1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/fm/fs/zfs.h> 31 #include <sys/spa.h> 32 #include <sys/spa_impl.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/vdev_impl.h> 36 #include <sys/uberblock_impl.h> 37 #include <sys/metaslab.h> 38 #include <sys/metaslab_impl.h> 39 #include <sys/space_map.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 44 /* 45 * Virtual device management. 46 */ 47 48 static vdev_ops_t *vdev_ops_table[] = { 49 &vdev_root_ops, 50 &vdev_raidz_ops, 51 &vdev_mirror_ops, 52 &vdev_replacing_ops, 53 &vdev_spare_ops, 54 &vdev_disk_ops, 55 &vdev_file_ops, 56 &vdev_missing_ops, 57 NULL 58 }; 59 60 /* 61 * Given a vdev type, return the appropriate ops vector. 62 */ 63 static vdev_ops_t * 64 vdev_getops(const char *type) 65 { 66 vdev_ops_t *ops, **opspp; 67 68 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 69 if (strcmp(ops->vdev_op_type, type) == 0) 70 break; 71 72 return (ops); 73 } 74 75 /* 76 * Default asize function: return the MAX of psize with the asize of 77 * all children. This is what's used by anything other than RAID-Z. 78 */ 79 uint64_t 80 vdev_default_asize(vdev_t *vd, uint64_t psize) 81 { 82 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 83 uint64_t csize; 84 uint64_t c; 85 86 for (c = 0; c < vd->vdev_children; c++) { 87 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 88 asize = MAX(asize, csize); 89 } 90 91 return (asize); 92 } 93 94 /* 95 * Get the replaceable or attachable device size. 96 * If the parent is a mirror or raidz, the replaceable size is the minimum 97 * psize of all its children. For the rest, just return our own psize. 98 * 99 * e.g. 100 * psize rsize 101 * root - - 102 * mirror/raidz - - 103 * disk1 20g 20g 104 * disk2 40g 20g 105 * disk3 80g 80g 106 */ 107 uint64_t 108 vdev_get_rsize(vdev_t *vd) 109 { 110 vdev_t *pvd, *cvd; 111 uint64_t c, rsize; 112 113 pvd = vd->vdev_parent; 114 115 /* 116 * If our parent is NULL or the root, just return our own psize. 117 */ 118 if (pvd == NULL || pvd->vdev_parent == NULL) 119 return (vd->vdev_psize); 120 121 rsize = 0; 122 123 for (c = 0; c < pvd->vdev_children; c++) { 124 cvd = pvd->vdev_child[c]; 125 rsize = MIN(rsize - 1, cvd->vdev_psize - 1) + 1; 126 } 127 128 return (rsize); 129 } 130 131 vdev_t * 132 vdev_lookup_top(spa_t *spa, uint64_t vdev) 133 { 134 vdev_t *rvd = spa->spa_root_vdev; 135 136 if (vdev < rvd->vdev_children) 137 return (rvd->vdev_child[vdev]); 138 139 return (NULL); 140 } 141 142 vdev_t * 143 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 144 { 145 int c; 146 vdev_t *mvd; 147 148 if (vd->vdev_guid == guid) 149 return (vd); 150 151 for (c = 0; c < vd->vdev_children; c++) 152 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 153 NULL) 154 return (mvd); 155 156 return (NULL); 157 } 158 159 void 160 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 161 { 162 size_t oldsize, newsize; 163 uint64_t id = cvd->vdev_id; 164 vdev_t **newchild; 165 166 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 167 ASSERT(cvd->vdev_parent == NULL); 168 169 cvd->vdev_parent = pvd; 170 171 if (pvd == NULL) 172 return; 173 174 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 175 176 oldsize = pvd->vdev_children * sizeof (vdev_t *); 177 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 178 newsize = pvd->vdev_children * sizeof (vdev_t *); 179 180 newchild = kmem_zalloc(newsize, KM_SLEEP); 181 if (pvd->vdev_child != NULL) { 182 bcopy(pvd->vdev_child, newchild, oldsize); 183 kmem_free(pvd->vdev_child, oldsize); 184 } 185 186 pvd->vdev_child = newchild; 187 pvd->vdev_child[id] = cvd; 188 189 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 190 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 191 192 /* 193 * Walk up all ancestors to update guid sum. 194 */ 195 for (; pvd != NULL; pvd = pvd->vdev_parent) 196 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 197 } 198 199 void 200 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 201 { 202 int c; 203 uint_t id = cvd->vdev_id; 204 205 ASSERT(cvd->vdev_parent == pvd); 206 207 if (pvd == NULL) 208 return; 209 210 ASSERT(id < pvd->vdev_children); 211 ASSERT(pvd->vdev_child[id] == cvd); 212 213 pvd->vdev_child[id] = NULL; 214 cvd->vdev_parent = NULL; 215 216 for (c = 0; c < pvd->vdev_children; c++) 217 if (pvd->vdev_child[c]) 218 break; 219 220 if (c == pvd->vdev_children) { 221 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 222 pvd->vdev_child = NULL; 223 pvd->vdev_children = 0; 224 } 225 226 /* 227 * Walk up all ancestors to update guid sum. 228 */ 229 for (; pvd != NULL; pvd = pvd->vdev_parent) 230 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 231 } 232 233 /* 234 * Remove any holes in the child array. 235 */ 236 void 237 vdev_compact_children(vdev_t *pvd) 238 { 239 vdev_t **newchild, *cvd; 240 int oldc = pvd->vdev_children; 241 int newc, c; 242 243 ASSERT(spa_config_held(pvd->vdev_spa, RW_WRITER)); 244 245 for (c = newc = 0; c < oldc; c++) 246 if (pvd->vdev_child[c]) 247 newc++; 248 249 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 250 251 for (c = newc = 0; c < oldc; c++) { 252 if ((cvd = pvd->vdev_child[c]) != NULL) { 253 newchild[newc] = cvd; 254 cvd->vdev_id = newc++; 255 } 256 } 257 258 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 259 pvd->vdev_child = newchild; 260 pvd->vdev_children = newc; 261 } 262 263 /* 264 * Allocate and minimally initialize a vdev_t. 265 */ 266 static vdev_t * 267 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 268 { 269 vdev_t *vd; 270 271 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 272 273 if (spa->spa_root_vdev == NULL) { 274 ASSERT(ops == &vdev_root_ops); 275 spa->spa_root_vdev = vd; 276 } 277 278 if (guid == 0) { 279 if (spa->spa_root_vdev == vd) { 280 /* 281 * The root vdev's guid will also be the pool guid, 282 * which must be unique among all pools. 