xref: /titanic_52/usr/src/uts/common/fs/zfs/vdev.c (revision b9bd317cda1afb3a01f4812de73e8cec888cbbd7)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 #include <sys/zfs_context.h>
30 #include <sys/fm/fs/zfs.h>
31 #include <sys/spa.h>
32 #include <sys/spa_impl.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/vdev_impl.h>
36 #include <sys/uberblock_impl.h>
37 #include <sys/metaslab.h>
38 #include <sys/metaslab_impl.h>
39 #include <sys/space_map.h>
40 #include <sys/zio.h>
41 #include <sys/zap.h>
42 #include <sys/fs/zfs.h>
43 #include <sys/arc.h>
44 
45 /*
46  * Virtual device management.
47  */
48 
49 static vdev_ops_t *vdev_ops_table[] = {
50 	&vdev_root_ops,
51 	&vdev_raidz_ops,
52 	&vdev_mirror_ops,
53 	&vdev_replacing_ops,
54 	&vdev_spare_ops,
55 	&vdev_disk_ops,
56 	&vdev_file_ops,
57 	&vdev_missing_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue */
62 int zfs_scrub_limit = 70;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 	uint64_t c;
89 
90 	for (c = 0; c < vd->vdev_children; c++) {
91 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
92 		asize = MAX(asize, csize);
93 	}
94 
95 	return (asize);
96 }
97 
98 /*
99  * Get the replaceable or attachable device size.
100  * If the parent is a mirror or raidz, the replaceable size is the minimum
101  * psize of all its children. For the rest, just return our own psize.
102  *
103  * e.g.
104  *			psize	rsize
105  * root			-	-
106  *	mirror/raidz	-	-
107  *	    disk1	20g	20g
108  *	    disk2 	40g	20g
109  *	disk3 		80g	80g
110  */
111 uint64_t
112 vdev_get_rsize(vdev_t *vd)
113 {
114 	vdev_t *pvd, *cvd;
115 	uint64_t c, rsize;
116 
117 	pvd = vd->vdev_parent;
118 
119 	/*
120 	 * If our parent is NULL or the root, just return our own psize.
121 	 */
122 	if (pvd == NULL || pvd->vdev_parent == NULL)
123 		return (vd->vdev_psize);
124 
125 	rsize = 0;
126 
127 	for (c = 0; c < pvd->vdev_children; c++) {
128 		cvd = pvd->vdev_child[c];
129 		rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1;
130 	}
131 
132 	return (rsize);
133 }
134 
135 vdev_t *
136 vdev_lookup_top(spa_t *spa, uint64_t vdev)
137 {
138 	vdev_t *rvd = spa->spa_root_vdev;
139 
140 	ASSERT(spa_config_held(spa, RW_READER) ||
141 	    curthread == spa->spa_scrub_thread);
142 
143 	if (vdev < rvd->vdev_children)
144 		return (rvd->vdev_child[vdev]);
145 
146 	return (NULL);
147 }
148 
149 vdev_t *
150 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
151 {
152 	int c;
153 	vdev_t *mvd;
154 
155 	if (vd->vdev_guid == guid)
156 		return (vd);
157 
158 	for (c = 0; c < vd->vdev_children; c++)
159 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
160 		    NULL)
161 			return (mvd);
162 
163 	return (NULL);
164 }
165 
166 void
167 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
168 {
169 	size_t oldsize, newsize;
170 	uint64_t id = cvd->vdev_id;
171 	vdev_t **newchild;
172 
173 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
174 	ASSERT(cvd->vdev_parent == NULL);
175 
176 	cvd->vdev_parent = pvd;
177 
178 	if (pvd == NULL)
179 		return;
180 
181 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
182 
183 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
184 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
185 	newsize = pvd->vdev_children * sizeof (vdev_t *);
186 
187 	newchild = kmem_zalloc(newsize, KM_SLEEP);
188 	if (pvd->vdev_child != NULL) {
189 		bcopy(pvd->vdev_child, newchild, oldsize);
190 		kmem_free(pvd->vdev_child, oldsize);
191 	}
192 
193 	pvd->vdev_child = newchild;
194 	pvd->vdev_child[id] = cvd;
195 
196 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
197 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
198 
199 	/*
200 	 * Walk up all ancestors to update guid sum.
201 	 */
202 	for (; pvd != NULL; pvd = pvd->vdev_parent)
203 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
204 
205 	if (cvd->vdev_ops->vdev_op_leaf)
206 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
207 }
208 
209 void
210 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
211 {
212 	int c;
213 	uint_t id = cvd->vdev_id;
214 
215 	ASSERT(cvd->vdev_parent == pvd);
216 
217 	if (pvd == NULL)
218 		return;
219 
220 	ASSERT(id < pvd->vdev_children);
221 	ASSERT(pvd->vdev_child[id] == cvd);
222 
223 	pvd->vdev_child[id] = NULL;
224 	cvd->vdev_parent = NULL;
225 
226 	for (c = 0; c < pvd->vdev_children; c++)
227 		if (pvd->vdev_child[c])
228 			break;
229 
230 	if (c == pvd->vdev_children) {
231 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
232 		pvd->vdev_child = NULL;
233 		pvd->vdev_children = 0;
234 	}
235 
236 	/*
237 	 * Walk up all ancestors to update guid sum.
238 	 */
239 	for (; pvd != NULL; pvd = pvd->vdev_parent)
240 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
241 
242 	if (cvd->vdev_ops->vdev_op_leaf)
243 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
244 }
245 
246 /*
247  * Remove any holes in the child array.
248  */
249 void
250 vdev_compact_children(vdev_t *pvd)
251 {
252 	vdev_t **newchild, *cvd;
253 	int oldc = pvd->vdev_children;
254 	int newc, c;
255 
256 	ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER));
257 
258 	for (c = newc = 0; c < oldc; c++)
259 		if (pvd->vdev_child[c])
260 			newc++;
261 
262 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
263 
264 	for (c = newc = 0; c < oldc; c++) {
265 		if ((cvd = pvd->vdev_child[c]) != NULL) {
266 			newchild[newc] = cvd;
267 			cvd->vdev_id = newc++;
268 		}
269 	}
270 
271 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
272 	pvd->vdev_child = newchild;
273 	pvd->vdev_children = newc;
274 }
275 
276 /*
277  * Allocate and minimally initialize a vdev_t.
278  */
279 static vdev_t *
280 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
281 {
282 	vdev_t *vd;
283 
284 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
285 
286 	if (spa->spa_root_vdev == NULL) {
287 		ASSERT(ops == &vdev_root_ops);
288 		spa->spa_root_vdev = vd;
289 	}
290 
291 	if (guid == 0) {
292 		if (spa->spa_root_vdev == vd) {
293 			/*
294 			 * The root vdev's guid will also be the pool guid,
295 			 * which must be unique among all pools.
296 			 */
297 			while (guid == 0 || spa_guid_exists(guid, 0))
298 				guid = spa_get_random(-1ULL);
299 		} else {
300 			/*
301 			 * Any other vdev's guid must be unique within the pool.
302 			 */
303 			while (guid == 0 ||
304 			    spa_guid_exists(spa_guid(spa), guid))
305 				guid = spa_get_random(-1ULL);
306 		}
307 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
308 	}
309 
310 	vd->vdev_spa = spa;
311 	vd->vdev_id = id;
312 	vd->vdev_guid = guid;
313 	vd->vdev_guid_sum = guid;
314 	vd->vdev_ops = ops;
315 	vd->vdev_state = VDEV_STATE_CLOSED;
316 
317 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
318 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
319 	space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock);
320 	space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock);
321 	txg_list_create(&vd->vdev_ms_list,
322 	    offsetof(struct metaslab, ms_txg_node));
323 	txg_list_create(&vd->vdev_dtl_list,
324 	    offsetof(struct vdev, vdev_dtl_node));
325 	vd->vdev_stat.vs_timestamp = gethrtime();
326 	vdev_queue_init(vd);
327 	vdev_cache_init(vd);
328 
329 	return (vd);
330 }
331 
332 /*
333  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
334  * creating a new vdev or loading an existing one - the behavior is slightly
335  * different for each case.
336  */
337 int
338 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
339     int alloctype)
340 {
341 	vdev_ops_t *ops;
342 	char *type;
343 	uint64_t guid = 0, islog, nparity;
344 	vdev_t *vd;
345 
346 	ASSERT(spa_config_held(spa, RW_WRITER));
347 
348 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
349 		return (EINVAL);
350 
351 	if ((ops = vdev_getops(type)) == NULL)
352 		return (EINVAL);
353 
354 	/*
355 	 * If this is a load, get the vdev guid from the nvlist.
356 	 * Otherwise, vdev_alloc_common() will generate one for us.
