1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2015 by Delphix. All rights reserved. 25 * Copyright 2015 Nexenta Systems, Inc. All rights reserved. 26 * Copyright (c) 2014 Integros [integros.com] 27 * Copyright 2016 Toomas Soome <tsoome@me.com> 28 */ 29 30 #include <sys/zfs_context.h> 31 #include <sys/fm/fs/zfs.h> 32 #include <sys/spa.h> 33 #include <sys/spa_impl.h> 34 #include <sys/dmu.h> 35 #include <sys/dmu_tx.h> 36 #include <sys/vdev_impl.h> 37 #include <sys/uberblock_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/metaslab_impl.h> 40 #include <sys/space_map.h> 41 #include <sys/space_reftree.h> 42 #include <sys/zio.h> 43 #include <sys/zap.h> 44 #include <sys/fs/zfs.h> 45 #include <sys/arc.h> 46 #include <sys/zil.h> 47 #include <sys/dsl_scan.h> 48 49 /* 50 * Virtual device management. 51 */ 52 53 static vdev_ops_t *vdev_ops_table[] = { 54 &vdev_root_ops, 55 &vdev_raidz_ops, 56 &vdev_mirror_ops, 57 &vdev_replacing_ops, 58 &vdev_spare_ops, 59 &vdev_disk_ops, 60 &vdev_file_ops, 61 &vdev_missing_ops, 62 &vdev_hole_ops, 63 NULL 64 }; 65 66 /* maximum scrub/resilver I/O queue per leaf vdev */ 67 int zfs_scrub_limit = 10; 68 69 /* 70 * When a vdev is added, it will be divided into approximately (but no 71 * more than) this number of metaslabs. 72 */ 73 int metaslabs_per_vdev = 200; 74 75 /* 76 * Given a vdev type, return the appropriate ops vector. 77 */ 78 static vdev_ops_t * 79 vdev_getops(const char *type) 80 { 81 vdev_ops_t *ops, **opspp; 82 83 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 84 if (strcmp(ops->vdev_op_type, type) == 0) 85 break; 86 87 return (ops); 88 } 89 90 /* 91 * Default asize function: return the MAX of psize with the asize of 92 * all children. This is what's used by anything other than RAID-Z. 93 */ 94 uint64_t 95 vdev_default_asize(vdev_t *vd, uint64_t psize) 96 { 97 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 98 uint64_t csize; 99 100 for (int c = 0; c < vd->vdev_children; c++) { 101 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 102 asize = MAX(asize, csize); 103 } 104 105 return (asize); 106 } 107 108 /* 109 * Get the minimum allocatable size. We define the allocatable size as 110 * the vdev's asize rounded to the nearest metaslab. This allows us to 111 * replace or attach devices which don't have the same physical size but 112 * can still satisfy the same number of allocations. 113 */ 114 uint64_t 115 vdev_get_min_asize(vdev_t *vd) 116 { 117 vdev_t *pvd = vd->vdev_parent; 118 119 /* 120 * If our parent is NULL (inactive spare or cache) or is the root, 121 * just return our own asize. 122 */ 123 if (pvd == NULL) 124 return (vd->vdev_asize); 125 126 /* 127 * The top-level vdev just returns the allocatable size rounded 128 * to the nearest metaslab. 129 */ 130 if (vd == vd->vdev_top) 131 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 132 133 /* 134 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 135 * so each child must provide at least 1/Nth of its asize. 136 */ 137 if (pvd->vdev_ops == &vdev_raidz_ops) 138 return (pvd->vdev_min_asize / pvd->vdev_children); 139 140 return (pvd->vdev_min_asize); 141 } 142 143 void 144 vdev_set_min_asize(vdev_t *vd) 145 { 146 vd->vdev_min_asize = vdev_get_min_asize(vd); 147 148 for (int c = 0; c < vd->vdev_children; c++) 149 vdev_set_min_asize(vd->vdev_child[c]); 150 } 151 152 vdev_t * 153 vdev_lookup_top(spa_t *spa, uint64_t vdev) 154 { 155 vdev_t *rvd = spa->spa_root_vdev; 156 157 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 158 159 if (vdev < rvd->vdev_children) { 160 ASSERT(rvd->vdev_child[vdev] != NULL); 161 return (rvd->vdev_child[vdev]); 162 } 163 164 return (NULL); 165 } 166 167 vdev_t * 168 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 169 { 170 vdev_t *mvd; 171 172 if (vd->vdev_guid == guid) 173 return (vd); 174 175 for (int c = 0; c < vd->vdev_children; c++) 176 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 177 NULL) 178 return (mvd); 179 180 return (NULL); 181 } 182 183 static int 184 vdev_count_leaves_impl(vdev_t *vd) 185 { 186 int n = 0; 187 188 if (vd->vdev_ops->vdev_op_leaf) 189 return (1); 190 191 for (int c = 0; c < vd->vdev_children; c++) 192 n += vdev_count_leaves_impl(vd->vdev_child[c]); 193 194 return (n); 195 } 196 197 int 198 vdev_count_leaves(spa_t *spa) 199 { 200 return (vdev_count_leaves_impl(spa->spa_root_vdev)); 201 } 202 203 void 204 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 205 { 206 size_t oldsize, newsize; 207 uint64_t id = cvd->vdev_id; 208 vdev_t **newchild; 209 spa_t *spa = cvd->vdev_spa; 210 211 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 212 ASSERT(cvd->vdev_parent == NULL); 213 214 cvd->vdev_parent = pvd; 215 216 if (pvd == NULL) 217 return; 218 219 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 220 221 oldsize = pvd->vdev_children * sizeof (vdev_t *); 222 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 223 newsize = pvd->vdev_children * sizeof (vdev_t *); 224 225 newchild = kmem_zalloc(newsize, KM_SLEEP); 226 if (pvd->vdev_child != NULL) { 227 bcopy(pvd->vdev_child, newchild, oldsize); 228 kmem_free(pvd->vdev_child, oldsize); 229 } 230 231 pvd->vdev_child = newchild; 232 pvd->vdev_child[id] = cvd; 233 234 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 235 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 236 237 /* 238 * Walk up all ancestors to update guid sum. 239 */ 240 for (; pvd != NULL; pvd = pvd->vdev_parent) 241 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 242 } 243 244 void 245 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 246 { 247 int c; 248 uint_t id = cvd->vdev_id; 249 250 ASSERT(cvd->vdev_parent == pvd); 251 252 if (pvd == NULL) 253 return; 254 255 ASSERT(id < pvd->vdev_children); 256 ASSERT(pvd->vdev_child[id] == cvd); 257 258 pvd->vdev_child[id] = NULL; 259 cvd->vdev_parent = NULL; 260 261 for (c = 0; c < pvd->vdev_children; c++) 262 if (pvd->vdev_child[c]) 263 break; 264 265 if (c == pvd->vdev_children) { 266 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 267 pvd->vdev_child = NULL; 268 pvd->vdev_children = 0; 269 } 270 271 /* 272 * Walk up all ancestors to update guid sum. 273 */ 274 for (; pvd != NULL; pvd = pvd->vdev_parent) 275 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 276 } 277 278 /* 279 * Remove any holes in the child array. 280 */ 281 void 282 vdev_compact_children(vdev_t *pvd) 283 { 284 vdev_t **newchild, *cvd; 285 int oldc = pvd->vdev_children; 286 int newc; 287 288 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 289 290 for (int c = newc = 0; c < oldc; c++) 291 if (pvd->vdev_child[c]) 292 newc++; 293 294 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 295 296 for (int c = newc = 0; c < oldc; c++) { 297 if ((cvd = pvd->vdev_child[c]) != NULL) { 298 newchild[newc] = cvd; 299 cvd->vdev_id = newc++; 300 } 301 } 302 303 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 304 pvd->vdev_child = newchild; 305 pvd->vdev_children = newc; 306 } 307 308 /* 309 * Allocate and minimally initialize a vdev_t. 310 */ 311 vdev_t * 312 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 313 { 314 vdev_t *vd; 315 316 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 317 318 if (spa->spa_root_vdev == NULL) { 319 ASSERT(ops == &vdev_root_ops); 320 spa->spa_root_vdev = vd; 321 spa->spa_load_guid = spa_generate_guid(NULL); 322 } 323 324 if (guid == 0 && ops != &vdev_hole_ops) { 325 if (spa->spa_root_vdev == vd) { 326 /* 327 * The root vdev's guid will also be the pool guid, 328 * which must be unique among all pools. 329 */ 330 guid = spa_generate_guid(NULL); 331 } else { 332 /* 333 * Any other vdev's guid must be unique within the pool. 334 */ 335 guid = spa_generate_guid(spa); 336 } 337 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 338 } 339 340 vd->vdev_spa = spa; 341 vd->vdev_id = id; 342 vd->vdev_guid = guid; 343 vd->vdev_guid_sum = guid; 344 vd->vdev_ops = ops; 345 vd->vdev_state = VDEV_STATE_CLOSED; 346 vd->vdev_ishole = (ops == &vdev_hole_ops); 347 348 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 349 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 350 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 351 for (int t = 0; t < DTL_TYPES; t++) { 352 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 353 &vd->vdev_dtl_lock); 354 } 355 txg_list_create(&vd->vdev_ms_list, 356 offsetof(struct metaslab, ms_txg_node)); 357 txg_list_create(&vd->vdev_dtl_list, 358 offsetof(struct vdev, vdev_dtl_node)); 359 vd->vdev_stat.vs_timestamp = gethrtime(); 360 vdev_queue_init(vd); 361 vdev_cache_init(vd); 362 363 return (vd); 364 } 365 366 /* 367 * Allocate a new vdev. The 'alloctype' is used to control whether we are 368 * creating a new vdev or loading an existing one - the behavior is slightly 369 * different for each case. 370 */ 371 int 372 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 373 int alloctype) 374 { 375 vdev_ops_t *ops; 376 char *type; 377 uint64_t guid = 0, islog, nparity; 378 vdev_t *vd; 379 380 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 381 382 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 383 return (SET_ERROR(EINVAL)); 384 385 if ((ops = vdev_getops(type)) == NULL) 386 return (SET_ERROR(EINVAL)); 387 388 /* 389 * If this is a load, get the vdev guid from the nvlist. 390 * Otherwise, vdev_alloc_common() will generate one for us. 391 */ 392 if (alloctype == VDEV_ALLOC_LOAD) { 393 uint64_t label_id; 394 395 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 396 label_id != id) 397 return (SET_ERROR(EINVAL)); 398 399 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 400 return (SET_ERROR(EINVAL)); 401 } else if (alloctype == VDEV_ALLOC_SPARE) { 402 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 403 return (SET_ERROR(EINVAL)); 404 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 405 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 406 return (SET_ERROR(EINVAL)); 407 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 408 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 409 return (SET_ERROR(EINVAL)); 410 } 411 412 /* 413 * The first allocated vdev must be of type 'root'. 414 */ 415 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 416 return (SET_ERROR(EINVAL)); 417 418 /* 419 * Determine whether we're a log vdev. 420 */ 421 islog = 0; 422 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 423 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 424 return (SET_ERROR(ENOTSUP)); 425 426 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 427 return (SET_ERROR(ENOTSUP)); 428 429 /* 430 * Set the nparity property for RAID-Z vdevs. 431 */ 432 nparity = -1ULL; 433 if (ops == &vdev_raidz_ops) { 434 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 435 &nparity) == 0) { 436 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 437 return (SET_ERROR(EINVAL)); 438 /* 439 * Previous versions could only support 1 or 2 parity 440 * device. 441 */ 442 if (nparity > 1 && 443 spa_version(spa) < SPA_VERSION_RAIDZ2) 444 return (SET_ERROR(ENOTSUP)); 445 if (nparity > 2 && 446 spa_version(spa) < SPA_VERSION_RAIDZ3) 447 return (SET_ERROR(ENOTSUP)); 448 } else { 449 /* 450 * We require the parity to be specified for SPAs that 451 * support multiple parity levels. 452 */ 453 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 454 return (SET_ERROR(EINVAL)); 455 /* 456 * Otherwise, we default to 1 parity device for RAID-Z. 457 */ 458 nparity = 1; 459 } 460 } else { 461 nparity = 0; 462 } 463 ASSERT(nparity != -1ULL); 464 465 vd = vdev_alloc_common(spa, id, guid, ops); 466 467 vd->vdev_islog = islog; 468 vd->vdev_nparity = nparity; 469 470 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 471 vd->vdev_path = spa_strdup(vd->vdev_path); 472 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 473 vd->vdev_devid = spa_strdup(vd->vdev_devid); 474 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 475 &vd->vdev_physpath) == 0) 476 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 477 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 478 vd->vdev_fru = spa_strdup(vd->vdev_fru); 479 480 /* 481 * Set the whole_disk property. If it's not specified, leave the value 482 * as -1. 483 */ 484 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 485 &vd->vdev_wholedisk) != 0) 486 vd->vdev_wholedisk = -1ULL; 487 488 /* 489 * Look for the 'not present' flag. This will only be set if the device 490 * was not present at the time of import. 