xref: /titanic_52/usr/src/uts/common/fs/zfs/spa_misc.c (revision ba4e3c84e6b9390bbf7df80b5f1d11dec34cc525)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2006 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 #pragma ident	"%Z%%M%	%I%	%E% SMI"
27 
28 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
30 #include <sys/zio.h>
31 #include <sys/zio_checksum.h>
32 #include <sys/zio_compress.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/zap.h>
36 #include <sys/zil.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/metaslab.h>
39 #include <sys/uberblock_impl.h>
40 #include <sys/txg.h>
41 #include <sys/avl.h>
42 #include <sys/unique.h>
43 #include <sys/dsl_pool.h>
44 #include <sys/dsl_dir.h>
45 #include <sys/dsl_prop.h>
46 #include <sys/fs/zfs.h>
47 
48 /*
49  * SPA locking
50  *
51  * There are four basic locks for managing spa_t structures:
52  *
53  * spa_namespace_lock (global mutex)
54  *
55  *	This lock must be acquired to do any of the following:
56  *
57  *		- Lookup a spa_t by name
58  *		- Add or remove a spa_t from the namespace
59  *		- Increase spa_refcount from non-zero
60  *		- Check if spa_refcount is zero
61  *		- Rename a spa_t
62  *		- add/remove/attach/detach devices
63  *		- Held for the duration of create/destroy/import/export
64  *
65  *	It does not need to handle recursion.  A create or destroy may
66  *	reference objects (files or zvols) in other pools, but by
67  *	definition they must have an existing reference, and will never need
68  *	to lookup a spa_t by name.
69  *
70  * spa_refcount (per-spa refcount_t protected by mutex)
71  *
72  *	This reference count keep track of any active users of the spa_t.  The
73  *	spa_t cannot be destroyed or freed while this is non-zero.  Internally,
74  *	the refcount is never really 'zero' - opening a pool implicitly keeps
75  *	some references in the DMU.  Internally we check against SPA_MINREF, but
76  *	present the image of a zero/non-zero value to consumers.
77  *
78  * spa_config_lock (per-spa crazy rwlock)
79  *
80  *	This SPA special is a recursive rwlock, capable of being acquired from
81  *	asynchronous threads.  It has protects the spa_t from config changes,
82  *	and must be held in the following circumstances:
83  *
84  *		- RW_READER to perform I/O to the spa
85  *		- RW_WRITER to change the vdev config
86  *
87  * spa_config_cache_lock (per-spa mutex)
88  *
89  *	This mutex prevents the spa_config nvlist from being updated.  No
90  *      other locks are required to obtain this lock, although implicitly you
91  *      must have the namespace lock or non-zero refcount to have any kind
92  *      of spa_t pointer at all.
93  *
94  * The locking order is fairly straightforward:
95  *
96  *		spa_namespace_lock	->	spa_refcount
97  *
98  *	The namespace lock must be acquired to increase the refcount from 0
99  *	or to check if it is zero.
100  *
101  *		spa_refcount		->	spa_config_lock
102  *
103  *	There must be at least one valid reference on the spa_t to acquire
104  *	the config lock.
105  *
106  *		spa_namespace_lock	->	spa_config_lock
107  *
108  *	The namespace lock must always be taken before the config lock.
109  *
110  *
111  * The spa_namespace_lock and spa_config_cache_lock can be acquired directly and
112  * are globally visible.
113  *
114  * The namespace is manipulated using the following functions, all which require
115  * the spa_namespace_lock to be held.
116  *
117  *	spa_lookup()		Lookup a spa_t by name.
118  *
119  *	spa_add()		Create a new spa_t in the namespace.
120  *
121  *	spa_remove()		Remove a spa_t from the namespace.  This also
122  *				frees up any memory associated with the spa_t.
123  *
124  *	spa_next()		Returns the next spa_t in the system, or the
125  *				first if NULL is passed.
126  *
127  *	spa_evict_all()		Shutdown and remove all spa_t structures in
128  *				the system.
129  *
130  *	spa_guid_exists()	Determine whether a pool/device guid exists.
