1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2006 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/zfs_context.h> 29 #include <sys/spa_impl.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/fs/zfs.h> 47 48 /* 49 * SPA locking 50 * 51 * There are four basic locks for managing spa_t structures: 52 * 53 * spa_namespace_lock (global mutex) 54 * 55 * This lock must be acquired to do any of the following: 56 * 57 * - Lookup a spa_t by name 58 * - Add or remove a spa_t from the namespace 59 * - Increase spa_refcount from non-zero 60 * - Check if spa_refcount is zero 61 * - Rename a spa_t 62 * - add/remove/attach/detach devices 63 * - Held for the duration of create/destroy/import/export 64 * 65 * It does not need to handle recursion. A create or destroy may 66 * reference objects (files or zvols) in other pools, but by 67 * definition they must have an existing reference, and will never need 68 * to lookup a spa_t by name. 69 * 70 * spa_refcount (per-spa refcount_t protected by mutex) 71 * 72 * This reference count keep track of any active users of the spa_t. The 73 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 74 * the refcount is never really 'zero' - opening a pool implicitly keeps 75 * some references in the DMU. Internally we check against SPA_MINREF, but 76 * present the image of a zero/non-zero value to consumers. 77 * 78 * spa_config_lock (per-spa crazy rwlock) 79 * 80 * This SPA special is a recursive rwlock, capable of being acquired from 81 * asynchronous threads. It has protects the spa_t from config changes, 82 * and must be held in the following circumstances: 83 * 84 * - RW_READER to perform I/O to the spa 85 * - RW_WRITER to change the vdev config 86 * 87 * spa_config_cache_lock (per-spa mutex) 88 * 89 * This mutex prevents the spa_config nvlist from being updated. No 90 * other locks are required to obtain this lock, although implicitly you 91 * must have the namespace lock or non-zero refcount to have any kind 92 * of spa_t pointer at all. 93 * 94 * The locking order is fairly straightforward: 95 * 96 * spa_namespace_lock -> spa_refcount 97 * 98 * The namespace lock must be acquired to increase the refcount from 0 99 * or to check if it is zero. 100 * 101 * spa_refcount -> spa_config_lock 102 * 103 * There must be at least one valid reference on the spa_t to acquire 104 * the config lock. 105 * 106 * spa_namespace_lock -> spa_config_lock 107 * 108 * The namespace lock must always be taken before the config lock. 109 * 110 * 111 * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and 112 * are globally visible. 113 * 114 * The namespace is manipulated using the following functions, all which require 115 * the spa_namespace_lock to be held. 116 * 117 * spa_lookup() Lookup a spa_t by name. 118 * 119 * spa_add() Create a new spa_t in the namespace. 120 * 121 * spa_remove() Remove a spa_t from the namespace. This also 122 * frees up any memory associated with the spa_t. 123 * 124 * spa_next() Returns the next spa_t in the system, or the 125 * first if NULL is passed. 126 * 127 * spa_evict_all() Shutdown and remove all spa_t structures in 128 * the system. 129 * 130 * spa_guid_exists() Determine whether a pool/device guid exists. 131 * 132 * The spa_refcount is manipulated using the following functions: 133 * 134 * spa_open_ref() Adds a reference to the given spa_t. Must be 135 * called with spa_namespace_lock held if the 136 * refcount is currently zero. 137 * 138 * spa_close() Remove a reference from the spa_t. This will 139 * not free the spa_t or remove it from the 140 * namespace. No locking is required. 