xref: /titanic_52/usr/src/uts/common/fs/zfs/vdev.c (revision 3f9d6ad73e45c6823b409f93b0c8d4f62861d2d5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/fm/fs/zfs.h>
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/uberblock_impl.h>
34 #include <sys/metaslab.h>
35 #include <sys/metaslab_impl.h>
36 #include <sys/space_map.h>
37 #include <sys/zio.h>
38 #include <sys/zap.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/arc.h>
41 #include <sys/zil.h>
42 #include <sys/dsl_scan.h>
43 
44 /*
45  * Virtual device management.
46  */
47 
48 static vdev_ops_t *vdev_ops_table[] = {
49 	&vdev_root_ops,
50 	&vdev_raidz_ops,
51 	&vdev_mirror_ops,
52 	&vdev_replacing_ops,
53 	&vdev_spare_ops,
54 	&vdev_disk_ops,
55 	&vdev_file_ops,
56 	&vdev_missing_ops,
57 	&vdev_hole_ops,
58 	NULL
59 };
60 
61 /* maximum scrub/resilver I/O queue per leaf vdev */
62 int zfs_scrub_limit = 10;
63 
64 /*
65  * Given a vdev type, return the appropriate ops vector.
66  */
67 static vdev_ops_t *
68 vdev_getops(const char *type)
69 {
70 	vdev_ops_t *ops, **opspp;
71 
72 	for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++)
73 		if (strcmp(ops->vdev_op_type, type) == 0)
74 			break;
75 
76 	return (ops);
77 }
78 
79 /*
80  * Default asize function: return the MAX of psize with the asize of
81  * all children.  This is what's used by anything other than RAID-Z.
82  */
83 uint64_t
84 vdev_default_asize(vdev_t *vd, uint64_t psize)
85 {
86 	uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift);
87 	uint64_t csize;
88 
89 	for (int c = 0; c < vd->vdev_children; c++) {
90 		csize = vdev_psize_to_asize(vd->vdev_child[c], psize);
91 		asize = MAX(asize, csize);
92 	}
93 
94 	return (asize);
95 }
96 
97 /*
98  * Get the minimum allocatable size. We define the allocatable size as
99  * the vdev's asize rounded to the nearest metaslab. This allows us to
100  * replace or attach devices which don't have the same physical size but
101  * can still satisfy the same number of allocations.
102  */
103 uint64_t
104 vdev_get_min_asize(vdev_t *vd)
105 {
106 	vdev_t *pvd = vd->vdev_parent;
107 
108 	/*
109 	 * The our parent is NULL (inactive spare or cache) or is the root,
110 	 * just return our own asize.
111 	 */
112 	if (pvd == NULL)
113 		return (vd->vdev_asize);
114 
115 	/*
116 	 * The top-level vdev just returns the allocatable size rounded
117 	 * to the nearest metaslab.
118 	 */
119 	if (vd == vd->vdev_top)
120 		return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift));
121 
122 	/*
123 	 * The allocatable space for a raidz vdev is N * sizeof(smallest child),
124 	 * so each child must provide at least 1/Nth of its asize.
125 	 */
126 	if (pvd->vdev_ops == &vdev_raidz_ops)
127 		return (pvd->vdev_min_asize / pvd->vdev_children);
128 
129 	return (pvd->vdev_min_asize);
130 }
131 
132 void
133 vdev_set_min_asize(vdev_t *vd)
134 {
135 	vd->vdev_min_asize = vdev_get_min_asize(vd);
136 
137 	for (int c = 0; c < vd->vdev_children; c++)
138 		vdev_set_min_asize(vd->vdev_child[c]);
139 }
140 
141 vdev_t *
142 vdev_lookup_top(spa_t *spa, uint64_t vdev)
143 {
144 	vdev_t *rvd = spa->spa_root_vdev;
145 
146 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
147 
148 	if (vdev < rvd->vdev_children) {
149 		ASSERT(rvd->vdev_child[vdev] != NULL);
150 		return (rvd->vdev_child[vdev]);
151 	}
152 
153 	return (NULL);
154 }
155 
156 vdev_t *
157 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid)
158 {
159 	vdev_t *mvd;
160 
161 	if (vd->vdev_guid == guid)
162 		return (vd);
163 
164 	for (int c = 0; c < vd->vdev_children; c++)
165 		if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) !=
166 		    NULL)
167 			return (mvd);
168 
169 	return (NULL);
170 }
171 
172 void
173 vdev_add_child(vdev_t *pvd, vdev_t *cvd)
174 {
175 	size_t oldsize, newsize;
176 	uint64_t id = cvd->vdev_id;
177 	vdev_t **newchild;
178 
179 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
180 	ASSERT(cvd->vdev_parent == NULL);
181 
182 	cvd->vdev_parent = pvd;
183 
184 	if (pvd == NULL)
185 		return;
186 
187 	ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL);
188 
189 	oldsize = pvd->vdev_children * sizeof (vdev_t *);
190 	pvd->vdev_children = MAX(pvd->vdev_children, id + 1);
191 	newsize = pvd->vdev_children * sizeof (vdev_t *);
192 
193 	newchild = kmem_zalloc(newsize, KM_SLEEP);
194 	if (pvd->vdev_child != NULL) {
195 		bcopy(pvd->vdev_child, newchild, oldsize);
196 		kmem_free(pvd->vdev_child, oldsize);
197 	}
198 
199 	pvd->vdev_child = newchild;
200 	pvd->vdev_child[id] = cvd;
201 
202 	cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd);
203 	ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL);
204 
205 	/*
206 	 * Walk up all ancestors to update guid sum.
207 	 */
208 	for (; pvd != NULL; pvd = pvd->vdev_parent)
209 		pvd->vdev_guid_sum += cvd->vdev_guid_sum;
210 
211 	if (cvd->vdev_ops->vdev_op_leaf)
212 		cvd->vdev_spa->spa_scrub_maxinflight += zfs_scrub_limit;
213 }
214 
215 void
216 vdev_remove_child(vdev_t *pvd, vdev_t *cvd)
217 {
218 	int c;
219 	uint_t id = cvd->vdev_id;
220 
221 	ASSERT(cvd->vdev_parent == pvd);
222 
223 	if (pvd == NULL)
224 		return;
225 
226 	ASSERT(id < pvd->vdev_children);
227 	ASSERT(pvd->vdev_child[id] == cvd);
228 
229 	pvd->vdev_child[id] = NULL;
230 	cvd->vdev_parent = NULL;
231 
232 	for (c = 0; c < pvd->vdev_children; c++)
233 		if (pvd->vdev_child[c])
234 			break;
235 
236 	if (c == pvd->vdev_children) {
237 		kmem_free(pvd->vdev_child, c * sizeof (vdev_t *));
238 		pvd->vdev_child = NULL;
239 		pvd->vdev_children = 0;
240 	}
241 
242 	/*
243 	 * Walk up all ancestors to update guid sum.
244 	 */
245 	for (; pvd != NULL; pvd = pvd->vdev_parent)
246 		pvd->vdev_guid_sum -= cvd->vdev_guid_sum;
247 
248 	if (cvd->vdev_ops->vdev_op_leaf)
249 		cvd->vdev_spa->spa_scrub_maxinflight -= zfs_scrub_limit;
250 }
251 
252 /*
253  * Remove any holes in the child array.
254  */
255 void
256 vdev_compact_children(vdev_t *pvd)
257 {
258 	vdev_t **newchild, *cvd;
259 	int oldc = pvd->vdev_children;
260 	int newc;
261 
262 	ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
263 
264 	for (int c = newc = 0; c < oldc; c++)
265 		if (pvd->vdev_child[c])
266 			newc++;
267 
268 	newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP);
269 
270 	for (int c = newc = 0; c < oldc; c++) {
271 		if ((cvd = pvd->vdev_child[c]) != NULL) {
272 			newchild[newc] = cvd;
273 			cvd->vdev_id = newc++;
274 		}
275 	}
276 
277 	kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *));
278 	pvd->vdev_child = newchild;
279 	pvd->vdev_children = newc;
280 }
281 
282 /*
283  * Allocate and minimally initialize a vdev_t.
284  */
285 vdev_t *
286 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops)
287 {
288 	vdev_t *vd;
289 
290 	vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP);
291 
292 	if (spa->spa_root_vdev == NULL) {
293 		ASSERT(ops == &vdev_root_ops);
294 		spa->spa_root_vdev = vd;
295 	}
296 
297 	if (guid == 0 && ops != &vdev_hole_ops) {
298 		if (spa->spa_root_vdev == vd) {
299 			/*
300 			 * The root vdev's guid will also be the pool guid,
301 			 * which must be unique among all pools.
302 			 */
303 			guid = spa_generate_guid(NULL);
304 		} else {
305 			/*
306 			 * Any other vdev's guid must be unique within the pool.
307 			 */
308 			guid = spa_generate_guid(spa);
309 		}
310 		ASSERT(!spa_guid_exists(spa_guid(spa), guid));
311 	}
312 
313 	vd->vdev_spa = spa;
314 	vd->vdev_id = id;
315 	vd->vdev_guid = guid;
316 	vd->vdev_guid_sum = guid;
317 	vd->vdev_ops = ops;
318 	vd->vdev_state = VDEV_STATE_CLOSED;
319 	vd->vdev_ishole = (ops == &vdev_hole_ops);
320 
321 	mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL);
322 	mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL);
323 	mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL);
324 	for (int t = 0; t < DTL_TYPES; t++) {
325 		space_map_create(&vd->vdev_dtl[t], 0, -1ULL, 0,
326 		    &vd->vdev_dtl_lock);
327 	}
328 	txg_list_create(&vd->vdev_ms_list,
329 	    offsetof(struct metaslab, ms_txg_node));
330 	txg_list_create(&vd->vdev_dtl_list,
331 	    offsetof(struct vdev, vdev_dtl_node));
332 	vd->vdev_stat.vs_timestamp = gethrtime();
333 	vdev_queue_init(vd);
334 	vdev_cache_init(vd);
335 
336 	return (vd);
337 }
338 
339 /*
340  * Allocate a new vdev.  The 'alloctype' is used to control whether we are
341  * creating a new vdev or loading an existing one - the behavior is slightly
342  * different for each case.
343  */
344 int
345 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id,
346     int alloctype)
347 {
348 	vdev_ops_t *ops;
349 	char *type;
350 	uint64_t guid = 0, islog, nparity;
351 	vdev_t *vd;
352 
353 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
354 
355 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0)
356 		return (EINVAL);
357 
358 	if ((ops = vdev_getops(type)) == NULL)
359 		return (EINVAL);
360 
361 	/*
362 	 * If this is a load, get the vdev guid from the nvlist.
363 	 * Otherwise, vdev_alloc_common() will generate one for us.
364 	 */
365 	if (alloctype == VDEV_ALLOC_LOAD) {
366 		uint64_t label_id;
367 
368 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) ||
369 		    label_id != id)
370 			return (EINVAL);
371 
372 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
373 			return (EINVAL);
374 	} else if (alloctype == VDEV_ALLOC_SPARE) {
375 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
376 			return (EINVAL);
377 	} else if (alloctype == VDEV_ALLOC_L2CACHE) {
378 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
379 			return (EINVAL);
380 	} else if (alloctype == VDEV_ALLOC_ROOTPOOL) {
381 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0)
382 			return (EINVAL);
383 	}
384 
385 	/*
386 	 * The first allocated vdev must be of type 'root'.
387 	 */
388 	if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL)
389 		return (EINVAL);
390 
391 	/*
392 	 * Determine whether we're a log vdev.
393 	 */
394 	islog = 0;
395 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog);
396 	if (islog && spa_version(spa) < SPA_VERSION_SLOGS)
397 		return (ENOTSUP);
398 
399 	if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES)
400 		return (ENOTSUP);
401 
402 	/*
403 	 * Set the nparity property for RAID-Z vdevs.
404 	 */
405 	nparity = -1ULL;
406 	if (ops == &vdev_raidz_ops) {
407 		if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY,
408 		    &nparity) == 0) {
409 			if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY)
410 				return (EINVAL);
411 			/*
412 			 * Previous versions could only support 1 or 2 parity
413 			 * device.
414 			 */
415 			if (nparity > 1 &&
416 			    spa_version(spa) < SPA_VERSION_RAIDZ2)
417 				return (ENOTSUP);
418 			if (nparity > 2 &&
419 			    spa_version(spa) < SPA_VERSION_RAIDZ3)
420 				return (ENOTSUP);
421 		} else {
422 			/*
423 			 * We require the parity to be specified for SPAs that
424 			 * support multiple parity levels.
425 			 */
426 			if (spa_version(spa) >= SPA_VERSION_RAIDZ2)
427 				return (EINVAL);
428 			/*
429 			 * Otherwise, we default to 1 parity device for RAID-Z.
430 			 */
431 			nparity = 1;
432 		}
433 	} else {
434 		nparity = 0;
435 	}
436 	ASSERT(nparity != -1ULL);
437 
438 	vd = vdev_alloc_common(spa, id, guid, ops);
439 
440 	vd->vdev_islog = islog;
441 	vd->vdev_nparity = nparity;
442 
443 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0)
444 		vd->vdev_path = spa_strdup(vd->vdev_path);
445 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0)
446 		vd->vdev_devid = spa_strdup(vd->vdev_devid);
447 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH,
448 	    &vd->vdev_physpath) == 0)
449 		vd->vdev_physpath = spa_strdup(vd->vdev_physpath);
450 	if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0)
451 		vd->vdev_fru = spa_strdup(vd->vdev_fru);
452 
453 	/*
454 	 * Set the whole_disk property.  If it's not specified, leave the value
455 	 * as -1.
