1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 /* 26 * Copyright (c) 2012 by Delphix. All rights reserved. 27 */ 28 29 #include <sys/zfs_context.h> 30 #include <sys/spa.h> 31 #include <sys/dmu.h> 32 #include <sys/zio.h> 33 #include <sys/space_map.h> 34 35 static kmem_cache_t *space_seg_cache; 36 37 void 38 space_map_init(void) 39 { 40 ASSERT(space_seg_cache == NULL); 41 space_seg_cache = kmem_cache_create("space_seg_cache", 42 sizeof (space_seg_t), 0, NULL, NULL, NULL, NULL, NULL, 0); 43 } 44 45 void 46 space_map_fini(void) 47 { 48 kmem_cache_destroy(space_seg_cache); 49 space_seg_cache = NULL; 50 } 51 52 /* 53 * Space map routines. 54 * NOTE: caller is responsible for all locking. 55 */ 56 static int 57 space_map_seg_compare(const void *x1, const void *x2) 58 { 59 const space_seg_t *s1 = x1; 60 const space_seg_t *s2 = x2; 61 62 if (s1->ss_start < s2->ss_start) { 63 if (s1->ss_end > s2->ss_start) 64 return (0); 65 return (-1); 66 } 67 if (s1->ss_start > s2->ss_start) { 68 if (s1->ss_start < s2->ss_end) 69 return (0); 70 return (1); 71 } 72 return (0); 73 } 74 75 void 76 space_map_create(space_map_t *sm, uint64_t start, uint64_t size, uint8_t shift, 77 kmutex_t *lp) 78 { 79 bzero(sm, sizeof (*sm)); 80 81 cv_init(&sm->sm_load_cv, NULL, CV_DEFAULT, NULL); 82 83 avl_create(&sm->sm_root, space_map_seg_compare, 84 sizeof (space_seg_t), offsetof(struct space_seg, ss_node)); 85 86 sm->sm_start = start; 87 sm->sm_size = size; 88 sm->sm_shift = shift; 89 sm->sm_lock = lp; 90 } 91 92 void 93 space_map_destroy(space_map_t *sm) 94 { 95 ASSERT(!sm->sm_loaded && !sm->sm_loading); 96 VERIFY0(sm->sm_space); 97 avl_destroy(&sm->sm_root); 98 cv_destroy(&sm->sm_load_cv); 99 } 100 101 void 102 space_map_add(space_map_t *sm, uint64_t start, uint64_t size) 103 { 104 avl_index_t where; 105 space_seg_t ssearch, *ss_before, *ss_after, *ss; 106 uint64_t end = start + size; 107 int merge_before, merge_after; 108 109 ASSERT(MUTEX_HELD(sm->sm_lock)); 110 VERIFY(!sm->sm_condensing); 111 VERIFY(size != 0); 112 VERIFY3U(start, >=, sm->sm_start); 113 VERIFY3U(end, <=, sm->sm_start + sm->sm_size); 114 VERIFY(sm->sm_space + size <= sm->sm_size); 115 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); 116 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); 117 118 ssearch.ss_start = start; 119 ssearch.ss_end = end; 120 ss = avl_find(&sm->sm_root, &ssearch, &where); 121 122 if (ss != NULL && ss->ss_start <= start && ss->ss_end >= end) { 123 zfs_panic_recover("zfs: allocating allocated segment" 124 "(offset=%llu size=%llu)\n", 125 (longlong_t)start, (longlong_t)size); 126 return; 127 } 128 129 /* Make sure we don't overlap with either of our neighbors */ 130 VERIFY(ss == NULL); 131 132 ss_before = avl_nearest(&sm->sm_root, where, AVL_BEFORE); 133 ss_after = avl_nearest(&sm->sm_root, where, AVL_AFTER); 134 135 merge_before = (ss_before != NULL && ss_before->ss_end == start); 136 merge_after = (ss_after != NULL && ss_after->ss_start == end); 137 138 if (merge_before && merge_after) { 139 avl_remove(&sm->sm_root, ss_before); 140 if (sm->sm_pp_root) { 141 avl_remove(sm->sm_pp_root, ss_before); 142 avl_remove(sm->sm_pp_root, ss_after); 143 } 144 ss_after->ss_start = ss_before->ss_start; 145 kmem_cache_free(space_seg_cache, ss_before); 146 ss = ss_after; 147 } else if (merge_before) { 148 ss_before->ss_end = end; 149 if (sm->sm_pp_root) 150 avl_remove(sm->sm_pp_root, ss_before); 