283 */ 284 while (guid == 0 || spa_guid_exists(guid, 0)) 285 guid = spa_get_random(-1ULL); 286 } else { 287 /* 288 * Any other vdev's guid must be unique within the pool. 289 */ 290 while (guid == 0 || 291 spa_guid_exists(spa_guid(spa), guid)) 292 guid = spa_get_random(-1ULL); 293 } 294 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 295 } 296 297 vd->vdev_spa = spa; 298 vd->vdev_id = id; 299 vd->vdev_guid = guid; 300 vd->vdev_guid_sum = guid; 301 vd->vdev_ops = ops; 302 vd->vdev_state = VDEV_STATE_CLOSED; 303 304 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 305 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 306 space_map_create(&vd->vdev_dtl_map, 0, -1ULL, 0, &vd->vdev_dtl_lock); 307 space_map_create(&vd->vdev_dtl_scrub, 0, -1ULL, 0, &vd->vdev_dtl_lock); 308 txg_list_create(&vd->vdev_ms_list, 309 offsetof(struct metaslab, ms_txg_node)); 310 txg_list_create(&vd->vdev_dtl_list, 311 offsetof(struct vdev, vdev_dtl_node)); 312 vd->vdev_stat.vs_timestamp = gethrtime(); 313 314 return (vd); 315 } 316 317 /* 318 * Free a vdev_t that has been removed from service. 319 */ 320 static void 321 vdev_free_common(vdev_t *vd) 322 { 323 spa_t *spa = vd->vdev_spa; 324 325 if (vd->vdev_path) 326 spa_strfree(vd->vdev_path); 327 if (vd->vdev_devid) 328 spa_strfree(vd->vdev_devid); 329 330 if (vd->vdev_isspare) 331 spa_spare_remove(vd); 332 333 txg_list_destroy(&vd->vdev_ms_list); 334 txg_list_destroy(&vd->vdev_dtl_list); 335 mutex_enter(&vd->vdev_dtl_lock); 336 space_map_unload(&vd->vdev_dtl_map); 337 space_map_destroy(&vd->vdev_dtl_map); 338 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 339 space_map_destroy(&vd->vdev_dtl_scrub); 340 mutex_exit(&vd->vdev_dtl_lock); 341 mutex_destroy(&vd->vdev_dtl_lock); 342 mutex_destroy(&vd->vdev_stat_lock); 343 344 if (vd == spa->spa_root_vdev) 345 spa->spa_root_vdev = NULL; 346 347 kmem_free(vd, sizeof (vdev_t)); 348 } 349 350 /* 351 * Allocate a new vdev. The 'alloctype' is used to control whether we are 352 * creating a new vdev or loading an existing one - the behavior is slightly 353 * different for each case. 354 */ 355 int 356 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 357 int alloctype) 358 { 359 vdev_ops_t *ops; 360 char *type; 361 uint64_t guid = 0; 362 vdev_t *vd; 363 364 ASSERT(spa_config_held(spa, RW_WRITER)); 365 366 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 367 return (EINVAL); 368 369 if ((ops = vdev_getops(type)) == NULL) 370 return (EINVAL); 371 372 /* 373 * If this is a load, get the vdev guid from the nvlist. 374 * Otherwise, vdev_alloc_common() will generate one for us. 375 */ 376 if (alloctype == VDEV_ALLOC_LOAD) { 377 uint64_t label_id; 378 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 380 label_id != id) 381 return (EINVAL); 382 383 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 384 return (EINVAL); 385 } else if (alloctype == VDEV_ALLOC_SPARE) { 386 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 387 return (EINVAL); 388 } 389 390 /* 391 * The first allocated vdev must be of type 'root'. 392 */ 393 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 394 return (EINVAL); 395 396 vd = vdev_alloc_common(spa, id, guid, ops); 397 398 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 399 vd->vdev_path = spa_strdup(vd->vdev_path); 400 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 401 vd->vdev_devid = spa_strdup(vd->vdev_devid); 402 403 /* 404 * Set the nparity propery for RAID-Z vdevs. 405 */ 406 if (ops == &vdev_raidz_ops) { 407 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 408 &vd->vdev_nparity) == 0) { 409 /* 410 * Currently, we can only support 2 parity devices. 411 */ 412 if (vd->vdev_nparity > 2) 413 return (EINVAL); 414 /* 415 * Older versions can only support 1 parity device. 416 */ 417 if (vd->vdev_nparity == 2 && 418 spa_version(spa) < ZFS_VERSION_RAID6) 419 return (ENOTSUP); 420 421 } else { 422 /* 423 * We require the parity to be specified for SPAs that 424 * support multiple parity levels. 425 */ 426 if (spa_version(spa) >= ZFS_VERSION_RAID6) 427 return (EINVAL); 428 429 /* 430 * Otherwise, we default to 1 parity device for RAID-Z. 431 */ 432 vd->vdev_nparity = 1; 433 } 434 } else { 435 vd->vdev_nparity = 0; 436 } 437 438 /* 439 * Set the whole_disk property. If it's not specified, leave the value 440 * as -1. 441 */ 442 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 443 &vd->vdev_wholedisk) != 0) 444 vd->vdev_wholedisk = -1ULL; 445 446 /* 447 * Look for the 'not present' flag. This will only be set if the device 448 * was not present at the time of import. 449 */ 450 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 451 &vd->vdev_not_present); 452 453 /* 454 * Get the alignment requirement. 455 */ 456 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 457 458 /* 459 * If we're a top-level vdev, try to load the allocation parameters. 460 */ 461 if (parent && !parent->vdev_parent && alloctype == VDEV_ALLOC_LOAD) { 462 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 463 &vd->vdev_ms_array); 464 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 465 &vd->vdev_ms_shift); 466 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 467 &vd->vdev_asize); 468 } 469 470 /* 471 * If we're a leaf vdev, try to load the DTL object and offline state. 472 */ 473 if (vd->vdev_ops->vdev_op_leaf && alloctype == VDEV_ALLOC_LOAD) { 474 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 475 &vd->vdev_dtl.smo_object); 476 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 477 &vd->vdev_offline); 478 } 479 480 /* 481 * Add ourselves to the parent's list of children. 482 */ 483 vdev_add_child(parent, vd); 484 485 *vdp = vd; 486 487 return (0); 488 } 489 490 void 491 vdev_free(vdev_t *vd) 492 { 493 int c; 494 495 /* 496 * vdev_free() implies closing the vdev first. This is simpler than 497 * trying to ensure complicated semantics for all callers. 498 */ 499 vdev_close(vd); 500 501 ASSERT(!list_link_active(&vd->vdev_dirty_node)); 502 503 /* 504 * Free all children. 505 */ 506 for (c = 0; c < vd->vdev_children; c++) 507 vdev_free(vd->vdev_child[c]); 508 509 ASSERT(vd->vdev_child == NULL); 510 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 511 512 /* 513 * Discard allocation state. 