xref: /titanic_52/usr/src/uts/common/fs/zfs/vdev.c (revision 6298d5285e2394ba869ed330bfa7d7ef65fd7f55)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright 2015 Nexenta Systems, Inc.  All rights reserved.
26  * Copyright (c) 2014 Integros [integros.com]
27  * Copyright 2016 Toomas Soome <tsoome@me.com>
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/fm/fs/zfs.h>
32 #include <sys/spa.h>
33 #include <sys/spa_impl.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_tx.h>
36 #include <sys/vdev_impl.h>
37 #include <sys/uberblock_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/metaslab_impl.h>
40 #include <sys/space_map.h>
41 #include <sys/space_reftree.h>
42 #include <sys/zio.h>
43 #include <sys/zap.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/arc.h>
46 #include <sys/zil.h>
47 #include <sys/dsl_scan.h>
48 
49 /*
50  * Virtual device management.
51  */
52 
53 static vdev_ops_t *vdev_ops_table[] = {
54 	&vdev_root_ops,
55 	&vdev_raidz_ops,
56 	&vdev_mirror_ops,
57 	&vdev_replacing_ops,
58 	&vdev_spare_ops,
59 	&vdev_disk_ops,
60 	&vdev_file_ops,
61 	&vdev_missing_ops,
62 	&vdev_hole_ops,
63 	NULL
64 };
65 
66 /* maximum scrub/resilver I/O queue per leaf vdev */
67 int zfs_scrub_limit = 10;
68 
69 /*
70  * When a vdev is added, it will be divided into approximately (but no
71  * more than) this number of metaslabs.
72  */
73 int metaslabs_per_vdev = 200;
74 
75 /*
76  * Given a vdev type, return the appropriate ops vector.
77  */
78 static vdev_ops_t *
79 vdev_getops(const char *type)
80 {
81 	vdev_ops_t *ops, **opspp;
82 
83 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
84 		if (strcmp(ops->vdev_op_type, type) == 0)
85 			break;
86 
87 	return (ops);
88 }
89 
90 /*
91  * Default asize function: return the MAX of psize with the asize of
92  * all children.  This is what's used by anything other than RAID-Z.
93  */
94 uint64_t
95 vdev_default_asize(vdev_t *vd, uint64_t psize)
96 {
97 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
98 	uint64_t csize;
99 
100 	for (int c = 0; c < vd->vdev_children; c++) {
101 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
102 		asize = MAX(asize, csize);
103 	}
104 
105 	return (asize);
106 }
107 
108 /*
109  * Get the minimum allocatable size. We define the allocatable size as
110  * the vdev's asize rounded to the nearest metaslab. This allows us to
111  * replace or attach devices which don't have the same physical size but
112  * can still satisfy the same number of allocations.
113  */
114 uint64_t
115 vdev_get_min_asize(vdev_t *vd)
116 {
117 	vdev_t *pvd = vd->vdev_parent;
118 
119 	/*
120 	 * If our parent is NULL (inactive spare or cache) or is the root,
121 	 * just return our own asize.
122 	 */
123 	if (pvd == NULL)
124 		return (vd->vdev_asize);
125 
126 	/*
127 	 * The top-level vdev just returns the allocatable size rounded
128 	 * to the nearest metaslab.
129 	 */
130 	if (vd == vd->vdev_top)
131 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
132 
133 	/*
134 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
135 	 * so each child must provide at least 1/Nth of its asize.
136 	 */
137 	if (pvd->vdev_ops == &vdev_raidz_ops)
138 		return (pvd->vdev_min_asize / pvd->vdev_children);
139 
140 	return (pvd->vdev_min_asize);
141 }
142 
143 void
144 vdev_set_min_asize(vdev_t *vd)
145 {
146 	vd->vdev_min_asize = vdev_get_min_asize(vd);
147 
148 	for (int c = 0; c < vd->vdev_children; c++)
149 		vdev_set_min_asize(vd->vdev_child[c]);
150 }
151 
152 vdev_t *
153 vdev_lookup_top(spa_t *spa, uint64_t vdev)
154 {
155 	vdev_t *rvd = spa->spa_root_vdev;
156 
157 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
158 
159 	if (vdev < rvd->vdev_children) {
160 		ASSERT(rvd->vdev_child[vdev] != NULL);
161 		return (rvd->vdev_child[vdev]);
162 	}
163 
164 	return (NULL);
165 }
166 
167 vdev_t *
168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
169 {
170 	vdev_t *mvd;
171 
172 	if (vd->vdev_guid == guid)
173 		return (vd);
174 
175 	for (int c = 0; c < vd->vdev_children; c++)
176 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
177 		    NULL)
178 			return (mvd);
179 
180 	return (NULL);
181 }
182 
183 static int
184 vdev_count_leaves_impl(vdev_t *vd)
185 {
186 	int n = 0;
187 
188 	if (vd->vdev_ops->vdev_op_leaf)
189 		return (1);
190 
191 	for (int c = 0; c < vd->vdev_children; c++)
192 		n += vdev_count_leaves_impl(vd->vdev_child[c]);
193 
194 	return (n);
195 }
196 
197 int
198 vdev_count_leaves(spa_t *spa)
199 {
200 	return (vdev_count_leaves_impl(spa->spa_root_vdev));
201 }
202 
203 void
204 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
205 {
206 	size_t oldsize, newsize;
207 	uint64_t id = cvd->vdev_id;
208 	vdev_t **newchild;
209 	spa_t *spa = cvd->vdev_spa;
210 
211 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
212 	ASSERT(cvd->vdev_parent == NULL);
213 
214 	cvd->vdev_parent = pvd;
215 
216 	if (pvd == NULL)
217 		return;
218 
219 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
220 
221 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
222 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
223 	newsize = pvd->vdev_children * sizeof (vdev_t *);
224 
225 	newchild = kmem_zalloc(newsize, KM_SLEEP);
226 	if (pvd->vdev_child != NULL) {
227 		bcopy(pvd->vdev_child, newchild, oldsize);
228 		kmem_free(pvd->vdev_child, oldsize);
229 	}
230 
231 	pvd->vdev_child = newchild;
232 	pvd->vdev_child[id] = cvd;
233 
234 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
235 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
236 
237 	/*
238 	 * Walk up all ancestors to update guid sum.
239 	 */
240 	for (; pvd != NULL; pvd = pvd->vdev_parent)
241 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
242 }
243 
244 void
245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
246 {
247 	int c;
248 	uint_t id = cvd->vdev_id;
249 
250 	ASSERT(cvd->vdev_parent == pvd);
251 
252 	if (pvd == NULL)
253 		return;
254 
255 	ASSERT(id < pvd->vdev_children);
256 	ASSERT(pvd->vdev_child[id] == cvd);
257 
258 	pvd->vdev_child[id] = NULL;
259 	cvd->vdev_parent = NULL;
260 
261 	for (c = 0; c < pvd->vdev_children; c++)
262 		if (pvd->vdev_child[c])
263 			break;
264 
265 	if (c == pvd->vdev_children) {
266 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
267 		pvd->vdev_child = NULL;
268 		pvd->vdev_children = 0;
269 	}
270 
271 	/*
272 	 * Walk up all ancestors to update guid sum.
273 	 */
274 	for (; pvd != NULL; pvd = pvd->vdev_parent)
275 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
276 }
277 
278 /*
279  * Remove any holes in the child array.
280  */
281 void
282 vdev_compact_children(vdev_t *pvd)
283 {
284 	vdev_t **newchild, *cvd;
285 	int oldc = pvd->vdev_children;
286 	int newc;
287 
288 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
289 
290 	for (int c = newc = 0; c < oldc; c++)
291 		if (pvd->vdev_child[c])
292 			newc++;
293 
294 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
295 
296 	for (int c = newc = 0; c < oldc; c++) {
297 		if ((cvd = pvd->vdev_child[c]) != NULL) {
298 			newchild[newc] = cvd;
299 			cvd->vdev_id = newc++;
300 		}
301 	}
302 
303 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
304 	pvd->vdev_child = newchild;
305 	pvd->vdev_children = newc;
306 }
307 
308 /*
309  * Allocate and minimally initialize a vdev_t.
310  */
311 vdev_t *
312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
313 {
314 	vdev_t *vd;
315 
316 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
317 
318 	if (spa->spa_root_vdev == NULL) {
319 		ASSERT(ops == &vdev_root_ops);
320 		spa->spa_root_vdev = vd;
321 		spa->spa_load_guid = spa_generate_guid(NULL);
322 	}
323 
324 	if (guid == 0 && ops != &vdev_hole_ops) {
325 		if (spa->spa_root_vdev == vd) {
326 			/*
327 			 * The root vdev's guid will also be the pool guid,
328 			 * which must be unique among all pools.
329 			 */
330 			guid = spa_generate_guid(NULL);
331 		} else {
332 			/*
333 			 * Any other vdev's guid must be unique within the pool.
334 			 */
335 			guid = spa_generate_guid(spa);
336 		}
337 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
338 	}
339 
340 	vd->vdev_spa = spa;
341 	vd->vdev_id = id;
342 	vd->vdev_guid = guid;
343 	vd->vdev_guid_sum = guid;
344 	vd->vdev_ops = ops;
345 	vd->vdev_state = VDEV_STATE_CLOSED;
346 	vd->vdev_ishole = (ops == &vdev_hole_ops);
347 
348 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
349 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
350 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
351 	for (int t = 0; t < DTL_TYPES; t++) {
352 		vd->vdev_dtl[t] = range_tree_create(NULL, NULL,
353 		    &vd->vdev_dtl_lock);
354 	}
355 	txg_list_create(&vd->vdev_ms_list,
356 	    offsetof(struct metaslab, ms_txg_node));
357 	txg_list_create(&vd->vdev_dtl_list,
358 	    offsetof(struct vdev, vdev_dtl_node));
359 	vd->vdev_stat.vs_timestamp = gethrtime();
360 	vdev_queue_init(vd);
361 	vdev_cache_init(vd);
362 
363 	return (vd);
364 }
365 
366 /*
367  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
368  * creating a new vdev or loading an existing one - the behavior is slightly
369  * different for each case.
370  */
371 int
372 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
373     int alloctype)
374 {
375 	vdev_ops_t *ops;
376 	char *type;
377 	uint64_t guid = 0, islog, nparity;
378 	vdev_t *vd;
379 
380 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
381 
382 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
383 		return (SET_ERROR(EINVAL));
384 
385 	if ((ops = vdev_getops(type)) == NULL)
386 		return (SET_ERROR(EINVAL));
387 
388 	/*
389 	 * If this is a load, get the vdev guid from the nvlist.
390 	 * Otherwise, vdev_alloc_common() will generate one for us.
391 	 */
392 	if (alloctype == VDEV_ALLOC_LOAD) {
393 		uint64_t label_id;
394 
395 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
396 		    label_id != id)
397 			return (SET_ERROR(EINVAL));
398 
399 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
400 			return (SET_ERROR(EINVAL));
401 	} else if (alloctype == VDEV_ALLOC_SPARE) {
402 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
403 			return (SET_ERROR(EINVAL));
404 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
405 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
406 			return (SET_ERROR(EINVAL));
407 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
408 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
409 			return (SET_ERROR(EINVAL));
410 	}
411 
412 	/*
413 	 * The first allocated vdev must be of type 'root'.
414 	 */
415 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
416 		return (SET_ERROR(EINVAL));
417 
418 	/*
419 	 * Determine whether we're a log vdev.
420 	 */
421 	islog = 0;
422 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
423 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
424 		return (SET_ERROR(ENOTSUP));
425 
426 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
427 		return (SET_ERROR(ENOTSUP));
428 
429 	/*
430 	 * Set the nparity property for RAID-Z vdevs.
431 	 */
432 	nparity = -1ULL;
433 	if (ops == &vdev_raidz_ops) {
434 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
435 		    &nparity) == 0) {
436 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
437 				return (SET_ERROR(EINVAL));
438 			/*
439 			 * Previous versions could only support 1 or 2 parity
440 			 * device.
441 			 */
442 			if (nparity > 1 &&
443 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
444 				return (SET_ERROR(ENOTSUP));
445 			if (nparity > 2 &&
446 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
447 				return (SET_ERROR(ENOTSUP));
448 		} else {
449 			/*
450 			 * We require the parity to be specified for SPAs that
451 			 * support multiple parity levels.
452 			 */
453 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
454 				return (SET_ERROR(EINVAL));
455 			/*
456 			 * Otherwise, we default to 1 parity device for RAID-Z.
457 			 */
458 			nparity = 1;
459 		}
460 	} else {
461 		nparity = 0;
462 	}
463 	ASSERT(nparity != -1ULL);
464 
465 	vd = vdev_alloc_common(spa, id, guid, ops);
466 
467 	vd->vdev_islog = islog;
468 	vd->vdev_nparity = nparity;
469 
470 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
471 		vd->vdev_path = spa_strdup(vd->vdev_path);
472 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
473 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
474 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
475 	    &vd->vdev_physpath) == 0)
476 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
477 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
478 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
479 
480 	/*
481 	 * Set the whole_disk property.  If it's not specified, leave the value
482 	 * as -1.
483 	 */
484 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
485 	    &vd->vdev_wholedisk) != 0)
486 		vd->vdev_wholedisk = -1ULL;
487 
488 	/*
489 	 * Look for the 'not present' flag.  This will only be set if the device
490 	 * was not present at the time of import.