456 	 */
457 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK,
458 	    &vd->vdev_wholedisk) != 0)
459 		vd->vdev_wholedisk = -1ULL;
460 
461 	/*
462 	 * Look for the 'not present' flag.  This will only be set if the device
463 	 * was not present at the time of import.
464 	 */
465 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT,
466 	    &vd->vdev_not_present);
467 
468 	/*
469 	 * Get the alignment requirement.
470 	 */
471 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift);
472 
473 	/*
474 	 * Retrieve the vdev creation time.
475 	 */
476 	(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG,
477 	    &vd->vdev_crtxg);
478 
479 	/*
480 	 * If we're a top-level vdev, try to load the allocation parameters.
481 	 */
482 	if (parent && !parent->vdev_parent &&
483 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) {
484 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY,
485 		    &vd->vdev_ms_array);
486 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT,
487 		    &vd->vdev_ms_shift);
488 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE,
489 		    &vd->vdev_asize);
490 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING,
491 		    &vd->vdev_removing);
492 	}
493 
494 	if (parent && !parent->vdev_parent) {
495 		ASSERT(alloctype == VDEV_ALLOC_LOAD ||
496 		    alloctype == VDEV_ALLOC_ADD ||
497 		    alloctype == VDEV_ALLOC_SPLIT ||
498 		    alloctype == VDEV_ALLOC_ROOTPOOL);
499 		vd->vdev_mg = metaslab_group_create(islog ?
500 		    spa_log_class(spa) : spa_normal_class(spa), vd);
501 	}
502 
503 	/*
504 	 * If we're a leaf vdev, try to load the DTL object and other state.
505 	 */
506 	if (vd->vdev_ops->vdev_op_leaf &&
507 	    (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE ||
508 	    alloctype == VDEV_ALLOC_ROOTPOOL)) {
509 		if (alloctype == VDEV_ALLOC_LOAD) {
510 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL,
511 			    &vd->vdev_dtl_smo.smo_object);
512 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE,
513 			    &vd->vdev_unspare);
514 		}
515 
516 		if (alloctype == VDEV_ALLOC_ROOTPOOL) {
517 			uint64_t spare = 0;
518 
519 			if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE,
520 			    &spare) == 0 && spare)
521 				spa_spare_add(vd);
522 		}
523 
524 		(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE,
525 		    &vd->vdev_offline);
526 
527 		/*
528 		 * When importing a pool, we want to ignore the persistent fault
529 		 * state, as the diagnosis made on another system may not be
530 		 * valid in the current context.  Local vdevs will
531 		 * remain in the faulted state.
532 		 */
533 		if (spa_load_state(spa) == SPA_LOAD_OPEN) {
534 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED,
535 			    &vd->vdev_faulted);
536 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED,
537 			    &vd->vdev_degraded);
538 			(void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED,
539 			    &vd->vdev_removed);
540 
541 			if (vd->vdev_faulted || vd->vdev_degraded) {
542 				char *aux;
543 
544 				vd->vdev_label_aux =
545 				    VDEV_AUX_ERR_EXCEEDED;
546 				if (nvlist_lookup_string(nv,
547 				    ZPOOL_CONFIG_AUX_STATE, &aux) == 0 &&
548 				    strcmp(aux, "external") == 0)
549 					vd->vdev_label_aux = VDEV_AUX_EXTERNAL;
550 			}
551 		}
552 	}
553 
554 	/*
555 	 * Add ourselves to the parent's list of children.
556 	 */
557 	vdev_add_child(parent, vd);
558 
559 	*vdp = vd;
560 
561 	return (0);
562 }
563 
564 void
565 vdev_free(vdev_t *vd)
566 {
567 	spa_t *spa = vd->vdev_spa;
568 
569 	/*
570 	 * vdev_free() implies closing the vdev first.  This is simpler than
571 	 * trying to ensure complicated semantics for all callers.
572 	 */
573 	vdev_close(vd);
574 
575 	ASSERT(!list_link_active(&vd->vdev_config_dirty_node));
576 	ASSERT(!list_link_active(&vd->vdev_state_dirty_node));
577 
578 	/*
579 	 * Free all children.
580 	 */
581 	for (int c = 0; c < vd->vdev_children; c++)
582 		vdev_free(vd->vdev_child[c]);
583 
584 	ASSERT(vd->vdev_child == NULL);
585 	ASSERT(vd->vdev_guid_sum == vd->vdev_guid);
586 
587 	/*
588 	 * Discard allocation state.
589 	 */
590 	if (vd->vdev_mg != NULL) {
591 		vdev_metaslab_fini(vd);
592 		metaslab_group_destroy(vd->vdev_mg);
593 	}
594 
595 	ASSERT3U(vd->vdev_stat.vs_space, ==, 0);
596 	ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0);
597 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
598 
599 	/*
600 	 * Remove this vdev from its parent's child list.
601 	 */
602 	vdev_remove_child(vd->vdev_parent, vd);
603 
604 	ASSERT(vd->vdev_parent == NULL);
605 
606 	/*
607 	 * Clean up vdev structure.
608 	 */
609 	vdev_queue_fini(vd);
610 	vdev_cache_fini(vd);
611 
612 	if (vd->vdev_path)
613 		spa_strfree(vd->vdev_path);
614 	if (vd->vdev_devid)
615 		spa_strfree(vd->vdev_devid);
616 	if (vd->vdev_physpath)
617 		spa_strfree(vd->vdev_physpath);
618 	if (vd->vdev_fru)
619 		spa_strfree(vd->vdev_fru);
620 
621 	if (vd->vdev_isspare)
622 		spa_spare_remove(vd);
623 	if (vd->vdev_isl2cache)
624 		spa_l2cache_remove(vd);
625 
626 	txg_list_destroy(&vd->vdev_ms_list);
627 	txg_list_destroy(&vd->vdev_dtl_list);
628 
629 	mutex_enter(&vd->vdev_dtl_lock);
630 	for (int t = 0; t < DTL_TYPES; t++) {
631 		space_map_unload(&vd->vdev_dtl[t]);
632 		space_map_destroy(&vd->vdev_dtl[t]);
633 	}
634 	mutex_exit(&vd->vdev_dtl_lock);
635 
636 	mutex_destroy(&vd->vdev_dtl_lock);
637 	mutex_destroy(&vd->vdev_stat_lock);
638 	mutex_destroy(&vd->vdev_probe_lock);
639 
640 	if (vd == spa->spa_root_vdev)
641 		spa->spa_root_vdev = NULL;
642 
643 	kmem_free(vd, sizeof (vdev_t));
644 }
645 
646 /*
647  * Transfer top-level vdev state from svd to tvd.
648  */
649 static void
650 vdev_top_transfer(vdev_t *svd, vdev_t *tvd)
651 {
652 	spa_t *spa = svd->vdev_spa;
653 	metaslab_t *msp;
654 	vdev_t *vd;
655 	int t;
656 
657 	ASSERT(tvd == tvd->vdev_top);
658 
659 	tvd->vdev_ms_array = svd->vdev_ms_array;
660 	tvd->vdev_ms_shift = svd->vdev_ms_shift;
661 	tvd->vdev_ms_count = svd->vdev_ms_count;
662 
663 	svd->vdev_ms_array = 0;
664 	svd->vdev_ms_shift = 0;
665 	svd->vdev_ms_count = 0;
666 
667 	tvd->vdev_mg = svd->vdev_mg;
668 	tvd->vdev_ms = svd->vdev_ms;
669 
670 	svd->vdev_mg = NULL;
671 	svd->vdev_ms = NULL;
672 
673 	if (tvd->vdev_mg != NULL)
674 		tvd->vdev_mg->mg_vd = tvd;
675 
676 	tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc;
677 	tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space;
678 	tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace;
679 
680 	svd->vdev_stat.vs_alloc = 0;
681 	svd->vdev_stat.vs_space = 0;
682 	svd->vdev_stat.vs_dspace = 0;
683 
684 	for (t = 0; t < TXG_SIZE; t++) {
685 		while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL)
686 			(void) txg_list_add(&tvd->vdev_ms_list, msp, t);
687 		while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL)
688 			(void) txg_list_add(&tvd->vdev_dtl_list, vd, t);
689 		if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t))
690 			(void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t);
691 	}
692 
693 	if (list_link_active(&svd->vdev_config_dirty_node)) {
694 		vdev_config_clean(svd);
695 		vdev_config_dirty(tvd);
696 	}
697 
698 	if (list_link_active(&svd->vdev_state_dirty_node)) {
699 		vdev_state_clean(svd);
700 		vdev_state_dirty(tvd);
701 	}
702 
703 	tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio;
704 	svd->vdev_deflate_ratio = 0;
705 
706 	tvd->vdev_islog = svd->vdev_islog;
707 	svd->vdev_islog = 0;
708 }
709 
710 static void
711 vdev_top_update(vdev_t *tvd, vdev_t *vd)
712 {
713 	if (vd == NULL)
714 		return;
715 
716 	vd->vdev_top = tvd;
717 
718 	for (int c = 0; c < vd->vdev_children; c++)
719 		vdev_top_update(tvd, vd->vdev_child[c]);
720 }
721 
722 /*
723  * Add a mirror/replacing vdev above an existing vdev.
724  */
725 vdev_t *
726 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops)
727 {
728 	spa_t *spa = cvd->vdev_spa;
729 	vdev_t *pvd = cvd->vdev_parent;
730 	vdev_t *mvd;
731 
732 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
733 
734 	mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops);
735 
736 	mvd->vdev_asize = cvd->vdev_asize;
737 	mvd->vdev_min_asize = cvd->vdev_min_asize;
738 	mvd->vdev_ashift = cvd->vdev_ashift;
739 	mvd->vdev_state = cvd->vdev_state;
740 	mvd->vdev_crtxg = cvd->vdev_crtxg;
741 
742 	vdev_remove_child(pvd, cvd);
743 	vdev_add_child(pvd, mvd);
744 	cvd->vdev_id = mvd->vdev_children;
745 	vdev_add_child(mvd, cvd);
746 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
747 
748 	if (mvd == mvd->vdev_top)
749 		vdev_top_transfer(cvd, mvd);
750 
751 	return (mvd);
752 }
753 
754 /*
755  * Remove a 1-way mirror/replacing vdev from the tree.
756  */
757 void
758 vdev_remove_parent(vdev_t *cvd)
759 {
760 	vdev_t *mvd = cvd->vdev_parent;
761 	vdev_t *pvd = mvd->vdev_parent;
762 
763 	ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
764 
765 	ASSERT(mvd->vdev_children == 1);
766 	ASSERT(mvd->vdev_ops == &vdev_mirror_ops ||
767 	    mvd->vdev_ops == &vdev_replacing_ops ||
768 	    mvd->vdev_ops == &vdev_spare_ops);
769 	cvd->vdev_ashift = mvd->vdev_ashift;
770 
771 	vdev_remove_child(mvd, cvd);
772 	vdev_remove_child(pvd, mvd);
773 
774 	/*
775 	 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid.
776 	 * Otherwise, we could have detached an offline device, and when we
777 	 * go to import the pool we'll think we have two top-level vdevs,
778 	 * instead of a different version of the same top-level vdev.
779 	 */
780 	if (mvd->vdev_top == mvd) {
781 		uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid;
782 		cvd->vdev_orig_guid = cvd->vdev_guid;
783 		cvd->vdev_guid += guid_delta;
784 		cvd->vdev_guid_sum += guid_delta;
785 	}
786 	cvd->vdev_id = mvd->vdev_id;
787 	vdev_add_child(pvd, cvd);
788 	vdev_top_update(cvd->vdev_top, cvd->vdev_top);
789 
790 	if (cvd == cvd->vdev_top)
791 		vdev_top_transfer(mvd, cvd);
792 
793 	ASSERT(mvd->vdev_children == 0);
794 	vdev_free(mvd);
795 }
796 
797 int
798 vdev_metaslab_init(vdev_t *vd, uint64_t txg)
799 {
800 	spa_t *spa = vd->vdev_spa;
801 	objset_t *mos = spa->spa_meta_objset;
802 	uint64_t m;
803 	uint64_t oldc = vd->vdev_ms_count;
804 	uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift;
805 	metaslab_t **mspp;
806 	int error;
807 
808 	ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER));
809 
810 	/*
811 	 * This vdev is not being allocated from yet or is a hole.
812 	 */
813 	if (vd->vdev_ms_shift == 0)
814 		return (0);
815 
816 	ASSERT(!vd->vdev_ishole);
817 
818 	/*
819 	 * Compute the raidz-deflation ratio.  Note, we hard-code
820 	 * in 128k (1 << 17) because it is the current "typical" blocksize.
821 	 * Even if SPA_MAXBLOCKSIZE changes, this algorithm must never change,
822 	 * or we will inconsistently account for existing bp's.
823 	 */
824 	vd->vdev_deflate_ratio = (1 << 17) /
825 	    (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT);
826 
827 	ASSERT(oldc <= newc);
828 
829 	mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP);
830 
831 	if (oldc != 0) {
832 		bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp));
833 		kmem_free(vd->vdev_ms, oldc * sizeof (*mspp));
834 	}
835 
836 	vd->vdev_ms = mspp;
837 	vd->vdev_ms_count = newc;
838 
839 	for (m = oldc; m < newc; m++) {
840 		space_map_obj_t smo = { 0, 0, 0 };
841 		if (txg == 0) {
842 			uint64_t object = 0;
843 			error = dmu_read(mos, vd->vdev_ms_array,
844 			    m * sizeof (uint64_t), sizeof (uint64_t), &object,
845 			    DMU_READ_PREFETCH);
846 			if (error)
847 				return (error);
848 			if (object != 0) {
849 				dmu_buf_t *db;
850 				error = dmu_bonus_hold(mos, object, FTAG, &db);
851 				if (error)
852 					return (error);
853 				ASSERT3U(db->db_size, >=, sizeof (smo));
854 				bcopy(db->db_data, &smo, sizeof (smo));
855 				ASSERT3U(smo.smo_object, ==, object);
856 				dmu_buf_rele(db, FTAG);
857 			}
858 		}
859 		vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo,
860 		    m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg);
861 	}
862 
863 	if (txg == 0)
864 		spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER);
865 
866 	/*
867 	 * If the vdev is being removed we don't activate
868 	 * the metaslabs since we want to ensure that no new
869 	 * allocations are performed on this device.
