1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* maximum scrub/resilver I/O queue */ 61 int zfs_scrub_limit = 70; 62 63 /* 64 * Given a vdev type, return the appropriate ops vector. 65 */ 66 static vdev_ops_t * 67 vdev_getops(const char *type) 68 { 69 vdev_ops_t *ops, **opspp; 70 71 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 72 if (strcmp(ops->vdev_op_type, type) == 0) 73 break; 74 75 return (ops); 76 } 77 78 /* 79 * Default asize function: return the MAX of psize with the asize of 80 * all children. This is what's used by anything other than RAID-Z. 81 */ 82 uint64_t 83 vdev_default_asize(vdev_t *vd, uint64_t psize) 84 { 85 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 86 uint64_t csize; 87 uint64_t c; 88 89 for (c = 0; c < vd->vdev_children; c++) { 90 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 91 asize = MAX(asize, csize); 92 } 93 94 return (asize); 95 } 96 97 /* 98 * Get the replaceable or attachable device size. 99 * If the parent is a mirror or raidz, the replaceable size is the minimum 100 * psize of all its children. For the rest, just return our own psize. 101 * 102 * e.g. 103 * psize rsize 104 * root - - 105 * mirror/raidz - - 106 * disk1 20g 20g 107 * disk2 40g 20g 108 * disk3 80g 80g 109 */ 110 uint64_t 111 vdev_get_rsize(vdev_t *vd) 112 { 113 vdev_t *pvd, *cvd; 114 uint64_t c, rsize; 115 116 pvd = vd->vdev_parent; 117 118 /* 119 * If our parent is NULL or the root, just return our own psize. 120 */ 121 if (pvd == NULL || pvd->vdev_parent == NULL) 122 return (vd->vdev_psize); 123 124 rsize = 0; 125 126 for (c = 0; c < pvd->vdev_children; c++) { 127 cvd = pvd->vdev_child[c]; 128 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 129 } 130 131 return (rsize); 132 } 133 134 vdev_t * 135 vdev_lookup_top(spa_t *spa, uint64_t vdev) 136 { 137 vdev_t *rvd = spa->spa_root_vdev; 138 139 ASSERT(spa_config_held(spa, RW_READER) || 140 curthread == spa->spa_scrub_thread); 141 142 if (vdev < rvd->vdev_children) 143 return (rvd->vdev_child[vdev]); 144 145 return (NULL); 146 } 147 148 vdev_t * 149 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 150 { 151 int c; 152 vdev_t *mvd; 153 154 if (vd->vdev_guid == guid) 155 return (vd); 156 157 for (c = 0; c < vd->vdev_children; c++) 158 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 159 NULL) 160 return (mvd); 161 162 return (NULL); 163 } 164 165 void 166 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 167 { 168 size_t oldsize, newsize; 169 uint64_t id = cvd->vdev_id; 170 vdev_t **newchild; 171 172 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 173 ASSERT(cvd->vdev_parent == NULL); 174 175 cvd->vdev_parent = pvd; 176 177 if (pvd == NULL) 178 return; 179 180 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 181 182 oldsize = pvd->vdev_children * sizeof (vdev_t *); 183 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 184 newsize = pvd->vdev_children * sizeof (vdev_t *); 185 186 newchild = kmem_zalloc(newsize, KM_SLEEP); 187 if (pvd->vdev_child != NULL) { 188 bcopy(pvd->vdev_child, newchild, oldsize); 189 kmem_free(pvd->vdev_child, oldsize); 190 } 191 192 pvd->vdev_child = newchild; 193 pvd->vdev_child[id] = cvd; 194 195 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 196 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 197 198 /* 199 * Walk up all ancestors to update guid sum. 200 */ 201 for (; pvd != NULL; pvd = pvd->vdev_parent) 202 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 203 204 if (cvd->vdev_ops->vdev_op_leaf) 205 cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit; 206 } 207 208 void 209 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 210 { 211 int c; 212 uint_t id = cvd->vdev_id; 213 214 ASSERT(cvd->vdev_parent == pvd); 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id < pvd->vdev_children); 220 ASSERT(pvd->vdev_child[id] == cvd); 221 222 pvd->vdev_child[id] = NULL; 223 cvd->vdev_parent = NULL; 224 225 for (c = 0; c < pvd->vdev_children; c++) 226 if (pvd->vdev_child[c]) 227 break; 228 229 if (c == pvd->vdev_children) { 230 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 231 pvd->vdev_child = NULL; 232 pvd->vdev_children = 0; 233 } 234 235 /* 236 * Walk up all ancestors to update guid sum. 237 */ 238 for (; pvd != NULL; pvd = pvd->vdev_parent) 239 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 240 241 if (cvd->vdev_ops->vdev_op_leaf) 242 cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit; 243 } 244 245 /* 246 * Remove any holes in the child array. 247 */ 248 void 249 vdev_compact_children(vdev_t *pvd) 250 { 251 vdev_t **newchild, *cvd; 252 int oldc = pvd->vdev_children; 253 int newc, c; 254 255 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 256 257 for (c = newc = 0; c < oldc; c++) 258 if (pvd->vdev_child[c]) 259 newc++; 260 261 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 262 263 for (c = newc = 0; c < oldc; c++) { 264 if ((cvd = pvd->vdev_child[c]) != NULL) { 265 newchild[newc] = cvd; 266 cvd->vdev_id = newc++; 267 } 268 } 269 270 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 271 pvd->vdev_child = newchild; 272 pvd->vdev_children = newc; 273 } 274 275 /* 276 * Allocate and minimally initialize a vdev_t. 277 */ 278 static vdev_t * 279 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 280 { 281 vdev_t *vd; 282 283 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 284 285 if (spa->spa_root_vdev == NULL) { 286 ASSERT(ops == &vdev_root_ops); 287 spa->spa_root_vdev = vd; 288 } 289 290 if (guid == 0) { 291 if (spa->spa_root_vdev == vd) { 292 /* 293 * The root vdev's guid will also be the pool guid, 294 * which must be unique among all pools. 295 */ 296 while (guid == 0 || spa_guid_exists(guid, 0)) 297 guid = spa_get_random(-1ULL); 298 } else { 299 /* 300 * Any other vdev's guid must be unique within the pool. 301 */ 302 while (guid == 0 || 303 spa_guid_exists(spa_guid(spa), guid)) 304 guid = spa_get_random(-1ULL); 305 } 306 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 307 } 308 309 vd->vdev_spa = spa; 310 vd->vdev_id = id; 311 vd->vdev_guid = guid; 312 vd->vdev_guid_sum = guid; 313 vd->vdev_ops = ops; 314 vd->vdev_state = VDEV_STATE_CLOSED; 315 316 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 317 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 318 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 319 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 320 txg_list_create(&vd->vdev_ms_list, 321 offsetof(struct metaslab, ms_txg_node)); 322 txg_list_create(&vd->vdev_dtl_list, 323 offsetof(struct vdev, vdev_dtl_node)); 324 vd->vdev_stat.vs_timestamp = gethrtime(); 325 vdev_queue_init(vd); 326 vdev_cache_init(vd); 327 328 return (vd); 329 } 330 331 /* 332 * Allocate a new vdev. The 'alloctype' is used to control whether we are 333 * creating a new vdev or loading an existing one - the behavior is slightly 334 * different for each case. 335 */ 336 int 337 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 338 int alloctype) 339 { 340 vdev_ops_t *ops; 341 char *type; 342 uint64_t guid = 0, islog, nparity; 343 vdev_t *vd; 344 345 ASSERT(spa_config_held(spa, RW_WRITER)); 346 347 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 348 return (EINVAL); 349 350 if ((ops = vdev_getops(type)) == NULL) 351 return (EINVAL); 352 353 /* 354 * If this is a load, get the vdev guid from the nvlist. 