491 	 */
492 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
493 	    &vd->vdev_not_present);
494 
495 	/*
496 	 * Get the alignment requirement.
497 	 */
498 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
499 
500 	/*
501 	 * Retrieve the vdev creation time.
502 	 */
503 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
504 	    &vd->vdev_crtxg);
505 
506 	/*
507 	 * If we're a top-level vdev, try to load the allocation parameters.
508 	 */
509 	if (parent && !parent->vdev_parent &&
510 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
511 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
512 		    &vd->vdev_ms_array);
513 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
514 		    &vd->vdev_ms_shift);
515 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
516 		    &vd->vdev_asize);
517 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
518 		    &vd->vdev_removing);
519 	}
520 
521 	if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) {
522 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
523 		    alloctype == VDEV_ALLOC_ADD ||
524 		    alloctype == VDEV_ALLOC_SPLIT ||
525 		    alloctype == VDEV_ALLOC_ROOTPOOL);
526 		vd->vdev_mg = metaslab_group_create(islog ?
527 		    spa_log_class(spa) : spa_normal_class(spa), vd);
528 	}
529 
530 	/*
531 	 * If we're a leaf vdev, try to load the DTL object and other state.
532 	 */
533 	if (vd->vdev_ops->vdev_op_leaf &&
534 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
535 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
536 		if (alloctype == VDEV_ALLOC_LOAD) {
537 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
538 			    &vd->vdev_dtl_object);
539 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
540 			    &vd->vdev_unspare);
541 		}
542 
543 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
544 			uint64_t spare = 0;
545 
546 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
547 			    &spare) == 0 && spare)
548 				spa_spare_add(vd);
549 		}
550 
551 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
552 		    &vd->vdev_offline);
553 
554 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG,
555 		    &vd->vdev_resilver_txg);
556 
557 		/*
558 		 * When importing a pool, we want to ignore the persistent fault
559 		 * state, as the diagnosis made on another system may not be
560 		 * valid in the current context.  Local vdevs will
561 		 * remain in the faulted state.
562 		 */
563 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
564 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
565 			    &vd->vdev_faulted);
566 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
567 			    &vd->vdev_degraded);
568 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
569 			    &vd->vdev_removed);
570 
571 			if (vd->vdev_faulted || vd->vdev_degraded) {
572 				char *aux;
573 
574 				vd->vdev_label_aux =
575 				    VDEV_AUX_ERR_EXCEEDED;
576 				if (nvlist_lookup_string(nv,
577 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
578 				    strcmp(aux, "external") == 0)
579 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
580 			}
581 		}
582 	}
583 
584 	/*
585 	 * Add ourselves to the parent's list of children.
586 	 */
587 	vdev_add_child(parent, vd);
588 
589 	*vdp = vd;
590 
591 	return (0);
592 }
593 
594 void
595 vdev_free(vdev_t *vd)
596 {
597 	spa_t *spa = vd->vdev_spa;
598 
599 	/*
600 	 * vdev_free() implies closing the vdev first.  This is simpler than
601 	 * trying to ensure complicated semantics for all callers.
602 	 */
603 	vdev_close(vd);
604 
605 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
606 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
607 
608 	/*
609 	 * Free all children.
610 	 */
611 	for (int c = 0; c < vd->vdev_children; c++)
612 		vdev_free(vd->vdev_child[c]);
613 
614 	ASSERT(vd->vdev_child == NULL);
615 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
616 
617 	/*
618 	 * Discard allocation state.
619 	 */
620 	if (vd->vdev_mg != NULL) {
621 		vdev_metaslab_fini(vd);
622 		metaslab_group_destroy(vd->vdev_mg);
623 	}
624 
625 	ASSERT0(vd->vdev_stat.vs_space);
626 	ASSERT0(vd->vdev_stat.vs_dspace);
627 	ASSERT0(vd->vdev_stat.vs_alloc);
628 
629 	/*
630 	 * Remove this vdev from its parent's child list.
631 	 */
632 	vdev_remove_child(vd->vdev_parent, vd);
633 
634 	ASSERT(vd->vdev_parent == NULL);
635 
636 	/*
637 	 * Clean up vdev structure.
638 	 */
639 	vdev_queue_fini(vd);
640 	vdev_cache_fini(vd);
641 
642 	if (vd->vdev_path)
643 		spa_strfree(vd->vdev_path);
644 	if (vd->vdev_devid)
645 		spa_strfree(vd->vdev_devid);
646 	if (vd->vdev_physpath)
647 		spa_strfree(vd->vdev_physpath);
648 	if (vd->vdev_fru)
649 		spa_strfree(vd->vdev_fru);
650 
651 	if (vd->vdev_isspare)
652 		spa_spare_remove(vd);
653 	if (vd->vdev_isl2cache)
654 		spa_l2cache_remove(vd);
655 
656 	txg_list_destroy(&vd->vdev_ms_list);
657 	txg_list_destroy(&vd->vdev_dtl_list);
658 
659 	mutex_enter(&vd->vdev_dtl_lock);
660 	space_map_close(vd->vdev_dtl_sm);
661 	for (int t = 0; t < DTL_TYPES; t++) {
662 		range_tree_vacate(vd->vdev_dtl[t], NULL, NULL);
663 		range_tree_destroy(vd->vdev_dtl[t]);
664 	}
665 	mutex_exit(&vd->vdev_dtl_lock);
666 
667 	mutex_destroy(&vd->vdev_dtl_lock);
668 	mutex_destroy(&vd->vdev_stat_lock);
669 	mutex_destroy(&vd->vdev_probe_lock);
670 
671 	if (vd == spa->spa_root_vdev)
672 		spa->spa_root_vdev = NULL;
673 
674 	kmem_free(vd, sizeof (vdev_t));
675 }
676 
677 /*
678  * Transfer top-level vdev state from svd to tvd.
679  */
680 static void
681 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
682 {
683 	spa_t *spa = svd->vdev_spa;
684 	metaslab_t *msp;
685 	vdev_t *vd;
686 	int t;
687 
688 	ASSERT(tvd == tvd->vdev_top);
689 
690 	tvd->vdev_ms_array = svd->vdev_ms_array;
691 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
692 	tvd->vdev_ms_count = svd->vdev_ms_count;
693 
694 	svd->vdev_ms_array = 0;
695 	svd->vdev_ms_shift = 0;
696 	svd->vdev_ms_count = 0;
697 
698 	if (tvd->vdev_mg)
699 		ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg);
700 	tvd->vdev_mg = svd->vdev_mg;
701 	tvd->vdev_ms = svd->vdev_ms;
702 
703 	svd->vdev_mg = NULL;
704 	svd->vdev_ms = NULL;
705 
706 	if (tvd->vdev_mg != NULL)
707 		tvd->vdev_mg->mg_vd = tvd;
708 
709 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
710 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
711 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
712 
713 	svd->vdev_stat.vs_alloc = 0;
714 	svd->vdev_stat.vs_space = 0;
715 	svd->vdev_stat.vs_dspace = 0;
716 
717 	for (t = 0; t < TXG_SIZE; t++) {
718 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
719 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
720 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
721 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
722 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
723 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
724 	}
725 
726 	if (list_link_active(&svd->vdev_config_dirty_node)) {
727 		vdev_config_clean(svd);
728 		vdev_config_dirty(tvd);
729 	}
730 
731 	if (list_link_active(&svd->vdev_state_dirty_node)) {
732 		vdev_state_clean(svd);
733 		vdev_state_dirty(tvd);
734 	}
735 
736 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
737 	svd->vdev_deflate_ratio = 0;
738 
739 	tvd->vdev_islog = svd->vdev_islog;
740 	svd->vdev_islog = 0;
741 }
742 
743 static void
744 vdev_top_update(vdev_t *tvd, vdev_t *vd)
745 {
746 	if (vd == NULL)
747 		return;
748 
749 	vd->vdev_top = tvd;
750 
751 	for (int c = 0; c < vd->vdev_children; c++)
752 		vdev_top_update(tvd, vd->vdev_child[c]);
753 }
754 
755 /*
756  * Add a mirror/replacing vdev above an existing vdev.
757  */
758 vdev_t *
759 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
760 {
761 	spa_t *spa = cvd->vdev_spa;
762 	vdev_t *pvd = cvd->vdev_parent;
763 	vdev_t *mvd;
764 
765 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
766 
767 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
768 
769 	mvd->vdev_asize = cvd->vdev_asize;
770 	mvd->vdev_min_asize = cvd->vdev_min_asize;
771 	mvd->vdev_max_asize = cvd->vdev_max_asize;
772 	mvd->vdev_ashift = cvd->vdev_ashift;
773 	mvd->vdev_state = cvd->vdev_state;
774 	mvd->vdev_crtxg = cvd->vdev_crtxg;
775 
776 	vdev_remove_child(pvd, cvd);
777 	vdev_add_child(pvd, mvd);
778 	cvd->vdev_id = mvd->vdev_children;
779 	vdev_add_child(mvd, cvd);
780 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
781 
782 	if (mvd == mvd->vdev_top)
783 		vdev_top_transfer(cvd, mvd);
784 
785 	return (mvd);
786 }
787 
788 /*
789  * Remove a 1-way mirror/replacing vdev from the tree.
790  */
791 void
792 vdev_remove_parent(vdev_t *cvd)
793 {
794 	vdev_t *mvd = cvd->vdev_parent;
795 	vdev_t *pvd = mvd->vdev_parent;
796 
797 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
798 
799 	ASSERT(mvd->vdev_children == 1);
800 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
801 	    mvd->vdev_ops == &vdev_replacing_ops ||
802 	    mvd->vdev_ops == &vdev_spare_ops);
803 	cvd->vdev_ashift = mvd->vdev_ashift;
804 
805 	vdev_remove_child(mvd, cvd);
806 	vdev_remove_child(pvd, mvd);
807 
808 	/*
809 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
810 	 * Otherwise, we could have detached an offline device, and when we
811 	 * go to import the pool we'll think we have two top-level vdevs,
812 	 * instead of a different version of the same top-level vdev.
813 	 */
814 	if (mvd->vdev_top == mvd) {
815 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
816 		cvd->vdev_orig_guid = cvd->vdev_guid;
817 		cvd->vdev_guid += guid_delta;
818 		cvd->vdev_guid_sum += guid_delta;
819 	}
820 	cvd->vdev_id = mvd->vdev_id;
821 	vdev_add_child(pvd, cvd);
822 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
823 
824 	if (cvd == cvd->vdev_top)
825 		vdev_top_transfer(mvd, cvd);
826 
827 	ASSERT(mvd->vdev_children == 0);
828 	vdev_free(mvd);
829 }
830 
831 int
832 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
833 {
834 	spa_t *spa = vd->vdev_spa;
835 	objset_t *mos = spa->spa_meta_objset;
836 	uint64_t m;
837 	uint64_t oldc = vd->vdev_ms_count;
838 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
839 	metaslab_t **mspp;
840 	int error;
841 
842 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
843 
844 	/*
845 	 * This vdev is not being allocated from yet or is a hole.
846 	 */
847 	if (vd->vdev_ms_shift == 0)
848 		return (0);
849 
850 	ASSERT(!vd->vdev_ishole);
851 
852 	/*
853 	 * Compute the raidz-deflation ratio.  Note, we hard-code
854 	 * in 128k (1 << 17) because it is the "typical" blocksize.
855 	 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change,
856 	 * otherwise it would inconsistently account for existing bp's.
857 	 */
858 	vd->vdev_deflate_ratio = (1 << 17) /
859 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
860 
861 	ASSERT(oldc <= newc);
862 
863 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
864 
865 	if (oldc != 0) {
866 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
867 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
868 	}
869 
870 	vd->vdev_ms = mspp;
871 	vd->vdev_ms_count = newc;
872 
873 	for (m = oldc; m < newc; m++) {
874 		uint64_t object = 0;
875 
876 		if (txg == 0) {
877 			error = dmu_read(mos, vd->vdev_ms_array,
878 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
879 			    DMU_READ_PREFETCH);
880 			if (error)
881 				return (error);
882 		}
883 
884 		error = metaslab_init(vd->vdev_mg, m, object, txg,
885 		    &(vd->vdev_ms[m]));
886 		if (error)
887 			return (error);
888 	}
889 
890 	if (txg == 0)
891 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
892 
893 	/*
894 	 * If the vdev is being removed we don't activate
895 	 * the metaslabs since we want to ensure that no new
896 	 * allocations are performed on this device.
