xref: /titanic_52/usr/src/uts/common/fs/zfs/spa.c (revision d7448364b360ed82582291005bd9831f2a5d18a0)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2008 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/arc.h>
60 #include <sys/callb.h>
61 #include <sys/systeminfo.h>
62 #include <sys/sunddi.h>
63 #include <sys/spa_boot.h>
64 
65 #include "zfs_prop.h"
66 #include "zfs_comutil.h"
67 
68 int zio_taskq_threads = 8;
69 
70 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
71 static boolean_t spa_has_active_shared_spare(spa_t *spa);
72 
73 /*
74  * ==========================================================================
75  * SPA properties routines
76  * ==========================================================================
77  */
78 
79 /*
80  * Add a (source=src, propname=propval) list to an nvlist.
81  */
82 static void
83 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
84     uint64_t intval, zprop_source_t src)
85 {
86 	const char *propname = zpool_prop_to_name(prop);
87 	nvlist_t *propval;
88 
89 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
90 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
91 
92 	if (strval != NULL)
93 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
94 	else
95 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
96 
97 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
98 	nvlist_free(propval);
99 }
100 
101 /*
102  * Get property values from the spa configuration.
103  */
104 static void
105 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
106 {
107 	uint64_t size = spa_get_space(spa);
108 	uint64_t used = spa_get_alloc(spa);
109 	uint64_t cap, version;
110 	zprop_source_t src = ZPROP_SRC_NONE;
111 	spa_config_dirent_t *dp;
112 
113 	/*
114 	 * readonly properties
115 	 */
116 	spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src);
117 	spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
118 	spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src);
119 	spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src);
120 
121 	cap = (size == 0) ? 0 : (used * 100 / size);
122 	spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
123 
124 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
125 	spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
126 	    spa->spa_root_vdev->vdev_state, src);
127 
128 	/*
129 	 * settable properties that are not stored in the pool property object.
130 	 */
131 	version = spa_version(spa);
132 	if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
133 		src = ZPROP_SRC_DEFAULT;
134 	else
135 		src = ZPROP_SRC_LOCAL;
136 	spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
137 
138 	if (spa->spa_root != NULL)
139 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
140 		    0, ZPROP_SRC_LOCAL);
141 
142 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
143 		if (dp->scd_path == NULL) {
144 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
145 			    "none", 0, ZPROP_SRC_LOCAL);
146 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
147 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
148 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
149 		}
150 	}
151 }
152 
153 /*
154  * Get zpool property values.
155  */
156 int
157 spa_prop_get(spa_t *spa, nvlist_t **nvp)
158 {
159 	zap_cursor_t zc;
160 	zap_attribute_t za;
161 	objset_t *mos = spa->spa_meta_objset;
162 	int err;
163 
164 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
165 
166 	/*
167 	 * Get properties from the spa config.
168 	 */
169 	spa_prop_get_config(spa, nvp);
170 
171 	mutex_enter(&spa->spa_props_lock);
172 	/* If no pool property object, no more prop to get. */
173 	if (spa->spa_pool_props_object == 0) {
174 		mutex_exit(&spa->spa_props_lock);
175 		return (0);
176 	}
177 
178 	/*
179 	 * Get properties from the MOS pool property object.