355 * Otherwise, vdev_alloc_common() will generate one for us. 356 */ 357 if (alloctype == VDEV_ALLOC_LOAD) { 358 uint64_t label_id; 359 360 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 361 label_id != id) 362 return (EINVAL); 363 364 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 365 return (EINVAL); 366 } else if (alloctype == VDEV_ALLOC_SPARE) { 367 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 368 return (EINVAL); 369 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 370 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 371 return (EINVAL); 372 } 373 374 /* 375 * The first allocated vdev must be of type 'root'. 376 */ 377 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 378 return (EINVAL); 379 380 /* 381 * Determine whether we're a log vdev. 382 */ 383 islog = 0; 384 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 385 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 386 return (ENOTSUP); 387 388 /* 389 * Set the nparity property for RAID-Z vdevs. 390 */ 391 nparity = -1ULL; 392 if (ops == &vdev_raidz_ops) { 393 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 394 &nparity) == 0) { 395 /* 396 * Currently, we can only support 2 parity devices. 397 */ 398 if (nparity == 0 || nparity > 2) 399 return (EINVAL); 400 /* 401 * Older versions can only support 1 parity device. 402 */ 403 if (nparity == 2 && 404 spa_version(spa) < SPA_VERSION_RAID6) 405 return (ENOTSUP); 406 } else { 407 /* 408 * We require the parity to be specified for SPAs that 409 * support multiple parity levels. 410 */ 411 if (spa_version(spa) >= SPA_VERSION_RAID6) 412 return (EINVAL); 413 /* 414 * Otherwise, we default to 1 parity device for RAID-Z. 415 */ 416 nparity = 1; 417 } 418 } else { 419 nparity = 0; 420 } 421 ASSERT(nparity != -1ULL); 422 423 vd = vdev_alloc_common(spa, id, guid, ops); 424 425 vd->vdev_islog = islog; 426 vd->vdev_nparity = nparity; 427 428 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 429 vd->vdev_path = spa_strdup(vd->vdev_path); 430 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 431 vd->vdev_devid = spa_strdup(vd->vdev_devid); 432 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 433 &vd->vdev_physpath) == 0) 434 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 435 436 /* 437 * Set the whole_disk property. If it's not specified, leave the value 438 * as -1. 439 */ 440 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 441 &vd->vdev_wholedisk) != 0) 442 vd->vdev_wholedisk = -1ULL; 443 444 /* 445 * Look for the 'not present' flag. This will only be set if the device 446 * was not present at the time of import. 447 */ 448 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 449 &vd->vdev_not_present); 450 451 /* 452 * Get the alignment requirement. 453 */ 454 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 455 456 /* 457 * If we're a top-level vdev, try to load the allocation parameters. 458 */ 459 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 460 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 461 &vd->vdev_ms_array); 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 463 &vd->vdev_ms_shift); 464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 465 &vd->vdev_asize); 466 } 467 468 /* 469 * If we're a leaf vdev, try to load the DTL object and other state. 470 */ 471 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 472 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 473 &vd->vdev_dtl.smo_object); 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 475 &vd->vdev_offline); 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 477 &vd->vdev_unspare); 478 /* 479 * When importing a pool, we want to ignore the persistent fault 480 * state, as the diagnosis made on another system may not be 481 * valid in the current context. 482 */ 483 if (spa->spa_load_state == SPA_LOAD_OPEN) { 484 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 485 &vd->vdev_faulted); 486 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 487 &vd->vdev_degraded); 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 489 &vd->vdev_removed); 490 } 491 } 492 493 /* 494 * Add ourselves to the parent's list of children. 495 */ 496 vdev_add_child(parent, vd); 497 498 *vdp = vd; 499 500 return (0); 501 } 502 503 void 504 vdev_free(vdev_t *vd) 505 { 506 int c; 507 spa_t *spa = vd->vdev_spa; 508 509 /* 510 * vdev_free() implies closing the vdev first. This is simpler than 511 * trying to ensure complicated semantics for all callers. 512 */ 513 vdev_close(vd); 514 515 516 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 517 518 /* 519 * Free all children. 520 */ 521 for (c = 0; c < vd->vdev_children; c++) 522 vdev_free(vd->vdev_child[c]); 523 524 ASSERT(vd->vdev_child == NULL); 525 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 526 527 /* 528 * Discard allocation state. 529 */ 530 if (vd == vd->vdev_top) 531 vdev_metaslab_fini(vd); 532 533 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 534 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 535 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 536 537 /* 538 * Remove this vdev from its parent's child list. 539 */ 540 vdev_remove_child(vd->vdev_parent, vd); 541 542 ASSERT(vd->vdev_parent == NULL); 543 544 /* 545 * Clean up vdev structure. 546 */ 547 vdev_queue_fini(vd); 548 vdev_cache_fini(vd); 549 550 if (vd->vdev_path) 551 spa_strfree(vd->vdev_path); 552 if (vd->vdev_devid) 553 spa_strfree(vd->vdev_devid); 554 if (vd->vdev_physpath) 555 spa_strfree(vd->vdev_physpath); 556 557 if (vd->vdev_isspare) 558 spa_spare_remove(vd); 559 if (vd->vdev_isl2cache) 560 spa_l2cache_remove(vd); 561 562 txg_list_destroy(&vd->vdev_ms_list); 563 txg_list_destroy(&vd->vdev_dtl_list); 564 mutex_enter(&vd->vdev_dtl_lock); 565 space_map_unload(&vd->vdev_dtl_map); 566 space_map_destroy(&vd->vdev_dtl_map); 567 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 568 space_map_destroy(&vd->vdev_dtl_scrub); 569 mutex_exit(&vd->vdev_dtl_lock); 570 mutex_destroy(&vd->vdev_dtl_lock); 571 mutex_destroy(&vd->vdev_stat_lock); 572 573 if (vd == spa->spa_root_vdev) 574 spa->spa_root_vdev = NULL; 575 576 kmem_free(vd, sizeof (vdev_t)); 577 } 578 579 /* 580 * Transfer top-level vdev state from svd to tvd. 581 */ 582 static void 583 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 584 { 585 spa_t *spa = svd->vdev_spa; 586 metaslab_t *msp; 587 vdev_t *vd; 588 int t; 589 590 ASSERT(tvd == tvd->vdev_top); 591 592 tvd->vdev_ms_array = svd->vdev_ms_array; 593 tvd->vdev_ms_shift = svd->vdev_ms_shift; 594 tvd->vdev_ms_count = svd->vdev_ms_count; 595 596 svd->vdev_ms_array = 0; 597 svd->vdev_ms_shift = 0; 598 svd->vdev_ms_count = 0; 599 600 tvd->vdev_mg = svd->vdev_mg; 601 tvd->vdev_ms = svd->vdev_ms; 602 603 svd->vdev_mg = NULL; 604 svd->vdev_ms = NULL; 605 606 if (tvd->vdev_mg != NULL) 607 tvd->vdev_mg->mg_vd = tvd; 608 609 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 610 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 611 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 612 613 svd->vdev_stat.vs_alloc = 0; 614 svd->vdev_stat.vs_space = 0; 615 svd->vdev_stat.vs_dspace = 0; 616 617 for (t = 0; t < TXG_SIZE; t++) { 618 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 619 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 620 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 621 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 622 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 623 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 624 } 625 626 if (list_link_active(&svd->vdev_dirty_node)) { 627 vdev_config_clean(svd); 628 vdev_config_dirty(tvd); 629 } 630 631 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 632 svd->vdev_deflate_ratio = 0; 633 634 tvd->vdev_islog = svd->vdev_islog; 635 svd->vdev_islog = 0; 636 } 637 638 static void 639 vdev_top_update(vdev_t *tvd, vdev_t *vd) 640 { 641 int c; 642 643 if (vd == NULL) 644 return; 645 646 vd->vdev_top = tvd; 647 648 for (c = 0; c < vd->vdev_children; c++) 649 vdev_top_update(tvd, vd->vdev_child[c]); 650 } 651 652 /* 653 * Add a mirror/replacing vdev above an existing vdev. 654 */ 655 vdev_t * 656 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 657 { 658 spa_t *spa = cvd->vdev_spa; 659 vdev_t *pvd = cvd->vdev_parent; 660 vdev_t *mvd; 661 662 ASSERT(spa_config_held(spa, RW_WRITER)); 663 664 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 665 666 mvd->vdev_asize = cvd->vdev_asize; 667 mvd->vdev_ashift = cvd->vdev_ashift; 668 mvd->vdev_state = cvd->vdev_state; 669 670 vdev_remove_child(pvd, cvd); 671 vdev_add_child(pvd, mvd); 672 cvd->vdev_id = mvd->vdev_children; 673 vdev_add_child(mvd, cvd); 674 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 675 676 if (mvd == mvd->vdev_top) 677 vdev_top_transfer(cvd, mvd); 678 679 return (mvd); 680 } 681 682 /* 683 * Remove a 1-way mirror/replacing vdev from the tree. 684 */ 685 void 686 vdev_remove_parent(vdev_t *cvd) 687 { 688 vdev_t *mvd = cvd->vdev_parent; 689 vdev_t *pvd = mvd->vdev_parent; 690 691 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 692 693 ASSERT(mvd->vdev_children == 1); 694 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 695 mvd->vdev_ops == &vdev_replacing_ops || 696 mvd->vdev_ops == &vdev_spare_ops); 697 cvd->vdev_ashift = mvd->vdev_ashift; 698 699 vdev_remove_child(mvd, cvd); 700 vdev_remove_child(pvd, mvd); 701 cvd->vdev_id = mvd->vdev_id; 702 vdev_add_child(pvd, cvd); 703 /* 704 * If we created a new toplevel vdev, then we need to change the child's 705 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 706 * detached an offline device, and when we go to import the pool we'll 707 * think we have two toplevel vdevs, instead of a different version of 708 * the same toplevel vdev. 709 */ 710 if (cvd->vdev_top == cvd) { 711 pvd->vdev_guid_sum -= cvd->vdev_guid; 712 cvd->vdev_guid_sum -= cvd->vdev_guid; 713 cvd->vdev_guid = mvd->vdev_guid; 714 cvd->vdev_guid_sum += mvd->vdev_guid; 715 pvd->vdev_guid_sum += cvd->vdev_guid; 716 } 717 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 718 719 if (cvd == cvd->vdev_top) 720 vdev_top_transfer(mvd, cvd); 721 722 ASSERT(mvd->vdev_children == 0); 723 vdev_free(mvd); 724 } 725 726 int 727 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 728 { 729 spa_t *spa = vd->vdev_spa; 730 objset_t *mos = spa->spa_meta_objset; 731 metaslab_class_t *mc; 732 uint64_t m; 733 uint64_t oldc = vd->vdev_ms_count; 734 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 735 metaslab_t **mspp; 736 int error; 737 738 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 739 return (0); 740 741 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 742 743 ASSERT(oldc <= newc); 744 745 if (vd->vdev_islog) 746 mc = spa->spa_log_class; 747 else 748 mc = spa->spa_normal_class; 749 750 if (vd->vdev_mg == NULL) 751 vd->vdev_mg = metaslab_group_create(mc, vd); 752 753 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 754 755 if (oldc != 0) { 756 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 757 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 758 } 759 760 vd->vdev_ms = mspp; 761 vd->vdev_ms_count = newc; 762 763 for (m = oldc; m < newc; m++) { 764 space_map_obj_t smo = { 0, 0, 0 }; 765 if (txg == 0) { 766 uint64_t object = 0; 767 error = dmu_read(mos, vd->vdev_ms_array, 768 m * sizeof (uint64_t), sizeof (uint64_t), &object); 769 if (error) 770 return (error); 771 if (object != 0) { 772 dmu_buf_t *db; 773 error = dmu_bonus_hold(mos, object, FTAG, &db); 774 if (error) 775 return (error); 776 ASSERT3U(db->db_size, >=, sizeof (smo)); 777 bcopy(db->db_data, &smo, sizeof (smo)); 778 ASSERT3U(smo.smo_object, ==, object); 779 dmu_buf_rele(db, FTAG); 780 } 781 } 782 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 783 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 784 } 785 786 return (0); 787 } 788 789 void 790 vdev_metaslab_fini(vdev_t *vd) 791 { 792 uint64_t m; 793 uint64_t count = vd->vdev_ms_count; 794 795 if (vd->vdev_ms != NULL) { 796 for (m = 0; m < count; m++) 797 if (vd->vdev_ms[m] != NULL) 798 metaslab_fini(vd->vdev_ms[m]); 799 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 800 vd->vdev_ms = NULL; 801 } 802 } 803 804 int 805 vdev_probe(vdev_t *vd) 806 { 807 if (vd == NULL) 808 return (EINVAL); 809 810 /* 811 * Right now we only support status checks on the leaf vdevs. 812 */ 813 if (vd->vdev_ops->vdev_op_leaf) 814 return (vd->vdev_ops->vdev_op_probe(vd)); 815 816 return (0); 817 } 818 819 /* 820 * Prepare a virtual device for access. 821 */ 822 int 823 vdev_open(vdev_t *vd) 824 { 825 int error; 826 int c; 827 uint64_t osize = 0; 828 uint64_t asize, psize; 829 uint64_t ashift = 0; 830 831 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 832 vd->vdev_state == VDEV_STATE_CANT_OPEN || 833 vd->vdev_state == VDEV_STATE_OFFLINE); 834 835 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 836 vd->vdev_fault_arg >>= 1; 837 else 838 vd->vdev_fault_mode = VDEV_FAULT_NONE; 839 840 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 841 842 if (!vd->vdev_removed && vd->vdev_faulted) { 843 ASSERT(vd->vdev_children == 0); 844 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 845 VDEV_AUX_ERR_EXCEEDED); 846 return (ENXIO); 847 } else if (vd->vdev_offline) { 848 ASSERT(vd->vdev_children == 0); 849 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 850 return (ENXIO); 851 } 852 853 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 854 855 if (zio_injection_enabled && error == 0) 856 error = zio_handle_device_injection(vd, ENXIO); 857 858 if (error) { 859 if (vd->vdev_removed && 860 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 861 vd->vdev_removed = B_FALSE; 862 863 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 864 vd->vdev_stat.vs_aux); 865 return (error); 866 } 867 868 vd->vdev_removed = B_FALSE; 869 870 if (vd->vdev_degraded) { 871 ASSERT(vd->vdev_children == 0); 872 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 873 VDEV_AUX_ERR_EXCEEDED); 874 } else { 875 vd->vdev_state = VDEV_STATE_HEALTHY; 876 } 877 878 for (c = 0; c < vd->vdev_children; c++) 879 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 880 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 881 VDEV_AUX_NONE); 882 break; 883 } 884 885 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 886 887 if (vd->vdev_children == 0) { 888 if (osize < SPA_MINDEVSIZE) { 889 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 890 VDEV_AUX_TOO_SMALL); 891 return (EOVERFLOW); 892 } 893 psize = osize; 894 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 895 } else { 896 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 897 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 898 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 899 VDEV_AUX_TOO_SMALL); 900 return (EOVERFLOW); 901 } 902 psize = 0; 903 asize = osize; 904 } 905 906 vd->vdev_psize = psize; 907 908 if (vd->vdev_asize == 0) { 909 /* 910 * This is the first-ever open, so use the computed values. 911 * For testing purposes, a higher ashift can be requested. 912 */ 913 vd->vdev_asize = asize; 914 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 915 } else { 916 /* 917 * Make sure the alignment requirement hasn't increased. 918 */ 919 if (ashift > vd->vdev_top->vdev_ashift) { 920 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 921 VDEV_AUX_BAD_LABEL); 922 return (EINVAL); 923 } 924 925 /* 926 * Make sure the device hasn't shrunk. 