1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 26 */ 27 28 #include <sys/zfs_context.h> 29 #include <sys/fm/fs/zfs.h> 30 #include <sys/spa.h> 31 #include <sys/spa_impl.h> 32 #include <sys/dmu.h> 33 #include <sys/dmu_tx.h> 34 #include <sys/vdev_impl.h> 35 #include <sys/uberblock_impl.h> 36 #include <sys/metaslab.h> 37 #include <sys/metaslab_impl.h> 38 #include <sys/space_map.h> 39 #include <sys/space_reftree.h> 40 #include <sys/zio.h> 41 #include <sys/zap.h> 42 #include <sys/fs/zfs.h> 43 #include <sys/arc.h> 44 #include <sys/zil.h> 45 #include <sys/dsl_scan.h> 46 47 /* 48 * Virtual device management. 49 */ 50 51 static vdev_ops_t *vdev_ops_table[] = { 52 &vdev_root_ops, 53 &vdev_raidz_ops, 54 &vdev_mirror_ops, 55 &vdev_replacing_ops, 56 &vdev_spare_ops, 57 &vdev_disk_ops, 58 &vdev_file_ops, 59 &vdev_missing_ops, 60 &vdev_hole_ops, 61 NULL 62 }; 63 64 /* maximum scrub/resilver I/O queue per leaf vdev */ 65 int zfs_scrub_limit = 10; 66 67 /* 68 * When a vdev is added, it will be divided into approximately (but no 69 * more than) this number of metaslabs. 70 */ 71 int metaslabs_per_vdev = 200; 72 73 /* 74 * Given a vdev type, return the appropriate ops vector. 75 */ 76 static vdev_ops_t * 77 vdev_getops(const char *type) 78 { 79 vdev_ops_t *ops, **opspp; 80 81 for (opspp = vdev_ops_table; (ops = *opspp) != NULL; opspp++) 82 if (strcmp(ops->vdev_op_type, type) == 0) 83 break; 84 85 return (ops); 86 } 87 88 /* 89 * Default asize function: return the MAX of psize with the asize of 90 * all children. This is what's used by anything other than RAID-Z. 91 */ 92 uint64_t 93 vdev_default_asize(vdev_t *vd, uint64_t psize) 94 { 95 uint64_t asize = P2ROUNDUP(psize, 1ULL << vd->vdev_top->vdev_ashift); 96 uint64_t csize; 97 98 for (int c = 0; c < vd->vdev_children; c++) { 99 csize = vdev_psize_to_asize(vd->vdev_child[c], psize); 100 asize = MAX(asize, csize); 101 } 102 103 return (asize); 104 } 105 106 /* 107 * Get the minimum allocatable size. We define the allocatable size as 108 * the vdev's asize rounded to the nearest metaslab. This allows us to 109 * replace or attach devices which don't have the same physical size but 110 * can still satisfy the same number of allocations. 111 */ 112 uint64_t 113 vdev_get_min_asize(vdev_t *vd) 114 { 115 vdev_t *pvd = vd->vdev_parent; 116 117 /* 118 * If our parent is NULL (inactive spare or cache) or is the root, 119 * just return our own asize. 120 */ 121 if (pvd == NULL) 122 return (vd->vdev_asize); 123 124 /* 125 * The top-level vdev just returns the allocatable size rounded 126 * to the nearest metaslab. 127 */ 128 if (vd == vd->vdev_top) 129 return (P2ALIGN(vd->vdev_asize, 1ULL << vd->vdev_ms_shift)); 130 131 /* 132 * The allocatable space for a raidz vdev is N * sizeof(smallest child), 133 * so each child must provide at least 1/Nth of its asize. 134 */ 135 if (pvd->vdev_ops == &vdev_raidz_ops) 136 return (pvd->vdev_min_asize / pvd->vdev_children); 137 138 return (pvd->vdev_min_asize); 139 } 140 141 void 142 vdev_set_min_asize(vdev_t *vd) 143 { 144 vd->vdev_min_asize = vdev_get_min_asize(vd); 145 146 for (int c = 0; c < vd->vdev_children; c++) 147 vdev_set_min_asize(vd->vdev_child[c]); 148 } 149 150 vdev_t * 151 vdev_lookup_top(spa_t *spa, uint64_t vdev) 152 { 153 vdev_t *rvd = spa->spa_root_vdev; 154 155 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 156 157 if (vdev < rvd->vdev_children) { 158 ASSERT(rvd->vdev_child[vdev] != NULL); 159 return (rvd->vdev_child[vdev]); 160 } 161 162 return (NULL); 163 } 164 165 vdev_t * 166 vdev_lookup_by_guid(vdev_t *vd, uint64_t guid) 167 { 168 vdev_t *mvd; 169 170 if (vd->vdev_guid == guid) 171 return (vd); 172 173 for (int c = 0; c < vd->vdev_children; c++) 174 if ((mvd = vdev_lookup_by_guid(vd->vdev_child[c], guid)) != 175 NULL) 176 return (mvd); 177 178 return (NULL); 179 } 180 181 void 182 vdev_add_child(vdev_t *pvd, vdev_t *cvd) 183 { 184 size_t oldsize, newsize; 185 uint64_t id = cvd->vdev_id; 186 vdev_t **newchild; 187 188 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 189 ASSERT(cvd->vdev_parent == NULL); 190 191 cvd->vdev_parent = pvd; 192 193 if (pvd == NULL) 194 return; 195 196 ASSERT(id >= pvd->vdev_children || pvd->vdev_child[id] == NULL); 197 198 oldsize = pvd->vdev_children * sizeof (vdev_t *); 199 pvd->vdev_children = MAX(pvd->vdev_children, id + 1); 200 newsize = pvd->vdev_children * sizeof (vdev_t *); 201 202 newchild = kmem_zalloc(newsize, KM_SLEEP); 203 if (pvd->vdev_child != NULL) { 204 bcopy(pvd->vdev_child, newchild, oldsize); 205 kmem_free(pvd->vdev_child, oldsize); 206 } 207 208 pvd->vdev_child = newchild; 209 pvd->vdev_child[id] = cvd; 210 211 cvd->vdev_top = (pvd->vdev_top ? pvd->vdev_top: cvd); 212 ASSERT(cvd->vdev_top->vdev_parent->vdev_parent == NULL); 213 214 /* 215 * Walk up all ancestors to update guid sum. 216 */ 217 for (; pvd != NULL; pvd = pvd->vdev_parent) 218 pvd->vdev_guid_sum += cvd->vdev_guid_sum; 219 } 220 221 void 222 vdev_remove_child(vdev_t *pvd, vdev_t *cvd) 223 { 224 int c; 225 uint_t id = cvd->vdev_id; 226 227 ASSERT(cvd->vdev_parent == pvd); 228 229 if (pvd == NULL) 230 return; 231 232 ASSERT(id < pvd->vdev_children); 233 ASSERT(pvd->vdev_child[id] == cvd); 234 235 pvd->vdev_child[id] = NULL; 236 cvd->vdev_parent = NULL; 237 238 for (c = 0; c < pvd->vdev_children; c++) 239 if (pvd->vdev_child[c]) 240 break; 241 242 if (c == pvd->vdev_children) { 243 kmem_free(pvd->vdev_child, c * sizeof (vdev_t *)); 244 pvd->vdev_child = NULL; 245 pvd->vdev_children = 0; 246 } 247 248 /* 249 * Walk up all ancestors to update guid sum. 250 */ 251 for (; pvd != NULL; pvd = pvd->vdev_parent) 252 pvd->vdev_guid_sum -= cvd->vdev_guid_sum; 253 } 254 255 /* 256 * Remove any holes in the child array. 257 */ 258 void 259 vdev_compact_children(vdev_t *pvd) 260 { 261 vdev_t **newchild, *cvd; 262 int oldc = pvd->vdev_children; 263 int newc; 264 265 ASSERT(spa_config_held(pvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 266 267 for (int c = newc = 0; c < oldc; c++) 268 if (pvd->vdev_child[c]) 269 newc++; 270 271 newchild = kmem_alloc(newc * sizeof (vdev_t *), KM_SLEEP); 272 273 for (int c = newc = 0; c < oldc; c++) { 274 if ((cvd = pvd->vdev_child[c]) != NULL) { 275 newchild[newc] = cvd; 276 cvd->vdev_id = newc++; 277 } 278 } 279 280 kmem_free(pvd->vdev_child, oldc * sizeof (vdev_t *)); 281 pvd->vdev_child = newchild; 282 pvd->vdev_children = newc; 283 } 284 285 /* 286 * Allocate and minimally initialize a vdev_t. 287 */ 288 vdev_t * 289 vdev_alloc_common(spa_t *spa, uint_t id, uint64_t guid, vdev_ops_t *ops) 290 { 291 vdev_t *vd; 292 293 vd = kmem_zalloc(sizeof (vdev_t), KM_SLEEP); 294 295 if (spa->spa_root_vdev == NULL) { 296 ASSERT(ops == &vdev_root_ops); 297 spa->spa_root_vdev = vd; 298 spa->spa_load_guid = spa_generate_guid(NULL); 299 } 300 301 if (guid == 0 && ops != &vdev_hole_ops) { 302 if (spa->spa_root_vdev == vd) { 303 /* 304 * The root vdev's guid will also be the pool guid, 305 * which must be unique among all pools. 306 */ 307 guid = spa_generate_guid(NULL); 308 } else { 309 /* 310 * Any other vdev's guid must be unique within the pool. 311 */ 312 guid = spa_generate_guid(spa); 313 } 314 ASSERT(!spa_guid_exists(spa_guid(spa), guid)); 315 } 316 317 vd->vdev_spa = spa; 318 vd->vdev_id = id; 319 vd->vdev_guid = guid; 320 vd->vdev_guid_sum = guid; 321 vd->vdev_ops = ops; 322 vd->vdev_state = VDEV_STATE_CLOSED; 323 vd->vdev_ishole = (ops == &vdev_hole_ops); 324 325 mutex_init(&vd->vdev_dtl_lock, NULL, MUTEX_DEFAULT, NULL); 326 mutex_init(&vd->vdev_stat_lock, NULL, MUTEX_DEFAULT, NULL); 327 mutex_init(&vd->vdev_probe_lock, NULL, MUTEX_DEFAULT, NULL); 328 for (int t = 0; t < DTL_TYPES; t++) { 329 vd->vdev_dtl[t] = range_tree_create(NULL, NULL, 330 &vd->vdev_dtl_lock); 331 } 332 txg_list_create(&vd->vdev_ms_list, 333 offsetof(struct metaslab, ms_txg_node)); 334 txg_list_create(&vd->vdev_dtl_list, 335 offsetof(struct vdev, vdev_dtl_node)); 336 vd->vdev_stat.vs_timestamp = gethrtime(); 337 vdev_queue_init(vd); 338 vdev_cache_init(vd); 339 340 return (vd); 341 } 342 343 /* 344 * Allocate a new vdev. The 'alloctype' is used to control whether we are 345 * creating a new vdev or loading an existing one - the behavior is slightly 346 * different for each case. 347 */ 348 int 349 vdev_alloc(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, uint_t id, 350 int alloctype) 351 { 352 vdev_ops_t *ops; 353 char *type; 354 uint64_t guid = 0, islog, nparity; 355 vdev_t *vd; 356 357 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 358 359 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_TYPE, &type) != 0) 360 return (SET_ERROR(EINVAL)); 361 362 if ((ops = vdev_getops(type)) == NULL) 363 return (SET_ERROR(EINVAL)); 364 365 /* 366 * If this is a load, get the vdev guid from the nvlist. 367 * Otherwise, vdev_alloc_common() will generate one for us. 368 */ 369 if (alloctype == VDEV_ALLOC_LOAD) { 370 uint64_t label_id; 371 372 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ID, &label_id) || 373 label_id != id) 374 return (SET_ERROR(EINVAL)); 375 376 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 377 return (SET_ERROR(EINVAL)); 378 } else if (alloctype == VDEV_ALLOC_SPARE) { 379 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 380 return (SET_ERROR(EINVAL)); 381 } else if (alloctype == VDEV_ALLOC_L2CACHE) { 382 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 383 return (SET_ERROR(EINVAL)); 384 } else if (alloctype == VDEV_ALLOC_ROOTPOOL) { 385 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_GUID, &guid) != 0) 386 return (SET_ERROR(EINVAL)); 387 } 388 389 /* 390 * The first allocated vdev must be of type 'root'. 391 */ 392 if (ops != &vdev_root_ops && spa->spa_root_vdev == NULL) 393 return (SET_ERROR(EINVAL)); 394 395 /* 396 * Determine whether we're a log vdev. 397 */ 398 islog = 0; 399 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_LOG, &islog); 400 if (islog && spa_version(spa) < SPA_VERSION_SLOGS) 401 return (SET_ERROR(ENOTSUP)); 402 403 if (ops == &vdev_hole_ops && spa_version(spa) < SPA_VERSION_HOLES) 404 return (SET_ERROR(ENOTSUP)); 405 406 /* 407 * Set the nparity property for RAID-Z vdevs. 408 */ 409 nparity = -1ULL; 410 if (ops == &vdev_raidz_ops) { 411 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NPARITY, 412 &nparity) == 0) { 413 if (nparity == 0 || nparity > VDEV_RAIDZ_MAXPARITY) 414 return (SET_ERROR(EINVAL)); 415 /* 416 * Previous versions could only support 1 or 2 parity 417 * device. 418 */ 419 if (nparity > 1 && 420 spa_version(spa) < SPA_VERSION_RAIDZ2) 421 return (SET_ERROR(ENOTSUP)); 422 if (nparity > 2 && 423 spa_version(spa) < SPA_VERSION_RAIDZ3) 424 return (SET_ERROR(ENOTSUP)); 425 } else { 426 /* 427 * We require the parity to be specified for SPAs that 428 * support multiple parity levels. 429 */ 430 if (spa_version(spa) >= SPA_VERSION_RAIDZ2) 431 return (SET_ERROR(EINVAL)); 432 /* 433 * Otherwise, we default to 1 parity device for RAID-Z. 434 */ 435 nparity = 1; 436 } 437 } else { 438 nparity = 0; 439 } 440 ASSERT(nparity != -1ULL); 441 442 vd = vdev_alloc_common(spa, id, guid, ops); 443 444 vd->vdev_islog = islog; 445 vd->vdev_nparity = nparity; 446 447 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PATH, &vd->vdev_path) == 0) 448 vd->vdev_path = spa_strdup(vd->vdev_path); 449 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_DEVID, &vd->vdev_devid) == 0) 450 vd->vdev_devid = spa_strdup(vd->vdev_devid); 451 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_PHYS_PATH, 452 &vd->vdev_physpath) == 0) 453 vd->vdev_physpath = spa_strdup(vd->vdev_physpath); 454 if (nvlist_lookup_string(nv, ZPOOL_CONFIG_FRU, &vd->vdev_fru) == 0) 455 vd->vdev_fru = spa_strdup(vd->vdev_fru); 456 457 /* 458 * Set the whole_disk property. If it's not specified, leave the value 459 * as -1. 460 */ 461 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 462 &vd->vdev_wholedisk) != 0) 463 vd->vdev_wholedisk = -1ULL; 464 465 /* 466 * Look for the 'not present' flag. This will only be set if the device 467 * was not present at the time of import. 468 */ 469 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 470 &vd->vdev_not_present); 471 472 /* 473 * Get the alignment requirement. 474 */ 475 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASHIFT, &vd->vdev_ashift); 476 477 /* 478 * Retrieve the vdev creation time. 479 */ 480 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 481 &vd->vdev_crtxg); 482 483 /* 484 * If we're a top-level vdev, try to load the allocation parameters. 