180 	 */
181 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
182 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
183 	    zap_cursor_advance(&zc)) {
184 		uint64_t intval = 0;
185 		char *strval = NULL;
186 		zprop_source_t src = ZPROP_SRC_DEFAULT;
187 		zpool_prop_t prop;
188 
189 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
190 			continue;
191 
192 		switch (za.za_integer_length) {
193 		case 8:
194 			/* integer property */
195 			if (za.za_first_integer !=
196 			    zpool_prop_default_numeric(prop))
197 				src = ZPROP_SRC_LOCAL;
198 
199 			if (prop == ZPOOL_PROP_BOOTFS) {
200 				dsl_pool_t *dp;
201 				dsl_dataset_t *ds = NULL;
202 
203 				dp = spa_get_dsl(spa);
204 				rw_enter(&dp->dp_config_rwlock, RW_READER);
205 				if (err = dsl_dataset_hold_obj(dp,
206 				    za.za_first_integer, FTAG, &ds)) {
207 					rw_exit(&dp->dp_config_rwlock);
208 					break;
209 				}
210 
211 				strval = kmem_alloc(
212 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
213 				    KM_SLEEP);
214 				dsl_dataset_name(ds, strval);
215 				dsl_dataset_rele(ds, FTAG);
216 				rw_exit(&dp->dp_config_rwlock);
217 			} else {
218 				strval = NULL;
219 				intval = za.za_first_integer;
220 			}
221 
222 			spa_prop_add_list(*nvp, prop, strval, intval, src);
223 
224 			if (strval != NULL)
225 				kmem_free(strval,
226 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
227 
228 			break;
229 
230 		case 1:
231 			/* string property */
232 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
233 			err = zap_lookup(mos, spa->spa_pool_props_object,
234 			    za.za_name, 1, za.za_num_integers, strval);
235 			if (err) {
236 				kmem_free(strval, za.za_num_integers);
237 				break;
238 			}
239 			spa_prop_add_list(*nvp, prop, strval, 0, src);
240 			kmem_free(strval, za.za_num_integers);
241 			break;
242 
243 		default:
244 			break;
245 		}
246 	}
247 	zap_cursor_fini(&zc);
248 	mutex_exit(&spa->spa_props_lock);
249 out:
250 	if (err && err != ENOENT) {
251 		nvlist_free(*nvp);
252 		*nvp = NULL;
253 		return (err);
254 	}
255 
256 	return (0);
257 }
258 
259 /*
260  * Validate the given pool properties nvlist and modify the list
261  * for the property values to be set.
262  */
263 static int
264 spa_prop_validate(spa_t *spa, nvlist_t *props)
265 {
266 	nvpair_t *elem;
267 	int error = 0, reset_bootfs = 0;
268 	uint64_t objnum;
269 
270 	elem = NULL;
271 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
272 		zpool_prop_t prop;
273 		char *propname, *strval;
274 		uint64_t intval;
275 		objset_t *os;
276 		char *slash;
277 
278 		propname = nvpair_name(elem);
279 
280 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
281 			return (EINVAL);
282 
283 		switch (prop) {
284 		case ZPOOL_PROP_VERSION:
285 			error = nvpair_value_uint64(elem, &intval);
286 			if (!error &&
287 			    (intval < spa_version(spa) || intval > SPA_VERSION))
288 				error = EINVAL;
289 			break;
290 
291 		case ZPOOL_PROP_DELEGATION:
292 		case ZPOOL_PROP_AUTOREPLACE:
293 			error = nvpair_value_uint64(elem, &intval);
294 			if (!error && intval > 1)
295 				error = EINVAL;
296 			break;
297 
298 		case ZPOOL_PROP_BOOTFS:
299 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
300 				error = ENOTSUP;
301 				break;
302 			}
303 
304 			/*
305 			 * Make sure the vdev config is bootable
306 			 */
307 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
308 				error = ENOTSUP;
309 				break;
310 			}
311 
312 			reset_bootfs = 1;
313 
314 			error = nvpair_value_string(elem, &strval);
315 
316 			if (!error) {
317 				uint64_t compress;
318 
319 				if (strval == NULL || strval[0] == '\0') {
320 					objnum = zpool_prop_default_numeric(
321 					    ZPOOL_PROP_BOOTFS);
322 					break;
323 				}
324 
325 				if (error = dmu_objset_open(strval, DMU_OST_ZFS,
326 				    DS_MODE_USER | DS_MODE_READONLY, &os))
327 					break;
328 
329 				/* We don't support gzip bootable datasets */
330 				if ((error = dsl_prop_get_integer(strval,
331 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
332 				    &compress, NULL)) == 0 &&
333 				    !BOOTFS_COMPRESS_VALID(compress)) {
334 					error = ENOTSUP;
335 				} else {
336 					objnum = dmu_objset_id(os);
337 				}
338 				dmu_objset_close(os);
339 			}
340 			break;
341 		case ZPOOL_PROP_FAILUREMODE:
342 			error = nvpair_value_uint64(elem, &intval);
343 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
344 			    intval > ZIO_FAILURE_MODE_PANIC))
345 				error = EINVAL;
346 
347 			/*
348 			 * This is a special case which only occurs when
349 			 * the pool has completely failed. This allows
350 			 * the user to change the in-core failmode property
351 			 * without syncing it out to disk (I/Os might
352 			 * currently be blocked). We do this by returning
353 			 * EIO to the caller (spa_prop_set) to trick it
354 			 * into thinking we encountered a property validation
355 			 * error.