927 */ 928 if (asize < vd->vdev_asize) { 929 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 930 VDEV_AUX_BAD_LABEL); 931 return (EINVAL); 932 } 933 934 /* 935 * If all children are healthy and the asize has increased, 936 * then we've experienced dynamic LUN growth. 937 */ 938 if (vd->vdev_state == VDEV_STATE_HEALTHY && 939 asize > vd->vdev_asize) { 940 vd->vdev_asize = asize; 941 } 942 } 943 944 /* 945 * Ensure we can issue some IO before declaring the 946 * vdev open for business. 947 */ 948 error = vdev_probe(vd); 949 if (error) { 950 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 951 VDEV_AUX_OPEN_FAILED); 952 return (error); 953 } 954 955 /* 956 * If this is a top-level vdev, compute the raidz-deflation 957 * ratio. Note, we hard-code in 128k (1<<17) because it is the 958 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 959 * changes, this algorithm must never change, or we will 960 * inconsistently account for existing bp's. 961 */ 962 if (vd->vdev_top == vd) { 963 vd->vdev_deflate_ratio = (1<<17) / 964 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 965 } 966 967 /* 968 * This allows the ZFS DE to close cases appropriately. If a device 969 * goes away and later returns, we want to close the associated case. 970 * But it's not enough to simply post this only when a device goes from 971 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 972 * back, we also need to close the case (otherwise we will try to replay 973 * it). So we have to post this notifier every time. Since this only 974 * occurs during pool open or error recovery, this should not be an 975 * issue. 976 */ 977 zfs_post_ok(vd->vdev_spa, vd); 978 979 return (0); 980 } 981 982 /* 983 * Called once the vdevs are all opened, this routine validates the label 984 * contents. This needs to be done before vdev_load() so that we don't 985 * inadvertently do repair I/Os to the wrong device. 986 * 987 * This function will only return failure if one of the vdevs indicates that it 988 * has since been destroyed or exported. This is only possible if 989 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 990 * will be updated but the function will return 0. 991 */ 992 int 993 vdev_validate(vdev_t *vd) 994 { 995 spa_t *spa = vd->vdev_spa; 996 int c; 997 nvlist_t *label; 998 uint64_t guid; 999 uint64_t state; 1000 1001 for (c = 0; c < vd->vdev_children; c++) 1002 if (vdev_validate(vd->vdev_child[c]) != 0) 1003 return (EBADF); 1004 1005 /* 1006 * If the device has already failed, or was marked offline, don't do 1007 * any further validation. Otherwise, label I/O will fail and we will 1008 * overwrite the previous state. 1009 */ 1010 if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 1011 1012 if ((label = vdev_label_read_config(vd)) == NULL) { 1013 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1014 VDEV_AUX_BAD_LABEL); 1015 return (0); 1016 } 1017 1018 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 1019 &guid) != 0 || guid != spa_guid(spa)) { 1020 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1021 VDEV_AUX_CORRUPT_DATA); 1022 nvlist_free(label); 1023 return (0); 1024 } 1025 1026 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1027 &guid) != 0 || guid != vd->vdev_guid) { 1028 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1029 VDEV_AUX_CORRUPT_DATA); 1030 nvlist_free(label); 1031 return (0); 1032 } 1033 1034 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1035 &state) != 0) { 1036 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1037 VDEV_AUX_CORRUPT_DATA); 1038 nvlist_free(label); 1039 return (0); 1040 } 1041 1042 nvlist_free(label); 1043 1044 if (spa->spa_load_state == SPA_LOAD_OPEN && 1045 state != POOL_STATE_ACTIVE) 1046 return (EBADF); 1047 } 1048 1049 /* 1050 * If we were able to open and validate a vdev that was previously 1051 * marked permanently unavailable, clear that state now. 1052 */ 1053 if (vd->vdev_not_present) 1054 vd->vdev_not_present = 0; 1055 1056 return (0); 1057 } 1058 1059 /* 1060 * Close a virtual device. 1061 */ 1062 void 1063 vdev_close(vdev_t *vd) 1064 { 1065 vd->vdev_ops->vdev_op_close(vd); 1066 1067 vdev_cache_purge(vd); 1068 1069 /* 1070 * We record the previous state before we close it, so that if we are 1071 * doing a reopen(), we don't generate FMA ereports if we notice that 1072 * it's still faulted. 1073 */ 1074 vd->vdev_prevstate = vd->vdev_state; 1075 1076 if (vd->vdev_offline) 1077 vd->vdev_state = VDEV_STATE_OFFLINE; 1078 else 1079 vd->vdev_state = VDEV_STATE_CLOSED; 1080 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1081 } 1082 1083 void 1084 vdev_reopen(vdev_t *vd) 1085 { 1086 spa_t *spa = vd->vdev_spa; 1087 1088 ASSERT(spa_config_held(spa, RW_WRITER)); 1089 1090 vdev_close(vd); 1091 (void) vdev_open(vd); 1092 1093 /* 1094 * Call vdev_validate() here to make sure we have the same device. 1095 * Otherwise, a device with an invalid label could be successfully 1096 * opened in response to vdev_reopen(). 1097 */ 1098 (void) vdev_validate(vd); 1099 1100 /* 1101 * Reassess parent vdev's health. 1102 */ 1103 vdev_propagate_state(vd); 1104 } 1105 1106 int 1107 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1108 { 1109 int error; 1110 1111 /* 1112 * Normally, partial opens (e.g. of a mirror) are allowed. 1113 * For a create, however, we want to fail the request if 1114 * there are any components we can't open. 1115 */ 1116 error = vdev_open(vd); 1117 1118 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1119 vdev_close(vd); 1120 return (error ? error : ENXIO); 1121 } 1122 1123 /* 1124 * Recursively initialize all labels. 1125 */ 1126 if ((error = vdev_label_init(vd, txg, isreplacing ? 1127 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1128 vdev_close(vd); 1129 return (error); 1130 } 1131 1132 return (0); 1133 } 1134 1135 /* 1136 * The is the latter half of vdev_create(). It is distinct because it 1137 * involves initiating transactions in order to do metaslab creation. 1138 * For creation, we want to try to create all vdevs at once and then undo it 1139 * if anything fails; this is much harder if we have pending transactions. 1140 */ 1141 void 1142 vdev_init(vdev_t *vd, uint64_t txg) 1143 { 1144 /* 1145 * Aim for roughly 200 metaslabs per vdev. 1146 */ 1147 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1148 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1149 1150 /* 1151 * Initialize the vdev's metaslabs. This can't fail because 1152 * there's nothing to read when creating all new metaslabs. 1153 */ 1154 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1155 } 1156 1157 void 1158 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1159 { 1160 ASSERT(vd == vd->vdev_top); 1161 ASSERT(ISP2(flags)); 1162 1163 if (flags & VDD_METASLAB) 1164 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1165 1166 if (flags & VDD_DTL) 1167 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1168 1169 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1170 } 1171 1172 void 1173 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1174 { 1175 mutex_enter(sm->sm_lock); 1176 if (!space_map_contains(sm, txg, size)) 1177 space_map_add(sm, txg, size); 1178 mutex_exit(sm->sm_lock); 1179 } 1180 1181 int 1182 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1183 { 1184 int dirty; 1185 1186 /* 1187 * Quick test without the lock -- covers the common case that 1188 * there are no dirty time segments. 1189 */ 1190 if (sm->sm_space == 0) 1191 return (0); 1192 1193 mutex_enter(sm->sm_lock); 1194 dirty = space_map_contains(sm, txg, size); 1195 mutex_exit(sm->sm_lock); 1196 1197 return (dirty); 1198 } 1199 1200 /* 1201 * Reassess DTLs after a config change or scrub completion. 