1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 * Copyright (c) 2013 by Delphix. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 */ 26 27 #include <sys/zfs_context.h> 28 #include <sys/spa_impl.h> 29 #include <sys/spa_boot.h> 30 #include <sys/zio.h> 31 #include <sys/zio_checksum.h> 32 #include <sys/zio_compress.h> 33 #include <sys/dmu.h> 34 #include <sys/dmu_tx.h> 35 #include <sys/zap.h> 36 #include <sys/zil.h> 37 #include <sys/vdev_impl.h> 38 #include <sys/metaslab.h> 39 #include <sys/uberblock_impl.h> 40 #include <sys/txg.h> 41 #include <sys/avl.h> 42 #include <sys/unique.h> 43 #include <sys/dsl_pool.h> 44 #include <sys/dsl_dir.h> 45 #include <sys/dsl_prop.h> 46 #include <sys/dsl_scan.h> 47 #include <sys/fs/zfs.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/arc.h> 50 #include <sys/ddt.h> 51 #include "zfs_prop.h" 52 #include "zfeature_common.h" 53 54 /* 55 * SPA locking 56 * 57 * There are four basic locks for managing spa_t structures: 58 * 59 * spa_namespace_lock (global mutex) 60 * 61 * This lock must be acquired to do any of the following: 62 * 63 * - Lookup a spa_t by name 64 * - Add or remove a spa_t from the namespace 65 * - Increase spa_refcount from non-zero 66 * - Check if spa_refcount is zero 67 * - Rename a spa_t 68 * - add/remove/attach/detach devices 69 * - Held for the duration of create/destroy/import/export 70 * 71 * It does not need to handle recursion. A create or destroy may 72 * reference objects (files or zvols) in other pools, but by 73 * definition they must have an existing reference, and will never need 74 * to lookup a spa_t by name. 75 * 76 * spa_refcount (per-spa refcount_t protected by mutex) 77 * 78 * This reference count keep track of any active users of the spa_t. The 79 * spa_t cannot be destroyed or freed while this is non-zero. Internally, 80 * the refcount is never really 'zero' - opening a pool implicitly keeps 81 * some references in the DMU. Internally we check against spa_minref, but 82 * present the image of a zero/non-zero value to consumers. 83 * 84 * spa_config_lock[] (per-spa array of rwlocks) 85 * 86 * This protects the spa_t from config changes, and must be held in 87 * the following circumstances: 88 * 89 * - RW_READER to perform I/O to the spa 90 * - RW_WRITER to change the vdev config 91 * 92 * The locking order is fairly straightforward: 93 * 94 * spa_namespace_lock -> spa_refcount 95 * 96 * The namespace lock must be acquired to increase the refcount from 0 97 * or to check if it is zero. 98 * 99 * spa_refcount -> spa_config_lock[] 100 * 101 * There must be at least one valid reference on the spa_t to acquire 102 * the config lock. 103 * 104 * spa_namespace_lock -> spa_config_lock[] 105 * 106 * The namespace lock must always be taken before the config lock. 107 * 108 * 109 * The spa_namespace_lock can be acquired directly and is globally visible. 110 * 111 * The namespace is manipulated using the following functions, all of which 112 * require the spa_namespace_lock to be held. 113 * 114 * spa_lookup() Lookup a spa_t by name. 115 * 116 * spa_add() Create a new spa_t in the namespace. 117 * 118 * spa_remove() Remove a spa_t from the namespace. This also 119 * frees up any memory associated with the spa_t. 120 * 121 * spa_next() Returns the next spa_t in the system, or the 122 * first if NULL is passed. 123 * 124 * spa_evict_all() Shutdown and remove all spa_t structures in 125 * the system. 126 * 127 * spa_guid_exists() Determine whether a pool/device guid exists. 128 * 129 * The spa_refcount is manipulated using the following functions: 130 * 131 * spa_open_ref() Adds a reference to the given spa_t. Must be 132 * called with spa_namespace_lock held if the 133 * refcount is currently zero. 134 * 135 * spa_close() Remove a reference from the spa_t. This will 136 * not free the spa_t or remove it from the 137 * namespace. No locking is required. 138 * 139 * spa_refcount_zero() Returns true if the refcount is currently 140 * zero. Must be called with spa_namespace_lock 141 * held. 142 * 143 * The spa_config_lock[] is an array of rwlocks, ordered as follows: 144 * SCL_CONFIG > SCL_STATE > SCL_ALLOC > SCL_ZIO > SCL_FREE > SCL_VDEV. 145 * spa_config_lock[] is manipulated with spa_config_{enter,exit,held}(). 146 * 147 * To read the configuration, it suffices to hold one of these locks as reader. 148 * To modify the configuration, you must hold all locks as writer. To modify 149 * vdev state without altering the vdev tree's topology (e.g. online/offline), 150 * you must hold SCL_STATE and SCL_ZIO as writer. 151 * 152 * We use these distinct config locks to avoid recursive lock entry. 153 * For example, spa_sync() (which holds SCL_CONFIG as reader) induces 154 * block allocations (SCL_ALLOC), which may require reading space maps 155 * from disk (dmu_read() -> zio_read() -> SCL_ZIO). 156 * 157 * The spa config locks cannot be normal rwlocks because we need the 158 * ability to hand off ownership. For example, SCL_ZIO is acquired 159 * by the issuing thread and later released by an interrupt thread. 160 * They do, however, obey the usual write-wanted semantics to prevent 161 * writer (i.e. system administrator) starvation. 162 * 163 * The lock acquisition rules are as follows: 164 * 165 * SCL_CONFIG 166 * Protects changes to the vdev tree topology, such as vdev 167 * add/remove/attach/detach. Protects the dirty config list 168 * (spa_config_dirty_list) and the set of spares and l2arc devices. 169 * 170 * SCL_STATE 171 * Protects changes to pool state and vdev state, such as vdev 172 * online/offline/fault/degrade/clear. Protects the dirty state list 173 * (spa_state_dirty_list) and global pool state (spa_state). 174 * 175 * SCL_ALLOC 176 * Protects changes to metaslab groups and classes. 177 * Held as reader by metaslab_alloc() and metaslab_claim(). 178 * 179 * SCL_ZIO 180 * Held by bp-level zios (those which have no io_vd upon entry) 181 * to prevent changes to the vdev tree. The bp-level zio implicitly 182 * protects all of its vdev child zios, which do not hold SCL_ZIO. 183 * 184 * SCL_FREE 185 * Protects changes to metaslab groups and classes. 186 * Held as reader by metaslab_free(). SCL_FREE is distinct from 187 * SCL_ALLOC, and lower than SCL_ZIO, so that we can safely free 188 * blocks in zio_done() while another i/o that holds either 189 * SCL_ALLOC or SCL_ZIO is waiting for this i/o to complete. 