897 	 */
898 	if (oldc == 0 && !vd->vdev_removing)
899 		metaslab_group_activate(vd->vdev_mg);
900 
901 	if (txg == 0)
902 		spa_config_exit(spa, SCL_ALLOC, FTAG);
903 
904 	return (0);
905 }
906 
907 void
908 vdev_metaslab_fini(vdev_t *vd)
909 {
910 	uint64_t m;
911 	uint64_t count = vd->vdev_ms_count;
912 
913 	if (vd->vdev_ms != NULL) {
914 		metaslab_group_passivate(vd->vdev_mg);
915 		for (m = 0; m < count; m++) {
916 			metaslab_t *msp = vd->vdev_ms[m];
917 
918 			if (msp != NULL)
919 				metaslab_fini(msp);
920 		}
921 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
922 		vd->vdev_ms = NULL;
923 	}
924 }
925 
926 typedef struct vdev_probe_stats {
927 	boolean_t	vps_readable;
928 	boolean_t	vps_writeable;
929 	int		vps_flags;
930 } vdev_probe_stats_t;
931 
932 static void
933 vdev_probe_done(zio_t *zio)
934 {
935 	spa_t *spa = zio->io_spa;
936 	vdev_t *vd = zio->io_vd;
937 	vdev_probe_stats_t *vps = zio->io_private;
938 
939 	ASSERT(vd->vdev_probe_zio != NULL);
940 
941 	if (zio->io_type == ZIO_TYPE_READ) {
942 		if (zio->io_error == 0)
943 			vps->vps_readable = 1;
944 		if (zio->io_error == 0 && spa_writeable(spa)) {
945 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
946 			    zio->io_offset, zio->io_size, zio->io_data,
947 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
948 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
949 		} else {
950 			zio_buf_free(zio->io_data, zio->io_size);
951 		}
952 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
953 		if (zio->io_error == 0)
954 			vps->vps_writeable = 1;
955 		zio_buf_free(zio->io_data, zio->io_size);
956 	} else if (zio->io_type == ZIO_TYPE_NULL) {
957 		zio_t *pio;
958 
959 		vd->vdev_cant_read |= !vps->vps_readable;
960 		vd->vdev_cant_write |= !vps->vps_writeable;
961 
962 		if (vdev_readable(vd) &&
963 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
964 			zio->io_error = 0;
965 		} else {
966 			ASSERT(zio->io_error != 0);
967 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
968 			    spa, vd, NULL, 0, 0);
969 			zio->io_error = SET_ERROR(ENXIO);
970 		}
971 
972 		mutex_enter(&vd->vdev_probe_lock);
973 		ASSERT(vd->vdev_probe_zio == zio);
974 		vd->vdev_probe_zio = NULL;
975 		mutex_exit(&vd->vdev_probe_lock);
976 
977 		while ((pio = zio_walk_parents(zio)) != NULL)
978 			if (!vdev_accessible(vd, pio))
979 				pio->io_error = SET_ERROR(ENXIO);
980 
981 		kmem_free(vps, sizeof (*vps));
982 	}
983 }
984 
985 /*
986  * Determine whether this device is accessible.
987  *
988  * Read and write to several known locations: the pad regions of each
989  * vdev label but the first, which we leave alone in case it contains
990  * a VTOC.
991  */
992 zio_t *
993 vdev_probe(vdev_t *vd, zio_t *zio)
994 {
995 	spa_t *spa = vd->vdev_spa;
996 	vdev_probe_stats_t *vps = NULL;
997 	zio_t *pio;
998 
999 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1000 
1001 	/*
1002 	 * Don't probe the probe.
1003 	 */
1004 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
1005 		return (NULL);
1006 
1007 	/*
1008 	 * To prevent 'probe storms' when a device fails, we create
1009 	 * just one probe i/o at a time.  All zios that want to probe
1010 	 * this vdev will become parents of the probe io.
1011 	 */
1012 	mutex_enter(&vd->vdev_probe_lock);
1013 
1014 	if ((pio = vd->vdev_probe_zio) == NULL) {
1015 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
1016 
1017 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
1018 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
1019 		    ZIO_FLAG_TRYHARD;
1020 
1021 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
1022 			/*
1023 			 * vdev_cant_read and vdev_cant_write can only
1024 			 * transition from TRUE to FALSE when we have the
1025 			 * SCL_ZIO lock as writer; otherwise they can only
1026 			 * transition from FALSE to TRUE.  This ensures that
1027 			 * any zio looking at these values can assume that
1028 			 * failures persist for the life of the I/O.  That's
1029 			 * important because when a device has intermittent
1030 			 * connectivity problems, we want to ensure that
1031 			 * they're ascribed to the device (ENXIO) and not
1032 			 * the zio (EIO).
1033 			 *
1034 			 * Since we hold SCL_ZIO as writer here, clear both
1035 			 * values so the probe can reevaluate from first
1036 			 * principles.
1037 			 */
1038 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1039 			vd->vdev_cant_read = B_FALSE;
1040 			vd->vdev_cant_write = B_FALSE;
1041 		}
1042 
1043 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1044 		    vdev_probe_done, vps,
1045 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1046 
1047 		/*
1048 		 * We can't change the vdev state in this context, so we
1049 		 * kick off an async task to do it on our behalf.
1050 		 */
1051 		if (zio != NULL) {
1052 			vd->vdev_probe_wanted = B_TRUE;
1053 			spa_async_request(spa, SPA_ASYNC_PROBE);
1054 		}
1055 	}
1056 
1057 	if (zio != NULL)
1058 		zio_add_child(zio, pio);
1059 
1060 	mutex_exit(&vd->vdev_probe_lock);
1061 
1062 	if (vps == NULL) {
1063 		ASSERT(zio != NULL);
1064 		return (NULL);
1065 	}
1066 
1067 	for (int l = 1; l < VDEV_LABELS; l++) {
1068 		zio_nowait(zio_read_phys(pio, vd,
1069 		    vdev_label_offset(vd->vdev_psize, l,
1070 		    offsetof(vdev_label_t, vl_pad2)),
1071 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1072 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1073 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1074 	}
1075 
1076 	if (zio == NULL)
1077 		return (pio);
1078 
1079 	zio_nowait(pio);
1080 	return (NULL);
1081 }
1082 
1083 static void
1084 vdev_open_child(void *arg)
1085 {
1086 	vdev_t *vd = arg;
1087 
1088 	vd->vdev_open_thread = curthread;
1089 	vd->vdev_open_error = vdev_open(vd);
1090 	vd->vdev_open_thread = NULL;
1091 }
1092 
1093 boolean_t
1094 vdev_uses_zvols(vdev_t *vd)
1095 {
1096 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1097 	    strlen(ZVOL_DIR)) == 0)
1098 		return (B_TRUE);
1099 	for (int c = 0; c < vd->vdev_children; c++)
1100 		if (vdev_uses_zvols(vd->vdev_child[c]))
1101 			return (B_TRUE);
1102 	return (B_FALSE);
1103 }
1104 
1105 void
1106 vdev_open_children(vdev_t *vd)
1107 {
1108 	taskq_t *tq;
1109 	int children = vd->vdev_children;
1110 
1111 	/*
1112 	 * in order to handle pools on top of zvols, do the opens
1113 	 * in a single thread so that the same thread holds the
1114 	 * spa_namespace_lock
1115 	 */
1116 	if (vdev_uses_zvols(vd)) {
1117 		for (int c = 0; c < children; c++)
1118 			vd->vdev_child[c]->vdev_open_error =
1119 			    vdev_open(vd->vdev_child[c]);
1120 		return;
1121 	}
1122 	tq = taskq_create("vdev_open", children, minclsyspri,
1123 	    children, children, TASKQ_PREPOPULATE);
1124 
1125 	for (int c = 0; c < children; c++)
1126 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1127 		    TQ_SLEEP) != NULL);
1128 
1129 	taskq_destroy(tq);
1130 }
1131 
1132 /*
1133  * Prepare a virtual device for access.
1134  */
1135 int
1136 vdev_open(vdev_t *vd)
1137 {
1138 	spa_t *spa = vd->vdev_spa;
1139 	int error;
1140 	uint64_t osize = 0;
1141 	uint64_t max_osize = 0;
1142 	uint64_t asize, max_asize, psize;
1143 	uint64_t ashift = 0;
1144 
1145 	ASSERT(vd->vdev_open_thread == curthread ||
1146 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1147 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1148 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1149 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1150 
1151 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1152 	vd->vdev_cant_read = B_FALSE;
1153 	vd->vdev_cant_write = B_FALSE;
1154 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1155 
1156 	/*
1157 	 * If this vdev is not removed, check its fault status.  If it's
1158 	 * faulted, bail out of the open.
1159 	 */
1160 	if (!vd->vdev_removed && vd->vdev_faulted) {
1161 		ASSERT(vd->vdev_children == 0);
1162 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1163 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1164 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1165 		    vd->vdev_label_aux);
1166 		return (SET_ERROR(ENXIO));
1167 	} else if (vd->vdev_offline) {
1168 		ASSERT(vd->vdev_children == 0);
1169 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1170 		return (SET_ERROR(ENXIO));
1171 	}
1172 
1173 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift);
1174 
1175 	/*
1176 	 * Reset the vdev_reopening flag so that we actually close
1177 	 * the vdev on error.
1178 	 */
1179 	vd->vdev_reopening = B_FALSE;
1180 	if (zio_injection_enabled && error == 0)
1181 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1182 
1183 	if (error) {
1184 		if (vd->vdev_removed &&
1185 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1186 			vd->vdev_removed = B_FALSE;
1187 
1188 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1189 		    vd->vdev_stat.vs_aux);
1190 		return (error);
1191 	}
1192 
1193 	vd->vdev_removed = B_FALSE;
1194 
1195 	/*
1196 	 * Recheck the faulted flag now that we have confirmed that
1197 	 * the vdev is accessible.  If we're faulted, bail.
1198 	 */
1199 	if (vd->vdev_faulted) {
1200 		ASSERT(vd->vdev_children == 0);
1201 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1202 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1203 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1204 		    vd->vdev_label_aux);
1205 		return (SET_ERROR(ENXIO));
1206 	}
1207 
1208 	if (vd->vdev_degraded) {
1209 		ASSERT(vd->vdev_children == 0);
1210 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1211 		    VDEV_AUX_ERR_EXCEEDED);
1212 	} else {
1213 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1214 	}
1215 
1216 	/*
1217 	 * For hole or missing vdevs we just return success.
1218 	 */
1219 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1220 		return (0);
1221 
1222 	for (int c = 0; c < vd->vdev_children; c++) {
1223 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1224 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1225 			    VDEV_AUX_NONE);
1226 			break;
1227 		}
1228 	}
1229 
1230 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1231 	max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t));
1232 
1233 	if (vd->vdev_children == 0) {
1234 		if (osize < SPA_MINDEVSIZE) {
1235 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1236 			    VDEV_AUX_TOO_SMALL);
1237 			return (SET_ERROR(EOVERFLOW));
1238 		}
1239 		psize = osize;
1240 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1241 		max_asize = max_osize - (VDEV_LABEL_START_SIZE +
1242 		    VDEV_LABEL_END_SIZE);
1243 	} else {
1244 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1245 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1246 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1247 			    VDEV_AUX_TOO_SMALL);
1248 			return (SET_ERROR(EOVERFLOW));
1249 		}
1250 		psize = 0;
1251 		asize = osize;
1252 		max_asize = max_osize;
1253 	}
1254 
1255 	vd->vdev_psize = psize;
1256 
1257 	/*
1258 	 * Make sure the allocatable size hasn't shrunk.
1259 	 */
1260 	if (asize < vd->vdev_min_asize) {
1261 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1262 		    VDEV_AUX_BAD_LABEL);
1263 		return (SET_ERROR(EINVAL));
1264 	}
1265 
1266 	if (vd->vdev_asize == 0) {
1267 		/*
1268 		 * This is the first-ever open, so use the computed values.
1269 		 * For testing purposes, a higher ashift can be requested.
1270 		 */
1271 		vd->vdev_asize = asize;
1272 		vd->vdev_max_asize = max_asize;
1273 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1274 	} else {
1275 		/*
1276 		 * Detect if the alignment requirement has increased.
1277 		 * We don't want to make the pool unavailable, just
1278 		 * issue a warning instead.
1279 		 */
1280 		if (ashift > vd->vdev_top->vdev_ashift &&
1281 		    vd->vdev_ops->vdev_op_leaf) {
1282 			cmn_err(CE_WARN,
1283 			    "Disk, '%s', has a block alignment that is "
1284 			    "larger than the pool's alignment\n",
1285 			    vd->vdev_path);
1286 		}
1287 		vd->vdev_max_asize = max_asize;
1288 	}
1289 
1290 	/*
1291 	 * If all children are healthy and the asize has increased,
1292 	 * then we've experienced dynamic LUN growth.  If automatic
1293 	 * expansion is enabled then use the additional space.
1294 	 */
1295 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1296 	    (vd->vdev_expanding || spa->spa_autoexpand))
1297 		vd->vdev_asize = asize;
1298 
1299 	vdev_set_min_asize(vd);
1300 
1301 	/*
1302 	 * Ensure we can issue some IO before declaring the
1303 	 * vdev open for business.
1304 	 */
1305 	if (vd->vdev_ops->vdev_op_leaf &&
1306 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1307 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1308 		    VDEV_AUX_ERR_EXCEEDED);
1309 		return (error);
1310 	}
1311 
1312 	/*
1313 	 * Track the min and max ashift values for normal data devices.
1314 	 */
1315 	if (vd->vdev_top == vd && vd->vdev_ashift != 0 &&
1316 	    !vd->vdev_islog && vd->vdev_aux == NULL) {
1317 		if (vd->vdev_ashift > spa->spa_max_ashift)
1318 			spa->spa_max_ashift = vd->vdev_ashift;
1319 		if (vd->vdev_ashift < spa->spa_min_ashift)
1320 			spa->spa_min_ashift = vd->vdev_ashift;
1321 	}
1322 
1323 	/*
1324 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1325 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1326 	 * since this would just restart the scrub we are already doing.
1327 	 */
1328 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1329 	    vdev_resilver_needed(vd, NULL, NULL))
1330 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1331 
1332 	return (0);
1333 }
1334 
1335 /*
1336  * Called once the vdevs are all opened, this routine validates the label
1337  * contents.  This needs to be done before vdev_load() so that we don't
1338  * inadvertently do repair I/Os to the wrong device.