141 * 142 * spa_refcount_zero() Returns true if the refcount is currently 143 * zero. Must be called with spa_namespace_lock 144 * held. 145 * 146 * The spa_config_lock is manipulated using the following functions: 147 * 148 * spa_config_enter() Acquire the config lock as RW_READER or 149 * RW_WRITER. At least one reference on the spa_t 150 * must exist. 151 * 152 * spa_config_exit() Release the config lock. 153 * 154 * spa_config_held() Returns true if the config lock is currently 155 * held in the given state. 156 * 157 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 158 * 159 * spa_vdev_enter() Acquire the namespace lock and the config lock 160 * for writing. 161 * 162 * spa_vdev_exit() Release the config lock, wait for all I/O 163 * to complete, sync the updated configs to the 164 * cache, and release the namespace lock. 165 * 166 * The spa_name() function also requires either the spa_namespace_lock 167 * or the spa_config_lock, as both are needed to do a rename. spa_rename() is 168 * also implemented within this file since is requires manipulation of the 169 * namespace. 170 */ 171 172 static avl_tree_t spa_namespace_avl; 173 kmutex_t spa_namespace_lock; 174 static kcondvar_t spa_namespace_cv; 175 176 kmem_cache_t *spa_buffer_pool; 177 int spa_mode; 178 179 #ifdef ZFS_DEBUG 180 int zfs_flags = ~0; 181 #else 182 int zfs_flags = 0; 183 #endif 184 185 #define SPA_MINREF 5 /* spa_refcnt for an open-but-idle pool */ 186 187 /* 188 * ========================================================================== 189 * SPA namespace functions 190 * ========================================================================== 191 */ 192 193 /* 194 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 195 * Returns NULL if no matching spa_t is found. 196 */ 197 spa_t * 198 spa_lookup(const char *name) 199 { 200 spa_t search, *spa; 201 avl_index_t where; 202 203 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 204 205 search.spa_name = (char *)name; 206 spa = avl_find(&spa_namespace_avl, &search, &where); 207 208 return (spa); 209 } 210 211 /* 212 * Create an uninitialized spa_t with the given name. Requires 213 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 214 * exist by calling spa_lookup() first. 215 */ 216 spa_t * 217 spa_add(const char *name) 218 { 219 spa_t *spa; 220 221 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 222 223 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 224 225 spa->spa_name = spa_strdup(name); 226 spa->spa_state = POOL_STATE_UNINITIALIZED; 227 spa->spa_freeze_txg = UINT64_MAX; 228 229 refcount_create(&spa->spa_refcount); 230 refcount_create(&spa->spa_config_lock.scl_count); 231 232 avl_add(&spa_namespace_avl, spa); 233 234 return (spa); 235 } 236 237 /* 238 * Removes a spa_t from the namespace, freeing up any memory used. Requires 239 * spa_namespace_lock. This is called only after the spa_t has been closed and 240 * deactivated. 241 */ 242 void 243 spa_remove(spa_t *spa) 244 { 245 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 246 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 247 ASSERT(spa->spa_scrub_thread == NULL); 248 249 avl_remove(&spa_namespace_avl, spa); 250 cv_broadcast(&spa_namespace_cv); 251 252 if (spa->spa_root) 253 spa_strfree(spa->spa_root); 254 255 if (spa->spa_name) 256 spa_strfree(spa->spa_name); 257 258 spa_config_set(spa, NULL); 259 260 refcount_destroy(&spa->spa_refcount); 261 refcount_destroy(&spa->spa_config_lock.scl_count); 262 263 kmem_free(spa, sizeof (spa_t)); 264 } 265 266 /* 267 * Given a pool, return the next pool in the namespace, or NULL if there is 268 * none. If 'prev' is NULL, return the first pool. 269 */ 