131  *
132  * The spa_refcount is manipulated using the following functions:
133  *
134  *	spa_open_ref()		Adds a reference to the given spa_t.  Must be
135  *				called with spa_namespace_lock held if the
136  *				refcount is currently zero.
137  *
138  *	spa_close()		Remove a reference from the spa_t.  This will
139  *				not free the spa_t or remove it from the
140  *				namespace.  No locking is required.
141  *
142  *	spa_refcount_zero()	Returns true if the refcount is currently
143  *				zero.  Must be called with spa_namespace_lock
144  *				held.
145  *
146  * The spa_config_lock is manipulated using the following functions:
147  *
148  *	spa_config_enter()	Acquire the config lock as RW_READER or
149  *				RW_WRITER.  At least one reference on the spa_t
150  *				must exist.
151  *
152  *	spa_config_exit()	Release the config lock.
153  *
154  *	spa_config_held()	Returns true if the config lock is currently
155  *				held in the given state.
156  *
157  * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit().
158  *
159  *	spa_vdev_enter()	Acquire the namespace lock and the config lock
160  *				for writing.
161  *
162  *	spa_vdev_exit()		Release the config lock, wait for all I/O
163  *				to complete, sync the updated configs to the
164  *				cache, and release the namespace lock.
165  *
166  * The spa_name() function also requires either the spa_namespace_lock
167  * or the spa_config_lock, as both are needed to do a rename.  spa_rename() is
168  * also implemented within this file since is requires manipulation of the
169  * namespace.
170  */
171 
172 static avl_tree_t spa_namespace_avl;
173 kmutex_t spa_namespace_lock;
174 static kcondvar_t spa_namespace_cv;
175 static int spa_active_count;
176 static int spa_max_replication_override = SPA_DVAS_PER_BP;
177 
178 static avl_tree_t spa_spare_avl;
179 static kmutex_t spa_spare_lock;
180 
181 kmem_cache_t *spa_buffer_pool;
182 int spa_mode;
183 
184 #ifdef ZFS_DEBUG
185 int zfs_flags = ~0;
186 #else
187 int zfs_flags = 0;
188 #endif
189 
190 #define	SPA_MINREF	5	/* spa_refcnt for an open-but-idle pool */
191 
192 /*
193  * ==========================================================================
194  * SPA namespace functions
195  * ==========================================================================
196  */
197 
198 /*
199  * Lookup the named spa_t in the AVL tree.  The spa_namespace_lock must be held.
200  * Returns NULL if no matching spa_t is found.
201  */
202 spa_t *
203 spa_lookup(const char *name)
204 {
205 	spa_t search, *spa;
206 	avl_index_t where;
207 
208 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
209 
210 	search.spa_name = (char *)name;
211 	spa = avl_find(&spa_namespace_avl, &search, &where);
212 
213 	return (spa);
214 }
215 
216 /*
217  * Create an uninitialized spa_t with the given name.  Requires
218  * spa_namespace_lock.  The caller must ensure that the spa_t doesn't already
219  * exist by calling spa_lookup() first.
220  */
221 spa_t *
222 spa_add(const char *name, const char *altroot)
223 {
224 	spa_t *spa;
225 
226 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
227 
228 	spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP);
229 
230 	spa->spa_name = spa_strdup(name);
231 	spa->spa_state = POOL_STATE_UNINITIALIZED;
232 	spa->spa_freeze_txg = UINT64_MAX;
233 	spa->spa_final_txg = UINT64_MAX;
234 
235 	refcount_create(&spa->spa_refcount);
236 	refcount_create(&spa->spa_config_lock.scl_count);
237 
238 	avl_add(&spa_namespace_avl, spa);
239 
240 	/*
241 	 * Set the alternate root, if there is one.
242 	 */
243 	if (altroot) {
244 		spa->spa_root = spa_strdup(altroot);
245 		spa_active_count++;
246 	}
247 
248 	return (spa);
249 }
250 
251 /*
252  * Removes a spa_t from the namespace, freeing up any memory used.  Requires
253  * spa_namespace_lock.  This is called only after the spa_t has been closed and
254  * deactivated.