491 */ 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 493 &vd->vdev_not_present); 494 495 /* 496 * Get the alignment requirement. 497 */ 498 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 499 500 /* 501 * Retrieve the vdev creation time. 502 */ 503 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 504 &vd->vdev_crtxg); 505 506 /* 507 * If we're a top-level vdev, try to load the allocation parameters. 508 */ 509 if (parent && !parent->vdev_parent && 510 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 511 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 512 &vd->vdev_ms_array); 513 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 514 &vd->vdev_ms_shift); 515 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 516 &vd->vdev_asize); 517 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 518 &vd->vdev_removing); 519 } 520 521 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 522 ASSERT(alloctype == VDEV_ALLOC_LOAD || 523 alloctype == VDEV_ALLOC_ADD || 524 alloctype == VDEV_ALLOC_SPLIT || 525 alloctype == VDEV_ALLOC_ROOTPOOL); 526 vd->vdev_mg = metaslab_group_create(islog ? 527 spa_log_class(spa) : spa_normal_class(spa), vd); 528 } 529 530 /* 531 * If we're a leaf vdev, try to load the DTL object and other state. 532 */ 533 if (vd->vdev_ops->vdev_op_leaf && 534 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 535 alloctype == VDEV_ALLOC_ROOTPOOL)) { 536 if (alloctype == VDEV_ALLOC_LOAD) { 537 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 538 &vd->vdev_dtl_object); 539 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 540 &vd->vdev_unspare); 541 } 542 543 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 544 uint64_t spare = 0; 545 546 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 547 &spare) == 0 && spare) 548 spa_spare_add(vd); 549 } 550 551 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 552 &vd->vdev_offline); 553 554 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 555 &vd->vdev_resilver_txg); 556 557 /* 558 * When importing a pool, we want to ignore the persistent fault 559 * state, as the diagnosis made on another system may not be 560 * valid in the current context. Local vdevs will 561 * remain in the faulted state. 562 */ 563 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 564 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 565 &vd->vdev_faulted); 566 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 567 &vd->vdev_degraded); 568 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 569 &vd->vdev_removed); 570 571 if (vd->vdev_faulted || vd->vdev_degraded) { 572 char *aux; 573 574 vd->vdev_label_aux = 575 VDEV_AUX_ERR_EXCEEDED; 576 if (nvlist_lookup_string(nv, 577 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 578 strcmp(aux, "external") == 0) 579 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 580 } 581 } 582 } 583 584 /* 585 * Add ourselves to the parent's list of children. 586 */ 587 vdev_add_child(parent, vd); 588 589 *vdp = vd; 590 591 return (0); 592 } 593 594 void 595 vdev_free(vdev_t *vd) 596 { 597 spa_t *spa = vd->vdev_spa; 598 599 /* 600 * vdev_free() implies closing the vdev first. This is simpler than 601 * trying to ensure complicated semantics for all callers. 602 */ 603 vdev_close(vd); 604 605 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 606 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 607 608 /* 609 * Free all children. 610 */ 611 for (int c = 0; c < vd->vdev_children; c++) 612 vdev_free(vd->vdev_child[c]); 613 614 ASSERT(vd->vdev_child == NULL); 615 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 616 617 /* 618 * Discard allocation state. 619 */ 620 if (vd->vdev_mg != NULL) { 621 vdev_metaslab_fini(vd); 622 metaslab_group_destroy(vd->vdev_mg); 623 } 624 625 ASSERT0(vd->vdev_stat.vs_space); 626 ASSERT0(vd->vdev_stat.vs_dspace); 627 ASSERT0(vd->vdev_stat.vs_alloc); 628 629 /* 630 * Remove this vdev from its parent's child list. 631 */ 632 vdev_remove_child(vd->vdev_parent, vd); 633 634 ASSERT(vd->vdev_parent == NULL); 635 636 /* 637 * Clean up vdev structure. 638 */ 639 vdev_queue_fini(vd); 640 vdev_cache_fini(vd); 641 642 if (vd->vdev_path) 643 spa_strfree(vd->vdev_path); 644 if (vd->vdev_devid) 645 spa_strfree(vd->vdev_devid); 646 if (vd->vdev_physpath) 647 spa_strfree(vd->vdev_physpath); 648 if (vd->vdev_fru) 649 spa_strfree(vd->vdev_fru); 650 651 if (vd->vdev_isspare) 652 spa_spare_remove(vd); 653 if (vd->vdev_isl2cache) 654 spa_l2cache_remove(vd); 655 656 txg_list_destroy(&vd->vdev_ms_list); 657 txg_list_destroy(&vd->vdev_dtl_list); 658 659 mutex_enter(&vd->vdev_dtl_lock); 660 space_map_close(vd->vdev_dtl_sm); 661 for (int t = 0; t < DTL_TYPES; t++) { 662 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 663 range_tree_destroy(vd->vdev_dtl[t]); 664 } 665 mutex_exit(&vd->vdev_dtl_lock); 666 667 mutex_destroy(&vd->vdev_dtl_lock); 668 mutex_destroy(&vd->vdev_stat_lock); 669 mutex_destroy(&vd->vdev_probe_lock); 670 671 if (vd == spa->spa_root_vdev) 672 spa->spa_root_vdev = NULL; 673 674 kmem_free(vd, sizeof (vdev_t)); 675 } 676 677 /* 678 * Transfer top-level vdev state from svd to tvd. 679 */ 680 static void 681 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 682 { 683 spa_t *spa = svd->vdev_spa; 684 metaslab_t *msp; 685 vdev_t *vd; 686 int t; 687 688 ASSERT(tvd == tvd->vdev_top); 689 690 tvd->vdev_ms_array = svd->vdev_ms_array; 691 tvd->vdev_ms_shift = svd->vdev_ms_shift; 692 tvd->vdev_ms_count = svd->vdev_ms_count; 693 694 svd->vdev_ms_array = 0; 695 svd->vdev_ms_shift = 0; 696 svd->vdev_ms_count = 0; 697 698 if (tvd->vdev_mg) 699 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 700 tvd->vdev_mg = svd->vdev_mg; 701 tvd->vdev_ms = svd->vdev_ms; 702 703 svd->vdev_mg = NULL; 704 svd->vdev_ms = NULL; 705 706 if (tvd->vdev_mg != NULL) 707 tvd->vdev_mg->mg_vd = tvd; 708 709 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 710 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 711 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 712 713 svd->vdev_stat.vs_alloc = 0; 714 svd->vdev_stat.vs_space = 0; 715 svd->vdev_stat.vs_dspace = 0; 716 717 for (t = 0; t < TXG_SIZE; t++) { 718 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 719 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 720 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 721 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 722 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 723 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 724 } 725 726 if (list_link_active(&svd->vdev_config_dirty_node)) { 727 vdev_config_clean(svd); 728 vdev_config_dirty(tvd); 729 } 730 731 if (list_link_active(&svd->vdev_state_dirty_node)) { 732 vdev_state_clean(svd); 733 vdev_state_dirty(tvd); 734 } 735 736 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 737 svd->vdev_deflate_ratio = 0; 738 739 tvd->vdev_islog = svd->vdev_islog; 740 svd->vdev_islog = 0; 741 } 742 743 static void 744 vdev_top_update(vdev_t *tvd, vdev_t *vd) 745 { 746 if (vd == NULL) 747 return; 748 749 vd->vdev_top = tvd; 750 751 for (int c = 0; c < vd->vdev_children; c++) 752 vdev_top_update(tvd, vd->vdev_child[c]); 753 } 754 755 /* 756 * Add a mirror/replacing vdev above an existing vdev. 757 */ 758 vdev_t * 759 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 760 { 761 spa_t *spa = cvd->vdev_spa; 762 vdev_t *pvd = cvd->vdev_parent; 763 vdev_t *mvd; 764 765 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 766 767 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 768 769 mvd->vdev_asize = cvd->vdev_asize; 770 mvd->vdev_min_asize = cvd->vdev_min_asize; 771 mvd->vdev_max_asize = cvd->vdev_max_asize; 772 mvd->vdev_ashift = cvd->vdev_ashift; 773 mvd->vdev_state = cvd->vdev_state; 774 mvd->vdev_crtxg = cvd->vdev_crtxg; 775 776 vdev_remove_child(pvd, cvd); 777 vdev_add_child(pvd, mvd); 778 cvd->vdev_id = mvd->vdev_children; 779 vdev_add_child(mvd, cvd); 780 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 781 782 if (mvd == mvd->vdev_top) 783 vdev_top_transfer(cvd, mvd); 784 785 return (mvd); 786 } 787 788 /* 789 * Remove a 1-way mirror/replacing vdev from the tree. 790 */ 791 void 792 vdev_remove_parent(vdev_t *cvd) 793 { 794 vdev_t *mvd = cvd->vdev_parent; 795 vdev_t *pvd = mvd->vdev_parent; 796 797 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 798 799 ASSERT(mvd->vdev_children == 1); 800 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 801 mvd->vdev_ops == &vdev_replacing_ops || 802 mvd->vdev_ops == &vdev_spare_ops); 803 cvd->vdev_ashift = mvd->vdev_ashift; 804 805 vdev_remove_child(mvd, cvd); 806 vdev_remove_child(pvd, mvd); 807 808 /* 809 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 810 * Otherwise, we could have detached an offline device, and when we 811 * go to import the pool we'll think we have two top-level vdevs, 812 * instead of a different version of the same top-level vdev. 813 */ 814 if (mvd->vdev_top == mvd) { 815 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 816 cvd->vdev_orig_guid = cvd->vdev_guid; 817 cvd->vdev_guid += guid_delta; 818 cvd->vdev_guid_sum += guid_delta; 819 } 820 cvd->vdev_id = mvd->vdev_id; 821 vdev_add_child(pvd, cvd); 822 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 823 824 if (cvd == cvd->vdev_top) 825 vdev_top_transfer(mvd, cvd); 826 827 ASSERT(mvd->vdev_children == 0); 828 vdev_free(mvd); 829 } 830 831 int 832 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 833 { 834 spa_t *spa = vd->vdev_spa; 835 objset_t *mos = spa->spa_meta_objset; 836 uint64_t m; 837 uint64_t oldc = vd->vdev_ms_count; 838 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 839 metaslab_t **mspp; 840 int error; 841 842 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 843 844 /* 845 * This vdev is not being allocated from yet or is a hole. 846 */ 847 if (vd->vdev_ms_shift == 0) 848 return (0); 849 850 ASSERT(!vd->vdev_ishole); 851 852 /* 853 * Compute the raidz-deflation ratio. Note, we hard-code 854 * in 128k (1 << 17) because it is the "typical" blocksize. 855 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 856 * otherwise it would inconsistently account for existing bp's. 857 */ 858 vd->vdev_deflate_ratio = (1 << 17) / 859 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 860 861 ASSERT(oldc <= newc); 862 863 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 864 865 if (oldc != 0) { 866 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 867 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 868 } 869 870 vd->vdev_ms = mspp; 871 vd->vdev_ms_count = newc; 872 873 for (m = oldc; m < newc; m++) { 874 uint64_t object = 0; 875 876 if (txg == 0) { 877 error = dmu_read(mos, vd->vdev_ms_array, 878 m * sizeof (uint64_t), sizeof (uint64_t), &object, 879 DMU_READ_PREFETCH); 880 if (error) 881 return (error); 882 } 883 884 error = metaslab_init(vd->vdev_mg, m, object, txg, 885 &(vd->vdev_ms[m])); 886 if (error) 887 return (error); 888 } 889 890 if (txg == 0) 891 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 892 893 /* 894 * If the vdev is being removed we don't activate 895 * the metaslabs since we want to ensure that no new 896 * allocations are performed on this device. 897 */ 898 if (oldc == 0 && !vd->vdev_removing) 899 metaslab_group_activate(vd->vdev_mg); 900 901 if (txg == 0) 902 spa_config_exit(spa, SCL_ALLOC, FTAG); 903 904 return (0); 905 } 906 907 void 908 vdev_metaslab_fini(vdev_t *vd) 909 { 910 uint64_t m; 911 uint64_t count = vd->vdev_ms_count; 912 913 if (vd->vdev_ms != NULL) { 914 metaslab_group_passivate(vd->vdev_mg); 915 for (m = 0; m < count; m++) { 916 metaslab_t *msp = vd->vdev_ms[m]; 917 918 if (msp != NULL) 919 metaslab_fini(msp); 920 } 921 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 922 vd->vdev_ms = NULL; 923 } 924 } 925 926 typedef struct vdev_probe_stats { 927 boolean_t vps_readable; 928 boolean_t vps_writeable; 929 int vps_flags; 930 } vdev_probe_stats_t; 931 932 static void 933 vdev_probe_done(zio_t *zio) 934 { 935 spa_t *spa = zio->io_spa; 936 vdev_t *vd = zio->io_vd; 937 vdev_probe_stats_t *vps = zio->io_private; 938 939 ASSERT(vd->vdev_probe_zio != NULL); 940 941 if (zio->io_type == ZIO_TYPE_READ) { 942 if (zio->io_error == 0) 943 vps->vps_readable = 1; 944 if (zio->io_error == 0 && spa_writeable(spa)) { 945 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 946 zio->io_offset, zio->io_size, zio->io_data, 947 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 948 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 949 } else { 950 zio_buf_free(zio->io_data, zio->io_size); 951 } 952 } else if (zio->io_type == ZIO_TYPE_WRITE) { 953 if (zio->io_error == 0) 954 vps->vps_writeable = 1; 955 zio_buf_free(zio->io_data, zio->io_size); 956 } else if (zio->io_type == ZIO_TYPE_NULL) { 957 zio_t *pio; 958 959 vd->vdev_cant_read |= !vps->vps_readable; 960 vd->vdev_cant_write |= !vps->vps_writeable; 961 962 if (vdev_readable(vd) && 963 (vdev_writeable(vd) || !spa_writeable(spa))) { 964 zio->io_error = 0; 965 } else { 966 ASSERT(zio->io_error != 0); 967 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 968 spa, vd, NULL, 0, 0); 969 zio->io_error = SET_ERROR(ENXIO); 970 } 971 972 mutex_enter(&vd->vdev_probe_lock); 973 ASSERT(vd->vdev_probe_zio == zio); 974 vd->vdev_probe_zio = NULL; 975 mutex_exit(&vd->vdev_probe_lock); 976 977 while ((pio = zio_walk_parents(zio)) != NULL) 978 if (!vdev_accessible(vd, pio)) 979 pio->io_error = SET_ERROR(ENXIO); 980 981 kmem_free(vps, sizeof (*vps)); 982 } 983 } 984 985 /* 986 * Determine whether this device is accessible. 