1202 */ 1203 void 1204 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1205 { 1206 spa_t *spa = vd->vdev_spa; 1207 int c; 1208 1209 ASSERT(spa_config_held(spa, RW_WRITER)); 1210 1211 if (vd->vdev_children == 0) { 1212 mutex_enter(&vd->vdev_dtl_lock); 1213 /* 1214 * We're successfully scrubbed everything up to scrub_txg. 1215 * Therefore, excise all old DTLs up to that point, then 1216 * fold in the DTLs for everything we couldn't scrub. 1217 */ 1218 if (scrub_txg != 0) { 1219 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1220 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1221 } 1222 if (scrub_done) 1223 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1224 mutex_exit(&vd->vdev_dtl_lock); 1225 if (txg != 0) 1226 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1227 return; 1228 } 1229 1230 /* 1231 * Make sure the DTLs are always correct under the scrub lock. 1232 */ 1233 if (vd == spa->spa_root_vdev) 1234 mutex_enter(&spa->spa_scrub_lock); 1235 1236 mutex_enter(&vd->vdev_dtl_lock); 1237 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1238 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1239 mutex_exit(&vd->vdev_dtl_lock); 1240 1241 for (c = 0; c < vd->vdev_children; c++) { 1242 vdev_t *cvd = vd->vdev_child[c]; 1243 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1244 mutex_enter(&vd->vdev_dtl_lock); 1245 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1246 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1247 mutex_exit(&vd->vdev_dtl_lock); 1248 } 1249 1250 if (vd == spa->spa_root_vdev) 1251 mutex_exit(&spa->spa_scrub_lock); 1252 } 1253 1254 static int 1255 vdev_dtl_load(vdev_t *vd) 1256 { 1257 spa_t *spa = vd->vdev_spa; 1258 space_map_obj_t *smo = &vd->vdev_dtl; 1259 objset_t *mos = spa->spa_meta_objset; 1260 dmu_buf_t *db; 1261 int error; 1262 1263 ASSERT(vd->vdev_children == 0); 1264 1265 if (smo->smo_object == 0) 1266 return (0); 1267 1268 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1269 return (error); 1270 1271 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1272 bcopy(db->db_data, smo, sizeof (*smo)); 1273 dmu_buf_rele(db, FTAG); 1274 1275 mutex_enter(&vd->vdev_dtl_lock); 1276 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1277 mutex_exit(&vd->vdev_dtl_lock); 1278 1279 return (error); 1280 } 1281 1282 void 1283 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1284 { 1285 spa_t *spa = vd->vdev_spa; 1286 space_map_obj_t *smo = &vd->vdev_dtl; 1287 space_map_t *sm = &vd->vdev_dtl_map; 1288 objset_t *mos = spa->spa_meta_objset; 1289 space_map_t smsync; 1290 kmutex_t smlock; 1291 dmu_buf_t *db; 1292 dmu_tx_t *tx; 1293 1294 dprintf("%s in txg %llu pass %d\n", 1295 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1296 1297 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1298 1299 if (vd->vdev_detached) { 1300 if (smo->smo_object != 0) { 1301 int err = dmu_object_free(mos, smo->smo_object, tx); 1302 ASSERT3U(err, ==, 0); 1303 smo->smo_object = 0; 1304 } 1305 dmu_tx_commit(tx); 1306 dprintf("detach %s committed in txg %llu\n", 1307 vdev_description(vd), txg); 1308 return; 1309 } 1310 1311 if (smo->smo_object == 0) { 1312 ASSERT(smo->smo_objsize == 0); 1313 ASSERT(smo->smo_alloc == 0); 1314 smo->smo_object = dmu_object_alloc(mos, 1315 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1316 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1317 ASSERT(smo->smo_object != 0); 1318 vdev_config_dirty(vd->vdev_top); 1319 } 1320 1321 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1322 1323 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1324 &smlock); 1325 1326 mutex_enter(&smlock); 1327 1328 mutex_enter(&vd->vdev_dtl_lock); 1329 space_map_walk(sm, space_map_add, &smsync); 1330 mutex_exit(&vd->vdev_dtl_lock); 1331 1332 space_map_truncate(smo, mos, tx); 1333 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1334 1335 space_map_destroy(&smsync); 1336 1337 mutex_exit(&smlock); 1338 mutex_destroy(&smlock); 1339 1340 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1341 dmu_buf_will_dirty(db, tx); 1342 ASSERT3U(db->db_size, >=, sizeof (*smo)); 1343 bcopy(smo, db->db_data, sizeof (*smo)); 1344 dmu_buf_rele(db, FTAG); 1345 1346 dmu_tx_commit(tx); 1347 } 1348 1349 void 1350 vdev_load(vdev_t *vd) 1351 { 1352 int c; 1353 1354 /* 1355 * Recursively load all children. 1356 */ 1357 for (c = 0; c < vd->vdev_children; c++) 1358 vdev_load(vd->vdev_child[c]); 1359 1360 /* 1361 * If this is a top-level vdev, initialize its metaslabs. 1362 */ 1363 if (vd == vd->vdev_top && 1364 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1365 vdev_metaslab_init(vd, 0) != 0)) 1366 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1367 VDEV_AUX_CORRUPT_DATA); 1368 1369 /* 1370 * If this is a leaf vdev, load its DTL. 1371 */ 1372 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1373 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1374 VDEV_AUX_CORRUPT_DATA); 1375 } 1376 1377 /* 1378 * The special vdev case is used for hot spares and l2cache devices. Its 1379 * sole purpose it to set the vdev state for the associated vdev. To do this, 1380 * we make sure that we can open the underlying device, then try to read the 1381 * label, and make sure that the label is sane and that it hasn't been 1382 * repurposed to another pool. 1383 */ 1384 int 1385 vdev_validate_aux(vdev_t *vd) 1386 { 1387 nvlist_t *label; 1388 uint64_t guid, version; 1389 uint64_t state; 1390 1391 if ((label = vdev_label_read_config(vd)) == NULL) { 1392 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1393 VDEV_AUX_CORRUPT_DATA); 1394 return (-1); 1395 } 1396 1397 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1398 version > SPA_VERSION || 1399 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1400 guid != vd->vdev_guid || 1401 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1402 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1403 VDEV_AUX_CORRUPT_DATA); 1404 nvlist_free(label); 1405 return (-1); 1406 } 1407 1408 /* 1409 * We don't actually check the pool state here. If it's in fact in 1410 * use by another pool, we update this fact on the fly when requested. 1411 */ 1412 nvlist_free(label); 1413 return (0); 1414 } 1415 1416 void 1417 vdev_sync_done(vdev_t *vd, uint64_t txg) 1418 { 1419 metaslab_t *msp; 1420 1421 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1422 1423 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1424 metaslab_sync_done(msp, txg); 1425 } 1426 1427 void 1428 vdev_sync(vdev_t *vd, uint64_t txg) 1429 { 1430 spa_t *spa = vd->vdev_spa; 1431 vdev_t *lvd; 1432 metaslab_t *msp; 1433 dmu_tx_t *tx; 1434 1435 dprintf("%s txg %llu pass %d\n", 1436 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1437 1438 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1439 ASSERT(vd == vd->vdev_top); 1440 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1441 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1442 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1443 ASSERT(vd->vdev_ms_array != 0); 1444 vdev_config_dirty(vd); 1445 dmu_tx_commit(tx); 1446 } 1447 1448 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1449 metaslab_sync(msp, txg); 1450 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1451 } 1452 1453 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1454 vdev_dtl_sync(lvd, txg); 1455 1456 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1457 } 1458 1459 uint64_t 1460 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1461 { 1462 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1463 } 1464 1465 const char * 1466 vdev_description(vdev_t *vd) 1467 { 1468 if (vd == NULL || vd->vdev_ops == NULL) 1469 return ("<unknown>"); 1470 1471 if (vd->vdev_path != NULL) 1472 return (vd->vdev_path); 1473 1474 if (vd->vdev_parent == NULL) 1475 return (spa_name(vd->vdev_spa)); 1476 1477 return (vd->vdev_ops->vdev_op_type); 1478 } 1479 1480 /* 1481 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 1482 * not be opened, and no I/O is attempted. 