514 */ 515 if (vd == vd->vdev_top) 516 vdev_metaslab_fini(vd); 517 518 ASSERT3U(vd->vdev_stat.vs_space, ==, 0); 519 ASSERT3U(vd->vdev_stat.vs_dspace, ==, 0); 520 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 521 522 /* 523 * Remove this vdev from its parent's child list. 524 */ 525 vdev_remove_child(vd->vdev_parent, vd); 526 527 ASSERT(vd->vdev_parent == NULL); 528 529 vdev_free_common(vd); 530 } 531 532 /* 533 * Transfer top-level vdev state from svd to tvd. 534 */ 535 static void 536 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 537 { 538 spa_t *spa = svd->vdev_spa; 539 metaslab_t *msp; 540 vdev_t *vd; 541 int t; 542 543 ASSERT(tvd == tvd->vdev_top); 544 545 tvd->vdev_ms_array = svd->vdev_ms_array; 546 tvd->vdev_ms_shift = svd->vdev_ms_shift; 547 tvd->vdev_ms_count = svd->vdev_ms_count; 548 549 svd->vdev_ms_array = 0; 550 svd->vdev_ms_shift = 0; 551 svd->vdev_ms_count = 0; 552 553 tvd->vdev_mg = svd->vdev_mg; 554 tvd->vdev_ms = svd->vdev_ms; 555 556 svd->vdev_mg = NULL; 557 svd->vdev_ms = NULL; 558 559 if (tvd->vdev_mg != NULL) 560 tvd->vdev_mg->mg_vd = tvd; 561 562 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 563 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 564 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 565 566 svd->vdev_stat.vs_alloc = 0; 567 svd->vdev_stat.vs_space = 0; 568 svd->vdev_stat.vs_dspace = 0; 569 570 for (t = 0; t < TXG_SIZE; t++) { 571 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 572 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 573 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 574 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 575 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 576 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 577 } 578 579 if (list_link_active(&svd->vdev_dirty_node)) { 580 vdev_config_clean(svd); 581 vdev_config_dirty(tvd); 582 } 583 584 tvd->vdev_reopen_wanted = svd->vdev_reopen_wanted; 585 svd->vdev_reopen_wanted = 0; 586 587 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 588 svd->vdev_deflate_ratio = 0; 589 } 590 591 static void 592 vdev_top_update(vdev_t *tvd, vdev_t *vd) 593 { 594 int c; 595 596 if (vd == NULL) 597 return; 598 599 vd->vdev_top = tvd; 600 601 for (c = 0; c < vd->vdev_children; c++) 602 vdev_top_update(tvd, vd->vdev_child[c]); 603 } 604 605 /* 606 * Add a mirror/replacing vdev above an existing vdev. 607 */ 608 vdev_t * 609 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 610 { 611 spa_t *spa = cvd->vdev_spa; 612 vdev_t *pvd = cvd->vdev_parent; 613 vdev_t *mvd; 614 615 ASSERT(spa_config_held(spa, RW_WRITER)); 616 617 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 618 619 mvd->vdev_asize = cvd->vdev_asize; 620 mvd->vdev_ashift = cvd->vdev_ashift; 621 mvd->vdev_state = cvd->vdev_state; 622 623 vdev_remove_child(pvd, cvd); 624 vdev_add_child(pvd, mvd); 625 cvd->vdev_id = mvd->vdev_children; 626 vdev_add_child(mvd, cvd); 627 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 628 629 if (mvd == mvd->vdev_top) 630 vdev_top_transfer(cvd, mvd); 631 632 return (mvd); 633 } 634 635 /* 636 * Remove a 1-way mirror/replacing vdev from the tree. 637 */ 638 void 639 vdev_remove_parent(vdev_t *cvd) 640 { 641 vdev_t *mvd = cvd->vdev_parent; 642 vdev_t *pvd = mvd->vdev_parent; 643 644 ASSERT(spa_config_held(cvd->vdev_spa, RW_WRITER)); 645 646 ASSERT(mvd->vdev_children == 1); 647 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 648 mvd->vdev_ops == &vdev_replacing_ops || 649 mvd->vdev_ops == &vdev_spare_ops); 650 cvd->vdev_ashift = mvd->vdev_ashift; 651 652 vdev_remove_child(mvd, cvd); 653 vdev_remove_child(pvd, mvd); 654 cvd->vdev_id = mvd->vdev_id; 655 vdev_add_child(pvd, cvd); 656 /* 657 * If we created a new toplevel vdev, then we need to change the child's 658 * vdev GUID to match the old toplevel vdev. Otherwise, we could have 659 * detached an offline device, and when we go to import the pool we'll 660 * think we have two toplevel vdevs, instead of a different version of 661 * the same toplevel vdev. 662 */ 663 if (cvd->vdev_top == cvd) { 664 pvd->vdev_guid_sum -= cvd->vdev_guid; 665 cvd->vdev_guid_sum -= cvd->vdev_guid; 666 cvd->vdev_guid = mvd->vdev_guid; 667 cvd->vdev_guid_sum += mvd->vdev_guid; 668 pvd->vdev_guid_sum += cvd->vdev_guid; 669 } 670 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 671 672 if (cvd == cvd->vdev_top) 673 vdev_top_transfer(mvd, cvd); 674 675 ASSERT(mvd->vdev_children == 0); 676 vdev_free(mvd); 677 } 678 679 int 680 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 681 { 682 spa_t *spa = vd->vdev_spa; 683 objset_t *mos = spa->spa_meta_objset; 684 metaslab_class_t *mc = spa_metaslab_class_select(spa); 685 uint64_t m; 686 uint64_t oldc = vd->vdev_ms_count; 687 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 688 metaslab_t **mspp; 689 int error; 690 691 if (vd->vdev_ms_shift == 0) /* not being allocated from yet */ 692 return (0); 693 694 dprintf("%s oldc %llu newc %llu\n", vdev_description(vd), oldc, newc); 695 696 ASSERT(oldc <= newc); 697 698 if (vd->vdev_mg == NULL) 699 vd->vdev_mg = metaslab_group_create(mc, vd); 700 701 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 702 703 if (oldc != 0) { 704 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 705 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 706 } 707 708 vd->vdev_ms = mspp; 709 vd->vdev_ms_count = newc; 710 711 for (m = oldc; m < newc; m++) { 712 space_map_obj_t smo = { 0, 0, 0 }; 713 if (txg == 0) { 714 uint64_t object = 0; 715 error = dmu_read(mos, vd->vdev_ms_array, 716 m * sizeof (uint64_t), sizeof (uint64_t), &object); 717 if (error) 718 return (error); 719 if (object != 0) { 720 dmu_buf_t *db; 721 error = dmu_bonus_hold(mos, object, FTAG, &db); 722 if (error) 723 return (error); 724 ASSERT3U(db->db_size, ==, sizeof (smo)); 725 bcopy(db->db_data, &smo, db->db_size); 726 ASSERT3U(smo.smo_object, ==, object); 727 dmu_buf_rele(db, FTAG); 728 } 729 } 730 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, &smo, 731 m << vd->vdev_ms_shift, 1ULL << vd->vdev_ms_shift, txg); 732 } 733 734 return (0); 735 } 736 737 void 738 vdev_metaslab_fini(vdev_t *vd) 739 { 740 uint64_t m; 741 uint64_t count = vd->vdev_ms_count; 742 743 if (vd->vdev_ms != NULL) { 744 for (m = 0; m < count; m++) 745 if (vd->vdev_ms[m] != NULL) 746 metaslab_fini(vd->vdev_ms[m]); 747 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 748 vd->vdev_ms = NULL; 749 } 750 } 751 752 /* 753 * Prepare a virtual device for access. 