987 * 988 * Read and write to several known locations: the pad regions of each 989 * vdev label but the first, which we leave alone in case it contains 990 * a VTOC. 991 */ 992 zio_t * 993 vdev_probe(vdev_t *vd, zio_t *zio) 994 { 995 spa_t *spa = vd->vdev_spa; 996 vdev_probe_stats_t *vps = NULL; 997 zio_t *pio; 998 999 ASSERT(vd->vdev_ops->vdev_op_leaf); 1000 1001 /* 1002 * Don't probe the probe. 1003 */ 1004 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 1005 return (NULL); 1006 1007 /* 1008 * To prevent 'probe storms' when a device fails, we create 1009 * just one probe i/o at a time. All zios that want to probe 1010 * this vdev will become parents of the probe io. 1011 */ 1012 mutex_enter(&vd->vdev_probe_lock); 1013 1014 if ((pio = vd->vdev_probe_zio) == NULL) { 1015 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 1016 1017 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 1018 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 1019 ZIO_FLAG_TRYHARD; 1020 1021 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 1022 /* 1023 * vdev_cant_read and vdev_cant_write can only 1024 * transition from TRUE to FALSE when we have the 1025 * SCL_ZIO lock as writer; otherwise they can only 1026 * transition from FALSE to TRUE. This ensures that 1027 * any zio looking at these values can assume that 1028 * failures persist for the life of the I/O. That's 1029 * important because when a device has intermittent 1030 * connectivity problems, we want to ensure that 1031 * they're ascribed to the device (ENXIO) and not 1032 * the zio (EIO). 1033 * 1034 * Since we hold SCL_ZIO as writer here, clear both 1035 * values so the probe can reevaluate from first 1036 * principles. 1037 */ 1038 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1039 vd->vdev_cant_read = B_FALSE; 1040 vd->vdev_cant_write = B_FALSE; 1041 } 1042 1043 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1044 vdev_probe_done, vps, 1045 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1046 1047 /* 1048 * We can't change the vdev state in this context, so we 1049 * kick off an async task to do it on our behalf. 1050 */ 1051 if (zio != NULL) { 1052 vd->vdev_probe_wanted = B_TRUE; 1053 spa_async_request(spa, SPA_ASYNC_PROBE); 1054 } 1055 } 1056 1057 if (zio != NULL) 1058 zio_add_child(zio, pio); 1059 1060 mutex_exit(&vd->vdev_probe_lock); 1061 1062 if (vps == NULL) { 1063 ASSERT(zio != NULL); 1064 return (NULL); 1065 } 1066 1067 for (int l = 1; l < VDEV_LABELS; l++) { 1068 zio_nowait(zio_read_phys(pio, vd, 1069 vdev_label_offset(vd->vdev_psize, l, 1070 offsetof(vdev_label_t, vl_pad2)), 1071 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1072 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1073 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1074 } 1075 1076 if (zio == NULL) 1077 return (pio); 1078 1079 zio_nowait(pio); 1080 return (NULL); 1081 } 1082 1083 static void 1084 vdev_open_child(void *arg) 1085 { 1086 vdev_t *vd = arg; 1087 1088 vd->vdev_open_thread = curthread; 1089 vd->vdev_open_error = vdev_open(vd); 1090 vd->vdev_open_thread = NULL; 1091 } 1092 1093 boolean_t 1094 vdev_uses_zvols(vdev_t *vd) 1095 { 1096 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1097 strlen(ZVOL_DIR)) == 0) 1098 return (B_TRUE); 1099 for (int c = 0; c < vd->vdev_children; c++) 1100 if (vdev_uses_zvols(vd->vdev_child[c])) 1101 return (B_TRUE); 1102 return (B_FALSE); 1103 } 1104 1105 void 1106 vdev_open_children(vdev_t *vd) 1107 { 1108 taskq_t *tq; 1109 int children = vd->vdev_children; 1110 1111 /* 1112 * in order to handle pools on top of zvols, do the opens 1113 * in a single thread so that the same thread holds the 1114 * spa_namespace_lock 1115 */ 1116 if (vdev_uses_zvols(vd)) { 1117 for (int c = 0; c < children; c++) 1118 vd->vdev_child[c]->vdev_open_error = 1119 vdev_open(vd->vdev_child[c]); 1120 return; 1121 } 1122 tq = taskq_create("vdev_open", children, minclsyspri, 1123 children, children, TASKQ_PREPOPULATE); 1124 1125 for (int c = 0; c < children; c++) 1126 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1127 TQ_SLEEP) != NULL); 1128 1129 taskq_destroy(tq); 1130 } 1131 1132 /* 1133 * Prepare a virtual device for access. 1134 */ 1135 int 1136 vdev_open(vdev_t *vd) 1137 { 1138 spa_t *spa = vd->vdev_spa; 1139 int error; 1140 uint64_t osize = 0; 1141 uint64_t max_osize = 0; 1142 uint64_t asize, max_asize, psize; 1143 uint64_t ashift = 0; 1144 1145 ASSERT(vd->vdev_open_thread == curthread || 1146 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1147 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1148 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1149 vd->vdev_state == VDEV_STATE_OFFLINE); 1150 1151 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1152 vd->vdev_cant_read = B_FALSE; 1153 vd->vdev_cant_write = B_FALSE; 1154 vd->vdev_min_asize = vdev_get_min_asize(vd); 1155 1156 /* 1157 * If this vdev is not removed, check its fault status. If it's 1158 * faulted, bail out of the open. 1159 */ 1160 if (!vd->vdev_removed && vd->vdev_faulted) { 1161 ASSERT(vd->vdev_children == 0); 1162 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1163 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1164 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1165 vd->vdev_label_aux); 1166 return (SET_ERROR(ENXIO)); 1167 } else if (vd->vdev_offline) { 1168 ASSERT(vd->vdev_children == 0); 1169 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1170 return (SET_ERROR(ENXIO)); 1171 } 1172 1173 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1174 1175 /* 1176 * Reset the vdev_reopening flag so that we actually close 1177 * the vdev on error. 1178 */ 1179 vd->vdev_reopening = B_FALSE; 1180 if (zio_injection_enabled && error == 0) 1181 error = zio_handle_device_injection(vd, NULL, ENXIO); 1182 1183 if (error) { 1184 if (vd->vdev_removed && 1185 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1186 vd->vdev_removed = B_FALSE; 1187 1188 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1189 vd->vdev_stat.vs_aux); 1190 return (error); 1191 } 1192 1193 vd->vdev_removed = B_FALSE; 1194 1195 /* 1196 * Recheck the faulted flag now that we have confirmed that 1197 * the vdev is accessible. If we're faulted, bail. 1198 */ 1199 if (vd->vdev_faulted) { 1200 ASSERT(vd->vdev_children == 0); 1201 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1202 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1203 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1204 vd->vdev_label_aux); 1205 return (SET_ERROR(ENXIO)); 1206 } 1207 1208 if (vd->vdev_degraded) { 1209 ASSERT(vd->vdev_children == 0); 1210 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1211 VDEV_AUX_ERR_EXCEEDED); 1212 } else { 1213 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1214 } 1215 1216 /* 1217 * For hole or missing vdevs we just return success. 1218 */ 1219 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1220 return (0); 1221 1222 for (int c = 0; c < vd->vdev_children; c++) { 1223 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1224 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1225 VDEV_AUX_NONE); 1226 break; 1227 } 1228 } 1229 1230 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1231 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1232 1233 if (vd->vdev_children == 0) { 1234 if (osize < SPA_MINDEVSIZE) { 1235 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1236 VDEV_AUX_TOO_SMALL); 1237 return (SET_ERROR(EOVERFLOW)); 1238 } 1239 psize = osize; 1240 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1241 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1242 VDEV_LABEL_END_SIZE); 1243 } else { 1244 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1245 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1246 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1247 VDEV_AUX_TOO_SMALL); 1248 return (SET_ERROR(EOVERFLOW)); 1249 } 1250 psize = 0; 1251 asize = osize; 1252 max_asize = max_osize; 1253 } 1254 1255 vd->vdev_psize = psize; 1256 1257 /* 1258 * Make sure the allocatable size hasn't shrunk. 1259 */ 1260 if (asize < vd->vdev_min_asize) { 1261 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1262 VDEV_AUX_BAD_LABEL); 1263 return (SET_ERROR(EINVAL)); 1264 } 1265 1266 if (vd->vdev_asize == 0) { 1267 /* 1268 * This is the first-ever open, so use the computed values. 1269 * For testing purposes, a higher ashift can be requested. 1270 */ 1271 vd->vdev_asize = asize; 1272 vd->vdev_max_asize = max_asize; 1273 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1274 } else { 1275 /* 1276 * Detect if the alignment requirement has increased. 1277 * We don't want to make the pool unavailable, just 1278 * issue a warning instead. 1279 */ 1280 if (ashift > vd->vdev_top->vdev_ashift && 1281 vd->vdev_ops->vdev_op_leaf) { 1282 cmn_err(CE_WARN, 1283 "Disk, '%s', has a block alignment that is " 1284 "larger than the pool's alignment\n", 1285 vd->vdev_path); 1286 } 1287 vd->vdev_max_asize = max_asize; 1288 } 1289 1290 /* 1291 * If all children are healthy and the asize has increased, 1292 * then we've experienced dynamic LUN growth. If automatic 1293 * expansion is enabled then use the additional space. 1294 */ 1295 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1296 (vd->vdev_expanding || spa->spa_autoexpand)) 1297 vd->vdev_asize = asize; 1298 1299 vdev_set_min_asize(vd); 1300 1301 /* 1302 * Ensure we can issue some IO before declaring the 1303 * vdev open for business. 1304 */ 1305 if (vd->vdev_ops->vdev_op_leaf && 1306 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1307 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1308 VDEV_AUX_ERR_EXCEEDED); 1309 return (error); 1310 } 1311 1312 /* 1313 * Track the min and max ashift values for normal data devices. 1314 */ 1315 if (vd->vdev_top == vd && vd->vdev_ashift != 0 && 1316 !vd->vdev_islog && vd->vdev_aux == NULL) { 1317 if (vd->vdev_ashift > spa->spa_max_ashift) 1318 spa->spa_max_ashift = vd->vdev_ashift; 1319 if (vd->vdev_ashift < spa->spa_min_ashift) 1320 spa->spa_min_ashift = vd->vdev_ashift; 1321 } 1322 1323 /* 1324 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1325 * resilver. But don't do this if we are doing a reopen for a scrub, 1326 * since this would just restart the scrub we are already doing. 1327 */ 1328 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1329 vdev_resilver_needed(vd, NULL, NULL)) 1330 spa_async_request(spa, SPA_ASYNC_RESILVER); 1331 1332 return (0); 1333 } 1334 1335 /* 1336 * Called once the vdevs are all opened, this routine validates the label 1337 * contents. This needs to be done before vdev_load() so that we don't 1338 * inadvertently do repair I/Os to the wrong device. 1339 * 1340 * If 'strict' is false ignore the spa guid check. This is necessary because 1341 * if the machine crashed during a re-guid the new guid might have been written 1342 * to all of the vdev labels, but not the cached config. The strict check 1343 * will be performed when the pool is opened again using the mos config. 1344 * 1345 * This function will only return failure if one of the vdevs indicates that it 1346 * has since been destroyed or exported. This is only possible if 1347 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1348 * will be updated but the function will return 0. 