xref: /titanic_52/usr/src/uts/common/fs/zfs/spa_config.c (revision 3e2514dc0f3dfbffad7bfb4744cf26707a910f26)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25  * Copyright (c) 2012 by Delphix. All rights reserved.
26  */
27 
28 #include <sys/spa.h>
29 #include <sys/spa_impl.h>
30 #include <sys/nvpair.h>
31 #include <sys/uio.h>
32 #include <sys/fs/zfs.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zfs_ioctl.h>
35 #include <sys/utsname.h>
36 #include <sys/systeminfo.h>
37 #include <sys/sunddi.h>
38 #include <sys/zfeature.h>
39 #ifdef _KERNEL
40 #include <sys/kobj.h>
41 #include <sys/zone.h>
42 #endif
43 
44 /*
45  * Pool configuration repository.
46  *
47  * Pool configuration is stored as a packed nvlist on the filesystem.  By
48  * default, all pools are stored in /etc/zfs/zpool.cache and loaded on boot
49  * (when the ZFS module is loaded).  Pools can also have the 'cachefile'
50  * property set that allows them to be stored in an alternate location until
51  * the control of external software.
52  *
53  * For each cache file, we have a single nvlist which holds all the
54  * configuration information.  When the module loads, we read this information
55  * from /etc/zfs/zpool.cache and populate the SPA namespace.  This namespace is
56  * maintained independently in spa.c.  Whenever the namespace is modified, or
57  * the configuration of a pool is changed, we call spa_config_sync(), which
58  * walks through all the active pools and writes the configuration to disk.
59  */
60 
61 static uint64_t spa_config_generation = 1;
62 
63 /*
64  * This can be overridden in userland to preserve an alternate namespace for
65  * userland pools when doing testing.
66  */
67 const char *spa_config_path = ZPOOL_CACHE;
68 
69 /*
70  * Called when the module is first loaded, this routine loads the configuration
71  * file into the SPA namespace.  It does not actually open or load the pools; it
72  * only populates the namespace.
73  */
74 void
75 spa_config_load(void)
76 {
77 	void *buf = NULL;
78 	nvlist_t *nvlist, *child;
79 	nvpair_t *nvpair;
80 	char *pathname;
81 	struct _buf *file;
82 	uint64_t fsize;
83 
84 	/*
85 	 * Open the configuration file.
86 	 */
87 	pathname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
88 
89 	(void) snprintf(pathname, MAXPATHLEN, "%s%s",
90 	    (rootdir != NULL) ? "./" : "", spa_config_path);
91 
92 	file = kobj_open_file(pathname);
93 
94 	kmem_free(pathname, MAXPATHLEN);
95 
96 	if (file == (struct _buf *)-1)
97 		return;
98 
99 	if (kobj_get_filesize(file, &fsize) != 0)
100 		goto out;
101 
102 	buf = kmem_alloc(fsize, KM_SLEEP);
103 
104 	/*
105 	 * Read the nvlist from the file.
106 	 */
107 	if (kobj_read_file(file, buf, fsize, 0) < 0)
108 		goto out;
109 
110 	/*
111 	 * Unpack the nvlist.
112 	 */
113 	if (nvlist_unpack(buf, fsize, &nvlist, KM_SLEEP) != 0)
114 		goto out;
115 
116 	/*
117 	 * Iterate over all elements in the nvlist, creating a new spa_t for
118 	 * each one with the specified configuration.
119 	 */
120 	mutex_enter(&spa_namespace_lock);
121 	nvpair = NULL;
122 	while ((nvpair = nvlist_next_nvpair(nvlist, nvpair)) != NULL) {
123 		if (nvpair_type(nvpair) != DATA_TYPE_NVLIST)
124 			continue;
125 
126 		VERIFY(nvpair_value_nvlist(nvpair, &child) == 0);
127 
128 		if (spa_lookup(nvpair_name(nvpair)) != NULL)
129 			continue;
130 		(void) spa_add(nvpair_name(nvpair), child, NULL);
131 	}
132 	mutex_exit(&spa_namespace_lock);
133 
134 	nvlist_free(nvlist);
135 
136 out:
137 	if (buf != NULL)
138 		kmem_free(buf, fsize);
139 
140 	kobj_close_file(file);
141 }
142 
143 static void
144 spa_config_write(spa_config_dirent_t *dp, nvlist_t *nvl)
145 {
146 	size_t buflen;
147 	char *buf;
148 	vnode_t *vp;
149 	int oflags = FWRITE | FTRUNC | FCREAT | FOFFMAX;
150 	char *temp;
151 
152 	/*
153 	 * If the nvlist is empty (NULL), then remove the old cachefile.