870 	 */
871 	if (oldc == 0 && !vd->vdev_removing)
872 		metaslab_group_activate(vd->vdev_mg);
873 
874 	if (txg == 0)
875 		spa_config_exit(spa, SCL_ALLOC, FTAG);
876 
877 	return (0);
878 }
879 
880 void
881 vdev_metaslab_fini(vdev_t *vd)
882 {
883 	uint64_t m;
884 	uint64_t count = vd->vdev_ms_count;
885 
886 	if (vd->vdev_ms != NULL) {
887 		metaslab_group_passivate(vd->vdev_mg);
888 		for (m = 0; m < count; m++)
889 			if (vd->vdev_ms[m] != NULL)
890 				metaslab_fini(vd->vdev_ms[m]);
891 		kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *));
892 		vd->vdev_ms = NULL;
893 	}
894 }
895 
896 typedef struct vdev_probe_stats {
897 	boolean_t	vps_readable;
898 	boolean_t	vps_writeable;
899 	int		vps_flags;
900 } vdev_probe_stats_t;
901 
902 static void
903 vdev_probe_done(zio_t *zio)
904 {
905 	spa_t *spa = zio->io_spa;
906 	vdev_t *vd = zio->io_vd;
907 	vdev_probe_stats_t *vps = zio->io_private;
908 
909 	ASSERT(vd->vdev_probe_zio != NULL);
910 
911 	if (zio->io_type == ZIO_TYPE_READ) {
912 		if (zio->io_error == 0)
913 			vps->vps_readable = 1;
914 		if (zio->io_error == 0 && spa_writeable(spa)) {
915 			zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd,
916 			    zio->io_offset, zio->io_size, zio->io_data,
917 			    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
918 			    ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE));
919 		} else {
920 			zio_buf_free(zio->io_data, zio->io_size);
921 		}
922 	} else if (zio->io_type == ZIO_TYPE_WRITE) {
923 		if (zio->io_error == 0)
924 			vps->vps_writeable = 1;
925 		zio_buf_free(zio->io_data, zio->io_size);
926 	} else if (zio->io_type == ZIO_TYPE_NULL) {
927 		zio_t *pio;
928 
929 		vd->vdev_cant_read |= !vps->vps_readable;
930 		vd->vdev_cant_write |= !vps->vps_writeable;
931 
932 		if (vdev_readable(vd) &&
933 		    (vdev_writeable(vd) || !spa_writeable(spa))) {
934 			zio->io_error = 0;
935 		} else {
936 			ASSERT(zio->io_error != 0);
937 			zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE,
938 			    spa, vd, NULL, 0, 0);
939 			zio->io_error = ENXIO;
940 		}
941 
942 		mutex_enter(&vd->vdev_probe_lock);
943 		ASSERT(vd->vdev_probe_zio == zio);
944 		vd->vdev_probe_zio = NULL;
945 		mutex_exit(&vd->vdev_probe_lock);
946 
947 		while ((pio = zio_walk_parents(zio)) != NULL)
948 			if (!vdev_accessible(vd, pio))
949 				pio->io_error = ENXIO;
950 
951 		kmem_free(vps, sizeof (*vps));
952 	}
953 }
954 
955 /*
956  * Determine whether this device is accessible by reading and writing
957  * to several known locations: the pad regions of each vdev label
958  * but the first (which we leave alone in case it contains a VTOC).
959  */
960 zio_t *
961 vdev_probe(vdev_t *vd, zio_t *zio)
962 {
963 	spa_t *spa = vd->vdev_spa;
964 	vdev_probe_stats_t *vps = NULL;
965 	zio_t *pio;
966 
967 	ASSERT(vd->vdev_ops->vdev_op_leaf);
968 
969 	/*
970 	 * Don't probe the probe.
971 	 */
972 	if (zio && (zio->io_flags & ZIO_FLAG_PROBE))
973 		return (NULL);
974 
975 	/*
976 	 * To prevent 'probe storms' when a device fails, we create
977 	 * just one probe i/o at a time.  All zios that want to probe
978 	 * this vdev will become parents of the probe io.
979 	 */
980 	mutex_enter(&vd->vdev_probe_lock);
981 
982 	if ((pio = vd->vdev_probe_zio) == NULL) {
983 		vps = kmem_zalloc(sizeof (*vps), KM_SLEEP);
984 
985 		vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE |
986 		    ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE |
987 		    ZIO_FLAG_TRYHARD;
988 
989 		if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) {
990 			/*
991 			 * vdev_cant_read and vdev_cant_write can only
992 			 * transition from TRUE to FALSE when we have the
993 			 * SCL_ZIO lock as writer; otherwise they can only
994 			 * transition from FALSE to TRUE.  This ensures that
995 			 * any zio looking at these values can assume that
996 			 * failures persist for the life of the I/O.  That's
997 			 * important because when a device has intermittent
998 			 * connectivity problems, we want to ensure that
999 			 * they're ascribed to the device (ENXIO) and not
1000 			 * the zio (EIO).
1001 			 *
1002 			 * Since we hold SCL_ZIO as writer here, clear both
1003 			 * values so the probe can reevaluate from first
1004 			 * principles.
1005 			 */
1006 			vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER;
1007 			vd->vdev_cant_read = B_FALSE;
1008 			vd->vdev_cant_write = B_FALSE;
1009 		}
1010 
1011 		vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd,
1012 		    vdev_probe_done, vps,
1013 		    vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE);
1014 
1015 		/*
1016 		 * We can't change the vdev state in this context, so we
1017 		 * kick off an async task to do it on our behalf.
1018 		 */
1019 		if (zio != NULL) {
1020 			vd->vdev_probe_wanted = B_TRUE;
1021 			spa_async_request(spa, SPA_ASYNC_PROBE);
1022 		}
1023 	}
1024 
1025 	if (zio != NULL)
1026 		zio_add_child(zio, pio);
1027 
1028 	mutex_exit(&vd->vdev_probe_lock);
1029 
1030 	if (vps == NULL) {
1031 		ASSERT(zio != NULL);
1032 		return (NULL);
1033 	}
1034 
1035 	for (int l = 1; l < VDEV_LABELS; l++) {
1036 		zio_nowait(zio_read_phys(pio, vd,
1037 		    vdev_label_offset(vd->vdev_psize, l,
1038 		    offsetof(vdev_label_t, vl_pad2)),
1039 		    VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE),
1040 		    ZIO_CHECKSUM_OFF, vdev_probe_done, vps,
1041 		    ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE));
1042 	}
1043 
1044 	if (zio == NULL)
1045 		return (pio);
1046 
1047 	zio_nowait(pio);
1048 	return (NULL);
1049 }
1050 
1051 static void
1052 vdev_open_child(void *arg)
1053 {
1054 	vdev_t *vd = arg;
1055 
1056 	vd->vdev_open_thread = curthread;
1057 	vd->vdev_open_error = vdev_open(vd);
1058 	vd->vdev_open_thread = NULL;
1059 }
1060 
1061 boolean_t
1062 vdev_uses_zvols(vdev_t *vd)
1063 {
1064 	if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR,
1065 	    strlen(ZVOL_DIR)) == 0)
1066 		return (B_TRUE);
1067 	for (int c = 0; c < vd->vdev_children; c++)
1068 		if (vdev_uses_zvols(vd->vdev_child[c]))
1069 			return (B_TRUE);
1070 	return (B_FALSE);
1071 }
1072 
1073 void
1074 vdev_open_children(vdev_t *vd)
1075 {
1076 	taskq_t *tq;
1077 	int children = vd->vdev_children;
1078 
1079 	/*
1080 	 * in order to handle pools on top of zvols, do the opens
1081 	 * in a single thread so that the same thread holds the
1082 	 * spa_namespace_lock
1083 	 */
1084 	if (vdev_uses_zvols(vd)) {
1085 		for (int c = 0; c < children; c++)
1086 			vd->vdev_child[c]->vdev_open_error =
1087 			    vdev_open(vd->vdev_child[c]);
1088 		return;
1089 	}
1090 	tq = taskq_create("vdev_open", children, minclsyspri,
1091 	    children, children, TASKQ_PREPOPULATE);
1092 
1093 	for (int c = 0; c < children; c++)
1094 		VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c],
1095 		    TQ_SLEEP) != NULL);
1096 
1097 	taskq_destroy(tq);
1098 }
1099 
1100 /*
1101  * Prepare a virtual device for access.
1102  */
1103 int
1104 vdev_open(vdev_t *vd)
1105 {
1106 	spa_t *spa = vd->vdev_spa;
1107 	int error;
1108 	uint64_t osize = 0;
1109 	uint64_t asize, psize;
1110 	uint64_t ashift = 0;
1111 
1112 	ASSERT(vd->vdev_open_thread == curthread ||
1113 	    spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1114 	ASSERT(vd->vdev_state == VDEV_STATE_CLOSED ||
1115 	    vd->vdev_state == VDEV_STATE_CANT_OPEN ||
1116 	    vd->vdev_state == VDEV_STATE_OFFLINE);
1117 
1118 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1119 	vd->vdev_cant_read = B_FALSE;
1120 	vd->vdev_cant_write = B_FALSE;
1121 	vd->vdev_min_asize = vdev_get_min_asize(vd);
1122 
1123 	/*
1124 	 * If this vdev is not removed, check its fault status.  If it's
1125 	 * faulted, bail out of the open.
1126 	 */
1127 	if (!vd->vdev_removed && vd->vdev_faulted) {
1128 		ASSERT(vd->vdev_children == 0);
1129 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1130 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1131 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1132 		    vd->vdev_label_aux);
1133 		return (ENXIO);
1134 	} else if (vd->vdev_offline) {
1135 		ASSERT(vd->vdev_children == 0);
1136 		vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE);
1137 		return (ENXIO);
1138 	}
1139 
1140 	error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift);
1141 
1142 	/*
1143 	 * Reset the vdev_reopening flag so that we actually close
1144 	 * the vdev on error.
1145 	 */
1146 	vd->vdev_reopening = B_FALSE;
1147 	if (zio_injection_enabled && error == 0)
1148 		error = zio_handle_device_injection(vd, NULL, ENXIO);
1149 
1150 	if (error) {
1151 		if (vd->vdev_removed &&
1152 		    vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED)
1153 			vd->vdev_removed = B_FALSE;
1154 
1155 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1156 		    vd->vdev_stat.vs_aux);
1157 		return (error);
1158 	}
1159 
1160 	vd->vdev_removed = B_FALSE;
1161 
1162 	/*
1163 	 * Recheck the faulted flag now that we have confirmed that
1164 	 * the vdev is accessible.  If we're faulted, bail.
1165 	 */
1166 	if (vd->vdev_faulted) {
1167 		ASSERT(vd->vdev_children == 0);
1168 		ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED ||
1169 		    vd->vdev_label_aux == VDEV_AUX_EXTERNAL);
1170 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1171 		    vd->vdev_label_aux);
1172 		return (ENXIO);
1173 	}
1174 
1175 	if (vd->vdev_degraded) {
1176 		ASSERT(vd->vdev_children == 0);
1177 		vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1178 		    VDEV_AUX_ERR_EXCEEDED);
1179 	} else {
1180 		vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0);
1181 	}
1182 
1183 	/*
1184 	 * For hole or missing vdevs we just return success.
1185 	 */
1186 	if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops)
1187 		return (0);
1188 
1189 	for (int c = 0; c < vd->vdev_children; c++) {
1190 		if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) {
1191 			vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED,
1192 			    VDEV_AUX_NONE);
1193 			break;
1194 		}
1195 	}
1196 
1197 	osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t));
1198 
1199 	if (vd->vdev_children == 0) {
1200 		if (osize < SPA_MINDEVSIZE) {
1201 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1202 			    VDEV_AUX_TOO_SMALL);
1203 			return (EOVERFLOW);
1204 		}
1205 		psize = osize;
1206 		asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE);
1207 	} else {
1208 		if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE -
1209 		    (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) {
1210 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1211 			    VDEV_AUX_TOO_SMALL);
1212 			return (EOVERFLOW);
1213 		}
1214 		psize = 0;
1215 		asize = osize;
1216 	}
1217 
1218 	vd->vdev_psize = psize;
1219 
1220 	/*
1221 	 * Make sure the allocatable size hasn't shrunk.
1222 	 */
1223 	if (asize < vd->vdev_min_asize) {
1224 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1225 		    VDEV_AUX_BAD_LABEL);
1226 		return (EINVAL);
1227 	}
1228 
1229 	if (vd->vdev_asize == 0) {
1230 		/*
1231 		 * This is the first-ever open, so use the computed values.
1232 		 * For testing purposes, a higher ashift can be requested.
1233 		 */
1234 		vd->vdev_asize = asize;
1235 		vd->vdev_ashift = MAX(ashift, vd->vdev_ashift);
1236 	} else {
1237 		/*
1238 		 * Make sure the alignment requirement hasn't increased.
1239 		 */
1240 		if (ashift > vd->vdev_top->vdev_ashift) {
1241 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242 			    VDEV_AUX_BAD_LABEL);
1243 			return (EINVAL);
1244 		}
1245 	}
1246 
1247 	/*
1248 	 * If all children are healthy and the asize has increased,
1249 	 * then we've experienced dynamic LUN growth.  If automatic
1250 	 * expansion is enabled then use the additional space.