151 ss = ss_before; 152 } else if (merge_after) { 153 ss_after->ss_start = start; 154 if (sm->sm_pp_root) 155 avl_remove(sm->sm_pp_root, ss_after); 156 ss = ss_after; 157 } else { 158 ss = kmem_cache_alloc(space_seg_cache, KM_SLEEP); 159 ss->ss_start = start; 160 ss->ss_end = end; 161 avl_insert(&sm->sm_root, ss, where); 162 } 163 164 if (sm->sm_pp_root) 165 avl_add(sm->sm_pp_root, ss); 166 167 sm->sm_space += size; 168 } 169 170 void 171 space_map_remove(space_map_t *sm, uint64_t start, uint64_t size) 172 { 173 avl_index_t where; 174 space_seg_t ssearch, *ss, *newseg; 175 uint64_t end = start + size; 176 int left_over, right_over; 177 178 ASSERT(MUTEX_HELD(sm->sm_lock)); 179 VERIFY(!sm->sm_condensing); 180 VERIFY(size != 0); 181 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); 182 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); 183 184 ssearch.ss_start = start; 185 ssearch.ss_end = end; 186 ss = avl_find(&sm->sm_root, &ssearch, &where); 187 188 /* Make sure we completely overlap with someone */ 189 if (ss == NULL) { 190 zfs_panic_recover("zfs: freeing free segment " 191 "(offset=%llu size=%llu)", 192 (longlong_t)start, (longlong_t)size); 193 return; 194 } 195 VERIFY3U(ss->ss_start, <=, start); 196 VERIFY3U(ss->ss_end, >=, end); 197 VERIFY(sm->sm_space - size <= sm->sm_size); 198 199 left_over = (ss->ss_start != start); 200 right_over = (ss->ss_end != end); 201 202 if (sm->sm_pp_root) 203 avl_remove(sm->sm_pp_root, ss); 204 205 if (left_over && right_over) { 206 newseg = kmem_cache_alloc(space_seg_cache, KM_SLEEP); 207 newseg->ss_start = end; 208 newseg->ss_end = ss->ss_end; 209 ss->ss_end = start; 210 avl_insert_here(&sm->sm_root, newseg, ss, AVL_AFTER); 211 if (sm->sm_pp_root) 212 avl_add(sm->sm_pp_root, newseg); 213 } else if (left_over) { 214 ss->ss_end = start; 215 } else if (right_over) { 216 ss->ss_start = end; 217 } else { 218 avl_remove(&sm->sm_root, ss); 219 kmem_cache_free(space_seg_cache, ss); 220 ss = NULL; 221 } 222 223 if (sm->sm_pp_root && ss != NULL) 224 avl_add(sm->sm_pp_root, ss); 225 226 sm->sm_space -= size; 227 } 228 229 boolean_t 230 space_map_contains(space_map_t *sm, uint64_t start, uint64_t size) 231 { 232 avl_index_t where; 233 space_seg_t ssearch, *ss; 234 uint64_t end = start + size; 235 236 ASSERT(MUTEX_HELD(sm->sm_lock)); 237 VERIFY(size != 0); 238 VERIFY(P2PHASE(start, 1ULL << sm->sm_shift) == 0); 239 VERIFY(P2PHASE(size, 1ULL << sm->sm_shift) == 0); 240 241 ssearch.ss_start = start; 242 ssearch.ss_end = end; 243 ss = avl_find(&sm->sm_root, &ssearch, &where); 244 245 return (ss != NULL && ss->ss_start <= start && ss->ss_end >= end); 246 } 247 248 void 249 space_map_swap(space_map_t **msrc, space_map_t **mdst) 250 { 251 space_map_t *sm; 252 253 ASSERT(MUTEX_HELD((*msrc)->sm_lock)); 254 ASSERT0((*mdst)->sm_space); 255 ASSERT0(avl_numnodes(&(*mdst)->sm_root)); 256 257 sm = *msrc; 258 *msrc = *mdst; 259 *mdst = sm; 260 } 261 262 void 263 space_map_vacate(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) 264 { 265 space_seg_t *ss; 266 void *cookie = NULL; 267 268 ASSERT(MUTEX_HELD(sm->sm_lock)); 269 270 while ((ss = avl_destroy_nodes(&sm->sm_root, &cookie)) != NULL) { 271 if (func != NULL) 272 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); 273 kmem_cache_free(space_seg_cache, ss); 274 } 275 sm->sm_space = 0; 276 } 277 278 void 279 space_map_walk(space_map_t *sm, space_map_func_t *func, space_map_t *mdest) 280 { 281 space_seg_t *ss; 282 283 ASSERT(MUTEX_HELD(sm->sm_lock)); 284 285 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) 286 func(mdest, ss->ss_start, ss->ss_end - ss->ss_start); 287 } 288 289 /* 290 * Wait for any in-progress space_map_load() to complete. 