485 */ 486 if (parent && !parent->vdev_parent && 487 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_SPLIT)) { 488 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 489 &vd->vdev_ms_array); 490 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 491 &vd->vdev_ms_shift); 492 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_ASIZE, 493 &vd->vdev_asize); 494 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVING, 495 &vd->vdev_removing); 496 } 497 498 if (parent && !parent->vdev_parent && alloctype != VDEV_ALLOC_ATTACH) { 499 ASSERT(alloctype == VDEV_ALLOC_LOAD || 500 alloctype == VDEV_ALLOC_ADD || 501 alloctype == VDEV_ALLOC_SPLIT || 502 alloctype == VDEV_ALLOC_ROOTPOOL); 503 vd->vdev_mg = metaslab_group_create(islog ? 504 spa_log_class(spa) : spa_normal_class(spa), vd); 505 } 506 507 /* 508 * If we're a leaf vdev, try to load the DTL object and other state. 509 */ 510 if (vd->vdev_ops->vdev_op_leaf && 511 (alloctype == VDEV_ALLOC_LOAD || alloctype == VDEV_ALLOC_L2CACHE || 512 alloctype == VDEV_ALLOC_ROOTPOOL)) { 513 if (alloctype == VDEV_ALLOC_LOAD) { 514 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DTL, 515 &vd->vdev_dtl_object); 516 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_UNSPARE, 517 &vd->vdev_unspare); 518 } 519 520 if (alloctype == VDEV_ALLOC_ROOTPOOL) { 521 uint64_t spare = 0; 522 523 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 524 &spare) == 0 && spare) 525 spa_spare_add(vd); 526 } 527 528 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, 529 &vd->vdev_offline); 530 531 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_RESILVER_TXG, 532 &vd->vdev_resilver_txg); 533 534 /* 535 * When importing a pool, we want to ignore the persistent fault 536 * state, as the diagnosis made on another system may not be 537 * valid in the current context. Local vdevs will 538 * remain in the faulted state. 539 */ 540 if (spa_load_state(spa) == SPA_LOAD_OPEN) { 541 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, 542 &vd->vdev_faulted); 543 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_DEGRADED, 544 &vd->vdev_degraded); 545 (void) nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, 546 &vd->vdev_removed); 547 548 if (vd->vdev_faulted || vd->vdev_degraded) { 549 char *aux; 550 551 vd->vdev_label_aux = 552 VDEV_AUX_ERR_EXCEEDED; 553 if (nvlist_lookup_string(nv, 554 ZPOOL_CONFIG_AUX_STATE, &aux) == 0 && 555 strcmp(aux, "external") == 0) 556 vd->vdev_label_aux = VDEV_AUX_EXTERNAL; 557 } 558 } 559 } 560 561 /* 562 * Add ourselves to the parent's list of children. 563 */ 564 vdev_add_child(parent, vd); 565 566 *vdp = vd; 567 568 return (0); 569 } 570 571 void 572 vdev_free(vdev_t *vd) 573 { 574 spa_t *spa = vd->vdev_spa; 575 576 /* 577 * vdev_free() implies closing the vdev first. This is simpler than 578 * trying to ensure complicated semantics for all callers. 579 */ 580 vdev_close(vd); 581 582 ASSERT(!list_link_active(&vd->vdev_config_dirty_node)); 583 ASSERT(!list_link_active(&vd->vdev_state_dirty_node)); 584 585 /* 586 * Free all children. 587 */ 588 for (int c = 0; c < vd->vdev_children; c++) 589 vdev_free(vd->vdev_child[c]); 590 591 ASSERT(vd->vdev_child == NULL); 592 ASSERT(vd->vdev_guid_sum == vd->vdev_guid); 593 594 /* 595 * Discard allocation state. 596 */ 597 if (vd->vdev_mg != NULL) { 598 vdev_metaslab_fini(vd); 599 metaslab_group_destroy(vd->vdev_mg); 600 } 601 602 ASSERT0(vd->vdev_stat.vs_space); 603 ASSERT0(vd->vdev_stat.vs_dspace); 604 ASSERT0(vd->vdev_stat.vs_alloc); 605 606 /* 607 * Remove this vdev from its parent's child list. 608 */ 609 vdev_remove_child(vd->vdev_parent, vd); 610 611 ASSERT(vd->vdev_parent == NULL); 612 613 /* 614 * Clean up vdev structure. 615 */ 616 vdev_queue_fini(vd); 617 vdev_cache_fini(vd); 618 619 if (vd->vdev_path) 620 spa_strfree(vd->vdev_path); 621 if (vd->vdev_devid) 622 spa_strfree(vd->vdev_devid); 623 if (vd->vdev_physpath) 624 spa_strfree(vd->vdev_physpath); 625 if (vd->vdev_fru) 626 spa_strfree(vd->vdev_fru); 627 628 if (vd->vdev_isspare) 629 spa_spare_remove(vd); 630 if (vd->vdev_isl2cache) 631 spa_l2cache_remove(vd); 632 633 txg_list_destroy(&vd->vdev_ms_list); 634 txg_list_destroy(&vd->vdev_dtl_list); 635 636 mutex_enter(&vd->vdev_dtl_lock); 637 space_map_close(vd->vdev_dtl_sm); 638 for (int t = 0; t < DTL_TYPES; t++) { 639 range_tree_vacate(vd->vdev_dtl[t], NULL, NULL); 640 range_tree_destroy(vd->vdev_dtl[t]); 641 } 642 mutex_exit(&vd->vdev_dtl_lock); 643 644 mutex_destroy(&vd->vdev_dtl_lock); 645 mutex_destroy(&vd->vdev_stat_lock); 646 mutex_destroy(&vd->vdev_probe_lock); 647 648 if (vd == spa->spa_root_vdev) 649 spa->spa_root_vdev = NULL; 650 651 kmem_free(vd, sizeof (vdev_t)); 652 } 653 654 /* 655 * Transfer top-level vdev state from svd to tvd. 656 */ 657 static void 658 vdev_top_transfer(vdev_t *svd, vdev_t *tvd) 659 { 660 spa_t *spa = svd->vdev_spa; 661 metaslab_t *msp; 662 vdev_t *vd; 663 int t; 664 665 ASSERT(tvd == tvd->vdev_top); 666 667 tvd->vdev_ms_array = svd->vdev_ms_array; 668 tvd->vdev_ms_shift = svd->vdev_ms_shift; 669 tvd->vdev_ms_count = svd->vdev_ms_count; 670 671 svd->vdev_ms_array = 0; 672 svd->vdev_ms_shift = 0; 673 svd->vdev_ms_count = 0; 674 675 if (tvd->vdev_mg) 676 ASSERT3P(tvd->vdev_mg, ==, svd->vdev_mg); 677 tvd->vdev_mg = svd->vdev_mg; 678 tvd->vdev_ms = svd->vdev_ms; 679 680 svd->vdev_mg = NULL; 681 svd->vdev_ms = NULL; 682 683 if (tvd->vdev_mg != NULL) 684 tvd->vdev_mg->mg_vd = tvd; 685 686 tvd->vdev_stat.vs_alloc = svd->vdev_stat.vs_alloc; 687 tvd->vdev_stat.vs_space = svd->vdev_stat.vs_space; 688 tvd->vdev_stat.vs_dspace = svd->vdev_stat.vs_dspace; 689 690 svd->vdev_stat.vs_alloc = 0; 691 svd->vdev_stat.vs_space = 0; 692 svd->vdev_stat.vs_dspace = 0; 693 694 for (t = 0; t < TXG_SIZE; t++) { 695 while ((msp = txg_list_remove(&svd->vdev_ms_list, t)) != NULL) 696 (void) txg_list_add(&tvd->vdev_ms_list, msp, t); 697 while ((vd = txg_list_remove(&svd->vdev_dtl_list, t)) != NULL) 698 (void) txg_list_add(&tvd->vdev_dtl_list, vd, t); 699 if (txg_list_remove_this(&spa->spa_vdev_txg_list, svd, t)) 700 (void) txg_list_add(&spa->spa_vdev_txg_list, tvd, t); 701 } 702 703 if (list_link_active(&svd->vdev_config_dirty_node)) { 704 vdev_config_clean(svd); 705 vdev_config_dirty(tvd); 706 } 707 708 if (list_link_active(&svd->vdev_state_dirty_node)) { 709 vdev_state_clean(svd); 710 vdev_state_dirty(tvd); 711 } 712 713 tvd->vdev_deflate_ratio = svd->vdev_deflate_ratio; 714 svd->vdev_deflate_ratio = 0; 715 716 tvd->vdev_islog = svd->vdev_islog; 717 svd->vdev_islog = 0; 718 } 719 720 static void 721 vdev_top_update(vdev_t *tvd, vdev_t *vd) 722 { 723 if (vd == NULL) 724 return; 725 726 vd->vdev_top = tvd; 727 728 for (int c = 0; c < vd->vdev_children; c++) 729 vdev_top_update(tvd, vd->vdev_child[c]); 730 } 731 732 /* 733 * Add a mirror/replacing vdev above an existing vdev. 734 */ 735 vdev_t * 736 vdev_add_parent(vdev_t *cvd, vdev_ops_t *ops) 737 { 738 spa_t *spa = cvd->vdev_spa; 739 vdev_t *pvd = cvd->vdev_parent; 740 vdev_t *mvd; 741 742 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 743 744 mvd = vdev_alloc_common(spa, cvd->vdev_id, 0, ops); 745 746 mvd->vdev_asize = cvd->vdev_asize; 747 mvd->vdev_min_asize = cvd->vdev_min_asize; 748 mvd->vdev_max_asize = cvd->vdev_max_asize; 749 mvd->vdev_ashift = cvd->vdev_ashift; 750 mvd->vdev_state = cvd->vdev_state; 751 mvd->vdev_crtxg = cvd->vdev_crtxg; 752 753 vdev_remove_child(pvd, cvd); 754 vdev_add_child(pvd, mvd); 755 cvd->vdev_id = mvd->vdev_children; 756 vdev_add_child(mvd, cvd); 757 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 758 759 if (mvd == mvd->vdev_top) 760 vdev_top_transfer(cvd, mvd); 761 762 return (mvd); 763 } 764 765 /* 766 * Remove a 1-way mirror/replacing vdev from the tree. 767 */ 768 void 769 vdev_remove_parent(vdev_t *cvd) 770 { 771 vdev_t *mvd = cvd->vdev_parent; 772 vdev_t *pvd = mvd->vdev_parent; 773 774 ASSERT(spa_config_held(cvd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 775 776 ASSERT(mvd->vdev_children == 1); 777 ASSERT(mvd->vdev_ops == &vdev_mirror_ops || 778 mvd->vdev_ops == &vdev_replacing_ops || 779 mvd->vdev_ops == &vdev_spare_ops); 780 cvd->vdev_ashift = mvd->vdev_ashift; 781 782 vdev_remove_child(mvd, cvd); 783 vdev_remove_child(pvd, mvd); 784 785 /* 786 * If cvd will replace mvd as a top-level vdev, preserve mvd's guid. 787 * Otherwise, we could have detached an offline device, and when we 788 * go to import the pool we'll think we have two top-level vdevs, 789 * instead of a different version of the same top-level vdev. 790 */ 791 if (mvd->vdev_top == mvd) { 792 uint64_t guid_delta = mvd->vdev_guid - cvd->vdev_guid; 793 cvd->vdev_orig_guid = cvd->vdev_guid; 794 cvd->vdev_guid += guid_delta; 795 cvd->vdev_guid_sum += guid_delta; 796 } 797 cvd->vdev_id = mvd->vdev_id; 798 vdev_add_child(pvd, cvd); 799 vdev_top_update(cvd->vdev_top, cvd->vdev_top); 800 801 if (cvd == cvd->vdev_top) 802 vdev_top_transfer(mvd, cvd); 803 804 ASSERT(mvd->vdev_children == 0); 805 vdev_free(mvd); 806 } 807 808 int 809 vdev_metaslab_init(vdev_t *vd, uint64_t txg) 810 { 811 spa_t *spa = vd->vdev_spa; 812 objset_t *mos = spa->spa_meta_objset; 813 uint64_t m; 814 uint64_t oldc = vd->vdev_ms_count; 815 uint64_t newc = vd->vdev_asize >> vd->vdev_ms_shift; 816 metaslab_t **mspp; 817 int error; 818 819 ASSERT(txg == 0 || spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 820 821 /* 822 * This vdev is not being allocated from yet or is a hole. 823 */ 824 if (vd->vdev_ms_shift == 0) 825 return (0); 826 827 ASSERT(!vd->vdev_ishole); 828 829 /* 830 * Compute the raidz-deflation ratio. Note, we hard-code 831 * in 128k (1 << 17) because it is the "typical" blocksize. 832 * Even though SPA_MAXBLOCKSIZE changed, this algorithm can not change, 833 * otherwise it would inconsistently account for existing bp's. 834 */ 835 vd->vdev_deflate_ratio = (1 << 17) / 836 (vdev_psize_to_asize(vd, 1 << 17) >> SPA_MINBLOCKSHIFT); 837 838 ASSERT(oldc <= newc); 839 840 mspp = kmem_zalloc(newc * sizeof (*mspp), KM_SLEEP); 841 842 if (oldc != 0) { 843 bcopy(vd->vdev_ms, mspp, oldc * sizeof (*mspp)); 844 kmem_free(vd->vdev_ms, oldc * sizeof (*mspp)); 845 } 846 847 vd->vdev_ms = mspp; 848 vd->vdev_ms_count = newc; 849 850 for (m = oldc; m < newc; m++) { 851 uint64_t object = 0; 852 853 if (txg == 0) { 854 error = dmu_read(mos, vd->vdev_ms_array, 855 m * sizeof (uint64_t), sizeof (uint64_t), &object, 856 DMU_READ_PREFETCH); 857 if (error) 858 return (error); 859 } 860 vd->vdev_ms[m] = metaslab_init(vd->vdev_mg, m, object, txg); 861 } 862 863 if (txg == 0) 864 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_WRITER); 865 866 /* 867 * If the vdev is being removed we don't activate 868 * the metaslabs since we want to ensure that no new 869 * allocations are performed on this device. 870 */ 871 if (oldc == 0 && !vd->vdev_removing) 872 metaslab_group_activate(vd->vdev_mg); 873 874 if (txg == 0) 875 spa_config_exit(spa, SCL_ALLOC, FTAG); 876 877 return (0); 878 } 879 880 void 881 vdev_metaslab_fini(vdev_t *vd) 882 { 883 uint64_t m; 884 uint64_t count = vd->vdev_ms_count; 885 886 if (vd->vdev_ms != NULL) { 887 metaslab_group_passivate(vd->vdev_mg); 888 for (m = 0; m < count; m++) { 889 metaslab_t *msp = vd->vdev_ms[m]; 890 891 if (msp != NULL) 892 metaslab_fini(msp); 893 } 894 kmem_free(vd->vdev_ms, count * sizeof (metaslab_t *)); 895 vd->vdev_ms = NULL; 896 } 897 } 898 899 typedef struct vdev_probe_stats { 900 boolean_t vps_readable; 901 boolean_t vps_writeable; 902 int vps_flags; 903 } vdev_probe_stats_t; 904 905 static void 906 vdev_probe_done(zio_t *zio) 907 { 908 spa_t *spa = zio->io_spa; 909 vdev_t *vd = zio->io_vd; 910 vdev_probe_stats_t *vps = zio->io_private; 911 912 ASSERT(vd->vdev_probe_zio != NULL); 913 914 if (zio->io_type == ZIO_TYPE_READ) { 915 if (zio->io_error == 0) 916 vps->vps_readable = 1; 917 if (zio->io_error == 0 && spa_writeable(spa)) { 918 zio_nowait(zio_write_phys(vd->vdev_probe_zio, vd, 919 zio->io_offset, zio->io_size, zio->io_data, 920 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 921 ZIO_PRIORITY_SYNC_WRITE, vps->vps_flags, B_TRUE)); 922 } else { 923 zio_buf_free(zio->io_data, zio->io_size); 924 } 925 } else if (zio->io_type == ZIO_TYPE_WRITE) { 926 if (zio->io_error == 0) 927 vps->vps_writeable = 1; 928 zio_buf_free(zio->io_data, zio->io_size); 929 } else if (zio->io_type == ZIO_TYPE_NULL) { 930 zio_t *pio; 931 932 vd->vdev_cant_read |= !vps->vps_readable; 933 vd->vdev_cant_write |= !vps->vps_writeable; 934 935 if (vdev_readable(vd) && 936 (vdev_writeable(vd) || !spa_writeable(spa))) { 937 zio->io_error = 0; 938 } else { 939 ASSERT(zio->io_error != 0); 940 zfs_ereport_post(FM_EREPORT_ZFS_PROBE_FAILURE, 941 spa, vd, NULL, 0, 0); 942 zio->io_error = SET_ERROR(ENXIO); 943 } 944 945 mutex_enter(&vd->vdev_probe_lock); 946 ASSERT(vd->vdev_probe_zio == zio); 947 vd->vdev_probe_zio = NULL; 948 mutex_exit(&vd->vdev_probe_lock); 949 950 while ((pio = zio_walk_parents(zio)) != NULL) 951 if (!vdev_accessible(vd, pio)) 952 pio->io_error = SET_ERROR(ENXIO); 953 954 kmem_free(vps, sizeof (*vps)); 955 } 956 } 957 958 /* 959 * Determine whether this device is accessible. 