357 	 */
358 	if (alloctype == VDEV_ALLOC_LOAD) {
359 		uint64_t label_id;
360 
361 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
362 		    label_id != id)
363 			return (EINVAL);
364 
365 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
366 			return (EINVAL);
367 	} else if (alloctype == VDEV_ALLOC_SPARE) {
368 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
369 			return (EINVAL);
370 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
371 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
372 			return (EINVAL);
373 	}
374 
375 	/*
376 	 * The first allocated vdev must be of type 'root'.
377 	 */
378 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
379 		return (EINVAL);
380 
381 	/*
382 	 * Determine whether we're a log vdev.
383 	 */
384 	islog = 0;
385 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
386 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
387 		return (ENOTSUP);
388 
389 	/*
390 	 * Set the nparity property for RAID-Z vdevs.
391 	 */
392 	nparity = -1ULL;
393 	if (ops == &vdev_raidz_ops) {
394 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
395 		    &nparity) == 0) {
396 			/*
397 			 * Currently, we can only support 2 parity devices.
398 			 */
399 			if (nparity == 0 || nparity > 2)
400 				return (EINVAL);
401 			/*
402 			 * Older versions can only support 1 parity device.
403 			 */
404 			if (nparity == 2 &&
405 			    spa_version(spa) < SPA_VERSION_RAID6)
406 				return (ENOTSUP);
407 		} else {
408 			/*
409 			 * We require the parity to be specified for SPAs that
410 			 * support multiple parity levels.
411 			 */
412 			if (spa_version(spa) >= SPA_VERSION_RAID6)
413 				return (EINVAL);
414 			/*
415 			 * Otherwise, we default to 1 parity device for RAID-Z.
416 			 */
417 			nparity = 1;
418 		}
419 	} else {
420 		nparity = 0;
421 	}
422 	ASSERT(nparity != -1ULL);
423 
424 	vd = vdev_alloc_common(spa, id, guid, ops);
425 
426 	vd->vdev_islog = islog;
427 	vd->vdev_nparity = nparity;
428 
429 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
430 		vd->vdev_path = spa_strdup(vd->vdev_path);
431 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
432 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
433 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
434 	    &vd->vdev_physpath) == 0)
435 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
436 
437 	/*
438 	 * Set the whole_disk property.  If it's not specified, leave the value
439 	 * as -1.
440 	 */
441 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
442 	    &vd->vdev_wholedisk) != 0)
443 		vd->vdev_wholedisk = -1ULL;
444 
445 	/*
446 	 * Look for the 'not present' flag.  This will only be set if the device
447 	 * was not present at the time of import.
448 	 */
449 	if (!spa->spa_import_faulted)
450 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
451 		    &vd->vdev_not_present);
452 
453 	/*
454 	 * Get the alignment requirement.
455 	 */
456 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
457 
458 	/*
459 	 * If we're a top-level vdev, try to load the allocation parameters.
460 	 */
461 	if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) {
462 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
463 		    &vd->vdev_ms_array);
464 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
465 		    &vd->vdev_ms_shift);
466 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
467 		    &vd->vdev_asize);
468 	}
469 
470 	/*
471 	 * If we're a leaf vdev, try to load the DTL object and other state.
472 	 */
473 	if (vd->vdev_ops->vdev_op_leaf &&
474 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE)) {
475 		if (alloctype == VDEV_ALLOC_LOAD) {
476 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
477 			    &vd->vdev_dtl.smo_object);
478 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
479 			    &vd->vdev_unspare);
480 		}
481 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
482 		    &vd->vdev_offline);
483 
484 		/*
485 		 * When importing a pool, we want to ignore the persistent fault
486 		 * state, as the diagnosis made on another system may not be
487 		 * valid in the current context.
488 		 */
489 		if (spa->spa_load_state == SPA_LOAD_OPEN) {
490 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
491 			    &vd->vdev_faulted);
492 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
493 			    &vd->vdev_degraded);
494 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
495 			    &vd->vdev_removed);
496 		}
497 	}
498 
499 	/*
500 	 * Add ourselves to the parent's list of children.
501 	 */
502 	vdev_add_child(parent, vd);
503 
504 	*vdp = vd;
505 
506 	return (0);
507 }
508 
509 void
510 vdev_free(vdev_t *vd)
511 {
512 	int c;
513 	spa_t *spa = vd->vdev_spa;
514 
515 	/*
516 	 * vdev_free() implies closing the vdev first.  This is simpler than
517 	 * trying to ensure complicated semantics for all callers.
518 	 */
519 	vdev_close(vd);
520 
521 
522 	ASSERT(!list_link_active(&vd->vdev_dirty_node));
523 
524 	/*
525 	 * Free all children.
526 	 */
527 	for (c = 0; c < vd->vdev_children; c++)
528 		vdev_free(vd->vdev_child[c]);
529 
530 	ASSERT(vd->vdev_child == NULL);
531 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
532 
533 	/*
534 	 * Discard allocation state.
535 	 */
536 	if (vd == vd->vdev_top)
537 		vdev_metaslab_fini(vd);
538 
539 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
540 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
541 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
542 
543 	/*
544 	 * Remove this vdev from its parent's child list.
545 	 */
546 	vdev_remove_child(vd->vdev_parent, vd);
547 
548 	ASSERT(vd->vdev_parent == NULL);
549 
550 	/*
551 	 * Clean up vdev structure.
552 	 */
553 	vdev_queue_fini(vd);
554 	vdev_cache_fini(vd);
555 
556 	if (vd->vdev_path)
557 		spa_strfree(vd->vdev_path);
558 	if (vd->vdev_devid)
559 		spa_strfree(vd->vdev_devid);
560 	if (vd->vdev_physpath)
561 		spa_strfree(vd->vdev_physpath);
562 
563 	if (vd->vdev_isspare)
564 		spa_spare_remove(vd);
565 	if (vd->vdev_isl2cache)
566 		spa_l2cache_remove(vd);
567 
568 	txg_list_destroy(&vd->vdev_ms_list);
569 	txg_list_destroy(&vd->vdev_dtl_list);
570 	mutex_enter(&vd->vdev_dtl_lock);
571 	space_map_unload(&vd->vdev_dtl_map);
572 	space_map_destroy(&vd->vdev_dtl_map);
573 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
574 	space_map_destroy(&vd->vdev_dtl_scrub);
575 	mutex_exit(&vd->vdev_dtl_lock);
576 	mutex_destroy(&vd->vdev_dtl_lock);
577 	mutex_destroy(&vd->vdev_stat_lock);
578 
579 	if (vd == spa->spa_root_vdev)
580 		spa->spa_root_vdev = NULL;
581 
582 	kmem_free(vd, sizeof (vdev_t));
583 }
584 
585 /*
586  * Transfer top-level vdev state from svd to tvd.
587  */
588 static void
589 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
590 {
591 	spa_t *spa = svd->vdev_spa;
592 	metaslab_t *msp;
593 	vdev_t *vd;
594 	int t;
595 
596 	ASSERT(tvd == tvd->vdev_top);
597 
598 	tvd->vdev_ms_array = svd->vdev_ms_array;
599 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
600 	tvd->vdev_ms_count = svd->vdev_ms_count;
601 
602 	svd->vdev_ms_array = 0;
603 	svd->vdev_ms_shift = 0;
604 	svd->vdev_ms_count = 0;
605 
606 	tvd->vdev_mg = svd->vdev_mg;
607 	tvd->vdev_ms = svd->vdev_ms;
608 
609 	svd->vdev_mg = NULL;
610 	svd->vdev_ms = NULL;
611 
612 	if (tvd->vdev_mg != NULL)
613 		tvd->vdev_mg->mg_vd = tvd;
614 
615 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
616 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
617 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
618 
619 	svd->vdev_stat.vs_alloc = 0;
620 	svd->vdev_stat.vs_space = 0;
621 	svd->vdev_stat.vs_dspace = 0;
622 
623 	for (t = 0; t < TXG_SIZE; t++) {
624 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
625 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
626 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
627 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
628 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
629 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
630 	}
631 
632 	if (list_link_active(&svd->vdev_dirty_node)) {
633 		vdev_config_clean(svd);
634 		vdev_config_dirty(tvd);
635 	}
636 
637 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
638 	svd->vdev_deflate_ratio = 0;
639 
640 	tvd->vdev_islog = svd->vdev_islog;
641 	svd->vdev_islog = 0;
642 }
643 
644 static void
645 vdev_top_update(vdev_t *tvd, vdev_t *vd)
646 {
647 	int c;
648 
649 	if (vd == NULL)
650 		return;
651 
652 	vd->vdev_top = tvd;
653 
654 	for (c = 0; c < vd->vdev_children; c++)
655 		vdev_top_update(tvd, vd->vdev_child[c]);
656 }
657 
658 /*
659  * Add a mirror/replacing vdev above an existing vdev.