356 			 */
357 			if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) {
358 				spa->spa_failmode = intval;
359 				error = EIO;
360 			}
361 			break;
362 
363 		case ZPOOL_PROP_CACHEFILE:
364 			if ((error = nvpair_value_string(elem, &strval)) != 0)
365 				break;
366 
367 			if (strval[0] == '\0')
368 				break;
369 
370 			if (strcmp(strval, "none") == 0)
371 				break;
372 
373 			if (strval[0] != '/') {
374 				error = EINVAL;
375 				break;
376 			}
377 
378 			slash = strrchr(strval, '/');
379 			ASSERT(slash != NULL);
380 
381 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
382 			    strcmp(slash, "/..") == 0)
383 				error = EINVAL;
384 			break;
385 		}
386 
387 		if (error)
388 			break;
389 	}
390 
391 	if (!error && reset_bootfs) {
392 		error = nvlist_remove(props,
393 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
394 
395 		if (!error) {
396 			error = nvlist_add_uint64(props,
397 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
398 		}
399 	}
400 
401 	return (error);
402 }
403 
404 int
405 spa_prop_set(spa_t *spa, nvlist_t *nvp)
406 {
407 	int error;
408 
409 	if ((error = spa_prop_validate(spa, nvp)) != 0)
410 		return (error);
411 
412 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
413 	    spa, nvp, 3));
414 }
415 
416 /*
417  * If the bootfs property value is dsobj, clear it.
418  */
419 void
420 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
421 {
422 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
423 		VERIFY(zap_remove(spa->spa_meta_objset,
424 		    spa->spa_pool_props_object,
425 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
426 		spa->spa_bootfs = 0;
427 	}
428 }
429 
430 /*
431  * ==========================================================================
432  * SPA state manipulation (open/create/destroy/import/export)
433  * ==========================================================================
434  */
435 
436 static int
437 spa_error_entry_compare(const void *a, const void *b)
438 {
439 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
440 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
441 	int ret;
442 
443 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
444 	    sizeof (zbookmark_t));
445 
446 	if (ret < 0)
447 		return (-1);
448 	else if (ret > 0)
449 		return (1);
450 	else
451 		return (0);
452 }
453 
454 /*
455  * Utility function which retrieves copies of the current logs and
456  * re-initializes them in the process.
457  */
458 void
459 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
460 {
461 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
462 
463 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
464 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
465 
466 	avl_create(&spa->spa_errlist_scrub,
467 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
468 	    offsetof(spa_error_entry_t, se_avl));
469 	avl_create(&spa->spa_errlist_last,
470 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
471 	    offsetof(spa_error_entry_t, se_avl));
472 }
473 
474 /*
475  * Activate an uninitialized pool.
476  */
477 static void
478 spa_activate(spa_t *spa)
479 {
480 	int t;
481 
482 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
483 
484 	spa->spa_state = POOL_STATE_ACTIVE;
485 
486 	spa->spa_normal_class = metaslab_class_create();
487 	spa->spa_log_class = metaslab_class_create();
488 
489 	for (t = 0; t < ZIO_TYPES; t++) {
490 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
491 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
492 		    TASKQ_PREPOPULATE);
493 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
494 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
495 		    TASKQ_PREPOPULATE);
496 	}
497 
498 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
499 	    offsetof(vdev_t, vdev_dirty_node));
500 	list_create(&spa->spa_zio_list, sizeof (zio_t),
501 	    offsetof(zio_t, zio_link_node));
502 
503 	txg_list_create(&spa->spa_vdev_txg_list,
504 	    offsetof(struct vdev, vdev_txg_node));
505 
506 	avl_create(&spa->spa_errlist_scrub,
507 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
508 	    offsetof(spa_error_entry_t, se_avl));
509 	avl_create(&spa->spa_errlist_last,
510 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
511 	    offsetof(spa_error_entry_t, se_avl));
512 }
513 
514 /*
515  * Opposite of spa_activate().