1339  *
1340  * If 'strict' is false ignore the spa guid check. This is necessary because
1341  * if the machine crashed during a re-guid the new guid might have been written
1342  * to all of the vdev labels, but not the cached config. The strict check
1343  * will be performed when the pool is opened again using the mos config.
1344  *
1345  * This function will only return failure if one of the vdevs indicates that it
1346  * has since been destroyed or exported.  This is only possible if
1347  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1348  * will be updated but the function will return 0.
1349  */
1350 int
1351 vdev_validate(vdev_t *vd, boolean_t strict)
1352 {
1353 	spa_t *spa = vd->vdev_spa;
1354 	nvlist_t *label;
1355 	uint64_t guid = 0, top_guid;
1356 	uint64_t state;
1357 
1358 	for (int c = 0; c < vd->vdev_children; c++)
1359 		if (vdev_validate(vd->vdev_child[c], strict) != 0)
1360 			return (SET_ERROR(EBADF));
1361 
1362 	/*
1363 	 * If the device has already failed, or was marked offline, don't do
1364 	 * any further validation.  Otherwise, label I/O will fail and we will
1365 	 * overwrite the previous state.
1366 	 */
1367 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1368 		uint64_t aux_guid = 0;
1369 		nvlist_t *nvl;
1370 		uint64_t txg = spa_last_synced_txg(spa) != 0 ?
1371 		    spa_last_synced_txg(spa) : -1ULL;
1372 
1373 		if ((label = vdev_label_read_config(vd, txg)) == NULL) {
1374 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1375 			    VDEV_AUX_BAD_LABEL);
1376 			return (0);
1377 		}
1378 
1379 		/*
1380 		 * Determine if this vdev has been split off into another
1381 		 * pool.  If so, then refuse to open it.
1382 		 */
1383 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1384 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1385 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1386 			    VDEV_AUX_SPLIT_POOL);
1387 			nvlist_free(label);
1388 			return (0);
1389 		}
1390 
1391 		if (strict && (nvlist_lookup_uint64(label,
1392 		    ZPOOL_CONFIG_POOL_GUID, &guid) != 0 ||
1393 		    guid != spa_guid(spa))) {
1394 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1395 			    VDEV_AUX_CORRUPT_DATA);
1396 			nvlist_free(label);
1397 			return (0);
1398 		}
1399 
1400 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1401 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1402 		    &aux_guid) != 0)
1403 			aux_guid = 0;
1404 
1405 		/*
1406 		 * If this vdev just became a top-level vdev because its
1407 		 * sibling was detached, it will have adopted the parent's
1408 		 * vdev guid -- but the label may or may not be on disk yet.
1409 		 * Fortunately, either version of the label will have the
1410 		 * same top guid, so if we're a top-level vdev, we can
1411 		 * safely compare to that instead.
1412 		 *
1413 		 * If we split this vdev off instead, then we also check the
1414 		 * original pool's guid.  We don't want to consider the vdev
1415 		 * corrupt if it is partway through a split operation.
1416 		 */
1417 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1418 		    &guid) != 0 ||
1419 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1420 		    &top_guid) != 0 ||
1421 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1422 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1423 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1424 			    VDEV_AUX_CORRUPT_DATA);
1425 			nvlist_free(label);
1426 			return (0);
1427 		}
1428 
1429 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1430 		    &state) != 0) {
1431 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1432 			    VDEV_AUX_CORRUPT_DATA);
1433 			nvlist_free(label);
1434 			return (0);
1435 		}
1436 
1437 		nvlist_free(label);
1438 
1439 		/*
1440 		 * If this is a verbatim import, no need to check the
1441 		 * state of the pool.
1442 		 */
1443 		if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) &&
1444 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1445 		    state != POOL_STATE_ACTIVE)
1446 			return (SET_ERROR(EBADF));
1447 
1448 		/*
1449 		 * If we were able to open and validate a vdev that was
1450 		 * previously marked permanently unavailable, clear that state
1451 		 * now.
1452 		 */
1453 		if (vd->vdev_not_present)
1454 			vd->vdev_not_present = 0;
1455 	}
1456 
1457 	return (0);
1458 }
1459 
1460 /*
1461  * Close a virtual device.
1462  */
1463 void
1464 vdev_close(vdev_t *vd)
1465 {
1466 	spa_t *spa = vd->vdev_spa;
1467 	vdev_t *pvd = vd->vdev_parent;
1468 
1469 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1470 
1471 	/*
1472 	 * If our parent is reopening, then we are as well, unless we are
1473 	 * going offline.
1474 	 */
1475 	if (pvd != NULL && pvd->vdev_reopening)
1476 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1477 
1478 	vd->vdev_ops->vdev_op_close(vd);
1479 
1480 	vdev_cache_purge(vd);
1481 
1482 	/*
1483 	 * We record the previous state before we close it, so that if we are
1484 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1485 	 * it's still faulted.
1486 	 */
1487 	vd->vdev_prevstate = vd->vdev_state;
1488 
1489 	if (vd->vdev_offline)
1490 		vd->vdev_state = VDEV_STATE_OFFLINE;
1491 	else
1492 		vd->vdev_state = VDEV_STATE_CLOSED;
1493 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1494 }
1495 
1496 void
1497 vdev_hold(vdev_t *vd)
1498 {
1499 	spa_t *spa = vd->vdev_spa;
1500 
1501 	ASSERT(spa_is_root(spa));
1502 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1503 		return;
1504 
1505 	for (int c = 0; c < vd->vdev_children; c++)
1506 		vdev_hold(vd->vdev_child[c]);
1507 
1508 	if (vd->vdev_ops->vdev_op_leaf)
1509 		vd->vdev_ops->vdev_op_hold(vd);
1510 }
1511 
1512 void
1513 vdev_rele(vdev_t *vd)
1514 {
1515 	spa_t *spa = vd->vdev_spa;
1516 
1517 	ASSERT(spa_is_root(spa));
1518 	for (int c = 0; c < vd->vdev_children; c++)
1519 		vdev_rele(vd->vdev_child[c]);
1520 
1521 	if (vd->vdev_ops->vdev_op_leaf)
1522 		vd->vdev_ops->vdev_op_rele(vd);
1523 }
1524 
1525 /*
1526  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1527  * reopen leaf vdevs which had previously been opened as they might deadlock
1528  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1529  * If the leaf has never been opened then open it, as usual.
1530  */
1531 void
1532 vdev_reopen(vdev_t *vd)
1533 {
1534 	spa_t *spa = vd->vdev_spa;
1535 
1536 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1537 
1538 	/* set the reopening flag unless we're taking the vdev offline */
1539 	vd->vdev_reopening = !vd->vdev_offline;
1540 	vdev_close(vd);
1541 	(void) vdev_open(vd);
1542 
1543 	/*
1544 	 * Call vdev_validate() here to make sure we have the same device.
1545 	 * Otherwise, a device with an invalid label could be successfully
1546 	 * opened in response to vdev_reopen().
1547 	 */
1548 	if (vd->vdev_aux) {
1549 		(void) vdev_validate_aux(vd);
1550 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1551 		    vd->vdev_aux == &spa->spa_l2cache &&
1552 		    !l2arc_vdev_present(vd)) {
1553 			/*
1554 			 * When reopening we can assume persistent L2ARC is
1555 			 * supported, since we've already opened the device
1556 			 * in the past and prepended an L2ARC uberblock.
1557 			 */
1558 			l2arc_add_vdev(spa, vd, B_TRUE);
1559 		}
1560 	} else {
1561 		(void) vdev_validate(vd, B_TRUE);
1562 	}
1563 
1564 	/*
1565 	 * Reassess parent vdev's health.
1566 	 */
1567 	vdev_propagate_state(vd);
1568 }
1569 
1570 int
1571 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1572 {
1573 	int error;
1574 
1575 	/*
1576 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1577 	 * For a create, however, we want to fail the request if
1578 	 * there are any components we can't open.
1579 	 */
1580 	error = vdev_open(vd);
1581 
1582 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1583 		vdev_close(vd);
1584 		return (error ? error : ENXIO);
1585 	}
1586 
1587 	/*
1588 	 * Recursively load DTLs and initialize all labels.
1589 	 */
1590 	if ((error = vdev_dtl_load(vd)) != 0 ||
1591 	    (error = vdev_label_init(vd, txg, isreplacing ?
1592 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1593 		vdev_close(vd);
1594 		return (error);
1595 	}
1596 
1597 	return (0);
1598 }
1599 
1600 void
1601 vdev_metaslab_set_size(vdev_t *vd)
1602 {
1603 	/*
1604 	 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev.
1605 	 */
1606 	vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev);
1607 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1608 }
1609 
1610 void
1611 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1612 {
1613 	ASSERT(vd == vd->vdev_top);
1614 	ASSERT(!vd->vdev_ishole);
1615 	ASSERT(ISP2(flags));
1616 	ASSERT(spa_writeable(vd->vdev_spa));
1617 
1618 	if (flags & VDD_METASLAB)
1619 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1620 
1621 	if (flags & VDD_DTL)
1622 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1623 
1624 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1625 }
1626 
1627 void
1628 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg)
1629 {
1630 	for (int c = 0; c < vd->vdev_children; c++)
1631 		vdev_dirty_leaves(vd->vdev_child[c], flags, txg);
1632 
1633 	if (vd->vdev_ops->vdev_op_leaf)
1634 		vdev_dirty(vd->vdev_top, flags, vd, txg);
1635 }
1636 
1637 /*
1638  * DTLs.
1639  *
1640  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1641  * the vdev has less than perfect replication.  There are four kinds of DTL:
1642  *
1643  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1644  *
1645  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1646  *
1647  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1648  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1649  *	txgs that was scrubbed.
1650  *
1651  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1652  *	persistent errors or just some device being offline.
1653  *	Unlike the other three, the DTL_OUTAGE map is not generally
1654  *	maintained; it's only computed when needed, typically to
1655  *	determine whether a device can be detached.
1656  *
1657  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1658  * either has the data or it doesn't.
1659  *
1660  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1661  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1662  * if any child is less than fully replicated, then so is its parent.
1663  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1664  * comprising only those txgs which appear in 'maxfaults' or more children;
1665  * those are the txgs we don't have enough replication to read.  For example,
1666  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1667  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1668  * two child DTL_MISSING maps.
1669  *
1670  * It should be clear from the above that to compute the DTLs and outage maps
1671  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1672  * Therefore, that is all we keep on disk.  When loading the pool, or after
1673  * a configuration change, we generate all other DTLs from first principles.
1674  */
1675 void
1676 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1677 {
1678 	range_tree_t *rt = vd->vdev_dtl[t];
1679 
1680 	ASSERT(t < DTL_TYPES);
1681 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1682 	ASSERT(spa_writeable(vd->vdev_spa));
1683 
1684 	mutex_enter(rt->rt_lock);
1685 	if (!range_tree_contains(rt, txg, size))
1686 		range_tree_add(rt, txg, size);
1687 	mutex_exit(rt->rt_lock);
1688 }
1689 
1690 boolean_t
1691 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1692 {
1693 	range_tree_t *rt = vd->vdev_dtl[t];
1694 	boolean_t dirty = B_FALSE;
1695 
1696 	ASSERT(t < DTL_TYPES);
1697 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1698 
1699 	mutex_enter(rt->rt_lock);
1700 	if (range_tree_space(rt) != 0)
1701 		dirty = range_tree_contains(rt, txg, size);
1702 	mutex_exit(rt->rt_lock);
1703 
1704 	return (dirty);
1705 }
1706 
1707 boolean_t
1708 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1709 {
1710 	range_tree_t *rt = vd->vdev_dtl[t];
1711 	boolean_t empty;
1712 
1713 	mutex_enter(rt->rt_lock);
1714 	empty = (range_tree_space(rt) == 0);
1715 	mutex_exit(rt->rt_lock);
1716 
1717 	return (empty);
1718 }
1719 
1720 /*
1721  * Returns the lowest txg in the DTL range.
1722  */
1723 static uint64_t
1724 vdev_dtl_min(vdev_t *vd)
1725 {
1726 	range_seg_t *rs;
1727 
1728 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1729 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1730 	ASSERT0(vd->vdev_children);
1731 
1732 	rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1733 	return (rs->rs_start - 1);
1734 }
1735 
1736 /*
1737  * Returns the highest txg in the DTL.
1738  */
1739 static uint64_t
1740 vdev_dtl_max(vdev_t *vd)
1741 {
1742 	range_seg_t *rs;
1743 
1744 	ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock));
1745 	ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0);
1746 	ASSERT0(vd->vdev_children);
1747 
1748 	rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root);
1749 	return (rs->rs_end);
1750 }
1751 
1752 /*
1753  * Determine if a resilvering vdev should remove any DTL entries from
1754  * its range. If the vdev was resilvering for the entire duration of the
1755  * scan then it should excise that range from its DTLs. Otherwise, this
1756  * vdev is considered partially resilvered and should leave its DTL
1757  * entries intact. The comment in vdev_dtl_reassess() describes how we
1758  * excise the DTLs.