660  */
661 vdev_t *
662 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
663 {
664 	spa_t *spa = cvd->vdev_spa;
665 	vdev_t *pvd = cvd->vdev_parent;
666 	vdev_t *mvd;
667 
668 	ASSERT(spa_config_held(spa, RW_WRITER));
669 
670 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
671 
672 	mvd->vdev_asize = cvd->vdev_asize;
673 	mvd->vdev_ashift = cvd->vdev_ashift;
674 	mvd->vdev_state = cvd->vdev_state;
675 
676 	vdev_remove_child(pvd, cvd);
677 	vdev_add_child(pvd, mvd);
678 	cvd->vdev_id = mvd->vdev_children;
679 	vdev_add_child(mvd, cvd);
680 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
681 
682 	if (mvd == mvd->vdev_top)
683 		vdev_top_transfer(cvd, mvd);
684 
685 	return (mvd);
686 }
687 
688 /*
689  * Remove a 1-way mirror/replacing vdev from the tree.
690  */
691 void
692 vdev_remove_parent(vdev_t *cvd)
693 {
694 	vdev_t *mvd = cvd->vdev_parent;
695 	vdev_t *pvd = mvd->vdev_parent;
696 
697 	ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER));
698 
699 	ASSERT(mvd->vdev_children == 1);
700 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
701 	    mvd->vdev_ops == &vdev_replacing_ops ||
702 	    mvd->vdev_ops == &vdev_spare_ops);
703 	cvd->vdev_ashift = mvd->vdev_ashift;
704 
705 	vdev_remove_child(mvd, cvd);
706 	vdev_remove_child(pvd, mvd);
707 	cvd->vdev_id = mvd->vdev_id;
708 	vdev_add_child(pvd, cvd);
709 	/*
710 	 * If we created a new toplevel vdev, then we need to change the child's
711 	 * vdev GUID to match the old toplevel vdev.  Otherwise, we could have
712 	 * detached an offline device, and when we go to import the pool we'll
713 	 * think we have two toplevel vdevs, instead of a different version of
714 	 * the same toplevel vdev.
715 	 */
716 	if (cvd->vdev_top == cvd) {
717 		pvd->vdev_guid_sum -= cvd->vdev_guid;
718 		cvd->vdev_guid_sum -= cvd->vdev_guid;
719 		cvd->vdev_guid = mvd->vdev_guid;
720 		cvd->vdev_guid_sum += mvd->vdev_guid;
721 		pvd->vdev_guid_sum += cvd->vdev_guid;
722 	}
723 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
724 
725 	if (cvd == cvd->vdev_top)
726 		vdev_top_transfer(mvd, cvd);
727 
728 	ASSERT(mvd->vdev_children == 0);
729 	vdev_free(mvd);
730 }
731 
732 int
733 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
734 {
735 	spa_t *spa = vd->vdev_spa;
736 	objset_t *mos = spa->spa_meta_objset;
737 	metaslab_class_t *mc;
738 	uint64_t m;
739 	uint64_t oldc = vd->vdev_ms_count;
740 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
741 	metaslab_t **mspp;
742 	int error;
743 
744 	if (vd->vdev_ms_shift == 0)	/* not being allocated from yet */
745 		return (0);
746 
747 	dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc);
748 
749 	ASSERT(oldc <= newc);
750 
751 	if (vd->vdev_islog)
752 		mc = spa->spa_log_class;
753 	else
754 		mc = spa->spa_normal_class;
755 
756 	if (vd->vdev_mg == NULL)
757 		vd->vdev_mg = metaslab_group_create(mc, vd);
758 
759 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
760 
761 	if (oldc != 0) {
762 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
763 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
764 	}
765 
766 	vd->vdev_ms = mspp;
767 	vd->vdev_ms_count = newc;
768 
769 	for (m = oldc; m < newc; m++) {
770 		space_map_obj_t smo = { 0, 0, 0 };
771 		if (txg == 0) {
772 			uint64_t object = 0;
773 			error = dmu_read(mos, vd->vdev_ms_array,
774 			    m * sizeof (uint64_t), sizeof (uint64_t), &object);
775 			if (error)
776 				return (error);
777 			if (object != 0) {
778 				dmu_buf_t *db;
779 				error = dmu_bonus_hold(mos, object, FTAG, &db);
780 				if (error)
781 					return (error);
782 				ASSERT3U(db->db_size, >=, sizeof (smo));
783 				bcopy(db->db_data, &smo, sizeof (smo));
784 				ASSERT3U(smo.smo_object, ==, object);
785 				dmu_buf_rele(db, FTAG);
786 			}
787 		}
788 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
789 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
790 	}
791 
792 	return (0);
793 }
794 
795 void
796 vdev_metaslab_fini(vdev_t *vd)
797 {
798 	uint64_t m;
799 	uint64_t count = vd->vdev_ms_count;
800 
801 	if (vd->vdev_ms != NULL) {
802 		for (m = 0; m < count; m++)
803 			if (vd->vdev_ms[m] != NULL)
804 				metaslab_fini(vd->vdev_ms[m]);
805 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
806 		vd->vdev_ms = NULL;
807 	}
808 }
809 
810 int
811 vdev_probe(vdev_t *vd)
812 {
813 	if (vd == NULL)
814 		return (EINVAL);
815 
816 	/*
817 	 * Right now we only support status checks on the leaf vdevs.
818 	 */
819 	if (vd->vdev_ops->vdev_op_leaf)
820 		return (vd->vdev_ops->vdev_op_probe(vd));
821 
822 	return (0);
823 }
824 
825 /*
826  * Prepare a virtual device for access.
827  */
828 int
829 vdev_open(vdev_t *vd)
830 {
831 	int error;
832 	int c;
833 	uint64_t osize = 0;
834 	uint64_t asize, psize;
835 	uint64_t ashift = 0;
836 
837 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
838 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
839 	    vd->vdev_state == VDEV_STATE_OFFLINE);
840 
841 	if (vd->vdev_fault_mode == VDEV_FAULT_COUNT)
842 		vd->vdev_fault_arg >>= 1;
843 	else
844 		vd->vdev_fault_mode = VDEV_FAULT_NONE;
845 
846 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
847 
848 	if (!vd->vdev_removed && vd->vdev_faulted) {
849 		ASSERT(vd->vdev_children == 0);
850 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
851 		    VDEV_AUX_ERR_EXCEEDED);
852 		return (ENXIO);
853 	} else if (vd->vdev_offline) {
854 		ASSERT(vd->vdev_children == 0);
855 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
856 		return (ENXIO);
857 	}
858 
859 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
860 
861 	if (zio_injection_enabled && error == 0)
862 		error = zio_handle_device_injection(vd, ENXIO);
863 
864 	if (error) {
865 		if (vd->vdev_removed &&
866 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
867 			vd->vdev_removed = B_FALSE;
868 
869 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
870 		    vd->vdev_stat.vs_aux);
871 		return (error);
872 	}
873 
874 	vd->vdev_removed = B_FALSE;
875 
876 	if (vd->vdev_degraded) {
877 		ASSERT(vd->vdev_children == 0);
878 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
879 		    VDEV_AUX_ERR_EXCEEDED);
880 	} else {
881 		vd->vdev_state = VDEV_STATE_HEALTHY;
882 	}
883 
884 	for (c = 0; c < vd->vdev_children; c++)
885 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
886 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
887 			    VDEV_AUX_NONE);
888 			break;
889 		}
890 
891 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
892 
893 	if (vd->vdev_children == 0) {
894 		if (osize < SPA_MINDEVSIZE) {
895 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
896 			    VDEV_AUX_TOO_SMALL);
897 			return (EOVERFLOW);
898 		}
899 		psize = osize;
900 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
901 	} else {
902 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
903 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
904 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
905 			    VDEV_AUX_TOO_SMALL);
906 			return (EOVERFLOW);
907 		}
908 		psize = 0;
909 		asize = osize;
910 	}
911 
912 	vd->vdev_psize = psize;
913 
914 	if (vd->vdev_asize == 0) {
915 		/*
916 		 * This is the first-ever open, so use the computed values.
917 		 * For testing purposes, a higher ashift can be requested.
918 		 */
919 		vd->vdev_asize = asize;
920 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
921 	} else {
922 		/*
923 		 * Make sure the alignment requirement hasn't increased.
924 		 */
925 		if (ashift > vd->vdev_top->vdev_ashift) {
926 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
927 			    VDEV_AUX_BAD_LABEL);
928 			return (EINVAL);
929 		}
930 
931 		/*
932 		 * Make sure the device hasn't shrunk.
933 		 */
934 		if (asize < vd->vdev_asize) {
935 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
936 			    VDEV_AUX_BAD_LABEL);
937 			return (EINVAL);
938 		}
939 
940 		/*
941 		 * If all children are healthy and the asize has increased,
942 		 * then we've experienced dynamic LUN growth.
943 		 */
944 		if (vd->vdev_state == VDEV_STATE_HEALTHY &&
945 		    asize > vd->vdev_asize) {
946 			vd->vdev_asize = asize;
947 		}
948 	}
949 
950 	/*
951 	 * Ensure we can issue some IO before declaring the
952 	 * vdev open for business.