516  */
517 static void
518 spa_deactivate(spa_t *spa)
519 {
520 	int t;
521 
522 	ASSERT(spa->spa_sync_on == B_FALSE);
523 	ASSERT(spa->spa_dsl_pool == NULL);
524 	ASSERT(spa->spa_root_vdev == NULL);
525 
526 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
527 
528 	txg_list_destroy(&spa->spa_vdev_txg_list);
529 
530 	list_destroy(&spa->spa_dirty_list);
531 	list_destroy(&spa->spa_zio_list);
532 
533 	for (t = 0; t < ZIO_TYPES; t++) {
534 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
535 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
536 		spa->spa_zio_issue_taskq[t] = NULL;
537 		spa->spa_zio_intr_taskq[t] = NULL;
538 	}
539 
540 	metaslab_class_destroy(spa->spa_normal_class);
541 	spa->spa_normal_class = NULL;
542 
543 	metaslab_class_destroy(spa->spa_log_class);
544 	spa->spa_log_class = NULL;
545 
546 	/*
547 	 * If this was part of an import or the open otherwise failed, we may
548 	 * still have errors left in the queues.  Empty them just in case.
549 	 */
550 	spa_errlog_drain(spa);
551 
552 	avl_destroy(&spa->spa_errlist_scrub);
553 	avl_destroy(&spa->spa_errlist_last);
554 
555 	spa->spa_state = POOL_STATE_UNINITIALIZED;
556 }
557 
558 /*
559  * Verify a pool configuration, and construct the vdev tree appropriately.  This
560  * will create all the necessary vdevs in the appropriate layout, with each vdev
561  * in the CLOSED state.  This will prep the pool before open/creation/import.
562  * All vdev validation is done by the vdev_alloc() routine.
563  */
564 static int
565 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
566     uint_t id, int atype)
567 {
568 	nvlist_t **child;
569 	uint_t c, children;
570 	int error;
571 
572 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
573 		return (error);
574 
575 	if ((*vdp)->vdev_ops->vdev_op_leaf)
576 		return (0);
577 
578 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
579 	    &child, &children) != 0) {
580 		vdev_free(*vdp);
581 		*vdp = NULL;
582 		return (EINVAL);
583 	}
584 
585 	for (c = 0; c < children; c++) {
586 		vdev_t *vd;
587 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
588 		    atype)) != 0) {
589 			vdev_free(*vdp);
590 			*vdp = NULL;
591 			return (error);
592 		}
593 	}
594 
595 	ASSERT(*vdp != NULL);
596 
597 	return (0);
598 }
599 
600 /*
601  * Opposite of spa_load().
602  */
603 static void
604 spa_unload(spa_t *spa)
605 {
606 	int i;
607 
608 	/*
609 	 * Stop async tasks.
610 	 */
611 	spa_async_suspend(spa);
612 
613 	/*
614 	 * Stop syncing.
615 	 */
616 	if (spa->spa_sync_on) {
617 		txg_sync_stop(spa->spa_dsl_pool);
618 		spa->spa_sync_on = B_FALSE;
619 	}
620 
621 	/*
622 	 * Wait for any outstanding prefetch I/O to complete.
623 	 */
624 	spa_config_enter(spa, RW_WRITER, FTAG);
625 	spa_config_exit(spa, FTAG);
626 
627 	/*
628 	 * Drop and purge level 2 cache
629 	 */
630 	spa_l2cache_drop(spa);
631 
632 	/*
633 	 * Close the dsl pool.
634 	 */
635 	if (spa->spa_dsl_pool) {
636 		dsl_pool_close(spa->spa_dsl_pool);
637 		spa->spa_dsl_pool = NULL;
638 	}
639 
640 	/*
641 	 * Close all vdevs.