1483 */ 1484 int 1485 vdev_fault(spa_t *spa, uint64_t guid) 1486 { 1487 vdev_t *rvd, *vd; 1488 uint64_t txg; 1489 1490 /* 1491 * Disregard a vdev fault request if the pool has 1492 * experienced a complete failure. 1493 * 1494 * XXX - We do this here so that we don't hold the 1495 * spa_namespace_lock in the event that we can't get 1496 * the RW_WRITER spa_config_lock. 1497 */ 1498 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1499 return (EIO); 1500 1501 txg = spa_vdev_enter(spa); 1502 1503 rvd = spa->spa_root_vdev; 1504 1505 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1506 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1507 if (!vd->vdev_ops->vdev_op_leaf) 1508 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1509 1510 /* 1511 * Faulted state takes precedence over degraded. 1512 */ 1513 vd->vdev_faulted = 1ULL; 1514 vd->vdev_degraded = 0ULL; 1515 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, 1516 VDEV_AUX_ERR_EXCEEDED); 1517 1518 /* 1519 * If marking the vdev as faulted cause the toplevel vdev to become 1520 * unavailable, then back off and simply mark the vdev as degraded 1521 * instead. 1522 */ 1523 if (vdev_is_dead(vd->vdev_top)) { 1524 vd->vdev_degraded = 1ULL; 1525 vd->vdev_faulted = 0ULL; 1526 1527 /* 1528 * If we reopen the device and it's not dead, only then do we 1529 * mark it degraded. 1530 */ 1531 vdev_reopen(vd); 1532 1533 if (vdev_readable(vd)) { 1534 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1535 VDEV_AUX_ERR_EXCEEDED); 1536 } 1537 } 1538 1539 vdev_config_dirty(vd->vdev_top); 1540 1541 (void) spa_vdev_exit(spa, NULL, txg, 0); 1542 1543 return (0); 1544 } 1545 1546 /* 1547 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 1548 * user that something is wrong. The vdev continues to operate as normal as far 1549 * as I/O is concerned. 1550 */ 1551 int 1552 vdev_degrade(spa_t *spa, uint64_t guid) 1553 { 1554 vdev_t *rvd, *vd; 1555 uint64_t txg; 1556 1557 /* 1558 * Disregard a vdev fault request if the pool has 1559 * experienced a complete failure. 1560 * 1561 * XXX - We do this here so that we don't hold the 1562 * spa_namespace_lock in the event that we can't get 1563 * the RW_WRITER spa_config_lock. 1564 */ 1565 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1566 return (EIO); 1567 1568 txg = spa_vdev_enter(spa); 1569 1570 rvd = spa->spa_root_vdev; 1571 1572 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1573 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1574 if (!vd->vdev_ops->vdev_op_leaf) 1575 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1576 1577 /* 1578 * If the vdev is already faulted, then don't do anything. 1579 */ 1580 if (vd->vdev_faulted || vd->vdev_degraded) { 1581 (void) spa_vdev_exit(spa, NULL, txg, 0); 1582 return (0); 1583 } 1584 1585 vd->vdev_degraded = 1ULL; 1586 if (!vdev_is_dead(vd)) 1587 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 1588 VDEV_AUX_ERR_EXCEEDED); 1589 vdev_config_dirty(vd->vdev_top); 1590 1591 (void) spa_vdev_exit(spa, NULL, txg, 0); 1592 1593 return (0); 1594 } 1595 1596 /* 1597 * Online the given vdev. If 'unspare' is set, it implies two things. First, 1598 * any attached spare device should be detached when the device finishes 1599 * resilvering. Second, the online should be treated like a 'test' online case, 1600 * so no FMA events are generated if the device fails to open. 1601 */ 1602 int 1603 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, 1604 vdev_state_t *newstate) 1605 { 1606 vdev_t *rvd, *vd; 1607 uint64_t txg; 1608 1609 /* 1610 * Disregard a vdev fault request if the pool has 1611 * experienced a complete failure. 1612 * 1613 * XXX - We do this here so that we don't hold the 1614 * spa_namespace_lock in the event that we can't get 1615 * the RW_WRITER spa_config_lock. 1616 */ 1617 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1618 return (EIO); 1619 1620 txg = spa_vdev_enter(spa); 1621 1622 rvd = spa->spa_root_vdev; 1623 1624 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1625 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1626 1627 if (!vd->vdev_ops->vdev_op_leaf) 1628 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1629 1630 vd->vdev_offline = B_FALSE; 1631 vd->vdev_tmpoffline = B_FALSE; 1632 vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ? 1633 B_TRUE : B_FALSE; 1634 vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ? 1635 B_TRUE : B_FALSE; 1636 vdev_reopen(vd->vdev_top); 1637 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 1638 1639 if (newstate) 1640 *newstate = vd->vdev_state; 1641 if ((flags & ZFS_ONLINE_UNSPARE) && 1642 !vdev_is_dead(vd) && vd->vdev_parent && 1643 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 1644 vd->vdev_parent->vdev_child[0] == vd) 1645 vd->vdev_unspare = B_TRUE; 1646 1647 vdev_config_dirty(vd->vdev_top); 1648 1649 (void) spa_vdev_exit(spa, NULL, txg, 0); 1650 1651 /* 1652 * Must hold spa_namespace_lock in order to post resilver sysevent 1653 * w/pool name. 1654 */ 1655 mutex_enter(&spa_namespace_lock); 1656 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1657 mutex_exit(&spa_namespace_lock); 1658 1659 return (0); 1660 } 1661 1662 int 1663 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 1664 { 1665 vdev_t *rvd, *vd; 1666 uint64_t txg; 1667 1668 /* 1669 * Disregard a vdev fault request if the pool has 1670 * experienced a complete failure. 1671 * 1672 * XXX - We do this here so that we don't hold the 1673 * spa_namespace_lock in the event that we can't get 1674 * the RW_WRITER spa_config_lock. 1675 */ 1676 if (spa_state(spa) == POOL_STATE_IO_FAILURE) 1677 return (EIO); 1678 1679 txg = spa_vdev_enter(spa); 1680 1681 rvd = spa->spa_root_vdev; 1682 1683 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1684 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1685 1686 if (!vd->vdev_ops->vdev_op_leaf) 1687 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1688 1689 /* 1690 * If the device isn't already offline, try to offline it. 1691 */ 1692 if (!vd->vdev_offline) { 1693 /* 1694 * If this device's top-level vdev has a non-empty DTL, 1695 * don't allow the device to be offlined. 1696 * 1697 * XXX -- make this more precise by allowing the offline 1698 * as long as the remaining devices don't have any DTL holes. 1699 */ 1700 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1701 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1702 1703 /* 1704 * Offline this device and reopen its top-level vdev. 1705 * If this action results in the top-level vdev becoming 1706 * unusable, undo it and fail the request. 1707 */ 1708 vd->vdev_offline = B_TRUE; 1709 vdev_reopen(vd->vdev_top); 1710 if (vdev_is_dead(vd->vdev_top)) { 1711 vd->vdev_offline = B_FALSE; 1712 vdev_reopen(vd->vdev_top); 1713 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1714 } 1715 } 1716 1717 vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ? 1718 B_TRUE : B_FALSE; 1719 1720 vdev_config_dirty(vd->vdev_top); 1721 1722 return (spa_vdev_exit(spa, NULL, txg, 0)); 1723 } 1724 1725 /* 1726 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1727 * vdev_offline(), we assume the spa config is locked. We also clear all 1728 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1729 * If reopen is specified then attempt to reopen the vdev if the vdev is 1730 * faulted or degraded. 