953 	 */
954 	error = vdev_probe(vd);
955 	if (error) {
956 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
957 		    VDEV_AUX_OPEN_FAILED);
958 		return (error);
959 	}
960 
961 	/*
962 	 * If this is a top-level vdev, compute the raidz-deflation
963 	 * ratio.  Note, we hard-code in 128k (1<<17) because it is the
964 	 * current "typical" blocksize.  Even if SPA_MAXBLOCKSIZE
965 	 * changes, this algorithm must never change, or we will
966 	 * inconsistently account for existing bp's.
967 	 */
968 	if (vd->vdev_top == vd) {
969 		vd->vdev_deflate_ratio = (1<<17) /
970 		    (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT);
971 	}
972 
973 	return (0);
974 }
975 
976 /*
977  * Called once the vdevs are all opened, this routine validates the label
978  * contents.  This needs to be done before vdev_load() so that we don't
979  * inadvertently do repair I/Os to the wrong device.
980  *
981  * This function will only return failure if one of the vdevs indicates that it
982  * has since been destroyed or exported.  This is only possible if
983  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
984  * will be updated but the function will return 0.
985  */
986 int
987 vdev_validate(vdev_t *vd)
988 {
989 	spa_t *spa = vd->vdev_spa;
990 	int c;
991 	nvlist_t *label;
992 	uint64_t guid;
993 	uint64_t state;
994 
995 	for (c = 0; c < vd->vdev_children; c++)
996 		if (vdev_validate(vd->vdev_child[c]) != 0)
997 			return (EBADF);
998 
999 	/*
1000 	 * If the device has already failed, or was marked offline, don't do
1001 	 * any further validation.  Otherwise, label I/O will fail and we will
1002 	 * overwrite the previous state.
1003 	 */
1004 	if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) {
1005 
1006 		if ((label = vdev_label_read_config(vd)) == NULL) {
1007 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1008 			    VDEV_AUX_BAD_LABEL);
1009 			return (0);
1010 		}
1011 
1012 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1013 		    &guid) != 0 || guid != spa_guid(spa)) {
1014 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1015 			    VDEV_AUX_CORRUPT_DATA);
1016 			nvlist_free(label);
1017 			return (0);
1018 		}
1019 
1020 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1021 		    &guid) != 0 || guid != vd->vdev_guid) {
1022 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1023 			    VDEV_AUX_CORRUPT_DATA);
1024 			nvlist_free(label);
1025 			return (0);
1026 		}
1027 
1028 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1029 		    &state) != 0) {
1030 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1031 			    VDEV_AUX_CORRUPT_DATA);
1032 			nvlist_free(label);
1033 			return (0);
1034 		}
1035 
1036 		nvlist_free(label);
1037 
1038 		if (spa->spa_load_state == SPA_LOAD_OPEN &&
1039 		    state != POOL_STATE_ACTIVE)
1040 			return (EBADF);
1041 
1042 		/*
1043 		 * If we were able to open and validate a vdev that was
1044 		 * previously marked permanently unavailable, clear that state
1045 		 * now.
1046 		 */
1047 		if (vd->vdev_not_present)
1048 			vd->vdev_not_present = 0;
1049 	}
1050 
1051 	return (0);
1052 }
1053 
1054 /*
1055  * Close a virtual device.
1056  */
1057 void
1058 vdev_close(vdev_t *vd)
1059 {
1060 	vd->vdev_ops->vdev_op_close(vd);
1061 
1062 	vdev_cache_purge(vd);
1063 
1064 	/*
1065 	 * We record the previous state before we close it, so  that if we are
1066 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1067 	 * it's still faulted.
1068 	 */
1069 	vd->vdev_prevstate = vd->vdev_state;
1070 
1071 	if (vd->vdev_offline)
1072 		vd->vdev_state = VDEV_STATE_OFFLINE;
1073 	else
1074 		vd->vdev_state = VDEV_STATE_CLOSED;
1075 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1076 }
1077 
1078 void
1079 vdev_reopen(vdev_t *vd)
1080 {
1081 	spa_t *spa = vd->vdev_spa;
1082 
1083 	ASSERT(spa_config_held(spa, RW_WRITER));
1084 
1085 	vdev_close(vd);
1086 	(void) vdev_open(vd);
1087 
1088 	/*
1089 	 * Call vdev_validate() here to make sure we have the same device.
1090 	 * Otherwise, a device with an invalid label could be successfully
1091 	 * opened in response to vdev_reopen().
1092 	 */
1093 	if (vd->vdev_aux) {
1094 		(void) vdev_validate_aux(vd);
1095 		if (!vdev_is_dead(vd) &&
1096 		    !l2arc_vdev_present(vd)) {
1097 			uint64_t size = vdev_get_rsize(vd);
1098 			l2arc_add_vdev(spa, vd,
1099 			    VDEV_LABEL_START_SIZE,
1100 			    size - VDEV_LABEL_START_SIZE);
1101 		}
1102 	} else {
1103 		(void) vdev_validate(vd);
1104 	}
1105 
1106 	/*
1107 	 * Reassess parent vdev's health.
1108 	 */
1109 	vdev_propagate_state(vd);
1110 }
1111 
1112 int
1113 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1114 {
1115 	int error;
1116 
1117 	/*
1118 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1119 	 * For a create, however, we want to fail the request if
1120 	 * there are any components we can't open.
1121 	 */
1122 	error = vdev_open(vd);
1123 
1124 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1125 		vdev_close(vd);
1126 		return (error ? error : ENXIO);
1127 	}
1128 
1129 	/*
1130 	 * Recursively initialize all labels.
1131 	 */
1132 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1133 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1134 		vdev_close(vd);
1135 		return (error);
1136 	}
1137 
1138 	return (0);
1139 }
1140 
1141 /*
1142  * The is the latter half of vdev_create().  It is distinct because it
1143  * involves initiating transactions in order to do metaslab creation.
1144  * For creation, we want to try to create all vdevs at once and then undo it
1145  * if anything fails; this is much harder if we have pending transactions.
1146  */
1147 void
1148 vdev_init(vdev_t *vd, uint64_t txg)
1149 {
1150 	/*
1151 	 * Aim for roughly 200 metaslabs per vdev.
1152 	 */
1153 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1154 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1155 
1156 	/*
1157 	 * Initialize the vdev's metaslabs.  This can't fail because
1158 	 * there's nothing to read when creating all new metaslabs.
1159 	 */
1160 	VERIFY(vdev_metaslab_init(vd, txg) == 0);
1161 }
1162 
1163 void
1164 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1165 {
1166 	ASSERT(vd == vd->vdev_top);
1167 	ASSERT(ISP2(flags));
1168 
1169 	if (flags & VDD_METASLAB)
1170 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1171 
1172 	if (flags & VDD_DTL)
1173 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1174 
1175 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1176 }
1177 
1178 void
1179 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size)
1180 {
1181 	mutex_enter(sm->sm_lock);
1182 	if (!space_map_contains(sm, txg, size))
1183 		space_map_add(sm, txg, size);
1184 	mutex_exit(sm->sm_lock);
1185 }
1186 
1187 int
1188 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size)
1189 {
1190 	int dirty;
1191 
1192 	/*
1193 	 * Quick test without the lock -- covers the common case that
1194 	 * there are no dirty time segments.
1195 	 */
1196 	if (sm->sm_space == 0)
1197 		return (0);
1198 
1199 	mutex_enter(sm->sm_lock);
1200 	dirty = space_map_contains(sm, txg, size);
1201 	mutex_exit(sm->sm_lock);
1202 
1203 	return (dirty);
1204 }
1205 
1206 /*
1207  * Reassess DTLs after a config change or scrub completion.
1208  */
1209 void
1210 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1211 {
1212 	spa_t *spa = vd->vdev_spa;
1213 	int c;
1214 
1215 	ASSERT(spa_config_held(spa, RW_WRITER));
1216 
1217 	if (vd->vdev_children == 0) {
1218 		mutex_enter(&vd->vdev_dtl_lock);
1219 		/*
1220 		 * We're successfully scrubbed everything up to scrub_txg.
1221 		 * Therefore, excise all old DTLs up to that point, then
1222 		 * fold in the DTLs for everything we couldn't scrub.
1223 		 */
1224 		if (scrub_txg != 0) {
1225 			space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg);
1226 			space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub);
1227 		}
1228 		if (scrub_done)
1229 			space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1230 		mutex_exit(&vd->vdev_dtl_lock);
1231 		if (txg != 0)
1232 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1233 		return;
1234 	}
1235 
1236 	/*
1237 	 * Make sure the DTLs are always correct under the scrub lock.