642 	 */
643 	if (spa->spa_root_vdev)
644 		vdev_free(spa->spa_root_vdev);
645 	ASSERT(spa->spa_root_vdev == NULL);
646 
647 	for (i = 0; i < spa->spa_spares.sav_count; i++)
648 		vdev_free(spa->spa_spares.sav_vdevs[i]);
649 	if (spa->spa_spares.sav_vdevs) {
650 		kmem_free(spa->spa_spares.sav_vdevs,
651 		    spa->spa_spares.sav_count * sizeof (void *));
652 		spa->spa_spares.sav_vdevs = NULL;
653 	}
654 	if (spa->spa_spares.sav_config) {
655 		nvlist_free(spa->spa_spares.sav_config);
656 		spa->spa_spares.sav_config = NULL;
657 	}
658 
659 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
660 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
661 	if (spa->spa_l2cache.sav_vdevs) {
662 		kmem_free(spa->spa_l2cache.sav_vdevs,
663 		    spa->spa_l2cache.sav_count * sizeof (void *));
664 		spa->spa_l2cache.sav_vdevs = NULL;
665 	}
666 	if (spa->spa_l2cache.sav_config) {
667 		nvlist_free(spa->spa_l2cache.sav_config);
668 		spa->spa_l2cache.sav_config = NULL;
669 	}
670 
671 	spa->spa_async_suspended = 0;
672 }
673 
674 /*
675  * Load (or re-load) the current list of vdevs describing the active spares for
676  * this pool.  When this is called, we have some form of basic information in
677  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
678  * then re-generate a more complete list including status information.
679  */
680 static void
681 spa_load_spares(spa_t *spa)
682 {
683 	nvlist_t **spares;
684 	uint_t nspares;
685 	int i;
686 	vdev_t *vd, *tvd;
687 
688 	/*
689 	 * First, close and free any existing spare vdevs.
690 	 */
691 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
692 		vd = spa->spa_spares.sav_vdevs[i];
693 
694 		/* Undo the call to spa_activate() below */
695 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
696 		    B_FALSE)) != NULL && tvd->vdev_isspare)
697 			spa_spare_remove(tvd);
698 		vdev_close(vd);
699 		vdev_free(vd);
700 	}
701 
702 	if (spa->spa_spares.sav_vdevs)
703 		kmem_free(spa->spa_spares.sav_vdevs,
704 		    spa->spa_spares.sav_count * sizeof (void *));
705 
706 	if (spa->spa_spares.sav_config == NULL)
707 		nspares = 0;
708 	else
709 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
710 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
711 
712 	spa->spa_spares.sav_count = (int)nspares;
713 	spa->spa_spares.sav_vdevs = NULL;
714 
715 	if (nspares == 0)
716 		return;
717 
718 	/*
719 	 * Construct the array of vdevs, opening them to get status in the
720 	 * process.   For each spare, there is potentially two different vdev_t
721 	 * structures associated with it: one in the list of spares (used only
722 	 * for basic validation purposes) and one in the active vdev
723 	 * configuration (if it's spared in).  During this phase we open and
724 	 * validate each vdev on the spare list.  If the vdev also exists in the
725 	 * active configuration, then we also mark this vdev as an active spare.
726 	 */
727 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
728 	    KM_SLEEP);
729 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
730 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
731 		    VDEV_ALLOC_SPARE) == 0);
732 		ASSERT(vd != NULL);
733 
734 		spa->spa_spares.sav_vdevs[i] = vd;
735 
736 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
737 		    B_FALSE)) != NULL) {
738 			if (!tvd->vdev_isspare)
739 				spa_spare_add(tvd);
740 
741 			/*
742 			 * We only mark the spare active if we were successfully
743 			 * able to load the vdev.  Otherwise, importing a pool
744 			 * with a bad active spare would result in strange
745 			 * behavior, because multiple pool would think the spare
746 			 * is actively in use.
747 			 *
748 			 * There is a vulnerability here to an equally bizarre
749 			 * circumstance, where a dead active spare is later
750 			 * brought back to life (onlined or otherwise).  Given
751 			 * the rarity of this scenario, and the extra complexity
752 			 * it adds, we ignore the possibility.