1251 	 */
1252 	if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize &&
1253 	    (vd->vdev_expanding || spa->spa_autoexpand))
1254 		vd->vdev_asize = asize;
1255 
1256 	vdev_set_min_asize(vd);
1257 
1258 	/*
1259 	 * Ensure we can issue some IO before declaring the
1260 	 * vdev open for business.
1261 	 */
1262 	if (vd->vdev_ops->vdev_op_leaf &&
1263 	    (error = zio_wait(vdev_probe(vd, NULL))) != 0) {
1264 		vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
1265 		    VDEV_AUX_ERR_EXCEEDED);
1266 		return (error);
1267 	}
1268 
1269 	/*
1270 	 * If a leaf vdev has a DTL, and seems healthy, then kick off a
1271 	 * resilver.  But don't do this if we are doing a reopen for a scrub,
1272 	 * since this would just restart the scrub we are already doing.
1273 	 */
1274 	if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen &&
1275 	    vdev_resilver_needed(vd, NULL, NULL))
1276 		spa_async_request(spa, SPA_ASYNC_RESILVER);
1277 
1278 	return (0);
1279 }
1280 
1281 /*
1282  * Called once the vdevs are all opened, this routine validates the label
1283  * contents.  This needs to be done before vdev_load() so that we don't
1284  * inadvertently do repair I/Os to the wrong device.
1285  *
1286  * This function will only return failure if one of the vdevs indicates that it
1287  * has since been destroyed or exported.  This is only possible if
1288  * /etc/zfs/zpool.cache was readonly at the time.  Otherwise, the vdev state
1289  * will be updated but the function will return 0.
1290  */
1291 int
1292 vdev_validate(vdev_t *vd)
1293 {
1294 	spa_t *spa = vd->vdev_spa;
1295 	nvlist_t *label;
1296 	uint64_t guid = 0, top_guid;
1297 	uint64_t state;
1298 
1299 	for (int c = 0; c < vd->vdev_children; c++)
1300 		if (vdev_validate(vd->vdev_child[c]) != 0)
1301 			return (EBADF);
1302 
1303 	/*
1304 	 * If the device has already failed, or was marked offline, don't do
1305 	 * any further validation.  Otherwise, label I/O will fail and we will
1306 	 * overwrite the previous state.
1307 	 */
1308 	if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) {
1309 		uint64_t aux_guid = 0;
1310 		nvlist_t *nvl;
1311 
1312 		if ((label = vdev_label_read_config(vd)) == NULL) {
1313 			vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1314 			    VDEV_AUX_BAD_LABEL);
1315 			return (0);
1316 		}
1317 
1318 		/*
1319 		 * Determine if this vdev has been split off into another
1320 		 * pool.  If so, then refuse to open it.
1321 		 */
1322 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID,
1323 		    &aux_guid) == 0 && aux_guid == spa_guid(spa)) {
1324 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1325 			    VDEV_AUX_SPLIT_POOL);
1326 			nvlist_free(label);
1327 			return (0);
1328 		}
1329 
1330 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID,
1331 		    &guid) != 0 || guid != spa_guid(spa)) {
1332 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1333 			    VDEV_AUX_CORRUPT_DATA);
1334 			nvlist_free(label);
1335 			return (0);
1336 		}
1337 
1338 		if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl)
1339 		    != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID,
1340 		    &aux_guid) != 0)
1341 			aux_guid = 0;
1342 
1343 		/*
1344 		 * If this vdev just became a top-level vdev because its
1345 		 * sibling was detached, it will have adopted the parent's
1346 		 * vdev guid -- but the label may or may not be on disk yet.
1347 		 * Fortunately, either version of the label will have the
1348 		 * same top guid, so if we're a top-level vdev, we can
1349 		 * safely compare to that instead.
1350 		 *
1351 		 * If we split this vdev off instead, then we also check the
1352 		 * original pool's guid.  We don't want to consider the vdev
1353 		 * corrupt if it is partway through a split operation.
1354 		 */
1355 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID,
1356 		    &guid) != 0 ||
1357 		    nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID,
1358 		    &top_guid) != 0 ||
1359 		    ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) &&
1360 		    (vd->vdev_guid != top_guid || vd != vd->vdev_top))) {
1361 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1362 			    VDEV_AUX_CORRUPT_DATA);
1363 			nvlist_free(label);
1364 			return (0);
1365 		}
1366 
1367 		if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE,
1368 		    &state) != 0) {
1369 			vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1370 			    VDEV_AUX_CORRUPT_DATA);
1371 			nvlist_free(label);
1372 			return (0);
1373 		}
1374 
1375 		nvlist_free(label);
1376 
1377 		/*
1378 		 * If spa->spa_load_verbatim is true, no need to check the
1379 		 * state of the pool.
1380 		 */
1381 		if (!spa->spa_load_verbatim &&
1382 		    spa_load_state(spa) == SPA_LOAD_OPEN &&
1383 		    state != POOL_STATE_ACTIVE)
1384 			return (EBADF);
1385 
1386 		/*
1387 		 * If we were able to open and validate a vdev that was
1388 		 * previously marked permanently unavailable, clear that state
1389 		 * now.
1390 		 */
1391 		if (vd->vdev_not_present)
1392 			vd->vdev_not_present = 0;
1393 	}
1394 
1395 	return (0);
1396 }
1397 
1398 /*
1399  * Close a virtual device.
1400  */
1401 void
1402 vdev_close(vdev_t *vd)
1403 {
1404 	spa_t *spa = vd->vdev_spa;
1405 	vdev_t *pvd = vd->vdev_parent;
1406 
1407 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1408 
1409 	/*
1410 	 * If our parent is reopening, then we are as well, unless we are
1411 	 * going offline.
1412 	 */
1413 	if (pvd != NULL && pvd->vdev_reopening)
1414 		vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline);
1415 
1416 	vd->vdev_ops->vdev_op_close(vd);
1417 
1418 	vdev_cache_purge(vd);
1419 
1420 	/*
1421 	 * We record the previous state before we close it, so that if we are
1422 	 * doing a reopen(), we don't generate FMA ereports if we notice that
1423 	 * it's still faulted.
1424 	 */
1425 	vd->vdev_prevstate = vd->vdev_state;
1426 
1427 	if (vd->vdev_offline)
1428 		vd->vdev_state = VDEV_STATE_OFFLINE;
1429 	else
1430 		vd->vdev_state = VDEV_STATE_CLOSED;
1431 	vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
1432 }
1433 
1434 void
1435 vdev_hold(vdev_t *vd)
1436 {
1437 	spa_t *spa = vd->vdev_spa;
1438 
1439 	ASSERT(spa_is_root(spa));
1440 	if (spa->spa_state == POOL_STATE_UNINITIALIZED)
1441 		return;
1442 
1443 	for (int c = 0; c < vd->vdev_children; c++)
1444 		vdev_hold(vd->vdev_child[c]);
1445 
1446 	if (vd->vdev_ops->vdev_op_leaf)
1447 		vd->vdev_ops->vdev_op_hold(vd);
1448 }
1449 
1450 void
1451 vdev_rele(vdev_t *vd)
1452 {
1453 	spa_t *spa = vd->vdev_spa;
1454 
1455 	ASSERT(spa_is_root(spa));
1456 	for (int c = 0; c < vd->vdev_children; c++)
1457 		vdev_rele(vd->vdev_child[c]);
1458 
1459 	if (vd->vdev_ops->vdev_op_leaf)
1460 		vd->vdev_ops->vdev_op_rele(vd);
1461 }
1462 
1463 /*
1464  * Reopen all interior vdevs and any unopened leaves.  We don't actually
1465  * reopen leaf vdevs which had previously been opened as they might deadlock
1466  * on the spa_config_lock.  Instead we only obtain the leaf's physical size.
1467  * If the leaf has never been opened then open it, as usual.
1468  */
1469 void
1470 vdev_reopen(vdev_t *vd)
1471 {
1472 	spa_t *spa = vd->vdev_spa;
1473 
1474 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1475 
1476 	/* set the reopening flag unless we're taking the vdev offline */
1477 	vd->vdev_reopening = !vd->vdev_offline;
1478 	vdev_close(vd);
1479 	(void) vdev_open(vd);
1480 
1481 	/*
1482 	 * Call vdev_validate() here to make sure we have the same device.
1483 	 * Otherwise, a device with an invalid label could be successfully
1484 	 * opened in response to vdev_reopen().
1485 	 */
1486 	if (vd->vdev_aux) {
1487 		(void) vdev_validate_aux(vd);
1488 		if (vdev_readable(vd) && vdev_writeable(vd) &&
1489 		    vd->vdev_aux == &spa->spa_l2cache &&
1490 		    !l2arc_vdev_present(vd))
1491 			l2arc_add_vdev(spa, vd);
1492 	} else {
1493 		(void) vdev_validate(vd);
1494 	}
1495 
1496 	/*
1497 	 * Reassess parent vdev's health.
1498 	 */
1499 	vdev_propagate_state(vd);
1500 }
1501 
1502 int
1503 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing)
1504 {
1505 	int error;
1506 
1507 	/*
1508 	 * Normally, partial opens (e.g. of a mirror) are allowed.
1509 	 * For a create, however, we want to fail the request if
1510 	 * there are any components we can't open.
1511 	 */
1512 	error = vdev_open(vd);
1513 
1514 	if (error || vd->vdev_state != VDEV_STATE_HEALTHY) {
1515 		vdev_close(vd);
1516 		return (error ? error : ENXIO);
1517 	}
1518 
1519 	/*
1520 	 * Recursively initialize all labels.
1521 	 */
1522 	if ((error = vdev_label_init(vd, txg, isreplacing ?
1523 	    VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) {
1524 		vdev_close(vd);
1525 		return (error);
1526 	}
1527 
1528 	return (0);
1529 }
1530 
1531 void
1532 vdev_metaslab_set_size(vdev_t *vd)
1533 {
1534 	/*
1535 	 * Aim for roughly 200 metaslabs per vdev.
1536 	 */
1537 	vd->vdev_ms_shift = highbit(vd->vdev_asize / 200);
1538 	vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT);
1539 }
1540 
1541 void
1542 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg)
1543 {
1544 	ASSERT(vd == vd->vdev_top);
1545 	ASSERT(!vd->vdev_ishole);
1546 	ASSERT(ISP2(flags));
1547 
1548 	if (flags & VDD_METASLAB)
1549 		(void) txg_list_add(&vd->vdev_ms_list, arg, txg);
1550 
1551 	if (flags & VDD_DTL)
1552 		(void) txg_list_add(&vd->vdev_dtl_list, arg, txg);
1553 
1554 	(void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg);
1555 }
1556 
1557 /*
1558  * DTLs.
1559  *
1560  * A vdev's DTL (dirty time log) is the set of transaction groups for which
1561  * the vdev has less than perfect replication.  There are four kinds of DTL:
1562  *
1563  * DTL_MISSING: txgs for which the vdev has no valid copies of the data
1564  *
1565  * DTL_PARTIAL: txgs for which data is available, but not fully replicated
1566  *
1567  * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon
1568  *	scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of
1569  *	txgs that was scrubbed.
1570  *
1571  * DTL_OUTAGE: txgs which cannot currently be read, whether due to
1572  *	persistent errors or just some device being offline.
1573  *	Unlike the other three, the DTL_OUTAGE map is not generally
1574  *	maintained; it's only computed when needed, typically to
1575  *	determine whether a device can be detached.
1576  *
1577  * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device
1578  * either has the data or it doesn't.
1579  *
1580  * For interior vdevs such as mirror and RAID-Z the picture is more complex.
1581  * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because
1582  * if any child is less than fully replicated, then so is its parent.
1583  * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs,
1584  * comprising only those txgs which appear in 'maxfaults' or more children;
1585  * those are the txgs we don't have enough replication to read.  For example,
1586  * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2);
1587  * thus, its DTL_MISSING consists of the set of txgs that appear in more than
1588  * two child DTL_MISSING maps.
1589  *
1590  * It should be clear from the above that to compute the DTLs and outage maps
1591  * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps.
1592  * Therefore, that is all we keep on disk.  When loading the pool, or after
1593  * a configuration change, we generate all other DTLs from first principles.
1594  */
1595 void
1596 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1597 {
1598 	space_map_t *sm = &vd->vdev_dtl[t];
1599 
1600 	ASSERT(t < DTL_TYPES);
1601 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1602 
1603 	mutex_enter(sm->sm_lock);
1604 	if (!space_map_contains(sm, txg, size))
1605 		space_map_add(sm, txg, size);
1606 	mutex_exit(sm->sm_lock);
1607 }
1608 
1609 boolean_t
1610 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size)
1611 {
1612 	space_map_t *sm = &vd->vdev_dtl[t];
1613 	boolean_t dirty = B_FALSE;
1614 
1615 	ASSERT(t < DTL_TYPES);
1616 	ASSERT(vd != vd->vdev_spa->spa_root_vdev);
1617 
1618 	mutex_enter(sm->sm_lock);
1619 	if (sm->sm_space != 0)
1620 		dirty = space_map_contains(sm, txg, size);
1621 	mutex_exit(sm->sm_lock);
1622 
1623 	return (dirty);
1624 }
1625 
1626 boolean_t
1627 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t)
1628 {
1629 	space_map_t *sm = &vd->vdev_dtl[t];
1630 	boolean_t empty;
1631 
1632 	mutex_enter(sm->sm_lock);
1633 	empty = (sm->sm_space == 0);
1634 	mutex_exit(sm->sm_lock);
1635 
1636 	return (empty);
1637 }
1638 
1639 /*
1640  * Reassess DTLs after a config change or scrub completion.