255  */
256 void
257 spa_remove(spa_t *spa)
258 {
259 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
260 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
261 	ASSERT(spa->spa_scrub_thread == NULL);
262 
263 	avl_remove(&spa_namespace_avl, spa);
264 	cv_broadcast(&spa_namespace_cv);
265 
266 	if (spa->spa_root) {
267 		spa_strfree(spa->spa_root);
268 		spa_active_count--;
269 	}
270 
271 	if (spa->spa_name)
272 		spa_strfree(spa->spa_name);
273 
274 	spa_config_set(spa, NULL);
275 
276 	refcount_destroy(&spa->spa_refcount);
277 	refcount_destroy(&spa->spa_config_lock.scl_count);
278 
279 	kmem_free(spa, sizeof (spa_t));
280 }
281 
282 /*
283  * Given a pool, return the next pool in the namespace, or NULL if there is
284  * none.  If 'prev' is NULL, return the first pool.
285  */
286 spa_t *
287 spa_next(spa_t *prev)
288 {
289 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
290 
291 	if (prev)
292 		return (AVL_NEXT(&spa_namespace_avl, prev));
293 	else
294 		return (avl_first(&spa_namespace_avl));
295 }
296 
297 /*
298  * ==========================================================================
299  * SPA refcount functions
300  * ==========================================================================
301  */
302 
303 /*
304  * Add a reference to the given spa_t.  Must have at least one reference, or
305  * have the namespace lock held.
306  */
307 void
308 spa_open_ref(spa_t *spa, void *tag)
309 {
310 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
311 	    MUTEX_HELD(&spa_namespace_lock));
312 
313 	(void) refcount_add(&spa->spa_refcount, tag);
314 }
315 
316 /*
317  * Remove a reference to the given spa_t.  Must have at least one reference, or
318  * have the namespace lock held.
319  */
320 void
321 spa_close(spa_t *spa, void *tag)
322 {
323 	ASSERT(refcount_count(&spa->spa_refcount) > SPA_MINREF ||
324 	    MUTEX_HELD(&spa_namespace_lock));
325 
326 	(void) refcount_remove(&spa->spa_refcount, tag);
327 }
328 
329 /*
330  * Check to see if the spa refcount is zero.  Must be called with
331  * spa_namespace_lock held.  We really compare against SPA_MINREF, which is the
332  * number of references acquired when opening a pool
333  */
334 boolean_t
335 spa_refcount_zero(spa_t *spa)
336 {
337 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
338 
339 	return (refcount_count(&spa->spa_refcount) == SPA_MINREF);
340 }
341 
342 /*
343  * ==========================================================================
344  * SPA spare tracking
345  * ==========================================================================
346  */
347 
348 /*
349  * We track spare information on a global basis.  This allows us to do two
350  * things: determine when a spare is no longer referenced by any active pool,
351  * and (quickly) determine if a spare is currently in use in another pool on the
352  * system.