190 * 191 * SCL_VDEV 192 * Held as reader to prevent changes to the vdev tree during trivial 193 * inquiries such as bp_get_dsize(). SCL_VDEV is distinct from the 194 * other locks, and lower than all of them, to ensure that it's safe 195 * to acquire regardless of caller context. 196 * 197 * In addition, the following rules apply: 198 * 199 * (a) spa_props_lock protects pool properties, spa_config and spa_config_list. 200 * The lock ordering is SCL_CONFIG > spa_props_lock. 201 * 202 * (b) I/O operations on leaf vdevs. For any zio operation that takes 203 * an explicit vdev_t argument -- such as zio_ioctl(), zio_read_phys(), 204 * or zio_write_phys() -- the caller must ensure that the config cannot 205 * cannot change in the interim, and that the vdev cannot be reopened. 206 * SCL_STATE as reader suffices for both. 207 * 208 * The vdev configuration is protected by spa_vdev_enter() / spa_vdev_exit(). 209 * 210 * spa_vdev_enter() Acquire the namespace lock and the config lock 211 * for writing. 212 * 213 * spa_vdev_exit() Release the config lock, wait for all I/O 214 * to complete, sync the updated configs to the 215 * cache, and release the namespace lock. 216 * 217 * vdev state is protected by spa_vdev_state_enter() / spa_vdev_state_exit(). 218 * Like spa_vdev_enter/exit, these are convenience wrappers -- the actual 219 * locking is, always, based on spa_namespace_lock and spa_config_lock[]. 220 * 221 * spa_rename() is also implemented within this file since it requires 222 * manipulation of the namespace. 223 */ 224 225 static avl_tree_t spa_namespace_avl; 226 kmutex_t spa_namespace_lock; 227 static kcondvar_t spa_namespace_cv; 228 static int spa_active_count; 229 int spa_max_replication_override = SPA_DVAS_PER_BP; 230 231 static kmutex_t spa_spare_lock; 232 static avl_tree_t spa_spare_avl; 233 static kmutex_t spa_l2cache_lock; 234 static avl_tree_t spa_l2cache_avl; 235 236 kmem_cache_t *spa_buffer_pool; 237 int spa_mode_global; 238 239 #ifdef ZFS_DEBUG 240 /* Everything except dprintf and spa is on by default in debug builds */ 241 int zfs_flags = ~(ZFS_DEBUG_DPRINTF | ZFS_DEBUG_SPA); 242 #else 243 int zfs_flags = 0; 244 #endif 245 246 /* 247 * zfs_recover can be set to nonzero to attempt to recover from 248 * otherwise-fatal errors, typically caused by on-disk corruption. When 249 * set, calls to zfs_panic_recover() will turn into warning messages. 250 */ 251 int zfs_recover = 0; 252 253 extern int zfs_txg_synctime_ms; 254 255 /* 256 * Expiration time in units of zfs_txg_synctime_ms. This value has two 257 * meanings. First it is used to determine when the spa_deadman logic 258 * should fire. By default the spa_deadman will fire if spa_sync has 259 * not completed in 1000 * zfs_txg_synctime_ms (i.e. 1000 seconds). 260 * Secondly, the value determines if an I/O is considered "hung". 261 * Any I/O that has not completed in zfs_deadman_synctime is considered 262 * "hung" resulting in a system panic. 263 */ 264 uint64_t zfs_deadman_synctime = 1000ULL; 265 266 /* 267 * Override the zfs deadman behavior via /etc/system. By default the 268 * deadman is enabled except on VMware and sparc deployments. 269 */ 270 int zfs_deadman_enabled = -1; 271 272 273 /* 274 * ========================================================================== 275 * SPA config locking 276 * ========================================================================== 277 */ 278 static void 279 spa_config_lock_init(spa_t *spa) 280 { 281 for (int i = 0; i < SCL_LOCKS; i++) { 282 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 283 mutex_init(&scl->scl_lock, NULL, MUTEX_DEFAULT, NULL); 284 cv_init(&scl->scl_cv, NULL, CV_DEFAULT, NULL); 285 refcount_create_untracked(&scl->scl_count); 286 scl->scl_writer = NULL; 287 scl->scl_write_wanted = 0; 288 } 289 } 290 291 static void 292 spa_config_lock_destroy(spa_t *spa) 293 { 294 for (int i = 0; i < SCL_LOCKS; i++) { 295 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 296 mutex_destroy(&scl->scl_lock); 297 cv_destroy(&scl->scl_cv); 298 refcount_destroy(&scl->scl_count); 299 ASSERT(scl->scl_writer == NULL); 300 ASSERT(scl->scl_write_wanted == 0); 301 } 302 } 303 304 int 305 spa_config_tryenter(spa_t *spa, int locks, void *tag, krw_t rw) 306 { 307 for (int i = 0; i < SCL_LOCKS; i++) { 308 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 309 if (!(locks & (1 << i))) 310 continue; 311 mutex_enter(&scl->scl_lock); 312 if (rw == RW_READER) { 313 if (scl->scl_writer || scl->scl_write_wanted) { 314 mutex_exit(&scl->scl_lock); 315 spa_config_exit(spa, locks ^ (1 << i), tag); 316 return (0); 317 } 318 } else { 319 ASSERT(scl->scl_writer != curthread); 320 if (!refcount_is_zero(&scl->scl_count)) { 321 mutex_exit(&scl->scl_lock); 322 spa_config_exit(spa, locks ^ (1 << i), tag); 323 return (0); 324 } 325 scl->scl_writer = curthread; 326 } 327 (void) refcount_add(&scl->scl_count, tag); 328 mutex_exit(&scl->scl_lock); 329 } 330 return (1); 331 } 332 333 void 334 spa_config_enter(spa_t *spa, int locks, void *tag, krw_t rw) 335 { 336 int wlocks_held = 0; 337 338 ASSERT3U(SCL_LOCKS, <, sizeof (wlocks_held) * NBBY); 339 340 for (int i = 0; i < SCL_LOCKS; i++) { 341 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 342 if (scl->scl_writer == curthread) 343 wlocks_held |= (1 << i); 344 if (!(locks & (1 << i))) 345 continue; 346 mutex_enter(&scl->scl_lock); 347 if (rw == RW_READER) { 348 while (scl->scl_writer || scl->scl_write_wanted) { 349 cv_wait(&scl->scl_cv, &scl->scl_lock); 350 } 351 } else { 352 ASSERT(scl->scl_writer != curthread); 353 while (!refcount_is_zero(&scl->scl_count)) { 354 scl->scl_write_wanted++; 355 cv_wait(&scl->scl_cv, &scl->scl_lock); 356 scl->scl_write_wanted--; 357 } 358 scl->scl_writer = curthread; 359 } 360 (void) refcount_add(&scl->scl_count, tag); 361 mutex_exit(&scl->scl_lock); 362 } 363 ASSERT(wlocks_held <= locks); 364 } 365 366 void 367 spa_config_exit(spa_t *spa, int locks, void *tag) 368 { 369 for (int i = SCL_LOCKS - 1; i >= 0; i--) { 370 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 371 if (!(locks & (1 << i))) 372 continue; 373 mutex_enter(&scl->scl_lock); 374 ASSERT(!refcount_is_zero(&scl->scl_count)); 375 if (refcount_remove(&scl->scl_count, tag) == 0) { 376 ASSERT(scl->scl_writer == NULL || 377 scl->scl_writer == curthread); 378 scl->scl_writer = NULL; /* OK in either case */ 379 cv_broadcast(&scl->scl_cv); 380 } 381 mutex_exit(&scl->scl_lock); 382 } 383 } 384 385 int 386 spa_config_held(spa_t *spa, int locks, krw_t rw) 387 { 388 int locks_held = 0; 389 390 for (int i = 0; i < SCL_LOCKS; i++) { 391 spa_config_lock_t *scl = &spa->spa_config_lock[i]; 392 if (!