1641  */
1642 void
1643 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done)
1644 {
1645 	spa_t *spa = vd->vdev_spa;
1646 	avl_tree_t reftree;
1647 	int minref;
1648 
1649 	ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0);
1650 
1651 	for (int c = 0; c < vd->vdev_children; c++)
1652 		vdev_dtl_reassess(vd->vdev_child[c], txg,
1653 		    scrub_txg, scrub_done);
1654 
1655 	if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux)
1656 		return;
1657 
1658 	if (vd->vdev_ops->vdev_op_leaf) {
1659 		dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
1660 
1661 		mutex_enter(&vd->vdev_dtl_lock);
1662 		if (scrub_txg != 0 &&
1663 		    (spa->spa_scrub_started ||
1664 		    (scn && scn->scn_phys.scn_errors == 0))) {
1665 			/*
1666 			 * We completed a scrub up to scrub_txg.  If we
1667 			 * did it without rebooting, then the scrub dtl
1668 			 * will be valid, so excise the old region and
1669 			 * fold in the scrub dtl.  Otherwise, leave the
1670 			 * dtl as-is if there was an error.
1671 			 *
1672 			 * There's little trick here: to excise the beginning
1673 			 * of the DTL_MISSING map, we put it into a reference
1674 			 * tree and then add a segment with refcnt -1 that
1675 			 * covers the range [0, scrub_txg).  This means
1676 			 * that each txg in that range has refcnt -1 or 0.
1677 			 * We then add DTL_SCRUB with a refcnt of 2, so that
1678 			 * entries in the range [0, scrub_txg) will have a
1679 			 * positive refcnt -- either 1 or 2.  We then convert
1680 			 * the reference tree into the new DTL_MISSING map.
1681 			 */
1682 			space_map_ref_create(&reftree);
1683 			space_map_ref_add_map(&reftree,
1684 			    &vd->vdev_dtl[DTL_MISSING], 1);
1685 			space_map_ref_add_seg(&reftree, 0, scrub_txg, -1);
1686 			space_map_ref_add_map(&reftree,
1687 			    &vd->vdev_dtl[DTL_SCRUB], 2);
1688 			space_map_ref_generate_map(&reftree,
1689 			    &vd->vdev_dtl[DTL_MISSING], 1);
1690 			space_map_ref_destroy(&reftree);
1691 		}
1692 		space_map_vacate(&vd->vdev_dtl[DTL_PARTIAL], NULL, NULL);
1693 		space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1694 		    space_map_add, &vd->vdev_dtl[DTL_PARTIAL]);
1695 		if (scrub_done)
1696 			space_map_vacate(&vd->vdev_dtl[DTL_SCRUB], NULL, NULL);
1697 		space_map_vacate(&vd->vdev_dtl[DTL_OUTAGE], NULL, NULL);
1698 		if (!vdev_readable(vd))
1699 			space_map_add(&vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL);
1700 		else
1701 			space_map_walk(&vd->vdev_dtl[DTL_MISSING],
1702 			    space_map_add, &vd->vdev_dtl[DTL_OUTAGE]);
1703 		mutex_exit(&vd->vdev_dtl_lock);
1704 
1705 		if (txg != 0)
1706 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg);
1707 		return;
1708 	}
1709 
1710 	mutex_enter(&vd->vdev_dtl_lock);
1711 	for (int t = 0; t < DTL_TYPES; t++) {
1712 		/* account for child's outage in parent's missing map */
1713 		int s = (t == DTL_MISSING) ? DTL_OUTAGE: t;
1714 		if (t == DTL_SCRUB)
1715 			continue;			/* leaf vdevs only */
1716 		if (t == DTL_PARTIAL)
1717 			minref = 1;			/* i.e. non-zero */
1718 		else if (vd->vdev_nparity != 0)
1719 			minref = vd->vdev_nparity + 1;	/* RAID-Z */
1720 		else
1721 			minref = vd->vdev_children;	/* any kind of mirror */
1722 		space_map_ref_create(&reftree);
1723 		for (int c = 0; c < vd->vdev_children; c++) {
1724 			vdev_t *cvd = vd->vdev_child[c];
1725 			mutex_enter(&cvd->vdev_dtl_lock);
1726 			space_map_ref_add_map(&reftree, &cvd->vdev_dtl[s], 1);
1727 			mutex_exit(&cvd->vdev_dtl_lock);
1728 		}
1729 		space_map_ref_generate_map(&reftree, &vd->vdev_dtl[t], minref);
1730 		space_map_ref_destroy(&reftree);
1731 	}
1732 	mutex_exit(&vd->vdev_dtl_lock);
1733 }
1734 
1735 static int
1736 vdev_dtl_load(vdev_t *vd)
1737 {
1738 	spa_t *spa = vd->vdev_spa;
1739 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1740 	objset_t *mos = spa->spa_meta_objset;
1741 	dmu_buf_t *db;
1742 	int error;
1743 
1744 	ASSERT(vd->vdev_children == 0);
1745 
1746 	if (smo->smo_object == 0)
1747 		return (0);
1748 
1749 	ASSERT(!vd->vdev_ishole);
1750 
1751 	if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0)
1752 		return (error);
1753 
1754 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1755 	bcopy(db->db_data, smo, sizeof (*smo));
1756 	dmu_buf_rele(db, FTAG);
1757 
1758 	mutex_enter(&vd->vdev_dtl_lock);
1759 	error = space_map_load(&vd->vdev_dtl[DTL_MISSING],
1760 	    NULL, SM_ALLOC, smo, mos);
1761 	mutex_exit(&vd->vdev_dtl_lock);
1762 
1763 	return (error);
1764 }
1765 
1766 void
1767 vdev_dtl_sync(vdev_t *vd, uint64_t txg)
1768 {
1769 	spa_t *spa = vd->vdev_spa;
1770 	space_map_obj_t *smo = &vd->vdev_dtl_smo;
1771 	space_map_t *sm = &vd->vdev_dtl[DTL_MISSING];
1772 	objset_t *mos = spa->spa_meta_objset;
1773 	space_map_t smsync;
1774 	kmutex_t smlock;
1775 	dmu_buf_t *db;
1776 	dmu_tx_t *tx;
1777 
1778 	ASSERT(!vd->vdev_ishole);
1779 
1780 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
1781 
1782 	if (vd->vdev_detached) {
1783 		if (smo->smo_object != 0) {
1784 			int err = dmu_object_free(mos, smo->smo_object, tx);
1785 			ASSERT3U(err, ==, 0);
1786 			smo->smo_object = 0;
1787 		}
1788 		dmu_tx_commit(tx);
1789 		return;
1790 	}
1791 
1792 	if (smo->smo_object == 0) {
1793 		ASSERT(smo->smo_objsize == 0);
1794 		ASSERT(smo->smo_alloc == 0);
1795 		smo->smo_object = dmu_object_alloc(mos,
1796 		    DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT,
1797 		    DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx);
1798 		ASSERT(smo->smo_object != 0);
1799 		vdev_config_dirty(vd->vdev_top);
1800 	}
1801 
1802 	mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL);
1803 
1804 	space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift,
1805 	    &smlock);
1806 
1807 	mutex_enter(&smlock);
1808 
1809 	mutex_enter(&vd->vdev_dtl_lock);
1810 	space_map_walk(sm, space_map_add, &smsync);
1811 	mutex_exit(&vd->vdev_dtl_lock);
1812 
1813 	space_map_truncate(smo, mos, tx);
1814 	space_map_sync(&smsync, SM_ALLOC, smo, mos, tx);
1815 
1816 	space_map_destroy(&smsync);
1817 
1818 	mutex_exit(&smlock);
1819 	mutex_destroy(&smlock);
1820 
1821 	VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db));
1822 	dmu_buf_will_dirty(db, tx);
1823 	ASSERT3U(db->db_size, >=, sizeof (*smo));
1824 	bcopy(smo, db->db_data, sizeof (*smo));
1825 	dmu_buf_rele(db, FTAG);
1826 
1827 	dmu_tx_commit(tx);
1828 }
1829 
1830 /*
1831  * Determine whether the specified vdev can be offlined/detached/removed
1832  * without losing data.
1833  */
1834 boolean_t
1835 vdev_dtl_required(vdev_t *vd)
1836 {
1837 	spa_t *spa = vd->vdev_spa;
1838 	vdev_t *tvd = vd->vdev_top;
1839 	uint8_t cant_read = vd->vdev_cant_read;
1840 	boolean_t required;
1841 
1842 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
1843 
1844 	if (vd == spa->spa_root_vdev || vd == tvd)
1845 		return (B_TRUE);
1846 
1847 	/*
1848 	 * Temporarily mark the device as unreadable, and then determine
1849 	 * whether this results in any DTL outages in the top-level vdev.
1850 	 * If not, we can safely offline/detach/remove the device.
1851 	 */
1852 	vd->vdev_cant_read = B_TRUE;
1853 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1854 	required = !vdev_dtl_empty(tvd, DTL_OUTAGE);
1855 	vd->vdev_cant_read = cant_read;
1856 	vdev_dtl_reassess(tvd, 0, 0, B_FALSE);
1857 
1858 	return (required);
1859 }
1860 
1861 /*
1862  * Determine if resilver is needed, and if so the txg range.
1863  */
1864 boolean_t
1865 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp)
1866 {
1867 	boolean_t needed = B_FALSE;
1868 	uint64_t thismin = UINT64_MAX;
1869 	uint64_t thismax = 0;
1870 
1871 	if (vd->vdev_children == 0) {
1872 		mutex_enter(&vd->vdev_dtl_lock);
1873 		if (vd->vdev_dtl[DTL_MISSING].sm_space != 0 &&
1874 		    vdev_writeable(vd)) {
1875 			space_seg_t *ss;
1876 
1877 			ss = avl_first(&vd->vdev_dtl[DTL_MISSING].sm_root);
1878 			thismin = ss->ss_start - 1;
1879 			ss = avl_last(&vd->vdev_dtl[DTL_MISSING].sm_root);
1880 			thismax = ss->ss_end;
1881 			needed = B_TRUE;
1882 		}
1883 		mutex_exit(&vd->vdev_dtl_lock);
1884 	} else {
1885 		for (int c = 0; c < vd->vdev_children; c++) {
1886 			vdev_t *cvd = vd->vdev_child[c];
1887 			uint64_t cmin, cmax;
1888 
1889 			if (vdev_resilver_needed(cvd, &cmin, &cmax)) {
1890 				thismin = MIN(thismin, cmin);
1891 				thismax = MAX(thismax, cmax);
1892 				needed = B_TRUE;
1893 			}
1894 		}
1895 	}
1896 
1897 	if (needed && minp) {
1898 		*minp = thismin;
1899 		*maxp = thismax;
1900 	}
1901 	return (needed);
1902 }
1903 
1904 void
1905 vdev_load(vdev_t *vd)
1906 {
1907 	/*
1908 	 * Recursively load all children.
1909 	 */
1910 	for (int c = 0; c < vd->vdev_children; c++)
1911 		vdev_load(vd->vdev_child[c]);
1912 
1913 	/*
1914 	 * If this is a top-level vdev, initialize its metaslabs.
1915 	 */
1916 	if (vd == vd->vdev_top && !vd->vdev_ishole &&
1917 	    (vd->vdev_ashift == 0 || vd->vdev_asize == 0 ||
1918 	    vdev_metaslab_init(vd, 0) != 0))
1919 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1920 		    VDEV_AUX_CORRUPT_DATA);
1921 
1922 	/*
1923 	 * If this is a leaf vdev, load its DTL.
1924 	 */
1925 	if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0)
1926 		vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN,
1927 		    VDEV_AUX_CORRUPT_DATA);
1928 }
1929 
1930 /*
1931  * The special vdev case is used for hot spares and l2cache devices.  Its
1932  * sole purpose it to set the vdev state for the associated vdev.  To do this,
1933  * we make sure that we can open the underlying device, then try to read the
1934  * label, and make sure that the label is sane and that it hasn't been
1935  * repurposed to another pool.
1936  */
1937 int
1938 vdev_validate_aux(vdev_t *vd)
1939 {
1940 	nvlist_t *label;
1941 	uint64_t guid, version;
1942 	uint64_t state;
1943 
1944 	if (!vdev_readable(vd))
1945 		return (0);
1946 
1947 	if ((label = vdev_label_read_config(vd)) == NULL) {
1948 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1949 		    VDEV_AUX_CORRUPT_DATA);
1950 		return (-1);
1951 	}
1952 
1953 	if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 ||
1954 	    version > SPA_VERSION ||
1955 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 ||
1956 	    guid != vd->vdev_guid ||
1957 	    nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) {
1958 		vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN,
1959 		    VDEV_AUX_CORRUPT_DATA);
1960 		nvlist_free(label);
1961 		return (-1);
1962 	}
1963 
1964 	/*
1965 	 * We don't actually check the pool state here.  If it's in fact in
1966 	 * use by another pool, we update this fact on the fly when requested.