353  */
354 typedef struct spa_spare {
355 	uint64_t	spare_guid;
356 	avl_node_t	spare_avl;
357 	int		spare_count;
358 } spa_spare_t;
359 
360 static int
361 spa_spare_compare(const void *a, const void *b)
362 {
363 	const spa_spare_t *sa = a;
364 	const spa_spare_t *sb = b;
365 
366 	if (sa->spare_guid < sb->spare_guid)
367 		return (-1);
368 	else if (sa->spare_guid > sb->spare_guid)
369 		return (1);
370 	else
371 		return (0);
372 }
373 
374 void
375 spa_spare_add(uint64_t guid)
376 {
377 	avl_index_t where;
378 	spa_spare_t search;
379 	spa_spare_t *spare;
380 
381 	mutex_enter(&spa_spare_lock);
382 
383 	search.spare_guid = guid;
384 	if ((spare = avl_find(&spa_spare_avl, &search, &where)) != NULL) {
385 		spare->spare_count++;
386 	} else {
387 		spare = kmem_alloc(sizeof (spa_spare_t), KM_SLEEP);
388 		spare->spare_guid = guid;
389 		spare->spare_count = 1;
390 		avl_insert(&spa_spare_avl, spare, where);
391 	}
392 
393 	mutex_exit(&spa_spare_lock);
394 }
395 
396 void
397 spa_spare_remove(uint64_t guid)
398 {
399 	spa_spare_t search;
400 	spa_spare_t *spare;
401 	avl_index_t where;
402 
403 	mutex_enter(&spa_spare_lock);
404 
405 	search.spare_guid = guid;
406 	spare = avl_find(&spa_spare_avl, &search, &where);
407 
408 	ASSERT(spare != NULL);
409 
410 	if (--spare->spare_count == 0) {
411 		avl_remove(&spa_spare_avl, spare);
412 		kmem_free(spare, sizeof (spa_spare_t));
413 	}
414 
415 	mutex_exit(&spa_spare_lock);
416 }
417 
418 boolean_t
419 spa_spare_inuse(uint64_t guid)
420 {
421 	spa_spare_t search;
422 	avl_index_t where;
423 	boolean_t ret;
424 
425 	mutex_enter(&spa_spare_lock);
426 
427 	search.spare_guid = guid;
428 	ret = (avl_find(&spa_spare_avl, &search, &where) != NULL);
429 
430 	mutex_exit(&spa_spare_lock);
431 
432 	return (ret);
433 }
434 
435 /*
436  * ==========================================================================
437  * SPA config locking
438  * ==========================================================================
439  */
440 
441 /*
442  * Acquire the config lock.  The config lock is a special rwlock that allows for
443  * recursive enters.  Because these enters come from the same thread as well as
444  * asynchronous threads working on behalf of the owner, we must unilaterally
445  * allow all reads access as long at least one reader is held (even if a write
446  * is requested).  This has the side effect of write starvation, but write locks
447  * are extremely rare, and a solution to this problem would be significantly
448  * more complex (if even possible).
449  *
450  * We would like to assert that the namespace lock isn't held, but this is a
451  * valid use during create.
452  */
453 void
454 spa_config_enter(spa_t *spa, krw_t rw, void *tag)
455 {
456 	spa_config_lock_t *scl = &spa->spa_config_lock;
457 
458 	mutex_enter(&scl->scl_lock);
459 
460 	if (scl->scl_writer != curthread) {
461 		if (rw == RW_READER) {
462 			while (scl->scl_writer != NULL)
463 				cv_wait(&scl->scl_cv, &scl->scl_lock);
464 		} else {
465 			while (scl->scl_writer != NULL ||
466 			    !refcount_is_zero(&scl->scl_count))
467 				cv_wait(&scl->scl_cv, &scl->scl_lock);
468 			scl->scl_writer = curthread;
469 		}
470 	}
471 
472 	(void) refcount_add(&scl->scl_count, tag);
473 
474 	mutex_exit(&scl->scl_lock);
475 }
476 
477 /*
478  * Release the spa config lock, notifying any waiters in the process.
479  */
480 void
481 spa_config_exit(spa_t *spa, void *tag)
482 {
483 	spa_config_lock_t *scl = &spa->spa_config_lock;
484 
485 	mutex_enter(&scl->scl_lock);
486 
487 	ASSERT(!refcount_is_zero(&scl->scl_count));
488 	if (refcount_remove(&scl->scl_count, tag) == 0) {
489 		cv_broadcast(&scl->scl_cv);
490 		scl->scl_writer = NULL;  /* OK in either case */
491 	}
492 
493 	mutex_exit(&scl->scl_lock);
494 }
495 
496 /*
497  * Returns true if the config lock is held in the given manner.