753 			 */
754 			if (!vdev_is_dead(tvd))
755 				spa_spare_activate(tvd);
756 		}
757 
758 		if (vdev_open(vd) != 0)
759 			continue;
760 
761 		vd->vdev_top = vd;
762 		if (vdev_validate_aux(vd) == 0)
763 			spa_spare_add(vd);
764 	}
765 
766 	/*
767 	 * Recompute the stashed list of spares, with status information
768 	 * this time.
769 	 */
770 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
771 	    DATA_TYPE_NVLIST_ARRAY) == 0);
772 
773 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
774 	    KM_SLEEP);
775 	for (i = 0; i < spa->spa_spares.sav_count; i++)
776 		spares[i] = vdev_config_generate(spa,
777 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
778 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
779 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
780 	for (i = 0; i < spa->spa_spares.sav_count; i++)
781 		nvlist_free(spares[i]);
782 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
783 }
784 
785 /*
786  * Load (or re-load) the current list of vdevs describing the active l2cache for
787  * this pool.  When this is called, we have some form of basic information in
788  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
789  * then re-generate a more complete list including status information.
790  * Devices which are already active have their details maintained, and are
791  * not re-opened.
792  */
793 static void
794 spa_load_l2cache(spa_t *spa)
795 {
796 	nvlist_t **l2cache;
797 	uint_t nl2cache;
798 	int i, j, oldnvdevs;
799 	uint64_t guid, size;
800 	vdev_t *vd, **oldvdevs, **newvdevs;
801 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
802 
803 	if (sav->sav_config != NULL) {
804 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
805 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
806 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
807 	} else {
808 		nl2cache = 0;
809 	}
810 
811 	oldvdevs = sav->sav_vdevs;
812 	oldnvdevs = sav->sav_count;
813 	sav->sav_vdevs = NULL;
814 	sav->sav_count = 0;
815 
816 	/*
817 	 * Process new nvlist of vdevs.
818 	 */
819 	for (i = 0; i < nl2cache; i++) {
820 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
821 		    &guid) == 0);
822 
823 		newvdevs[i] = NULL;
824 		for (j = 0; j < oldnvdevs; j++) {
825 			vd = oldvdevs[j];
826 			if (vd != NULL && guid == vd->vdev_guid) {
827 				/*
828 				 * Retain previous vdev for add/remove ops.
829 				 */
830 				newvdevs[i] = vd;
831 				oldvdevs[j] = NULL;
832 				break;
833 			}
834 		}
835 
836 		if (newvdevs[i] == NULL) {
837 			/*
838 			 * Create new vdev
839 			 */
840 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
841 			    VDEV_ALLOC_L2CACHE) == 0);
842 			ASSERT(vd != NULL);
843 			newvdevs[i] = vd;
844 
845 			/*
846 			 * Commit this vdev as an l2cache device,
847 			 * even if it fails to open.
848 			 */
849 			spa_l2cache_add(vd);
850 
851 			vd->vdev_top = vd;
852 			vd->vdev_aux = sav;
853 
854 			spa_l2cache_activate(vd);
855 
856 			if (vdev_open(vd) != 0)
857 				continue;
858 
859 			(void) vdev_validate_aux(vd);
860 
861 			if (!vdev_is_dead(vd)) {
862 				size = vdev_get_rsize(vd);
863 				l2arc_add_vdev(spa, vd,
864 				    VDEV_LABEL_START_SIZE,
865 				    size - VDEV_LABEL_START_SIZE);
866 			}
867 		}
868 	}
869 
870 	/*
871 	 * Purge vdevs that were dropped
872 	 */
873 	for (i = 0; i < oldnvdevs; i++) {
874 		uint64_t pool;
875 
876 		vd = oldvdevs[i];
877 		if (vd != NULL) {
878 			if (spa_mode & FWRITE &&
879 			    spa_l2cache_exists(vd->vdev_guid, &pool) &&
880 			    pool != 0ULL &&
881 			    l2arc_vdev_present(vd)) {
882 				l2arc_remove_vdev(vd);
883 			}
884 			(void) vdev_close(vd);
885 			spa_l2cache_remove(vd);
886 		}
887 	}
888 
889 	if (oldvdevs)
890 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
891 
892 	if (sav->sav_config == NULL)
893 		goto out;
894 
895 	sav->sav_vdevs = newvdevs;
896 	sav->sav_count = (int)nl2cache;
897 
898 	/*
899 	 * Recompute the stashed list of l2cache devices, with status
900 	 * information this time.