754 */ 755 int 756 vdev_open(vdev_t *vd) 757 { 758 int error; 759 int c; 760 uint64_t osize = 0; 761 uint64_t asize, psize; 762 uint64_t ashift = 0; 763 764 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 765 vd->vdev_state == VDEV_STATE_CANT_OPEN || 766 vd->vdev_state == VDEV_STATE_OFFLINE); 767 768 if (vd->vdev_fault_mode == VDEV_FAULT_COUNT) 769 vd->vdev_fault_arg >>= 1; 770 else 771 vd->vdev_fault_mode = VDEV_FAULT_NONE; 772 773 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 774 775 if (vd->vdev_ops->vdev_op_leaf) { 776 vdev_cache_init(vd); 777 vdev_queue_init(vd); 778 vd->vdev_cache_active = B_TRUE; 779 } 780 781 if (vd->vdev_offline) { 782 ASSERT(vd->vdev_children == 0); 783 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 784 return (ENXIO); 785 } 786 787 error = vd->vdev_ops->vdev_op_open(vd, &osize, &ashift); 788 789 if (zio_injection_enabled && error == 0) 790 error = zio_handle_device_injection(vd, ENXIO); 791 792 dprintf("%s = %d, osize %llu, state = %d\n", 793 vdev_description(vd), error, osize, vd->vdev_state); 794 795 if (error) { 796 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 797 vd->vdev_stat.vs_aux); 798 return (error); 799 } 800 801 vd->vdev_state = VDEV_STATE_HEALTHY; 802 803 for (c = 0; c < vd->vdev_children; c++) 804 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 805 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 806 VDEV_AUX_NONE); 807 break; 808 } 809 810 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 811 812 if (vd->vdev_children == 0) { 813 if (osize < SPA_MINDEVSIZE) { 814 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 815 VDEV_AUX_TOO_SMALL); 816 return (EOVERFLOW); 817 } 818 psize = osize; 819 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 820 } else { 821 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 822 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 823 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 824 VDEV_AUX_TOO_SMALL); 825 return (EOVERFLOW); 826 } 827 psize = 0; 828 asize = osize; 829 } 830 831 vd->vdev_psize = psize; 832 833 if (vd->vdev_asize == 0) { 834 /* 835 * This is the first-ever open, so use the computed values. 836 * For testing purposes, a higher ashift can be requested. 837 */ 838 vd->vdev_asize = asize; 839 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 840 } else { 841 /* 842 * Make sure the alignment requirement hasn't increased. 843 */ 844 if (ashift > vd->vdev_top->vdev_ashift) { 845 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 846 VDEV_AUX_BAD_LABEL); 847 return (EINVAL); 848 } 849 850 /* 851 * Make sure the device hasn't shrunk. 852 */ 853 if (asize < vd->vdev_asize) { 854 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 855 VDEV_AUX_BAD_LABEL); 856 return (EINVAL); 857 } 858 859 /* 860 * If all children are healthy and the asize has increased, 861 * then we've experienced dynamic LUN growth. 862 */ 863 if (vd->vdev_state == VDEV_STATE_HEALTHY && 864 asize > vd->vdev_asize) { 865 vd->vdev_asize = asize; 866 } 867 } 868 869 /* 870 * If this is a top-level vdev, compute the raidz-deflation 871 * ratio. Note, we hard-code in 128k (1<<17) because it is the 872 * current "typical" blocksize. Even if SPA_MAXBLOCKSIZE 873 * changes, this algorithm must never change, or we will 874 * inconsistently account for existing bp's. 875 */ 876 if (vd->vdev_top == vd) { 877 vd->vdev_deflate_ratio = (1<<17) / 878 (vdev_psize_to_asize(vd, 1<<17) >> SPA_MINBLOCKSHIFT); 879 } 880 881 /* 882 * This allows the ZFS DE to close cases appropriately. If a device 883 * goes away and later returns, we want to close the associated case. 884 * But it's not enough to simply post this only when a device goes from 885 * CANT_OPEN -> HEALTHY. If we reboot the system and the device is 886 * back, we also need to close the case (otherwise we will try to replay 887 * it). So we have to post this notifier every time. Since this only 888 * occurs during pool open or error recovery, this should not be an 889 * issue. 890 */ 891 zfs_post_ok(vd->vdev_spa, vd); 892 893 return (0); 894 } 895 896 /* 897 * Called once the vdevs are all opened, this routine validates the label 898 * contents. This needs to be done before vdev_load() so that we don't 899 * inadvertently do repair I/Os to the wrong device, and so that vdev_reopen() 900 * won't succeed if the device has been changed underneath. 901 * 902 * This function will only return failure if one of the vdevs indicates that it 903 * has since been destroyed or exported. This is only possible if 904 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 905 * will be updated but the function will return 0. 906 */ 907 int 908 vdev_validate(vdev_t *vd) 909 { 910 spa_t *spa = vd->vdev_spa; 911 int c; 912 nvlist_t *label; 913 uint64_t guid; 914 uint64_t state; 915 916 for (c = 0; c < vd->vdev_children; c++) 917 if (vdev_validate(vd->vdev_child[c]) != 0) 918 return (-1); 919 920 /* 921 * If the device has already failed, or was marked offline, don't do 922 * any further validation. Otherwise, label I/O will fail and we will 923 * overwrite the previous state. 924 */ 925 if (vd->vdev_ops->vdev_op_leaf && !vdev_is_dead(vd)) { 926 927 if ((label = vdev_label_read_config(vd)) == NULL) { 928 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 929 VDEV_AUX_BAD_LABEL); 930 return (0); 931 } 932 933 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 934 &guid) != 0 || guid != spa_guid(spa)) { 935 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 936 VDEV_AUX_CORRUPT_DATA); 937 nvlist_free(label); 938 return (0); 939 } 940 941 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 942 &guid) != 0 || guid != vd->vdev_guid) { 943 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 944 VDEV_AUX_CORRUPT_DATA); 945 nvlist_free(label); 946 return (0); 947 } 948 949 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 950 &state) != 0) { 951 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 952 VDEV_AUX_CORRUPT_DATA); 953 nvlist_free(label); 954 return (0); 955 } 956 957 nvlist_free(label); 958 959 if (spa->spa_load_state == SPA_LOAD_OPEN && 960 state != POOL_STATE_ACTIVE) 961 return (-1); 962 } 963 964 /* 965 * If we were able to open and validate a vdev that was previously 966 * marked permanently unavailable, clear that state now. 967 */ 968 if (vd->vdev_not_present) 969 vd->vdev_not_present = 0; 970 971 return (0); 972 } 973 974 /* 975 * Close a virtual device. 976 */ 977 void 978 vdev_close(vdev_t *vd) 979 { 980 vd->vdev_ops->vdev_op_close(vd); 981 982 if (vd->vdev_cache_active) { 983 vdev_cache_fini(vd); 984 vdev_queue_fini(vd); 985 vd->vdev_cache_active = B_FALSE; 986 } 987 988 /* 989 * We record the previous state before we close it, so that if we are 990 * doing a reopen(), we don't generate FMA ereports if we notice that 991 * it's still faulted. 