1349 */ 1350 int 1351 vdev_validate(vdev_t *vd, boolean_t strict) 1352 { 1353 spa_t *spa = vd->vdev_spa; 1354 nvlist_t *label; 1355 uint64_t guid = 0, top_guid; 1356 uint64_t state; 1357 1358 for (int c = 0; c < vd->vdev_children; c++) 1359 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1360 return (SET_ERROR(EBADF)); 1361 1362 /* 1363 * If the device has already failed, or was marked offline, don't do 1364 * any further validation. Otherwise, label I/O will fail and we will 1365 * overwrite the previous state. 1366 */ 1367 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1368 uint64_t aux_guid = 0; 1369 nvlist_t *nvl; 1370 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1371 spa_last_synced_txg(spa) : -1ULL; 1372 1373 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1374 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1375 VDEV_AUX_BAD_LABEL); 1376 return (0); 1377 } 1378 1379 /* 1380 * Determine if this vdev has been split off into another 1381 * pool. If so, then refuse to open it. 1382 */ 1383 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1384 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_SPLIT_POOL); 1387 nvlist_free(label); 1388 return (0); 1389 } 1390 1391 if (strict && (nvlist_lookup_uint64(label, 1392 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1393 guid != spa_guid(spa))) { 1394 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1395 VDEV_AUX_CORRUPT_DATA); 1396 nvlist_free(label); 1397 return (0); 1398 } 1399 1400 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1401 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1402 &aux_guid) != 0) 1403 aux_guid = 0; 1404 1405 /* 1406 * If this vdev just became a top-level vdev because its 1407 * sibling was detached, it will have adopted the parent's 1408 * vdev guid -- but the label may or may not be on disk yet. 1409 * Fortunately, either version of the label will have the 1410 * same top guid, so if we're a top-level vdev, we can 1411 * safely compare to that instead. 1412 * 1413 * If we split this vdev off instead, then we also check the 1414 * original pool's guid. We don't want to consider the vdev 1415 * corrupt if it is partway through a split operation. 1416 */ 1417 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1418 &guid) != 0 || 1419 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1420 &top_guid) != 0 || 1421 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1422 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1423 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1424 VDEV_AUX_CORRUPT_DATA); 1425 nvlist_free(label); 1426 return (0); 1427 } 1428 1429 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1430 &state) != 0) { 1431 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1432 VDEV_AUX_CORRUPT_DATA); 1433 nvlist_free(label); 1434 return (0); 1435 } 1436 1437 nvlist_free(label); 1438 1439 /* 1440 * If this is a verbatim import, no need to check the 1441 * state of the pool. 1442 */ 1443 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1444 spa_load_state(spa) == SPA_LOAD_OPEN && 1445 state != POOL_STATE_ACTIVE) 1446 return (SET_ERROR(EBADF)); 1447 1448 /* 1449 * If we were able to open and validate a vdev that was 1450 * previously marked permanently unavailable, clear that state 1451 * now. 1452 */ 1453 if (vd->vdev_not_present) 1454 vd->vdev_not_present = 0; 1455 } 1456 1457 return (0); 1458 } 1459 1460 /* 1461 * Close a virtual device. 1462 */ 1463 void 1464 vdev_close(vdev_t *vd) 1465 { 1466 spa_t *spa = vd->vdev_spa; 1467 vdev_t *pvd = vd->vdev_parent; 1468 1469 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1470 1471 /* 1472 * If our parent is reopening, then we are as well, unless we are 1473 * going offline. 1474 */ 1475 if (pvd != NULL && pvd->vdev_reopening) 1476 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1477 1478 vd->vdev_ops->vdev_op_close(vd); 1479 1480 vdev_cache_purge(vd); 1481 1482 /* 1483 * We record the previous state before we close it, so that if we are 1484 * doing a reopen(), we don't generate FMA ereports if we notice that 1485 * it's still faulted. 1486 */ 1487 vd->vdev_prevstate = vd->vdev_state; 1488 1489 if (vd->vdev_offline) 1490 vd->vdev_state = VDEV_STATE_OFFLINE; 1491 else 1492 vd->vdev_state = VDEV_STATE_CLOSED; 1493 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1494 } 1495 1496 void 1497 vdev_hold(vdev_t *vd) 1498 { 1499 spa_t *spa = vd->vdev_spa; 1500 1501 ASSERT(spa_is_root(spa)); 1502 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1503 return; 1504 1505 for (int c = 0; c < vd->vdev_children; c++) 1506 vdev_hold(vd->vdev_child[c]); 1507 1508 if (vd->vdev_ops->vdev_op_leaf) 1509 vd->vdev_ops->vdev_op_hold(vd); 1510 } 1511 1512 void 1513 vdev_rele(vdev_t *vd) 1514 { 1515 spa_t *spa = vd->vdev_spa; 1516 1517 ASSERT(spa_is_root(spa)); 1518 for (int c = 0; c < vd->vdev_children; c++) 1519 vdev_rele(vd->vdev_child[c]); 1520 1521 if (vd->vdev_ops->vdev_op_leaf) 1522 vd->vdev_ops->vdev_op_rele(vd); 1523 } 1524 1525 /* 1526 * Reopen all interior vdevs and any unopened leaves. We don't actually 1527 * reopen leaf vdevs which had previously been opened as they might deadlock 1528 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1529 * If the leaf has never been opened then open it, as usual. 1530 */ 1531 void 1532 vdev_reopen(vdev_t *vd) 1533 { 1534 spa_t *spa = vd->vdev_spa; 1535 1536 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1537 1538 /* set the reopening flag unless we're taking the vdev offline */ 1539 vd->vdev_reopening = !vd->vdev_offline; 1540 vdev_close(vd); 1541 (void) vdev_open(vd); 1542 1543 /* 1544 * Call vdev_validate() here to make sure we have the same device. 1545 * Otherwise, a device with an invalid label could be successfully 1546 * opened in response to vdev_reopen(). 1547 */ 1548 if (vd->vdev_aux) { 1549 (void) vdev_validate_aux(vd); 1550 if (vdev_readable(vd) && vdev_writeable(vd) && 1551 vd->vdev_aux == &spa->spa_l2cache && 1552 !l2arc_vdev_present(vd)) { 1553 /* 1554 * When reopening we can assume persistent L2ARC is 1555 * supported, since we've already opened the device 1556 * in the past and prepended an L2ARC uberblock. 1557 */ 1558 l2arc_add_vdev(spa, vd, B_TRUE); 1559 } 1560 } else { 1561 (void) vdev_validate(vd, B_TRUE); 1562 } 1563 1564 /* 1565 * Reassess parent vdev's health. 1566 */ 1567 vdev_propagate_state(vd); 1568 } 1569 1570 int 1571 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1572 { 1573 int error; 1574 1575 /* 1576 * Normally, partial opens (e.g. of a mirror) are allowed. 1577 * For a create, however, we want to fail the request if 1578 * there are any components we can't open. 1579 */ 1580 error = vdev_open(vd); 1581 1582 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1583 vdev_close(vd); 1584 return (error ? error : ENXIO); 1585 } 1586 1587 /* 1588 * Recursively load DTLs and initialize all labels. 1589 */ 1590 if ((error = vdev_dtl_load(vd)) != 0 || 1591 (error = vdev_label_init(vd, txg, isreplacing ? 1592 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1593 vdev_close(vd); 1594 return (error); 1595 } 1596 1597 return (0); 1598 } 1599 1600 void 1601 vdev_metaslab_set_size(vdev_t *vd) 1602 { 1603 /* 1604 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1605 */ 1606 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1607 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1608 } 1609 1610 void 1611 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1612 { 1613 ASSERT(vd == vd->vdev_top); 1614 ASSERT(!vd->vdev_ishole); 1615 ASSERT(ISP2(flags)); 1616 ASSERT(spa_writeable(vd->vdev_spa)); 1617 1618 if (flags & VDD_METASLAB) 1619 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1620 1621 if (flags & VDD_DTL) 1622 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1623 1624 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1625 } 1626 1627 void 1628 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1629 { 1630 for (int c = 0; c < vd->vdev_children; c++) 1631 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1632 1633 if (vd->vdev_ops->vdev_op_leaf) 1634 vdev_dirty(vd->vdev_top, flags, vd, txg); 1635 } 1636 1637 /* 1638 * DTLs. 1639 * 1640 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1641 * the vdev has less than perfect replication. There are four kinds of DTL: 1642 * 1643 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1644 * 1645 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1646 * 1647 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1648 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1649 * txgs that was scrubbed. 1650 * 1651 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1652 * persistent errors or just some device being offline. 1653 * Unlike the other three, the DTL_OUTAGE map is not generally 1654 * maintained; it's only computed when needed, typically to 1655 * determine whether a device can be detached. 1656 * 1657 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1658 * either has the data or it doesn't. 1659 * 1660 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1661 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1662 * if any child is less than fully replicated, then so is its parent. 1663 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1664 * comprising only those txgs which appear in 'maxfaults' or more children; 1665 * those are the txgs we don't have enough replication to read. For example, 1666 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1667 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1668 * two child DTL_MISSING maps. 1669 * 1670 * It should be clear from the above that to compute the DTLs and outage maps 1671 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1672 * Therefore, that is all we keep on disk. When loading the pool, or after 1673 * a configuration change, we generate all other DTLs from first principles. 1674 */ 1675 void 1676 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1677 { 1678 range_tree_t *rt = vd->vdev_dtl[t]; 1679 1680 ASSERT(t < DTL_TYPES); 1681 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1682 ASSERT(spa_writeable(vd->vdev_spa)); 1683 1684 mutex_enter(rt->rt_lock); 1685 if (!range_tree_contains(rt, txg, size)) 1686 range_tree_add(rt, txg, size); 1687 mutex_exit(rt->rt_lock); 1688 } 1689 1690 boolean_t 1691 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1692 { 1693 range_tree_t *rt = vd->vdev_dtl[t]; 1694 boolean_t dirty = B_FALSE; 1695 1696 ASSERT(t < DTL_TYPES); 1697 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1698 1699 mutex_enter(rt->rt_lock); 1700 if (range_tree_space(rt) != 0) 1701 dirty = range_tree_contains(rt, txg, size); 1702 mutex_exit(rt->rt_lock); 1703 1704 return (dirty); 1705 } 1706 1707 boolean_t 1708 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1709 { 1710 range_tree_t *rt = vd->vdev_dtl[t]; 1711 boolean_t empty; 1712 1713 mutex_enter(rt->rt_lock); 1714 empty = (range_tree_space(rt) == 0); 1715 mutex_exit(rt->rt_lock); 1716 1717 return (empty); 1718 } 1719 1720 /* 1721 * Returns the lowest txg in the DTL range. 1722 */ 1723 static uint64_t 1724 vdev_dtl_min(vdev_t *vd) 1725 { 1726 range_seg_t *rs; 1727 1728 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1729 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1730 ASSERT0(vd->vdev_children); 1731 1732 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1733 return (rs->rs_start - 1); 1734 } 1735 1736 /* 1737 * Returns the highest txg in the DTL. 1738 */ 1739 static uint64_t 1740 vdev_dtl_max(vdev_t *vd) 1741 { 1742 range_seg_t *rs; 1743 1744 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1745 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1746 ASSERT0(vd->vdev_children); 1747 1748 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1749 return (rs->rs_end); 1750 } 1751 1752 /* 1753 * Determine if a resilvering vdev should remove any DTL entries from 1754 * its range. If the vdev was resilvering for the entire duration of the 1755 * scan then it should excise that range from its DTLs. Otherwise, this 1756 * vdev is considered partially resilvered and should leave its DTL 1757 * entries intact. The comment in vdev_dtl_reassess() describes how we 1758 * excise the DTLs. 1759 */ 1760 static boolean_t 1761 vdev_dtl_should_excise(vdev_t *vd) 1762 { 1763 spa_t *spa = vd->vdev_spa; 1764 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1765 1766 ASSERT0(scn->scn_phys.scn_errors); 1767 ASSERT0(vd->vdev_children); 1768 1769 if (vd->vdev_resilver_txg == 0 || 1770 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1771 return (B_TRUE); 1772 1773 /* 1774 * When a resilver is initiated the scan will assign the scn_max_txg 1775 * value to the highest txg value that exists in all DTLs. If this 1776 * device's max DTL is not part of this scan (i.e. it is not in 1777 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1778 * for excision. 