(locks & (1 << i))) 393 continue; 394 if ((rw == RW_READER && !refcount_is_zero(&scl->scl_count)) || 395 (rw == RW_WRITER && scl->scl_writer == curthread)) 396 locks_held |= 1 << i; 397 } 398 399 return (locks_held); 400 } 401 402 /* 403 * ========================================================================== 404 * SPA namespace functions 405 * ========================================================================== 406 */ 407 408 /* 409 * Lookup the named spa_t in the AVL tree. The spa_namespace_lock must be held. 410 * Returns NULL if no matching spa_t is found. 411 */ 412 spa_t * 413 spa_lookup(const char *name) 414 { 415 static spa_t search; /* spa_t is large; don't allocate on stack */ 416 spa_t *spa; 417 avl_index_t where; 418 char *cp; 419 420 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 421 422 (void) strlcpy(search.spa_name, name, sizeof (search.spa_name)); 423 424 /* 425 * If it's a full dataset name, figure out the pool name and 426 * just use that. 427 */ 428 cp = strpbrk(search.spa_name, "/@"); 429 if (cp != NULL) 430 *cp = '\0'; 431 432 spa = avl_find(&spa_namespace_avl, &search, &where); 433 434 return (spa); 435 } 436 437 /* 438 * Fires when spa_sync has not completed within zfs_deadman_synctime_ms. 439 * If the zfs_deadman_enabled flag is set then it inspects all vdev queues 440 * looking for potentially hung I/Os. 441 */ 442 void 443 spa_deadman(void *arg) 444 { 445 spa_t *spa = arg; 446 447 zfs_dbgmsg("slow spa_sync: started %llu seconds ago, calls %llu", 448 (gethrtime() - spa->spa_sync_starttime) / NANOSEC, 449 ++spa->spa_deadman_calls); 450 if (zfs_deadman_enabled) 451 vdev_deadman(spa->spa_root_vdev); 452 } 453 454 /* 455 * Create an uninitialized spa_t with the given name. Requires 456 * spa_namespace_lock. The caller must ensure that the spa_t doesn't already 457 * exist by calling spa_lookup() first. 458 */ 459 spa_t * 460 spa_add(const char *name, nvlist_t *config, const char *altroot) 461 { 462 spa_t *spa; 463 spa_config_dirent_t *dp; 464 cyc_handler_t hdlr; 465 cyc_time_t when; 466 467 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 468 469 spa = kmem_zalloc(sizeof (spa_t), KM_SLEEP); 470 471 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 472 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 473 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 474 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 475 mutex_init(&spa->spa_proc_lock, NULL, MUTEX_DEFAULT, NULL); 476 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 477 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 478 mutex_init(&spa->spa_suspend_lock, NULL, MUTEX_DEFAULT, NULL); 479 mutex_init(&spa->spa_vdev_top_lock, NULL, MUTEX_DEFAULT, NULL); 480 mutex_init(&spa->spa_iokstat_lock, NULL, MUTEX_DEFAULT, NULL); 481 482 cv_init(&spa->spa_async_cv, NULL, CV_DEFAULT, NULL); 483 cv_init(&spa->spa_proc_cv, NULL, CV_DEFAULT, NULL); 484 cv_init(&spa->spa_scrub_io_cv, NULL, CV_DEFAULT, NULL); 485 cv_init(&spa->spa_suspend_cv, NULL, CV_DEFAULT, NULL); 486 487 for (int t = 0; t < TXG_SIZE; t++) 488 bplist_create(&spa->spa_free_bplist[t]); 489 490 (void) strlcpy(spa->spa_name, name, sizeof (spa->spa_name)); 491 spa->spa_state = POOL_STATE_UNINITIALIZED; 492 spa->spa_freeze_txg = UINT64_MAX; 493 spa->spa_final_txg = UINT64_MAX; 494 spa->spa_load_max_txg = UINT64_MAX; 495 spa->spa_proc = &p0; 496 spa->spa_proc_state = SPA_PROC_NONE; 497 498 hdlr.cyh_func = spa_deadman; 499 hdlr.cyh_arg = spa; 500 hdlr.cyh_level = CY_LOW_LEVEL; 501 502 spa->spa_deadman_synctime = MSEC2NSEC(zfs_deadman_synctime * 503 zfs_txg_synctime_ms); 504 505 /* 506 * This determines how often we need to check for hung I/Os after 507 * the cyclic has already fired. Since checking for hung I/Os is 508 * an expensive operation we don't want to check too frequently. 509 * Instead wait for 5 synctimes before checking again. 510 */ 511 when.cyt_interval = MSEC2NSEC(5 * zfs_txg_synctime_ms); 512 when.cyt_when = CY_INFINITY; 513 mutex_enter(&cpu_lock); 514 spa->spa_deadman_cycid = cyclic_add(&hdlr, &when); 515 mutex_exit(&cpu_lock); 516 517 refcount_create(&spa->spa_refcount); 518 spa_config_lock_init(spa); 519 520 avl_add(&spa_namespace_avl, spa); 521 522 /* 523 * Set the alternate root, if there is one. 524 */ 525 if (altroot) { 526 spa->spa_root = spa_strdup(altroot); 527 spa_active_count++; 528 } 529 530 /* 531 * Every pool starts with the default cachefile 532 */ 533 list_create(&spa->spa_config_list, sizeof (spa_config_dirent_t), 534 offsetof(spa_config_dirent_t, scd_link)); 535 536 dp = kmem_zalloc(sizeof (spa_config_dirent_t), KM_SLEEP); 537 dp->scd_path = altroot ? NULL : spa_strdup(spa_config_path); 538 list_insert_head(&spa->spa_config_list, dp); 539 540 VERIFY(nvlist_alloc(&spa->spa_load_info, NV_UNIQUE_NAME, 541 KM_SLEEP) == 0); 542 543 if (config != NULL) { 544 nvlist_t *features; 545 546 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ, 547 &features) == 0) { 548 VERIFY(nvlist_dup(features, &spa->spa_label_features, 549 0) == 0); 550 } 551 552 VERIFY(nvlist_dup(config, &spa->spa_config, 0) == 0); 553 } 554 555 if (spa->spa_label_features == NULL) { 556 VERIFY(nvlist_alloc(&spa->spa_label_features, NV_UNIQUE_NAME, 557 KM_SLEEP) == 0); 558 } 559 560 spa->spa_iokstat = kstat_create("zfs", 0, name, 561 "disk", KSTAT_TYPE_IO, 1, 0); 562 if (spa->spa_iokstat) { 563 spa->spa_iokstat->ks_lock = &spa->spa_iokstat_lock; 564 kstat_install(spa->spa_iokstat); 565 } 566 567 spa->spa_debug = ((zfs_flags & ZFS_DEBUG_SPA) != 0); 568 569 return (spa); 570 } 571 572 /* 573 * Removes a spa_t from the namespace, freeing up any memory used. Requires 574 * spa_namespace_lock. This is called only after the spa_t has been closed and 575 * deactivated. 