960 * 961 * Read and write to several known locations: the pad regions of each 962 * vdev label but the first, which we leave alone in case it contains 963 * a VTOC. 964 */ 965 zio_t * 966 vdev_probe(vdev_t *vd, zio_t *zio) 967 { 968 spa_t *spa = vd->vdev_spa; 969 vdev_probe_stats_t *vps = NULL; 970 zio_t *pio; 971 972 ASSERT(vd->vdev_ops->vdev_op_leaf); 973 974 /* 975 * Don't probe the probe. 976 */ 977 if (zio && (zio->io_flags & ZIO_FLAG_PROBE)) 978 return (NULL); 979 980 /* 981 * To prevent 'probe storms' when a device fails, we create 982 * just one probe i/o at a time. All zios that want to probe 983 * this vdev will become parents of the probe io. 984 */ 985 mutex_enter(&vd->vdev_probe_lock); 986 987 if ((pio = vd->vdev_probe_zio) == NULL) { 988 vps = kmem_zalloc(sizeof (*vps), KM_SLEEP); 989 990 vps->vps_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_PROBE | 991 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE | 992 ZIO_FLAG_TRYHARD; 993 994 if (spa_config_held(spa, SCL_ZIO, RW_WRITER)) { 995 /* 996 * vdev_cant_read and vdev_cant_write can only 997 * transition from TRUE to FALSE when we have the 998 * SCL_ZIO lock as writer; otherwise they can only 999 * transition from FALSE to TRUE. This ensures that 1000 * any zio looking at these values can assume that 1001 * failures persist for the life of the I/O. That's 1002 * important because when a device has intermittent 1003 * connectivity problems, we want to ensure that 1004 * they're ascribed to the device (ENXIO) and not 1005 * the zio (EIO). 1006 * 1007 * Since we hold SCL_ZIO as writer here, clear both 1008 * values so the probe can reevaluate from first 1009 * principles. 1010 */ 1011 vps->vps_flags |= ZIO_FLAG_CONFIG_WRITER; 1012 vd->vdev_cant_read = B_FALSE; 1013 vd->vdev_cant_write = B_FALSE; 1014 } 1015 1016 vd->vdev_probe_zio = pio = zio_null(NULL, spa, vd, 1017 vdev_probe_done, vps, 1018 vps->vps_flags | ZIO_FLAG_DONT_PROPAGATE); 1019 1020 /* 1021 * We can't change the vdev state in this context, so we 1022 * kick off an async task to do it on our behalf. 1023 */ 1024 if (zio != NULL) { 1025 vd->vdev_probe_wanted = B_TRUE; 1026 spa_async_request(spa, SPA_ASYNC_PROBE); 1027 } 1028 } 1029 1030 if (zio != NULL) 1031 zio_add_child(zio, pio); 1032 1033 mutex_exit(&vd->vdev_probe_lock); 1034 1035 if (vps == NULL) { 1036 ASSERT(zio != NULL); 1037 return (NULL); 1038 } 1039 1040 for (int l = 1; l < VDEV_LABELS; l++) { 1041 zio_nowait(zio_read_phys(pio, vd, 1042 vdev_label_offset(vd->vdev_psize, l, 1043 offsetof(vdev_label_t, vl_pad2)), 1044 VDEV_PAD_SIZE, zio_buf_alloc(VDEV_PAD_SIZE), 1045 ZIO_CHECKSUM_OFF, vdev_probe_done, vps, 1046 ZIO_PRIORITY_SYNC_READ, vps->vps_flags, B_TRUE)); 1047 } 1048 1049 if (zio == NULL) 1050 return (pio); 1051 1052 zio_nowait(pio); 1053 return (NULL); 1054 } 1055 1056 static void 1057 vdev_open_child(void *arg) 1058 { 1059 vdev_t *vd = arg; 1060 1061 vd->vdev_open_thread = curthread; 1062 vd->vdev_open_error = vdev_open(vd); 1063 vd->vdev_open_thread = NULL; 1064 } 1065 1066 boolean_t 1067 vdev_uses_zvols(vdev_t *vd) 1068 { 1069 if (vd->vdev_path && strncmp(vd->vdev_path, ZVOL_DIR, 1070 strlen(ZVOL_DIR)) == 0) 1071 return (B_TRUE); 1072 for (int c = 0; c < vd->vdev_children; c++) 1073 if (vdev_uses_zvols(vd->vdev_child[c])) 1074 return (B_TRUE); 1075 return (B_FALSE); 1076 } 1077 1078 void 1079 vdev_open_children(vdev_t *vd) 1080 { 1081 taskq_t *tq; 1082 int children = vd->vdev_children; 1083 1084 /* 1085 * in order to handle pools on top of zvols, do the opens 1086 * in a single thread so that the same thread holds the 1087 * spa_namespace_lock 1088 */ 1089 if (vdev_uses_zvols(vd)) { 1090 for (int c = 0; c < children; c++) 1091 vd->vdev_child[c]->vdev_open_error = 1092 vdev_open(vd->vdev_child[c]); 1093 return; 1094 } 1095 tq = taskq_create("vdev_open", children, minclsyspri, 1096 children, children, TASKQ_PREPOPULATE); 1097 1098 for (int c = 0; c < children; c++) 1099 VERIFY(taskq_dispatch(tq, vdev_open_child, vd->vdev_child[c], 1100 TQ_SLEEP) != NULL); 1101 1102 taskq_destroy(tq); 1103 } 1104 1105 /* 1106 * Prepare a virtual device for access. 1107 */ 1108 int 1109 vdev_open(vdev_t *vd) 1110 { 1111 spa_t *spa = vd->vdev_spa; 1112 int error; 1113 uint64_t osize = 0; 1114 uint64_t max_osize = 0; 1115 uint64_t asize, max_asize, psize; 1116 uint64_t ashift = 0; 1117 1118 ASSERT(vd->vdev_open_thread == curthread || 1119 spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1120 ASSERT(vd->vdev_state == VDEV_STATE_CLOSED || 1121 vd->vdev_state == VDEV_STATE_CANT_OPEN || 1122 vd->vdev_state == VDEV_STATE_OFFLINE); 1123 1124 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1125 vd->vdev_cant_read = B_FALSE; 1126 vd->vdev_cant_write = B_FALSE; 1127 vd->vdev_min_asize = vdev_get_min_asize(vd); 1128 1129 /* 1130 * If this vdev is not removed, check its fault status. If it's 1131 * faulted, bail out of the open. 1132 */ 1133 if (!vd->vdev_removed && vd->vdev_faulted) { 1134 ASSERT(vd->vdev_children == 0); 1135 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1136 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1137 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1138 vd->vdev_label_aux); 1139 return (SET_ERROR(ENXIO)); 1140 } else if (vd->vdev_offline) { 1141 ASSERT(vd->vdev_children == 0); 1142 vdev_set_state(vd, B_TRUE, VDEV_STATE_OFFLINE, VDEV_AUX_NONE); 1143 return (SET_ERROR(ENXIO)); 1144 } 1145 1146 error = vd->vdev_ops->vdev_op_open(vd, &osize, &max_osize, &ashift); 1147 1148 /* 1149 * Reset the vdev_reopening flag so that we actually close 1150 * the vdev on error. 1151 */ 1152 vd->vdev_reopening = B_FALSE; 1153 if (zio_injection_enabled && error == 0) 1154 error = zio_handle_device_injection(vd, NULL, ENXIO); 1155 1156 if (error) { 1157 if (vd->vdev_removed && 1158 vd->vdev_stat.vs_aux != VDEV_AUX_OPEN_FAILED) 1159 vd->vdev_removed = B_FALSE; 1160 1161 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1162 vd->vdev_stat.vs_aux); 1163 return (error); 1164 } 1165 1166 vd->vdev_removed = B_FALSE; 1167 1168 /* 1169 * Recheck the faulted flag now that we have confirmed that 1170 * the vdev is accessible. If we're faulted, bail. 1171 */ 1172 if (vd->vdev_faulted) { 1173 ASSERT(vd->vdev_children == 0); 1174 ASSERT(vd->vdev_label_aux == VDEV_AUX_ERR_EXCEEDED || 1175 vd->vdev_label_aux == VDEV_AUX_EXTERNAL); 1176 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1177 vd->vdev_label_aux); 1178 return (SET_ERROR(ENXIO)); 1179 } 1180 1181 if (vd->vdev_degraded) { 1182 ASSERT(vd->vdev_children == 0); 1183 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1184 VDEV_AUX_ERR_EXCEEDED); 1185 } else { 1186 vdev_set_state(vd, B_TRUE, VDEV_STATE_HEALTHY, 0); 1187 } 1188 1189 /* 1190 * For hole or missing vdevs we just return success. 1191 */ 1192 if (vd->vdev_ishole || vd->vdev_ops == &vdev_missing_ops) 1193 return (0); 1194 1195 for (int c = 0; c < vd->vdev_children; c++) { 1196 if (vd->vdev_child[c]->vdev_state != VDEV_STATE_HEALTHY) { 1197 vdev_set_state(vd, B_TRUE, VDEV_STATE_DEGRADED, 1198 VDEV_AUX_NONE); 1199 break; 1200 } 1201 } 1202 1203 osize = P2ALIGN(osize, (uint64_t)sizeof (vdev_label_t)); 1204 max_osize = P2ALIGN(max_osize, (uint64_t)sizeof (vdev_label_t)); 1205 1206 if (vd->vdev_children == 0) { 1207 if (osize < SPA_MINDEVSIZE) { 1208 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1209 VDEV_AUX_TOO_SMALL); 1210 return (SET_ERROR(EOVERFLOW)); 1211 } 1212 psize = osize; 1213 asize = osize - (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE); 1214 max_asize = max_osize - (VDEV_LABEL_START_SIZE + 1215 VDEV_LABEL_END_SIZE); 1216 } else { 1217 if (vd->vdev_parent != NULL && osize < SPA_MINDEVSIZE - 1218 (VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE)) { 1219 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1220 VDEV_AUX_TOO_SMALL); 1221 return (SET_ERROR(EOVERFLOW)); 1222 } 1223 psize = 0; 1224 asize = osize; 1225 max_asize = max_osize; 1226 } 1227 1228 vd->vdev_psize = psize; 1229 1230 /* 1231 * Make sure the allocatable size hasn't shrunk. 1232 */ 1233 if (asize < vd->vdev_min_asize) { 1234 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1235 VDEV_AUX_BAD_LABEL); 1236 return (SET_ERROR(EINVAL)); 1237 } 1238 1239 if (vd->vdev_asize == 0) { 1240 /* 1241 * This is the first-ever open, so use the computed values. 1242 * For testing purposes, a higher ashift can be requested. 1243 */ 1244 vd->vdev_asize = asize; 1245 vd->vdev_max_asize = max_asize; 1246 vd->vdev_ashift = MAX(ashift, vd->vdev_ashift); 1247 } else { 1248 /* 1249 * Detect if the alignment requirement has increased. 1250 * We don't want to make the pool unavailable, just 1251 * issue a warning instead. 1252 */ 1253 if (ashift > vd->vdev_top->vdev_ashift && 1254 vd->vdev_ops->vdev_op_leaf) { 1255 cmn_err(CE_WARN, 1256 "Disk, '%s', has a block alignment that is " 1257 "larger than the pool's alignment\n", 1258 vd->vdev_path); 1259 } 1260 vd->vdev_max_asize = max_asize; 1261 } 1262 1263 /* 1264 * If all children are healthy and the asize has increased, 1265 * then we've experienced dynamic LUN growth. If automatic 1266 * expansion is enabled then use the additional space. 1267 */ 1268 if (vd->vdev_state == VDEV_STATE_HEALTHY && asize > vd->vdev_asize && 1269 (vd->vdev_expanding || spa->spa_autoexpand)) 1270 vd->vdev_asize = asize; 1271 1272 vdev_set_min_asize(vd); 1273 1274 /* 1275 * Ensure we can issue some IO before declaring the 1276 * vdev open for business. 1277 */ 1278 if (vd->vdev_ops->vdev_op_leaf && 1279 (error = zio_wait(vdev_probe(vd, NULL))) != 0) { 1280 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED, 1281 VDEV_AUX_ERR_EXCEEDED); 1282 return (error); 1283 } 1284 1285 /* 1286 * If a leaf vdev has a DTL, and seems healthy, then kick off a 1287 * resilver. But don't do this if we are doing a reopen for a scrub, 1288 * since this would just restart the scrub we are already doing. 1289 */ 1290 if (vd->vdev_ops->vdev_op_leaf && !spa->spa_scrub_reopen && 1291 vdev_resilver_needed(vd, NULL, NULL)) 1292 spa_async_request(spa, SPA_ASYNC_RESILVER); 1293 1294 return (0); 1295 } 1296 1297 /* 1298 * Called once the vdevs are all opened, this routine validates the label 1299 * contents. This needs to be done before vdev_load() so that we don't 1300 * inadvertently do repair I/Os to the wrong device. 1301 * 1302 * If 'strict' is false ignore the spa guid check. This is necessary because 1303 * if the machine crashed during a re-guid the new guid might have been written 1304 * to all of the vdev labels, but not the cached config. The strict check 1305 * will be performed when the pool is opened again using the mos config. 1306 * 1307 * This function will only return failure if one of the vdevs indicates that it 1308 * has since been destroyed or exported. This is only possible if 1309 * /etc/zfs/zpool.cache was readonly at the time. Otherwise, the vdev state 1310 * will be updated but the function will return 0. 1311 */ 1312 int 1313 vdev_validate(vdev_t *vd, boolean_t strict) 1314 { 1315 spa_t *spa = vd->vdev_spa; 1316 nvlist_t *label; 1317 uint64_t guid = 0, top_guid; 1318 uint64_t state; 1319 1320 for (int c = 0; c < vd->vdev_children; c++) 1321 if (vdev_validate(vd->vdev_child[c], strict) != 0) 1322 return (SET_ERROR(EBADF)); 1323 1324 /* 1325 * If the device has already failed, or was marked offline, don't do 1326 * any further validation. Otherwise, label I/O will fail and we will 1327 * overwrite the previous state. 1328 */ 1329 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 1330 uint64_t aux_guid = 0; 1331 nvlist_t *nvl; 1332 uint64_t txg = spa_last_synced_txg(spa) != 0 ? 