1238 	 */
1239 	if (vd == spa->spa_root_vdev)
1240 		mutex_enter(&spa->spa_scrub_lock);
1241 
1242 	mutex_enter(&vd->vdev_dtl_lock);
1243 	space_map_vacate(&vd->vdev_dtl_map, NULL, NULL);
1244 	space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL);
1245 	mutex_exit(&vd->vdev_dtl_lock);
1246 
1247 	for (c = 0; c < vd->vdev_children; c++) {
1248 		vdev_t *cvd = vd->vdev_child[c];
1249 		vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done);
1250 		mutex_enter(&vd->vdev_dtl_lock);
1251 		space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map);
1252 		space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub);
1253 		mutex_exit(&vd->vdev_dtl_lock);
1254 	}
1255 
1256 	if (vd == spa->spa_root_vdev)
1257 		mutex_exit(&spa->spa_scrub_lock);
1258 }
1259 
1260 static int
1261 vdev_dtl_load(vdev_t *vd)
1262 {
1263 	spa_t *spa = vd->vdev_spa;
1264 	space_map_obj_t *smo = &vd->vdev_dtl;
1265 	objset_t *mos = spa->spa_meta_objset;
1266 	dmu_buf_t *db;
1267 	int error;
1268 
1269 	ASSERT(vd->vdev_children == 0);
1270 
1271 	if (smo->smo_object == 0)
1272 		return (0);
1273 
1274 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1275 		return (error);
1276 
1277 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1278 	bcopy(db->db_data, smo, sizeof (*smo));
1279 	dmu_buf_rele(db, FTAG);
1280 
1281 	mutex_enter(&vd->vdev_dtl_lock);
1282 	error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos);
1283 	mutex_exit(&vd->vdev_dtl_lock);
1284 
1285 	return (error);
1286 }
1287 
1288 void
1289 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1290 {
1291 	spa_t *spa = vd->vdev_spa;
1292 	space_map_obj_t *smo = &vd->vdev_dtl;
1293 	space_map_t *sm = &vd->vdev_dtl_map;
1294 	objset_t *mos = spa->spa_meta_objset;
1295 	space_map_t smsync;
1296 	kmutex_t smlock;
1297 	dmu_buf_t *db;
1298 	dmu_tx_t *tx;
1299 
1300 	dprintf("%s in txg %llu pass %d\n",
1301 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1302 
1303 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1304 
1305 	if (vd->vdev_detached) {
1306 		if (smo->smo_object != 0) {
1307 			int err = dmu_object_free(mos, smo->smo_object, tx);
1308 			ASSERT3U(err, ==, 0);
1309 			smo->smo_object = 0;
1310 		}
1311 		dmu_tx_commit(tx);
1312 		dprintf("detach %s committed in txg %llu\n",
1313 		    vdev_description(vd), txg);
1314 		return;
1315 	}
1316 
1317 	if (smo->smo_object == 0) {
1318 		ASSERT(smo->smo_objsize == 0);
1319 		ASSERT(smo->smo_alloc == 0);
1320 		smo->smo_object = dmu_object_alloc(mos,
1321 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1322 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1323 		ASSERT(smo->smo_object != 0);
1324 		vdev_config_dirty(vd->vdev_top);
1325 	}
1326 
1327 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1328 
1329 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1330 	    &smlock);
1331 
1332 	mutex_enter(&smlock);
1333 
1334 	mutex_enter(&vd->vdev_dtl_lock);
1335 	space_map_walk(sm, space_map_add, &smsync);
1336 	mutex_exit(&vd->vdev_dtl_lock);
1337 
1338 	space_map_truncate(smo, mos, tx);
1339 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1340 
1341 	space_map_destroy(&smsync);
1342 
1343 	mutex_exit(&smlock);
1344 	mutex_destroy(&smlock);
1345 
1346 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1347 	dmu_buf_will_dirty(db, tx);
1348 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1349 	bcopy(smo, db->db_data, sizeof (*smo));
1350 	dmu_buf_rele(db, FTAG);
1351 
1352 	dmu_tx_commit(tx);
1353 }
1354 
1355 void
1356 vdev_load(vdev_t *vd)
1357 {
1358 	int c;
1359 
1360 	/*
1361 	 * Recursively load all children.
1362 	 */
1363 	for (c = 0; c < vd->vdev_children; c++)
1364 		vdev_load(vd->vdev_child[c]);
1365 
1366 	/*
1367 	 * If this is a top-level vdev, initialize its metaslabs.
1368 	 */
1369 	if (vd == vd->vdev_top &&
1370 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1371 	    vdev_metaslab_init(vd, 0) != 0))
1372 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1373 		    VDEV_AUX_CORRUPT_DATA);
1374 
1375 	/*
1376 	 * If this is a leaf vdev, load its DTL.
1377 	 */
1378 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1379 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1380 		    VDEV_AUX_CORRUPT_DATA);
1381 }
1382 
1383 /*
1384  * The special vdev case is used for hot spares and l2cache devices.  Its
1385  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1386  * we make sure that we can open the underlying device, then try to read the
1387  * label, and make sure that the label is sane and that it hasn't been
1388  * repurposed to another pool.
1389  */
1390 int
1391 vdev_validate_aux(vdev_t *vd)
1392 {
1393 	nvlist_t *label;
1394 	uint64_t guid, version;
1395 	uint64_t state;
1396 
1397 	if (vdev_is_dead(vd))
1398 		return (0);
1399 
1400 	if ((label = vdev_label_read_config(vd)) == NULL) {
1401 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1402 		    VDEV_AUX_CORRUPT_DATA);
1403 		return (-1);
1404 	}
1405 
1406 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1407 	    version > SPA_VERSION ||
1408 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1409 	    guid != vd->vdev_guid ||
1410 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1411 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1412 		    VDEV_AUX_CORRUPT_DATA);
1413 		nvlist_free(label);
1414 		return (-1);
1415 	}
1416 
1417 	/*
1418 	 * We don't actually check the pool state here.  If it's in fact in
1419 	 * use by another pool, we update this fact on the fly when requested.
1420 	 */
1421 	nvlist_free(label);
1422 	return (0);
1423 }
1424 
1425 void
1426 vdev_sync_done(vdev_t *vd, uint64_t txg)
1427 {
1428 	metaslab_t *msp;
1429 
1430 	dprintf("%s txg %llu\n", vdev_description(vd), txg);
1431 
1432 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
1433 		metaslab_sync_done(msp, txg);
1434 }
1435 
1436 void
1437 vdev_sync(vdev_t *vd, uint64_t txg)
1438 {
1439 	spa_t *spa = vd->vdev_spa;
1440 	vdev_t *lvd;
1441 	metaslab_t *msp;
1442 	dmu_tx_t *tx;
1443 
1444 	dprintf("%s txg %llu pass %d\n",
1445 	    vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa));
1446 
1447 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
1448 		ASSERT(vd == vd->vdev_top);
1449 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1450 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
1451 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
1452 		ASSERT(vd->vdev_ms_array != 0);
1453 		vdev_config_dirty(vd);
1454 		dmu_tx_commit(tx);
1455 	}
1456 
1457 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
1458 		metaslab_sync(msp, txg);
1459 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
1460 	}
1461 
1462 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
1463 		vdev_dtl_sync(lvd, txg);
1464 
1465 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
1466 }
1467 
1468 uint64_t
1469 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
1470 {
1471 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
1472 }
1473 
1474 const char *
1475 vdev_description(vdev_t *vd)
1476 {
1477 	if (vd == NULL || vd->vdev_ops == NULL)
1478 		return ("<unknown>");
1479 
1480 	if (vd->vdev_path != NULL)
1481 		return (vd->vdev_path);
1482 
1483 	if (vd->vdev_parent == NULL)
1484 		return (spa_name(vd->vdev_spa));
1485 
1486 	return (vd->vdev_ops->vdev_op_type);
1487 }
1488 
1489 /*
1490  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
1491  * not be opened, and no I/O is attempted.
1492  */
1493 int
1494 vdev_fault(spa_t *spa, uint64_t guid)
1495 {
1496 	vdev_t *vd;
1497 	uint64_t txg;
1498 
1499 	/*
1500 	 * Disregard a vdev fault request if the pool has
1501 	 * experienced a complete failure.
1502 	 *
1503 	 * XXX - We do this here so that we don't hold the
1504 	 * spa_namespace_lock in the event that we can't get
1505 	 * the RW_WRITER spa_config_lock.
1506 	 */
1507 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1508 		return (EIO);
1509 
1510 	txg = spa_vdev_enter(spa);
1511 
1512 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1513 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1514 	if (!vd->vdev_ops->vdev_op_leaf)
1515 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1516 
1517 	/*
1518 	 * Faulted state takes precedence over degraded.
1519 	 */
1520 	vd->vdev_faulted = 1ULL;
1521 	vd->vdev_degraded = 0ULL;
1522 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED,
1523 	    VDEV_AUX_ERR_EXCEEDED);
1524 
1525 	/*
1526 	 * If marking the vdev as faulted cause the toplevel vdev to become
1527 	 * unavailable, then back off and simply mark the vdev as degraded
1528 	 * instead.