576 */ 577 void 578 spa_remove(spa_t *spa) 579 { 580 spa_config_dirent_t *dp; 581 582 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 583 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 584 585 nvlist_free(spa->spa_config_splitting); 586 587 avl_remove(&spa_namespace_avl, spa); 588 cv_broadcast(&spa_namespace_cv); 589 590 if (spa->spa_root) { 591 spa_strfree(spa->spa_root); 592 spa_active_count--; 593 } 594 595 while ((dp = list_head(&spa->spa_config_list)) != NULL) { 596 list_remove(&spa->spa_config_list, dp); 597 if (dp->scd_path != NULL) 598 spa_strfree(dp->scd_path); 599 kmem_free(dp, sizeof (spa_config_dirent_t)); 600 } 601 602 list_destroy(&spa->spa_config_list); 603 604 nvlist_free(spa->spa_label_features); 605 nvlist_free(spa->spa_load_info); 606 spa_config_set(spa, NULL); 607 608 mutex_enter(&cpu_lock); 609 if (spa->spa_deadman_cycid != CYCLIC_NONE) 610 cyclic_remove(spa->spa_deadman_cycid); 611 mutex_exit(&cpu_lock); 612 spa->spa_deadman_cycid = CYCLIC_NONE; 613 614 refcount_destroy(&spa->spa_refcount); 615 616 spa_config_lock_destroy(spa); 617 618 kstat_delete(spa->spa_iokstat); 619 spa->spa_iokstat = NULL; 620 621 for (int t = 0; t < TXG_SIZE; t++) 622 bplist_destroy(&spa->spa_free_bplist[t]); 623 624 cv_destroy(&spa->spa_async_cv); 625 cv_destroy(&spa->spa_proc_cv); 626 cv_destroy(&spa->spa_scrub_io_cv); 627 cv_destroy(&spa->spa_suspend_cv); 628 629 mutex_destroy(&spa->spa_async_lock); 630 mutex_destroy(&spa->spa_errlist_lock); 631 mutex_destroy(&spa->spa_errlog_lock); 632 mutex_destroy(&spa->spa_history_lock); 633 mutex_destroy(&spa->spa_proc_lock); 634 mutex_destroy(&spa->spa_props_lock); 635 mutex_destroy(&spa->spa_scrub_lock); 636 mutex_destroy(&spa->spa_suspend_lock); 637 mutex_destroy(&spa->spa_vdev_top_lock); 638 mutex_destroy(&spa->spa_iokstat_lock); 639 640 kmem_free(spa, sizeof (spa_t)); 641 } 642 643 /* 644 * Given a pool, return the next pool in the namespace, or NULL if there is 645 * none. If 'prev' is NULL, return the first pool. 646 */ 647 spa_t * 648 spa_next(spa_t *prev) 649 { 650 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 651 652 if (prev) 653 return (AVL_NEXT(&spa_namespace_avl, prev)); 654 else 655 return (avl_first(&spa_namespace_avl)); 656 } 657 658 /* 659 * ========================================================================== 660 * SPA refcount functions 661 * ========================================================================== 662 */ 663 664 /* 665 * Add a reference to the given spa_t. Must have at least one reference, or 666 * have the namespace lock held. 667 */ 668 void 669 spa_open_ref(spa_t *spa, void *tag) 670 { 671 ASSERT(refcount_count(&spa->spa_refcount) >= spa->spa_minref || 672 MUTEX_HELD(&spa_namespace_lock)); 673 (void) refcount_add(&spa->spa_refcount, tag); 674 } 675 676 /* 677 * Remove a reference to the given spa_t. Must have at least one reference, or 678 * have the namespace lock held. 679 */ 680 void 681 spa_close(spa_t *spa, void *tag) 682 { 683 ASSERT(refcount_count(&spa->spa_refcount) > spa->spa_minref || 684 MUTEX_HELD(&spa_namespace_lock)); 685 (void) refcount_remove(&spa->spa_refcount, tag); 686 } 687 688 /* 689 * Check to see if the spa refcount is zero. Must be called with 690 * spa_namespace_lock held. We really compare against spa_minref, which is the 691 * number of references acquired when opening a pool 692 */ 693 boolean_t 694 spa_refcount_zero(spa_t *spa) 695 { 696 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 697 698 return (refcount_count(&spa->spa_refcount) == spa->spa_minref); 699 } 700 701 /* 702 * ========================================================================== 703 * SPA spare and l2cache tracking 704 * ========================================================================== 705 */ 706 707 /* 708 * Hot spares and cache devices are tracked using the same code below, 709 * for 'auxiliary' devices. 710 */ 711 712 typedef struct spa_aux { 713 uint64_t aux_guid; 714 uint64_t aux_pool; 715 avl_node_t aux_avl; 716 int aux_count; 717 } spa_aux_t; 718 719 static int 720 spa_aux_compare(const void *a, const void *b) 721 { 722 const spa_aux_t *sa = a; 723 const spa_aux_t *sb = b; 724 725 if (sa->aux_guid < sb->aux_guid) 726 return (-1); 727 else if (sa->aux_guid > sb->aux_guid) 728 return (1); 729 else 730 return (0); 731 } 732 733 void 734 spa_aux_add(vdev_t *vd, avl_tree_t *avl) 735 { 736 avl_index_t where; 737 spa_aux_t search; 738 spa_aux_t *aux; 739 740 search.aux_guid = vd->vdev_guid; 741 if ((aux = avl_find(avl, &search, &where)) != NULL) { 742 aux->aux_count++; 743 } else { 744 aux = kmem_zalloc(sizeof (spa_aux_t), KM_SLEEP); 745 aux->aux_guid = vd->vdev_guid; 746 aux->aux_count = 1; 747 avl_insert(avl, aux, where); 748 } 749 } 750 751 void 752 spa_aux_remove(vdev_t *vd, avl_tree_t *avl) 753 { 754 spa_aux_t search; 755 spa_aux_t *aux; 756 avl_index_t where; 757 758 search.aux_guid = vd->vdev_guid; 759 aux = avl_find(avl, &search, &where); 760 761 ASSERT(aux != NULL); 762 763 if (--aux->aux_count == 0) { 764 avl_remove(avl, aux); 765 kmem_free(aux, sizeof (spa_aux_t)); 766 } else if (aux->aux_pool == spa_guid(vd->vdev_spa)) { 767 aux->aux_pool = 0ULL; 768 } 769 } 770 771 boolean_t 772 spa_aux_exists(uint64_t guid, uint64_t *pool, int *refcnt, avl_tree_t *avl) 773 { 774 spa_aux_t search, *found; 775 776 search.aux_guid = guid; 777 found = avl_find(avl, &search, NULL); 778 779 if (pool) { 780 if (found) 781 *pool = found->aux_pool; 782 else 783 *pool = 0ULL; 784 } 785 786 if (refcnt) { 787 if (found) 788 *refcnt = found->aux_count; 789 else 790 *refcnt = 0; 791 } 792 793 return (found != NULL); 794 } 795 796 void 797 spa_aux_activate(vdev_t *vd, avl_tree_t *avl) 798 { 799 spa_aux_t search, *found; 800 avl_index_t where; 801 802 search.aux_guid = vd->vdev_guid; 803 found = avl_find(avl, &search, &where); 804 ASSERT(found != NULL); 805 ASSERT(found->aux_pool == 0ULL); 806 807 found->aux_pool = spa_guid(vd->vdev_spa); 808 } 809 810 /* 811 * Spares are tracked globally due to the following constraints: 812 * 813 * - A spare may be part of multiple pools. 814 * - A spare may be added to a pool even if it's actively in use within 815 * another pool. 816 * - A spare in use in any pool can only be the source of a replacement if 817 * the target is a spare in the same pool. 818 * 819 * We keep track of all spares on the system through the use of a reference 820 * counted AVL tree. When a vdev is added as a spare, or used as a replacement 821 * spare, then we bump the reference count in the AVL tree. In addition, we set 822 * the 'vdev_isspare' member to indicate that the device is a spare (active or 823 * inactive). When a spare is made active (used to replace a device in the 824 * pool), we also keep track of which pool its been made a part of. 825 * 826 * The 'spa_spare_lock' protects the AVL tree. These functions are normally 827 * called under the spa_namespace lock as part of vdev reconfiguration. The 828 * separate spare lock exists for the status query path, which does not need to 829 * be completely consistent with respect to other vdev configuration changes. 