291 */ 292 void 293 space_map_load_wait(space_map_t *sm) 294 { 295 ASSERT(MUTEX_HELD(sm->sm_lock)); 296 297 while (sm->sm_loading) { 298 ASSERT(!sm->sm_loaded); 299 cv_wait(&sm->sm_load_cv, sm->sm_lock); 300 } 301 } 302 303 /* 304 * Note: space_map_load() will drop sm_lock across dmu_read() calls. 305 * The caller must be OK with this. 306 */ 307 int 308 space_map_load(space_map_t *sm, space_map_ops_t *ops, uint8_t maptype, 309 space_map_obj_t *smo, objset_t *os) 310 { 311 uint64_t *entry, *entry_map, *entry_map_end; 312 uint64_t bufsize, size, offset, end, space; 313 uint64_t mapstart = sm->sm_start; 314 int error = 0; 315 316 ASSERT(MUTEX_HELD(sm->sm_lock)); 317 ASSERT(!sm->sm_loaded); 318 ASSERT(!sm->sm_loading); 319 320 sm->sm_loading = B_TRUE; 321 end = smo->smo_objsize; 322 space = smo->smo_alloc; 323 324 ASSERT(sm->sm_ops == NULL); 325 VERIFY0(sm->sm_space); 326 327 if (maptype == SM_FREE) { 328 space_map_add(sm, sm->sm_start, sm->sm_size); 329 space = sm->sm_size - space; 330 } 331 332 bufsize = 1ULL << SPACE_MAP_BLOCKSHIFT; 333 entry_map = zio_buf_alloc(bufsize); 334 335 mutex_exit(sm->sm_lock); 336 if (end > bufsize) 337 dmu_prefetch(os, smo->smo_object, bufsize, end - bufsize); 338 mutex_enter(sm->sm_lock); 339 340 for (offset = 0; offset < end; offset += bufsize) { 341 size = MIN(end - offset, bufsize); 342 VERIFY(P2PHASE(size, sizeof (uint64_t)) == 0); 343 VERIFY(size != 0); 344 345 dprintf("object=%llu offset=%llx size=%llx\n", 346 smo->smo_object, offset, size); 347 348 mutex_exit(sm->sm_lock); 349 error = dmu_read(os, smo->smo_object, offset, size, entry_map, 350 DMU_READ_PREFETCH); 351 mutex_enter(sm->sm_lock); 352 if (error != 0) 353 break; 354 355 entry_map_end = entry_map + (size / sizeof (uint64_t)); 356 for (entry = entry_map; entry < entry_map_end; entry++) { 357 uint64_t e = *entry; 358 359 if (SM_DEBUG_DECODE(e)) /* Skip debug entries */ 360 continue; 361 362 (SM_TYPE_DECODE(e) == maptype ? 363 space_map_add : space_map_remove)(sm, 364 (SM_OFFSET_DECODE(e) << sm->sm_shift) + mapstart, 365 SM_RUN_DECODE(e) << sm->sm_shift); 366 } 367 } 368 369 if (error == 0) { 370 VERIFY3U(sm->sm_space, ==, space); 371 372 sm->sm_loaded = B_TRUE; 373 sm->sm_ops = ops; 374 if (ops != NULL) 375 ops->smop_load(sm); 376 } else { 377 space_map_vacate(sm, NULL, NULL); 378 } 379 380 zio_buf_free(entry_map, bufsize); 381 382 sm->sm_loading = B_FALSE; 383 384 cv_broadcast(&sm->sm_load_cv); 385 386 return (error); 387 } 388 389 void 390 space_map_unload(space_map_t *sm) 391 { 392 ASSERT(MUTEX_HELD(sm->sm_lock)); 393 394 if (sm->sm_loaded && sm->sm_ops != NULL) 395 sm->sm_ops->smop_unload(sm); 396 397 sm->sm_loaded = B_FALSE; 398 sm->sm_ops = NULL; 399 400 space_map_vacate(sm, NULL, NULL); 401 } 402 403 uint64_t 404 space_map_maxsize(space_map_t *sm) 405 { 406 ASSERT(sm->sm_ops != NULL); 407 return (sm->sm_ops->smop_max(sm)); 408 } 409 410 uint64_t 411 space_map_alloc(space_map_t *sm, uint64_t size) 412 { 413 uint64_t start; 414 415 start = sm->sm_ops->smop_alloc(sm, size); 416 if (start != -1ULL) 417 space_map_remove(sm, start, size); 418 return (start); 419 } 420 421 void 422 space_map_claim(space_map_t *sm, uint64_t start, uint64_t size) 423 { 424 sm->sm_ops->smop_claim(sm, start, size); 425 space_map_remove(sm, start, size); 426 } 427 428 void 429 space_map_free(space_map_t *sm, uint64_t start, uint64_t size) 430 { 431 space_map_add(sm, start, size); 432 sm->sm_ops->smop_free(sm, start, size); 433 } 434 435 /* 436 * Note: space_map_sync() will drop sm_lock across dmu_write() calls. 