1529 	 */
1530 	if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1531 		vd->vdev_degraded = 1ULL;
1532 		vd->vdev_faulted = 0ULL;
1533 
1534 		/*
1535 		 * If we reopen the device and it's not dead, only then do we
1536 		 * mark it degraded.
1537 		 */
1538 		vdev_reopen(vd);
1539 
1540 		if (vdev_readable(vd)) {
1541 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1542 			    VDEV_AUX_ERR_EXCEEDED);
1543 		}
1544 	}
1545 
1546 	vdev_config_dirty(vd->vdev_top);
1547 
1548 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1549 
1550 	return (0);
1551 }
1552 
1553 /*
1554  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
1555  * user that something is wrong.  The vdev continues to operate as normal as far
1556  * as I/O is concerned.
1557  */
1558 int
1559 vdev_degrade(spa_t *spa, uint64_t guid)
1560 {
1561 	vdev_t *vd;
1562 	uint64_t txg;
1563 
1564 	/*
1565 	 * Disregard a vdev fault request if the pool has
1566 	 * experienced a complete failure.
1567 	 *
1568 	 * XXX - We do this here so that we don't hold the
1569 	 * spa_namespace_lock in the event that we can't get
1570 	 * the RW_WRITER spa_config_lock.
1571 	 */
1572 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1573 		return (EIO);
1574 
1575 	txg = spa_vdev_enter(spa);
1576 
1577 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1578 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1579 	if (!vd->vdev_ops->vdev_op_leaf)
1580 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1581 
1582 	/*
1583 	 * If the vdev is already faulted, then don't do anything.
1584 	 */
1585 	if (vd->vdev_faulted || vd->vdev_degraded) {
1586 		(void) spa_vdev_exit(spa, NULL, txg, 0);
1587 		return (0);
1588 	}
1589 
1590 	vd->vdev_degraded = 1ULL;
1591 	if (!vdev_is_dead(vd))
1592 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
1593 		    VDEV_AUX_ERR_EXCEEDED);
1594 	vdev_config_dirty(vd->vdev_top);
1595 
1596 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1597 
1598 	return (0);
1599 }
1600 
1601 /*
1602  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
1603  * any attached spare device should be detached when the device finishes
1604  * resilvering.  Second, the online should be treated like a 'test' online case,
1605  * so no FMA events are generated if the device fails to open.
1606  */
1607 int
1608 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags,
1609     vdev_state_t *newstate)
1610 {
1611 	vdev_t *vd;
1612 	uint64_t txg;
1613 
1614 	/*
1615 	 * Disregard a vdev fault request if the pool has
1616 	 * experienced a complete failure.
1617 	 *
1618 	 * XXX - We do this here so that we don't hold the
1619 	 * spa_namespace_lock in the event that we can't get
1620 	 * the RW_WRITER spa_config_lock.
1621 	 */
1622 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1623 		return (EIO);
1624 
1625 	txg = spa_vdev_enter(spa);
1626 
1627 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1628 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1629 
1630 	if (!vd->vdev_ops->vdev_op_leaf)
1631 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1632 
1633 	vd->vdev_offline = B_FALSE;
1634 	vd->vdev_tmpoffline = B_FALSE;
1635 	vd->vdev_checkremove = (flags & ZFS_ONLINE_CHECKREMOVE) ?
1636 	    B_TRUE : B_FALSE;
1637 	vd->vdev_forcefault = (flags & ZFS_ONLINE_FORCEFAULT) ?
1638 	    B_TRUE : B_FALSE;
1639 	vdev_reopen(vd->vdev_top);
1640 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
1641 
1642 	if (newstate)
1643 		*newstate = vd->vdev_state;
1644 	if ((flags & ZFS_ONLINE_UNSPARE) &&
1645 	    !vdev_is_dead(vd) && vd->vdev_parent &&
1646 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
1647 	    vd->vdev_parent->vdev_child[0] == vd)
1648 		vd->vdev_unspare = B_TRUE;
1649 
1650 	vdev_config_dirty(vd->vdev_top);
1651 
1652 	(void) spa_vdev_exit(spa, NULL, txg, 0);
1653 
1654 	/*
1655 	 * Must hold spa_namespace_lock in order to post resilver sysevent
1656 	 * w/pool name.
1657 	 */
1658 	mutex_enter(&spa_namespace_lock);
1659 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1660 	mutex_exit(&spa_namespace_lock);
1661 
1662 	return (0);
1663 }
1664 
1665 int
1666 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
1667 {
1668 	vdev_t *vd;
1669 	uint64_t txg;
1670 
1671 	/*
1672 	 * Disregard a vdev fault request if the pool has
1673 	 * experienced a complete failure.
1674 	 *
1675 	 * XXX - We do this here so that we don't hold the
1676 	 * spa_namespace_lock in the event that we can't get
1677 	 * the RW_WRITER spa_config_lock.
1678 	 */
1679 	if (spa_state(spa) == POOL_STATE_IO_FAILURE)
1680 		return (EIO);
1681 
1682 	txg = spa_vdev_enter(spa);
1683 
1684 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
1685 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1686 
1687 	if (!vd->vdev_ops->vdev_op_leaf)
1688 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1689 
1690 	/*
1691 	 * If the device isn't already offline, try to offline it.
1692 	 */
1693 	if (!vd->vdev_offline) {
1694 		/*
1695 		 * If this device's top-level vdev has a non-empty DTL,
1696 		 * don't allow the device to be offlined.
1697 		 *
1698 		 * XXX -- make this more precise by allowing the offline
1699 		 * as long as the remaining devices don't have any DTL holes.
1700 		 */
1701 		if (vd->vdev_top->vdev_dtl_map.sm_space != 0)
1702 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1703 
1704 		/*
1705 		 * Offline this device and reopen its top-level vdev.
1706 		 * If this action results in the top-level vdev becoming
1707 		 * unusable, undo it and fail the request.
1708 		 */
1709 		vd->vdev_offline = B_TRUE;
1710 		vdev_reopen(vd->vdev_top);
1711 		if (vdev_is_dead(vd->vdev_top) && vd->vdev_aux == NULL) {
1712 			vd->vdev_offline = B_FALSE;
1713 			vdev_reopen(vd->vdev_top);
1714 			return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1715 		}
1716 	}
1717 
1718 	vd->vdev_tmpoffline = (flags & ZFS_OFFLINE_TEMPORARY) ?
1719 	    B_TRUE : B_FALSE;
1720 
1721 	vdev_config_dirty(vd->vdev_top);
1722 
1723 	return (spa_vdev_exit(spa, NULL, txg, 0));
1724 }
1725 
1726 /*
1727  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
1728  * vdev_offline(), we assume the spa config is locked.  We also clear all
1729  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
1730  * If reopen is specified then attempt to reopen the vdev if the vdev is
1731  * faulted or degraded.
1732  */
1733 void
1734 vdev_clear(spa_t *spa, vdev_t *vd, boolean_t reopen_wanted)
1735 {
1736 	int c;
1737 
1738 	if (vd == NULL)
1739 		vd = spa->spa_root_vdev;
1740 
1741 	vd->vdev_stat.vs_read_errors = 0;
1742 	vd->vdev_stat.vs_write_errors = 0;
1743 	vd->vdev_stat.vs_checksum_errors = 0;
1744 	vd->vdev_is_failing = B_FALSE;
1745 
1746 	for (c = 0; c < vd->vdev_children; c++)
1747 		vdev_clear(spa, vd->vdev_child[c], reopen_wanted);
1748 
1749 	/*
1750 	 * If we're in the FAULTED state or have experienced failed I/O, then
1751 	 * clear the persistent state and attempt to reopen the device.  We
1752 	 * also mark the vdev config dirty, so that the new faulted state is
1753 	 * written out to disk.
1754 	 */
1755 	if (reopen_wanted && (vd->vdev_faulted || vd->vdev_degraded ||
1756 	    vd->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE)) {
1757 		boolean_t resilver = (vd->vdev_faulted || vd->vdev_degraded);
1758 
1759 		vd->vdev_faulted = vd->vdev_degraded = 0;
1760 		vdev_reopen(vd);
1761 		vdev_config_dirty(vd->vdev_top);
1762 
1763 		if (resilver && vd->vdev_aux == NULL && !vdev_is_dead(vd))
1764 			spa_async_request(spa, SPA_ASYNC_RESILVER);
1765 
1766 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
1767 	}
1768 }
1769 
1770 int
1771 vdev_readable(vdev_t *vd)
1772 {
1773 	/* XXPOLICY */
1774 	return (!vdev_is_dead(vd));
1775 }
1776 
1777 int
1778 vdev_writeable(vdev_t *vd)
1779 {
1780 	return (!vdev_is_dead(vd) && !vd->vdev_is_failing);
1781 }
1782 
1783 int
1784 vdev_is_dead(vdev_t *vd)
1785 {
1786 	/*
1787 	 * If the vdev experienced I/O failures, then the vdev is marked
1788 	 * as faulted (VDEV_STATE_FAULTED) for status output and FMA; however,
1789 	 * we need to allow access to the vdev for resumed I/Os (see
1790 	 * zio_vdev_resume_io() ).