270 spa_t * 271 spa_next(spa_t *prev) 272 { 273 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 274 275 if (prev) 276 return (AVL_NEXT(&spa_namespace_avl, prev)); 277 else 278 return (avl_first(&spa_namespace_avl)); 279 } 280 281 /* 282 * ========================================================================== 283 * SPA refcount functions 284 * ========================================================================== 285 */ 286 287 /* 288 * Add a reference to the given spa_t. Must have at least one reference, or 289 * have the namespace lock held. 290 */ 291 void 292 spa_open_ref(spa_t *spa, void *tag) 293 { 294 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 295 MUTEX_HELD(&spa_namespace_lock)); 296 297 (void) refcount_add(&spa->spa_refcount, tag); 298 } 299 300 /* 301 * Remove a reference to the given spa_t. Must have at least one reference, or 302 * have the namespace lock held. 303 */ 304 void 305 spa_close(spa_t *spa, void *tag) 306 { 307 ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF || 308 MUTEX_HELD(&spa_namespace_lock)); 309 310 (void) refcount_remove(&spa->spa_refcount, tag); 311 } 312 313 /* 314 * Check to see if the spa refcount is zero. Must be called with 315 * spa_namespace_lock held. We really compare against SPA_MINREF, which is the 316 * number of references acquired when opening a pool 317 */ 318 boolean_t 319 spa_refcount_zero(spa_t *spa) 320 { 321 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 322 323 return (refcount_count(&spa->spa_refcount) == SPA_MINREF); 324 } 325 326 /* 327 * ========================================================================== 328 * SPA config locking 329 * ========================================================================== 330 */ 331 332 /* 333 * Acquire the config lock. The config lock is a special rwlock that allows for 334 * recursive enters. Because these enters come from the same thread as well as 335 * asynchronous threads working on behalf of the owner, we must unilaterally 336 * allow all reads access as long at least one reader is held (even if a write 337 * is requested). This has the side effect of write starvation, but write locks 338 * are extremely rare, and a solution to this problem would be significantly 339 * more complex (if even possible). 340 * 341 * We would like to assert that the namespace lock isn't held, but this is a 342 * valid use during create. 343 */ 344 void 345 spa_config_enter(spa_t *spa, krw_t rw, void *tag) 346 { 347 spa_config_lock_t *scl = &spa->spa_config_lock; 348 349 mutex_enter(&scl->scl_lock); 350 351 if (scl->scl_writer != curthread) { 352 if (rw == RW_READER) { 353 while (scl->scl_writer != NULL) 354 cv_wait(&scl->scl_cv, &scl->scl_lock); 355 } else { 356 while (scl->scl_writer != NULL || 357 !refcount_is_zero(&scl->scl_count)) 358 cv_wait(&scl->scl_cv, &scl->scl_lock); 359 scl->scl_writer = curthread; 360 } 361 } 362 363 (void) refcount_add(&scl->scl_count, tag); 364 365 mutex_exit(&scl->scl_lock); 366 } 367 368 /* 369 * Release the spa config lock, notifying any waiters in the process. 370 */ 371 void 372 spa_config_exit(spa_t *spa, void *tag) 373 { 374 spa_config_lock_t *scl = &spa->spa_config_lock; 375 376 mutex_enter(&scl->scl_lock); 377 378 ASSERT(!refcount_is_zero(&scl->scl_count)); 379 if (refcount_remove(&scl->scl_count, tag) == 0) { 380 cv_broadcast(&scl->scl_cv); 381 scl->scl_writer = NULL; /* OK in either case */ 382 } 383 384 mutex_exit(&scl->scl_lock); 385 } 386 387 /* 388 * Returns true if the config lock is held in the given manner. 