437 */ 438 void 439 space_map_sync(space_map_t *sm, uint8_t maptype, 440 space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) 441 { 442 spa_t *spa = dmu_objset_spa(os); 443 avl_tree_t *t = &sm->sm_root; 444 space_seg_t *ss; 445 uint64_t bufsize, start, size, run_len, total, sm_space, nodes; 446 uint64_t *entry, *entry_map, *entry_map_end; 447 448 ASSERT(MUTEX_HELD(sm->sm_lock)); 449 450 if (sm->sm_space == 0) 451 return; 452 453 dprintf("object %4llu, txg %llu, pass %d, %c, count %lu, space %llx\n", 454 smo->smo_object, dmu_tx_get_txg(tx), spa_sync_pass(spa), 455 maptype == SM_ALLOC ? 'A' : 'F', avl_numnodes(&sm->sm_root), 456 sm->sm_space); 457 458 if (maptype == SM_ALLOC) 459 smo->smo_alloc += sm->sm_space; 460 else 461 smo->smo_alloc -= sm->sm_space; 462 463 bufsize = (8 + avl_numnodes(&sm->sm_root)) * sizeof (uint64_t); 464 bufsize = MIN(bufsize, 1ULL << SPACE_MAP_BLOCKSHIFT); 465 entry_map = zio_buf_alloc(bufsize); 466 entry_map_end = entry_map + (bufsize / sizeof (uint64_t)); 467 entry = entry_map; 468 469 *entry++ = SM_DEBUG_ENCODE(1) | 470 SM_DEBUG_ACTION_ENCODE(maptype) | 471 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(spa)) | 472 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx)); 473 474 total = 0; 475 nodes = avl_numnodes(&sm->sm_root); 476 sm_space = sm->sm_space; 477 for (ss = avl_first(t); ss != NULL; ss = AVL_NEXT(t, ss)) { 478 size = ss->ss_end - ss->ss_start; 479 start = (ss->ss_start - sm->sm_start) >> sm->sm_shift; 480 481 total += size; 482 size >>= sm->sm_shift; 483 484 while (size) { 485 run_len = MIN(size, SM_RUN_MAX); 486 487 if (entry == entry_map_end) { 488 mutex_exit(sm->sm_lock); 489 dmu_write(os, smo->smo_object, smo->smo_objsize, 490 bufsize, entry_map, tx); 491 mutex_enter(sm->sm_lock); 492 smo->smo_objsize += bufsize; 493 entry = entry_map; 494 } 495 496 *entry++ = SM_OFFSET_ENCODE(start) | 497 SM_TYPE_ENCODE(maptype) | 498 SM_RUN_ENCODE(run_len); 499 500 start += run_len; 501 size -= run_len; 502 } 503 } 504 505 if (entry != entry_map) { 506 size = (entry - entry_map) * sizeof (uint64_t); 507 mutex_exit(sm->sm_lock); 508 dmu_write(os, smo->smo_object, smo->smo_objsize, 509 size, entry_map, tx); 510 mutex_enter(sm->sm_lock); 511 smo->smo_objsize += size; 512 } 513 514 /* 515 * Ensure that the space_map's accounting wasn't changed 516 * while we were in the middle of writing it out. 517 */ 518 VERIFY3U(nodes, ==, avl_numnodes(&sm->sm_root)); 519 VERIFY3U(sm->sm_space, ==, sm_space); 520 VERIFY3U(sm->sm_space, ==, total); 521 522 zio_buf_free(entry_map, bufsize); 523 } 524 525 void 526 space_map_truncate(space_map_obj_t *smo, objset_t *os, dmu_tx_t *tx) 527 { 528 VERIFY(dmu_free_range(os, smo->smo_object, 0, -1ULL, tx) == 0); 529 530 smo->smo_objsize = 0; 531 smo->smo_alloc = 0; 532 } 533 534 /* 535 * Space map reference trees. 