830 */ 831 832 static int 833 spa_spare_compare(const void *a, const void *b) 834 { 835 return (spa_aux_compare(a, b)); 836 } 837 838 void 839 spa_spare_add(vdev_t *vd) 840 { 841 mutex_enter(&spa_spare_lock); 842 ASSERT(!vd->vdev_isspare); 843 spa_aux_add(vd, &spa_spare_avl); 844 vd->vdev_isspare = B_TRUE; 845 mutex_exit(&spa_spare_lock); 846 } 847 848 void 849 spa_spare_remove(vdev_t *vd) 850 { 851 mutex_enter(&spa_spare_lock); 852 ASSERT(vd->vdev_isspare); 853 spa_aux_remove(vd, &spa_spare_avl); 854 vd->vdev_isspare = B_FALSE; 855 mutex_exit(&spa_spare_lock); 856 } 857 858 boolean_t 859 spa_spare_exists(uint64_t guid, uint64_t *pool, int *refcnt) 860 { 861 boolean_t found; 862 863 mutex_enter(&spa_spare_lock); 864 found = spa_aux_exists(guid, pool, refcnt, &spa_spare_avl); 865 mutex_exit(&spa_spare_lock); 866 867 return (found); 868 } 869 870 void 871 spa_spare_activate(vdev_t *vd) 872 { 873 mutex_enter(&spa_spare_lock); 874 ASSERT(vd->vdev_isspare); 875 spa_aux_activate(vd, &spa_spare_avl); 876 mutex_exit(&spa_spare_lock); 877 } 878 879 /* 880 * Level 2 ARC devices are tracked globally for the same reasons as spares. 881 * Cache devices currently only support one pool per cache device, and so 882 * for these devices the aux reference count is currently unused beyond 1. 883 */ 884 885 static int 886 spa_l2cache_compare(const void *a, const void *b) 887 { 888 return (spa_aux_compare(a, b)); 889 } 890 891 void 892 spa_l2cache_add(vdev_t *vd) 893 { 894 mutex_enter(&spa_l2cache_lock); 895 ASSERT(!vd->vdev_isl2cache); 896 spa_aux_add(vd, &spa_l2cache_avl); 897 vd->vdev_isl2cache = B_TRUE; 898 mutex_exit(&spa_l2cache_lock); 899 } 900 901 void 902 spa_l2cache_remove(vdev_t *vd) 903 { 904 mutex_enter(&spa_l2cache_lock); 905 ASSERT(vd->vdev_isl2cache); 906 spa_aux_remove(vd, &spa_l2cache_avl); 907 vd->vdev_isl2cache = B_FALSE; 908 mutex_exit(&spa_l2cache_lock); 909 } 910 911 boolean_t 912 spa_l2cache_exists(uint64_t guid, uint64_t *pool) 913 { 914 boolean_t found; 915 916 mutex_enter(&spa_l2cache_lock); 917 found = spa_aux_exists(guid, pool, NULL, &spa_l2cache_avl); 918 mutex_exit(&spa_l2cache_lock); 919 920 return (found); 921 } 922 923 void 924 spa_l2cache_activate(vdev_t *vd) 925 { 926 mutex_enter(&spa_l2cache_lock); 927 ASSERT(vd->vdev_isl2cache); 928 spa_aux_activate(vd, &spa_l2cache_avl); 929 mutex_exit(&spa_l2cache_lock); 930 } 931 932 /* 933 * ========================================================================== 934 * SPA vdev locking 935 * ========================================================================== 936 */ 937 938 /* 939 * Lock the given spa_t for the purpose of adding or removing a vdev. 940 * Grabs the global spa_namespace_lock plus the spa config lock for writing. 941 * It returns the next transaction group for the spa_t. 942 */ 943 uint64_t 944 spa_vdev_enter(spa_t *spa) 945 { 946 mutex_enter(&spa->spa_vdev_top_lock); 947 mutex_enter(&spa_namespace_lock); 948 return (spa_vdev_config_enter(spa)); 949 } 950 951 /* 952 * Internal implementation for spa_vdev_enter(). Used when a vdev 953 * operation requires multiple syncs (i.e. removing a device) while 954 * keeping the spa_namespace_lock held. 955 */ 956 uint64_t 957 spa_vdev_config_enter(spa_t *spa) 958 { 959 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 960 961 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 962 963 return (spa_last_synced_txg(spa) + 1); 964 } 965 966 /* 967 * Used in combination with spa_vdev_config_enter() to allow the syncing 968 * of multiple transactions without releasing the spa_namespace_lock. 969 */ 970 void 971 spa_vdev_config_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error, char *tag) 972 { 973 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 974 975 int config_changed = B_FALSE; 976 977 ASSERT(txg > spa_last_synced_txg(spa)); 978 979 spa->spa_pending_vdev = NULL; 980 981 /* 982 * Reassess the DTLs. 983 */ 984 vdev_dtl_reassess(spa->spa_root_vdev, 0, 0, B_FALSE); 985 986 if (error == 0 && !list_is_empty(&spa->spa_config_dirty_list)) { 987 config_changed = B_TRUE; 988 spa->spa_config_generation++; 989 } 990 991 /* 992 * Verify the metaslab classes. 993 */ 994 ASSERT(metaslab_class_validate(spa_normal_class(spa)) == 0); 995 ASSERT(metaslab_class_validate(spa_log_class(spa)) == 0); 996 997 spa_config_exit(spa, SCL_ALL, spa); 998 999 /* 1000 * Panic the system if the specified tag requires it. This 1001 * is useful for ensuring that configurations are updated 1002 * transactionally. 1003 */ 1004 if (zio_injection_enabled) 1005 zio_handle_panic_injection(spa, tag, 0); 1006 1007 /* 1008 * Note: this txg_wait_synced() is important because it ensures 1009 * that there won't be more than one config change per txg. 1010 * This allows us to use the txg as the generation number. 1011 */ 1012 if (error == 0) 1013 txg_wait_synced(spa->spa_dsl_pool, txg); 1014 1015 if (vd != NULL) { 1016 ASSERT(!vd->vdev_detached || vd->vdev_dtl_smo.smo_object == 0); 1017 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER); 1018 vdev_free(vd); 1019 spa_config_exit(spa, SCL_ALL, spa); 1020 } 1021 1022 /* 1023 * If the config changed, update the config cache. 1024 */ 1025 if (config_changed) 1026 spa_config_sync(spa, B_FALSE, B_TRUE); 1027 } 1028 1029 /* 1030 * Unlock the spa_t after adding or removing a vdev. Besides undoing the 1031 * locking of spa_vdev_enter(), we also want make sure the transactions have 1032 * synced to disk, and then update the global configuration cache with the new 1033 * information. 1034 */ 1035 int 1036 spa_vdev_exit(spa_t *spa, vdev_t *vd, uint64_t txg, int error) 1037 { 1038 spa_vdev_config_exit(spa, vd, txg, error, FTAG); 1039 mutex_exit(&spa_namespace_lock); 1040 mutex_exit(&spa->spa_vdev_top_lock); 1041 1042 return (error); 1043 } 1044 1045 /* 1046 * Lock the given spa_t for the purpose of changing vdev state. 