389 */ 390 boolean_t 391 spa_config_held(spa_t *spa, krw_t rw) 392 { 393 spa_config_lock_t *scl = &spa->spa_config_lock; 394 boolean_t held; 395 396 mutex_enter(&scl->scl_lock); 397 if (rw == RW_WRITER) 398 held = (scl->scl_writer == curthread); 399 else 400 held = !refcount_is_zero(&scl->scl_count); 401 mutex_exit(&scl->scl_lock); 402 403 return (held); 404 } 405 406 /* 407 * ========================================================================== 408 * SPA vdev locking 409 * ========================================================================== 410 */ 411 412 /* 413 * Lock the given spa_t for the purpose of adding or removing a vdev. 414 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 415 * It returns the next transaction group for the spa_t. 416 */ 417 uint64_t 418 spa_vdev_enter(spa_t *spa) 419 { 420 /* 421 * Suspend scrub activity while we mess with the config. 422 */ 423 spa_scrub_suspend(spa); 424 425 if (spa->spa_root_vdev != NULL) /* not spa_create() */ 426 mutex_enter(&spa_namespace_lock); 427 428 spa_config_enter(spa, RW_WRITER, spa); 429 430 return (spa_last_synced_txg(spa) + 1); 431 } 432 433 /* 434 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 435 * locking of spa_vdev_enter(), we also want make sure the transactions have 436 * synced to disk, and then update the global configuration cache with the new 437 * information. 438 */ 439 int 440 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 441 { 442 ASSERT(txg != 0); 443 444 /* 445 * Reassess the DTLs. spa_scrub() looks at the DTLs without 446 * taking the config lock at all, so keep it safe. 447 */ 448 if (spa->spa_root_vdev) 449 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 450 451 spa_config_exit(spa, spa); 452 453 /* 454 * If there was a scrub or resilver in progress, indicate that 455 * it must restart, and then allow it to resume. 456 */ 457 spa_scrub_restart(spa, txg); 458 spa_scrub_resume(spa); 459 460 if (vd == spa->spa_root_vdev) /* spa_create() */ 461 return (error); 462 463 /* 464 * Note: this txg_wait_synced() is important because it ensures 465 * that there won't be more than one config change per txg. 466 * This allows us to use the txg as the generation number. 467 */ 468 if (error == 0) 469 txg_wait_synced(spa->spa_dsl_pool, txg); 470 471 if (vd != NULL) { 472 ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0); 473 vdev_free(vd); 474 } 475 476 /* 477 * If we're in the middle of export or destroy, don't sync the 478 * config -- it will do that anyway, and we deadlock if we try. 479 */ 480 if (error == 0 && spa->spa_state == POOL_STATE_ACTIVE) 481 spa_config_sync(); 482 483 mutex_exit(&spa_namespace_lock); 484 485 return (error); 486 } 487 488 /* 489 * ========================================================================== 490 * Miscellaneous functions 491 * ========================================================================== 492 */ 493 494 /* 495 * Rename a spa_t. 496 */ 497 int 498 spa_rename(const char *name, const char *newname) 499 { 500 spa_t *spa; 501 int err; 502 503 /* 504 * Lookup the spa_t and grab the config lock for writing. We need to 505 * actually open the pool so that we can sync out the necessary labels. 506 * It's OK to call spa_open() with the namespace lock held because we 507 * allow recursive calls for other reasons. 508 */ 509 mutex_enter(&spa_namespace_lock); 510 if ((err = spa_open(name, &spa, FTAG)) != 0) { 511 mutex_exit(&spa_namespace_lock); 512 return (err); 513 } 514 515 spa_config_enter(spa, RW_WRITER, FTAG); 516 517 avl_remove(&spa_namespace_avl, spa); 518 spa_strfree(spa->spa_name); 519 spa->spa_name = spa_strdup(newname); 520 avl_add(&spa_namespace_avl, spa); 521 522 /* 523 * Sync all labels to disk with the new names by marking the root vdev 524 * dirty and waiting for it to sync. It will pick up the new pool name 525 * during the sync. 526 */ 527 vdev_config_dirty(spa->spa_root_vdev); 528 529 spa_config_exit(spa, FTAG); 530 531 txg_wait_synced(spa->spa_dsl_pool, 0); 532 533 /* 534 * Sync the updated config cache. 