1779 */ 1780 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1781 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1782 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1783 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1784 return (B_TRUE); 1785 } 1786 return (B_FALSE); 1787 } 1788 1789 /* 1790 * Reassess DTLs after a config change or scrub completion. 1791 */ 1792 void 1793 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1794 { 1795 spa_t *spa = vd->vdev_spa; 1796 avl_tree_t reftree; 1797 int minref; 1798 1799 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1800 1801 for (int c = 0; c < vd->vdev_children; c++) 1802 vdev_dtl_reassess(vd->vdev_child[c], txg, 1803 scrub_txg, scrub_done); 1804 1805 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1806 return; 1807 1808 if (vd->vdev_ops->vdev_op_leaf) { 1809 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1810 1811 mutex_enter(&vd->vdev_dtl_lock); 1812 1813 /* 1814 * If we've completed a scan cleanly then determine 1815 * if this vdev should remove any DTLs. We only want to 1816 * excise regions on vdevs that were available during 1817 * the entire duration of this scan. 1818 */ 1819 if (scrub_txg != 0 && 1820 (spa->spa_scrub_started || 1821 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1822 vdev_dtl_should_excise(vd)) { 1823 /* 1824 * We completed a scrub up to scrub_txg. If we 1825 * did it without rebooting, then the scrub dtl 1826 * will be valid, so excise the old region and 1827 * fold in the scrub dtl. Otherwise, leave the 1828 * dtl as-is if there was an error. 1829 * 1830 * There's little trick here: to excise the beginning 1831 * of the DTL_MISSING map, we put it into a reference 1832 * tree and then add a segment with refcnt -1 that 1833 * covers the range [0, scrub_txg). This means 1834 * that each txg in that range has refcnt -1 or 0. 1835 * We then add DTL_SCRUB with a refcnt of 2, so that 1836 * entries in the range [0, scrub_txg) will have a 1837 * positive refcnt -- either 1 or 2. We then convert 1838 * the reference tree into the new DTL_MISSING map. 1839 */ 1840 space_reftree_create(&reftree); 1841 space_reftree_add_map(&reftree, 1842 vd->vdev_dtl[DTL_MISSING], 1); 1843 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1844 space_reftree_add_map(&reftree, 1845 vd->vdev_dtl[DTL_SCRUB], 2); 1846 space_reftree_generate_map(&reftree, 1847 vd->vdev_dtl[DTL_MISSING], 1); 1848 space_reftree_destroy(&reftree); 1849 } 1850 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1851 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1852 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1853 if (scrub_done) 1854 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1855 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1856 if (!vdev_readable(vd)) 1857 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1858 else 1859 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1860 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1861 1862 /* 1863 * If the vdev was resilvering and no longer has any 1864 * DTLs then reset its resilvering flag. 1865 */ 1866 if (vd->vdev_resilver_txg != 0 && 1867 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1868 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1869 vd->vdev_resilver_txg = 0; 1870 1871 mutex_exit(&vd->vdev_dtl_lock); 1872 1873 if (txg != 0) 1874 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1875 return; 1876 } 1877 1878 mutex_enter(&vd->vdev_dtl_lock); 1879 for (int t = 0; t < DTL_TYPES; t++) { 1880 /* account for child's outage in parent's missing map */ 1881 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1882 if (t == DTL_SCRUB) 1883 continue; /* leaf vdevs only */ 1884 if (t == DTL_PARTIAL) 1885 minref = 1; /* i.e. non-zero */ 1886 else if (vd->vdev_nparity != 0) 1887 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1888 else 1889 minref = vd->vdev_children; /* any kind of mirror */ 1890 space_reftree_create(&reftree); 1891 for (int c = 0; c < vd->vdev_children; c++) { 1892 vdev_t *cvd = vd->vdev_child[c]; 1893 mutex_enter(&cvd->vdev_dtl_lock); 1894 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1895 mutex_exit(&cvd->vdev_dtl_lock); 1896 } 1897 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1898 space_reftree_destroy(&reftree); 1899 } 1900 mutex_exit(&vd->vdev_dtl_lock); 1901 } 1902 1903 int 1904 vdev_dtl_load(vdev_t *vd) 1905 { 1906 spa_t *spa = vd->vdev_spa; 1907 objset_t *mos = spa->spa_meta_objset; 1908 int error = 0; 1909 1910 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1911 ASSERT(!vd->vdev_ishole); 1912 1913 error = space_map_open(&vd->vdev_dtl_sm, mos, 1914 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1915 if (error) 1916 return (error); 1917 ASSERT(vd->vdev_dtl_sm != NULL); 1918 1919 mutex_enter(&vd->vdev_dtl_lock); 1920 1921 /* 1922 * Now that we've opened the space_map we need to update 1923 * the in-core DTL. 1924 */ 1925 space_map_update(vd->vdev_dtl_sm); 1926 1927 error = space_map_load(vd->vdev_dtl_sm, 1928 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1929 mutex_exit(&vd->vdev_dtl_lock); 1930 1931 return (error); 1932 } 1933 1934 for (int c = 0; c < vd->vdev_children; c++) { 1935 error = vdev_dtl_load(vd->vdev_child[c]); 1936 if (error != 0) 1937 break; 1938 } 1939 1940 return (error); 1941 } 1942 1943 void 1944 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1945 { 1946 spa_t *spa = vd->vdev_spa; 1947 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1948 objset_t *mos = spa->spa_meta_objset; 1949 range_tree_t *rtsync; 1950 kmutex_t rtlock; 1951 dmu_tx_t *tx; 1952 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1953 1954 ASSERT(!vd->vdev_ishole); 1955 ASSERT(vd->vdev_ops->vdev_op_leaf); 1956 1957 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1958 1959 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1960 mutex_enter(&vd->vdev_dtl_lock); 1961 space_map_free(vd->vdev_dtl_sm, tx); 1962 space_map_close(vd->vdev_dtl_sm); 1963 vd->vdev_dtl_sm = NULL; 1964 mutex_exit(&vd->vdev_dtl_lock); 1965 dmu_tx_commit(tx); 1966 return; 1967 } 1968 1969 if (vd->vdev_dtl_sm == NULL) { 1970 uint64_t new_object; 1971 1972 new_object = space_map_alloc(mos, tx); 1973 VERIFY3U(new_object, !=, 0); 1974 1975 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1976 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1977 ASSERT(vd->vdev_dtl_sm != NULL); 1978 } 1979 1980 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1981 1982 rtsync = range_tree_create(NULL, NULL, &rtlock); 1983 1984 mutex_enter(&rtlock); 1985 1986 mutex_enter(&vd->vdev_dtl_lock); 1987 range_tree_walk(rt, range_tree_add, rtsync); 1988 mutex_exit(&vd->vdev_dtl_lock); 1989 1990 space_map_truncate(vd->vdev_dtl_sm, tx); 1991 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1992 range_tree_vacate(rtsync, NULL, NULL); 1993 1994 range_tree_destroy(rtsync); 1995 1996 mutex_exit(&rtlock); 1997 mutex_destroy(&rtlock); 1998 1999 /* 2000 * If the object for the space map has changed then dirty 2001 * the top level so that we update the config. 2002 */ 2003 if (object != space_map_object(vd->vdev_dtl_sm)) { 2004 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 2005 "new object %llu", txg, spa_name(spa), object, 2006 space_map_object(vd->vdev_dtl_sm)); 2007 vdev_config_dirty(vd->vdev_top); 2008 } 2009 2010 dmu_tx_commit(tx); 2011 2012 mutex_enter(&vd->vdev_dtl_lock); 2013 space_map_update(vd->vdev_dtl_sm); 2014 mutex_exit(&vd->vdev_dtl_lock); 2015 } 2016 2017 /* 2018 * Determine whether the specified vdev can be offlined/detached/removed 2019 * without losing data. 2020 */ 2021 boolean_t 2022 vdev_dtl_required(vdev_t *vd) 2023 { 2024 spa_t *spa = vd->vdev_spa; 2025 vdev_t *tvd = vd->vdev_top; 2026 uint8_t cant_read = vd->vdev_cant_read; 2027 boolean_t required; 2028 2029 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2030 2031 if (vd == spa->spa_root_vdev || vd == tvd) 2032 return (B_TRUE); 2033 2034 /* 2035 * Temporarily mark the device as unreadable, and then determine 2036 * whether this results in any DTL outages in the top-level vdev. 2037 * If not, we can safely offline/detach/remove the device. 2038 */ 2039 vd->vdev_cant_read = B_TRUE; 2040 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2041 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 2042 vd->vdev_cant_read = cant_read; 2043 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2044 2045 if (!required && zio_injection_enabled) 2046 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2047 2048 return (required); 2049 } 2050 2051 /* 2052 * Determine if resilver is needed, and if so the txg range. 2053 */ 2054 boolean_t 2055 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2056 { 2057 boolean_t needed = B_FALSE; 2058 uint64_t thismin = UINT64_MAX; 2059 uint64_t thismax = 0; 2060 2061 if (vd->vdev_children == 0) { 2062 mutex_enter(&vd->vdev_dtl_lock); 2063 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2064 vdev_writeable(vd)) { 2065 2066 thismin = vdev_dtl_min(vd); 2067 thismax = vdev_dtl_max(vd); 2068 needed = B_TRUE; 2069 } 2070 mutex_exit(&vd->vdev_dtl_lock); 2071 } else { 2072 for (int c = 0; c < vd->vdev_children; c++) { 2073 vdev_t *cvd = vd->vdev_child[c]; 2074 uint64_t cmin, cmax; 2075 2076 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2077 thismin = MIN(thismin, cmin); 2078 thismax = MAX(thismax, cmax); 2079 needed = B_TRUE; 2080 } 2081 } 2082 } 2083 2084 if (needed && minp) { 2085 *minp = thismin; 2086 *maxp = thismax; 2087 } 2088 return (needed); 2089 } 2090 2091 void 2092 vdev_load(vdev_t *vd) 2093 { 2094 /* 2095 * Recursively load all children. 2096 */ 2097 for (int c = 0; c < vd->vdev_children; c++) 2098 vdev_load(vd->vdev_child[c]); 2099 2100 /* 2101 * If this is a top-level vdev, initialize its metaslabs. 2102 */ 2103 if (vd == vd->vdev_top && !vd->vdev_ishole && 2104 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2105 vdev_metaslab_init(vd, 0) != 0)) 2106 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2107 VDEV_AUX_CORRUPT_DATA); 2108 2109 /* 2110 * If this is a leaf vdev, load its DTL. 2111 */ 2112 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2113 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2114 VDEV_AUX_CORRUPT_DATA); 2115 } 2116 2117 /* 2118 * The special vdev case is used for hot spares and l2cache devices. Its 2119 * sole purpose it to set the vdev state for the associated vdev. To do this, 2120 * we make sure that we can open the underlying device, then try to read the 2121 * label, and make sure that the label is sane and that it hasn't been 2122 * repurposed to another pool. 2123 */ 2124 int 2125 vdev_validate_aux(vdev_t *vd) 2126 { 2127 nvlist_t *label; 2128 uint64_t guid, version; 2129 uint64_t state; 2130 2131 if (!vdev_readable(vd)) 2132 return (0); 2133 2134 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2135 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2136 VDEV_AUX_CORRUPT_DATA); 2137 return (-1); 2138 } 2139 2140 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2141 !SPA_VERSION_IS_SUPPORTED(version) || 2142 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2143 guid != vd->vdev_guid || 2144 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2145 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2146 VDEV_AUX_CORRUPT_DATA); 2147 nvlist_free(label); 2148 return (-1); 2149 } 2150 2151 /* 2152 * We don't actually check the pool state here. If it's in fact in 2153 * use by another pool, we update this fact on the fly when requested. 