1731 */ 1732 void 1733 vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted) 1734 { 1735 int c; 1736 1737 if (vd == NULL) 1738 vd = spa->spa_root_vdev; 1739 1740 vd->vdev_stat.vs_read_errors = 0; 1741 vd->vdev_stat.vs_write_errors = 0; 1742 vd->vdev_stat.vs_checksum_errors = 0; 1743 vd->vdev_is_failing = B_FALSE; 1744 1745 for (c = 0; c < vd->vdev_children; c++) 1746 vdev_clear(spa, vd->vdev_child[c], reopen_wanted); 1747 1748 /* 1749 * If we're in the FAULTED state, then clear the persistent state and 1750 * attempt to reopen the device. We also mark the vdev config dirty, so 1751 * that the new faulted state is written out to disk. 1752 */ 1753 if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded)) { 1754 vd->vdev_faulted = vd->vdev_degraded = 0; 1755 vdev_reopen(vd); 1756 vdev_config_dirty(vd->vdev_top); 1757 1758 if (vd->vdev_faulted) 1759 spa_async_request(spa, SPA_ASYNC_RESILVER); 1760 1761 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 1762 } 1763 } 1764 1765 int 1766 vdev_readable(vdev_t *vd) 1767 { 1768 /* XXPOLICY */ 1769 return (!vdev_is_dead(vd)); 1770 } 1771 1772 int 1773 vdev_writeable(vdev_t *vd) 1774 { 1775 return (!vdev_is_dead(vd) && !vd->vdev_is_failing); 1776 } 1777 1778 int 1779 vdev_is_dead(vdev_t *vd) 1780 { 1781 /* 1782 * If the vdev experienced I/O failures, then the vdev is marked 1783 * as faulted (VDEV_STATE_FAULTED) for status output and FMA; however, 1784 * we need to allow access to the vdev for resumed I/Os (see 1785 * zio_vdev_resume_io() ). 1786 */ 1787 return (vd->vdev_state < VDEV_STATE_DEGRADED && 1788 vd->vdev_stat.vs_aux != VDEV_AUX_IO_FAILURE); 1789 } 1790 1791 int 1792 vdev_error_inject(vdev_t *vd, zio_t *zio) 1793 { 1794 int error = 0; 1795 1796 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1797 return (0); 1798 1799 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1800 return (0); 1801 1802 switch (vd->vdev_fault_mode) { 1803 case VDEV_FAULT_RANDOM: 1804 if (spa_get_random(vd->vdev_fault_arg) == 0) 1805 error = EIO; 1806 break; 1807 1808 case VDEV_FAULT_COUNT: 1809 if ((int64_t)--vd->vdev_fault_arg <= 0) 1810 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1811 error = EIO; 1812 break; 1813 } 1814 1815 return (error); 1816 } 1817 1818 /* 1819 * Get statistics for the given vdev. 1820 */ 1821 void 1822 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1823 { 1824 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1825 int c, t; 1826 1827 mutex_enter(&vd->vdev_stat_lock); 1828 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1829 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1830 vs->vs_state = vd->vdev_state; 1831 vs->vs_rsize = vdev_get_rsize(vd); 1832 mutex_exit(&vd->vdev_stat_lock); 1833 1834 /* 1835 * If we're getting stats on the root vdev, aggregate the I/O counts 1836 * over all top-level vdevs (i.e. the direct children of the root). 1837 */ 1838 if (vd == rvd) { 1839 for (c = 0; c < rvd->vdev_children; c++) { 1840 vdev_t *cvd = rvd->vdev_child[c]; 1841 vdev_stat_t *cvs = &cvd->vdev_stat; 1842 1843 mutex_enter(&vd->vdev_stat_lock); 1844 for (t = 0; t < ZIO_TYPES; t++) { 1845 vs->vs_ops[t] += cvs->vs_ops[t]; 1846 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1847 } 1848 vs->vs_read_errors += cvs->vs_read_errors; 1849 vs->vs_write_errors += cvs->vs_write_errors; 1850 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1851 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1852 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1853 mutex_exit(&vd->vdev_stat_lock); 1854 } 1855 } 1856 } 1857 1858 void 1859 vdev_clear_stats(vdev_t *vd) 1860 { 1861 mutex_enter(&vd->vdev_stat_lock); 1862 vd->vdev_stat.vs_space = 0; 1863 vd->vdev_stat.vs_dspace = 0; 1864 vd->vdev_stat.vs_alloc = 0; 1865 mutex_exit(&vd->vdev_stat_lock); 1866 } 1867 1868 void 1869 vdev_stat_update(zio_t *zio) 1870 { 1871 vdev_t *vd = zio->io_vd; 1872 vdev_t *pvd; 1873 uint64_t txg = zio->io_txg; 1874 vdev_stat_t *vs = &vd->vdev_stat; 1875 zio_type_t type = zio->io_type; 1876 int flags = zio->io_flags; 1877 1878 if (zio->io_error == 0) { 1879 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1880 mutex_enter(&vd->vdev_stat_lock); 1881 vs->vs_ops[type]++; 1882 vs->vs_bytes[type] += zio->io_size; 1883 mutex_exit(&vd->vdev_stat_lock); 1884 } 1885 if ((flags & ZIO_FLAG_IO_REPAIR) && 1886 zio->io_delegate_list == NULL) { 1887 mutex_enter(&vd->vdev_stat_lock); 1888 if (flags & ZIO_FLAG_SCRUB_THREAD) 1889 vs->vs_scrub_repaired += zio->io_size; 1890 else 1891 vs->vs_self_healed += zio->io_size; 1892 mutex_exit(&vd->vdev_stat_lock); 1893 } 1894 return; 1895 } 1896 1897 if (flags & ZIO_FLAG_SPECULATIVE) 1898 return; 1899 1900 if (vdev_readable(vd)) { 1901 mutex_enter(&vd->vdev_stat_lock); 1902 if (type == ZIO_TYPE_READ) { 1903 if (zio->io_error == ECKSUM) 1904 vs->vs_checksum_errors++; 1905 else 1906 vs->vs_read_errors++; 1907 } 1908 if (type == ZIO_TYPE_WRITE) 1909 vs->vs_write_errors++; 1910 mutex_exit(&vd->vdev_stat_lock); 1911 } 1912 1913 if (type == ZIO_TYPE_WRITE) { 1914 if (txg == 0 || vd->vdev_children != 0) 1915 return; 1916 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1917 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1918 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1919 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1920 } 1921 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1922 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1923 return; 1924 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1925 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1926 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1927 } 1928 } 1929 } 1930 1931 void 1932 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1933 { 1934 int c; 1935 vdev_stat_t *vs = &vd->vdev_stat; 1936 1937 for (c = 0; c < vd->vdev_children; c++) 1938 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1939 1940 mutex_enter(&vd->vdev_stat_lock); 1941 1942 if (type == POOL_SCRUB_NONE) { 1943 /* 1944 * Update completion and end time. Leave everything else alone 1945 * so we can report what happened during the previous scrub. 1946 */ 1947 vs->vs_scrub_complete = complete; 1948 vs->vs_scrub_end = gethrestime_sec(); 1949 } else { 1950 vs->vs_scrub_type = type; 1951 vs->vs_scrub_complete = 0; 1952 vs->vs_scrub_examined = 0; 1953 vs->vs_scrub_repaired = 0; 1954 vs->vs_scrub_errors = 0; 1955 vs->vs_scrub_start = gethrestime_sec(); 1956 vs->vs_scrub_end = 0; 1957 } 1958 1959 mutex_exit(&vd->vdev_stat_lock); 1960 } 1961 1962 /* 1963 * Update the in-core space usage stats for this vdev and the root vdev. 1964 */ 1965 void 1966 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta, 1967 boolean_t update_root) 1968 { 1969 int64_t dspace_delta = space_delta; 1970 spa_t *spa = vd->vdev_spa; 1971 vdev_t *rvd = spa->spa_root_vdev; 1972 1973 ASSERT(vd == vd->vdev_top); 1974 1975 /* 1976 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 1977 * factor. We must calculate this here and not at the root vdev 1978 * because the root vdev's psize-to-asize is simply the max of its 1979 * childrens', thus not accurate enough for us. 1980 */ 1981 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1982 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1983 vd->vdev_deflate_ratio; 1984 1985 mutex_enter(&vd->vdev_stat_lock); 1986 vd->vdev_stat.vs_space += space_delta; 1987 vd->vdev_stat.vs_alloc += alloc_delta; 1988 vd->vdev_stat.vs_dspace += dspace_delta; 1989 mutex_exit(&vd->vdev_stat_lock); 1990 1991 if (update_root) { 1992 ASSERT(rvd == vd->vdev_parent); 1993 ASSERT(vd->vdev_ms_count != 0); 1994 1995 /* 1996 * Don't count non-normal (e.g. intent log) space as part of 1997 * the pool's capacity. 