1333 spa_last_synced_txg(spa) : -1ULL; 1334 1335 if ((label = vdev_label_read_config(vd, txg)) == NULL) { 1336 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 1337 VDEV_AUX_BAD_LABEL); 1338 return (0); 1339 } 1340 1341 /* 1342 * Determine if this vdev has been split off into another 1343 * pool. If so, then refuse to open it. 1344 */ 1345 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_SPLIT_GUID, 1346 &aux_guid) == 0 && aux_guid == spa_guid(spa)) { 1347 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1348 VDEV_AUX_SPLIT_POOL); 1349 nvlist_free(label); 1350 return (0); 1351 } 1352 1353 if (strict && (nvlist_lookup_uint64(label, 1354 ZPOOL_CONFIG_POOL_GUID, &guid) != 0 || 1355 guid != spa_guid(spa))) { 1356 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1357 VDEV_AUX_CORRUPT_DATA); 1358 nvlist_free(label); 1359 return (0); 1360 } 1361 1362 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_VDEV_TREE, &nvl) 1363 != 0 || nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_ORIG_GUID, 1364 &aux_guid) != 0) 1365 aux_guid = 0; 1366 1367 /* 1368 * If this vdev just became a top-level vdev because its 1369 * sibling was detached, it will have adopted the parent's 1370 * vdev guid -- but the label may or may not be on disk yet. 1371 * Fortunately, either version of the label will have the 1372 * same top guid, so if we're a top-level vdev, we can 1373 * safely compare to that instead. 1374 * 1375 * If we split this vdev off instead, then we also check the 1376 * original pool's guid. We don't want to consider the vdev 1377 * corrupt if it is partway through a split operation. 1378 */ 1379 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 1380 &guid) != 0 || 1381 nvlist_lookup_uint64(label, ZPOOL_CONFIG_TOP_GUID, 1382 &top_guid) != 0 || 1383 ((vd->vdev_guid != guid && vd->vdev_guid != aux_guid) && 1384 (vd->vdev_guid != top_guid || vd != vd->vdev_top))) { 1385 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1386 VDEV_AUX_CORRUPT_DATA); 1387 nvlist_free(label); 1388 return (0); 1389 } 1390 1391 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 1392 &state) != 0) { 1393 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 1394 VDEV_AUX_CORRUPT_DATA); 1395 nvlist_free(label); 1396 return (0); 1397 } 1398 1399 nvlist_free(label); 1400 1401 /* 1402 * If this is a verbatim import, no need to check the 1403 * state of the pool. 1404 */ 1405 if (!(spa->spa_import_flags & ZFS_IMPORT_VERBATIM) && 1406 spa_load_state(spa) == SPA_LOAD_OPEN && 1407 state != POOL_STATE_ACTIVE) 1408 return (SET_ERROR(EBADF)); 1409 1410 /* 1411 * If we were able to open and validate a vdev that was 1412 * previously marked permanently unavailable, clear that state 1413 * now. 1414 */ 1415 if (vd->vdev_not_present) 1416 vd->vdev_not_present = 0; 1417 } 1418 1419 return (0); 1420 } 1421 1422 /* 1423 * Close a virtual device. 1424 */ 1425 void 1426 vdev_close(vdev_t *vd) 1427 { 1428 spa_t *spa = vd->vdev_spa; 1429 vdev_t *pvd = vd->vdev_parent; 1430 1431 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1432 1433 /* 1434 * If our parent is reopening, then we are as well, unless we are 1435 * going offline. 1436 */ 1437 if (pvd != NULL && pvd->vdev_reopening) 1438 vd->vdev_reopening = (pvd->vdev_reopening && !vd->vdev_offline); 1439 1440 vd->vdev_ops->vdev_op_close(vd); 1441 1442 vdev_cache_purge(vd); 1443 1444 /* 1445 * We record the previous state before we close it, so that if we are 1446 * doing a reopen(), we don't generate FMA ereports if we notice that 1447 * it's still faulted. 1448 */ 1449 vd->vdev_prevstate = vd->vdev_state; 1450 1451 if (vd->vdev_offline) 1452 vd->vdev_state = VDEV_STATE_OFFLINE; 1453 else 1454 vd->vdev_state = VDEV_STATE_CLOSED; 1455 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 1456 } 1457 1458 void 1459 vdev_hold(vdev_t *vd) 1460 { 1461 spa_t *spa = vd->vdev_spa; 1462 1463 ASSERT(spa_is_root(spa)); 1464 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1465 return; 1466 1467 for (int c = 0; c < vd->vdev_children; c++) 1468 vdev_hold(vd->vdev_child[c]); 1469 1470 if (vd->vdev_ops->vdev_op_leaf) 1471 vd->vdev_ops->vdev_op_hold(vd); 1472 } 1473 1474 void 1475 vdev_rele(vdev_t *vd) 1476 { 1477 spa_t *spa = vd->vdev_spa; 1478 1479 ASSERT(spa_is_root(spa)); 1480 for (int c = 0; c < vd->vdev_children; c++) 1481 vdev_rele(vd->vdev_child[c]); 1482 1483 if (vd->vdev_ops->vdev_op_leaf) 1484 vd->vdev_ops->vdev_op_rele(vd); 1485 } 1486 1487 /* 1488 * Reopen all interior vdevs and any unopened leaves. We don't actually 1489 * reopen leaf vdevs which had previously been opened as they might deadlock 1490 * on the spa_config_lock. Instead we only obtain the leaf's physical size. 1491 * If the leaf has never been opened then open it, as usual. 1492 */ 1493 void 1494 vdev_reopen(vdev_t *vd) 1495 { 1496 spa_t *spa = vd->vdev_spa; 1497 1498 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1499 1500 /* set the reopening flag unless we're taking the vdev offline */ 1501 vd->vdev_reopening = !vd->vdev_offline; 1502 vdev_close(vd); 1503 (void) vdev_open(vd); 1504 1505 /* 1506 * Call vdev_validate() here to make sure we have the same device. 1507 * Otherwise, a device with an invalid label could be successfully 1508 * opened in response to vdev_reopen(). 1509 */ 1510 if (vd->vdev_aux) { 1511 (void) vdev_validate_aux(vd); 1512 if (vdev_readable(vd) && vdev_writeable(vd) && 1513 vd->vdev_aux == &spa->spa_l2cache && 1514 !l2arc_vdev_present(vd)) 1515 l2arc_add_vdev(spa, vd); 1516 } else { 1517 (void) vdev_validate(vd, B_TRUE); 1518 } 1519 1520 /* 1521 * Reassess parent vdev's health. 1522 */ 1523 vdev_propagate_state(vd); 1524 } 1525 1526 int 1527 vdev_create(vdev_t *vd, uint64_t txg, boolean_t isreplacing) 1528 { 1529 int error; 1530 1531 /* 1532 * Normally, partial opens (e.g. of a mirror) are allowed. 1533 * For a create, however, we want to fail the request if 1534 * there are any components we can't open. 1535 */ 1536 error = vdev_open(vd); 1537 1538 if (error || vd->vdev_state != VDEV_STATE_HEALTHY) { 1539 vdev_close(vd); 1540 return (error ? error : ENXIO); 1541 } 1542 1543 /* 1544 * Recursively load DTLs and initialize all labels. 1545 */ 1546 if ((error = vdev_dtl_load(vd)) != 0 || 1547 (error = vdev_label_init(vd, txg, isreplacing ? 1548 VDEV_LABEL_REPLACE : VDEV_LABEL_CREATE)) != 0) { 1549 vdev_close(vd); 1550 return (error); 1551 } 1552 1553 return (0); 1554 } 1555 1556 void 1557 vdev_metaslab_set_size(vdev_t *vd) 1558 { 1559 /* 1560 * Aim for roughly metaslabs_per_vdev (default 200) metaslabs per vdev. 1561 */ 1562 vd->vdev_ms_shift = highbit64(vd->vdev_asize / metaslabs_per_vdev); 1563 vd->vdev_ms_shift = MAX(vd->vdev_ms_shift, SPA_MAXBLOCKSHIFT); 1564 } 1565 1566 void 1567 vdev_dirty(vdev_t *vd, int flags, void *arg, uint64_t txg) 1568 { 1569 ASSERT(vd == vd->vdev_top); 1570 ASSERT(!vd->vdev_ishole); 1571 ASSERT(ISP2(flags)); 1572 ASSERT(spa_writeable(vd->vdev_spa)); 1573 1574 if (flags & VDD_METASLAB) 1575 (void) txg_list_add(&vd->vdev_ms_list, arg, txg); 1576 1577 if (flags & VDD_DTL) 1578 (void) txg_list_add(&vd->vdev_dtl_list, arg, txg); 1579 1580 (void) txg_list_add(&vd->vdev_spa->spa_vdev_txg_list, vd, txg); 1581 } 1582 1583 void 1584 vdev_dirty_leaves(vdev_t *vd, int flags, uint64_t txg) 1585 { 1586 for (int c = 0; c < vd->vdev_children; c++) 1587 vdev_dirty_leaves(vd->vdev_child[c], flags, txg); 1588 1589 if (vd->vdev_ops->vdev_op_leaf) 1590 vdev_dirty(vd->vdev_top, flags, vd, txg); 1591 } 1592 1593 /* 1594 * DTLs. 1595 * 1596 * A vdev's DTL (dirty time log) is the set of transaction groups for which 1597 * the vdev has less than perfect replication. There are four kinds of DTL: 1598 * 1599 * DTL_MISSING: txgs for which the vdev has no valid copies of the data 1600 * 1601 * DTL_PARTIAL: txgs for which data is available, but not fully replicated 1602 * 1603 * DTL_SCRUB: the txgs that could not be repaired by the last scrub; upon 1604 * scrub completion, DTL_SCRUB replaces DTL_MISSING in the range of 1605 * txgs that was scrubbed. 1606 * 1607 * DTL_OUTAGE: txgs which cannot currently be read, whether due to 1608 * persistent errors or just some device being offline. 1609 * Unlike the other three, the DTL_OUTAGE map is not generally 1610 * maintained; it's only computed when needed, typically to 1611 * determine whether a device can be detached. 1612 * 1613 * For leaf vdevs, DTL_MISSING and DTL_PARTIAL are identical: the device 1614 * either has the data or it doesn't. 1615 * 1616 * For interior vdevs such as mirror and RAID-Z the picture is more complex. 1617 * A vdev's DTL_PARTIAL is the union of its children's DTL_PARTIALs, because 1618 * if any child is less than fully replicated, then so is its parent. 1619 * A vdev's DTL_MISSING is a modified union of its children's DTL_MISSINGs, 1620 * comprising only those txgs which appear in 'maxfaults' or more children; 1621 * those are the txgs we don't have enough replication to read. For example, 1622 * double-parity RAID-Z can tolerate up to two missing devices (maxfaults == 2); 1623 * thus, its DTL_MISSING consists of the set of txgs that appear in more than 1624 * two child DTL_MISSING maps. 1625 * 1626 * It should be clear from the above that to compute the DTLs and outage maps 1627 * for all vdevs, it suffices to know just the leaf vdevs' DTL_MISSING maps. 1628 * Therefore, that is all we keep on disk. When loading the pool, or after 1629 * a configuration change, we generate all other DTLs from first principles. 1630 */ 1631 void 1632 vdev_dtl_dirty(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1633 { 1634 range_tree_t *rt = vd->vdev_dtl[t]; 1635 1636 ASSERT(t < DTL_TYPES); 1637 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1638 ASSERT(spa_writeable(vd->vdev_spa)); 1639 1640 mutex_enter(rt->rt_lock); 1641 if (!range_tree_contains(rt, txg, size)) 1642 range_tree_add(rt, txg, size); 1643 mutex_exit(rt->rt_lock); 1644 } 1645 1646 boolean_t 1647 vdev_dtl_contains(vdev_t *vd, vdev_dtl_type_t t, uint64_t txg, uint64_t size) 1648 { 1649 range_tree_t *rt = vd->vdev_dtl[t]; 1650 boolean_t dirty = B_FALSE; 1651 1652 ASSERT(t < DTL_TYPES); 1653 ASSERT(vd != vd->vdev_spa->spa_root_vdev); 1654 1655 mutex_enter(rt->rt_lock); 1656 if (range_tree_space(rt) != 0) 1657 dirty = range_tree_contains(rt, txg, size); 1658 mutex_exit(rt->rt_lock); 1659 1660 return (dirty); 1661 } 1662 1663 boolean_t 1664 vdev_dtl_empty(vdev_t *vd, vdev_dtl_type_t t) 1665 { 1666 range_tree_t *rt = vd->vdev_dtl[t]; 1667 boolean_t empty; 1668 1669 mutex_enter(rt->rt_lock); 1670 empty = (range_tree_space(rt) == 0); 1671 mutex_exit(rt->rt_lock); 1672 1673 return (empty); 1674 } 1675 1676 /* 1677 * Returns the lowest txg in the DTL range. 1678 */ 1679 static uint64_t 1680 vdev_dtl_min(vdev_t *vd) 1681 { 1682 range_seg_t *rs; 1683 1684 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1685 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1686 ASSERT0(vd->vdev_children); 1687 1688 rs = avl_first(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1689 return (rs->rs_start - 1); 1690 } 1691 1692 /* 1693 * Returns the highest txg in the DTL. 1694 */ 1695 static uint64_t 1696 vdev_dtl_max(vdev_t *vd) 1697 { 1698 range_seg_t *rs; 1699 1700 ASSERT(MUTEX_HELD(&vd->vdev_dtl_lock)); 1701 ASSERT3U(range_tree_space(vd->vdev_dtl[DTL_MISSING]), !=, 0); 1702 ASSERT0(vd->vdev_children); 1703 1704 rs = avl_last(&vd->vdev_dtl[DTL_MISSING]->rt_root); 1705 return (rs->rs_end); 1706 } 1707 1708 /* 1709 * Determine if a resilvering vdev should remove any DTL entries from 1710 * its range. If the vdev was resilvering for the entire duration of the 1711 * scan then it should excise that range from its DTLs. Otherwise, this 1712 * vdev is considered partially resilvered and should leave its DTL 1713 * entries intact. The comment in vdev_dtl_reassess() describes how we 1714 * excise the DTLs. 1715 */ 1716 static boolean_t 1717 vdev_dtl_should_excise(vdev_t *vd) 1718 { 1719 spa_t *spa = vd->vdev_spa; 1720 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1721 1722 ASSERT0(scn->scn_phys.scn_errors); 1723 ASSERT0(vd->vdev_children); 1724 1725 if (vd->vdev_resilver_txg == 0 || 1726 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0) 1727 return (B_TRUE); 1728 1729 /* 1730 * When a resilver is initiated the scan will assign the scn_max_txg 1731 * value to the highest txg value that exists in all DTLs. If this 1732 * device's max DTL is not part of this scan (i.e. it is not in 1733 * the range (scn_min_txg, scn_max_txg] then it is not eligible 1734 * for excision. 