1759  */
1760 static boolean_t
1761 vdev_dtl_should_excise(vdev_t *vd)
1762 {
1763 	spa_t *spa = vd->vdev_spa;
1764 	dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1765 
1766 	ASSERT0(scn->scn_phys.scn_errors);
1767 	ASSERT0(vd->vdev_children);
1768 
1769 	if (vd->vdev_resilver_txg == 0 ||
1770 	    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0)
1771 		return (B_TRUE);
1772 
1773 	/*
1774 	 * When a resilver is initiated the scan will assign the scn_max_txg
1775 	 * value to the highest txg value that exists in all DTLs. If this
1776 	 * device's max DTL is not part of this scan (i.e. it is not in
1777 	 * the range (scn_min_txg, scn_max_txg] then it is not eligible
1778 	 * for excision.
1779 	 */
1780 	if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) {
1781 		ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd));
1782 		ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg);
1783 		ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg);
1784 		return (B_TRUE);
1785 	}
1786 	return (B_FALSE);
1787 }
1788 
1789 /*
1790  * Reassess DTLs after a config change or scrub completion.
1791  */
1792 void
1793 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1794 {
1795 	spa_t *spa = vd->vdev_spa;
1796 	avl_tree_t reftree;
1797 	int minref;
1798 
1799 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1800 
1801 	for (int c = 0; c < vd->vdev_children; c++)
1802 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1803 		    scrub_txg, scrub_done);
1804 
1805 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1806 		return;
1807 
1808 	if (vd->vdev_ops->vdev_op_leaf) {
1809 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1810 
1811 		mutex_enter(&vd->vdev_dtl_lock);
1812 
1813 		/*
1814 		 * If we've completed a scan cleanly then determine
1815 		 * if this vdev should remove any DTLs. We only want to
1816 		 * excise regions on vdevs that were available during
1817 		 * the entire duration of this scan.
1818 		 */
1819 		if (scrub_txg != 0 &&
1820 		    (spa->spa_scrub_started ||
1821 		    (scn != NULL && scn->scn_phys.scn_errors == 0)) &&
1822 		    vdev_dtl_should_excise(vd)) {
1823 			/*
1824 			 * We completed a scrub up to scrub_txg.  If we
1825 			 * did it without rebooting, then the scrub dtl
1826 			 * will be valid, so excise the old region and
1827 			 * fold in the scrub dtl.  Otherwise, leave the
1828 			 * dtl as-is if there was an error.
1829 			 *
1830 			 * There's little trick here: to excise the beginning
1831 			 * of the DTL_MISSING map, we put it into a reference
1832 			 * tree and then add a segment with refcnt -1 that
1833 			 * covers the range [0, scrub_txg).  This means
1834 			 * that each txg in that range has refcnt -1 or 0.
1835 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1836 			 * entries in the range [0, scrub_txg) will have a
1837 			 * positive refcnt -- either 1 or 2.  We then convert
1838 			 * the reference tree into the new DTL_MISSING map.
1839 			 */
1840 			space_reftree_create(&reftree);
1841 			space_reftree_add_map(&reftree,
1842 			    vd->vdev_dtl[DTL_MISSING], 1);
1843 			space_reftree_add_seg(&reftree, 0, scrub_txg, -1);
1844 			space_reftree_add_map(&reftree,
1845 			    vd->vdev_dtl[DTL_SCRUB], 2);
1846 			space_reftree_generate_map(&reftree,
1847 			    vd->vdev_dtl[DTL_MISSING], 1);
1848 			space_reftree_destroy(&reftree);
1849 		}
1850 		range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1851 		range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1852 		    range_tree_add, vd->vdev_dtl[DTL_PARTIAL]);
1853 		if (scrub_done)
1854 			range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1855 		range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1856 		if (!vdev_readable(vd))
1857 			range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1858 		else
1859 			range_tree_walk(vd->vdev_dtl[DTL_MISSING],
1860 			    range_tree_add, vd->vdev_dtl[DTL_OUTAGE]);
1861 
1862 		/*
1863 		 * If the vdev was resilvering and no longer has any
1864 		 * DTLs then reset its resilvering flag.
1865 		 */
1866 		if (vd->vdev_resilver_txg != 0 &&
1867 		    range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 &&
1868 		    range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0)
1869 			vd->vdev_resilver_txg = 0;
1870 
1871 		mutex_exit(&vd->vdev_dtl_lock);
1872 
1873 		if (txg != 0)
1874 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1875 		return;
1876 	}
1877 
1878 	mutex_enter(&vd->vdev_dtl_lock);
1879 	for (int t = 0; t < DTL_TYPES; t++) {
1880 		/* account for child's outage in parent's missing map */
1881 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1882 		if (t == DTL_SCRUB)
1883 			continue;			/* leaf vdevs only */
1884 		if (t == DTL_PARTIAL)
1885 			minref = 1;			/* i.e. non-zero */
1886 		else if (vd->vdev_nparity != 0)
1887 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1888 		else
1889 			minref = vd->vdev_children;	/* any kind of mirror */
1890 		space_reftree_create(&reftree);
1891 		for (int c = 0; c < vd->vdev_children; c++) {
1892 			vdev_t *cvd = vd->vdev_child[c];
1893 			mutex_enter(&cvd->vdev_dtl_lock);
1894 			space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1);
1895 			mutex_exit(&cvd->vdev_dtl_lock);
1896 		}
1897 		space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref);
1898 		space_reftree_destroy(&reftree);
1899 	}
1900 	mutex_exit(&vd->vdev_dtl_lock);
1901 }
1902 
1903 int
1904 vdev_dtl_load(vdev_t *vd)
1905 {
1906 	spa_t *spa = vd->vdev_spa;
1907 	objset_t *mos = spa->spa_meta_objset;
1908 	int error = 0;
1909 
1910 	if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) {
1911 		ASSERT(!vd->vdev_ishole);
1912 
1913 		error = space_map_open(&vd->vdev_dtl_sm, mos,
1914 		    vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock);
1915 		if (error)
1916 			return (error);
1917 		ASSERT(vd->vdev_dtl_sm != NULL);
1918 
1919 		mutex_enter(&vd->vdev_dtl_lock);
1920 
1921 		/*
1922 		 * Now that we've opened the space_map we need to update
1923 		 * the in-core DTL.
1924 		 */
1925 		space_map_update(vd->vdev_dtl_sm);
1926 
1927 		error = space_map_load(vd->vdev_dtl_sm,
1928 		    vd->vdev_dtl[DTL_MISSING], SM_ALLOC);
1929 		mutex_exit(&vd->vdev_dtl_lock);
1930 
1931 		return (error);
1932 	}
1933 
1934 	for (int c = 0; c < vd->vdev_children; c++) {
1935 		error = vdev_dtl_load(vd->vdev_child[c]);
1936 		if (error != 0)
1937 			break;
1938 	}
1939 
1940 	return (error);
1941 }
1942 
1943 void
1944 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1945 {
1946 	spa_t *spa = vd->vdev_spa;
1947 	range_tree_t *rt = vd->vdev_dtl[DTL_MISSING];
1948 	objset_t *mos = spa->spa_meta_objset;
1949 	range_tree_t *rtsync;
1950 	kmutex_t rtlock;
1951 	dmu_tx_t *tx;
1952 	uint64_t object = space_map_object(vd->vdev_dtl_sm);
1953 
1954 	ASSERT(!vd->vdev_ishole);
1955 	ASSERT(vd->vdev_ops->vdev_op_leaf);
1956 
1957 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1958 
1959 	if (vd->vdev_detached || vd->vdev_top->vdev_removing) {
1960 		mutex_enter(&vd->vdev_dtl_lock);
1961 		space_map_free(vd->vdev_dtl_sm, tx);
1962 		space_map_close(vd->vdev_dtl_sm);
1963 		vd->vdev_dtl_sm = NULL;
1964 		mutex_exit(&vd->vdev_dtl_lock);
1965 		dmu_tx_commit(tx);
1966 		return;
1967 	}
1968 
1969 	if (vd->vdev_dtl_sm == NULL) {
1970 		uint64_t new_object;
1971 
1972 		new_object = space_map_alloc(mos, tx);
1973 		VERIFY3U(new_object, !=, 0);
1974 
1975 		VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object,
1976 		    0, -1ULL, 0, &vd->vdev_dtl_lock));
1977 		ASSERT(vd->vdev_dtl_sm != NULL);
1978 	}
1979 
1980 	mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL);
1981 
1982 	rtsync = range_tree_create(NULL, NULL, &rtlock);
1983 
1984 	mutex_enter(&rtlock);
1985 
1986 	mutex_enter(&vd->vdev_dtl_lock);
1987 	range_tree_walk(rt, range_tree_add, rtsync);
1988 	mutex_exit(&vd->vdev_dtl_lock);
1989 
1990 	space_map_truncate(vd->vdev_dtl_sm, tx);
1991 	space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx);
1992 	range_tree_vacate(rtsync, NULL, NULL);
1993 
1994 	range_tree_destroy(rtsync);
1995 
1996 	mutex_exit(&rtlock);
1997 	mutex_destroy(&rtlock);
1998 
1999 	/*
2000 	 * If the object for the space map has changed then dirty
2001 	 * the top level so that we update the config.
2002 	 */
2003 	if (object != space_map_object(vd->vdev_dtl_sm)) {
2004 		zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, "
2005 		    "new object %llu", txg, spa_name(spa), object,
2006 		    space_map_object(vd->vdev_dtl_sm));
2007 		vdev_config_dirty(vd->vdev_top);
2008 	}
2009 
2010 	dmu_tx_commit(tx);
2011 
2012 	mutex_enter(&vd->vdev_dtl_lock);
2013 	space_map_update(vd->vdev_dtl_sm);
2014 	mutex_exit(&vd->vdev_dtl_lock);
2015 }
2016 
2017 /*
2018  * Determine whether the specified vdev can be offlined/detached/removed
2019  * without losing data.
2020  */
2021 boolean_t
2022 vdev_dtl_required(vdev_t *vd)
2023 {
2024 	spa_t *spa = vd->vdev_spa;
2025 	vdev_t *tvd = vd->vdev_top;
2026 	uint8_t cant_read = vd->vdev_cant_read;
2027 	boolean_t required;
2028 
2029 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2030 
2031 	if (vd == spa->spa_root_vdev || vd == tvd)
2032 		return (B_TRUE);
2033 
2034 	/*
2035 	 * Temporarily mark the device as unreadable, and then determine
2036 	 * whether this results in any DTL outages in the top-level vdev.
2037 	 * If not, we can safely offline/detach/remove the device.
2038 	 */
2039 	vd->vdev_cant_read = B_TRUE;
2040 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2041 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
2042 	vd->vdev_cant_read = cant_read;
2043 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
2044 
2045 	if (!required && zio_injection_enabled)
2046 		required = !!zio_handle_device_injection(vd, NULL, ECHILD);
2047 
2048 	return (required);
2049 }
2050 
2051 /*
2052  * Determine if resilver is needed, and if so the txg range.
2053  */
2054 boolean_t
2055 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
2056 {
2057 	boolean_t needed = B_FALSE;
2058 	uint64_t thismin = UINT64_MAX;
2059 	uint64_t thismax = 0;
2060 
2061 	if (vd->vdev_children == 0) {
2062 		mutex_enter(&vd->vdev_dtl_lock);
2063 		if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 &&
2064 		    vdev_writeable(vd)) {
2065 
2066 			thismin = vdev_dtl_min(vd);
2067 			thismax = vdev_dtl_max(vd);
2068 			needed = B_TRUE;
2069 		}
2070 		mutex_exit(&vd->vdev_dtl_lock);
2071 	} else {
2072 		for (int c = 0; c < vd->vdev_children; c++) {
2073 			vdev_t *cvd = vd->vdev_child[c];
2074 			uint64_t cmin, cmax;
2075 
2076 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
2077 				thismin = MIN(thismin, cmin);
2078 				thismax = MAX(thismax, cmax);
2079 				needed = B_TRUE;
2080 			}
2081 		}
2082 	}
2083 
2084 	if (needed && minp) {
2085 		*minp = thismin;
2086 		*maxp = thismax;
2087 	}
2088 	return (needed);
2089 }
2090 
2091 void
2092 vdev_load(vdev_t *vd)
2093 {
2094 	/*
2095 	 * Recursively load all children.
2096 	 */
2097 	for (int c = 0; c < vd->vdev_children; c++)
2098 		vdev_load(vd->vdev_child[c]);
2099 
2100 	/*
2101 	 * If this is a top-level vdev, initialize its metaslabs.
2102 	 */
2103 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
2104 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
2105 	    vdev_metaslab_init(vd, 0) != 0))
2106 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2107 		    VDEV_AUX_CORRUPT_DATA);
2108 
2109 	/*
2110 	 * If this is a leaf vdev, load its DTL.
2111 	 */
2112 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
2113 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
2114 		    VDEV_AUX_CORRUPT_DATA);
2115 }
2116 
2117 /*
2118  * The special vdev case is used for hot spares and l2cache devices.  Its
2119  * sole purpose it to set the vdev state for the associated vdev.  To do this,
2120  * we make sure that we can open the underlying device, then try to read the
2121  * label, and make sure that the label is sane and that it hasn't been
2122  * repurposed to another pool.
2123  */
2124 int
2125 vdev_validate_aux(vdev_t *vd)
2126 {
2127 	nvlist_t *label;
2128 	uint64_t guid, version;
2129 	uint64_t state;
2130 
2131 	if (!vdev_readable(vd))
2132 		return (0);
2133 
2134 	if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) {
2135 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2136 		    VDEV_AUX_CORRUPT_DATA);
2137 		return (-1);
2138 	}
2139 
2140 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
2141 	    !SPA_VERSION_IS_SUPPORTED(version) ||
2142 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
2143 	    guid != vd->vdev_guid ||
2144 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
2145 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
2146 		    VDEV_AUX_CORRUPT_DATA);
2147 		nvlist_free(label);
2148 		return (-1);
2149 	}
2150 
2151 	/*
2152 	 * We don't actually check the pool state here.  If it's in fact in
2153 	 * use by another pool, we update this fact on the fly when requested.