498  */
499 boolean_t
500 spa_config_held(spa_t *spa, krw_t rw)
501 {
502 	spa_config_lock_t *scl = &spa->spa_config_lock;
503 	boolean_t held;
504 
505 	mutex_enter(&scl->scl_lock);
506 	if (rw == RW_WRITER)
507 		held = (scl->scl_writer == curthread);
508 	else
509 		held = !refcount_is_zero(&scl->scl_count);
510 	mutex_exit(&scl->scl_lock);
511 
512 	return (held);
513 }
514 
515 /*
516  * ==========================================================================
517  * SPA vdev locking
518  * ==========================================================================
519  */
520 
521 /*
522  * Lock the given spa_t for the purpose of adding or removing a vdev.
523  * Grabs the global spa_namespace_lock plus the spa config lock for writing.
524  * It returns the next transaction group for the spa_t.
525  */
526 uint64_t
527 spa_vdev_enter(spa_t *spa)
528 {
529 	/*
530 	 * Suspend scrub activity while we mess with the config.
531 	 */
532 	spa_scrub_suspend(spa);
533 
534 	mutex_enter(&spa_namespace_lock);
535 
536 	spa_config_enter(spa, RW_WRITER, spa);
537 
538 	return (spa_last_synced_txg(spa) + 1);
539 }
540 
541 /*
542  * Unlock the spa_t after adding or removing a vdev.  Besides undoing the
543  * locking of spa_vdev_enter(), we also want make sure the transactions have
544  * synced to disk, and then update the global configuration cache with the new
545  * information.
546  */
547 int
548 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error)
549 {
550 	int config_changed = B_FALSE;
551 
552 	ASSERT(txg > spa_last_synced_txg(spa));
553 
554 	/*
555 	 * Reassess the DTLs.
556 	 */
557 	vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE);
558 
559 	/*
560 	 * If the config changed, notify the scrub thread that it must restart.
561 	 */
562 	if (error == 0 && !list_is_empty(&spa->spa_dirty_list)) {
563 		config_changed = B_TRUE;
564 		spa_scrub_restart(spa, txg);
565 	}
566 
567 	spa_config_exit(spa, spa);
568 
569 	/*
570 	 * Allow scrubbing to resume.
571 	 */
572 	spa_scrub_resume(spa);
573 
574 	/*
575 	 * Note: this txg_wait_synced() is important because it ensures
576 	 * that there won't be more than one config change per txg.
577 	 * This allows us to use the txg as the generation number.
578 	 */
579 	if (error == 0)
580 		txg_wait_synced(spa->spa_dsl_pool, txg);
581 
582 	if (vd != NULL) {
583 		ASSERT(!vd->vdev_detached || vd->vdev_dtl.smo_object == 0);
584 		vdev_free(vd);
585 	}
586 
587 	/*
588 	 * If the config changed, update the config cache.
589 	 */
590 	if (config_changed)
591 		spa_config_sync();
592 
593 	mutex_exit(&spa_namespace_lock);
594 
595 	return (error);
596 }
597 
598 /*
599  * ==========================================================================
600  * Miscellaneous functions
601  * ==========================================================================
602  */
603 
604 /*
605  * Rename a spa_t.
606  */
607 int
608 spa_rename(const char *name, const char *newname)
609 {
610 	spa_t *spa;
611 	int err;
612 
613 	/*
614 	 * Lookup the spa_t and grab the config lock for writing.  We need to
615 	 * actually open the pool so that we can sync out the necessary labels.
616 	 * It's OK to call spa_open() with the namespace lock held because we
617 	 * allow recursive calls for other reasons.
618 	 */
619 	mutex_enter(&spa_namespace_lock);
620 	if ((err = spa_open(name, &spa, FTAG)) != 0) {
621 		mutex_exit(&spa_namespace_lock);
622 		return (err);
623 	}
624 
625 	spa_config_enter(spa, RW_WRITER, FTAG);
626 
627 	avl_remove(&spa_namespace_avl, spa);
628 	spa_strfree(spa->spa_name);
629 	spa->spa_name = spa_strdup(newname);
630 	avl_add(&spa_namespace_avl, spa);
631 
632 	/*
633 	 * Sync all labels to disk with the new names by marking the root vdev
634 	 * dirty and waiting for it to sync.  It will pick up the new pool name
635 	 * during the sync.