1735 */ 1736 if (vdev_dtl_max(vd) <= scn->scn_phys.scn_max_txg) { 1737 ASSERT3U(scn->scn_phys.scn_min_txg, <=, vdev_dtl_min(vd)); 1738 ASSERT3U(scn->scn_phys.scn_min_txg, <, vd->vdev_resilver_txg); 1739 ASSERT3U(vd->vdev_resilver_txg, <=, scn->scn_phys.scn_max_txg); 1740 return (B_TRUE); 1741 } 1742 return (B_FALSE); 1743 } 1744 1745 /* 1746 * Reassess DTLs after a config change or scrub completion. 1747 */ 1748 void 1749 vdev_dtl_reassess(vdev_t *vd, uint64_t txg, uint64_t scrub_txg, int scrub_done) 1750 { 1751 spa_t *spa = vd->vdev_spa; 1752 avl_tree_t reftree; 1753 int minref; 1754 1755 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1756 1757 for (int c = 0; c < vd->vdev_children; c++) 1758 vdev_dtl_reassess(vd->vdev_child[c], txg, 1759 scrub_txg, scrub_done); 1760 1761 if (vd == spa->spa_root_vdev || vd->vdev_ishole || vd->vdev_aux) 1762 return; 1763 1764 if (vd->vdev_ops->vdev_op_leaf) { 1765 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan; 1766 1767 mutex_enter(&vd->vdev_dtl_lock); 1768 1769 /* 1770 * If we've completed a scan cleanly then determine 1771 * if this vdev should remove any DTLs. We only want to 1772 * excise regions on vdevs that were available during 1773 * the entire duration of this scan. 1774 */ 1775 if (scrub_txg != 0 && 1776 (spa->spa_scrub_started || 1777 (scn != NULL && scn->scn_phys.scn_errors == 0)) && 1778 vdev_dtl_should_excise(vd)) { 1779 /* 1780 * We completed a scrub up to scrub_txg. If we 1781 * did it without rebooting, then the scrub dtl 1782 * will be valid, so excise the old region and 1783 * fold in the scrub dtl. Otherwise, leave the 1784 * dtl as-is if there was an error. 1785 * 1786 * There's little trick here: to excise the beginning 1787 * of the DTL_MISSING map, we put it into a reference 1788 * tree and then add a segment with refcnt -1 that 1789 * covers the range [0, scrub_txg). This means 1790 * that each txg in that range has refcnt -1 or 0. 1791 * We then add DTL_SCRUB with a refcnt of 2, so that 1792 * entries in the range [0, scrub_txg) will have a 1793 * positive refcnt -- either 1 or 2. We then convert 1794 * the reference tree into the new DTL_MISSING map. 1795 */ 1796 space_reftree_create(&reftree); 1797 space_reftree_add_map(&reftree, 1798 vd->vdev_dtl[DTL_MISSING], 1); 1799 space_reftree_add_seg(&reftree, 0, scrub_txg, -1); 1800 space_reftree_add_map(&reftree, 1801 vd->vdev_dtl[DTL_SCRUB], 2); 1802 space_reftree_generate_map(&reftree, 1803 vd->vdev_dtl[DTL_MISSING], 1); 1804 space_reftree_destroy(&reftree); 1805 } 1806 range_tree_vacate(vd->vdev_dtl[DTL_PARTIAL], NULL, NULL); 1807 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1808 range_tree_add, vd->vdev_dtl[DTL_PARTIAL]); 1809 if (scrub_done) 1810 range_tree_vacate(vd->vdev_dtl[DTL_SCRUB], NULL, NULL); 1811 range_tree_vacate(vd->vdev_dtl[DTL_OUTAGE], NULL, NULL); 1812 if (!vdev_readable(vd)) 1813 range_tree_add(vd->vdev_dtl[DTL_OUTAGE], 0, -1ULL); 1814 else 1815 range_tree_walk(vd->vdev_dtl[DTL_MISSING], 1816 range_tree_add, vd->vdev_dtl[DTL_OUTAGE]); 1817 1818 /* 1819 * If the vdev was resilvering and no longer has any 1820 * DTLs then reset its resilvering flag. 1821 */ 1822 if (vd->vdev_resilver_txg != 0 && 1823 range_tree_space(vd->vdev_dtl[DTL_MISSING]) == 0 && 1824 range_tree_space(vd->vdev_dtl[DTL_OUTAGE]) == 0) 1825 vd->vdev_resilver_txg = 0; 1826 1827 mutex_exit(&vd->vdev_dtl_lock); 1828 1829 if (txg != 0) 1830 vdev_dirty(vd->vdev_top, VDD_DTL, vd, txg); 1831 return; 1832 } 1833 1834 mutex_enter(&vd->vdev_dtl_lock); 1835 for (int t = 0; t < DTL_TYPES; t++) { 1836 /* account for child's outage in parent's missing map */ 1837 int s = (t == DTL_MISSING) ? DTL_OUTAGE: t; 1838 if (t == DTL_SCRUB) 1839 continue; /* leaf vdevs only */ 1840 if (t == DTL_PARTIAL) 1841 minref = 1; /* i.e. non-zero */ 1842 else if (vd->vdev_nparity != 0) 1843 minref = vd->vdev_nparity + 1; /* RAID-Z */ 1844 else 1845 minref = vd->vdev_children; /* any kind of mirror */ 1846 space_reftree_create(&reftree); 1847 for (int c = 0; c < vd->vdev_children; c++) { 1848 vdev_t *cvd = vd->vdev_child[c]; 1849 mutex_enter(&cvd->vdev_dtl_lock); 1850 space_reftree_add_map(&reftree, cvd->vdev_dtl[s], 1); 1851 mutex_exit(&cvd->vdev_dtl_lock); 1852 } 1853 space_reftree_generate_map(&reftree, vd->vdev_dtl[t], minref); 1854 space_reftree_destroy(&reftree); 1855 } 1856 mutex_exit(&vd->vdev_dtl_lock); 1857 } 1858 1859 int 1860 vdev_dtl_load(vdev_t *vd) 1861 { 1862 spa_t *spa = vd->vdev_spa; 1863 objset_t *mos = spa->spa_meta_objset; 1864 int error = 0; 1865 1866 if (vd->vdev_ops->vdev_op_leaf && vd->vdev_dtl_object != 0) { 1867 ASSERT(!vd->vdev_ishole); 1868 1869 error = space_map_open(&vd->vdev_dtl_sm, mos, 1870 vd->vdev_dtl_object, 0, -1ULL, 0, &vd->vdev_dtl_lock); 1871 if (error) 1872 return (error); 1873 ASSERT(vd->vdev_dtl_sm != NULL); 1874 1875 mutex_enter(&vd->vdev_dtl_lock); 1876 1877 /* 1878 * Now that we've opened the space_map we need to update 1879 * the in-core DTL. 1880 */ 1881 space_map_update(vd->vdev_dtl_sm); 1882 1883 error = space_map_load(vd->vdev_dtl_sm, 1884 vd->vdev_dtl[DTL_MISSING], SM_ALLOC); 1885 mutex_exit(&vd->vdev_dtl_lock); 1886 1887 return (error); 1888 } 1889 1890 for (int c = 0; c < vd->vdev_children; c++) { 1891 error = vdev_dtl_load(vd->vdev_child[c]); 1892 if (error != 0) 1893 break; 1894 } 1895 1896 return (error); 1897 } 1898 1899 void 1900 vdev_dtl_sync(vdev_t *vd, uint64_t txg) 1901 { 1902 spa_t *spa = vd->vdev_spa; 1903 range_tree_t *rt = vd->vdev_dtl[DTL_MISSING]; 1904 objset_t *mos = spa->spa_meta_objset; 1905 range_tree_t *rtsync; 1906 kmutex_t rtlock; 1907 dmu_tx_t *tx; 1908 uint64_t object = space_map_object(vd->vdev_dtl_sm); 1909 1910 ASSERT(!vd->vdev_ishole); 1911 ASSERT(vd->vdev_ops->vdev_op_leaf); 1912 1913 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 1914 1915 if (vd->vdev_detached || vd->vdev_top->vdev_removing) { 1916 mutex_enter(&vd->vdev_dtl_lock); 1917 space_map_free(vd->vdev_dtl_sm, tx); 1918 space_map_close(vd->vdev_dtl_sm); 1919 vd->vdev_dtl_sm = NULL; 1920 mutex_exit(&vd->vdev_dtl_lock); 1921 dmu_tx_commit(tx); 1922 return; 1923 } 1924 1925 if (vd->vdev_dtl_sm == NULL) { 1926 uint64_t new_object; 1927 1928 new_object = space_map_alloc(mos, tx); 1929 VERIFY3U(new_object, !=, 0); 1930 1931 VERIFY0(space_map_open(&vd->vdev_dtl_sm, mos, new_object, 1932 0, -1ULL, 0, &vd->vdev_dtl_lock)); 1933 ASSERT(vd->vdev_dtl_sm != NULL); 1934 } 1935 1936 mutex_init(&rtlock, NULL, MUTEX_DEFAULT, NULL); 1937 1938 rtsync = range_tree_create(NULL, NULL, &rtlock); 1939 1940 mutex_enter(&rtlock); 1941 1942 mutex_enter(&vd->vdev_dtl_lock); 1943 range_tree_walk(rt, range_tree_add, rtsync); 1944 mutex_exit(&vd->vdev_dtl_lock); 1945 1946 space_map_truncate(vd->vdev_dtl_sm, tx); 1947 space_map_write(vd->vdev_dtl_sm, rtsync, SM_ALLOC, tx); 1948 range_tree_vacate(rtsync, NULL, NULL); 1949 1950 range_tree_destroy(rtsync); 1951 1952 mutex_exit(&rtlock); 1953 mutex_destroy(&rtlock); 1954 1955 /* 1956 * If the object for the space map has changed then dirty 1957 * the top level so that we update the config. 1958 */ 1959 if (object != space_map_object(vd->vdev_dtl_sm)) { 1960 zfs_dbgmsg("txg %llu, spa %s, DTL old object %llu, " 1961 "new object %llu", txg, spa_name(spa), object, 1962 space_map_object(vd->vdev_dtl_sm)); 1963 vdev_config_dirty(vd->vdev_top); 1964 } 1965 1966 dmu_tx_commit(tx); 1967 1968 mutex_enter(&vd->vdev_dtl_lock); 1969 space_map_update(vd->vdev_dtl_sm); 1970 mutex_exit(&vd->vdev_dtl_lock); 1971 } 1972 1973 /* 1974 * Determine whether the specified vdev can be offlined/detached/removed 1975 * without losing data. 1976 */ 1977 boolean_t 1978 vdev_dtl_required(vdev_t *vd) 1979 { 1980 spa_t *spa = vd->vdev_spa; 1981 vdev_t *tvd = vd->vdev_top; 1982 uint8_t cant_read = vd->vdev_cant_read; 1983 boolean_t required; 1984 1985 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 1986 1987 if (vd == spa->spa_root_vdev || vd == tvd) 1988 return (B_TRUE); 1989 1990 /* 1991 * Temporarily mark the device as unreadable, and then determine 1992 * whether this results in any DTL outages in the top-level vdev. 1993 * If not, we can safely offline/detach/remove the device. 1994 */ 1995 vd->vdev_cant_read = B_TRUE; 1996 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 1997 required = !vdev_dtl_empty(tvd, DTL_OUTAGE); 1998 vd->vdev_cant_read = cant_read; 1999 vdev_dtl_reassess(tvd, 0, 0, B_FALSE); 2000 2001 if (!required && zio_injection_enabled) 2002 required = !!zio_handle_device_injection(vd, NULL, ECHILD); 2003 2004 return (required); 2005 } 2006 2007 /* 2008 * Determine if resilver is needed, and if so the txg range. 2009 */ 2010 boolean_t 2011 vdev_resilver_needed(vdev_t *vd, uint64_t *minp, uint64_t *maxp) 2012 { 2013 boolean_t needed = B_FALSE; 2014 uint64_t thismin = UINT64_MAX; 2015 uint64_t thismax = 0; 2016 2017 if (vd->vdev_children == 0) { 2018 mutex_enter(&vd->vdev_dtl_lock); 2019 if (range_tree_space(vd->vdev_dtl[DTL_MISSING]) != 0 && 2020 vdev_writeable(vd)) { 2021 2022 thismin = vdev_dtl_min(vd); 2023 thismax = vdev_dtl_max(vd); 2024 needed = B_TRUE; 2025 } 2026 mutex_exit(&vd->vdev_dtl_lock); 2027 } else { 2028 for (int c = 0; c < vd->vdev_children; c++) { 2029 vdev_t *cvd = vd->vdev_child[c]; 2030 uint64_t cmin, cmax; 2031 2032 if (vdev_resilver_needed(cvd, &cmin, &cmax)) { 2033 thismin = MIN(thismin, cmin); 2034 thismax = MAX(thismax, cmax); 2035 needed = B_TRUE; 2036 } 2037 } 2038 } 2039 2040 if (needed && minp) { 2041 *minp = thismin; 2042 *maxp = thismax; 2043 } 2044 return (needed); 2045 } 2046 2047 void 2048 vdev_load(vdev_t *vd) 2049 { 2050 /* 2051 * Recursively load all children. 2052 */ 2053 for (int c = 0; c < vd->vdev_children; c++) 2054 vdev_load(vd->vdev_child[c]); 2055 2056 /* 2057 * If this is a top-level vdev, initialize its metaslabs. 2058 */ 2059 if (vd == vd->vdev_top && !vd->vdev_ishole && 2060 (vd->vdev_ashift == 0 || vd->vdev_asize == 0 || 2061 vdev_metaslab_init(vd, 0) != 0)) 2062 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2063 VDEV_AUX_CORRUPT_DATA); 2064 2065 /* 2066 * If this is a leaf vdev, load its DTL. 2067 */ 2068 if (vd->vdev_ops->vdev_op_leaf && vdev_dtl_load(vd) != 0) 2069 vdev_set_state(vd, B_FALSE, VDEV_STATE_CANT_OPEN, 2070 VDEV_AUX_CORRUPT_DATA); 2071 } 2072 2073 /* 2074 * The special vdev case is used for hot spares and l2cache devices. Its 2075 * sole purpose it to set the vdev state for the associated vdev. To do this, 2076 * we make sure that we can open the underlying device, then try to read the 2077 * label, and make sure that the label is sane and that it hasn't been 2078 * repurposed to another pool. 2079 */ 2080 int 2081 vdev_validate_aux(vdev_t *vd) 2082 { 2083 nvlist_t *label; 2084 uint64_t guid, version; 2085 uint64_t state; 2086 2087 if (!vdev_readable(vd)) 2088 return (0); 2089 2090 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) { 2091 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2092 VDEV_AUX_CORRUPT_DATA); 2093 return (-1); 2094 } 2095 2096 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_VERSION, &version) != 0 || 2097 !SPA_VERSION_IS_SUPPORTED(version) || 2098 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, &guid) != 0 || 2099 guid != vd->vdev_guid || 2100 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, &state) != 0) { 2101 vdev_set_state(vd, B_TRUE, VDEV_STATE_CANT_OPEN, 2102 VDEV_AUX_CORRUPT_DATA); 2103 nvlist_free(label); 2104 return (-1); 2105 } 2106 2107 /* 2108 * We don't actually check the pool state here. If it's in fact in 2109 * use by another pool, we update this fact on the fly when requested. 