1791 	 */
1792 	return (vd->vdev_state < VDEV_STATE_DEGRADED &&
1793 	    vd->vdev_stat.vs_aux != VDEV_AUX_IO_FAILURE);
1794 }
1795 
1796 int
1797 vdev_error_inject(vdev_t *vd, zio_t *zio)
1798 {
1799 	int error = 0;
1800 
1801 	if (vd->vdev_fault_mode == VDEV_FAULT_NONE)
1802 		return (0);
1803 
1804 	if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0)
1805 		return (0);
1806 
1807 	switch (vd->vdev_fault_mode) {
1808 	case VDEV_FAULT_RANDOM:
1809 		if (spa_get_random(vd->vdev_fault_arg) == 0)
1810 			error = EIO;
1811 		break;
1812 
1813 	case VDEV_FAULT_COUNT:
1814 		if ((int64_t)--vd->vdev_fault_arg <= 0)
1815 			vd->vdev_fault_mode = VDEV_FAULT_NONE;
1816 		error = EIO;
1817 		break;
1818 	}
1819 
1820 	return (error);
1821 }
1822 
1823 /*
1824  * Get statistics for the given vdev.
1825  */
1826 void
1827 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
1828 {
1829 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
1830 	int c, t;
1831 
1832 	mutex_enter(&vd->vdev_stat_lock);
1833 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
1834 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
1835 	vs->vs_state = vd->vdev_state;
1836 	vs->vs_rsize = vdev_get_rsize(vd);
1837 	mutex_exit(&vd->vdev_stat_lock);
1838 
1839 	/*
1840 	 * If we're getting stats on the root vdev, aggregate the I/O counts
1841 	 * over all top-level vdevs (i.e. the direct children of the root).
1842 	 */
1843 	if (vd == rvd) {
1844 		for (c = 0; c < rvd->vdev_children; c++) {
1845 			vdev_t *cvd = rvd->vdev_child[c];
1846 			vdev_stat_t *cvs = &cvd->vdev_stat;
1847 
1848 			mutex_enter(&vd->vdev_stat_lock);
1849 			for (t = 0; t < ZIO_TYPES; t++) {
1850 				vs->vs_ops[t] += cvs->vs_ops[t];
1851 				vs->vs_bytes[t] += cvs->vs_bytes[t];
1852 			}
1853 			vs->vs_read_errors += cvs->vs_read_errors;
1854 			vs->vs_write_errors += cvs->vs_write_errors;
1855 			vs->vs_checksum_errors += cvs->vs_checksum_errors;
1856 			vs->vs_scrub_examined += cvs->vs_scrub_examined;
1857 			vs->vs_scrub_errors += cvs->vs_scrub_errors;
1858 			mutex_exit(&vd->vdev_stat_lock);
1859 		}
1860 	}
1861 }
1862 
1863 void
1864 vdev_clear_stats(vdev_t *vd)
1865 {
1866 	mutex_enter(&vd->vdev_stat_lock);
1867 	vd->vdev_stat.vs_space = 0;
1868 	vd->vdev_stat.vs_dspace = 0;
1869 	vd->vdev_stat.vs_alloc = 0;
1870 	mutex_exit(&vd->vdev_stat_lock);
1871 }
1872 
1873 void
1874 vdev_stat_update(zio_t *zio)
1875 {
1876 	vdev_t *vd = zio->io_vd;
1877 	vdev_t *pvd;
1878 	uint64_t txg = zio->io_txg;
1879 	vdev_stat_t *vs = &vd->vdev_stat;
1880 	zio_type_t type = zio->io_type;
1881 	int flags = zio->io_flags;
1882 
1883 	if (zio->io_error == 0) {
1884 		if (!(flags & ZIO_FLAG_IO_BYPASS)) {
1885 			mutex_enter(&vd->vdev_stat_lock);
1886 			vs->vs_ops[type]++;
1887 			vs->vs_bytes[type] += zio->io_size;
1888 			mutex_exit(&vd->vdev_stat_lock);
1889 		}
1890 		if ((flags & ZIO_FLAG_IO_REPAIR) &&
1891 		    zio->io_delegate_list == NULL) {
1892 			mutex_enter(&vd->vdev_stat_lock);
1893 			if (flags & ZIO_FLAG_SCRUB_THREAD)
1894 				vs->vs_scrub_repaired += zio->io_size;
1895 			else
1896 				vs->vs_self_healed += zio->io_size;
1897 			mutex_exit(&vd->vdev_stat_lock);
1898 		}
1899 		return;
1900 	}
1901 
1902 	if (flags & ZIO_FLAG_SPECULATIVE)
1903 		return;
1904 
1905 	if (vdev_readable(vd)) {
1906 		mutex_enter(&vd->vdev_stat_lock);
1907 		if (type == ZIO_TYPE_READ) {
1908 			if (zio->io_error == ECKSUM)
1909 				vs->vs_checksum_errors++;
1910 			else
1911 				vs->vs_read_errors++;
1912 		}
1913 		if (type == ZIO_TYPE_WRITE)
1914 			vs->vs_write_errors++;
1915 		mutex_exit(&vd->vdev_stat_lock);
1916 	}
1917 
1918 	if (type == ZIO_TYPE_WRITE) {
1919 		if (txg == 0 || vd->vdev_children != 0)
1920 			return;
1921 		if (flags & ZIO_FLAG_SCRUB_THREAD) {
1922 			ASSERT(flags & ZIO_FLAG_IO_REPAIR);
1923 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1924 				vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1);
1925 		}
1926 		if (!(flags & ZIO_FLAG_IO_REPAIR)) {
1927 			if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1))
1928 				return;
1929 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1930 			for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent)
1931 				vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1);
1932 		}
1933 	}
1934 }
1935 
1936 void
1937 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete)
1938 {
1939 	int c;
1940 	vdev_stat_t *vs = &vd->vdev_stat;
1941 
1942 	for (c = 0; c < vd->vdev_children; c++)
1943 		vdev_scrub_stat_update(vd->vdev_child[c], type, complete);
1944 
1945 	mutex_enter(&vd->vdev_stat_lock);
1946 
1947 	if (type == POOL_SCRUB_NONE) {
1948 		/*
1949 		 * Update completion and end time.  Leave everything else alone
1950 		 * so we can report what happened during the previous scrub.
1951 		 */
1952 		vs->vs_scrub_complete = complete;
1953 		vs->vs_scrub_end = gethrestime_sec();
1954 	} else {
1955 		vs->vs_scrub_type = type;
1956 		vs->vs_scrub_complete = 0;
1957 		vs->vs_scrub_examined = 0;
1958 		vs->vs_scrub_repaired = 0;
1959 		vs->vs_scrub_errors = 0;
1960 		vs->vs_scrub_start = gethrestime_sec();
1961 		vs->vs_scrub_end = 0;
1962 	}
1963 
1964 	mutex_exit(&vd->vdev_stat_lock);
1965 }
1966 
1967 /*
1968  * Update the in-core space usage stats for this vdev and the root vdev.
1969  */
1970 void
1971 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta,
1972     boolean_t update_root)
1973 {
1974 	int64_t dspace_delta = space_delta;
1975 	spa_t *spa = vd->vdev_spa;
1976 	vdev_t *rvd = spa->spa_root_vdev;
1977 
1978 	ASSERT(vd == vd->vdev_top);
1979 
1980 	/*
1981 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
1982 	 * factor.  We must calculate this here and not at the root vdev
1983 	 * because the root vdev's psize-to-asize is simply the max of its
1984 	 * childrens', thus not accurate enough for us.
1985 	 */
1986 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
1987 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
1988 	    vd->vdev_deflate_ratio;
1989 
1990 	mutex_enter(&vd->vdev_stat_lock);
1991 	vd->vdev_stat.vs_space += space_delta;
1992 	vd->vdev_stat.vs_alloc += alloc_delta;
1993 	vd->vdev_stat.vs_dspace += dspace_delta;
1994 	mutex_exit(&vd->vdev_stat_lock);
1995 
1996 	if (update_root) {
1997 		ASSERT(rvd == vd->vdev_parent);
1998 		ASSERT(vd->vdev_ms_count != 0);
1999 
2000 		/*
2001 		 * Don't count non-normal (e.g. intent log) space as part of
2002 		 * the pool's capacity.
2003 		 */
2004 		if (vd->vdev_mg->mg_class != spa->spa_normal_class)
2005 			return;
2006 
2007 		mutex_enter(&rvd->vdev_stat_lock);
2008 		rvd->vdev_stat.vs_space += space_delta;
2009 		rvd->vdev_stat.vs_alloc += alloc_delta;
2010 		rvd->vdev_stat.vs_dspace += dspace_delta;
2011 		mutex_exit(&rvd->vdev_stat_lock);
2012 	}
2013 }
2014 
2015 /*
2016  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2017  * so that it will be written out next time the vdev configuration is synced.