636 	 */
637 	vdev_config_dirty(spa->spa_root_vdev);
638 
639 	spa_config_exit(spa, FTAG);
640 
641 	txg_wait_synced(spa->spa_dsl_pool, 0);
642 
643 	/*
644 	 * Sync the updated config cache.
645 	 */
646 	spa_config_sync();
647 
648 	spa_close(spa, FTAG);
649 
650 	mutex_exit(&spa_namespace_lock);
651 
652 	return (0);
653 }
654 
655 
656 /*
657  * Determine whether a pool with given pool_guid exists.  If device_guid is
658  * non-zero, determine whether the pool exists *and* contains a device with the
659  * specified device_guid.
660  */
661 boolean_t
662 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid)
663 {
664 	spa_t *spa;
665 	avl_tree_t *t = &spa_namespace_avl;
666 
667 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
668 
669 	for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) {
670 		if (spa->spa_state == POOL_STATE_UNINITIALIZED)
671 			continue;
672 		if (spa->spa_root_vdev == NULL)
673 			continue;
674 		if (spa_guid(spa) == pool_guid && (device_guid == 0 ||
675 		    vdev_lookup_by_guid(spa->spa_root_vdev, device_guid)))
676 			break;
677 	}
678 
679 	return (spa != NULL);
680 }
681 
682 char *
683 spa_strdup(const char *s)
684 {
685 	size_t len;
686 	char *new;
687 
688 	len = strlen(s);
689 	new = kmem_alloc(len + 1, KM_SLEEP);
690 	bcopy(s, new, len);
691 	new[len] = '\0';
692 
693 	return (new);
694 }
695 
696 void
697 spa_strfree(char *s)
698 {
699 	kmem_free(s, strlen(s) + 1);
700 }
701 
702 uint64_t
703 spa_get_random(uint64_t range)
704 {
705 	uint64_t r;
706 
707 	ASSERT(range != 0);
708 
709 	(void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t));
710 
711 	return (r % range);
712 }
713 
714 void
715 sprintf_blkptr(char *buf, int len, const blkptr_t *bp)
716 {
717 	int d;
718 
719 	if (bp == NULL) {
720 		(void) snprintf(buf, len, "<NULL>");
721 		return;
722 	}
723 
724 	if (BP_IS_HOLE(bp)) {
725 		(void) snprintf(buf, len, "<hole>");
726 		return;
727 	}
728 
729 	(void) snprintf(buf, len, "[L%llu %s] %llxL/%llxP ",
730 	    (u_longlong_t)BP_GET_LEVEL(bp),
731 	    dmu_ot[BP_GET_TYPE(bp)].ot_name,
732 	    (u_longlong_t)BP_GET_LSIZE(bp),
733 	    (u_longlong_t)BP_GET_PSIZE(bp));
734 
735 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
736 		const dva_t *dva = &bp->blk_dva[d];
737 		(void) snprintf(buf + strlen(buf), len - strlen(buf),
738 		    "DVA[%d]=<%llu:%llx:%llx> ", d,
739 		    (u_longlong_t)DVA_GET_VDEV(dva),
740 		    (u_longlong_t)DVA_GET_OFFSET(dva),
741 		    (u_longlong_t)DVA_GET_ASIZE(dva));
742 	}
743 
744 	(void) snprintf(buf + strlen(buf), len - strlen(buf),
745 	    "%s %s %s %s birth=%llu fill=%llu cksum=%llx:%llx:%llx:%llx",
746 	    zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name,
747 	    zio_compress_table[BP_GET_COMPRESS(bp)].ci_name,
748 	    BP_GET_BYTEORDER(bp) == 0 ? "BE" : "LE",
749 	    BP_IS_GANG(bp) ? "gang" : "contiguous",
750 	    (u_longlong_t)bp->blk_birth,
751 	    (u_longlong_t)bp->blk_fill,
752 	    (u_longlong_t)bp->blk_cksum.zc_word[0],
753 	    (u_longlong_t)bp->blk_cksum.zc_word[1],
754 	    (u_longlong_t)bp->blk_cksum.zc_word[2],
755 	    (u_longlong_t)bp->blk_cksum.zc_word[3]);
756 }
757 
758 void