2110 */ 2111 nvlist_free(label); 2112 return (0); 2113 } 2114 2115 void 2116 vdev_remove(vdev_t *vd, uint64_t txg) 2117 { 2118 spa_t *spa = vd->vdev_spa; 2119 objset_t *mos = spa->spa_meta_objset; 2120 dmu_tx_t *tx; 2121 2122 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg); 2123 2124 if (vd->vdev_ms != NULL) { 2125 metaslab_group_t *mg = vd->vdev_mg; 2126 2127 metaslab_group_histogram_verify(mg); 2128 metaslab_class_histogram_verify(mg->mg_class); 2129 2130 for (int m = 0; m < vd->vdev_ms_count; m++) { 2131 metaslab_t *msp = vd->vdev_ms[m]; 2132 2133 if (msp == NULL || msp->ms_sm == NULL) 2134 continue; 2135 2136 mutex_enter(&msp->ms_lock); 2137 /* 2138 * If the metaslab was not loaded when the vdev 2139 * was removed then the histogram accounting may 2140 * not be accurate. Update the histogram information 2141 * here so that we ensure that the metaslab group 2142 * and metaslab class are up-to-date. 2143 */ 2144 metaslab_group_histogram_remove(mg, msp); 2145 2146 VERIFY0(space_map_allocated(msp->ms_sm)); 2147 space_map_free(msp->ms_sm, tx); 2148 space_map_close(msp->ms_sm); 2149 msp->ms_sm = NULL; 2150 mutex_exit(&msp->ms_lock); 2151 } 2152 2153 metaslab_group_histogram_verify(mg); 2154 metaslab_class_histogram_verify(mg->mg_class); 2155 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) 2156 ASSERT0(mg->mg_histogram[i]); 2157 2158 } 2159 2160 if (vd->vdev_ms_array) { 2161 (void) dmu_object_free(mos, vd->vdev_ms_array, tx); 2162 vd->vdev_ms_array = 0; 2163 } 2164 dmu_tx_commit(tx); 2165 } 2166 2167 void 2168 vdev_sync_done(vdev_t *vd, uint64_t txg) 2169 { 2170 metaslab_t *msp; 2171 boolean_t reassess = !txg_list_empty(&vd->vdev_ms_list, TXG_CLEAN(txg)); 2172 2173 ASSERT(!vd->vdev_ishole); 2174 2175 while (msp = txg_list_remove(&vd->vdev_ms_list, TXG_CLEAN(txg))) 2176 metaslab_sync_done(msp, txg); 2177 2178 if (reassess) 2179 metaslab_sync_reassess(vd->vdev_mg); 2180 } 2181 2182 void 2183 vdev_sync(vdev_t *vd, uint64_t txg) 2184 { 2185 spa_t *spa = vd->vdev_spa; 2186 vdev_t *lvd; 2187 metaslab_t *msp; 2188 dmu_tx_t *tx; 2189 2190 ASSERT(!vd->vdev_ishole); 2191 2192 if (vd->vdev_ms_array == 0 && vd->vdev_ms_shift != 0) { 2193 ASSERT(vd == vd->vdev_top); 2194 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2195 vd->vdev_ms_array = dmu_object_alloc(spa->spa_meta_objset, 2196 DMU_OT_OBJECT_ARRAY, 0, DMU_OT_NONE, 0, tx); 2197 ASSERT(vd->vdev_ms_array != 0); 2198 vdev_config_dirty(vd); 2199 dmu_tx_commit(tx); 2200 } 2201 2202 /* 2203 * Remove the metadata associated with this vdev once it's empty. 2204 */ 2205 if (vd->vdev_stat.vs_alloc == 0 && vd->vdev_removing) 2206 vdev_remove(vd, txg); 2207 2208 while ((msp = txg_list_remove(&vd->vdev_ms_list, txg)) != NULL) { 2209 metaslab_sync(msp, txg); 2210 (void) txg_list_add(&vd->vdev_ms_list, msp, TXG_CLEAN(txg)); 2211 } 2212 2213 while ((lvd = txg_list_remove(&vd->vdev_dtl_list, txg)) != NULL) 2214 vdev_dtl_sync(lvd, txg); 2215 2216 (void) txg_list_add(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg)); 2217 } 2218 2219 uint64_t 2220 vdev_psize_to_asize(vdev_t *vd, uint64_t psize) 2221 { 2222 return (vd->vdev_ops->vdev_op_asize(vd, psize)); 2223 } 2224 2225 /* 2226 * Mark the given vdev faulted. A faulted vdev behaves as if the device could 2227 * not be opened, and no I/O is attempted. 2228 */ 2229 int 2230 vdev_fault(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2231 { 2232 vdev_t *vd, *tvd; 2233 2234 spa_vdev_state_enter(spa, SCL_NONE); 2235 2236 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2237 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2238 2239 if (!vd->vdev_ops->vdev_op_leaf) 2240 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2241 2242 tvd = vd->vdev_top; 2243 2244 /* 2245 * We don't directly use the aux state here, but if we do a 2246 * vdev_reopen(), we need this value to be present to remember why we 2247 * were faulted. 2248 */ 2249 vd->vdev_label_aux = aux; 2250 2251 /* 2252 * Faulted state takes precedence over degraded. 2253 */ 2254 vd->vdev_delayed_close = B_FALSE; 2255 vd->vdev_faulted = 1ULL; 2256 vd->vdev_degraded = 0ULL; 2257 vdev_set_state(vd, B_FALSE, VDEV_STATE_FAULTED, aux); 2258 2259 /* 2260 * If this device has the only valid copy of the data, then 2261 * back off and simply mark the vdev as degraded instead. 2262 */ 2263 if (!tvd->vdev_islog && vd->vdev_aux == NULL && vdev_dtl_required(vd)) { 2264 vd->vdev_degraded = 1ULL; 2265 vd->vdev_faulted = 0ULL; 2266 2267 /* 2268 * If we reopen the device and it's not dead, only then do we 2269 * mark it degraded. 2270 */ 2271 vdev_reopen(tvd); 2272 2273 if (vdev_readable(vd)) 2274 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, aux); 2275 } 2276 2277 return (spa_vdev_state_exit(spa, vd, 0)); 2278 } 2279 2280 /* 2281 * Mark the given vdev degraded. A degraded vdev is purely an indication to the 2282 * user that something is wrong. The vdev continues to operate as normal as far 2283 * as I/O is concerned. 2284 */ 2285 int 2286 vdev_degrade(spa_t *spa, uint64_t guid, vdev_aux_t aux) 2287 { 2288 vdev_t *vd; 2289 2290 spa_vdev_state_enter(spa, SCL_NONE); 2291 2292 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2293 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2294 2295 if (!vd->vdev_ops->vdev_op_leaf) 2296 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2297 2298 /* 2299 * If the vdev is already faulted, then don't do anything. 2300 */ 2301 if (vd->vdev_faulted || vd->vdev_degraded) 2302 return (spa_vdev_state_exit(spa, NULL, 0)); 2303 2304 vd->vdev_degraded = 1ULL; 2305 if (!vdev_is_dead(vd)) 2306 vdev_set_state(vd, B_FALSE, VDEV_STATE_DEGRADED, 2307 aux); 2308 2309 return (spa_vdev_state_exit(spa, vd, 0)); 2310 } 2311 2312 /* 2313 * Online the given vdev. 2314 * 2315 * If 'ZFS_ONLINE_UNSPARE' is set, it implies two things. First, any attached 2316 * spare device should be detached when the device finishes resilvering. 2317 * Second, the online should be treated like a 'test' online case, so no FMA 2318 * events are generated if the device fails to open. 2319 */ 2320 int 2321 vdev_online(spa_t *spa, uint64_t guid, uint64_t flags, vdev_state_t *newstate) 2322 { 2323 vdev_t *vd, *tvd, *pvd, *rvd = spa->spa_root_vdev; 2324 2325 spa_vdev_state_enter(spa, SCL_NONE); 2326 2327 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2328 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2329 2330 if (!vd->vdev_ops->vdev_op_leaf) 2331 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2332 2333 tvd = vd->vdev_top; 2334 vd->vdev_offline = B_FALSE; 2335 vd->vdev_tmpoffline = B_FALSE; 2336 vd->vdev_checkremove = !!(flags & ZFS_ONLINE_CHECKREMOVE); 2337 vd->vdev_forcefault = !!(flags & ZFS_ONLINE_FORCEFAULT); 2338 2339 /* XXX - L2ARC 1.0 does not support expansion */ 2340 if (!vd->vdev_aux) { 2341 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2342 pvd->vdev_expanding = !!(flags & ZFS_ONLINE_EXPAND); 2343 } 2344 2345 vdev_reopen(tvd); 2346 vd->vdev_checkremove = vd->vdev_forcefault = B_FALSE; 2347 2348 if (!vd->vdev_aux) { 2349 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2350 pvd->vdev_expanding = B_FALSE; 2351 } 2352 2353 if (newstate) 2354 *newstate = vd->vdev_state; 2355 if ((flags & ZFS_ONLINE_UNSPARE) && 2356 !vdev_is_dead(vd) && vd->vdev_parent && 2357 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2358 vd->vdev_parent->vdev_child[0] == vd) 2359 vd->vdev_unspare = B_TRUE; 2360 2361 if ((flags & ZFS_ONLINE_EXPAND) || spa->spa_autoexpand) { 2362 2363 /* XXX - L2ARC 1.0 does not support expansion */ 2364 if (vd->vdev_aux) 2365 return (spa_vdev_state_exit(spa, vd, ENOTSUP)); 2366 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2367 } 2368 return (spa_vdev_state_exit(spa, vd, 0)); 2369 } 2370 2371 static int 2372 vdev_offline_locked(spa_t *spa, uint64_t guid, uint64_t flags) 2373 { 2374 vdev_t *vd, *tvd; 2375 int error = 0; 2376 uint64_t generation; 2377 metaslab_group_t *mg; 2378 2379 top: 2380 spa_vdev_state_enter(spa, SCL_ALLOC); 2381 2382 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 2383 return (spa_vdev_state_exit(spa, NULL, ENODEV)); 2384 2385 if (!vd->vdev_ops->vdev_op_leaf) 2386 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 2387 2388 tvd = vd->vdev_top; 2389 mg = tvd->vdev_mg; 2390 generation = spa->spa_config_generation + 1; 2391 2392 /* 2393 * If the device isn't already offline, try to offline it. 2394 */ 2395 if (!vd->vdev_offline) { 2396 /* 2397 * If this device has the only valid copy of some data, 2398 * don't allow it to be offlined. Log devices are always 2399 * expendable. 2400 */ 2401 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2402 vdev_dtl_required(vd)) 2403 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2404 2405 /* 2406 * If the top-level is a slog and it has had allocations 2407 * then proceed. We check that the vdev's metaslab group 2408 * is not NULL since it's possible that we may have just 2409 * added this vdev but not yet initialized its metaslabs. 2410 */ 2411 if (tvd->vdev_islog && mg != NULL) { 2412 /* 2413 * Prevent any future allocations. 2414 */ 2415 metaslab_group_passivate(mg); 2416 (void) spa_vdev_state_exit(spa, vd, 0); 2417 2418 error = spa_offline_log(spa); 2419 2420 spa_vdev_state_enter(spa, SCL_ALLOC); 2421 2422 /* 2423 * Check to see if the config has changed. 2424 */ 2425 if (error || generation != spa->spa_config_generation) { 2426 metaslab_group_activate(mg); 2427 if (error) 2428 return (spa_vdev_state_exit(spa, 2429 vd, error)); 2430 (void) spa_vdev_state_exit(spa, vd, 0); 2431 goto top; 2432 } 2433 ASSERT0(tvd->vdev_stat.vs_alloc); 2434 } 2435 2436 /* 2437 * Offline this device and reopen its top-level vdev. 2438 * If the top-level vdev is a log device then just offline 2439 * it. Otherwise, if this action results in the top-level 2440 * vdev becoming unusable, undo it and fail the request. 2441 */ 2442 vd->vdev_offline = B_TRUE; 2443 vdev_reopen(tvd); 2444 2445 if (!tvd->vdev_islog && vd->vdev_aux == NULL && 2446 vdev_is_dead(tvd)) { 2447 vd->vdev_offline = B_FALSE; 2448 vdev_reopen(tvd); 2449 return (spa_vdev_state_exit(spa, NULL, EBUSY)); 2450 } 2451 2452 /* 2453 * Add the device back into the metaslab rotor so that 2454 * once we online the device it's open for business. 2455 */ 2456 if (tvd->vdev_islog && mg != NULL) 2457 metaslab_group_activate(mg); 2458 } 2459 2460 vd->vdev_tmpoffline = !!(flags & ZFS_OFFLINE_TEMPORARY); 2461 2462 return (spa_vdev_state_exit(spa, vd, 0)); 2463 } 2464 2465 int 2466 vdev_offline(spa_t *spa, uint64_t guid, uint64_t flags) 2467 { 2468 int error; 2469 2470 mutex_enter(&spa->spa_vdev_top_lock); 2471 error = vdev_offline_locked(spa, guid, flags); 2472 mutex_exit(&spa->spa_vdev_top_lock); 2473 2474 return (error); 2475 } 2476 2477 /* 2478 * Clear the error counts associated with this vdev. Unlike vdev_online() and 2479 * vdev_offline(), we assume the spa config is locked. We also clear all 2480 * children. If 'vd' is NULL, then the user wants to clear all vdevs. 2481 */ 2482 void 2483 vdev_clear(spa_t *spa, vdev_t *vd) 2484 { 2485 vdev_t *rvd = spa->spa_root_vdev; 2486 2487 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 2488 2489 if (vd == NULL) 2490 vd = rvd; 2491 2492 vd->vdev_stat.vs_read_errors = 0; 2493 vd->vdev_stat.vs_write_errors = 0; 2494 vd->vdev_stat.vs_checksum_errors = 0; 2495 2496 for (int c = 0; c < vd->vdev_children; c++) 2497 vdev_clear(spa, vd->vdev_child[c]); 2498 2499 /* 2500 * If we're in the FAULTED state or have experienced failed I/O, then 2501 * clear the persistent state and attempt to reopen the device. We 2502 * also mark the vdev config dirty, so that the new faulted state is 2503 * written out to disk. 2504 */ 2505 if (vd->vdev_faulted || vd->vdev_degraded || 2506 !vdev_readable(vd) || !vdev_writeable(vd)) { 2507 2508 /* 2509 * When reopening in reponse to a clear event, it may be due to 2510 * a fmadm repair request. In this case, if the device is 2511 * still broken, we want to still post the ereport again. 2512 */ 2513 vd->vdev_forcefault = B_TRUE; 2514 2515 vd->vdev_faulted = vd->vdev_degraded = 0ULL; 2516 vd->vdev_cant_read = B_FALSE; 2517 vd->vdev_cant_write = B_FALSE; 2518 2519 vdev_reopen(vd == rvd ? rvd : vd->vdev_top); 2520 2521 vd->vdev_forcefault = B_FALSE; 2522 2523 if (vd != rvd && vdev_writeable(vd->vdev_top)) 2524 vdev_state_dirty(vd->vdev_top); 2525 2526 if (vd->vdev_aux == NULL && !vdev_is_dead(vd)) 2527 spa_async_request(spa, SPA_ASYNC_RESILVER); 2528 2529 spa_event_notify(spa, vd, ESC_ZFS_VDEV_CLEAR); 2530 } 2531 2532 /* 2533 * When clearing a FMA-diagnosed fault, we always want to 2534 * unspare the device, as we assume that the original spare was 2535 * done in response to the FMA fault. 2536 */ 2537 if (!vdev_is_dead(vd) && vd->vdev_parent != NULL && 2538 vd->vdev_parent->vdev_ops == &vdev_spare_ops && 2539 vd->vdev_parent->vdev_child[0] == vd) 2540 vd->vdev_unspare = B_TRUE; 2541 } 2542 2543 boolean_t 2544 vdev_is_dead(vdev_t *vd) 2545 { 2546 /* 2547 * Holes and missing devices are always considered "dead". 2548 * This simplifies the code since we don't have to check for 2549 * these types of devices in the various code paths. 