992 */ 993 vd->vdev_prevstate = vd->vdev_state; 994 995 if (vd->vdev_offline) 996 vd->vdev_state = VDEV_STATE_OFFLINE; 997 else 998 vd->vdev_state = VDEV_STATE_CLOSED; 999 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1000 } 1001 1002 void 1003 vdev_reopen(vdev_t *vd) 1004 { 1005 spa_t *spa = vd->vdev_spa; 1006 1007 ASSERT(spa_config_held(spa, RW_WRITER)); 1008 1009 vdev_close(vd); 1010 (void) vdev_open(vd); 1011 1012 /* 1013 * Call vdev_validate() here to make sure we have the same device. 1014 * Otherwise, a device with an invalid label could be successfully 1015 * opened in response to vdev_reopen(). 1016 * 1017 * The downside to this is that if the user is simply experimenting by 1018 * overwriting an entire disk, we'll fault the device rather than 1019 * demonstrate self-healing capabilities. On the other hand, with 1020 * proper FMA integration, the series of errors we'd see from the device 1021 * would result in a faulted device anyway. Given that this doesn't 1022 * model any real-world corruption, it's better to catch this here and 1023 * correctly identify that the device has either changed beneath us, or 1024 * is corrupted beyond recognition. 1025 */ 1026 (void) vdev_validate(vd); 1027 1028 /* 1029 * Reassess root vdev's health. 1030 */ 1031 vdev_propagate_state(spa->spa_root_vdev); 1032 } 1033 1034 int 1035 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1036 { 1037 int error; 1038 1039 /* 1040 * Normally, partial opens (e.g. of a mirror) are allowed. 1041 * For a create, however, we want to fail the request if 1042 * there are any components we can't open. 1043 */ 1044 error = vdev_open(vd); 1045 1046 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1047 vdev_close(vd); 1048 return (error ? error : ENXIO); 1049 } 1050 1051 /* 1052 * Recursively initialize all labels. 1053 */ 1054 if ((error = vdev_label_init(vd, txg, isreplacing ? 1055 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1056 vdev_close(vd); 1057 return (error); 1058 } 1059 1060 return (0); 1061 } 1062 1063 /* 1064 * The is the latter half of vdev_create(). It is distinct because it 1065 * involves initiating transactions in order to do metaslab creation. 1066 * For creation, we want to try to create all vdevs at once and then undo it 1067 * if anything fails; this is much harder if we have pending transactions. 1068 */ 1069 void 1070 vdev_init(vdev_t *vd, uint64_t txg) 1071 { 1072 /* 1073 * Aim for roughly 200 metaslabs per vdev. 1074 */ 1075 vd->vdev_ms_shift = highbit(vd->vdev_asize / 200); 1076 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1077 1078 /* 1079 * Initialize the vdev's metaslabs. This can't fail because 1080 * there's nothing to read when creating all new metaslabs. 1081 */ 1082 VERIFY(vdev_metaslab_init(vd, txg) == 0); 1083 } 1084 1085 void 1086 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1087 { 1088 ASSERT(vd == vd->vdev_top); 1089 ASSERT(ISP2(flags)); 1090 1091 if (flags & VDD_METASLAB) 1092 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1093 1094 if (flags & VDD_DTL) 1095 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1096 1097 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1098 } 1099 1100 void 1101 vdev_dtl_dirty(space_map_t *sm, uint64_t txg, uint64_t size) 1102 { 1103 mutex_enter(sm->sm_lock); 1104 if (!space_map_contains(sm, txg, size)) 1105 space_map_add(sm, txg, size); 1106 mutex_exit(sm->sm_lock); 1107 } 1108 1109 int 1110 vdev_dtl_contains(space_map_t *sm, uint64_t txg, uint64_t size) 1111 { 1112 int dirty; 1113 1114 /* 1115 * Quick test without the lock -- covers the common case that 1116 * there are no dirty time segments. 1117 */ 1118 if (sm->sm_space == 0) 1119 return (0); 1120 1121 mutex_enter(sm->sm_lock); 1122 dirty = space_map_contains(sm, txg, size); 1123 mutex_exit(sm->sm_lock); 1124 1125 return (dirty); 1126 } 1127 1128 /* 1129 * Reassess DTLs after a config change or scrub completion. 1130 */ 1131 void 1132 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1133 { 1134 spa_t *spa = vd->vdev_spa; 1135 int c; 1136 1137 ASSERT(spa_config_held(spa, RW_WRITER)); 1138 1139 if (vd->vdev_children == 0) { 1140 mutex_enter(&vd->vdev_dtl_lock); 1141 /* 1142 * We're successfully scrubbed everything up to scrub_txg. 1143 * Therefore, excise all old DTLs up to that point, then 1144 * fold in the DTLs for everything we couldn't scrub. 1145 */ 1146 if (scrub_txg != 0) { 1147 space_map_excise(&vd->vdev_dtl_map, 0, scrub_txg); 1148 space_map_union(&vd->vdev_dtl_map, &vd->vdev_dtl_scrub); 1149 } 1150 if (scrub_done) 1151 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1152 mutex_exit(&vd->vdev_dtl_lock); 1153 if (txg != 0) 1154 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1155 return; 1156 } 1157 1158 /* 1159 * Make sure the DTLs are always correct under the scrub lock. 1160 */ 1161 if (vd == spa->spa_root_vdev) 1162 mutex_enter(&spa->spa_scrub_lock); 1163 1164 mutex_enter(&vd->vdev_dtl_lock); 1165 space_map_vacate(&vd->vdev_dtl_map, NULL, NULL); 1166 space_map_vacate(&vd->vdev_dtl_scrub, NULL, NULL); 1167 mutex_exit(&vd->vdev_dtl_lock); 1168 1169 for (c = 0; c < vd->vdev_children; c++) { 1170 vdev_t *cvd = vd->vdev_child[c]; 1171 vdev_dtl_reassess(cvd, txg, scrub_txg, scrub_done); 1172 mutex_enter(&vd->vdev_dtl_lock); 1173 space_map_union(&vd->vdev_dtl_map, &cvd->vdev_dtl_map); 1174 space_map_union(&vd->vdev_dtl_scrub, &cvd->vdev_dtl_scrub); 1175 mutex_exit(&vd->vdev_dtl_lock); 1176 } 1177 1178 if (vd == spa->spa_root_vdev) 1179 mutex_exit(&spa->spa_scrub_lock); 1180 } 1181 1182 static int 1183 vdev_dtl_load(vdev_t *vd) 1184 { 1185 spa_t *spa = vd->vdev_spa; 1186 space_map_obj_t *smo = &vd->vdev_dtl; 1187 objset_t *mos = spa->spa_meta_objset; 1188 dmu_buf_t *db; 1189 int error; 1190 1191 ASSERT(vd->vdev_children == 0); 1192 1193 if (smo->smo_object == 0) 1194 return (0); 1195 1196 if ((error = dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)) != 0) 1197 return (error); 1198 1199 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1200 bcopy(db->db_data, smo, db->db_size); 1201 dmu_buf_rele(db, FTAG); 1202 1203 mutex_enter(&vd->vdev_dtl_lock); 1204 error = space_map_load(&vd->vdev_dtl_map, NULL, SM_ALLOC, smo, mos); 1205 mutex_exit(&vd->vdev_dtl_lock); 1206 1207 return (error); 1208 } 1209 1210 void 1211 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1212 { 1213 spa_t *spa = vd->vdev_spa; 1214 space_map_obj_t *smo = &vd->vdev_dtl; 1215 space_map_t *sm = &vd->vdev_dtl_map; 1216 objset_t *mos = spa->spa_meta_objset; 1217 space_map_t smsync; 1218 kmutex_t smlock; 1219 dmu_buf_t *db; 1220 dmu_tx_t *tx; 1221 1222 dprintf("%s in txg %llu pass %d\n", 1223 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1224 1225 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1226 1227 if (vd->vdev_detached) { 1228 if (smo->smo_object != 0) { 1229 int err = dmu_object_free(mos, smo->smo_object, tx); 1230 ASSERT3U(err, ==, 0); 1231 smo->smo_object = 0; 1232 } 1233 dmu_tx_commit(tx); 1234 dprintf("detach %s committed in txg %llu\n", 1235 vdev_description(vd), txg); 1236 return; 1237 } 1238 1239 if (smo->smo_object == 0) { 1240 ASSERT(smo->smo_objsize == 0); 1241 ASSERT(smo->smo_alloc == 0); 1242 smo->smo_object = dmu_object_alloc(mos, 1243 DMU_OT_SPACE_MAP, 1 << SPACE_MAP_BLOCKSHIFT, 1244 DMU_OT_SPACE_MAP_HEADER, sizeof (*smo), tx); 1245 ASSERT(smo->smo_object != 0); 1246 vdev_config_dirty(vd->vdev_top); 1247 } 1248 1249 mutex_init(&smlock, NULL, MUTEX_DEFAULT, NULL); 1250 1251 space_map_create(&smsync, sm->sm_start, sm->sm_size, sm->sm_shift, 1252 &smlock); 1253 1254 mutex_enter(&smlock); 1255 1256 mutex_enter(&vd->vdev_dtl_lock); 1257 space_map_walk(sm, space_map_add, &smsync); 1258 mutex_exit(&vd->vdev_dtl_lock); 1259 1260 space_map_truncate(smo, mos, tx); 1261 space_map_sync(&smsync, SM_ALLOC, smo, mos, tx); 1262 1263 space_map_destroy(&smsync); 1264 1265 mutex_exit(&smlock); 1266 mutex_destroy(&smlock); 1267 1268 VERIFY(0 == dmu_bonus_hold(mos, smo->smo_object, FTAG, &db)); 1269 dmu_buf_will_dirty(db, tx); 1270 ASSERT3U(db->db_size, ==, sizeof (*smo)); 1271 bcopy(smo, db->db_data, db->db_size); 1272 dmu_buf_rele(db, FTAG); 1273 1274 dmu_tx_commit(tx); 1275 } 1276 1277 void 1278 vdev_load(vdev_t *vd) 1279 { 1280 int c; 1281 1282 /* 1283 * Recursively load all children. 1284 */ 1285 for (c = 0; c < vd->vdev_children; c++) 1286 vdev_load(vd->vdev_child[c]); 1287 1288 /* 1289 * If this is a top-level vdev, initialize its metaslabs. 1290 */ 1291 if (vd == vd->vdev_top && 1292 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 1293 vdev_metaslab_init(vd, 0) != 0)) 1294 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1295 VDEV_AUX_CORRUPT_DATA); 1296 1297 /* 1298 * If this is a leaf vdev, load its DTL. 1299 */ 1300 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 1301 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1302 VDEV_AUX_CORRUPT_DATA); 1303 } 1304 1305 /* 1306 * This special case of vdev_spare() is used for hot spares. It's sole purpose 1307 * it to set the vdev state for the associated vdev. To do this, we make sure 1308 * that we can open the underlying device, then try to read the label, and make 1309 * sure that the label is sane and that it hasn't been repurposed to another 1310 * pool. 1311 */ 1312 int 1313 vdev_validate_spare(vdev_t *vd) 1314 { 1315 nvlist_t *label; 1316 uint64_t guid, version; 1317 uint64_t state; 1318 1319 if ((label = vdev_label_read_config(vd)) == NULL) { 1320 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1321 VDEV_AUX_CORRUPT_DATA); 1322 return (-1); 1323 } 1324 1325 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 1326 version > ZFS_VERSION || 1327 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 1328 guid != vd->vdev_guid || 1329 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 1330 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1331 VDEV_AUX_CORRUPT_DATA); 1332 nvlist_free(label); 1333 return (-1); 1334 } 1335 1336 spa_spare_add(vd); 1337 1338 /* 1339 * We don't actually check the pool state here. If it's in fact in 1340 * use by another pool, we update this fact on the fly when requested. 1341 */ 1342 nvlist_free(label); 1343 return (0); 1344 } 1345 1346 void 1347 vdev_sync_done(vdev_t *vd, uint64_t txg) 1348 { 1349 metaslab_t *msp; 1350 1351 dprintf("%s txg %llu\n", vdev_description(vd), txg); 1352 1353 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 1354 metaslab_sync_done(msp, txg); 1355 } 1356 1357 void 1358 vdev_sync(vdev_t *vd, uint64_t txg) 1359 { 1360 spa_t *spa = vd->vdev_spa; 1361 vdev_t *lvd; 1362 metaslab_t *msp; 1363 dmu_tx_t *tx; 1364 1365 dprintf("%s txg %llu pass %d\n", 1366 vdev_description(vd), (u_longlong_t)txg, spa_sync_pass(spa)); 1367 1368 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 1369 ASSERT(vd == vd->vdev_top); 1370 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1371 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 1372 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 1373 ASSERT(vd->vdev_ms_array != 0); 1374 vdev_config_dirty(vd); 1375 dmu_tx_commit(tx); 1376 } 1377 1378 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 1379 metaslab_sync(msp, txg); 1380 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 1381 } 1382 1383 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 1384 vdev_dtl_sync(lvd, txg); 1385 1386 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 1387 } 1388 1389 uint64_t 1390 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 1391 { 1392 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 1393 } 1394 1395 void 1396 vdev_io_start(zio_t *zio) 1397 { 1398 zio->io_vd->vdev_ops->vdev_op_io_start(zio); 1399 } 1400 1401 void 1402 vdev_io_done(zio_t *zio) 1403 { 1404 zio->io_vd->vdev_ops->vdev_op_io_done(zio); 1405 } 1406 1407 const char * 1408 vdev_description(vdev_t *vd) 1409 { 1410 if (vd == NULL || vd->vdev_ops == NULL) 1411 return ("<unknown>"); 1412 1413 if (vd->vdev_path != NULL) 1414 return (vd->vdev_path); 1415 1416 if (vd->vdev_parent == NULL) 1417 return (spa_name(vd->vdev_spa)); 1418 1419 return (vd->vdev_ops->vdev_op_type); 1420 } 1421 1422 int 1423 vdev_online(spa_t *spa, uint64_t guid) 1424 { 1425 vdev_t *rvd, *vd; 1426 uint64_t txg; 1427 1428 txg = spa_vdev_enter(spa); 1429 1430 rvd = spa->spa_root_vdev; 1431 1432 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1433 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1434 1435 if (!vd->vdev_ops->vdev_op_leaf) 1436 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1437 1438 dprintf("ONLINE: %s\n", vdev_description(vd)); 1439 1440 vd->vdev_offline = B_FALSE; 1441 vd->vdev_tmpoffline = B_FALSE; 1442 vdev_reopen(vd->vdev_top); 1443 1444 vdev_config_dirty(vd->vdev_top); 1445 1446 (void) spa_vdev_exit(spa, NULL, txg, 0); 1447 1448 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1449 1450 return (0); 1451 } 1452 1453 int 1454 vdev_offline(spa_t *spa, uint64_t guid, int istmp) 1455 { 1456 vdev_t *rvd, *vd; 1457 uint64_t txg; 1458 1459 txg = spa_vdev_enter(spa); 1460 1461 rvd = spa->spa_root_vdev; 1462 1463 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) 1464 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1465 1466 if (!vd->vdev_ops->vdev_op_leaf) 1467 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1468 1469 dprintf("OFFLINE: %s\n", vdev_description(vd)); 1470 1471 /* 1472 * If the device isn't already offline, try to offline it. 1473 */ 1474 if (!vd->vdev_offline) { 1475 /* 1476 * If this device's top-level vdev has a non-empty DTL, 1477 * don't allow the device to be offlined. 