2154 	 */
2155 	nvlist_free(label);
2156 	return (0);
2157 }
2158 
2159 void
2160 vdev_remove(vdev_t *vd, uint64_t txg)
2161 {
2162 	spa_t *spa = vd->vdev_spa;
2163 	objset_t *mos = spa->spa_meta_objset;
2164 	dmu_tx_t *tx;
2165 
2166 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
2167 
2168 	if (vd->vdev_ms != NULL) {
2169 		metaslab_group_t *mg = vd->vdev_mg;
2170 
2171 		metaslab_group_histogram_verify(mg);
2172 		metaslab_class_histogram_verify(mg->mg_class);
2173 
2174 		for (int m = 0; m < vd->vdev_ms_count; m++) {
2175 			metaslab_t *msp = vd->vdev_ms[m];
2176 
2177 			if (msp == NULL || msp->ms_sm == NULL)
2178 				continue;
2179 
2180 			mutex_enter(&msp->ms_lock);
2181 			/*
2182 			 * If the metaslab was not loaded when the vdev
2183 			 * was removed then the histogram accounting may
2184 			 * not be accurate. Update the histogram information
2185 			 * here so that we ensure that the metaslab group
2186 			 * and metaslab class are up-to-date.
2187 			 */
2188 			metaslab_group_histogram_remove(mg, msp);
2189 
2190 			VERIFY0(space_map_allocated(msp->ms_sm));
2191 			space_map_free(msp->ms_sm, tx);
2192 			space_map_close(msp->ms_sm);
2193 			msp->ms_sm = NULL;
2194 			mutex_exit(&msp->ms_lock);
2195 		}
2196 
2197 		metaslab_group_histogram_verify(mg);
2198 		metaslab_class_histogram_verify(mg->mg_class);
2199 		for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
2200 			ASSERT0(mg->mg_histogram[i]);
2201 
2202 	}
2203 
2204 	if (vd->vdev_ms_array) {
2205 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2206 		vd->vdev_ms_array = 0;
2207 	}
2208 	dmu_tx_commit(tx);
2209 }
2210 
2211 void
2212 vdev_sync_done(vdev_t *vd, uint64_t txg)
2213 {
2214 	metaslab_t *msp;
2215 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2216 
2217 	ASSERT(!vd->vdev_ishole);
2218 
2219 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2220 		metaslab_sync_done(msp, txg);
2221 
2222 	if (reassess)
2223 		metaslab_sync_reassess(vd->vdev_mg);
2224 }
2225 
2226 void
2227 vdev_sync(vdev_t *vd, uint64_t txg)
2228 {
2229 	spa_t *spa = vd->vdev_spa;
2230 	vdev_t *lvd;
2231 	metaslab_t *msp;
2232 	dmu_tx_t *tx;
2233 
2234 	ASSERT(!vd->vdev_ishole);
2235 
2236 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2237 		ASSERT(vd == vd->vdev_top);
2238 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2239 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2240 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2241 		ASSERT(vd->vdev_ms_array != 0);
2242 		vdev_config_dirty(vd);
2243 		dmu_tx_commit(tx);
2244 	}
2245 
2246 	/*
2247 	 * Remove the metadata associated with this vdev once it's empty.
2248 	 */
2249 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2250 		vdev_remove(vd, txg);
2251 
2252 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2253 		metaslab_sync(msp, txg);
2254 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2255 	}
2256 
2257 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2258 		vdev_dtl_sync(lvd, txg);
2259 
2260 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2261 }
2262 
2263 uint64_t
2264 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2265 {
2266 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2267 }
2268 
2269 /*
2270  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2271  * not be opened, and no I/O is attempted.
2272  */
2273 int
2274 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2275 {
2276 	vdev_t *vd, *tvd;
2277 
2278 	spa_vdev_state_enter(spa, SCL_NONE);
2279 
2280 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2281 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2282 
2283 	if (!vd->vdev_ops->vdev_op_leaf)
2284 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2285 
2286 	tvd = vd->vdev_top;
2287 
2288 	/*
2289 	 * We don't directly use the aux state here, but if we do a
2290 	 * vdev_reopen(), we need this value to be present to remember why we
2291 	 * were faulted.
2292 	 */
2293 	vd->vdev_label_aux = aux;
2294 
2295 	/*
2296 	 * Faulted state takes precedence over degraded.
2297 	 */
2298 	vd->vdev_delayed_close = B_FALSE;
2299 	vd->vdev_faulted = 1ULL;
2300 	vd->vdev_degraded = 0ULL;
2301 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2302 
2303 	/*
2304 	 * If this device has the only valid copy of the data, then
2305 	 * back off and simply mark the vdev as degraded instead.
2306 	 */
2307 	if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2308 		vd->vdev_degraded = 1ULL;
2309 		vd->vdev_faulted = 0ULL;
2310 
2311 		/*
2312 		 * If we reopen the device and it's not dead, only then do we
2313 		 * mark it degraded.
2314 		 */
2315 		vdev_reopen(tvd);
2316 
2317 		if (vdev_readable(vd))
2318 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2319 	}
2320 
2321 	return (spa_vdev_state_exit(spa, vd, 0));
2322 }
2323 
2324 /*
2325  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2326  * user that something is wrong.  The vdev continues to operate as normal as far
2327  * as I/O is concerned.
2328  */
2329 int
2330 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2331 {
2332 	vdev_t *vd;
2333 
2334 	spa_vdev_state_enter(spa, SCL_NONE);
2335 
2336 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2337 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2338 
2339 	if (!vd->vdev_ops->vdev_op_leaf)
2340 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2341 
2342 	/*
2343 	 * If the vdev is already faulted, then don't do anything.
2344 	 */
2345 	if (vd->vdev_faulted || vd->vdev_degraded)
2346 		return (spa_vdev_state_exit(spa, NULL, 0));
2347 
2348 	vd->vdev_degraded = 1ULL;
2349 	if (!vdev_is_dead(vd))
2350 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2351 		    aux);
2352 
2353 	return (spa_vdev_state_exit(spa, vd, 0));
2354 }
2355 
2356 /*
2357  * Online the given vdev.
2358  *
2359  * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things.  First, any attached
2360  * spare device should be detached when the device finishes resilvering.
2361  * Second, the online should be treated like a 'test' online case, so no FMA
2362  * events are generated if the device fails to open.
2363  */
2364 int
2365 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2366 {
2367 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2368 	boolean_t postevent = B_FALSE;
2369 
2370 	spa_vdev_state_enter(spa, SCL_NONE);
2371 
2372 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2373 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2374 
2375 	if (!vd->vdev_ops->vdev_op_leaf)
2376 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2377 
2378 	postevent =
2379 	    (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ?
2380 	    B_TRUE : B_FALSE;
2381 
2382 	tvd = vd->vdev_top;
2383 	vd->vdev_offline = B_FALSE;
2384 	vd->vdev_tmpoffline = B_FALSE;
2385 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2386 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2387 
2388 	/* XXX - L2ARC 1.0 does not support expansion */
2389 	if (!vd->vdev_aux) {
2390 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2391 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2392 	}
2393 
2394 	vdev_reopen(tvd);
2395 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2396 
2397 	if (!vd->vdev_aux) {
2398 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2399 			pvd->vdev_expanding = B_FALSE;
2400 	}
2401 
2402 	if (newstate)
2403 		*newstate = vd->vdev_state;
2404 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2405 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2406 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2407 	    vd->vdev_parent->vdev_child[0] == vd)
2408 		vd->vdev_unspare = B_TRUE;
2409 
2410 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2411 
2412 		/* XXX - L2ARC 1.0 does not support expansion */
2413 		if (vd->vdev_aux)
2414 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2415 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2416 	}
2417 
2418 	if (postevent)
2419 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE);
2420 
2421 	return (spa_vdev_state_exit(spa, vd, 0));
2422 }
2423 
2424 static int
2425 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2426 {
2427 	vdev_t *vd, *tvd;
2428 	int error = 0;
2429 	uint64_t generation;
2430 	metaslab_group_t *mg;
2431 
2432 top:
2433 	spa_vdev_state_enter(spa, SCL_ALLOC);
2434 
2435 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2436 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2437 
2438 	if (!vd->vdev_ops->vdev_op_leaf)
2439 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2440 
2441 	tvd = vd->vdev_top;
2442 	mg = tvd->vdev_mg;
2443 	generation = spa->spa_config_generation + 1;
2444 
2445 	/*
2446 	 * If the device isn't already offline, try to offline it.
2447 	 */
2448 	if (!vd->vdev_offline) {
2449 		/*
2450 		 * If this device has the only valid copy of some data,
2451 		 * don't allow it to be offlined. Log devices are always
2452 		 * expendable.
2453 		 */
2454 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2455 		    vdev_dtl_required(vd))
2456 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2457 
2458 		/*
2459 		 * If the top-level is a slog and it has had allocations
2460 		 * then proceed.  We check that the vdev's metaslab group
2461 		 * is not NULL since it's possible that we may have just
2462 		 * added this vdev but not yet initialized its metaslabs.
2463 		 */
2464 		if (tvd->vdev_islog && mg != NULL) {
2465 			/*
2466 			 * Prevent any future allocations.
2467 			 */
2468 			metaslab_group_passivate(mg);
2469 			(void) spa_vdev_state_exit(spa, vd, 0);
2470 
2471 			error = spa_offline_log(spa);
2472 
2473 			spa_vdev_state_enter(spa, SCL_ALLOC);
2474 
2475 			/*
2476 			 * Check to see if the config has changed.
2477 			 */
2478 			if (error || generation != spa->spa_config_generation) {
2479 				metaslab_group_activate(mg);
2480 				if (error)
2481 					return (spa_vdev_state_exit(spa,
2482 					    vd, error));
2483 				(void) spa_vdev_state_exit(spa, vd, 0);
2484 				goto top;
2485 			}
2486 			ASSERT0(tvd->vdev_stat.vs_alloc);
2487 		}
2488 
2489 		/*
2490 		 * Offline this device and reopen its top-level vdev.
2491 		 * If the top-level vdev is a log device then just offline
2492 		 * it. Otherwise, if this action results in the top-level
2493 		 * vdev becoming unusable, undo it and fail the request.
2494 		 */
2495 		vd->vdev_offline = B_TRUE;
2496 		vdev_reopen(tvd);
2497 
2498 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2499 		    vdev_is_dead(tvd)) {
2500 			vd->vdev_offline = B_FALSE;
2501 			vdev_reopen(tvd);
2502 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2503 		}
2504 
2505 		/*
2506 		 * Add the device back into the metaslab rotor so that
2507 		 * once we online the device it's open for business.
2508 		 */
2509 		if (tvd->vdev_islog && mg != NULL)
2510 			metaslab_group_activate(mg);
2511 	}
2512 
2513 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2514 
2515 	return (spa_vdev_state_exit(spa, vd, 0));
2516 }
2517 
2518 int
2519 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2520 {
2521 	int error;
2522 
2523 	mutex_enter(&spa->spa_vdev_top_lock);
2524 	error = vdev_offline_locked(spa, guid, flags);
2525 	mutex_exit(&spa->spa_vdev_top_lock);
2526 
2527 	return (error);
2528 }
2529 
2530 /*
2531  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2532  * vdev_offline(), we assume the spa config is locked.  We also clear all
2533  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2534  */
2535 void
2536 vdev_clear(spa_t *spa, vdev_t *vd)
2537 {
2538 	vdev_t *rvd = spa->spa_root_vdev;
2539 
2540 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2541 
2542 	if (vd == NULL)
2543 		vd = rvd;
2544 
2545 	vd->vdev_stat.vs_read_errors = 0;
2546 	vd->vdev_stat.vs_write_errors = 0;
2547 	vd->vdev_stat.vs_checksum_errors = 0;
2548 
2549 	for (int c = 0; c < vd->vdev_children; c++)
2550 		vdev_clear(spa, vd->vdev_child[c]);
2551 
2552 	/*
2553 	 * If we're in the FAULTED state or have experienced failed I/O, then
2554 	 * clear the persistent state and attempt to reopen the device.  We
2555 	 * also mark the vdev config dirty, so that the new faulted state is
2556 	 * written out to disk.
2557 	 */
2558 	if (vd->vdev_faulted || vd->vdev_degraded ||
2559 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2560 
2561 		/*
2562 		 * When reopening in reponse to a clear event, it may be due to
2563 		 * a fmadm repair request.  In this case, if the device is
2564 		 * still broken, we want to still post the ereport again.
2565 		 */
2566 		vd->vdev_forcefault = B_TRUE;
2567 
2568 		vd->vdev_faulted = vd->vdev_degraded = 0ULL;
2569 		vd->vdev_cant_read = B_FALSE;
2570 		vd->vdev_cant_write = B_FALSE;
2571 
2572 		vdev_reopen(vd == rvd ? rvd : vd->vdev_top);
2573 
2574 		vd->vdev_forcefault = B_FALSE;
2575 
2576 		if (vd != rvd && vdev_writeable(vd->vdev_top))
2577 			vdev_state_dirty(vd->vdev_top);
2578 
2579 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2580 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2581 
2582 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2583 	}
2584 
2585 	/*
2586 	 * When clearing a FMA-diagnosed fault, we always want to
2587 	 * unspare the device, as we assume that the original spare was
2588 	 * done in response to the FMA fault.