154 	 */
155 	if (nvl == NULL) {
156 		(void) vn_remove(dp->scd_path, UIO_SYSSPACE, RMFILE);
157 		return;
158 	}
159 
160 	/*
161 	 * Pack the configuration into a buffer.
162 	 */
163 	VERIFY(nvlist_size(nvl, &buflen, NV_ENCODE_XDR) == 0);
164 
165 	buf = kmem_alloc(buflen, KM_SLEEP);
166 	temp = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
167 
168 	VERIFY(nvlist_pack(nvl, &buf, &buflen, NV_ENCODE_XDR,
169 	    KM_SLEEP) == 0);
170 
171 	/*
172 	 * Write the configuration to disk.  We need to do the traditional
173 	 * 'write to temporary file, sync, move over original' to make sure we
174 	 * always have a consistent view of the data.
175 	 */
176 	(void) snprintf(temp, MAXPATHLEN, "%s.tmp", dp->scd_path);
177 
178 	if (vn_open(temp, UIO_SYSSPACE, oflags, 0644, &vp, CRCREAT, 0) == 0) {
179 		if (vn_rdwr(UIO_WRITE, vp, buf, buflen, 0, UIO_SYSSPACE,
180 		    0, RLIM64_INFINITY, kcred, NULL) == 0 &&
181 		    VOP_FSYNC(vp, FSYNC, kcred, NULL) == 0) {
182 			(void) vn_rename(temp, dp->scd_path, UIO_SYSSPACE);
183 		}
184 		(void) VOP_CLOSE(vp, oflags, 1, 0, kcred, NULL);
185 		VN_RELE(vp);
186 	}
187 
188 	(void) vn_remove(temp, UIO_SYSSPACE, RMFILE);
189 
190 	kmem_free(buf, buflen);
191 	kmem_free(temp, MAXPATHLEN);
192 }
193 
194 /*
195  * Synchronize pool configuration to disk.  This must be called with the
196  * namespace lock held.
197  */
198 void
199 spa_config_sync(spa_t *target, boolean_t removing, boolean_t postsysevent)
200 {
201 	spa_config_dirent_t *dp, *tdp;
202 	nvlist_t *nvl;
203 
204 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
205 
206 	if (rootdir == NULL || !(spa_mode_global & FWRITE))
207 		return;
208 
209 	/*
210 	 * Iterate over all cachefiles for the pool, past or present.  When the
211 	 * cachefile is changed, the new one is pushed onto this list, allowing
212 	 * us to update previous cachefiles that no longer contain this pool.
213 	 */
214 	for (dp = list_head(&target->spa_config_list); dp != NULL;
215 	    dp = list_next(&target->spa_config_list, dp)) {
216 		spa_t *spa = NULL;
217 		if (dp->scd_path == NULL)
218 			continue;
219 
220 		/*
221 		 * Iterate over all pools, adding any matching pools to 'nvl'.
222 		 */
223 		nvl = NULL;
224 		while ((spa = spa_next(spa)) != NULL) {
225 			if (spa == target && removing)
226 				continue;
227 
228 			mutex_enter(&spa->spa_props_lock);
229 			tdp = list_head(&spa->spa_config_list);
230 			if (spa->spa_config == NULL ||
231 			    tdp->scd_path == NULL ||
232 			    strcmp(tdp->scd_path, dp->scd_path) != 0) {
233 				mutex_exit(&spa->spa_props_lock);
234 				continue;
235 			}
236 
237 			if (nvl == NULL)
238 				VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME,
239 				    KM_SLEEP) == 0);
240 
241 			VERIFY(nvlist_add_nvlist(nvl, spa->spa_name,
242 			    spa->spa_config) == 0);
243 			mutex_exit(&spa->spa_props_lock);
244 		}
245 
246 		spa_config_write(dp, nvl);
247 		nvlist_free(nvl);
248 	}
249 
250 	/*
251 	 * Remove any config entries older than the current one.
252 	 */
253 	dp = list_head(&target->spa_config_list);
254 	while ((tdp = list_next(&target->spa_config_list, dp)) != NULL) {
255 		list_remove(&target->spa_config_list, tdp);
256 		if (tdp->scd_path != NULL)
257 			spa_strfree(tdp->scd_path);
258 		kmem_free(tdp, sizeof (spa_config_dirent_t));
259 	}
260 
261 	spa_config_generation++;
262 
263 	if (postsysevent)
264 		spa_event_notify(target, NULL, ESC_ZFS_CONFIG_SYNC);
265 }
266 
267 /*
268  * Sigh.  Inside a local zone, we don't have access to /etc/zfs/zpool.cache,
269  * and we don't want to allow the local zone to see all the pools anyway.