2550 * Instead we rely on the fact that we skip over dead devices 2551 * before issuing I/O to them. 2552 */ 2553 return (vd->vdev_state < VDEV_STATE_DEGRADED || vd->vdev_ishole || 2554 vd->vdev_ops == &vdev_missing_ops); 2555 } 2556 2557 boolean_t 2558 vdev_readable(vdev_t *vd) 2559 { 2560 return (!vdev_is_dead(vd) && !vd->vdev_cant_read); 2561 } 2562 2563 boolean_t 2564 vdev_writeable(vdev_t *vd) 2565 { 2566 return (!vdev_is_dead(vd) && !vd->vdev_cant_write); 2567 } 2568 2569 boolean_t 2570 vdev_allocatable(vdev_t *vd) 2571 { 2572 uint64_t state = vd->vdev_state; 2573 2574 /* 2575 * We currently allow allocations from vdevs which may be in the 2576 * process of reopening (i.e. VDEV_STATE_CLOSED). If the device 2577 * fails to reopen then we'll catch it later when we're holding 2578 * the proper locks. Note that we have to get the vdev state 2579 * in a local variable because although it changes atomically, 2580 * we're asking two separate questions about it. 2581 */ 2582 return (!(state < VDEV_STATE_DEGRADED && state != VDEV_STATE_CLOSED) && 2583 !vd->vdev_cant_write && !vd->vdev_ishole); 2584 } 2585 2586 boolean_t 2587 vdev_accessible(vdev_t *vd, zio_t *zio) 2588 { 2589 ASSERT(zio->io_vd == vd); 2590 2591 if (vdev_is_dead(vd) || vd->vdev_remove_wanted) 2592 return (B_FALSE); 2593 2594 if (zio->io_type == ZIO_TYPE_READ) 2595 return (!vd->vdev_cant_read); 2596 2597 if (zio->io_type == ZIO_TYPE_WRITE) 2598 return (!vd->vdev_cant_write); 2599 2600 return (B_TRUE); 2601 } 2602 2603 /* 2604 * Get statistics for the given vdev. 2605 */ 2606 void 2607 vdev_get_stats(vdev_t *vd, vdev_stat_t *vs) 2608 { 2609 spa_t *spa = vd->vdev_spa; 2610 vdev_t *rvd = spa->spa_root_vdev; 2611 2612 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 2613 2614 mutex_enter(&vd->vdev_stat_lock); 2615 bcopy(&vd->vdev_stat, vs, sizeof (*vs)); 2616 vs->vs_timestamp = gethrtime() - vs->vs_timestamp; 2617 vs->vs_state = vd->vdev_state; 2618 vs->vs_rsize = vdev_get_min_asize(vd); 2619 if (vd->vdev_ops->vdev_op_leaf) 2620 vs->vs_rsize += VDEV_LABEL_START_SIZE + VDEV_LABEL_END_SIZE; 2621 vs->vs_esize = vd->vdev_max_asize - vd->vdev_asize; 2622 if (vd->vdev_aux == NULL && vd == vd->vdev_top && !vd->vdev_ishole) { 2623 vs->vs_fragmentation = vd->vdev_mg->mg_fragmentation; 2624 } 2625 2626 /* 2627 * If we're getting stats on the root vdev, aggregate the I/O counts 2628 * over all top-level vdevs (i.e. the direct children of the root). 2629 */ 2630 if (vd == rvd) { 2631 for (int c = 0; c < rvd->vdev_children; c++) { 2632 vdev_t *cvd = rvd->vdev_child[c]; 2633 vdev_stat_t *cvs = &cvd->vdev_stat; 2634 2635 for (int t = 0; t < ZIO_TYPES; t++) { 2636 vs->vs_ops[t] += cvs->vs_ops[t]; 2637 vs->vs_bytes[t] += cvs->vs_bytes[t]; 2638 } 2639 cvs->vs_scan_removing = cvd->vdev_removing; 2640 } 2641 } 2642 mutex_exit(&vd->vdev_stat_lock); 2643 } 2644 2645 void 2646 vdev_clear_stats(vdev_t *vd) 2647 { 2648 mutex_enter(&vd->vdev_stat_lock); 2649 vd->vdev_stat.vs_space = 0; 2650 vd->vdev_stat.vs_dspace = 0; 2651 vd->vdev_stat.vs_alloc = 0; 2652 mutex_exit(&vd->vdev_stat_lock); 2653 } 2654 2655 void 2656 vdev_scan_stat_init(vdev_t *vd) 2657 { 2658 vdev_stat_t *vs = &vd->vdev_stat; 2659 2660 for (int c = 0; c < vd->vdev_children; c++) 2661 vdev_scan_stat_init(vd->vdev_child[c]); 2662 2663 mutex_enter(&vd->vdev_stat_lock); 2664 vs->vs_scan_processed = 0; 2665 mutex_exit(&vd->vdev_stat_lock); 2666 } 2667 2668 void 2669 vdev_stat_update(zio_t *zio, uint64_t psize) 2670 { 2671 spa_t *spa = zio->io_spa; 2672 vdev_t *rvd = spa->spa_root_vdev; 2673 vdev_t *vd = zio->io_vd ? zio->io_vd : rvd; 2674 vdev_t *pvd; 2675 uint64_t txg = zio->io_txg; 2676 vdev_stat_t *vs = &vd->vdev_stat; 2677 zio_type_t type = zio->io_type; 2678 int flags = zio->io_flags; 2679 2680 /* 2681 * If this i/o is a gang leader, it didn't do any actual work. 2682 */ 2683 if (zio->io_gang_tree) 2684 return; 2685 2686 if (zio->io_error == 0) { 2687 /* 2688 * If this is a root i/o, don't count it -- we've already 2689 * counted the top-level vdevs, and vdev_get_stats() will 2690 * aggregate them when asked. This reduces contention on 2691 * the root vdev_stat_lock and implicitly handles blocks 2692 * that compress away to holes, for which there is no i/o. 2693 * (Holes never create vdev children, so all the counters 2694 * remain zero, which is what we want.) 2695 * 2696 * Note: this only applies to successful i/o (io_error == 0) 2697 * because unlike i/o counts, errors are not additive. 2698 * When reading a ditto block, for example, failure of 2699 * one top-level vdev does not imply a root-level error. 2700 */ 2701 if (vd == rvd) 2702 return; 2703 2704 ASSERT(vd == zio->io_vd); 2705 2706 if (flags & ZIO_FLAG_IO_BYPASS) 2707 return; 2708 2709 mutex_enter(&vd->vdev_stat_lock); 2710 2711 if (flags & ZIO_FLAG_IO_REPAIR) { 2712 if (flags & ZIO_FLAG_SCAN_THREAD) { 2713 dsl_scan_phys_t *scn_phys = 2714 &spa->spa_dsl_pool->dp_scan->scn_phys; 2715 uint64_t *processed = &scn_phys->scn_processed; 2716 2717 /* XXX cleanup? */ 2718 if (vd->vdev_ops->vdev_op_leaf) 2719 atomic_add_64(processed, psize); 2720 vs->vs_scan_processed += psize; 2721 } 2722 2723 if (flags & ZIO_FLAG_SELF_HEAL) 2724 vs->vs_self_healed += psize; 2725 } 2726 2727 vs->vs_ops[type]++; 2728 vs->vs_bytes[type] += psize; 2729 2730 mutex_exit(&vd->vdev_stat_lock); 2731 return; 2732 } 2733 2734 if (flags & ZIO_FLAG_SPECULATIVE) 2735 return; 2736 2737 /* 2738 * If this is an I/O error that is going to be retried, then ignore the 2739 * error. Otherwise, the user may interpret B_FAILFAST I/O errors as 2740 * hard errors, when in reality they can happen for any number of 2741 * innocuous reasons (bus resets, MPxIO link failure, etc). 2742 */ 2743 if (zio->io_error == EIO && 2744 !(zio->io_flags & ZIO_FLAG_IO_RETRY)) 2745 return; 2746 2747 /* 2748 * Intent logs writes won't propagate their error to the root 2749 * I/O so don't mark these types of failures as pool-level 2750 * errors. 2751 */ 2752 if (zio->io_vd == NULL && (zio->io_flags & ZIO_FLAG_DONT_PROPAGATE)) 2753 return; 2754 2755 mutex_enter(&vd->vdev_stat_lock); 2756 if (type == ZIO_TYPE_READ && !vdev_is_dead(vd)) { 2757 if (zio->io_error == ECKSUM) 2758 vs->vs_checksum_errors++; 2759 else 2760 vs->vs_read_errors++; 2761 } 2762 if (type == ZIO_TYPE_WRITE && !vdev_is_dead(vd)) 2763 vs->vs_write_errors++; 2764 mutex_exit(&vd->vdev_stat_lock); 2765 2766 if (type == ZIO_TYPE_WRITE && txg != 0 && 2767 (!(flags & ZIO_FLAG_IO_REPAIR) || 2768 (flags & ZIO_FLAG_SCAN_THREAD) || 2769 spa->spa_claiming)) { 2770 /* 2771 * This is either a normal write (not a repair), or it's 2772 * a repair induced by the scrub thread, or it's a repair 2773 * made by zil_claim() during spa_load() in the first txg. 2774 * In the normal case, we commit the DTL change in the same 2775 * txg as the block was born. In the scrub-induced repair 2776 * case, we know that scrubs run in first-pass syncing context, 2777 * so we commit the DTL change in spa_syncing_txg(spa). 2778 * In the zil_claim() case, we commit in spa_first_txg(spa). 2779 * 2780 * We currently do not make DTL entries for failed spontaneous 2781 * self-healing writes triggered by normal (non-scrubbing) 2782 * reads, because we have no transactional context in which to 2783 * do so -- and it's not clear that it'd be desirable anyway. 2784 */ 2785 if (vd->vdev_ops->vdev_op_leaf) { 2786 uint64_t commit_txg = txg; 2787 if (flags & ZIO_FLAG_SCAN_THREAD) { 2788 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2789 ASSERT(spa_sync_pass(spa) == 1); 2790 vdev_dtl_dirty(vd, DTL_SCRUB, txg, 1); 2791 commit_txg = spa_syncing_txg(spa); 2792 } else if (spa->spa_claiming) { 2793 ASSERT(flags & ZIO_FLAG_IO_REPAIR); 2794 commit_txg = spa_first_txg(spa); 2795 } 2796 ASSERT(commit_txg >= spa_syncing_txg(spa)); 2797 if (vdev_dtl_contains(vd, DTL_MISSING, txg, 1)) 2798 return; 2799 for (pvd = vd; pvd != rvd; pvd = pvd->vdev_parent) 2800 vdev_dtl_dirty(pvd, DTL_PARTIAL, txg, 1); 2801 vdev_dirty(vd->vdev_top, VDD_DTL, vd, commit_txg); 2802 } 2803 if (vd != rvd) 2804 vdev_dtl_dirty(vd, DTL_MISSING, txg, 1); 2805 } 2806 } 2807 2808 /* 2809 * Update the in-core space usage stats for this vdev, its metaslab class, 2810 * and the root vdev. 2811 */ 2812 void 2813 vdev_space_update(vdev_t *vd, int64_t alloc_delta, int64_t defer_delta, 2814 int64_t space_delta) 2815 { 2816 int64_t dspace_delta = space_delta; 2817 spa_t *spa = vd->vdev_spa; 2818 vdev_t *rvd = spa->spa_root_vdev; 2819 metaslab_group_t *mg = vd->vdev_mg; 2820 metaslab_class_t *mc = mg ? mg->mg_class : NULL; 2821 2822 ASSERT(vd == vd->vdev_top); 2823 2824 /* 2825 * Apply the inverse of the psize-to-asize (ie. RAID-Z) space-expansion 2826 * factor. We must calculate this here and not at the root vdev 2827 * because the root vdev's psize-to-asize is simply the max of its 2828 * childrens', thus not accurate enough for us. 2829 */ 2830 ASSERT((dspace_delta & (SPA_MINBLOCKSIZE-1)) == 0); 2831 ASSERT(vd->vdev_deflate_ratio != 0 || vd->vdev_isl2cache); 2832 dspace_delta = (dspace_delta >> SPA_MINBLOCKSHIFT) * 2833 vd->vdev_deflate_ratio; 2834 2835 mutex_enter(&vd->vdev_stat_lock); 2836 vd->vdev_stat.vs_alloc += alloc_delta; 2837 vd->vdev_stat.vs_space += space_delta; 2838 vd->vdev_stat.vs_dspace += dspace_delta; 2839 mutex_exit(&vd->vdev_stat_lock); 2840 2841 if (mc == spa_normal_class(spa)) { 2842 mutex_enter(&rvd->vdev_stat_lock); 2843 rvd->vdev_stat.vs_alloc += alloc_delta; 2844 rvd->vdev_stat.vs_space += space_delta; 2845 rvd->vdev_stat.vs_dspace += dspace_delta; 2846 mutex_exit(&rvd->vdev_stat_lock); 2847 } 2848 2849 if (mc != NULL) { 2850 ASSERT(rvd == vd->vdev_parent); 2851 ASSERT(vd->vdev_ms_count != 0); 2852 2853 metaslab_class_space_update(mc, 2854 alloc_delta, defer_delta, space_delta, dspace_delta); 2855 } 2856 } 2857 2858 /* 2859 * Mark a top-level vdev's config as dirty, placing it on the dirty list 2860 * so that it will be written out next time the vdev configuration is synced. 2861 * If the root vdev is specified (vdev_top == NULL), dirty all top-level vdevs. 2862 */ 2863 void 2864 vdev_config_dirty(vdev_t *vd) 2865 { 2866 spa_t *spa = vd->vdev_spa; 2867 vdev_t *rvd = spa->spa_root_vdev; 2868 int c; 2869 2870 ASSERT(spa_writeable(spa)); 2871 2872 /* 2873 * If this is an aux vdev (as with l2cache and spare devices), then we 2874 * update the vdev config manually and set the sync flag. 2875 */ 2876 if (vd->vdev_aux != NULL) { 2877 spa_aux_vdev_t *sav = vd->vdev_aux; 2878 nvlist_t **aux; 2879 uint_t naux; 2880 2881 for (c = 0; c < sav->sav_count; c++) { 2882 if (sav->sav_vdevs[c] == vd) 2883 break; 2884 } 2885 2886 if (c == sav->sav_count) { 2887 /* 2888 * We're being removed. There's nothing more to do. 2889 */ 2890 ASSERT(sav->sav_sync == B_TRUE); 2891 return; 2892 } 2893 2894 sav->sav_sync = B_TRUE; 2895 2896 if (nvlist_lookup_nvlist_array(sav->sav_config, 2897 ZPOOL_CONFIG_L2CACHE, &aux, &naux) != 0) { 2898 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 2899 ZPOOL_CONFIG_SPARES, &aux, &naux) == 0); 2900 } 2901 2902 ASSERT(c < naux); 2903 2904 /* 2905 * Setting the nvlist in the middle if the array is a little 2906 * sketchy, but it will work. 2907 */ 2908 nvlist_free(aux[c]); 2909 aux[c] = vdev_config_generate(spa, vd, B_TRUE, 0); 2910 2911 return; 2912 } 2913 2914 /* 2915 * The dirty list is protected by the SCL_CONFIG lock. The caller 2916 * must either hold SCL_CONFIG as writer, or must be the sync thread 2917 * (which holds SCL_CONFIG as reader). There's only one sync thread, 2918 * so this is sufficient to ensure mutual exclusion. 2919 */ 2920 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2921 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2922 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2923 2924 if (vd == rvd) { 2925 for (c = 0; c < rvd->vdev_children; c++) 2926 vdev_config_dirty(rvd->vdev_child[c]); 2927 } else { 2928 ASSERT(vd == vd->vdev_top); 2929 2930 if (!list_link_active(&vd->vdev_config_dirty_node) && 2931 !vd->vdev_ishole) 2932 list_insert_head(&spa->spa_config_dirty_list, vd); 2933 } 2934 } 2935 2936 void 2937 vdev_config_clean(vdev_t *vd) 2938 { 2939 spa_t *spa = vd->vdev_spa; 2940 2941 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_WRITER) || 2942 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2943 spa_config_held(spa, SCL_CONFIG, RW_READER))); 2944 2945 ASSERT(list_link_active(&vd->vdev_config_dirty_node)); 2946 list_remove(&spa->spa_config_dirty_list, vd); 2947 } 2948 2949 /* 2950 * Mark a top-level vdev's state as dirty, so that the next pass of 2951 * spa_sync() can convert this into vdev_config_dirty(). We distinguish 2952 * the state changes from larger config changes because they require 2953 * much less locking, and are often needed for administrative actions. 