESTALE);
292 		}
293 
294 		if ((fio = ve->ve_fill_io) != NULL) {
295 			zio->io_delegate_next = fio->io_delegate_list;
296 			fio->io_delegate_list = zio;
297 			zio_vdev_io_bypass(zio);
298 			mutex_exit(&vc->vc_lock);
299 			VDCSTAT_BUMP(vdc_stat_delegations);
300 			return (0);
301 		}
302 
303 		vdev_cache_hit(vc, ve, zio);
304 		zio_vdev_io_bypass(zio);
305 
306 		mutex_exit(&vc->vc_lock);
307 		zio_execute(zio);
308 		VDCSTAT_BUMP(vdc_stat_hits);
309 		return (0);
310 	}
311 
312 	ve = vdev_cache_allocate(zio);
313 
314 	if (ve == NULL) {
315 		mutex_exit(&vc->vc_lock);
316 		return (ENOMEM);
317 	}
318 
319 	fio = zio_vdev_child_io(zio, NULL, zio->io_vd, cache_offset,
320 	    ve->ve_data, VCBS, ZIO_TYPE_READ, ZIO_PRIORITY_CACHE_FILL,
321 	    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_PROPAGATE |
322 	    ZIO_FLAG_DONT_RETRY | ZIO_FLAG_NOBOOKMARK,
323 	    vdev_cache_fill, ve);
324 
325 	ve->ve_fill_io = fio;
326 	fio->io_delegate_list = zio;
327 	zio_vdev_io_bypass(zio);
328 
329 	mutex_exit(&vc->vc_lock);
330 	zio_nowait(fio);
331 	VDCSTAT_BUMP(vdc_stat_misses);
332 
333 	return (0);
334 }
335 
336 /*
337  * Update cache contents upon write completion.
338  */
339 void
340 vdev_cache_write(zio_t *zio)
341 {
342 	vdev_cache_t *vc = &zio->io_vd->vdev_cache;
343 	vdev_cache_entry_t *ve, ve_search;
344 	uint64_t io_start = zio->io_offset;
345 	uint64_t io_end = io_start + zio->io_size;
346 	uint64_t min_offset = P2ALIGN(io_start, VCBS);
347 	uint64_t max_offset = P2ROUNDUP(io_end, VCBS);
348 	avl_index_t where;
349 
350 	ASSERT(zio->io_type == ZIO_TYPE_WRITE);
351 
352 	mutex_enter(&vc->vc_lock);
353 
354 	ve_search.ve_offset = min_offset;
355 	ve = avl_find(&vc->vc_offset_tree, &ve_search, &where);
356 
357 	if (ve == NULL)
358 		ve = avl_nearest(&vc->vc_offset_tree, where, AVL_AFTER);
359 
360 	while (ve != NULL && ve->ve_offset < max_offset) {
361 		uint64_t start = MAX(ve->ve_offset, io_start);
362 		uint64_t end = MIN(ve->ve_offset + VCBS, io_end);
363 
364 		if (ve->ve_fill_io != NULL) {
365 			ve->ve_missed_update = 1;
366 		} else {
367 			bcopy((char *)zio->io_data + start - io_start,
368 			    ve->ve_data + start - ve->ve_offset, end - start);
369 		}
370 		ve = AVL_NEXT(&vc->vc_offset_tree, ve);
371 	}
372 	mutex_exit(&vc->vc_lock);
373 }
374 
375 void
376 vdev_cache_purge(vdev_t *vd)
377 {
378 	vdev_cache_t *vc = &vd->vdev_cache;
379 	vdev_cache_entry_t *ve;
380 
381 	mutex_enter(&vc->vc_lock);
382 	while ((ve = avl_first(&vc->vc_offset_tree)) != NULL)
383 		vdev_cache_evict(vc, ve);
384 	mutex_exit(&vc->vc_lock);
385 }
386 
387 void
388 vdev_cache_init(vdev_t *vd)
389 {
390 	vdev_cache_t *vc = &vd->vdev_cache;
391 
392 	mutex_init(&vc->vc_lock, NULL, MUTEX_DEFAULT, NULL);
393 
394 	avl_create(&vc->vc_offset_tree, vdev_cache_offset_compare,
395 	    sizeof (vdev_cache_entry_t),
396 	    offsetof(struct vdev_cache_entry, ve_offset_node));
397 
398 	avl_create(&vc->vc_lastused_tree, vdev_cache_lastused_compare,
399 	    sizeof (vdev_cache_entry_t),
400 	    offsetof(struct vdev_cache_entry, ve_lastused_node));
401 }
402 
403 void
404 vdev_cache_fini(vdev_t *vd)
405 {
406 	vdev_cache_t *vc = &vd->vdev_cache;
407 
408 	vdev_cache_purge(vd);
409 
410 	avl_destroy(&vc->vc_offset_tree);
411 	avl_destroy(&vc->vc_lastused_tree);
412 
413 	mutex_destroy(&vc->vc_lock);
414 }
415 
416 void
417 vdev_cache_stat_init(void)
418 {
419 	vdc_ksp = kstat_create("zfs", 0, "vdev_cache_stats", "misc",
420 	    KSTAT_TYPE_NAMED, sizeof (vdc_stats) / sizeof (kstat_named_t),
421 	    KSTAT_FLAG_VIRTUAL);
422 	if (vdc_ksp != NULL) {
423 		vdc_ksp->ks_data = &vdc_stats;
424 		kstat_install(vdc_ksp);
425 	}
426 }
427 
428 void
429 vdev_cache_stat_fini(void)
430 {
431 	if (vdc_ksp != NULL) {
432 		kstat_delete(vdc_ksp);
433 		vdc_ksp = NULL;
434 	}
435 }
436