1478 * 1479 * XXX -- make this more precise by allowing the offline 1480 * as long as the remaining devices don't have any DTL holes. 1481 */ 1482 if (vd->vdev_top->vdev_dtl_map.sm_space != 0) 1483 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1484 1485 /* 1486 * Offline this device and reopen its top-level vdev. 1487 * If this action results in the top-level vdev becoming 1488 * unusable, undo it and fail the request. 1489 */ 1490 vd->vdev_offline = B_TRUE; 1491 vdev_reopen(vd->vdev_top); 1492 if (vdev_is_dead(vd->vdev_top)) { 1493 vd->vdev_offline = B_FALSE; 1494 vdev_reopen(vd->vdev_top); 1495 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1496 } 1497 } 1498 1499 vd->vdev_tmpoffline = istmp; 1500 1501 vdev_config_dirty(vd->vdev_top); 1502 1503 return (spa_vdev_exit(spa, NULL, txg, 0)); 1504 } 1505 1506 /* 1507 * Clear the error counts associated with this vdev. Unlike vdev_online() and 1508 * vdev_offline(), we assume the spa config is locked. We also clear all 1509 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 1510 */ 1511 void 1512 vdev_clear(spa_t *spa, vdev_t *vd) 1513 { 1514 int c; 1515 1516 if (vd == NULL) 1517 vd = spa->spa_root_vdev; 1518 1519 vd->vdev_stat.vs_read_errors = 0; 1520 vd->vdev_stat.vs_write_errors = 0; 1521 vd->vdev_stat.vs_checksum_errors = 0; 1522 1523 for (c = 0; c < vd->vdev_children; c++) 1524 vdev_clear(spa, vd->vdev_child[c]); 1525 } 1526 1527 int 1528 vdev_is_dead(vdev_t *vd) 1529 { 1530 return (vd->vdev_state <= VDEV_STATE_CANT_OPEN); 1531 } 1532 1533 int 1534 vdev_error_inject(vdev_t *vd, zio_t *zio) 1535 { 1536 int error = 0; 1537 1538 if (vd->vdev_fault_mode == VDEV_FAULT_NONE) 1539 return (0); 1540 1541 if (((1ULL << zio->io_type) & vd->vdev_fault_mask) == 0) 1542 return (0); 1543 1544 switch (vd->vdev_fault_mode) { 1545 case VDEV_FAULT_RANDOM: 1546 if (spa_get_random(vd->vdev_fault_arg) == 0) 1547 error = EIO; 1548 break; 1549 1550 case VDEV_FAULT_COUNT: 1551 if ((int64_t)--vd->vdev_fault_arg <= 0) 1552 vd->vdev_fault_mode = VDEV_FAULT_NONE; 1553 error = EIO; 1554 break; 1555 } 1556 1557 if (error != 0) { 1558 dprintf("returning %d for type %d on %s state %d offset %llx\n", 1559 error, zio->io_type, vdev_description(vd), 1560 vd->vdev_state, zio->io_offset); 1561 } 1562 1563 return (error); 1564 } 1565 1566 /* 1567 * Get statistics for the given vdev. 1568 */ 1569 void 1570 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 1571 { 1572 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1573 int c, t; 1574 1575 mutex_enter(&vd->vdev_stat_lock); 1576 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 1577 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 1578 vs->vs_state = vd->vdev_state; 1579 vs->vs_rsize = vdev_get_rsize(vd); 1580 mutex_exit(&vd->vdev_stat_lock); 1581 1582 /* 1583 * If we're getting stats on the root vdev, aggregate the I/O counts 1584 * over all top-level vdevs (i.e. the direct children of the root). 1585 */ 1586 if (vd == rvd) { 1587 for (c = 0; c < rvd->vdev_children; c++) { 1588 vdev_t *cvd = rvd->vdev_child[c]; 1589 vdev_stat_t *cvs = &cvd->vdev_stat; 1590 1591 mutex_enter(&vd->vdev_stat_lock); 1592 for (t = 0; t < ZIO_TYPES; t++) { 1593 vs->vs_ops[t] += cvs->vs_ops[t]; 1594 vs->vs_bytes[t] += cvs->vs_bytes[t]; 1595 } 1596 vs->vs_read_errors += cvs->vs_read_errors; 1597 vs->vs_write_errors += cvs->vs_write_errors; 1598 vs->vs_checksum_errors += cvs->vs_checksum_errors; 1599 vs->vs_scrub_examined += cvs->vs_scrub_examined; 1600 vs->vs_scrub_errors += cvs->vs_scrub_errors; 1601 mutex_exit(&vd->vdev_stat_lock); 1602 } 1603 } 1604 } 1605 1606 void 1607 vdev_stat_update(zio_t *zio) 1608 { 1609 vdev_t *vd = zio->io_vd; 1610 vdev_t *pvd; 1611 uint64_t txg = zio->io_txg; 1612 vdev_stat_t *vs = &vd->vdev_stat; 1613 zio_type_t type = zio->io_type; 1614 int flags = zio->io_flags; 1615 1616 if (zio->io_error == 0) { 1617 if (!(flags & ZIO_FLAG_IO_BYPASS)) { 1618 mutex_enter(&vd->vdev_stat_lock); 1619 vs->vs_ops[type]++; 1620 vs->vs_bytes[type] += zio->io_size; 1621 mutex_exit(&vd->vdev_stat_lock); 1622 } 1623 if ((flags & ZIO_FLAG_IO_REPAIR) && 1624 zio->io_delegate_list == NULL) { 1625 mutex_enter(&vd->vdev_stat_lock); 1626 if (flags & ZIO_FLAG_SCRUB_THREAD) 1627 vs->vs_scrub_repaired += zio->io_size; 1628 else 1629 vs->vs_self_healed += zio->io_size; 1630 mutex_exit(&vd->vdev_stat_lock); 1631 } 1632 return; 1633 } 1634 1635 if (flags & ZIO_FLAG_SPECULATIVE) 1636 return; 1637 1638 if (!vdev_is_dead(vd)) { 1639 mutex_enter(&vd->vdev_stat_lock); 1640 if (type == ZIO_TYPE_READ) { 1641 if (zio->io_error == ECKSUM) 1642 vs->vs_checksum_errors++; 1643 else 1644 vs->vs_read_errors++; 1645 } 1646 if (type == ZIO_TYPE_WRITE) 1647 vs->vs_write_errors++; 1648 mutex_exit(&vd->vdev_stat_lock); 1649 } 1650 1651 if (type == ZIO_TYPE_WRITE) { 1652 if (txg == 0 || vd->vdev_children != 0) 1653 return; 1654 if (flags & ZIO_FLAG_SCRUB_THREAD) { 1655 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 1656 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1657 vdev_dtl_dirty(&pvd->vdev_dtl_scrub, txg, 1); 1658 } 1659 if (!(flags & ZIO_FLAG_IO_REPAIR)) { 1660 if (vdev_dtl_contains(&vd->vdev_dtl_map, txg, 1)) 1661 return; 1662 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1663 for (pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 1664 vdev_dtl_dirty(&pvd->vdev_dtl_map, txg, 1); 1665 } 1666 } 1667 } 1668 1669 void 1670 vdev_scrub_stat_update(vdev_t *vd, pool_scrub_type_t type, boolean_t complete) 1671 { 1672 int c; 1673 vdev_stat_t *vs = &vd->vdev_stat; 1674 1675 for (c = 0; c < vd->vdev_children; c++) 1676 vdev_scrub_stat_update(vd->vdev_child[c], type, complete); 1677 1678 mutex_enter(&vd->vdev_stat_lock); 1679 1680 if (type == POOL_SCRUB_NONE) { 1681 /* 1682 * Update completion and end time. Leave everything else alone 1683 * so we can report what happened during the previous scrub. 