535 */ 536 spa_config_set(spa, 537 spa_config_generate(spa, NULL, spa_last_synced_txg(spa), 0)); 538 spa_config_sync(); 539 540 spa_close(spa, FTAG); 541 542 mutex_exit(&spa_namespace_lock); 543 544 return (0); 545 } 546 547 548 /* 549 * Determine whether a pool with given pool_guid exists. If device_guid is 550 * non-zero, determine whether the pool exists *and* contains a device with the 551 * specified device_guid. 552 */ 553 boolean_t 554 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 555 { 556 spa_t *spa; 557 avl_tree_t *t = &spa_namespace_avl; 558 559 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 560 561 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 562 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 563 continue; 564 if (spa->spa_root_vdev == NULL) 565 continue; 566 if (spa_guid(spa) == pool_guid && (device_guid == 0 || 567 vdev_lookup_by_guid(spa->spa_root_vdev, device_guid))) 568 break; 569 } 570 571 return (spa != NULL); 572 } 573 574 char * 575 spa_strdup(const char *s) 576 { 577 size_t len; 578 char *new; 579 580 len = strlen(s); 581 new = kmem_alloc(len + 1, KM_SLEEP); 582 bcopy(s, new, len); 583 new[len] = '\0'; 584 585 return (new); 586 } 587 588 void 589 spa_strfree(char *s) 590 { 591 kmem_free(s, strlen(s) + 1); 592 } 593 594 uint64_t 595 spa_get_random(uint64_t range) 596 { 597 uint64_t r; 598 599 ASSERT(range != 0); 600 601 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 602 603 return (r % range); 604 } 605 606 void 607 sprintf_blkptr(char *buf, int len, blkptr_t *bp) 608 { 609 /* XXBP - Need to see if we want all DVAs or not */ 610 dva_t *dva = BP_IDENTITY(bp); 611 612 if (bp == NULL) { 613 (void) snprintf(buf, len, "<NULL>"); 614 return; 615 } 616 617 if (BP_IS_HOLE(bp)) { 618 (void) snprintf(buf, len, "<hole>"); 619 return; 620 } 621 622 (void) snprintf(buf, len, "[L%llu %s] vdev=%llu offset=%llx " 623 "size=%llxL/%llxP/%llxA %s %s %s %s " 624 "birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx", 625 (u_longlong_t)BP_GET_LEVEL(bp), 626 dmu_ot[BP_GET_TYPE(bp)].ot_name, 627 (u_longlong_t)DVA_GET_VDEV(dva), 628 (u_longlong_t)DVA_GET_OFFSET(dva), 629 (u_longlong_t)BP_GET_LSIZE(bp), 630 (u_longlong_t)BP_GET_PSIZE(bp), 631 (u_longlong_t)DVA_GET_ASIZE(dva), 632 zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name, 633 zio_compress_table[BP_GET_COMPRESS(bp)].ci_name, 634 BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE", 635 DVA_GET_GANG(dva) == 0 ? "contiguous" : "gang", 636 (u_longlong_t)bp->blk_birth, 637 (u_longlong_t)bp->blk_fill, 638 (u_longlong_t)bp->blk_cksum.zc_word[0], 639 (u_longlong_t)bp->blk_cksum.zc_word[1], 640 (u_longlong_t)bp->blk_cksum.zc_word[2], 641 (u_longlong_t)bp->blk_cksum.zc_word[3]); 642 } 643 644 void 645 spa_freeze(spa_t *spa) 646 { 647 uint64_t freeze_txg = 0; 648 649 spa_config_enter(spa, RW_WRITER, FTAG); 650 if (spa->spa_freeze_txg == UINT64_MAX) { 651 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 652 spa->spa_freeze_txg = freeze_txg; 653 } 654 spa_config_exit(spa, FTAG); 655 if (freeze_txg != 0) 656 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 657 } 658 659 /* 660 * ========================================================================== 661 * Accessor functions 662 * ========================================================================== 