2589 	 */
2590 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2591 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2592 	    vd->vdev_parent->vdev_child[0] == vd)
2593 		vd->vdev_unspare = B_TRUE;
2594 }
2595 
2596 boolean_t
2597 vdev_is_dead(vdev_t *vd)
2598 {
2599 	/*
2600 	 * Holes and missing devices are always considered "dead".
2601 	 * This simplifies the code since we don't have to check for
2602 	 * these types of devices in the various code paths.
2603 	 * Instead we rely on the fact that we skip over dead devices
2604 	 * before issuing I/O to them.
2605 	 */
2606 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2607 	    vd->vdev_ops == &vdev_missing_ops);
2608 }
2609 
2610 boolean_t
2611 vdev_readable(vdev_t *vd)
2612 {
2613 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2614 }
2615 
2616 boolean_t
2617 vdev_writeable(vdev_t *vd)
2618 {
2619 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2620 }
2621 
2622 boolean_t
2623 vdev_allocatable(vdev_t *vd)
2624 {
2625 	uint64_t state = vd->vdev_state;
2626 
2627 	/*
2628 	 * We currently allow allocations from vdevs which may be in the
2629 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2630 	 * fails to reopen then we'll catch it later when we're holding
2631 	 * the proper locks.  Note that we have to get the vdev state
2632 	 * in a local variable because although it changes atomically,
2633 	 * we're asking two separate questions about it.
2634 	 */
2635 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2636 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2637 }
2638 
2639 boolean_t
2640 vdev_accessible(vdev_t *vd, zio_t *zio)
2641 {
2642 	ASSERT(zio->io_vd == vd);
2643 
2644 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2645 		return (B_FALSE);
2646 
2647 	if (zio->io_type == ZIO_TYPE_READ)
2648 		return (!vd->vdev_cant_read);
2649 
2650 	if (zio->io_type == ZIO_TYPE_WRITE)
2651 		return (!vd->vdev_cant_write);
2652 
2653 	return (B_TRUE);
2654 }
2655 
2656 /*
2657  * Get statistics for the given vdev.
2658  */
2659 void
2660 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2661 {
2662 	spa_t *spa = vd->vdev_spa;
2663 	vdev_t *rvd = spa->spa_root_vdev;
2664 
2665 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
2666 
2667 	mutex_enter(&vd->vdev_stat_lock);
2668 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2669 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2670 	vs->vs_state = vd->vdev_state;
2671 	vs->vs_rsize = vdev_get_min_asize(vd);
2672 	if (vd->vdev_ops->vdev_op_leaf)
2673 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2674 	vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize;
2675 	if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) {
2676 		vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation;
2677 	}
2678 
2679 	/*
2680 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2681 	 * over all top-level vdevs (i.e. the direct children of the root).
2682 	 */
2683 	if (vd == rvd) {
2684 		for (int c = 0; c < rvd->vdev_children; c++) {
2685 			vdev_t *cvd = rvd->vdev_child[c];
2686 			vdev_stat_t *cvs = &cvd->vdev_stat;
2687 
2688 			for (int t = 0; t < ZIO_TYPES; t++) {
2689 				vs->vs_ops[t] += cvs->vs_ops[t];
2690 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2691 			}
2692 			cvs->vs_scan_removing = cvd->vdev_removing;
2693 		}
2694 	}
2695 	mutex_exit(&vd->vdev_stat_lock);
2696 }
2697 
2698 void
2699 vdev_clear_stats(vdev_t *vd)
2700 {
2701 	mutex_enter(&vd->vdev_stat_lock);
2702 	vd->vdev_stat.vs_space = 0;
2703 	vd->vdev_stat.vs_dspace = 0;
2704 	vd->vdev_stat.vs_alloc = 0;
2705 	mutex_exit(&vd->vdev_stat_lock);
2706 }
2707 
2708 void
2709 vdev_scan_stat_init(vdev_t *vd)
2710 {
2711 	vdev_stat_t *vs = &vd->vdev_stat;
2712 
2713 	for (int c = 0; c < vd->vdev_children; c++)
2714 		vdev_scan_stat_init(vd->vdev_child[c]);
2715 
2716 	mutex_enter(&vd->vdev_stat_lock);
2717 	vs->vs_scan_processed = 0;
2718 	mutex_exit(&vd->vdev_stat_lock);
2719 }
2720 
2721 void
2722 vdev_stat_update(zio_t *zio, uint64_t psize)
2723 {
2724 	spa_t *spa = zio->io_spa;
2725 	vdev_t *rvd = spa->spa_root_vdev;
2726 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2727 	vdev_t *pvd;
2728 	uint64_t txg = zio->io_txg;
2729 	vdev_stat_t *vs = &vd->vdev_stat;
2730 	zio_type_t type = zio->io_type;
2731 	int flags = zio->io_flags;
2732 
2733 	/*
2734 	 * If this i/o is a gang leader, it didn't do any actual work.
2735 	 */
2736 	if (zio->io_gang_tree)
2737 		return;
2738 
2739 	if (zio->io_error == 0) {
2740 		/*
2741 		 * If this is a root i/o, don't count it -- we've already
2742 		 * counted the top-level vdevs, and vdev_get_stats() will
2743 		 * aggregate them when asked.  This reduces contention on
2744 		 * the root vdev_stat_lock and implicitly handles blocks
2745 		 * that compress away to holes, for which there is no i/o.
2746 		 * (Holes never create vdev children, so all the counters
2747 		 * remain zero, which is what we want.)
2748 		 *
2749 		 * Note: this only applies to successful i/o (io_error == 0)
2750 		 * because unlike i/o counts, errors are not additive.
2751 		 * When reading a ditto block, for example, failure of
2752 		 * one top-level vdev does not imply a root-level error.
2753 		 */
2754 		if (vd == rvd)
2755 			return;
2756 
2757 		ASSERT(vd == zio->io_vd);
2758 
2759 		if (flags & ZIO_FLAG_IO_BYPASS)
2760 			return;
2761 
2762 		mutex_enter(&vd->vdev_stat_lock);
2763 
2764 		if (flags & ZIO_FLAG_IO_REPAIR) {
2765 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2766 				dsl_scan_phys_t *scn_phys =
2767 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2768 				uint64_t *processed = &scn_phys->scn_processed;
2769 
2770 				/* XXX cleanup? */
2771 				if (vd->vdev_ops->vdev_op_leaf)
2772 					atomic_add_64(processed, psize);
2773 				vs->vs_scan_processed += psize;
2774 			}
2775 
2776 			if (flags & ZIO_FLAG_SELF_HEAL)
2777 				vs->vs_self_healed += psize;
2778 		}
2779 
2780 		vs->vs_ops[type]++;
2781 		vs->vs_bytes[type] += psize;
2782 
2783 		mutex_exit(&vd->vdev_stat_lock);
2784 		return;
2785 	}
2786 
2787 	if (flags & ZIO_FLAG_SPECULATIVE)
2788 		return;
2789 
2790 	/*
2791 	 * If this is an I/O error that is going to be retried, then ignore the
2792 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2793 	 * hard errors, when in reality they can happen for any number of
2794 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2795 	 */
2796 	if (zio->io_error == EIO &&
2797 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2798 		return;
2799 
2800 	/*
2801 	 * Intent logs writes won't propagate their error to the root
2802 	 * I/O so don't mark these types of failures as pool-level
2803 	 * errors.
2804 	 */
2805 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2806 		return;
2807 
2808 	mutex_enter(&vd->vdev_stat_lock);
2809 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2810 		if (zio->io_error == ECKSUM)
2811 			vs->vs_checksum_errors++;
2812 		else
2813 			vs->vs_read_errors++;
2814 	}
2815 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2816 		vs->vs_write_errors++;
2817 	mutex_exit(&vd->vdev_stat_lock);
2818 
2819 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2820 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2821 	    (flags & ZIO_FLAG_SCAN_THREAD) ||
2822 	    spa->spa_claiming)) {
2823 		/*
2824 		 * This is either a normal write (not a repair), or it's
2825 		 * a repair induced by the scrub thread, or it's a repair
2826 		 * made by zil_claim() during spa_load() in the first txg.
2827 		 * In the normal case, we commit the DTL change in the same
2828 		 * txg as the block was born.  In the scrub-induced repair
2829 		 * case, we know that scrubs run in first-pass syncing context,
2830 		 * so we commit the DTL change in spa_syncing_txg(spa).
2831 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2832 		 *
2833 		 * We currently do not make DTL entries for failed spontaneous
2834 		 * self-healing writes triggered by normal (non-scrubbing)
2835 		 * reads, because we have no transactional context in which to
2836 		 * do so -- and it's not clear that it'd be desirable anyway.
2837 		 */
2838 		if (vd->vdev_ops->vdev_op_leaf) {
2839 			uint64_t commit_txg = txg;
2840 			if (flags & ZIO_FLAG_SCAN_THREAD) {
2841 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2842 				ASSERT(spa_sync_pass(spa) == 1);
2843 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2844 				commit_txg = spa_syncing_txg(spa);
2845 			} else if (spa->spa_claiming) {
2846 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2847 				commit_txg = spa_first_txg(spa);
2848 			}
2849 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2850 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2851 				return;
2852 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2853 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2854 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2855 		}
2856 		if (vd != rvd)
2857 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2858 	}
2859 }
2860 
2861 /*
2862  * Update the in-core space usage stats for this vdev, its metaslab class,
2863  * and the root vdev.
2864  */
2865 void
2866 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2867     int64_t space_delta)
2868 {
2869 	int64_t dspace_delta = space_delta;
2870 	spa_t *spa = vd->vdev_spa;
2871 	vdev_t *rvd = spa->spa_root_vdev;
2872 	metaslab_group_t *mg = vd->vdev_mg;
2873 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2874 
2875 	ASSERT(vd == vd->vdev_top);
2876 
2877 	/*
2878 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2879 	 * factor.  We must calculate this here and not at the root vdev
2880 	 * because the root vdev's psize-to-asize is simply the max of its
2881 	 * childrens', thus not accurate enough for us.
2882 	 */
2883 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2884 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2885 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2886 	    vd->vdev_deflate_ratio;
2887 
2888 	mutex_enter(&vd->vdev_stat_lock);
2889 	vd->vdev_stat.vs_alloc += alloc_delta;
2890 	vd->vdev_stat.vs_space += space_delta;
2891 	vd->vdev_stat.vs_dspace += dspace_delta;
2892 	mutex_exit(&vd->vdev_stat_lock);
2893 
2894 	if (mc == spa_normal_class(spa)) {
2895 		mutex_enter(&rvd->vdev_stat_lock);
2896 		rvd->vdev_stat.vs_alloc += alloc_delta;
2897 		rvd->vdev_stat.vs_space += space_delta;
2898 		rvd->vdev_stat.vs_dspace += dspace_delta;
2899 		mutex_exit(&rvd->vdev_stat_lock);
2900 	}
2901 
2902 	if (mc != NULL) {
2903 		ASSERT(rvd == vd->vdev_parent);
2904 		ASSERT(vd->vdev_ms_count != 0);
2905 
2906 		metaslab_class_space_update(mc,
2907 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2908 	}
2909 }
2910 
2911 /*
2912  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2913  * so that it will be written out next time the vdev configuration is synced.
2914  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2915  */
2916 void
2917 vdev_config_dirty(vdev_t *vd)
2918 {
2919 	spa_t *spa = vd->vdev_spa;
2920 	vdev_t *rvd = spa->spa_root_vdev;
2921 	int c;
2922 
2923 	ASSERT(spa_writeable(spa));
2924 
2925 	/*
2926 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2927 	 * update the vdev config manually and set the sync flag.
2928 	 */
2929 	if (vd->vdev_aux != NULL) {
2930 		spa_aux_vdev_t *sav = vd->vdev_aux;
2931 		nvlist_t **aux;
2932 		uint_t naux;
2933 
2934 		for (c = 0; c < sav->sav_count; c++) {
2935 			if (sav->sav_vdevs[c] == vd)
2936 				break;
2937 		}
2938 
2939 		if (c == sav->sav_count) {
2940 			/*
2941 			 * We're being removed.  There's nothing more to do.
2942 			 */
2943 			ASSERT(sav->sav_sync == B_TRUE);
2944 			return;
2945 		}
2946 
2947 		sav->sav_sync = B_TRUE;
2948 
2949 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2950 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2951 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2952 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2953 		}
2954 
2955 		ASSERT(c < naux);
2956 
2957 		/*
2958 		 * Setting the nvlist in the middle if the array is a little
2959 		 * sketchy, but it will work.
2960 		 */
2961 		nvlist_free(aux[c]);
2962 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2963 
2964 		return;
2965 	}
2966 
2967 	/*
2968 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2969 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2970 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2971 	 * so this is sufficient to ensure mutual exclusion.