759 spa_freeze(spa_t *spa)
760 {
761 	uint64_t freeze_txg = 0;
762 
763 	spa_config_enter(spa, RW_WRITER, FTAG);
764 	if (spa->spa_freeze_txg == UINT64_MAX) {
765 		freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE;
766 		spa->spa_freeze_txg = freeze_txg;
767 	}
768 	spa_config_exit(spa, FTAG);
769 	if (freeze_txg != 0)
770 		txg_wait_synced(spa_get_dsl(spa), freeze_txg);
771 }
772 
773 /*
774  * ==========================================================================
775  * Accessor functions
776  * ==========================================================================
777  */
778 
779 krwlock_t *
780 spa_traverse_rwlock(spa_t *spa)
781 {
782 	return (&spa->spa_traverse_lock);
783 }
784 
785 int
786 spa_traverse_wanted(spa_t *spa)
787 {
788 	return (spa->spa_traverse_wanted);
789 }
790 
791 dsl_pool_t *
792 spa_get_dsl(spa_t *spa)
793 {
794 	return (spa->spa_dsl_pool);
795 }
796 
797 blkptr_t *
798 spa_get_rootblkptr(spa_t *spa)
799 {
800 	return (&spa->spa_ubsync.ub_rootbp);
801 }
802 
803 void
804 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp)
805 {
806 	spa->spa_uberblock.ub_rootbp = *bp;
807 }
808 
809 void
810 spa_altroot(spa_t *spa, char *buf, size_t buflen)
811 {
812 	if (spa->spa_root == NULL)
813 		buf[0] = '\0';
814 	else
815 		(void) strncpy(buf, spa->spa_root, buflen);
816 }
817 
818 int
819 spa_sync_pass(spa_t *spa)
820 {
821 	return (spa->spa_sync_pass);
822 }
823 
824 char *
825 spa_name(spa_t *spa)
826 {
827 	/*
828 	 * Accessing the name requires holding either the namespace lock or the
829 	 * config lock, both of which are required to do a rename.
830 	 */
831 	ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
832 	    spa_config_held(spa, RW_READER) || spa_config_held(spa, RW_WRITER));
833 
834 	return (spa->spa_name);
835 }
836 
837 uint64_t
838 spa_guid(spa_t *spa)
839 {
840 	/*
841 	 * If we fail to parse the config during spa_load(), we can go through
842 	 * the error path (which posts an ereport) and end up here with no root
843 	 * vdev.  We stash the original pool guid in 'spa_load_guid' to handle
844 	 * this case.
845 	 */
846 	if (spa->spa_root_vdev != NULL)
847 		return (spa->spa_root_vdev->vdev_guid);
848 	else
849 		return (spa->spa_load_guid);
850 }
851 
852 uint64_t
853 spa_last_synced_txg(spa_t *spa)
854 {
855 	return (spa->spa_ubsync.ub_txg);
856 }
857 
858 uint64_t
859 spa_first_txg(spa_t *spa)
860 {
861 	return (spa->spa_first_txg);
862 }
863 
864 int
865 spa_state(spa_t *spa)
866 {
867 	return (spa->spa_state);
868 }
869 
870 uint64_t
871 spa_freeze_txg(spa_t *spa)
872 {
873 	return (spa->spa_freeze_txg);
874 }
875 
876 /*
877  * In the future, this may select among different metaslab classes
878  * depending on the zdp.  For now, there's no such distinction.
879  */
880 metaslab_class_t *
881 spa_metaslab_class_select(spa_t *spa)
882 {
883 	return (spa->spa_normal_class);
884 }
885 
886 /*
887  * Return how much space is allocated in the pool (ie. sum of all asize)
888  */
889 uint64_t
890 spa_get_alloc(spa_t *spa)
891 {
892 	return (spa->spa_root_vdev->vdev_stat.vs_alloc);
893 }
894 
895 /*
896  * Return how much (raid-z inflated) space there is in the pool.