2154 */ 2155 nvlist_free(label); 2156 return (0); 2157 } 2158 2159 void 2160 vdev_remove(vdev_t *vd, uint64_t txg) 2161 { 2162 spa_t *spa = vd->vdev_spa; 2163 objset_t *mos = spa->spa_meta_objset; 2164 dmu_tx_t *tx; 2165 2166 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2167 2168 if (vd->vdev_ms != NULL) { 2169 metaslab_group_t *mg = vd->vdev_mg; 2170 2171 metaslab_group_histogram_verify(mg); 2172 metaslab_class_histogram_verify(mg->mg_class); 2173 2174 for (int m = 0; m < vd->vdev_ms_count; m++) { 2175 metaslab_t *msp = vd->vdev_ms[m]; 2176 2177 if (msp == NULL || msp->ms_sm == NULL) 2178 continue; 2179 2180 mutex_enter(&msp->ms_lock); 2181 /* 2182 * If the metaslab was not loaded when the vdev 2183 * was removed then the histogram accounting may 2184 * not be accurate. Update the histogram information 2185 * here so that we ensure that the metaslab group 2186 * and metaslab class are up-to-date. 2187 */ 2188 metaslab_group_histogram_remove(mg, msp); 2189 2190 VERIFY0(space_map_allocated(msp->ms_sm)); 2191 space_map_free(msp->ms_sm, tx); 2192 space_map_close(msp->ms_sm); 2193 msp->ms_sm = NULL; 2194 mutex_exit(&msp->ms_lock); 2195 } 2196 2197 metaslab_group_histogram_verify(mg); 2198 metaslab_class_histogram_verify(mg->mg_class); 2199 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2200 ASSERT0(mg->mg_histogram[i]); 2201 2202 } 2203 2204 if (vd->vdev_ms_array) { 2205 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2206 vd->vdev_ms_array = 0; 2207 } 2208 dmu_tx_commit(tx); 2209 } 2210 2211 void 2212 vdev_sync_done(vdev_t *vd, uint64_t txg) 2213 { 2214 metaslab_t *msp; 2215 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2216 2217 ASSERT(!vd->vdev_ishole); 2218 2219 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2220 metaslab_sync_done(msp, txg); 2221 2222 if (reassess) 2223 metaslab_sync_reassess(vd->vdev_mg); 2224 } 2225 2226 void 2227 vdev_sync(vdev_t *vd, uint64_t txg) 2228 { 2229 spa_t *spa = vd->vdev_spa; 2230 vdev_t *lvd; 2231 metaslab_t *msp; 2232 dmu_tx_t *tx; 2233 2234 ASSERT(!vd->vdev_ishole); 2235 2236 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2237 ASSERT(vd == vd->vdev_top); 2238 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2239 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2240 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2241 ASSERT(vd->vdev_ms_array != 0); 2242 vdev_config_dirty(vd); 2243 dmu_tx_commit(tx); 2244 } 2245 2246 /* 2247 * Remove the metadata associated with this vdev once it's empty. 2248 */ 2249 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2250 vdev_remove(vd, txg); 2251 2252 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2253 metaslab_sync(msp, txg); 2254 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2255 } 2256 2257 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2258 vdev_dtl_sync(lvd, txg); 2259 2260 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2261 } 2262 2263 uint64_t 2264 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2265 { 2266 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2267 } 2268 2269 /* 2270 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2271 * not be opened, and no I/O is attempted. 2272 */ 2273 int 2274 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2275 { 2276 vdev_t *vd, *tvd; 2277 2278 spa_vdev_state_enter(spa, SCL_NONE); 2279 2280 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2281 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2282 2283 if (!vd->vdev_ops->vdev_op_leaf) 2284 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2285 2286 tvd = vd->vdev_top; 2287 2288 /* 2289 * We don't directly use the aux state here, but if we do a 2290 * vdev_reopen(), we need this value to be present to remember why we 2291 * were faulted. 2292 */ 2293 vd->vdev_label_aux = aux; 2294 2295 /* 2296 * Faulted state takes precedence over degraded. 2297 */ 2298 vd->vdev_delayed_close = B_FALSE; 2299 vd->vdev_faulted = 1ULL; 2300 vd->vdev_degraded = 0ULL; 2301 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2302 2303 /* 2304 * If this device has the only valid copy of the data, then 2305 * back off and simply mark the vdev as degraded instead. 2306 */ 2307 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2308 vd->vdev_degraded = 1ULL; 2309 vd->vdev_faulted = 0ULL; 2310 2311 /* 2312 * If we reopen the device and it's not dead, only then do we 2313 * mark it degraded. 2314 */ 2315 vdev_reopen(tvd); 2316 2317 if (vdev_readable(vd)) 2318 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2319 } 2320 2321 return (spa_vdev_state_exit(spa, vd, 0)); 2322 } 2323 2324 /* 2325 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2326 * user that something is wrong. The vdev continues to operate as normal as far 2327 * as I/O is concerned. 2328 */ 2329 int 2330 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2331 { 2332 vdev_t *vd; 2333 2334 spa_vdev_state_enter(spa, SCL_NONE); 2335 2336 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2337 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2338 2339 if (!vd->vdev_ops->vdev_op_leaf) 2340 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2341 2342 /* 2343 * If the vdev is already faulted, then don't do anything. 2344 */ 2345 if (vd->vdev_faulted || vd->vdev_degraded) 2346 return (spa_vdev_state_exit(spa, NULL, 0)); 2347 2348 vd->vdev_degraded = 1ULL; 2349 if (!vdev_is_dead(vd)) 2350 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2351 aux); 2352 2353 return (spa_vdev_state_exit(spa, vd, 0)); 2354 } 2355 2356 /* 2357 * Online the given vdev. 2358 * 2359 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2360 * spare device should be detached when the device finishes resilvering. 2361 * Second, the online should be treated like a 'test' online case, so no FMA 2362 * events are generated if the device fails to open. 2363 */ 2364 int 2365 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2366 { 2367 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2368 boolean_t postevent = B_FALSE; 2369 2370 spa_vdev_state_enter(spa, SCL_NONE); 2371 2372 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2373 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2374 2375 if (!vd->vdev_ops->vdev_op_leaf) 2376 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2377 2378 postevent = 2379 (vd->vdev_offline == B_TRUE || vd->vdev_tmpoffline == B_TRUE) ? 2380 B_TRUE : B_FALSE; 2381 2382 tvd = vd->vdev_top; 2383 vd->vdev_offline = B_FALSE; 2384 vd->vdev_tmpoffline = B_FALSE; 2385 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2386 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2387 2388 /* XXX - L2ARC 1.0 does not support expansion */ 2389 if (!vd->vdev_aux) { 2390 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2391 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2392 } 2393 2394 vdev_reopen(tvd); 2395 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2396 2397 if (!vd->vdev_aux) { 2398 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2399 pvd->vdev_expanding = B_FALSE; 2400 } 2401 2402 if (newstate) 2403 *newstate = vd->vdev_state; 2404 if ((flags & ZFS_ONLINE_UNSPARE) && 2405 !vdev_is_dead(vd) && vd->vdev_parent && 2406 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2407 vd->vdev_parent->vdev_child[0] == vd) 2408 vd->vdev_unspare = B_TRUE; 2409 2410 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2411 2412 /* XXX - L2ARC 1.0 does not support expansion */ 2413 if (vd->vdev_aux) 2414 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2415 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2416 } 2417 2418 if (postevent) 2419 spa_event_notify(spa, vd, ESC_ZFS_VDEV_ONLINE); 2420 2421 return (spa_vdev_state_exit(spa, vd, 0)); 2422 } 2423 2424 static int 2425 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2426 { 2427 vdev_t *vd, *tvd; 2428 int error = 0; 2429 uint64_t generation; 2430 metaslab_group_t *mg; 2431 2432 top: 2433 spa_vdev_state_enter(spa, SCL_ALLOC); 2434 2435 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2436 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2437 2438 if (!vd->vdev_ops->vdev_op_leaf) 2439 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2440 2441 tvd = vd->vdev_top; 2442 mg = tvd->vdev_mg; 2443 generation = spa->spa_config_generation + 1; 2444 2445 /* 2446 * If the device isn't already offline, try to offline it. 2447 */ 2448 if (!vd->vdev_offline) { 2449 /* 2450 * If this device has the only valid copy of some data, 2451 * don't allow it to be offlined. Log devices are always 2452 * expendable. 2453 */ 2454 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2455 vdev_dtl_required(vd)) 2456 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2457 2458 /* 2459 * If the top-level is a slog and it has had allocations 2460 * then proceed. We check that the vdev's metaslab group 2461 * is not NULL since it's possible that we may have just 2462 * added this vdev but not yet initialized its metaslabs. 2463 */ 2464 if (tvd->vdev_islog && mg != NULL) { 2465 /* 2466 * Prevent any future allocations. 2467 */ 2468 metaslab_group_passivate(mg); 2469 (void) spa_vdev_state_exit(spa, vd, 0); 2470 2471 error = spa_offline_log(spa); 2472 2473 spa_vdev_state_enter(spa, SCL_ALLOC); 2474 2475 /* 2476 * Check to see if the config has changed. 2477 */ 2478 if (error || generation != spa->spa_config_generation) { 2479 metaslab_group_activate(mg); 2480 if (error) 2481 return (spa_vdev_state_exit(spa, 2482 vd, error)); 2483 (void) spa_vdev_state_exit(spa, vd, 0); 2484 goto top; 2485 } 2486 ASSERT0(tvd->vdev_stat.vs_alloc); 2487 } 2488 2489 /* 2490 * Offline this device and reopen its top-level vdev. 2491 * If the top-level vdev is a log device then just offline 2492 * it. Otherwise, if this action results in the top-level 2493 * vdev becoming unusable, undo it and fail the request. 2494 */ 2495 vd->vdev_offline = B_TRUE; 2496 vdev_reopen(tvd); 2497 2498 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2499 vdev_is_dead(tvd)) { 2500 vd->vdev_offline = B_FALSE; 2501 vdev_reopen(tvd); 2502 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2503 } 2504 2505 /* 2506 * Add the device back into the metaslab rotor so that 2507 * once we online the device it's open for business. 2508 */ 2509 if (tvd->vdev_islog && mg != NULL) 2510 metaslab_group_activate(mg); 2511 } 2512 2513 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2514 2515 return (spa_vdev_state_exit(spa, vd, 0)); 2516 } 2517 2518 int 2519 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2520 { 2521 int error; 2522 2523 mutex_enter(&spa->spa_vdev_top_lock); 2524 error = vdev_offline_locked(spa, guid, flags); 2525 mutex_exit(&spa->spa_vdev_top_lock); 2526 2527 return (error); 2528 } 2529 2530 /* 2531 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2532 * vdev_offline(), we assume the spa config is locked. We also clear all 2533 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2534 */ 2535 void 2536 vdev_clear(spa_t *spa, vdev_t *vd) 2537 { 2538 vdev_t *rvd = spa->spa_root_vdev; 2539 2540 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2541 2542 if (vd == NULL) 2543 vd = rvd; 2544 2545 vd->vdev_stat.vs_read_errors = 0; 2546 vd->vdev_stat.vs_write_errors = 0; 2547 vd->vdev_stat.vs_checksum_errors = 0; 2548 2549 for (int c = 0; c < vd->vdev_children; c++) 2550 vdev_clear(spa, vd->vdev_child[c]); 2551 2552 /* 2553 * If we're in the FAULTED state or have experienced failed I/O, then 2554 * clear the persistent state and attempt to reopen the device. We 2555 * also mark the vdev config dirty, so that the new faulted state is 2556 * written out to disk. 2557 */ 2558 if (vd->vdev_faulted || vd->vdev_degraded || 2559 !vdev_readable(vd) || !vdev_writeable(vd)) { 2560 2561 /* 2562 * When reopening in reponse to a clear event, it may be due to 2563 * a fmadm repair request. In this case, if the device is 2564 * still broken, we want to still post the ereport again. 2565 */ 2566 vd->vdev_forcefault = B_TRUE; 2567 2568 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2569 vd->vdev_cant_read = B_FALSE; 2570 vd->vdev_cant_write = B_FALSE; 2571 2572 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2573 2574 vd->vdev_forcefault = B_FALSE; 2575 2576 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2577 vdev_state_dirty(vd->vdev_top); 2578 2579 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2580 spa_async_request(spa, SPA_ASYNC_RESILVER); 2581 2582 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2583 } 2584 2585 /* 2586 * When clearing a FMA-diagnosed fault, we always want to 2587 * unspare the device, as we assume that the original spare was 2588 * done in response to the FMA fault. 2589 */ 2590 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2591 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2592 vd->vdev_parent->vdev_child[0] == vd) 2593 vd->vdev_unspare = B_TRUE; 2594 } 2595 2596 boolean_t 2597 vdev_is_dead(vdev_t *vd) 2598 { 2599 /* 2600 * Holes and missing devices are always considered "dead". 