1967 	 */
1968 	nvlist_free(label);
1969 	return (0);
1970 }
1971 
1972 void
1973 vdev_remove(vdev_t *vd, uint64_t txg)
1974 {
1975 	spa_t *spa = vd->vdev_spa;
1976 	objset_t *mos = spa->spa_meta_objset;
1977 	dmu_tx_t *tx;
1978 
1979 	tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
1980 
1981 	if (vd->vdev_dtl_smo.smo_object) {
1982 		ASSERT3U(vd->vdev_dtl_smo.smo_alloc, ==, 0);
1983 		(void) dmu_object_free(mos, vd->vdev_dtl_smo.smo_object, tx);
1984 		vd->vdev_dtl_smo.smo_object = 0;
1985 	}
1986 
1987 	if (vd->vdev_ms != NULL) {
1988 		for (int m = 0; m < vd->vdev_ms_count; m++) {
1989 			metaslab_t *msp = vd->vdev_ms[m];
1990 
1991 			if (msp == NULL || msp->ms_smo.smo_object == 0)
1992 				continue;
1993 
1994 			ASSERT3U(msp->ms_smo.smo_alloc, ==, 0);
1995 			(void) dmu_object_free(mos, msp->ms_smo.smo_object, tx);
1996 			msp->ms_smo.smo_object = 0;
1997 		}
1998 	}
1999 
2000 	if (vd->vdev_ms_array) {
2001 		(void) dmu_object_free(mos, vd->vdev_ms_array, tx);
2002 		vd->vdev_ms_array = 0;
2003 		vd->vdev_ms_shift = 0;
2004 	}
2005 	dmu_tx_commit(tx);
2006 }
2007 
2008 void
2009 vdev_sync_done(vdev_t *vd, uint64_t txg)
2010 {
2011 	metaslab_t *msp;
2012 	boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg));
2013 
2014 	ASSERT(!vd->vdev_ishole);
2015 
2016 	while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg)))
2017 		metaslab_sync_done(msp, txg);
2018 
2019 	if (reassess)
2020 		metaslab_sync_reassess(vd->vdev_mg);
2021 }
2022 
2023 void
2024 vdev_sync(vdev_t *vd, uint64_t txg)
2025 {
2026 	spa_t *spa = vd->vdev_spa;
2027 	vdev_t *lvd;
2028 	metaslab_t *msp;
2029 	dmu_tx_t *tx;
2030 
2031 	ASSERT(!vd->vdev_ishole);
2032 
2033 	if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) {
2034 		ASSERT(vd == vd->vdev_top);
2035 		tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2036 		vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset,
2037 		    DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx);
2038 		ASSERT(vd->vdev_ms_array != 0);
2039 		vdev_config_dirty(vd);
2040 		dmu_tx_commit(tx);
2041 	}
2042 
2043 	/*
2044 	 * Remove the metadata associated with this vdev once it's empty.
2045 	 */
2046 	if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing)
2047 		vdev_remove(vd, txg);
2048 
2049 	while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) {
2050 		metaslab_sync(msp, txg);
2051 		(void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg));
2052 	}
2053 
2054 	while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL)
2055 		vdev_dtl_sync(lvd, txg);
2056 
2057 	(void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg));
2058 }
2059 
2060 uint64_t
2061 vdev_psize_to_asize(vdev_t *vd, uint64_t psize)
2062 {
2063 	return (vd->vdev_ops->vdev_op_asize(vd, psize));
2064 }
2065 
2066 /*
2067  * Mark the given vdev faulted.  A faulted vdev behaves as if the device could
2068  * not be opened, and no I/O is attempted.
2069  */
2070 int
2071 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2072 {
2073 	vdev_t *vd;
2074 
2075 	spa_vdev_state_enter(spa, SCL_NONE);
2076 
2077 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2078 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2079 
2080 	if (!vd->vdev_ops->vdev_op_leaf)
2081 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2082 
2083 	/*
2084 	 * We don't directly use the aux state here, but if we do a
2085 	 * vdev_reopen(), we need this value to be present to remember why we
2086 	 * were faulted.
2087 	 */
2088 	vd->vdev_label_aux = aux;
2089 
2090 	/*
2091 	 * Faulted state takes precedence over degraded.
2092 	 */
2093 	vd->vdev_delayed_close = B_FALSE;
2094 	vd->vdev_faulted = 1ULL;
2095 	vd->vdev_degraded = 0ULL;
2096 	vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux);
2097 
2098 	/*
2099 	 * If this device has the only valid copy of the data, then
2100 	 * back off and simply mark the vdev as degraded instead.
2101 	 */
2102 	if (!vd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) {
2103 		vd->vdev_degraded = 1ULL;
2104 		vd->vdev_faulted = 0ULL;
2105 
2106 		/*
2107 		 * If we reopen the device and it's not dead, only then do we
2108 		 * mark it degraded.
2109 		 */
2110 		vdev_reopen(vd);
2111 
2112 		if (vdev_readable(vd))
2113 			vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux);
2114 	}
2115 
2116 	return (spa_vdev_state_exit(spa, vd, 0));
2117 }
2118 
2119 /*
2120  * Mark the given vdev degraded.  A degraded vdev is purely an indication to the
2121  * user that something is wrong.  The vdev continues to operate as normal as far
2122  * as I/O is concerned.
2123  */
2124 int
2125 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux)
2126 {
2127 	vdev_t *vd;
2128 
2129 	spa_vdev_state_enter(spa, SCL_NONE);
2130 
2131 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2132 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2133 
2134 	if (!vd->vdev_ops->vdev_op_leaf)
2135 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2136 
2137 	/*
2138 	 * If the vdev is already faulted, then don't do anything.
2139 	 */
2140 	if (vd->vdev_faulted || vd->vdev_degraded)
2141 		return (spa_vdev_state_exit(spa, NULL, 0));
2142 
2143 	vd->vdev_degraded = 1ULL;
2144 	if (!vdev_is_dead(vd))
2145 		vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED,
2146 		    aux);
2147 
2148 	return (spa_vdev_state_exit(spa, vd, 0));
2149 }
2150 
2151 /*
2152  * Online the given vdev.  If 'unspare' is set, it implies two things.  First,
2153  * any attached spare device should be detached when the device finishes
2154  * resilvering.  Second, the online should be treated like a 'test' online case,
2155  * so no FMA events are generated if the device fails to open.
2156  */
2157 int
2158 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate)
2159 {
2160 	vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev;
2161 
2162 	spa_vdev_state_enter(spa, SCL_NONE);
2163 
2164 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2165 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2166 
2167 	if (!vd->vdev_ops->vdev_op_leaf)
2168 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2169 
2170 	tvd = vd->vdev_top;
2171 	vd->vdev_offline = B_FALSE;
2172 	vd->vdev_tmpoffline = B_FALSE;
2173 	vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE);
2174 	vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT);
2175 
2176 	/* XXX - L2ARC 1.0 does not support expansion */
2177 	if (!vd->vdev_aux) {
2178 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2179 			pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND);
2180 	}
2181 
2182 	vdev_reopen(tvd);
2183 	vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE;
2184 
2185 	if (!vd->vdev_aux) {
2186 		for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2187 			pvd->vdev_expanding = B_FALSE;
2188 	}
2189 
2190 	if (newstate)
2191 		*newstate = vd->vdev_state;
2192 	if ((flags & ZFS_ONLINE_UNSPARE) &&
2193 	    !vdev_is_dead(vd) && vd->vdev_parent &&
2194 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2195 	    vd->vdev_parent->vdev_child[0] == vd)
2196 		vd->vdev_unspare = B_TRUE;
2197 
2198 	if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) {
2199 
2200 		/* XXX - L2ARC 1.0 does not support expansion */
2201 		if (vd->vdev_aux)
2202 			return (spa_vdev_state_exit(spa, vd, ENOTSUP));
2203 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2204 	}
2205 	return (spa_vdev_state_exit(spa, vd, 0));
2206 }
2207 
2208 static int
2209 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags)
2210 {
2211 	vdev_t *vd, *tvd;
2212 	int error = 0;
2213 	uint64_t generation;
2214 	metaslab_group_t *mg;
2215 
2216 top:
2217 	spa_vdev_state_enter(spa, SCL_ALLOC);
2218 
2219 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
2220 		return (spa_vdev_state_exit(spa, NULL, ENODEV));
2221 
2222 	if (!vd->vdev_ops->vdev_op_leaf)
2223 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
2224 
2225 	tvd = vd->vdev_top;
2226 	mg = tvd->vdev_mg;
2227 	generation = spa->spa_config_generation + 1;
2228 
2229 	/*
2230 	 * If the device isn't already offline, try to offline it.
2231 	 */
2232 	if (!vd->vdev_offline) {
2233 		/*
2234 		 * If this device has the only valid copy of some data,
2235 		 * don't allow it to be offlined. Log devices are always
2236 		 * expendable.
2237 		 */
2238 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2239 		    vdev_dtl_required(vd))
2240 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2241 
2242 		/*
2243 		 * If the top-level is a slog and it has had allocations
2244 		 * then proceed.  We check that the vdev's metaslab group
2245 		 * is not NULL since it's possible that we may have just
2246 		 * added this vdev but not yet initialized its metaslabs.
2247 		 */
2248 		if (tvd->vdev_islog && mg != NULL) {
2249 			/*
2250 			 * Prevent any future allocations.
2251 			 */
2252 			metaslab_group_passivate(mg);
2253 			(void) spa_vdev_state_exit(spa, vd, 0);
2254 
2255 			error = spa_offline_log(spa);
2256 
2257 			spa_vdev_state_enter(spa, SCL_ALLOC);
2258 
2259 			/*
2260 			 * Check to see if the config has changed.
2261 			 */
2262 			if (error || generation != spa->spa_config_generation) {
2263 				metaslab_group_activate(mg);
2264 				if (error)
2265 					return (spa_vdev_state_exit(spa,
2266 					    vd, error));
2267 				(void) spa_vdev_state_exit(spa, vd, 0);
2268 				goto top;
2269 			}
2270 			ASSERT3U(tvd->vdev_stat.vs_alloc, ==, 0);
2271 		}
2272 
2273 		/*
2274 		 * Offline this device and reopen its top-level vdev.
2275 		 * If the top-level vdev is a log device then just offline
2276 		 * it. Otherwise, if this action results in the top-level
2277 		 * vdev becoming unusable, undo it and fail the request.
2278 		 */
2279 		vd->vdev_offline = B_TRUE;
2280 		vdev_reopen(tvd);
2281 
2282 		if (!tvd->vdev_islog && vd->vdev_aux == NULL &&
2283 		    vdev_is_dead(tvd)) {
2284 			vd->vdev_offline = B_FALSE;
2285 			vdev_reopen(tvd);
2286 			return (spa_vdev_state_exit(spa, NULL, EBUSY));
2287 		}
2288 
2289 		/*
2290 		 * Add the device back into the metaslab rotor so that
2291 		 * once we online the device it's open for business.
2292 		 */
2293 		if (tvd->vdev_islog && mg != NULL)
2294 			metaslab_group_activate(mg);
2295 	}
2296 
2297 	vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY);
2298 
2299 	return (spa_vdev_state_exit(spa, vd, 0));
2300 }
2301 
2302 int
2303 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags)
2304 {
2305 	int error;
2306 
2307 	mutex_enter(&spa->spa_vdev_top_lock);
2308 	error = vdev_offline_locked(spa, guid, flags);
2309 	mutex_exit(&spa->spa_vdev_top_lock);
2310 
2311 	return (error);
2312 }
2313 
2314 /*
2315  * Clear the error counts associated with this vdev.  Unlike vdev_online() and
2316  * vdev_offline(), we assume the spa config is locked.  We also clear all
2317  * children.  If 'vd' is NULL, then the user wants to clear all vdevs.
2318  */
2319 void
2320 vdev_clear(spa_t *spa, vdev_t *vd)
2321 {
2322 	vdev_t *rvd = spa->spa_root_vdev;
2323 
2324 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
2325 
2326 	if (vd == NULL)
2327 		vd = rvd;
2328 
2329 	vd->vdev_stat.vs_read_errors = 0;
2330 	vd->vdev_stat.vs_write_errors = 0;
2331 	vd->vdev_stat.vs_checksum_errors = 0;
2332 
2333 	for (int c = 0; c < vd->vdev_children; c++)
2334 		vdev_clear(spa, vd->vdev_child[c]);
2335 
2336 	/*
2337 	 * If we're in the FAULTED state or have experienced failed I/O, then
2338 	 * clear the persistent state and attempt to reopen the device.  We
2339 	 * also mark the vdev config dirty, so that the new faulted state is
2340 	 * written out to disk.
2341 	 */
2342 	if (vd->vdev_faulted || vd->vdev_degraded ||
2343 	    !vdev_readable(vd) || !vdev_writeable(vd)) {
2344 
2345 		/*
2346 		 * When reopening in reponse to a clear event, it may be due to
2347 		 * a fmadm repair request.  In this case, if the device is
2348 		 * still broken, we want to still post the ereport again.
2349 		 */
2350 		vd->vdev_forcefault = B_TRUE;
2351 
2352 		vd->vdev_faulted = vd->vdev_degraded = 0;
2353 		vd->vdev_cant_read = B_FALSE;
2354 		vd->vdev_cant_write = B_FALSE;
2355 
2356 		vdev_reopen(vd);
2357 
2358 		vd->vdev_forcefault = B_FALSE;
2359 
2360 		if (vd != rvd)
2361 			vdev_state_dirty(vd->vdev_top);
2362 
2363 		if (vd->vdev_aux == NULL && !vdev_is_dead(vd))
2364 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2365 
2366 		spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR);
2367 	}
2368 
2369 	/*
2370 	 * When clearing a FMA-diagnosed fault, we always want to
2371 	 * unspare the device, as we assume that the original spare was
2372 	 * done in response to the FMA fault.
2373 	 */
2374 	if (!vdev_is_dead(vd) && vd->vdev_parent != NULL &&
2375 	    vd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2376 	    vd->vdev_parent->vdev_child[0] == vd)
2377 		vd->vdev_unspare = B_TRUE;
2378 }
2379 
2380 boolean_t
2381 vdev_is_dead(vdev_t *vd)
2382 {
2383 	/*
2384 	 * Holes and missing devices are always considered "dead".
2385 	 * This simplifies the code since we don't have to check for
2386 	 * these types of devices in the various code paths.
2387 	 * Instead we rely on the fact that we skip over dead devices
2388 	 * before issuing I/O to them.