1047 */ 1048 void 1049 spa_vdev_state_enter(spa_t *spa, int oplocks) 1050 { 1051 int locks = SCL_STATE_ALL | oplocks; 1052 1053 /* 1054 * Root pools may need to read of the underlying devfs filesystem 1055 * when opening up a vdev. Unfortunately if we're holding the 1056 * SCL_ZIO lock it will result in a deadlock when we try to issue 1057 * the read from the root filesystem. Instead we "prefetch" 1058 * the associated vnodes that we need prior to opening the 1059 * underlying devices and cache them so that we can prevent 1060 * any I/O when we are doing the actual open. 1061 */ 1062 if (spa_is_root(spa)) { 1063 int low = locks & ~(SCL_ZIO - 1); 1064 int high = locks & ~low; 1065 1066 spa_config_enter(spa, high, spa, RW_WRITER); 1067 vdev_hold(spa->spa_root_vdev); 1068 spa_config_enter(spa, low, spa, RW_WRITER); 1069 } else { 1070 spa_config_enter(spa, locks, spa, RW_WRITER); 1071 } 1072 spa->spa_vdev_locks = locks; 1073 } 1074 1075 int 1076 spa_vdev_state_exit(spa_t *spa, vdev_t *vd, int error) 1077 { 1078 boolean_t config_changed = B_FALSE; 1079 1080 if (vd != NULL || error == 0) 1081 vdev_dtl_reassess(vd ? vd->vdev_top : spa->spa_root_vdev, 1082 0, 0, B_FALSE); 1083 1084 if (vd != NULL) { 1085 vdev_state_dirty(vd->vdev_top); 1086 config_changed = B_TRUE; 1087 spa->spa_config_generation++; 1088 } 1089 1090 if (spa_is_root(spa)) 1091 vdev_rele(spa->spa_root_vdev); 1092 1093 ASSERT3U(spa->spa_vdev_locks, >=, SCL_STATE_ALL); 1094 spa_config_exit(spa, spa->spa_vdev_locks, spa); 1095 1096 /* 1097 * If anything changed, wait for it to sync. This ensures that, 1098 * from the system administrator's perspective, zpool(1M) commands 1099 * are synchronous. This is important for things like zpool offline: 1100 * when the command completes, you expect no further I/O from ZFS. 1101 */ 1102 if (vd != NULL) 1103 txg_wait_synced(spa->spa_dsl_pool, 0); 1104 1105 /* 1106 * If the config changed, update the config cache. 1107 */ 1108 if (config_changed) { 1109 mutex_enter(&spa_namespace_lock); 1110 spa_config_sync(spa, B_FALSE, B_TRUE); 1111 mutex_exit(&spa_namespace_lock); 1112 } 1113 1114 return (error); 1115 } 1116 1117 /* 1118 * ========================================================================== 1119 * Miscellaneous functions 1120 * ========================================================================== 1121 */ 1122 1123 void 1124 spa_activate_mos_feature(spa_t *spa, const char *feature) 1125 { 1126 (void) nvlist_add_boolean(spa->spa_label_features, feature); 1127 vdev_config_dirty(spa->spa_root_vdev); 1128 } 1129 1130 void 1131 spa_deactivate_mos_feature(spa_t *spa, const char *feature) 1132 { 1133 (void) nvlist_remove_all(spa->spa_label_features, feature); 1134 vdev_config_dirty(spa->spa_root_vdev); 1135 } 1136 1137 /* 1138 * Rename a spa_t. 1139 */ 1140 int 1141 spa_rename(const char *name, const char *newname) 1142 { 1143 spa_t *spa; 1144 int err; 1145 1146 /* 1147 * Lookup the spa_t and grab the config lock for writing. We need to 1148 * actually open the pool so that we can sync out the necessary labels. 1149 * It's OK to call spa_open() with the namespace lock held because we 1150 * allow recursive calls for other reasons. 1151 */ 1152 mutex_enter(&spa_namespace_lock); 1153 if ((err = spa_open(name, &spa, FTAG)) != 0) { 1154 mutex_exit(&spa_namespace_lock); 1155 return (err); 1156 } 1157 1158 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1159 1160 avl_remove(&spa_namespace_avl, spa); 1161 (void) strlcpy(spa->spa_name, newname, sizeof (spa->spa_name)); 1162 avl_add(&spa_namespace_avl, spa); 1163 1164 /* 1165 * Sync all labels to disk with the new names by marking the root vdev 1166 * dirty and waiting for it to sync. It will pick up the new pool name 1167 * during the sync. 1168 */ 1169 vdev_config_dirty(spa->spa_root_vdev); 1170 1171 spa_config_exit(spa, SCL_ALL, FTAG); 1172 1173 txg_wait_synced(spa->spa_dsl_pool, 0); 1174 1175 /* 1176 * Sync the updated config cache. 1177 */ 1178 spa_config_sync(spa, B_FALSE, B_TRUE); 1179 1180 spa_close(spa, FTAG); 1181 1182 mutex_exit(&spa_namespace_lock); 1183 1184 return (0); 1185 } 1186 1187 /* 1188 * Return the spa_t associated with given pool_guid, if it exists. If 1189 * device_guid is non-zero, determine whether the pool exists *and* contains 1190 * a device with the specified device_guid. 1191 */ 1192 spa_t * 1193 spa_by_guid(uint64_t pool_guid, uint64_t device_guid) 1194 { 1195 spa_t *spa; 1196 avl_tree_t *t = &spa_namespace_avl; 1197 1198 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1199 1200 for (spa = avl_first(t); spa != NULL; spa = AVL_NEXT(t, spa)) { 1201 if (spa->spa_state == POOL_STATE_UNINITIALIZED) 1202 continue; 1203 if (spa->spa_root_vdev == NULL) 1204 continue; 1205 if (spa_guid(spa) == pool_guid) { 1206 if (device_guid == 0) 1207 break; 1208 1209 if (vdev_lookup_by_guid(spa->spa_root_vdev, 1210 device_guid) != NULL) 1211 break; 1212 1213 /* 1214 * Check any devices we may be in the process of adding. 1215 */ 1216 if (spa->spa_pending_vdev) { 1217 if (vdev_lookup_by_guid(spa->spa_pending_vdev, 1218 device_guid) != NULL) 1219 break; 1220 } 1221 } 1222 } 1223 1224 return (spa); 1225 } 1226 1227 /* 1228 * Determine whether a pool with the given pool_guid exists. 1229 */ 1230 boolean_t 1231 spa_guid_exists(uint64_t pool_guid, uint64_t device_guid) 1232 { 1233 return (spa_by_guid(pool_guid, device_guid) != NULL); 1234 } 1235 1236 char * 1237 spa_strdup(const char *s) 1238 { 1239 size_t len; 1240 char *new; 1241 1242 len = strlen(s); 1243 new = kmem_alloc(len + 1, KM_SLEEP); 1244 bcopy(s, new, len); 1245 new[len] = '\0'; 1246 1247 return (new); 1248 } 1249 1250 void 1251 spa_strfree(char *s) 1252 { 1253 kmem_free(s, strlen(s) + 1); 1254 } 1255 1256 uint64_t 1257 spa_get_random(uint64_t range) 1258 { 1259 uint64_t r; 1260 1261 ASSERT(range != 0); 1262 1263 (void) random_get_pseudo_bytes((void *)&r, sizeof (uint64_t)); 1264 1265 return (r % range); 1266 } 1267 1268 uint64_t 1269 spa_generate_guid(spa_t *spa) 1270 { 1271 uint64_t guid = spa_get_random(-1ULL); 1272 1273 if (spa != NULL) { 1274 while (guid == 0 || spa_guid_exists(spa_guid(spa), guid)) 1275 guid = spa_get_random(-1ULL); 1276 } else { 1277 while (guid == 0 || spa_guid_exists(guid, 0)) 1278 guid = spa_get_random(-1ULL); 1279 } 1280 1281 return (guid); 1282 } 1283 1284 void 1285 sprintf_blkptr(char *buf, const blkptr_t *bp) 1286 { 1287 char type[256]; 1288 char *checksum = NULL; 1289 char *compress = NULL; 1290 1291 if (bp != NULL) { 1292 if (BP_GET_TYPE(bp) & DMU_OT_NEWTYPE) { 1293 dmu_object_byteswap_t bswap = 1294 DMU_OT_BYTESWAP(BP_GET_TYPE(bp)); 1295 (void) snprintf(type, sizeof (type), "bswap %s %s", 1296 DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) ? 