2601 * This simplifies the code since we don't have to check for 2602 * these types of devices in the various code paths. 2603 * Instead we rely on the fact that we skip over dead devices 2604 * before issuing I/O to them. 2605 */ 2606 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2607 vd->vdev_ops == &vdev_missing_ops); 2608 } 2609 2610 boolean_t 2611 vdev_readable(vdev_t *vd) 2612 { 2613 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2614 } 2615 2616 boolean_t 2617 vdev_writeable(vdev_t *vd) 2618 { 2619 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2620 } 2621 2622 boolean_t 2623 vdev_allocatable(vdev_t *vd) 2624 { 2625 uint64_t state = vd->vdev_state; 2626 2627 /* 2628 * We currently allow allocations from vdevs which may be in the 2629 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2630 * fails to reopen then we'll catch it later when we're holding 2631 * the proper locks. Note that we have to get the vdev state 2632 * in a local variable because although it changes atomically, 2633 * we're asking two separate questions about it. 2634 */ 2635 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2636 !vd->vdev_cant_write && !vd->vdev_ishole); 2637 } 2638 2639 boolean_t 2640 vdev_accessible(vdev_t *vd, zio_t *zio) 2641 { 2642 ASSERT(zio->io_vd == vd); 2643 2644 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2645 return (B_FALSE); 2646 2647 if (zio->io_type == ZIO_TYPE_READ) 2648 return (!vd->vdev_cant_read); 2649 2650 if (zio->io_type == ZIO_TYPE_WRITE) 2651 return (!vd->vdev_cant_write); 2652 2653 return (B_TRUE); 2654 } 2655 2656 /* 2657 * Get statistics for the given vdev. 2658 */ 2659 void 2660 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2661 { 2662 spa_t *spa = vd->vdev_spa; 2663 vdev_t *rvd = spa->spa_root_vdev; 2664 2665 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2666 2667 mutex_enter(&vd->vdev_stat_lock); 2668 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2669 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2670 vs->vs_state = vd->vdev_state; 2671 vs->vs_rsize = vdev_get_min_asize(vd); 2672 if (vd->vdev_ops->vdev_op_leaf) 2673 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2674 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2675 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2676 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2677 } 2678 2679 /* 2680 * If we're getting stats on the root vdev, aggregate the I/O counts 2681 * over all top-level vdevs (i.e. the direct children of the root). 2682 */ 2683 if (vd == rvd) { 2684 for (int c = 0; c < rvd->vdev_children; c++) { 2685 vdev_t *cvd = rvd->vdev_child[c]; 2686 vdev_stat_t *cvs = &cvd->vdev_stat; 2687 2688 for (int t = 0; t < ZIO_TYPES; t++) { 2689 vs->vs_ops[t] += cvs->vs_ops[t]; 2690 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2691 } 2692 cvs->vs_scan_removing = cvd->vdev_removing; 2693 } 2694 } 2695 mutex_exit(&vd->vdev_stat_lock); 2696 } 2697 2698 void 2699 vdev_clear_stats(vdev_t *vd) 2700 { 2701 mutex_enter(&vd->vdev_stat_lock); 2702 vd->vdev_stat.vs_space = 0; 2703 vd->vdev_stat.vs_dspace = 0; 2704 vd->vdev_stat.vs_alloc = 0; 2705 mutex_exit(&vd->vdev_stat_lock); 2706 } 2707 2708 void 2709 vdev_scan_stat_init(vdev_t *vd) 2710 { 2711 vdev_stat_t *vs = &vd->vdev_stat; 2712 2713 for (int c = 0; c < vd->vdev_children; c++) 2714 vdev_scan_stat_init(vd->vdev_child[c]); 2715 2716 mutex_enter(&vd->vdev_stat_lock); 2717 vs->vs_scan_processed = 0; 2718 mutex_exit(&vd->vdev_stat_lock); 2719 } 2720 2721 void 2722 vdev_stat_update(zio_t *zio, uint64_t psize) 2723 { 2724 spa_t *spa = zio->io_spa; 2725 vdev_t *rvd = spa->spa_root_vdev; 2726 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2727 vdev_t *pvd; 2728 uint64_t txg = zio->io_txg; 2729 vdev_stat_t *vs = &vd->vdev_stat; 2730 zio_type_t type = zio->io_type; 2731 int flags = zio->io_flags; 2732 2733 /* 2734 * If this i/o is a gang leader, it didn't do any actual work. 2735 */ 2736 if (zio->io_gang_tree) 2737 return; 2738 2739 if (zio->io_error == 0) { 2740 /* 2741 * If this is a root i/o, don't count it -- we've already 2742 * counted the top-level vdevs, and vdev_get_stats() will 2743 * aggregate them when asked. This reduces contention on 2744 * the root vdev_stat_lock and implicitly handles blocks 2745 * that compress away to holes, for which there is no i/o. 2746 * (Holes never create vdev children, so all the counters 2747 * remain zero, which is what we want.) 2748 * 2749 * Note: this only applies to successful i/o (io_error == 0) 2750 * because unlike i/o counts, errors are not additive. 2751 * When reading a ditto block, for example, failure of 2752 * one top-level vdev does not imply a root-level error. 2753 */ 2754 if (vd == rvd) 2755 return; 2756 2757 ASSERT(vd == zio->io_vd); 2758 2759 if (flags & ZIO_FLAG_IO_BYPASS) 2760 return; 2761 2762 mutex_enter(&vd->vdev_stat_lock); 2763 2764 if (flags & ZIO_FLAG_IO_REPAIR) { 2765 if (flags & ZIO_FLAG_SCAN_THREAD) { 2766 dsl_scan_phys_t *scn_phys = 2767 &spa->spa_dsl_pool->dp_scan->scn_phys; 2768 uint64_t *processed = &scn_phys->scn_processed; 2769 2770 /* XXX cleanup? */ 2771 if (vd->vdev_ops->vdev_op_leaf) 2772 atomic_add_64(processed, psize); 2773 vs->vs_scan_processed += psize; 2774 } 2775 2776 if (flags & ZIO_FLAG_SELF_HEAL) 2777 vs->vs_self_healed += psize; 2778 } 2779 2780 vs->vs_ops[type]++; 2781 vs->vs_bytes[type] += psize; 2782 2783 mutex_exit(&vd->vdev_stat_lock); 2784 return; 2785 } 2786 2787 if (flags & ZIO_FLAG_SPECULATIVE) 2788 return; 2789 2790 /* 2791 * If this is an I/O error that is going to be retried, then ignore the 2792 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2793 * hard errors, when in reality they can happen for any number of 2794 * innocuous reasons (bus resets, MPxIO link failure, etc). 2795 */ 2796 if (zio->io_error == EIO && 2797 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2798 return; 2799 2800 /* 2801 * Intent logs writes won't propagate their error to the root 2802 * I/O so don't mark these types of failures as pool-level 2803 * errors. 2804 */ 2805 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2806 return; 2807 2808 mutex_enter(&vd->vdev_stat_lock); 2809 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2810 if (zio->io_error == ECKSUM) 2811 vs->vs_checksum_errors++; 2812 else 2813 vs->vs_read_errors++; 2814 } 2815 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2816 vs->vs_write_errors++; 2817 mutex_exit(&vd->vdev_stat_lock); 2818 2819 if (type == ZIO_TYPE_WRITE && txg != 0 && 2820 (!(flags & ZIO_FLAG_IO_REPAIR) || 2821 (flags & ZIO_FLAG_SCAN_THREAD) || 2822 spa->spa_claiming)) { 2823 /* 2824 * This is either a normal write (not a repair), or it's 2825 * a repair induced by the scrub thread, or it's a repair 2826 * made by zil_claim() during spa_load() in the first txg. 2827 * In the normal case, we commit the DTL change in the same 2828 * txg as the block was born. In the scrub-induced repair 2829 * case, we know that scrubs run in first-pass syncing context, 2830 * so we commit the DTL change in spa_syncing_txg(spa). 2831 * In the zil_claim() case, we commit in spa_first_txg(spa). 2832 * 2833 * We currently do not make DTL entries for failed spontaneous 2834 * self-healing writes triggered by normal (non-scrubbing) 2835 * reads, because we have no transactional context in which to 2836 * do so -- and it's not clear that it'd be desirable anyway. 2837 */ 2838 if (vd->vdev_ops->vdev_op_leaf) { 2839 uint64_t commit_txg = txg; 2840 if (flags & ZIO_FLAG_SCAN_THREAD) { 2841 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2842 ASSERT(spa_sync_pass(spa) == 1); 2843 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2844 commit_txg = spa_syncing_txg(spa); 2845 } else if (spa->spa_claiming) { 2846 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2847 commit_txg = spa_first_txg(spa); 2848 } 2849 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2850 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2851 return; 2852 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2853 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2854 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2855 } 2856 if (vd != rvd) 2857 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2858 } 2859 } 2860 2861 /* 2862 * Update the in-core space usage stats for this vdev, its metaslab class, 2863 * and the root vdev. 2864 */ 2865 void 2866 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2867 int64_t space_delta) 2868 { 2869 int64_t dspace_delta = space_delta; 2870 spa_t *spa = vd->vdev_spa; 2871 vdev_t *rvd = spa->spa_root_vdev; 2872 metaslab_group_t *mg = vd->vdev_mg; 2873 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2874 2875 ASSERT(vd == vd->vdev_top); 2876 2877 /* 2878 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2879 * factor. We must calculate this here and not at the root vdev 2880 * because the root vdev's psize-to-asize is simply the max of its 2881 * childrens', thus not accurate enough for us. 2882 */ 2883 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2884 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2885 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2886 vd->vdev_deflate_ratio; 2887 2888 mutex_enter(&vd->vdev_stat_lock); 2889 vd->vdev_stat.vs_alloc += alloc_delta; 2890 vd->vdev_stat.vs_space += space_delta; 2891 vd->vdev_stat.vs_dspace += dspace_delta; 2892 mutex_exit(&vd->vdev_stat_lock); 2893 2894 if (mc == spa_normal_class(spa)) { 2895 mutex_enter(&rvd->vdev_stat_lock); 2896 rvd->vdev_stat.vs_alloc += alloc_delta; 2897 rvd->vdev_stat.vs_space += space_delta; 2898 rvd->vdev_stat.vs_dspace += dspace_delta; 2899 mutex_exit(&rvd->vdev_stat_lock); 2900 } 2901 2902 if (mc != NULL) { 2903 ASSERT(rvd == vd->vdev_parent); 2904 ASSERT(vd->vdev_ms_count != 0); 2905 2906 metaslab_class_space_update(mc, 2907 alloc_delta, defer_delta, space_delta, dspace_delta); 2908 } 2909 } 2910 2911 /* 2912 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2913 * so that it will be written out next time the vdev configuration is synced. 2914 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2915 */ 2916 void 2917 vdev_config_dirty(vdev_t *vd) 2918 { 2919 spa_t *spa = vd->vdev_spa; 2920 vdev_t *rvd = spa->spa_root_vdev; 2921 int c; 2922 2923 ASSERT(spa_writeable(spa)); 2924 2925 /* 2926 * If this is an aux vdev (as with l2cache and spare devices), then we 2927 * update the vdev config manually and set the sync flag. 2928 */ 2929 if (vd->vdev_aux != NULL) { 2930 spa_aux_vdev_t *sav = vd->vdev_aux; 2931 nvlist_t **aux; 2932 uint_t naux; 2933 2934 for (c = 0; c < sav->sav_count; c++) { 2935 if (sav->sav_vdevs[c] == vd) 2936 break; 2937 } 2938 2939 if (c == sav->sav_count) { 2940 /* 2941 * We're being removed. There's nothing more to do. 2942 */ 2943 ASSERT(sav->sav_sync == B_TRUE); 2944 return; 2945 } 2946 2947 sav->sav_sync = B_TRUE; 2948 2949 if (nvlist_lookup_nvlist_array(sav->sav_config, 2950 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2951 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2952 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2953 } 2954 2955 ASSERT(c < naux); 2956 2957 /* 2958 * Setting the nvlist in the middle if the array is a little 2959 * sketchy, but it will work. 2960 */ 2961 nvlist_free(aux[c]); 2962 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2963 2964 return; 2965 } 2966 2967 /* 2968 * The dirty list is protected by the SCL_CONFIG lock. The caller 2969 * must either hold SCL_CONFIG as writer, or must be the sync thread 2970 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2971 * so this is sufficient to ensure mutual exclusion. 2972 */ 2973 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2974 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2975 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2976 2977 if (vd == rvd) { 2978 for (c = 0; c < rvd->vdev_children; c++) 2979 vdev_config_dirty(rvd->vdev_child[c]); 2980 } else { 2981 ASSERT(vd == vd->vdev_top); 2982 2983 if (!list_link_active(&vd->vdev_config_dirty_node) && 2984 !vd->vdev_ishole) 2985 list_insert_head(&spa->spa_config_dirty_list, vd); 2986 } 2987 } 2988 2989 void 2990 vdev_config_clean(vdev_t *vd) 2991 { 2992 spa_t *spa = vd->vdev_spa; 2993 2994 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2995 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2996 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2997 2998 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2999 list_remove(&spa->spa_config_dirty_list, vd); 3000 } 3001 3002 /* 3003 * Mark a top-level vdev's state as dirty, so that the next pass of 3004 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 3005 * the state changes from larger config changes because they require 3006 * much less locking, and are often needed for administrative actions. 