2954 */ 2955 void 2956 vdev_state_dirty(vdev_t *vd) 2957 { 2958 spa_t *spa = vd->vdev_spa; 2959 2960 ASSERT(spa_writeable(spa)); 2961 ASSERT(vd == vd->vdev_top); 2962 2963 /* 2964 * The state list is protected by the SCL_STATE lock. The caller 2965 * must either hold SCL_STATE as writer, or must be the sync thread 2966 * (which holds SCL_STATE as reader). There's only one sync thread, 2967 * so this is sufficient to ensure mutual exclusion. 2968 */ 2969 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2970 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2971 spa_config_held(spa, SCL_STATE, RW_READER))); 2972 2973 if (!list_link_active(&vd->vdev_state_dirty_node) && !vd->vdev_ishole) 2974 list_insert_head(&spa->spa_state_dirty_list, vd); 2975 } 2976 2977 void 2978 vdev_state_clean(vdev_t *vd) 2979 { 2980 spa_t *spa = vd->vdev_spa; 2981 2982 ASSERT(spa_config_held(spa, SCL_STATE, RW_WRITER) || 2983 (dsl_pool_sync_context(spa_get_dsl(spa)) && 2984 spa_config_held(spa, SCL_STATE, RW_READER))); 2985 2986 ASSERT(list_link_active(&vd->vdev_state_dirty_node)); 2987 list_remove(&spa->spa_state_dirty_list, vd); 2988 } 2989 2990 /* 2991 * Propagate vdev state up from children to parent. 2992 */ 2993 void 2994 vdev_propagate_state(vdev_t *vd) 2995 { 2996 spa_t *spa = vd->vdev_spa; 2997 vdev_t *rvd = spa->spa_root_vdev; 2998 int degraded = 0, faulted = 0; 2999 int corrupted = 0; 3000 vdev_t *child; 3001 3002 if (vd->vdev_children > 0) { 3003 for (int c = 0; c < vd->vdev_children; c++) { 3004 child = vd->vdev_child[c]; 3005 3006 /* 3007 * Don't factor holes into the decision. 3008 */ 3009 if (child->vdev_ishole) 3010 continue; 3011 3012 if (!vdev_readable(child) || 3013 (!vdev_writeable(child) && spa_writeable(spa))) { 3014 /* 3015 * Root special: if there is a top-level log 3016 * device, treat the root vdev as if it were 3017 * degraded. 3018 */ 3019 if (child->vdev_islog && vd == rvd) 3020 degraded++; 3021 else 3022 faulted++; 3023 } else if (child->vdev_state <= VDEV_STATE_DEGRADED) { 3024 degraded++; 3025 } 3026 3027 if (child->vdev_stat.vs_aux == VDEV_AUX_CORRUPT_DATA) 3028 corrupted++; 3029 } 3030 3031 vd->vdev_ops->vdev_op_state_change(vd, faulted, degraded); 3032 3033 /* 3034 * Root special: if there is a top-level vdev that cannot be 3035 * opened due to corrupted metadata, then propagate the root 3036 * vdev's aux state as 'corrupt' rather than 'insufficient 3037 * replicas'. 3038 */ 3039 if (corrupted && vd == rvd && 3040 rvd->vdev_state == VDEV_STATE_CANT_OPEN) 3041 vdev_set_state(rvd, B_FALSE, VDEV_STATE_CANT_OPEN, 3042 VDEV_AUX_CORRUPT_DATA); 3043 } 3044 3045 if (vd->vdev_parent) 3046 vdev_propagate_state(vd->vdev_parent); 3047 } 3048 3049 /* 3050 * Set a vdev's state. If this is during an open, we don't update the parent 3051 * state, because we're in the process of opening children depth-first. 3052 * Otherwise, we propagate the change to the parent. 3053 * 3054 * If this routine places a device in a faulted state, an appropriate ereport is 3055 * generated. 3056 */ 3057 void 3058 vdev_set_state(vdev_t *vd, boolean_t isopen, vdev_state_t state, vdev_aux_t aux) 3059 { 3060 uint64_t save_state; 3061 spa_t *spa = vd->vdev_spa; 3062 3063 if (state == vd->vdev_state) { 3064 vd->vdev_stat.vs_aux = aux; 3065 return; 3066 } 3067 3068 save_state = vd->vdev_state; 3069 3070 vd->vdev_state = state; 3071 vd->vdev_stat.vs_aux = aux; 3072 3073 /* 3074 * If we are setting the vdev state to anything but an open state, then 3075 * always close the underlying device unless the device has requested 3076 * a delayed close (i.e. we're about to remove or fault the device). 3077 * Otherwise, we keep accessible but invalid devices open forever. 3078 * We don't call vdev_close() itself, because that implies some extra 3079 * checks (offline, etc) that we don't want here. This is limited to 3080 * leaf devices, because otherwise closing the device will affect other 3081 * children. 3082 */ 3083 if (!vd->vdev_delayed_close && vdev_is_dead(vd) && 3084 vd->vdev_ops->vdev_op_leaf) 3085 vd->vdev_ops->vdev_op_close(vd); 3086 3087 /* 3088 * If we have brought this vdev back into service, we need 3089 * to notify fmd so that it can gracefully repair any outstanding 3090 * cases due to a missing device. We do this in all cases, even those 3091 * that probably don't correlate to a repaired fault. This is sure to 3092 * catch all cases, and we let the zfs-retire agent sort it out. If 3093 * this is a transient state it's OK, as the retire agent will 3094 * double-check the state of the vdev before repairing it. 3095 */ 3096 if (state == VDEV_STATE_HEALTHY && vd->vdev_ops->vdev_op_leaf && 3097 vd->vdev_prevstate != state) 3098 zfs_post_state_change(spa, vd); 3099 3100 if (vd->vdev_removed && 3101 state == VDEV_STATE_CANT_OPEN && 3102 (aux == VDEV_AUX_OPEN_FAILED || vd->vdev_checkremove)) { 3103 /* 3104 * If the previous state is set to VDEV_STATE_REMOVED, then this 3105 * device was previously marked removed and someone attempted to 3106 * reopen it. If this failed due to a nonexistent device, then 3107 * keep the device in the REMOVED state. We also let this be if 3108 * it is one of our special test online cases, which is only 3109 * attempting to online the device and shouldn't generate an FMA 3110 * fault. 3111 */ 3112 vd->vdev_state = VDEV_STATE_REMOVED; 3113 vd->vdev_stat.vs_aux = VDEV_AUX_NONE; 3114 } else if (state == VDEV_STATE_REMOVED) { 3115 vd->vdev_removed = B_TRUE; 3116 } else if (state == VDEV_STATE_CANT_OPEN) { 3117 /* 3118 * If we fail to open a vdev during an import or recovery, we 3119 * mark it as "not available", which signifies that it was 3120 * never there to begin with. Failure to open such a device 3121 * is not considered an error. 3122 */ 3123 if ((spa_load_state(spa) == SPA_LOAD_IMPORT || 3124 spa_load_state(spa) == SPA_LOAD_RECOVER) && 3125 vd->vdev_ops->vdev_op_leaf) 3126 vd->vdev_not_present = 1; 3127 3128 /* 3129 * Post the appropriate ereport. If the 'prevstate' field is 3130 * set to something other than VDEV_STATE_UNKNOWN, it indicates 3131 * that this is part of a vdev_reopen(). In this case, we don't 3132 * want to post the ereport if the device was already in the 3133 * CANT_OPEN state beforehand. 3134 * 3135 * If the 'checkremove' flag is set, then this is an attempt to 3136 * online the device in response to an insertion event. If we 3137 * hit this case, then we have detected an insertion event for a 3138 * faulted or offline device that wasn't in the removed state. 3139 * In this scenario, we don't post an ereport because we are 3140 * about to replace the device, or attempt an online with 3141 * vdev_forcefault, which will generate the fault for us. 3142 */ 3143 if ((vd->vdev_prevstate != state || vd->vdev_forcefault) && 3144 !vd->vdev_not_present && !vd->vdev_checkremove && 3145 vd != spa->spa_root_vdev) { 3146 const char *class; 3147 3148 switch (aux) { 3149 case VDEV_AUX_OPEN_FAILED: 3150 class = FM_EREPORT_ZFS_DEVICE_OPEN_FAILED; 3151 break; 3152 case VDEV_AUX_CORRUPT_DATA: 3153 class = FM_EREPORT_ZFS_DEVICE_CORRUPT_DATA; 3154 break; 3155 case VDEV_AUX_NO_REPLICAS: 3156 class = FM_EREPORT_ZFS_DEVICE_NO_REPLICAS; 3157 break; 3158 case VDEV_AUX_BAD_GUID_SUM: 3159 class = FM_EREPORT_ZFS_DEVICE_BAD_GUID_SUM; 3160 break; 3161 case VDEV_AUX_TOO_SMALL: 3162 class = FM_EREPORT_ZFS_DEVICE_TOO_SMALL; 3163 break; 3164 case VDEV_AUX_BAD_LABEL: 3165 class = FM_EREPORT_ZFS_DEVICE_BAD_LABEL; 3166 break; 3167 default: 3168 class = FM_EREPORT_ZFS_DEVICE_UNKNOWN; 3169 } 3170 3171 zfs_ereport_post(class, spa, vd, NULL, save_state, 0); 3172 } 3173 3174 /* Erase any notion of persistent removed state */ 3175 vd->vdev_removed = B_FALSE; 3176 } else { 3177 vd->vdev_removed = B_FALSE; 3178 } 3179 3180 if (!isopen && vd->vdev_parent) 3181 vdev_propagate_state(vd->vdev_parent); 3182 } 3183 3184 /* 3185 * Check the vdev configuration to ensure that it's capable of supporting 3186 * a root pool. Currently, we do not support RAID-Z or partial configuration. 3187 * In addition, only a single top-level vdev is allowed and none of the leaves 3188 * can be wholedisks. 3189 */ 3190 boolean_t 3191 vdev_is_bootable(vdev_t *vd) 3192 { 3193 if (!vd->vdev_ops->vdev_op_leaf) { 3194 char *vdev_type = vd->vdev_ops->vdev_op_type; 3195 3196 if (strcmp(vdev_type, VDEV_TYPE_ROOT) == 0 && 3197 vd->vdev_children > 1) { 3198 return (B_FALSE); 3199 } else if (strcmp(vdev_type, VDEV_TYPE_RAIDZ) == 0 || 3200 strcmp(vdev_type, VDEV_TYPE_MISSING) == 0) { 3201 return (B_FALSE); 3202 } 3203 } else if (vd->vdev_wholedisk == 1) { 3204 return (B_FALSE); 3205 } 3206 3207 for (int c = 0; c < vd->vdev_children; c++) { 3208 if (!vdev_is_bootable(vd->vdev_child[c])) 3209 return (B_FALSE); 3210 } 3211 return (B_TRUE); 3212 } 3213 3214 /* 3215 * Load the state from the original vdev tree (ovd) which 3216 * we've retrieved from the MOS config object. If the original 3217 * vdev was offline or faulted then we transfer that state to the 3218 * device in the current vdev tree (nvd). 3219 */ 3220 void 3221 vdev_load_log_state(vdev_t *nvd, vdev_t *ovd) 3222 { 3223 spa_t *spa = nvd->vdev_spa; 3224 3225 ASSERT(nvd->vdev_top->vdev_islog); 3226 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 3227 ASSERT3U(nvd->vdev_guid, ==, ovd->vdev_guid); 3228 3229 for (int c = 0; c < nvd->vdev_children; c++) 3230 vdev_load_log_state(nvd->vdev_child[c], ovd->vdev_child[c]); 3231 3232 if (nvd->vdev_ops->vdev_op_leaf) { 3233 /* 3234 * Restore the persistent vdev state 3235 */ 3236 nvd->vdev_offline = ovd->vdev_offline; 3237 nvd->vdev_faulted = ovd->vdev_faulted; 3238 nvd->vdev_degraded = ovd->vdev_degraded; 3239 nvd->vdev_removed = ovd->vdev_removed; 3240 } 3241 } 3242 3243 /* 3244 * Determine if a log device has valid content. If the vdev was 3245 * removed or faulted in the MOS config then we know that 3246 * the content on the log device has already been written to the pool. 3247 */ 3248 boolean_t 3249 vdev_log_state_valid(vdev_t *vd) 3250 { 3251 if (vd->vdev_ops->vdev_op_leaf && !vd->vdev_faulted && 3252 !vd->vdev_removed) 3253 return (B_TRUE); 3254 3255 for (int c = 0; c < vd->vdev_children; c++) 3256 if (vdev_log_state_valid(vd->vdev_child[c])) 3257 return (B_TRUE); 3258 3259 return (B_FALSE); 3260 } 3261 3262 /* 3263 * Expand a vdev if possible. 3264 */ 3265 void 3266 vdev_expand(vdev_t *vd, uint64_t txg) 3267 { 3268 ASSERT(vd->vdev_top == vd); 3269 ASSERT(spa_config_held(vd->vdev_spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3270 3271 if ((vd->vdev_asize >> vd->vdev_ms_shift) > vd->vdev_ms_count) { 3272 VERIFY(vdev_metaslab_init(vd, txg) == 0); 3273 vdev_config_dirty(vd); 3274 } 3275 } 3276 3277 /* 3278 * Split a vdev. 3279 */ 3280 void 3281 vdev_split(vdev_t *vd) 3282 { 3283 vdev_t *cvd, *pvd = vd->vdev_parent; 3284 3285 vdev_remove_child(pvd, vd); 3286 vdev_compact_children(pvd); 3287 3288 cvd = pvd->vdev_child[0]; 3289 if (pvd->vdev_children == 1) { 3290 vdev_remove_parent(cvd); 3291 cvd->vdev_splitting = B_TRUE; 3292 } 3293 vdev_propagate_state(cvd); 3294 } 3295 3296 void 3297 vdev_deadman(vdev_t *vd) 3298 { 3299 for (int c = 0; c < vd->vdev_children; c++) { 3300 vdev_t *cvd = vd->vdev_child[c]; 3301 3302 vdev_deadman(cvd); 3303 } 3304 3305 if (vd->vdev_ops->vdev_op_leaf) { 3306 vdev_queue_t *vq = &vd->vdev_queue; 3307 3308 mutex_enter(&vq->vq_lock); 3309 if (avl_numnodes(&vq->vq_active_tree) > 0) { 3310 spa_t *spa = vd->vdev_spa; 3311 zio_t *fio; 3312 uint64_t delta; 3313 3314 /* 3315 * Look at the head of all the pending queues, 3316 * if any I/O has been outstanding for longer than 3317 * the spa_deadman_synctime we panic the system. 3318 */ 3319 fio = avl_first(&vq->vq_active_tree); 3320 delta = gethrtime() - fio->io_timestamp; 3321 if (delta > spa_deadman_synctime(spa)) { 3322 zfs_dbgmsg("SLOW IO: zio timestamp %lluns, " 3323 "delta %lluns, last io %lluns", 3324 fio->io_timestamp, delta, 3325 vq->vq_io_complete_ts); 3326 fm_panic("I/O to pool '%s' appears to be " 3327 "hung.", spa_name(spa)); 3328 } 3329 } 3330 mutex_exit(&vq->vq_lock); 3331 } 3332 } 3333