1297 "metadata" : "data", 1298 dmu_ot_byteswap[bswap].ob_name); 1299 } else { 1300 (void) strlcpy(type, dmu_ot[BP_GET_TYPE(bp)].ot_name, 1301 sizeof (type)); 1302 } 1303 checksum = zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_name; 1304 compress = zio_compress_table[BP_GET_COMPRESS(bp)].ci_name; 1305 } 1306 1307 SPRINTF_BLKPTR(snprintf, ' ', buf, bp, type, checksum, compress); 1308 } 1309 1310 void 1311 spa_freeze(spa_t *spa) 1312 { 1313 uint64_t freeze_txg = 0; 1314 1315 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1316 if (spa->spa_freeze_txg == UINT64_MAX) { 1317 freeze_txg = spa_last_synced_txg(spa) + TXG_SIZE; 1318 spa->spa_freeze_txg = freeze_txg; 1319 } 1320 spa_config_exit(spa, SCL_ALL, FTAG); 1321 if (freeze_txg != 0) 1322 txg_wait_synced(spa_get_dsl(spa), freeze_txg); 1323 } 1324 1325 void 1326 zfs_panic_recover(const char *fmt, ...) 1327 { 1328 va_list adx; 1329 1330 va_start(adx, fmt); 1331 vcmn_err(zfs_recover ? CE_WARN : CE_PANIC, fmt, adx); 1332 va_end(adx); 1333 } 1334 1335 /* 1336 * This is a stripped-down version of strtoull, suitable only for converting 1337 * lowercase hexadecimal numbers that don't overflow. 1338 */ 1339 uint64_t 1340 strtonum(const char *str, char **nptr) 1341 { 1342 uint64_t val = 0; 1343 char c; 1344 int digit; 1345 1346 while ((c = *str) != '\0') { 1347 if (c >= '0' && c <= '9') 1348 digit = c - '0'; 1349 else if (c >= 'a' && c <= 'f') 1350 digit = 10 + c - 'a'; 1351 else 1352 break; 1353 1354 val *= 16; 1355 val += digit; 1356 1357 str++; 1358 } 1359 1360 if (nptr) 1361 *nptr = (char *)str; 1362 1363 return (val); 1364 } 1365 1366 /* 1367 * ========================================================================== 1368 * Accessor functions 1369 * ========================================================================== 1370 */ 1371 1372 boolean_t 1373 spa_shutting_down(spa_t *spa) 1374 { 1375 return (spa->spa_async_suspended); 1376 } 1377 1378 dsl_pool_t * 1379 spa_get_dsl(spa_t *spa) 1380 { 1381 return (spa->spa_dsl_pool); 1382 } 1383 1384 boolean_t 1385 spa_is_initializing(spa_t *spa) 1386 { 1387 return (spa->spa_is_initializing); 1388 } 1389 1390 blkptr_t * 1391 spa_get_rootblkptr(spa_t *spa) 1392 { 1393 return (&spa->spa_ubsync.ub_rootbp); 1394 } 1395 1396 void 1397 spa_set_rootblkptr(spa_t *spa, const blkptr_t *bp) 1398 { 1399 spa->spa_uberblock.ub_rootbp = *bp; 1400 } 1401 1402 void 1403 spa_altroot(spa_t *spa, char *buf, size_t buflen) 1404 { 1405 if (spa->spa_root == NULL) 1406 buf[0] = '\0'; 1407 else 1408 (void) strncpy(buf, spa->spa_root, buflen); 1409 } 1410 1411 int 1412 spa_sync_pass(spa_t *spa) 1413 { 1414 return (spa->spa_sync_pass); 1415 } 1416 1417 char * 1418 spa_name(spa_t *spa) 1419 { 1420 return (spa->spa_name); 1421 } 1422 1423 uint64_t 1424 spa_guid(spa_t *spa) 1425 { 1426 dsl_pool_t *dp = spa_get_dsl(spa); 1427 uint64_t guid; 1428 1429 /* 1430 * If we fail to parse the config during spa_load(), we can go through 1431 * the error path (which posts an ereport) and end up here with no root 1432 * vdev. We stash the original pool guid in 'spa_config_guid' to handle 1433 * this case. 1434 */ 1435 if (spa->spa_root_vdev == NULL) 1436 return (spa->spa_config_guid); 1437 1438 guid = spa->spa_last_synced_guid != 0 ? 1439 spa->spa_last_synced_guid : spa->spa_root_vdev->vdev_guid; 1440 1441 /* 1442 * Return the most recently synced out guid unless we're 1443 * in syncing context. 1444 */ 1445 if (dp && dsl_pool_sync_context(dp)) 1446 return (spa->spa_root_vdev->vdev_guid); 1447 else 1448 return (guid); 1449 } 1450 1451 uint64_t 1452 spa_load_guid(spa_t *spa) 1453 { 1454 /* 1455 * This is a GUID that exists solely as a reference for the 1456 * purposes of the arc. It is generated at load time, and 1457 * is never written to persistent storage. 1458 */ 1459 return (spa->spa_load_guid); 1460 } 1461 1462 uint64_t 1463 spa_last_synced_txg(spa_t *spa) 1464 { 1465 return (spa->spa_ubsync.ub_txg); 1466 } 1467 1468 uint64_t 1469 spa_first_txg(spa_t *spa) 1470 { 1471 return (spa->spa_first_txg); 1472 } 1473 1474 uint64_t 1475 spa_syncing_txg(spa_t *spa) 1476 { 1477 return (spa->spa_syncing_txg); 1478 } 1479 1480 pool_state_t 1481 spa_state(spa_t *spa) 1482 { 1483 return (spa->spa_state); 1484 } 1485 1486 spa_load_state_t 1487 spa_load_state(spa_t *spa) 1488 { 1489 return (spa->spa_load_state); 1490 } 1491 1492 uint64_t 1493 spa_freeze_txg(spa_t *spa) 1494 { 1495 return (spa->spa_freeze_txg); 1496 } 1497 1498 /* ARGSUSED */ 1499 uint64_t 1500 spa_get_asize(spa_t *spa, uint64_t lsize) 1501 { 1502 /* 1503 * The worst case is single-sector max-parity RAID-Z blocks, in which 1504 * case the space requirement is exactly (VDEV_RAIDZ_MAXPARITY + 1) 1505 * times the size; so just assume that. Add to this the fact that 1506 * we can have up to 3 DVAs per bp, and one more factor of 2 because 1507 * the block may be dittoed with up to 3 DVAs by ddt_sync(). 1508 */ 1509 return (lsize * (VDEV_RAIDZ_MAXPARITY + 1) * SPA_DVAS_PER_BP * 2); 1510 } 1511 1512 uint64_t 1513 spa_get_dspace(spa_t *spa) 1514 { 1515 return (spa->spa_dspace); 1516 } 1517 1518 void 1519 spa_update_dspace(spa_t *spa) 1520 { 1521 spa->spa_dspace = metaslab_class_get_dspace(spa_normal_class(spa)) + 1522 ddt_get_dedup_dspace(spa); 1523 } 1524 1525 /* 1526 * Return the failure mode that has been set to this pool. The default 1527 * behavior will be to block all I/Os when a complete failure occurs. 1528 */ 1529 uint8_t 1530 spa_get_failmode(spa_t *spa) 1531 { 1532 return (spa->spa_failmode); 1533 } 1534 1535 boolean_t 1536 spa_suspended(spa_t *spa) 1537 { 1538 return (spa->spa_suspended); 1539 } 1540 1541 uint64_t 1542 spa_version(spa_t *spa) 1543 { 1544 return (spa->spa_ubsync.ub_version); 1545 } 1546 1547 boolean_t 1548 spa_deflate(spa_t *spa) 1549 { 1550 return (spa->spa_deflate); 1551 } 1552 1553 metaslab_class_t * 1554 spa_normal_class(spa_t *spa) 1555 { 1556 return (spa->spa_normal_class); 1557 } 1558 1559 metaslab_class_t * 1560 spa_log_class(spa_t *spa) 1561 { 1562 return (spa->spa_log_class); 1563 } 1564 1565 int 1566 spa_max_replication(spa_t *spa) 1567 { 1568 /* 1569 * As of SPA_VERSION == SPA_VERSION_DITTO_BLOCKS, we are able to 1570 * handle BPs with more than one DVA allocated. Set our max 1571 * replication level accordingly. 