270  * So we have to invent the ZFS_IOC_CONFIG ioctl to grab the configuration
271  * information for all pool visible within the zone.
272  */
273 nvlist_t *
274 spa_all_configs(uint64_t *generation)
275 {
276 	nvlist_t *pools;
277 	spa_t *spa = NULL;
278 
279 	if (*generation == spa_config_generation)
280 		return (NULL);
281 
282 	VERIFY(nvlist_alloc(&pools, NV_UNIQUE_NAME, KM_SLEEP) == 0);
283 
284 	mutex_enter(&spa_namespace_lock);
285 	while ((spa = spa_next(spa)) != NULL) {
286 		if (INGLOBALZONE(curproc) ||
287 		    zone_dataset_visible(spa_name(spa), NULL)) {
288 			mutex_enter(&spa->spa_props_lock);
289 			VERIFY(nvlist_add_nvlist(pools, spa_name(spa),
290 			    spa->spa_config) == 0);
291 			mutex_exit(&spa->spa_props_lock);
292 		}
293 	}
294 	*generation = spa_config_generation;
295 	mutex_exit(&spa_namespace_lock);
296 
297 	return (pools);
298 }
299 
300 void
301 spa_config_set(spa_t *spa, nvlist_t *config)
302 {
303 	mutex_enter(&spa->spa_props_lock);
304 	if (spa->spa_config != NULL)
305 		nvlist_free(spa->spa_config);
306 	spa->spa_config = config;
307 	mutex_exit(&spa->spa_props_lock);
308 }
309 
310 /*
311  * Generate the pool's configuration based on the current in-core state.
312  * We infer whether to generate a complete config or just one top-level config
313  * based on whether vd is the root vdev.
314  */
315 nvlist_t *
316 spa_config_generate(spa_t *spa, vdev_t *vd, uint64_t txg, int getstats)
317 {
318 	nvlist_t *config, *nvroot;
319 	vdev_t *rvd = spa->spa_root_vdev;
320 	unsigned long hostid = 0;
321 	boolean_t locked = B_FALSE;
322 	uint64_t split_guid;
323 
324 	if (vd == NULL) {
325 		vd = rvd;
326 		locked = B_TRUE;
327 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
328 	}
329 
330 	ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER) ==
331 	    (SCL_CONFIG | SCL_STATE));
332 
333 	/*
334 	 * If txg is -1, report the current value of spa->spa_config_txg.
335 	 */
336 	if (txg == -1ULL)
337 		txg = spa->spa_config_txg;
338 
339 	VERIFY(nvlist_alloc(&config, NV_UNIQUE_NAME, KM_SLEEP) == 0);
340 
341 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
342 	    spa_version(spa)) == 0);
343 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
344 	    spa_name(spa)) == 0);
345 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
346 	    spa_state(spa)) == 0);
347 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
348 	    txg) == 0);
349 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
350 	    spa_guid(spa)) == 0);
351 	VERIFY(spa->spa_comment == NULL || nvlist_add_string(config,
352 	    ZPOOL_CONFIG_COMMENT, spa->spa_comment) == 0);
353 
354 
355 #ifdef	_KERNEL
356 	hostid = zone_get_hostid(NULL);
357 #else	/* _KERNEL */
358 	/*
359 	 * We're emulating the system's hostid in userland, so we can't use
360 	 * zone_get_hostid().
361 	 */
362 	(void) ddi_strtoul(hw_serial, NULL, 10, &hostid);
363 #endif	/* _KERNEL */
364 	if (hostid != 0) {
365 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_HOSTID,
366 		    hostid) == 0);
367 	}
368 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_HOSTNAME,
369 	    utsname.nodename) == 0);
370 
371 	if (vd != rvd) {
372 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TOP_GUID,
373 		    vd->vdev_top->vdev_guid) == 0);
374 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_GUID,
375 		    vd->vdev_guid) == 0);
376 		if (vd->vdev_isspare)
377 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_SPARE,
378 			    1ULL) == 0);
379 		if (vd->vdev_islog)
380 			VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_IS_LOG,
381 			    1ULL) == 0);
382 		vd = vd->vdev_top;		/* label contains top config */
383 	} else {
384 		/*
385 		 * Only add the (potentially large) split information
386 		 * in the mos config, and not in the vdev labels
387 		 */
388 		if (spa->spa_config_splitting != NULL)
389 			VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_SPLIT,
390 			    spa->spa_config_splitting) == 0);
391 	}
392 
393 	/*
394 	 * Add the top-level config.  We even add this on pools which
395 	 * don't support holes in the namespace.