536 * 537 * A space map is a collection of integers. Every integer is either 538 * in the map, or it's not. A space map reference tree generalizes 539 * the idea: it allows its members to have arbitrary reference counts, 540 * as opposed to the implicit reference count of 0 or 1 in a space map. 541 * This representation comes in handy when computing the union or 542 * intersection of multiple space maps. For example, the union of 543 * N space maps is the subset of the reference tree with refcnt >= 1. 544 * The intersection of N space maps is the subset with refcnt >= N. 545 * 546 * [It's very much like a Fourier transform. Unions and intersections 547 * are hard to perform in the 'space map domain', so we convert the maps 548 * into the 'reference count domain', where it's trivial, then invert.] 549 * 550 * vdev_dtl_reassess() uses computations of this form to determine 551 * DTL_MISSING and DTL_OUTAGE for interior vdevs -- e.g. a RAID-Z vdev 552 * has an outage wherever refcnt >= vdev_nparity + 1, and a mirror vdev 553 * has an outage wherever refcnt >= vdev_children. 554 */ 555 static int 556 space_map_ref_compare(const void *x1, const void *x2) 557 { 558 const space_ref_t *sr1 = x1; 559 const space_ref_t *sr2 = x2; 560 561 if (sr1->sr_offset < sr2->sr_offset) 562 return (-1); 563 if (sr1->sr_offset > sr2->sr_offset) 564 return (1); 565 566 if (sr1 < sr2) 567 return (-1); 568 if (sr1 > sr2) 569 return (1); 570 571 return (0); 572 } 573 574 void 575 space_map_ref_create(avl_tree_t *t) 576 { 577 avl_create(t, space_map_ref_compare, 578 sizeof (space_ref_t), offsetof(space_ref_t, sr_node)); 579 } 580 581 void 582 space_map_ref_destroy(avl_tree_t *t) 583 { 584 space_ref_t *sr; 585 void *cookie = NULL; 586 587 while ((sr = avl_destroy_nodes(t, &cookie)) != NULL) 588 kmem_free(sr, sizeof (*sr)); 589 590 avl_destroy(t); 591 } 592 593 static void 594 space_map_ref_add_node(avl_tree_t *t, uint64_t offset, int64_t refcnt) 595 { 596 space_ref_t *sr; 597 598 sr = kmem_alloc(sizeof (*sr), KM_SLEEP); 599 sr->sr_offset = offset; 600 sr->sr_refcnt = refcnt; 601 602 avl_add(t, sr); 603 } 604 605 void 606 space_map_ref_add_seg(avl_tree_t *t, uint64_t start, uint64_t end, 607 int64_t refcnt) 608 { 609 space_map_ref_add_node(t, start, refcnt); 610 space_map_ref_add_node(t, end, -refcnt); 611 } 612 613 /* 614 * Convert (or add) a space map into a reference tree. 615 */ 616 void 617 space_map_ref_add_map(avl_tree_t *t, space_map_t *sm, int64_t refcnt) 618 { 619 space_seg_t *ss; 620 621 ASSERT(MUTEX_HELD(sm->sm_lock)); 622 623 for (ss = avl_first(&sm->sm_root); ss; ss = AVL_NEXT(&sm->sm_root, ss)) 624 space_map_ref_add_seg(t, ss->ss_start, ss->ss_end, refcnt); 625 } 626 627 /* 628 * Convert a reference tree into a space map. The space map will contain 629 * all members of the reference tree for which refcnt >= minref. 630 */ 631 void 632 space_map_ref_generate_map(avl_tree_t *t, space_map_t *sm, int64_t minref) 633 { 634 uint64_t start = -1ULL; 635 int64_t refcnt = 0; 636 space_ref_t *sr; 637 638 ASSERT(MUTEX_HELD(sm->sm_lock)); 639 640 space_map_vacate(sm, NULL, NULL); 641 642 for (sr = avl_first(t); sr != NULL; sr = AVL_NEXT(t, sr)) { 643 refcnt += sr->sr_refcnt; 644 if (refcnt >= minref) { 645 if (start == -1ULL) { 646 start = sr->sr_offset; 647 } 648 } else { 649 if (start != -1ULL) { 650 uint64_t end = sr->sr_offset; 651 ASSERT(start <= end); 652 if (end > start) 653 space_map_add(sm, start, end - start); 654 start = -1ULL; 655 } 656 } 657 } 658 ASSERT(refcnt == 0); 659 ASSERT(start == -1ULL); 660 } 661