1572 */ 1573 if (spa_version(spa) < SPA_VERSION_DITTO_BLOCKS) 1574 return (1); 1575 return (MIN(SPA_DVAS_PER_BP, spa_max_replication_override)); 1576 } 1577 1578 int 1579 spa_prev_software_version(spa_t *spa) 1580 { 1581 return (spa->spa_prev_software_version); 1582 } 1583 1584 uint64_t 1585 spa_deadman_synctime(spa_t *spa) 1586 { 1587 return (spa->spa_deadman_synctime); 1588 } 1589 1590 uint64_t 1591 dva_get_dsize_sync(spa_t *spa, const dva_t *dva) 1592 { 1593 uint64_t asize = DVA_GET_ASIZE(dva); 1594 uint64_t dsize = asize; 1595 1596 ASSERT(spa_config_held(spa, SCL_ALL, RW_READER) != 0); 1597 1598 if (asize != 0 && spa->spa_deflate) { 1599 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva)); 1600 dsize = (asize >> SPA_MINBLOCKSHIFT) * vd->vdev_deflate_ratio; 1601 } 1602 1603 return (dsize); 1604 } 1605 1606 uint64_t 1607 bp_get_dsize_sync(spa_t *spa, const blkptr_t *bp) 1608 { 1609 uint64_t dsize = 0; 1610 1611 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1612 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1613 1614 return (dsize); 1615 } 1616 1617 uint64_t 1618 bp_get_dsize(spa_t *spa, const blkptr_t *bp) 1619 { 1620 uint64_t dsize = 0; 1621 1622 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER); 1623 1624 for (int d = 0; d < SPA_DVAS_PER_BP; d++) 1625 dsize += dva_get_dsize_sync(spa, &bp->blk_dva[d]); 1626 1627 spa_config_exit(spa, SCL_VDEV, FTAG); 1628 1629 return (dsize); 1630 } 1631 1632 /* 1633 * ========================================================================== 1634 * Initialization and Termination 1635 * ========================================================================== 1636 */ 1637 1638 static int 1639 spa_name_compare(const void *a1, const void *a2) 1640 { 1641 const spa_t *s1 = a1; 1642 const spa_t *s2 = a2; 1643 int s; 1644 1645 s = strcmp(s1->spa_name, s2->spa_name); 1646 if (s > 0) 1647 return (1); 1648 if (s < 0) 1649 return (-1); 1650 return (0); 1651 } 1652 1653 int 1654 spa_busy(void) 1655 { 1656 return (spa_active_count); 1657 } 1658 1659 void 1660 spa_boot_init() 1661 { 1662 spa_config_load(); 1663 } 1664 1665 void 1666 spa_init(int mode) 1667 { 1668 mutex_init(&spa_namespace_lock, NULL, MUTEX_DEFAULT, NULL); 1669 mutex_init(&spa_spare_lock, NULL, MUTEX_DEFAULT, NULL); 1670 mutex_init(&spa_l2cache_lock, NULL, MUTEX_DEFAULT, NULL); 1671 cv_init(&spa_namespace_cv, NULL, CV_DEFAULT, NULL); 1672 1673 avl_create(&spa_namespace_avl, spa_name_compare, sizeof (spa_t), 1674 offsetof(spa_t, spa_avl)); 1675 1676 avl_create(&spa_spare_avl, spa_spare_compare, sizeof (spa_aux_t), 1677 offsetof(spa_aux_t, aux_avl)); 1678 1679 avl_create(&spa_l2cache_avl, spa_l2cache_compare, sizeof (spa_aux_t), 1680 offsetof(spa_aux_t, aux_avl)); 1681 1682 spa_mode_global = mode; 1683 1684 #ifdef _KERNEL 1685 spa_arch_init(); 1686 #else 1687 if (spa_mode_global != FREAD && dprintf_find_string("watch")) { 1688 arc_procfd = open("/proc/self/ctl", O_WRONLY); 1689 if (arc_procfd == -1) { 1690 perror("could not enable watchpoints: " 1691 "opening /proc/self/ctl failed: "); 1692 } else { 1693 arc_watch = B_TRUE; 1694 } 1695 } 1696 #endif 1697 1698 refcount_init(); 1699 unique_init(); 1700 space_map_init(); 1701 zio_init(); 1702 dmu_init(); 1703 zil_init(); 1704 vdev_cache_stat_init(); 1705 zfs_prop_init(); 1706 zpool_prop_init(); 1707 zpool_feature_init(); 1708 spa_config_load(); 1709 l2arc_start(); 1710 } 1711 1712 void 1713 spa_fini(void) 1714 { 1715 l2arc_stop(); 1716 1717 spa_evict_all(); 1718 1719 vdev_cache_stat_fini(); 1720 zil_fini(); 1721 dmu_fini(); 1722 zio_fini(); 1723 space_map_fini(); 1724 unique_fini(); 1725 refcount_fini(); 1726 1727 avl_destroy(&spa_namespace_avl); 1728 avl_destroy(&spa_spare_avl); 1729 avl_destroy(&spa_l2cache_avl); 1730 1731 cv_destroy(&spa_namespace_cv); 1732 mutex_destroy(&spa_namespace_lock); 1733 mutex_destroy(&spa_spare_lock); 1734 mutex_destroy(&spa_l2cache_lock); 1735 } 1736 1737 /* 1738 * Return whether this pool has slogs. No locking needed. 1739 * It's not a problem if the wrong answer is returned as it's only for 1740 * performance and not correctness 1741 */ 1742 boolean_t 1743 spa_has_slogs(spa_t *spa) 1744 { 1745 return (spa->spa_log_class->mc_rotor != NULL); 1746 } 1747 1748 spa_log_state_t 1749 spa_get_log_state(spa_t *spa) 1750 { 1751 return (spa->spa_log_state); 1752 } 1753 1754 void 1755 spa_set_log_state(spa_t *spa, spa_log_state_t state) 1756 { 1757 spa->spa_log_state = state; 1758 } 1759 1760 boolean_t 1761 spa_is_root(spa_t *spa) 1762 { 1763 return (spa->spa_is_root); 1764 } 1765 1766 boolean_t 1767 spa_writeable(spa_t *spa) 1768 { 1769 return (!!(spa->spa_mode & FWRITE)); 1770 } 1771 1772 int 1773 spa_mode(spa_t *spa) 1774 { 1775 return (spa->spa_mode); 1776 } 1777 1778 uint64_t 1779 spa_bootfs(spa_t *spa) 1780 { 1781 return (spa->spa_bootfs); 1782 } 1783 1784 uint64_t 1785 spa_delegation(spa_t *spa) 1786 { 1787 return (spa->spa_delegation); 1788 } 1789 1790 objset_t * 1791 spa_meta_objset(spa_t *spa) 1792 { 1793 return (spa->spa_meta_objset); 1794 } 1795 1796 enum zio_checksum 1797 spa_dedup_checksum(spa_t *spa) 1798 { 1799 return (spa->spa_dedup_checksum); 1800 } 1801 1802 /* 1803 * Reset pool scan stat per scan pass (or reboot). 1804 */ 1805 void 1806 spa_scan_stat_init(spa_t *spa) 1807 { 1808 /* data not stored on disk */ 1809 spa->spa_scan_pass_start = gethrestime_sec(); 1810 spa->spa_scan_pass_exam = 0; 1811 vdev_scan_stat_init(spa->spa_root_vdev); 1812 } 1813 1814 /* 1815 * Get scan stats for zpool status reports 1816 */ 1817 int 1818 spa_scan_get_stats(spa_t *spa, pool_scan_stat_t *ps) 1819 { 1820 dsl_scan_t *scn = spa->spa_dsl_pool ? spa->spa_dsl_pool->dp_scan : NULL; 1821 1822 if (scn == NULL || scn->scn_phys.scn_func == POOL_SCAN_NONE) 1823 return (SET_ERROR(ENOENT)); 1824 bzero(ps, sizeof (pool_scan_stat_t)); 1825 1826 /* data stored on disk */ 1827 ps->pss_func = scn->scn_phys.scn_func; 1828 ps->pss_start_time = scn->scn_phys.scn_start_time; 1829 ps->pss_end_time = scn->scn_phys.scn_end_time; 1830 ps->pss_to_examine = scn->scn_phys.scn_to_examine; 1831 ps->pss_examined = scn->scn_phys.scn_examined; 1832 ps->pss_to_process = scn->scn_phys.scn_to_process; 1833 ps->pss_processed = scn->scn_phys.scn_processed; 1834 ps->pss_errors = scn->scn_phys.scn_errors; 1835 ps->pss_state = scn->scn_phys.scn_state; 1836 1837 /* data not stored on disk */ 1838 ps->pss_pass_start = spa->spa_scan_pass_start; 1839 ps->pss_pass_exam = spa->spa_scan_pass_exam; 1840 1841 return (0); 1842 } 1843 1844 boolean_t 1845 spa_debug_enabled(spa_t *spa) 1846 { 1847 return (spa->spa_debug); 1848 } 1849