1998 */ 1999 if (vd->vdev_mg->mg_class != spa->spa_normal_class) 2000 return; 2001 2002 mutex_enter(&rvd->vdev_stat_lock); 2003 rvd->vdev_stat.vs_space += space_delta; 2004 rvd->vdev_stat.vs_alloc += alloc_delta; 2005 rvd->vdev_stat.vs_dspace += dspace_delta; 2006 mutex_exit(&rvd->vdev_stat_lock); 2007 } 2008 } 2009 2010 /* 2011 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2012 * so that it will be written out next time the vdev configuration is synced. 2013 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2014 */ 2015 void 2016 vdev_config_dirty(vdev_t *vd) 2017 { 2018 spa_t *spa = vd->vdev_spa; 2019 vdev_t *rvd = spa->spa_root_vdev; 2020 int c; 2021 2022 /* 2023 * The dirty list is protected by the config lock. The caller must 2024 * either hold the config lock as writer, or must be the sync thread 2025 * (which holds the lock as reader). There's only one sync thread, 2026 * so this is sufficient to ensure mutual exclusion. 2027 */ 2028 ASSERT(spa_config_held(spa, RW_WRITER) || 2029 dsl_pool_sync_context(spa_get_dsl(spa))); 2030 2031 if (vd == rvd) { 2032 for (c = 0; c < rvd->vdev_children; c++) 2033 vdev_config_dirty(rvd->vdev_child[c]); 2034 } else { 2035 ASSERT(vd == vd->vdev_top); 2036 2037 if (!list_link_active(&vd->vdev_dirty_node)) 2038 list_insert_head(&spa->spa_dirty_list, vd); 2039 } 2040 } 2041 2042 void 2043 vdev_config_clean(vdev_t *vd) 2044 { 2045 spa_t *spa = vd->vdev_spa; 2046 2047 ASSERT(spa_config_held(spa, RW_WRITER) || 2048 dsl_pool_sync_context(spa_get_dsl(spa))); 2049 2050 ASSERT(list_link_active(&vd->vdev_dirty_node)); 2051 list_remove(&spa->spa_dirty_list, vd); 2052 } 2053 2054 /* 2055 * Propagate vdev state up from children to parent. 2056 */ 2057 void 2058 vdev_propagate_state(vdev_t *vd) 2059 { 2060 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 2061 int degraded = 0, faulted = 0; 2062 int corrupted = 0; 2063 int c; 2064 vdev_t *child; 2065 2066 if (vd->vdev_children > 0) { 2067 for (c = 0; c < vd->vdev_children; c++) { 2068 child = vd->vdev_child[c]; 2069 if (vdev_is_dead(child) && !vdev_readable(child)) 2070 faulted++; 2071 else if (child->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE) 2072 faulted++; 2073 else if (child->vdev_state <= VDEV_STATE_DEGRADED) 2074 degraded++; 2075 2076 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 2077 corrupted++; 2078 } 2079 2080 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 2081 2082 /* 2083 * Root special: if there is a toplevel vdev that cannot be 2084 * opened due to corrupted metadata, then propagate the root 2085 * vdev's aux state as 'corrupt' rather than 'insufficient 2086 * replicas'. 2087 */ 2088 if (corrupted && vd == rvd && 2089 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 2090 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 2091 VDEV_AUX_CORRUPT_DATA); 2092 } 2093 2094 if (vd->vdev_parent && !vd->vdev_islog) 2095 vdev_propagate_state(vd->vdev_parent); 2096 } 2097 2098 /* 2099 * Set a vdev's state. If this is during an open, we don't update the parent 2100 * state, because we're in the process of opening children depth-first. 2101 * Otherwise, we propagate the change to the parent. 2102 * 2103 * If this routine places a device in a faulted state, an appropriate ereport is 2104 * generated. 2105 */ 2106 void 2107 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 2108 { 2109 uint64_t save_state; 2110 2111 if (state == vd->vdev_state) { 2112 vd->vdev_stat.vs_aux = aux; 2113 return; 2114 } 2115 2116 save_state = vd->vdev_state; 2117 2118 vd->vdev_state = state; 2119 vd->vdev_stat.vs_aux = aux; 2120 2121 /* 2122 * If we are setting the vdev state to anything but an open state, then 2123 * always close the underlying device. Otherwise, we keep accessible 2124 * but invalid devices open forever. We don't call vdev_close() itself, 2125 * because that implies some extra checks (offline, etc) that we don't 2126 * want here. This is limited to leaf devices, because otherwise 2127 * closing the device will affect other children. 2128 */ 2129 if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf) 2130 vd->vdev_ops->vdev_op_close(vd); 2131 2132 if (vd->vdev_removed && 2133 state == VDEV_STATE_CANT_OPEN && 2134 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 2135 /* 2136 * If the previous state is set to VDEV_STATE_REMOVED, then this 2137 * device was previously marked removed and someone attempted to 2138 * reopen it. If this failed due to a nonexistent device, then 2139 * keep the device in the REMOVED state. We also let this be if 2140 * it is one of our special test online cases, which is only 2141 * attempting to online the device and shouldn't generate an FMA 2142 * fault. 2143 */ 2144 vd->vdev_state = VDEV_STATE_REMOVED; 2145 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 2146 } else if (state == VDEV_STATE_REMOVED) { 2147 /* 2148 * Indicate to the ZFS DE that this device has been removed, and 2149 * any recent errors should be ignored. 2150 */ 2151 zfs_post_remove(vd->vdev_spa, vd); 2152 vd->vdev_removed = B_TRUE; 2153 } else if (state == VDEV_STATE_CANT_OPEN) { 2154 /* 2155 * If we fail to open a vdev during an import, we mark it as 2156 * "not available", which signifies that it was never there to 2157 * begin with. Failure to open such a device is not considered 2158 * an error. 2159 */ 2160 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 2161 vd->vdev_ops->vdev_op_leaf) 2162 vd->vdev_not_present = 1; 2163 2164 /* 2165 * Post the appropriate ereport. If the 'prevstate' field is 2166 * set to something other than VDEV_STATE_UNKNOWN, it indicates 2167 * that this is part of a vdev_reopen(). In this case, we don't 2168 * want to post the ereport if the device was already in the 2169 * CANT_OPEN state beforehand. 2170 * 2171 * If the 'checkremove' flag is set, then this is an attempt to 2172 * online the device in response to an insertion event. If we 2173 * hit this case, then we have detected an insertion event for a 2174 * faulted or offline device that wasn't in the removed state. 2175 * In this scenario, we don't post an ereport because we are 2176 * about to replace the device, or attempt an online with 2177 * vdev_forcefault, which will generate the fault for us. 2178 */ 2179 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 2180 !vd->vdev_not_present && !vd->vdev_checkremove && 2181 vd != vd->vdev_spa->spa_root_vdev) { 2182 const char *class; 2183 2184 switch (aux) { 2185 case VDEV_AUX_OPEN_FAILED: 2186 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 2187 break; 2188 case VDEV_AUX_CORRUPT_DATA: 2189 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 2190 break; 2191 case VDEV_AUX_NO_REPLICAS: 2192 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 2193 break; 2194 case VDEV_AUX_BAD_GUID_SUM: 2195 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 2196 break; 2197 case VDEV_AUX_TOO_SMALL: 2198 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 2199 break; 2200 case VDEV_AUX_BAD_LABEL: 2201 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 2202 break; 2203 default: 2204 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 2205 } 2206 2207 zfs_ereport_post(class, vd->vdev_spa, 2208 vd, NULL, save_state, 0); 2209 } 2210 2211 /* Erase any notion of persistent removed state */ 2212 vd->vdev_removed = B_FALSE; 2213 } else { 2214 vd->vdev_removed = B_FALSE; 2215 } 2216 2217 if (!isopen) 2218 vdev_propagate_state(vd); 2219 } 2220