2018  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2019  */
2020 void
2021 vdev_config_dirty(vdev_t *vd)
2022 {
2023 	spa_t *spa = vd->vdev_spa;
2024 	vdev_t *rvd = spa->spa_root_vdev;
2025 	int c;
2026 
2027 	/*
2028 	 * If this is an aux vdev (as with l2cache devices), then we update the
2029 	 * vdev config manually and set the sync flag.
2030 	 */
2031 	if (vd->vdev_aux != NULL) {
2032 		spa_aux_vdev_t *sav = vd->vdev_aux;
2033 		nvlist_t **aux;
2034 		uint_t naux;
2035 
2036 		for (c = 0; c < sav->sav_count; c++) {
2037 			if (sav->sav_vdevs[c] == vd)
2038 				break;
2039 		}
2040 
2041 		ASSERT(c < sav->sav_count);
2042 		sav->sav_sync = B_TRUE;
2043 
2044 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2045 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) == 0);
2046 
2047 		ASSERT(c < naux);
2048 
2049 		/*
2050 		 * Setting the nvlist in the middle if the array is a little
2051 		 * sketchy, but it will work.
2052 		 */
2053 		nvlist_free(aux[c]);
2054 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, B_FALSE, B_TRUE);
2055 
2056 		return;
2057 	}
2058 
2059 	/*
2060 	 * The dirty list is protected by the config lock.  The caller must
2061 	 * either hold the config lock as writer, or must be the sync thread
2062 	 * (which holds the lock as reader).  There's only one sync thread,
2063 	 * so this is sufficient to ensure mutual exclusion.
2064 	 */
2065 	ASSERT(spa_config_held(spa, RW_WRITER) ||
2066 	    dsl_pool_sync_context(spa_get_dsl(spa)));
2067 
2068 	if (vd == rvd) {
2069 		for (c = 0; c < rvd->vdev_children; c++)
2070 			vdev_config_dirty(rvd->vdev_child[c]);
2071 	} else {
2072 		ASSERT(vd == vd->vdev_top);
2073 
2074 		if (!list_link_active(&vd->vdev_dirty_node))
2075 			list_insert_head(&spa->spa_dirty_list, vd);
2076 	}
2077 }
2078 
2079 void
2080 vdev_config_clean(vdev_t *vd)
2081 {
2082 	spa_t *spa = vd->vdev_spa;
2083 
2084 	ASSERT(spa_config_held(spa, RW_WRITER) ||
2085 	    dsl_pool_sync_context(spa_get_dsl(spa)));
2086 
2087 	ASSERT(list_link_active(&vd->vdev_dirty_node));
2088 	list_remove(&spa->spa_dirty_list, vd);
2089 }
2090 
2091 /*
2092  * Propagate vdev state up from children to parent.
2093  */
2094 void
2095 vdev_propagate_state(vdev_t *vd)
2096 {
2097 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2098 	int degraded = 0, faulted = 0;
2099 	int corrupted = 0;
2100 	int c;
2101 	vdev_t *child;
2102 
2103 	if (vd->vdev_children > 0) {
2104 		for (c = 0; c < vd->vdev_children; c++) {
2105 			child = vd->vdev_child[c];
2106 
2107 			if ((vdev_is_dead(child) && !vdev_readable(child)) ||
2108 			    child->vdev_stat.vs_aux == VDEV_AUX_IO_FAILURE) {
2109 				/*
2110 				 * Root special: if there is a top-level log
2111 				 * device, treat the root vdev as if it were
2112 				 * degraded.
2113 				 */
2114 				if (child->vdev_islog && vd == rvd)
2115 					degraded++;
2116 				else
2117 					faulted++;
2118 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2119 				degraded++;
2120 			}
2121 
2122 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2123 				corrupted++;
2124 		}
2125 
2126 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2127 
2128 		/*
2129 		 * Root special: if there is a toplevel vdev that cannot be
2130 		 * opened due to corrupted metadata, then propagate the root
2131 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2132 		 * replicas'.
2133 		 */
2134 		if (corrupted && vd == rvd &&
2135 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2136 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2137 			    VDEV_AUX_CORRUPT_DATA);
2138 	}
2139 
2140 	if (vd->vdev_parent)
2141 		vdev_propagate_state(vd->vdev_parent);
2142 }
2143 
2144 /*
2145  * Set a vdev's state.  If this is during an open, we don't update the parent
2146  * state, because we're in the process of opening children depth-first.
2147  * Otherwise, we propagate the change to the parent.
2148  *
2149  * If this routine places a device in a faulted state, an appropriate ereport is
2150  * generated.
2151  */
2152 void
2153 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2154 {
2155 	uint64_t save_state;
2156 	spa_t *spa = vd->vdev_spa;
2157 
2158 	if (state == vd->vdev_state) {
2159 		vd->vdev_stat.vs_aux = aux;
2160 		return;
2161 	}
2162 
2163 	save_state = vd->vdev_state;
2164 
2165 	vd->vdev_state = state;
2166 	vd->vdev_stat.vs_aux = aux;
2167 
2168 	/*
2169 	 * If we are setting the vdev state to anything but an open state, then
2170 	 * always close the underlying device.  Otherwise, we keep accessible
2171 	 * but invalid devices open forever.  We don't call vdev_close() itself,
2172 	 * because that implies some extra checks (offline, etc) that we don't
2173 	 * want here.  This is limited to leaf devices, because otherwise
2174 	 * closing the device will affect other children.
2175 	 */
2176 	if (!vdev_readable(vd) && vd->vdev_ops->vdev_op_leaf)
2177 		vd->vdev_ops->vdev_op_close(vd);
2178 
2179 	if (vd->vdev_removed &&
2180 	    state == VDEV_STATE_CANT_OPEN &&
2181 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2182 		/*
2183 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2184 		 * device was previously marked removed and someone attempted to
2185 		 * reopen it.  If this failed due to a nonexistent device, then
2186 		 * keep the device in the REMOVED state.  We also let this be if
2187 		 * it is one of our special test online cases, which is only
2188 		 * attempting to online the device and shouldn't generate an FMA
2189 		 * fault.
2190 		 */
2191 		vd->vdev_state = VDEV_STATE_REMOVED;
2192 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2193 	} else if (state == VDEV_STATE_REMOVED) {
2194 		/*
2195 		 * Indicate to the ZFS DE that this device has been removed, and
2196 		 * any recent errors should be ignored.
2197 		 */
2198 		zfs_post_remove(spa, vd);
2199 		vd->vdev_removed = B_TRUE;
2200 	} else if (state == VDEV_STATE_CANT_OPEN) {
2201 		/*
2202 		 * If we fail to open a vdev during an import, we mark it as
2203 		 * "not available", which signifies that it was never there to
2204 		 * begin with.  Failure to open such a device is not considered
2205 		 * an error.
2206 		 */
2207 		if (spa->spa_load_state == SPA_LOAD_IMPORT &&
2208 		    !spa->spa_import_faulted &&
2209 		    vd->vdev_ops->vdev_op_leaf)
2210 			vd->vdev_not_present = 1;
2211 
2212 		/*
2213 		 * Post the appropriate ereport.  If the 'prevstate' field is
2214 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2215 		 * that this is part of a vdev_reopen().  In this case, we don't
2216 		 * want to post the ereport if the device was already in the
2217 		 * CANT_OPEN state beforehand.
2218 		 *
2219 		 * If the 'checkremove' flag is set, then this is an attempt to
2220 		 * online the device in response to an insertion event.  If we
2221 		 * hit this case, then we have detected an insertion event for a
2222 		 * faulted or offline device that wasn't in the removed state.
2223 		 * In this scenario, we don't post an ereport because we are
2224 		 * about to replace the device, or attempt an online with
2225 		 * vdev_forcefault, which will generate the fault for us.
2226 		 */
2227 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2228 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2229 		    vd != spa->spa_root_vdev) {
2230 			const char *class;
2231 
2232 			switch (aux) {
2233 			case VDEV_AUX_OPEN_FAILED:
2234 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2235 				break;
2236 			case VDEV_AUX_CORRUPT_DATA:
2237 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2238 				break;
2239 			case VDEV_AUX_NO_REPLICAS:
2240 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2241 				break;
2242 			case VDEV_AUX_BAD_GUID_SUM:
2243 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2244 				break;
2245 			case VDEV_AUX_TOO_SMALL:
2246 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2247 				break;
2248 			case VDEV_AUX_BAD_LABEL:
2249 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2250 				break;
2251 			default:
2252 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2253 			}
2254 
2255 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
2256 		}
2257 
2258 		/* Erase any notion of persistent removed state */
2259 		vd->vdev_removed = B_FALSE;
2260 	} else {
2261 		vd->vdev_removed = B_FALSE;
2262 	}
2263 
2264 	if (!isopen)
2265 		vdev_propagate_state(vd);
2266 }
2267