663 */ 664 665 krwlock_t * 666 spa_traverse_rwlock(spa_t *spa) 667 { 668 return (&spa->spa_traverse_lock); 669 } 670 671 int 672 spa_traverse_wanted(spa_t *spa) 673 { 674 return (spa->spa_traverse_wanted); 675 } 676 677 dsl_pool_t * 678 spa_get_dsl(spa_t *spa) 679 { 680 return (spa->spa_dsl_pool); 681 } 682 683 blkptr_t * 684 spa_get_rootblkptr(spa_t *spa) 685 { 686 return (&spa->spa_ubsync.ub_rootbp); 687 } 688 689 void 690 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 691 { 692 spa->spa_uberblock.ub_rootbp = *bp; 693 } 694 695 void 696 spa_altroot(spa_t *spa, char *buf, size_t buflen) 697 { 698 if (spa->spa_root == NULL) 699 buf[0] = '\0'; 700 else 701 (void) strncpy(buf, spa->spa_root, buflen); 702 } 703 704 int 705 spa_sync_pass(spa_t *spa) 706 { 707 return (spa->spa_sync_pass); 708 } 709 710 char * 711 spa_name(spa_t *spa) 712 { 713 /* 714 * Accessing the name requires holding either the namespace lock or the 715 * config lock, both of which are required to do a rename. 716 */ 717 ASSERT(MUTEX_HELD(&spa_namespace_lock) || 718 spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER)); 719 720 return (spa->spa_name); 721 } 722 723 uint64_t 724 spa_guid(spa_t *spa) 725 { 726 return (spa->spa_root_vdev->vdev_guid); 727 } 728 729 uint64_t 730 spa_last_synced_txg(spa_t *spa) 731 { 732 return (spa->spa_ubsync.ub_txg); 733 } 734 735 uint64_t 736 spa_first_txg(spa_t *spa) 737 { 738 return (spa->spa_first_txg); 739 } 740 741 int 742 spa_state(spa_t *spa) 743 { 744 return (spa->spa_state); 745 } 746 747 uint64_t 748 spa_freeze_txg(spa_t *spa) 749 { 750 return (spa->spa_freeze_txg); 751 } 752 753 /* 754 * In the future, this may select among different metaslab classes 755 * depending on the zdp. For now, there's no such distinction. 756 */ 757 metaslab_class_t * 758 spa_metaslab_class_select(spa_t *spa) 759 { 760 return (spa->spa_normal_class); 761 } 762 763 /* 764 * Return pool-wide allocated space. 765 */ 766 uint64_t 767 spa_get_alloc(spa_t *spa) 768 { 769 return (spa->spa_root_vdev->vdev_stat.vs_alloc); 770 } 771 772 /* 773 * Return pool-wide allocated space. 774 */ 775 uint64_t 776 spa_get_space(spa_t *spa) 777 { 778 return (spa->spa_root_vdev->vdev_stat.vs_space); 779 } 780 781 /* ARGSUSED */ 782 uint64_t 783 spa_get_asize(spa_t *spa, uint64_t lsize) 784 { 785 /* 786 * For now, the worst case is 512-byte RAID-Z blocks, in which 787 * case the space requirement is exactly 2x; so just assume that. 788 */ 789 return (lsize << 1); 790 } 791 792 /* 793 * ========================================================================== 794 * Initialization and Termination 795 * ========================================================================== 796 */ 797 798 static int 799 spa_name_compare(const void *a1, const void *a2) 800 { 801 const spa_t *s1 = a1; 802 const spa_t *s2 = a2; 803 int s; 804 805 s = strcmp(s1->spa_name, s2->spa_name); 806 if (s > 0) 807 return (1); 808 if (s < 0) 809 return (-1); 810 return (0); 811 } 812 813 void 814 spa_init(int mode) 815 { 816 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 817 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 818 819 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 820 offsetof(spa_t, spa_avl)); 821 822 spa_mode = mode; 823 824 refcount_init(); 825 unique_init(); 826 zio_init(); 827 dmu_init(); 828 zil_init(); 829 spa_config_load(); 830 } 831 832 void 833 spa_fini(void) 834 { 835 spa_evict_all(); 836 837 zil_fini(); 838 dmu_fini(); 839 zio_fini(); 840 refcount_fini(); 841 842 avl_destroy(&spa_namespace_avl); 843 844 cv_destroy(&spa_namespace_cv); 845 mutex_destroy(&spa_namespace_lock); 846 } 847