2389 	 */
2390 	return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole ||
2391 	    vd->vdev_ops == &vdev_missing_ops);
2392 }
2393 
2394 boolean_t
2395 vdev_readable(vdev_t *vd)
2396 {
2397 	return (!vdev_is_dead(vd) && !vd->vdev_cant_read);
2398 }
2399 
2400 boolean_t
2401 vdev_writeable(vdev_t *vd)
2402 {
2403 	return (!vdev_is_dead(vd) && !vd->vdev_cant_write);
2404 }
2405 
2406 boolean_t
2407 vdev_allocatable(vdev_t *vd)
2408 {
2409 	uint64_t state = vd->vdev_state;
2410 
2411 	/*
2412 	 * We currently allow allocations from vdevs which may be in the
2413 	 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device
2414 	 * fails to reopen then we'll catch it later when we're holding
2415 	 * the proper locks.  Note that we have to get the vdev state
2416 	 * in a local variable because although it changes atomically,
2417 	 * we're asking two separate questions about it.
2418 	 */
2419 	return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) &&
2420 	    !vd->vdev_cant_write && !vd->vdev_ishole);
2421 }
2422 
2423 boolean_t
2424 vdev_accessible(vdev_t *vd, zio_t *zio)
2425 {
2426 	ASSERT(zio->io_vd == vd);
2427 
2428 	if (vdev_is_dead(vd) || vd->vdev_remove_wanted)
2429 		return (B_FALSE);
2430 
2431 	if (zio->io_type == ZIO_TYPE_READ)
2432 		return (!vd->vdev_cant_read);
2433 
2434 	if (zio->io_type == ZIO_TYPE_WRITE)
2435 		return (!vd->vdev_cant_write);
2436 
2437 	return (B_TRUE);
2438 }
2439 
2440 /*
2441  * Get statistics for the given vdev.
2442  */
2443 void
2444 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs)
2445 {
2446 	vdev_t *rvd = vd->vdev_spa->spa_root_vdev;
2447 
2448 	mutex_enter(&vd->vdev_stat_lock);
2449 	bcopy(&vd->vdev_stat, vs, sizeof (*vs));
2450 	vs->vs_timestamp = gethrtime() - vs->vs_timestamp;
2451 	vs->vs_state = vd->vdev_state;
2452 	vs->vs_rsize = vdev_get_min_asize(vd);
2453 	if (vd->vdev_ops->vdev_op_leaf)
2454 		vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE;
2455 	mutex_exit(&vd->vdev_stat_lock);
2456 
2457 	/*
2458 	 * If we're getting stats on the root vdev, aggregate the I/O counts
2459 	 * over all top-level vdevs (i.e. the direct children of the root).
2460 	 */
2461 	if (vd == rvd) {
2462 		for (int c = 0; c < rvd->vdev_children; c++) {
2463 			vdev_t *cvd = rvd->vdev_child[c];
2464 			vdev_stat_t *cvs = &cvd->vdev_stat;
2465 
2466 			mutex_enter(&vd->vdev_stat_lock);
2467 			for (int t = 0; t < ZIO_TYPES; t++) {
2468 				vs->vs_ops[t] += cvs->vs_ops[t];
2469 				vs->vs_bytes[t] += cvs->vs_bytes[t];
2470 			}
2471 			cvs->vs_scan_removing = cvd->vdev_removing;
2472 			mutex_exit(&vd->vdev_stat_lock);
2473 		}
2474 	}
2475 }
2476 
2477 void
2478 vdev_clear_stats(vdev_t *vd)
2479 {
2480 	mutex_enter(&vd->vdev_stat_lock);
2481 	vd->vdev_stat.vs_space = 0;
2482 	vd->vdev_stat.vs_dspace = 0;
2483 	vd->vdev_stat.vs_alloc = 0;
2484 	mutex_exit(&vd->vdev_stat_lock);
2485 }
2486 
2487 void
2488 vdev_scan_stat_init(vdev_t *vd)
2489 {
2490 	vdev_stat_t *vs = &vd->vdev_stat;
2491 
2492 	for (int c = 0; c < vd->vdev_children; c++)
2493 		vdev_scan_stat_init(vd->vdev_child[c]);
2494 
2495 	mutex_enter(&vd->vdev_stat_lock);
2496 	vs->vs_scan_processed = 0;
2497 	mutex_exit(&vd->vdev_stat_lock);
2498 }
2499 
2500 void
2501 vdev_stat_update(zio_t *zio, uint64_t psize)
2502 {
2503 	spa_t *spa = zio->io_spa;
2504 	vdev_t *rvd = spa->spa_root_vdev;
2505 	vdev_t *vd = zio->io_vd ? zio->io_vd : rvd;
2506 	vdev_t *pvd;
2507 	uint64_t txg = zio->io_txg;
2508 	vdev_stat_t *vs = &vd->vdev_stat;
2509 	zio_type_t type = zio->io_type;
2510 	int flags = zio->io_flags;
2511 
2512 	/*
2513 	 * If this i/o is a gang leader, it didn't do any actual work.
2514 	 */
2515 	if (zio->io_gang_tree)
2516 		return;
2517 
2518 	if (zio->io_error == 0) {
2519 		/*
2520 		 * If this is a root i/o, don't count it -- we've already
2521 		 * counted the top-level vdevs, and vdev_get_stats() will
2522 		 * aggregate them when asked.  This reduces contention on
2523 		 * the root vdev_stat_lock and implicitly handles blocks
2524 		 * that compress away to holes, for which there is no i/o.
2525 		 * (Holes never create vdev children, so all the counters
2526 		 * remain zero, which is what we want.)
2527 		 *
2528 		 * Note: this only applies to successful i/o (io_error == 0)
2529 		 * because unlike i/o counts, errors are not additive.
2530 		 * When reading a ditto block, for example, failure of
2531 		 * one top-level vdev does not imply a root-level error.
2532 		 */
2533 		if (vd == rvd)
2534 			return;
2535 
2536 		ASSERT(vd == zio->io_vd);
2537 
2538 		if (flags & ZIO_FLAG_IO_BYPASS)
2539 			return;
2540 
2541 		mutex_enter(&vd->vdev_stat_lock);
2542 
2543 		if (flags & ZIO_FLAG_IO_REPAIR) {
2544 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2545 				dsl_scan_phys_t *scn_phys =
2546 				    &spa->spa_dsl_pool->dp_scan->scn_phys;
2547 				uint64_t *processed = &scn_phys->scn_processed;
2548 
2549 				/* XXX cleanup? */
2550 				if (vd->vdev_ops->vdev_op_leaf)
2551 					atomic_add_64(processed, psize);
2552 				vs->vs_scan_processed += psize;
2553 			}
2554 
2555 			if (flags & ZIO_FLAG_SELF_HEAL)
2556 				vs->vs_self_healed += psize;
2557 		}
2558 
2559 		vs->vs_ops[type]++;
2560 		vs->vs_bytes[type] += psize;
2561 
2562 		mutex_exit(&vd->vdev_stat_lock);
2563 		return;
2564 	}
2565 
2566 	if (flags & ZIO_FLAG_SPECULATIVE)
2567 		return;
2568 
2569 	/*
2570 	 * If this is an I/O error that is going to be retried, then ignore the
2571 	 * error.  Otherwise, the user may interpret B_FAILFAST I/O errors as
2572 	 * hard errors, when in reality they can happen for any number of
2573 	 * innocuous reasons (bus resets, MPxIO link failure, etc).
2574 	 */
2575 	if (zio->io_error == EIO &&
2576 	    !(zio->io_flags & ZIO_FLAG_IO_RETRY))
2577 		return;
2578 
2579 	/*
2580 	 * Intent logs writes won't propagate their error to the root
2581 	 * I/O so don't mark these types of failures as pool-level
2582 	 * errors.
2583 	 */
2584 	if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
2585 		return;
2586 
2587 	mutex_enter(&vd->vdev_stat_lock);
2588 	if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) {
2589 		if (zio->io_error == ECKSUM)
2590 			vs->vs_checksum_errors++;
2591 		else
2592 			vs->vs_read_errors++;
2593 	}
2594 	if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd))
2595 		vs->vs_write_errors++;
2596 	mutex_exit(&vd->vdev_stat_lock);
2597 
2598 	if (type == ZIO_TYPE_WRITE && txg != 0 &&
2599 	    (!(flags & ZIO_FLAG_IO_REPAIR) ||
2600 	    (flags & ZIO_FLAG_SCRUB_THREAD) ||
2601 	    spa->spa_claiming)) {
2602 		/*
2603 		 * This is either a normal write (not a repair), or it's
2604 		 * a repair induced by the scrub thread, or it's a repair
2605 		 * made by zil_claim() during spa_load() in the first txg.
2606 		 * In the normal case, we commit the DTL change in the same
2607 		 * txg as the block was born.  In the scrub-induced repair
2608 		 * case, we know that scrubs run in first-pass syncing context,
2609 		 * so we commit the DTL change in spa_syncing_txg(spa).
2610 		 * In the zil_claim() case, we commit in spa_first_txg(spa).
2611 		 *
2612 		 * We currently do not make DTL entries for failed spontaneous
2613 		 * self-healing writes triggered by normal (non-scrubbing)
2614 		 * reads, because we have no transactional context in which to
2615 		 * do so -- and it's not clear that it'd be desirable anyway.
2616 		 */
2617 		if (vd->vdev_ops->vdev_op_leaf) {
2618 			uint64_t commit_txg = txg;
2619 			if (flags & ZIO_FLAG_SCRUB_THREAD) {
2620 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2621 				ASSERT(spa_sync_pass(spa) == 1);
2622 				vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1);
2623 				commit_txg = spa_syncing_txg(spa);
2624 			} else if (spa->spa_claiming) {
2625 				ASSERT(flags & ZIO_FLAG_IO_REPAIR);
2626 				commit_txg = spa_first_txg(spa);
2627 			}
2628 			ASSERT(commit_txg >= spa_syncing_txg(spa));
2629 			if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1))
2630 				return;
2631 			for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent)
2632 				vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1);
2633 			vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg);
2634 		}
2635 		if (vd != rvd)
2636 			vdev_dtl_dirty(vd, DTL_MISSING, txg, 1);
2637 	}
2638 }
2639 
2640 /*
2641  * Update the in-core space usage stats for this vdev, its metaslab class,
2642  * and the root vdev.
2643  */
2644 void
2645 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta,
2646     int64_t space_delta)
2647 {
2648 	int64_t dspace_delta = space_delta;
2649 	spa_t *spa = vd->vdev_spa;
2650 	vdev_t *rvd = spa->spa_root_vdev;
2651 	metaslab_group_t *mg = vd->vdev_mg;
2652 	metaslab_class_t *mc = mg ? mg->mg_class : NULL;
2653 
2654 	ASSERT(vd == vd->vdev_top);
2655 
2656 	/*
2657 	 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion
2658 	 * factor.  We must calculate this here and not at the root vdev
2659 	 * because the root vdev's psize-to-asize is simply the max of its
2660 	 * childrens', thus not accurate enough for us.
2661 	 */
2662 	ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0);
2663 	ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache);
2664 	dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) *
2665 	    vd->vdev_deflate_ratio;
2666 
2667 	mutex_enter(&vd->vdev_stat_lock);
2668 	vd->vdev_stat.vs_alloc += alloc_delta;
2669 	vd->vdev_stat.vs_space += space_delta;
2670 	vd->vdev_stat.vs_dspace += dspace_delta;
2671 	mutex_exit(&vd->vdev_stat_lock);
2672 
2673 	if (mc == spa_normal_class(spa)) {
2674 		mutex_enter(&rvd->vdev_stat_lock);
2675 		rvd->vdev_stat.vs_alloc += alloc_delta;
2676 		rvd->vdev_stat.vs_space += space_delta;
2677 		rvd->vdev_stat.vs_dspace += dspace_delta;
2678 		mutex_exit(&rvd->vdev_stat_lock);
2679 	}
2680 
2681 	if (mc != NULL) {
2682 		ASSERT(rvd == vd->vdev_parent);
2683 		ASSERT(vd->vdev_ms_count != 0);
2684 
2685 		metaslab_class_space_update(mc,
2686 		    alloc_delta, defer_delta, space_delta, dspace_delta);
2687 	}
2688 }
2689 
2690 /*
2691  * Mark a top-level vdev's config as dirty, placing it on the dirty list
2692  * so that it will be written out next time the vdev configuration is synced.
2693  * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs.
2694  */
2695 void
2696 vdev_config_dirty(vdev_t *vd)
2697 {
2698 	spa_t *spa = vd->vdev_spa;
2699 	vdev_t *rvd = spa->spa_root_vdev;
2700 	int c;
2701 
2702 	/*
2703 	 * If this is an aux vdev (as with l2cache and spare devices), then we
2704 	 * update the vdev config manually and set the sync flag.
2705 	 */
2706 	if (vd->vdev_aux != NULL) {
2707 		spa_aux_vdev_t *sav = vd->vdev_aux;
2708 		nvlist_t **aux;
2709 		uint_t naux;
2710 
2711 		for (c = 0; c < sav->sav_count; c++) {
2712 			if (sav->sav_vdevs[c] == vd)
2713 				break;
2714 		}
2715 
2716 		if (c == sav->sav_count) {
2717 			/*
2718 			 * We're being removed.  There's nothing more to do.
2719 			 */
2720 			ASSERT(sav->sav_sync == B_TRUE);
2721 			return;
2722 		}
2723 
2724 		sav->sav_sync = B_TRUE;
2725 
2726 		if (nvlist_lookup_nvlist_array(sav->sav_config,
2727 		    ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) {
2728 			VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
2729 			    ZPOOL_CONFIG_SPARES, &aux, &naux) == 0);
2730 		}
2731 
2732 		ASSERT(c < naux);
2733 
2734 		/*
2735 		 * Setting the nvlist in the middle if the array is a little
2736 		 * sketchy, but it will work.