1684 */ 1685 vs->vs_scrub_complete = complete; 1686 vs->vs_scrub_end = gethrestime_sec(); 1687 } else { 1688 vs->vs_scrub_type = type; 1689 vs->vs_scrub_complete = 0; 1690 vs->vs_scrub_examined = 0; 1691 vs->vs_scrub_repaired = 0; 1692 vs->vs_scrub_errors = 0; 1693 vs->vs_scrub_start = gethrestime_sec(); 1694 vs->vs_scrub_end = 0; 1695 } 1696 1697 mutex_exit(&vd->vdev_stat_lock); 1698 } 1699 1700 /* 1701 * Update the in-core space usage stats for this vdev and the root vdev. 1702 */ 1703 void 1704 vdev_space_update(vdev_t *vd, int64_t space_delta, int64_t alloc_delta) 1705 { 1706 ASSERT(vd == vd->vdev_top); 1707 int64_t dspace_delta = space_delta; 1708 1709 do { 1710 if (vd->vdev_ms_count) { 1711 /* 1712 * If this is a top-level vdev, apply the 1713 * inverse of its psize-to-asize (ie. RAID-Z) 1714 * space-expansion factor. We must calculate 1715 * this here and not at the root vdev because 1716 * the root vdev's psize-to-asize is simply the 1717 * max of its childrens', thus not accurate 1718 * enough for us. 1719 */ 1720 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 1721 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 1722 vd->vdev_deflate_ratio; 1723 } 1724 1725 mutex_enter(&vd->vdev_stat_lock); 1726 vd->vdev_stat.vs_space += space_delta; 1727 vd->vdev_stat.vs_alloc += alloc_delta; 1728 vd->vdev_stat.vs_dspace += dspace_delta; 1729 mutex_exit(&vd->vdev_stat_lock); 1730 } while ((vd = vd->vdev_parent) != NULL); 1731 } 1732 1733 /* 1734 * Mark a top-level vdev's config as dirty, placing it on the dirty list 1735 * so that it will be written out next time the vdev configuration is synced. 1736 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 1737 */ 1738 void 1739 vdev_config_dirty(vdev_t *vd) 1740 { 1741 spa_t *spa = vd->vdev_spa; 1742 vdev_t *rvd = spa->spa_root_vdev; 1743 int c; 1744 1745 /* 1746 * The dirty list is protected by the config lock. The caller must 1747 * either hold the config lock as writer, or must be the sync thread 1748 * (which holds the lock as reader). There's only one sync thread, 1749 * so this is sufficient to ensure mutual exclusion. 1750 */ 1751 ASSERT(spa_config_held(spa, RW_WRITER) || 1752 dsl_pool_sync_context(spa_get_dsl(spa))); 1753 1754 if (vd == rvd) { 1755 for (c = 0; c < rvd->vdev_children; c++) 1756 vdev_config_dirty(rvd->vdev_child[c]); 1757 } else { 1758 ASSERT(vd == vd->vdev_top); 1759 1760 if (!list_link_active(&vd->vdev_dirty_node)) 1761 list_insert_head(&spa->spa_dirty_list, vd); 1762 } 1763 } 1764 1765 void 1766 vdev_config_clean(vdev_t *vd) 1767 { 1768 spa_t *spa = vd->vdev_spa; 1769 1770 ASSERT(spa_config_held(spa, RW_WRITER) || 1771 dsl_pool_sync_context(spa_get_dsl(spa))); 1772 1773 ASSERT(list_link_active(&vd->vdev_dirty_node)); 1774 list_remove(&spa->spa_dirty_list, vd); 1775 } 1776 1777 void 1778 vdev_propagate_state(vdev_t *vd) 1779 { 1780 vdev_t *rvd = vd->vdev_spa->spa_root_vdev; 1781 int degraded = 0, faulted = 0; 1782 int corrupted = 0; 1783 int c; 1784 vdev_t *child; 1785 1786 for (c = 0; c < vd->vdev_children; c++) { 1787 child = vd->vdev_child[c]; 1788 if (child->vdev_state <= VDEV_STATE_CANT_OPEN) 1789 faulted++; 1790 else if (child->vdev_state == VDEV_STATE_DEGRADED) 1791 degraded++; 1792 1793 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 1794 corrupted++; 1795 } 1796 1797 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 1798 1799 /* 1800 * Root special: if there is a toplevel vdev that cannot be 1801 * opened due to corrupted metadata, then propagate the root 1802 * vdev's aux state as 'corrupt' rather than 'insufficient 1803 * replicas'. 1804 */ 1805 if (corrupted && vd == rvd && rvd->vdev_state == VDEV_STATE_CANT_OPEN) 1806 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 1807 VDEV_AUX_CORRUPT_DATA); 1808 } 1809 1810 /* 1811 * Set a vdev's state. If this is during an open, we don't update the parent 1812 * state, because we're in the process of opening children depth-first. 1813 * Otherwise, we propagate the change to the parent. 1814 * 1815 * If this routine places a device in a faulted state, an appropriate ereport is 1816 * generated. 1817 */ 1818 void 1819 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 1820 { 1821 uint64_t save_state; 1822 1823 if (state == vd->vdev_state) { 1824 vd->vdev_stat.vs_aux = aux; 1825 return; 1826 } 1827 1828 save_state = vd->vdev_state; 1829 1830 vd->vdev_state = state; 1831 vd->vdev_stat.vs_aux = aux; 1832 1833 if (state == VDEV_STATE_CANT_OPEN) { 1834 /* 1835 * If we fail to open a vdev during an import, we mark it as 1836 * "not available", which signifies that it was never there to 1837 * begin with. Failure to open such a device is not considered 1838 * an error. 1839 */ 1840 if (vd->vdev_spa->spa_load_state == SPA_LOAD_IMPORT && 1841 vd->vdev_ops->vdev_op_leaf) 1842 vd->vdev_not_present = 1; 1843 1844 /* 1845 * Post the appropriate ereport. If the 'prevstate' field is 1846 * set to something other than VDEV_STATE_UNKNOWN, it indicates 1847 * that this is part of a vdev_reopen(). In this case, we don't 1848 * want to post the ereport if the device was already in the 1849 * CANT_OPEN state beforehand. 1850 */ 1851 if (vd->vdev_prevstate != state && !vd->vdev_not_present && 1852 vd != vd->vdev_spa->spa_root_vdev) { 1853 const char *class; 1854 1855 switch (aux) { 1856 case VDEV_AUX_OPEN_FAILED: 1857 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 1858 break; 1859 case VDEV_AUX_CORRUPT_DATA: 1860 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 1861 break; 1862 case VDEV_AUX_NO_REPLICAS: 1863 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 1864 break; 1865 case VDEV_AUX_BAD_GUID_SUM: 1866 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 1867 break; 1868 case VDEV_AUX_TOO_SMALL: 1869 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 1870 break; 1871 case VDEV_AUX_BAD_LABEL: 1872 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 1873 break; 1874 default: 1875 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 1876 } 1877 1878 zfs_ereport_post(class, vd->vdev_spa, 1879 vd, NULL, save_state, 0); 1880 } 1881 } 1882 1883 if (isopen) 1884 return; 1885 1886 if (vd->vdev_parent != NULL) 1887 vdev_propagate_state(vd->vdev_parent); 1888 } 1889