2972 	 */
2973 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2974 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2975 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2976 
2977 	if (vd == rvd) {
2978 		for (c = 0; c < rvd->vdev_children; c++)
2979 			vdev_config_dirty(rvd->vdev_child[c]);
2980 	} else {
2981 		ASSERT(vd == vd->vdev_top);
2982 
2983 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2984 		    !vd->vdev_ishole)
2985 			list_insert_head(&spa->spa_config_dirty_list, vd);
2986 	}
2987 }
2988 
2989 void
2990 vdev_config_clean(vdev_t *vd)
2991 {
2992 	spa_t *spa = vd->vdev_spa;
2993 
2994 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2995 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2996 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2997 
2998 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2999 	list_remove(&spa->spa_config_dirty_list, vd);
3000 }
3001 
3002 /*
3003  * Mark a top-level vdev's state as dirty, so that the next pass of
3004  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
3005  * the state changes from larger config changes because they require
3006  * much less locking, and are often needed for administrative actions.
3007  */
3008 void
3009 vdev_state_dirty(vdev_t *vd)
3010 {
3011 	spa_t *spa = vd->vdev_spa;
3012 
3013 	ASSERT(spa_writeable(spa));
3014 	ASSERT(vd == vd->vdev_top);
3015 
3016 	/*
3017 	 * The state list is protected by the SCL_STATE lock.  The caller
3018 	 * must either hold SCL_STATE as writer, or must be the sync thread
3019 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
3020 	 * so this is sufficient to ensure mutual exclusion.
3021 	 */
3022 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3023 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3024 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3025 
3026 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
3027 		list_insert_head(&spa->spa_state_dirty_list, vd);
3028 }
3029 
3030 void
3031 vdev_state_clean(vdev_t *vd)
3032 {
3033 	spa_t *spa = vd->vdev_spa;
3034 
3035 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
3036 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
3037 	    spa_config_held(spa, SCL_STATE, RW_READER)));
3038 
3039 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
3040 	list_remove(&spa->spa_state_dirty_list, vd);
3041 }
3042 
3043 /*
3044  * Propagate vdev state up from children to parent.
3045  */
3046 void
3047 vdev_propagate_state(vdev_t *vd)
3048 {
3049 	spa_t *spa = vd->vdev_spa;
3050 	vdev_t *rvd = spa->spa_root_vdev;
3051 	int degraded = 0, faulted = 0;
3052 	int corrupted = 0;
3053 	vdev_t *child;
3054 
3055 	if (vd->vdev_children > 0) {
3056 		for (int c = 0; c < vd->vdev_children; c++) {
3057 			child = vd->vdev_child[c];
3058 
3059 			/*
3060 			 * Don't factor holes into the decision.
3061 			 */
3062 			if (child->vdev_ishole)
3063 				continue;
3064 
3065 			if (!vdev_readable(child) ||
3066 			    (!vdev_writeable(child) && spa_writeable(spa))) {
3067 				/*
3068 				 * Root special: if there is a top-level log
3069 				 * device, treat the root vdev as if it were
3070 				 * degraded.
3071 				 */
3072 				if (child->vdev_islog && vd == rvd)
3073 					degraded++;
3074 				else
3075 					faulted++;
3076 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
3077 				degraded++;
3078 			}
3079 
3080 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
3081 				corrupted++;
3082 		}
3083 
3084 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
3085 
3086 		/*
3087 		 * Root special: if there is a top-level vdev that cannot be
3088 		 * opened due to corrupted metadata, then propagate the root
3089 		 * vdev's aux state as 'corrupt' rather than 'insufficient
3090 		 * replicas'.
3091 		 */
3092 		if (corrupted && vd == rvd &&
3093 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
3094 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
3095 			    VDEV_AUX_CORRUPT_DATA);
3096 	}
3097 
3098 	if (vd->vdev_parent)
3099 		vdev_propagate_state(vd->vdev_parent);
3100 }
3101 
3102 /*
3103  * Set a vdev's state.  If this is during an open, we don't update the parent
3104  * state, because we're in the process of opening children depth-first.
3105  * Otherwise, we propagate the change to the parent.
3106  *
3107  * If this routine places a device in a faulted state, an appropriate ereport is
3108  * generated.
3109  */
3110 void
3111 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
3112 {
3113 	uint64_t save_state;
3114 	spa_t *spa = vd->vdev_spa;
3115 
3116 	if (state == vd->vdev_state) {
3117 		vd->vdev_stat.vs_aux = aux;
3118 		return;
3119 	}
3120 
3121 	save_state = vd->vdev_state;
3122 
3123 	vd->vdev_state = state;
3124 	vd->vdev_stat.vs_aux = aux;
3125 
3126 	/*
3127 	 * If we are setting the vdev state to anything but an open state, then
3128 	 * always close the underlying device unless the device has requested
3129 	 * a delayed close (i.e. we're about to remove or fault the device).
3130 	 * Otherwise, we keep accessible but invalid devices open forever.
3131 	 * We don't call vdev_close() itself, because that implies some extra
3132 	 * checks (offline, etc) that we don't want here.  This is limited to
3133 	 * leaf devices, because otherwise closing the device will affect other
3134 	 * children.
3135 	 */
3136 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
3137 	    vd->vdev_ops->vdev_op_leaf)
3138 		vd->vdev_ops->vdev_op_close(vd);
3139 
3140 	/*
3141 	 * If we have brought this vdev back into service, we need
3142 	 * to notify fmd so that it can gracefully repair any outstanding
3143 	 * cases due to a missing device.  We do this in all cases, even those
3144 	 * that probably don't correlate to a repaired fault.  This is sure to
3145 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
3146 	 * this is a transient state it's OK, as the retire agent will
3147 	 * double-check the state of the vdev before repairing it.
3148 	 */
3149 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
3150 	    vd->vdev_prevstate != state)
3151 		zfs_post_state_change(spa, vd);
3152 
3153 	if (vd->vdev_removed &&
3154 	    state == VDEV_STATE_CANT_OPEN &&
3155 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
3156 		/*
3157 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
3158 		 * device was previously marked removed and someone attempted to
3159 		 * reopen it.  If this failed due to a nonexistent device, then
3160 		 * keep the device in the REMOVED state.  We also let this be if
3161 		 * it is one of our special test online cases, which is only
3162 		 * attempting to online the device and shouldn't generate an FMA
3163 		 * fault.
3164 		 */
3165 		vd->vdev_state = VDEV_STATE_REMOVED;
3166 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
3167 	} else if (state == VDEV_STATE_REMOVED) {
3168 		vd->vdev_removed = B_TRUE;
3169 	} else if (state == VDEV_STATE_CANT_OPEN) {
3170 		/*
3171 		 * If we fail to open a vdev during an import or recovery, we
3172 		 * mark it as "not available", which signifies that it was
3173 		 * never there to begin with.  Failure to open such a device
3174 		 * is not considered an error.
3175 		 */
3176 		if ((spa_load_state(spa) == SPA_LOAD_IMPORT ||
3177 		    spa_load_state(spa) == SPA_LOAD_RECOVER) &&
3178 		    vd->vdev_ops->vdev_op_leaf)
3179 			vd->vdev_not_present = 1;
3180 
3181 		/*
3182 		 * Post the appropriate ereport.  If the 'prevstate' field is
3183 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
3184 		 * that this is part of a vdev_reopen().  In this case, we don't
3185 		 * want to post the ereport if the device was already in the
3186 		 * CANT_OPEN state beforehand.
3187 		 *
3188 		 * If the 'checkremove' flag is set, then this is an attempt to
3189 		 * online the device in response to an insertion event.  If we
3190 		 * hit this case, then we have detected an insertion event for a
3191 		 * faulted or offline device that wasn't in the removed state.
3192 		 * In this scenario, we don't post an ereport because we are
3193 		 * about to replace the device, or attempt an online with
3194 		 * vdev_forcefault, which will generate the fault for us.
3195 		 */
3196 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
3197 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
3198 		    vd != spa->spa_root_vdev) {
3199 			const char *class;
3200 
3201 			switch (aux) {
3202 			case VDEV_AUX_OPEN_FAILED:
3203 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
3204 				break;
3205 			case VDEV_AUX_CORRUPT_DATA:
3206 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
3207 				break;
3208 			case VDEV_AUX_NO_REPLICAS:
3209 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
3210 				break;
3211 			case VDEV_AUX_BAD_GUID_SUM:
3212 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
3213 				break;
3214 			case VDEV_AUX_TOO_SMALL:
3215 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
3216 				break;
3217 			case VDEV_AUX_BAD_LABEL:
3218 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
3219 				break;
3220 			default:
3221 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
3222 			}
3223 
3224 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3225 		}
3226 
3227 		/* Erase any notion of persistent removed state */
3228 		vd->vdev_removed = B_FALSE;
3229 	} else {
3230 		vd->vdev_removed = B_FALSE;
3231 	}
3232 
3233 	if (!isopen && vd->vdev_parent)
3234 		vdev_propagate_state(vd->vdev_parent);
3235 }
3236 
3237 /*
3238  * Check the vdev configuration to ensure that it's capable of supporting
3239  * a root pool. We do not support partial configuration.
3240  * In addition, only a single top-level vdev is allowed.
3241  */
3242 boolean_t
3243 vdev_is_bootable(vdev_t *vd)
3244 {
3245 	if (!vd->vdev_ops->vdev_op_leaf) {
3246 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3247 
3248 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3249 		    vd->vdev_children > 1) {
3250 			return (B_FALSE);
3251 		} else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3252 			return (B_FALSE);
3253 		}
3254 	}
3255 
3256 	for (int c = 0; c < vd->vdev_children; c++) {
3257 		if (!vdev_is_bootable(vd->vdev_child[c]))
3258 			return (B_FALSE);
3259 	}
3260 	return (B_TRUE);
3261 }
3262 
3263 /*
3264  * Load the state from the original vdev tree (ovd) which
3265  * we've retrieved from the MOS config object. If the original
3266  * vdev was offline or faulted then we transfer that state to the
3267  * device in the current vdev tree (nvd).
3268  */
3269 void
3270 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3271 {
3272 	spa_t *spa = nvd->vdev_spa;
3273 
3274 	ASSERT(nvd->vdev_top->vdev_islog);
3275 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3276 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3277 
3278 	for (int c = 0; c < nvd->vdev_children; c++)
3279 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3280 
3281 	if (nvd->vdev_ops->vdev_op_leaf) {
3282 		/*
3283 		 * Restore the persistent vdev state
3284 		 */
3285 		nvd->vdev_offline = ovd->vdev_offline;
3286 		nvd->vdev_faulted = ovd->vdev_faulted;
3287 		nvd->vdev_degraded = ovd->vdev_degraded;
3288 		nvd->vdev_removed = ovd->vdev_removed;
3289 	}
3290 }
3291 
3292 /*
3293  * Determine if a log device has valid content.  If the vdev was
3294  * removed or faulted in the MOS config then we know that
3295  * the content on the log device has already been written to the pool.
3296  */
3297 boolean_t
3298 vdev_log_state_valid(vdev_t *vd)
3299 {
3300 	if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted &&
3301 	    !vd->vdev_removed)
3302 		return (B_TRUE);
3303 
3304 	for (int c = 0; c < vd->vdev_children; c++)
3305 		if (vdev_log_state_valid(vd->vdev_child[c]))
3306 			return (B_TRUE);
3307 
3308 	return (B_FALSE);
3309 }
3310 
3311 /*
3312  * Expand a vdev if possible.
3313  */
3314 void
3315 vdev_expand(vdev_t *vd, uint64_t txg)
3316 {
3317 	ASSERT(vd->vdev_top == vd);
3318 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3319 
3320 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3321 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3322 		vdev_config_dirty(vd);
3323 	}
3324 }
3325 
3326 /*
3327  * Split a vdev.
3328  */
3329 void
3330 vdev_split(vdev_t *vd)
3331 {
3332 	vdev_t *cvd, *pvd = vd->vdev_parent;
3333 
3334 	vdev_remove_child(pvd, vd);
3335 	vdev_compact_children(pvd);
3336 
3337 	cvd = pvd->vdev_child[0];
3338 	if (pvd->vdev_children == 1) {
3339 		vdev_remove_parent(cvd);
3340 		cvd->vdev_splitting = B_TRUE;
3341 	}
3342 	vdev_propagate_state(cvd);
3343 }
3344 
3345 void
3346 vdev_deadman(vdev_t *vd)
3347 {
3348 	for (int c = 0; c < vd->vdev_children; c++) {
3349 		vdev_t *cvd = vd->vdev_child[c];
3350 
3351 		vdev_deadman(cvd);
3352 	}
3353 
3354 	if (vd->vdev_ops->vdev_op_leaf) {
3355 		vdev_queue_t *vq = &vd->vdev_queue;
3356 
3357 		mutex_enter(&vq->vq_lock);
3358 		if (avl_numnodes(&vq->vq_active_tree) > 0) {
3359 			spa_t *spa = vd->vdev_spa;
3360 			zio_t *fio;
3361 			uint64_t delta;
3362 
3363 			/*
3364 			 * Look at the head of all the pending queues,
3365 			 * if any I/O has been outstanding for longer than
3366 			 * the spa_deadman_synctime we panic the system.
3367 			 */
3368 			fio = avl_first(&vq->vq_active_tree);
3369 			delta = gethrtime() - fio->io_timestamp;
3370 			if (delta > spa_deadman_synctime(spa)) {
3371 				zfs_dbgmsg("SLOW IO: zio timestamp %lluns, "
3372 				    "delta %lluns, last io %lluns",
3373 				    fio->io_timestamp, delta,
3374 				    vq->vq_io_complete_ts);
3375 				fm_panic("I/O to pool '%s' appears to be "
3376 				    "hung.", spa_name(spa));
3377 			}
3378 		}
3379 		mutex_exit(&vq->vq_lock);
3380 	}
3381 }
3382