2737 		 */
2738 		nvlist_free(aux[c]);
2739 		aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0);
2740 
2741 		return;
2742 	}
2743 
2744 	/*
2745 	 * The dirty list is protected by the SCL_CONFIG lock.  The caller
2746 	 * must either hold SCL_CONFIG as writer, or must be the sync thread
2747 	 * (which holds SCL_CONFIG as reader).  There's only one sync thread,
2748 	 * so this is sufficient to ensure mutual exclusion.
2749 	 */
2750 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2751 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2752 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2753 
2754 	if (vd == rvd) {
2755 		for (c = 0; c < rvd->vdev_children; c++)
2756 			vdev_config_dirty(rvd->vdev_child[c]);
2757 	} else {
2758 		ASSERT(vd == vd->vdev_top);
2759 
2760 		if (!list_link_active(&vd->vdev_config_dirty_node) &&
2761 		    !vd->vdev_ishole)
2762 			list_insert_head(&spa->spa_config_dirty_list, vd);
2763 	}
2764 }
2765 
2766 void
2767 vdev_config_clean(vdev_t *vd)
2768 {
2769 	spa_t *spa = vd->vdev_spa;
2770 
2771 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) ||
2772 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2773 	    spa_config_held(spa, SCL_CONFIG, RW_READER)));
2774 
2775 	ASSERT(list_link_active(&vd->vdev_config_dirty_node));
2776 	list_remove(&spa->spa_config_dirty_list, vd);
2777 }
2778 
2779 /*
2780  * Mark a top-level vdev's state as dirty, so that the next pass of
2781  * spa_sync() can convert this into vdev_config_dirty().  We distinguish
2782  * the state changes from larger config changes because they require
2783  * much less locking, and are often needed for administrative actions.
2784  */
2785 void
2786 vdev_state_dirty(vdev_t *vd)
2787 {
2788 	spa_t *spa = vd->vdev_spa;
2789 
2790 	ASSERT(vd == vd->vdev_top);
2791 
2792 	/*
2793 	 * The state list is protected by the SCL_STATE lock.  The caller
2794 	 * must either hold SCL_STATE as writer, or must be the sync thread
2795 	 * (which holds SCL_STATE as reader).  There's only one sync thread,
2796 	 * so this is sufficient to ensure mutual exclusion.
2797 	 */
2798 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2799 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2800 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2801 
2802 	if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole)
2803 		list_insert_head(&spa->spa_state_dirty_list, vd);
2804 }
2805 
2806 void
2807 vdev_state_clean(vdev_t *vd)
2808 {
2809 	spa_t *spa = vd->vdev_spa;
2810 
2811 	ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) ||
2812 	    (dsl_pool_sync_context(spa_get_dsl(spa)) &&
2813 	    spa_config_held(spa, SCL_STATE, RW_READER)));
2814 
2815 	ASSERT(list_link_active(&vd->vdev_state_dirty_node));
2816 	list_remove(&spa->spa_state_dirty_list, vd);
2817 }
2818 
2819 /*
2820  * Propagate vdev state up from children to parent.
2821  */
2822 void
2823 vdev_propagate_state(vdev_t *vd)
2824 {
2825 	spa_t *spa = vd->vdev_spa;
2826 	vdev_t *rvd = spa->spa_root_vdev;
2827 	int degraded = 0, faulted = 0;
2828 	int corrupted = 0;
2829 	vdev_t *child;
2830 
2831 	if (vd->vdev_children > 0) {
2832 		for (int c = 0; c < vd->vdev_children; c++) {
2833 			child = vd->vdev_child[c];
2834 
2835 			/*
2836 			 * Don't factor holes into the decision.
2837 			 */
2838 			if (child->vdev_ishole)
2839 				continue;
2840 
2841 			if (!vdev_readable(child) ||
2842 			    (!vdev_writeable(child) && spa_writeable(spa))) {
2843 				/*
2844 				 * Root special: if there is a top-level log
2845 				 * device, treat the root vdev as if it were
2846 				 * degraded.
2847 				 */
2848 				if (child->vdev_islog && vd == rvd)
2849 					degraded++;
2850 				else
2851 					faulted++;
2852 			} else if (child->vdev_state <= VDEV_STATE_DEGRADED) {
2853 				degraded++;
2854 			}
2855 
2856 			if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA)
2857 				corrupted++;
2858 		}
2859 
2860 		vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded);
2861 
2862 		/*
2863 		 * Root special: if there is a top-level vdev that cannot be
2864 		 * opened due to corrupted metadata, then propagate the root
2865 		 * vdev's aux state as 'corrupt' rather than 'insufficient
2866 		 * replicas'.
2867 		 */
2868 		if (corrupted && vd == rvd &&
2869 		    rvd->vdev_state == VDEV_STATE_CANT_OPEN)
2870 			vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN,
2871 			    VDEV_AUX_CORRUPT_DATA);
2872 	}
2873 
2874 	if (vd->vdev_parent)
2875 		vdev_propagate_state(vd->vdev_parent);
2876 }
2877 
2878 /*
2879  * Set a vdev's state.  If this is during an open, we don't update the parent
2880  * state, because we're in the process of opening children depth-first.
2881  * Otherwise, we propagate the change to the parent.
2882  *
2883  * If this routine places a device in a faulted state, an appropriate ereport is
2884  * generated.
2885  */
2886 void
2887 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux)
2888 {
2889 	uint64_t save_state;
2890 	spa_t *spa = vd->vdev_spa;
2891 
2892 	if (state == vd->vdev_state) {
2893 		vd->vdev_stat.vs_aux = aux;
2894 		return;
2895 	}
2896 
2897 	save_state = vd->vdev_state;
2898 
2899 	vd->vdev_state = state;
2900 	vd->vdev_stat.vs_aux = aux;
2901 
2902 	/*
2903 	 * If we are setting the vdev state to anything but an open state, then
2904 	 * always close the underlying device unless the device has requested
2905 	 * a delayed close (i.e. we're about to remove or fault the device).
2906 	 * Otherwise, we keep accessible but invalid devices open forever.
2907 	 * We don't call vdev_close() itself, because that implies some extra
2908 	 * checks (offline, etc) that we don't want here.  This is limited to
2909 	 * leaf devices, because otherwise closing the device will affect other
2910 	 * children.
2911 	 */
2912 	if (!vd->vdev_delayed_close && vdev_is_dead(vd) &&
2913 	    vd->vdev_ops->vdev_op_leaf)
2914 		vd->vdev_ops->vdev_op_close(vd);
2915 
2916 	/*
2917 	 * If we have brought this vdev back into service, we need
2918 	 * to notify fmd so that it can gracefully repair any outstanding
2919 	 * cases due to a missing device.  We do this in all cases, even those
2920 	 * that probably don't correlate to a repaired fault.  This is sure to
2921 	 * catch all cases, and we let the zfs-retire agent sort it out.  If
2922 	 * this is a transient state it's OK, as the retire agent will
2923 	 * double-check the state of the vdev before repairing it.
2924 	 */
2925 	if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf &&
2926 	    vd->vdev_prevstate != state)
2927 		zfs_post_state_change(spa, vd);
2928 
2929 	if (vd->vdev_removed &&
2930 	    state == VDEV_STATE_CANT_OPEN &&
2931 	    (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) {
2932 		/*
2933 		 * If the previous state is set to VDEV_STATE_REMOVED, then this
2934 		 * device was previously marked removed and someone attempted to
2935 		 * reopen it.  If this failed due to a nonexistent device, then
2936 		 * keep the device in the REMOVED state.  We also let this be if
2937 		 * it is one of our special test online cases, which is only
2938 		 * attempting to online the device and shouldn't generate an FMA
2939 		 * fault.
2940 		 */
2941 		vd->vdev_state = VDEV_STATE_REMOVED;
2942 		vd->vdev_stat.vs_aux = VDEV_AUX_NONE;
2943 	} else if (state == VDEV_STATE_REMOVED) {
2944 		vd->vdev_removed = B_TRUE;
2945 	} else if (state == VDEV_STATE_CANT_OPEN) {
2946 		/*
2947 		 * If we fail to open a vdev during an import, we mark it as
2948 		 * "not available", which signifies that it was never there to
2949 		 * begin with.  Failure to open such a device is not considered
2950 		 * an error.
2951 		 */
2952 		if (spa_load_state(spa) == SPA_LOAD_IMPORT &&
2953 		    vd->vdev_ops->vdev_op_leaf)
2954 			vd->vdev_not_present = 1;
2955 
2956 		/*
2957 		 * Post the appropriate ereport.  If the 'prevstate' field is
2958 		 * set to something other than VDEV_STATE_UNKNOWN, it indicates
2959 		 * that this is part of a vdev_reopen().  In this case, we don't
2960 		 * want to post the ereport if the device was already in the
2961 		 * CANT_OPEN state beforehand.
2962 		 *
2963 		 * If the 'checkremove' flag is set, then this is an attempt to
2964 		 * online the device in response to an insertion event.  If we
2965 		 * hit this case, then we have detected an insertion event for a
2966 		 * faulted or offline device that wasn't in the removed state.
2967 		 * In this scenario, we don't post an ereport because we are
2968 		 * about to replace the device, or attempt an online with
2969 		 * vdev_forcefault, which will generate the fault for us.
2970 		 */
2971 		if ((vd->vdev_prevstate != state || vd->vdev_forcefault) &&
2972 		    !vd->vdev_not_present && !vd->vdev_checkremove &&
2973 		    vd != spa->spa_root_vdev) {
2974 			const char *class;
2975 
2976 			switch (aux) {
2977 			case VDEV_AUX_OPEN_FAILED:
2978 				class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED;
2979 				break;
2980 			case VDEV_AUX_CORRUPT_DATA:
2981 				class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA;
2982 				break;
2983 			case VDEV_AUX_NO_REPLICAS:
2984 				class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS;
2985 				break;
2986 			case VDEV_AUX_BAD_GUID_SUM:
2987 				class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM;
2988 				break;
2989 			case VDEV_AUX_TOO_SMALL:
2990 				class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL;
2991 				break;
2992 			case VDEV_AUX_BAD_LABEL:
2993 				class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL;
2994 				break;
2995 			default:
2996 				class = FM_EREPORT_ZFS_DEVICE_UNKNOWN;
2997 			}
2998 
2999 			zfs_ereport_post(class, spa, vd, NULL, save_state, 0);
3000 		}
3001 
3002 		/* Erase any notion of persistent removed state */
3003 		vd->vdev_removed = B_FALSE;
3004 	} else {
3005 		vd->vdev_removed = B_FALSE;
3006 	}
3007 
3008 	if (!isopen && vd->vdev_parent)
3009 		vdev_propagate_state(vd->vdev_parent);
3010 }
3011 
3012 /*
3013  * Check the vdev configuration to ensure that it's capable of supporting
3014  * a root pool. Currently, we do not support RAID-Z or partial configuration.
3015  * In addition, only a single top-level vdev is allowed and none of the leaves
3016  * can be wholedisks.
3017  */
3018 boolean_t
3019 vdev_is_bootable(vdev_t *vd)
3020 {
3021 	if (!vd->vdev_ops->vdev_op_leaf) {
3022 		char *vdev_type = vd->vdev_ops->vdev_op_type;
3023 
3024 		if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 &&
3025 		    vd->vdev_children > 1) {
3026 			return (B_FALSE);
3027 		} else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 ||
3028 		    strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) {
3029 			return (B_FALSE);
3030 		}
3031 	} else if (vd->vdev_wholedisk == 1) {
3032 		return (B_FALSE);
3033 	}
3034 
3035 	for (int c = 0; c < vd->vdev_children; c++) {
3036 		if (!vdev_is_bootable(vd->vdev_child[c]))
3037 			return (B_FALSE);
3038 	}
3039 	return (B_TRUE);
3040 }
3041 
3042 /*
3043  * Load the state from the original vdev tree (ovd) which
3044  * we've retrieved from the MOS config object. If the original
3045  * vdev was offline then we transfer that state to the device
3046  * in the current vdev tree (nvd).
3047  */
3048 void
3049 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd)
3050 {
3051 	spa_t *spa = nvd->vdev_spa;
3052 
3053 	ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL);
3054 	ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid);
3055 
3056 	for (int c = 0; c < nvd->vdev_children; c++)
3057 		vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]);
3058 
3059 	if (nvd->vdev_ops->vdev_op_leaf && ovd->vdev_offline) {
3060 		/*
3061 		 * It would be nice to call vdev_offline()
3062 		 * directly but the pool isn't fully loaded and
3063 		 * the txg threads have not been started yet.
3064 		 */
3065 		nvd->vdev_offline = ovd->vdev_offline;
3066 		vdev_reopen(nvd->vdev_top);
3067 	}
3068 }
3069 
3070 /*
3071  * Expand a vdev if possible.
3072  */
3073 void
3074 vdev_expand(vdev_t *vd, uint64_t txg)
3075 {
3076 	ASSERT(vd->vdev_top == vd);
3077 	ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3078 
3079 	if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) {
3080 		VERIFY(vdev_metaslab_init(vd, txg) == 0);
3081 		vdev_config_dirty(vd);
3082 	}
3083 }
3084 
3085 /*
3086  * Split a vdev.
3087  */
3088 void
3089 vdev_split(vdev_t *vd)
3090 {
3091 	vdev_t *cvd, *pvd = vd->vdev_parent;
3092 
3093 	vdev_remove_child(pvd, vd);
3094 	vdev_compact_children(pvd);
3095 
3096 	cvd = pvd->vdev_child[0];
3097 	if (pvd->vdev_children == 1) {
3098 		vdev_remove_parent(cvd);
3099 		cvd->vdev_splitting = B_TRUE;
3100 	}
3101 	vdev_propagate_state(cvd);
3102 }
3103