897  */
898 uint64_t
899 spa_get_space(spa_t *spa)
900 {
901 	return (spa->spa_root_vdev->vdev_stat.vs_space);
902 }
903 
904 /*
905  * Return the amount of raid-z-deflated space in the pool.
906  */
907 uint64_t
908 spa_get_dspace(spa_t *spa)
909 {
910 	if (spa->spa_deflate)
911 		return (spa->spa_root_vdev->vdev_stat.vs_dspace);
912 	else
913 		return (spa->spa_root_vdev->vdev_stat.vs_space);
914 }
915 
916 /* ARGSUSED */
917 uint64_t
918 spa_get_asize(spa_t *spa, uint64_t lsize)
919 {
920 	/*
921 	 * For now, the worst case is 512-byte RAID-Z blocks, in which
922 	 * case the space requirement is exactly 2x; so just assume that.
923 	 * Add to this the fact that we can have up to 3 DVAs per bp, and
924 	 * we have to multiply by a total of 6x.
925 	 */
926 	return (lsize * 6);
927 }
928 
929 uint64_t
930 spa_version(spa_t *spa)
931 {
932 	return (spa->spa_ubsync.ub_version);
933 }
934 
935 int
936 spa_max_replication(spa_t *spa)
937 {
938 	/*
939 	 * As of ZFS_VERSION == ZFS_VERSION_DITTO_BLOCKS, we are able to
940 	 * handle BPs with more than one DVA allocated.  Set our max
941 	 * replication level accordingly.
942 	 */
943 	if (spa_version(spa) < ZFS_VERSION_DITTO_BLOCKS)
944 		return (1);
945 	return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override));
946 }
947 
948 uint64_t
949 bp_get_dasize(spa_t *spa, const blkptr_t *bp)
950 {
951 	int sz = 0, i;
952 
953 	if (!spa->spa_deflate)
954 		return (BP_GET_ASIZE(bp));
955 
956 	for (i = 0; i < SPA_DVAS_PER_BP; i++) {
957 		vdev_t *vd =
958 		    vdev_lookup_top(spa, DVA_GET_VDEV(&bp->blk_dva[i]));
959 		sz += (DVA_GET_ASIZE(&bp->blk_dva[i]) >> SPA_MINBLOCKSHIFT) *
960 		    vd->vdev_deflate_ratio;
961 	}
962 	return (sz);
963 }
964 
965 /*
966  * ==========================================================================
967  * Initialization and Termination
968  * ==========================================================================
969  */
970 
971 static int
972 spa_name_compare(const void *a1, const void *a2)
973 {
974 	const spa_t *s1 = a1;
975 	const spa_t *s2 = a2;
976 	int s;
977 
978 	s = strcmp(s1->spa_name, s2->spa_name);
979 	if (s > 0)
980 		return (1);
981 	if (s < 0)
982 		return (-1);
983 	return (0);
984 }
985 
986 int
987 spa_busy(void)
988 {
989 	return (spa_active_count);
990 }
991 
992 void
993 spa_init(int mode)
994 {
995 	mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL);
996 	cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL);
997 
998 	avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t),
999 	    offsetof(spa_t, spa_avl));
1000 
1001 	avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_spare_t),
1002 	    offsetof(spa_spare_t, spare_avl));
1003 
1004 	spa_mode = mode;
1005 
1006 	refcount_init();
1007 	unique_init();
1008 	zio_init();
1009 	dmu_init();
1010 	zil_init();
1011 	spa_config_load();
1012 }
1013 
1014 void
1015 spa_fini(void)
1016 {
1017 	spa_evict_all();
1018 
1019 	zil_fini();
1020 	dmu_fini();
1021 	zio_fini();
1022 	refcount_fini();
1023 
1024 	avl_destroy(&spa_namespace_avl);
1025 	avl_destroy(&spa_spare_avl);
1026 
1027 	cv_destroy(&spa_namespace_cv);
1028 	mutex_destroy(&spa_namespace_lock);
1029 }
1030