396 	 */
397 	vdev_top_config_generate(spa, config);
398 
399 	/*
400 	 * If we're splitting, record the original pool's guid.
401 	 */
402 	if (spa->spa_config_splitting != NULL &&
403 	    nvlist_lookup_uint64(spa->spa_config_splitting,
404 	    ZPOOL_CONFIG_SPLIT_GUID, &split_guid) == 0) {
405 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_SPLIT_GUID,
406 		    split_guid) == 0);
407 	}
408 
409 	nvroot = vdev_config_generate(spa, vd, getstats, 0);
410 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
411 	nvlist_free(nvroot);
412 
413 	/*
414 	 * Store what's necessary for reading the MOS in the label.
415 	 */
416 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURES_FOR_READ,
417 	    spa->spa_label_features) == 0);
418 
419 	if (getstats && spa_load_state(spa) == SPA_LOAD_NONE) {
420 		ddt_histogram_t *ddh;
421 		ddt_stat_t *dds;
422 		ddt_object_t *ddo;
423 
424 		ddh = kmem_zalloc(sizeof (ddt_histogram_t), KM_SLEEP);
425 		ddt_get_dedup_histogram(spa, ddh);
426 		VERIFY(nvlist_add_uint64_array(config,
427 		    ZPOOL_CONFIG_DDT_HISTOGRAM,
428 		    (uint64_t *)ddh, sizeof (*ddh) / sizeof (uint64_t)) == 0);
429 		kmem_free(ddh, sizeof (ddt_histogram_t));
430 
431 		ddo = kmem_zalloc(sizeof (ddt_object_t), KM_SLEEP);
432 		ddt_get_dedup_object_stats(spa, ddo);
433 		VERIFY(nvlist_add_uint64_array(config,
434 		    ZPOOL_CONFIG_DDT_OBJ_STATS,
435 		    (uint64_t *)ddo, sizeof (*ddo) / sizeof (uint64_t)) == 0);
436 		kmem_free(ddo, sizeof (ddt_object_t));
437 
438 		dds = kmem_zalloc(sizeof (ddt_stat_t), KM_SLEEP);
439 		ddt_get_dedup_stats(spa, dds);
440 		VERIFY(nvlist_add_uint64_array(config,
441 		    ZPOOL_CONFIG_DDT_STATS,
442 		    (uint64_t *)dds, sizeof (*dds) / sizeof (uint64_t)) == 0);
443 		kmem_free(dds, sizeof (ddt_stat_t));
444 	}
445 
446 	if (locked)
447 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
448 
449 	return (config);
450 }
451 
452 /*
453  * Update all disk labels, generate a fresh config based on the current
454  * in-core state, and sync the global config cache (do not sync the config
455  * cache if this is a booting rootpool).
456  */
457 void
458 spa_config_update(spa_t *spa, int what)
459 {
460 	vdev_t *rvd = spa->spa_root_vdev;
461 	uint64_t txg;
462 	int c;
463 
464 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
465 
466 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
467 	txg = spa_last_synced_txg(spa) + 1;
468 	if (what == SPA_CONFIG_UPDATE_POOL) {
469 		vdev_config_dirty(rvd);
470 	} else {
471 		/*
472 		 * If we have top-level vdevs that were added but have
473 		 * not yet been prepared for allocation, do that now.
474 		 * (It's safe now because the config cache is up to date,
475 		 * so it will be able to translate the new DVAs.)
476 		 * See comments in spa_vdev_add() for full details.
477 		 */
478 		for (c = 0; c < rvd->vdev_children; c++) {
479 			vdev_t *tvd = rvd->vdev_child[c];
480 			if (tvd->vdev_ms_array == 0)
481 				vdev_metaslab_set_size(tvd);
482 			vdev_expand(tvd, txg);
483 		}
484 	}
485 	spa_config_exit(spa, SCL_ALL, FTAG);
486 
487 	/*
488 	 * Wait for the mosconfig to be regenerated and synced.
489 	 */
490 	txg_wait_synced(spa->spa_dsl_pool, txg);
491 
492 	/*
493 	 * Update the global config cache to reflect the new mosconfig.
494 	 */
495 	if (!spa->spa_is_root)
496 		spa_config_sync(spa, B_FALSE, what != SPA_CONFIG_UPDATE_POOL);
497 
498 	if (what == SPA_CONFIG_UPDATE_POOL)
499 		spa_config_update(spa, SPA_CONFIG_UPDATE_VDEVS);
500 }
501