3007 */ 3008 void 3009 vdev_state_dirty(vdev_t *vd) 3010 { 3011 spa_t *spa = vd->vdev_spa; 3012 3013 ASSERT(spa_writeable(spa)); 3014 ASSERT(vd == vd->vdev_top); 3015 3016 /* 3017 * The state list is protected by the SCL_STATE lock. The caller 3018 * must either hold SCL_STATE as writer, or must be the sync thread 3019 * (which holds SCL_STATE as reader). There's only one sync thread, 3020 * so this is sufficient to ensure mutual exclusion. 3021 */ 3022 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3023 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3024 spa_config_held(spa, SCL_STATE, RW_READER))); 3025 3026 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 3027 list_insert_head(&spa->spa_state_dirty_list, vd); 3028 } 3029 3030 void 3031 vdev_state_clean(vdev_t *vd) 3032 { 3033 spa_t *spa = vd->vdev_spa; 3034 3035 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 3036 (dsl_pool_sync_context(spa_get_dsl(spa)) && 3037 spa_config_held(spa, SCL_STATE, RW_READER))); 3038 3039 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 3040 list_remove(&spa->spa_state_dirty_list, vd); 3041 } 3042 3043 /* 3044 * Propagate vdev state up from children to parent. 3045 */ 3046 void 3047 vdev_propagate_state(vdev_t *vd) 3048 { 3049 spa_t *spa = vd->vdev_spa; 3050 vdev_t *rvd = spa->spa_root_vdev; 3051 int degraded = 0, faulted = 0; 3052 int corrupted = 0; 3053 vdev_t *child; 3054 3055 if (vd->vdev_children > 0) { 3056 for (int c = 0; c < vd->vdev_children; c++) { 3057 child = vd->vdev_child[c]; 3058 3059 /* 3060 * Don't factor holes into the decision. 3061 */ 3062 if (child->vdev_ishole) 3063 continue; 3064 3065 if (!vdev_readable(child) || 3066 (!vdev_writeable(child) && spa_writeable(spa))) { 3067 /* 3068 * Root special: if there is a top-level log 3069 * device, treat the root vdev as if it were 3070 * degraded. 3071 */ 3072 if (child->vdev_islog && vd == rvd) 3073 degraded++; 3074 else 3075 faulted++; 3076 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3077 degraded++; 3078 } 3079 3080 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3081 corrupted++; 3082 } 3083 3084 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3085 3086 /* 3087 * Root special: if there is a top-level vdev that cannot be 3088 * opened due to corrupted metadata, then propagate the root 3089 * vdev's aux state as 'corrupt' rather than 'insufficient 3090 * replicas'. 3091 */ 3092 if (corrupted && vd == rvd && 3093 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3094 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3095 VDEV_AUX_CORRUPT_DATA); 3096 } 3097 3098 if (vd->vdev_parent) 3099 vdev_propagate_state(vd->vdev_parent); 3100 } 3101 3102 /* 3103 * Set a vdev's state. If this is during an open, we don't update the parent 3104 * state, because we're in the process of opening children depth-first. 3105 * Otherwise, we propagate the change to the parent. 3106 * 3107 * If this routine places a device in a faulted state, an appropriate ereport is 3108 * generated. 3109 */ 3110 void 3111 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3112 { 3113 uint64_t save_state; 3114 spa_t *spa = vd->vdev_spa; 3115 3116 if (state == vd->vdev_state) { 3117 vd->vdev_stat.vs_aux = aux; 3118 return; 3119 } 3120 3121 save_state = vd->vdev_state; 3122 3123 vd->vdev_state = state; 3124 vd->vdev_stat.vs_aux = aux; 3125 3126 /* 3127 * If we are setting the vdev state to anything but an open state, then 3128 * always close the underlying device unless the device has requested 3129 * a delayed close (i.e. we're about to remove or fault the device). 3130 * Otherwise, we keep accessible but invalid devices open forever. 3131 * We don't call vdev_close() itself, because that implies some extra 3132 * checks (offline, etc) that we don't want here. This is limited to 3133 * leaf devices, because otherwise closing the device will affect other 3134 * children. 3135 */ 3136 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3137 vd->vdev_ops->vdev_op_leaf) 3138 vd->vdev_ops->vdev_op_close(vd); 3139 3140 /* 3141 * If we have brought this vdev back into service, we need 3142 * to notify fmd so that it can gracefully repair any outstanding 3143 * cases due to a missing device. We do this in all cases, even those 3144 * that probably don't correlate to a repaired fault. This is sure to 3145 * catch all cases, and we let the zfs-retire agent sort it out. If 3146 * this is a transient state it's OK, as the retire agent will 3147 * double-check the state of the vdev before repairing it. 3148 */ 3149 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3150 vd->vdev_prevstate != state) 3151 zfs_post_state_change(spa, vd); 3152 3153 if (vd->vdev_removed && 3154 state == VDEV_STATE_CANT_OPEN && 3155 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3156 /* 3157 * If the previous state is set to VDEV_STATE_REMOVED, then this 3158 * device was previously marked removed and someone attempted to 3159 * reopen it. If this failed due to a nonexistent device, then 3160 * keep the device in the REMOVED state. We also let this be if 3161 * it is one of our special test online cases, which is only 3162 * attempting to online the device and shouldn't generate an FMA 3163 * fault. 3164 */ 3165 vd->vdev_state = VDEV_STATE_REMOVED; 3166 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3167 } else if (state == VDEV_STATE_REMOVED) { 3168 vd->vdev_removed = B_TRUE; 3169 } else if (state == VDEV_STATE_CANT_OPEN) { 3170 /* 3171 * If we fail to open a vdev during an import or recovery, we 3172 * mark it as "not available", which signifies that it was 3173 * never there to begin with. Failure to open such a device 3174 * is not considered an error. 3175 */ 3176 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3177 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3178 vd->vdev_ops->vdev_op_leaf) 3179 vd->vdev_not_present = 1; 3180 3181 /* 3182 * Post the appropriate ereport. If the 'prevstate' field is 3183 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3184 * that this is part of a vdev_reopen(). In this case, we don't 3185 * want to post the ereport if the device was already in the 3186 * CANT_OPEN state beforehand. 3187 * 3188 * If the 'checkremove' flag is set, then this is an attempt to 3189 * online the device in response to an insertion event. If we 3190 * hit this case, then we have detected an insertion event for a 3191 * faulted or offline device that wasn't in the removed state. 3192 * In this scenario, we don't post an ereport because we are 3193 * about to replace the device, or attempt an online with 3194 * vdev_forcefault, which will generate the fault for us. 3195 */ 3196 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3197 !vd->vdev_not_present && !vd->vdev_checkremove && 3198 vd != spa->spa_root_vdev) { 3199 const char *class; 3200 3201 switch (aux) { 3202 case VDEV_AUX_OPEN_FAILED: 3203 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3204 break; 3205 case VDEV_AUX_CORRUPT_DATA: 3206 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3207 break; 3208 case VDEV_AUX_NO_REPLICAS: 3209 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3210 break; 3211 case VDEV_AUX_BAD_GUID_SUM: 3212 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3213 break; 3214 case VDEV_AUX_TOO_SMALL: 3215 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3216 break; 3217 case VDEV_AUX_BAD_LABEL: 3218 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3219 break; 3220 default: 3221 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3222 } 3223 3224 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3225 } 3226 3227 /* Erase any notion of persistent removed state */ 3228 vd->vdev_removed = B_FALSE; 3229 } else { 3230 vd->vdev_removed = B_FALSE; 3231 } 3232 3233 if (!isopen && vd->vdev_parent) 3234 vdev_propagate_state(vd->vdev_parent); 3235 } 3236 3237 /* 3238 * Check the vdev configuration to ensure that it's capable of supporting 3239 * a root pool. We do not support partial configuration. 3240 * In addition, only a single top-level vdev is allowed. 3241 */ 3242 boolean_t 3243 vdev_is_bootable(vdev_t *vd) 3244 { 3245 if (!vd->vdev_ops->vdev_op_leaf) { 3246 char *vdev_type = vd->vdev_ops->vdev_op_type; 3247 3248 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3249 vd->vdev_children > 1) { 3250 return (B_FALSE); 3251 } else if (strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3252 return (B_FALSE); 3253 } 3254 } 3255 3256 for (int c = 0; c < vd->vdev_children; c++) { 3257 if (!vdev_is_bootable(vd->vdev_child[c])) 3258 return (B_FALSE); 3259 } 3260 return (B_TRUE); 3261 } 3262 3263 /* 3264 * Load the state from the original vdev tree (ovd) which 3265 * we've retrieved from the MOS config object. If the original 3266 * vdev was offline or faulted then we transfer that state to the 3267 * device in the current vdev tree (nvd). 3268 */ 3269 void 3270 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3271 { 3272 spa_t *spa = nvd->vdev_spa; 3273 3274 ASSERT(nvd->vdev_top->vdev_islog); 3275 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3276 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3277 3278 for (int c = 0; c < nvd->vdev_children; c++) 3279 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3280 3281 if (nvd->vdev_ops->vdev_op_leaf) { 3282 /* 3283 * Restore the persistent vdev state 3284 */ 3285 nvd->vdev_offline = ovd->vdev_offline; 3286 nvd->vdev_faulted = ovd->vdev_faulted; 3287 nvd->vdev_degraded = ovd->vdev_degraded; 3288 nvd->vdev_removed = ovd->vdev_removed; 3289 } 3290 } 3291 3292 /* 3293 * Determine if a log device has valid content. If the vdev was 3294 * removed or faulted in the MOS config then we know that 3295 * the content on the log device has already been written to the pool. 3296 */ 3297 boolean_t 3298 vdev_log_state_valid(vdev_t *vd) 3299 { 3300 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3301 !vd->vdev_removed) 3302 return (B_TRUE); 3303 3304 for (int c = 0; c < vd->vdev_children; c++) 3305 if (vdev_log_state_valid(vd->vdev_child[c])) 3306 return (B_TRUE); 3307 3308 return (B_FALSE); 3309 } 3310 3311 /* 3312 * Expand a vdev if possible. 3313 */ 3314 void 3315 vdev_expand(vdev_t *vd, uint64_t txg) 3316 { 3317 ASSERT(vd->vdev_top == vd); 3318 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3319 3320 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3321 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3322 vdev_config_dirty(vd); 3323 } 3324 } 3325 3326 /* 3327 * Split a vdev. 3328 */ 3329 void 3330 vdev_split(vdev_t *vd) 3331 { 3332 vdev_t *cvd, *pvd = vd->vdev_parent; 3333 3334 vdev_remove_child(pvd, vd); 3335 vdev_compact_children(pvd); 3336 3337 cvd = pvd->vdev_child[0]; 3338 if (pvd->vdev_children == 1) { 3339 vdev_remove_parent(cvd); 3340 cvd->vdev_splitting = B_TRUE; 3341 } 3342 vdev_propagate_state(cvd); 3343 } 3344 3345 void 3346 vdev_deadman(vdev_t *vd) 3347 { 3348 for (int c = 0; c < vd->vdev_children; c++) { 3349 vdev_t *cvd = vd->vdev_child[c]; 3350 3351 vdev_deadman(cvd); 3352 } 3353 3354 if (vd->vdev_ops->vdev_op_leaf) { 3355 vdev_queue_t *vq = &vd->vdev_queue; 3356 3357 mutex_enter(&vq->vq_lock); 3358 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3359 spa_t *spa = vd->vdev_spa; 3360 zio_t *fio; 3361 uint64_t delta; 3362 3363 /* 3364 * Look at the head of all the pending queues, 3365 * if any I/O has been outstanding for longer than 3366 * the spa_deadman_synctime we panic the system. 3367 */ 3368 fio = avl_first(&vq->vq_active_tree); 3369 delta = gethrtime() - fio->io_timestamp; 3370 if (delta > spa_deadman_synctime(spa)) { 3371 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3372 "delta %lluns, last io %lluns", 3373 fio->io_timestamp, delta, 3374 vq->vq_io_complete_ts); 3375 fm_panic("I/O to pool '%s' appears to be " 3376 "hung.", spa_name(spa)); 3377 } 3378 } 3379 mutex_exit(&vq->vq_lock); 3380 } 3381 } 3382