901 	 */
902 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
903 	    DATA_TYPE_NVLIST_ARRAY) == 0);
904 
905 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
906 	for (i = 0; i < sav->sav_count; i++)
907 		l2cache[i] = vdev_config_generate(spa,
908 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
909 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
910 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
911 out:
912 	for (i = 0; i < sav->sav_count; i++)
913 		nvlist_free(l2cache[i]);
914 	if (sav->sav_count)
915 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
916 }
917 
918 static int
919 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
920 {
921 	dmu_buf_t *db;
922 	char *packed = NULL;
923 	size_t nvsize = 0;
924 	int error;
925 	*value = NULL;
926 
927 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
928 	nvsize = *(uint64_t *)db->db_data;
929 	dmu_buf_rele(db, FTAG);
930 
931 	packed = kmem_alloc(nvsize, KM_SLEEP);
932 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
933 	if (error == 0)
934 		error = nvlist_unpack(packed, nvsize, value, 0);
935 	kmem_free(packed, nvsize);
936 
937 	return (error);
938 }
939 
940 /*
941  * Checks to see if the given vdev could not be opened, in which case we post a
942  * sysevent to notify the autoreplace code that the device has been removed.
943  */
944 static void
945 spa_check_removed(vdev_t *vd)
946 {
947 	int c;
948 
949 	for (c = 0; c < vd->vdev_children; c++)
950 		spa_check_removed(vd->vdev_child[c]);
951 
952 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
953 		zfs_post_autoreplace(vd->vdev_spa, vd);
954 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
955 	}
956 }
957 
958 /*
959  * Load an existing storage pool, using the pool's builtin spa_config as a
960  * source of configuration information.
961  */
962 static int
963 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
964 {
965 	int error = 0;
966 	nvlist_t *nvroot = NULL;
967 	vdev_t *rvd;
968 	uberblock_t *ub = &spa->spa_uberblock;
969 	uint64_t config_cache_txg = spa->spa_config_txg;
970 	uint64_t pool_guid;
971 	uint64_t version;
972 	zio_t *zio;
973 	uint64_t autoreplace = 0;
974 
975 	spa->spa_load_state = state;
976 
977 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
978 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
979 		error = EINVAL;
980 		goto out;
981 	}
982 
983 	/*
984 	 * Versioning wasn't explicitly added to the label until later, so if
985 	 * it's not present treat it as the initial version.
986 	 */
987 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
988 		version = SPA_VERSION_INITIAL;
989 
990 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
991 	    &spa->spa_config_txg);
992 
993 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
994 	    spa_guid_exists(pool_guid, 0)) {
995 		error = EEXIST;
996 		goto out;
997 	}
998 
999 	spa->spa_load_guid = pool_guid;
1000 
1001 	/*
1002 	 * Parse the configuration into a vdev tree.  We explicitly set the
1003 	 * value that will be returned by spa_version() since parsing the
1004 	 * configuration requires knowing the version number.
1005 	 */
1006 	spa_config_enter(spa, RW_WRITER, FTAG);
1007 	spa->spa_ubsync.ub_version = version;
1008 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
1009 	spa_config_exit(spa, FTAG);
1010 
1011 	if (error != 0)
1012 		goto out;
1013 
1014 	ASSERT(spa->spa_root_vdev == rvd);
1015 	ASSERT(spa_guid(spa) == pool_guid);
1016 
1017 	/*
1018 	 * Try to open all vdevs, loading each label in the process.
1019 	 */
1020 	error = vdev_open(rvd);
1021 	if (error != 0)
1022 		goto out;
1023 
1024 	/*
1025 	 * Validate the labels for all leaf vdevs.  We need to grab the config
1026 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
1027 	 * flag.
1028 	 */
1029 	spa_config_enter(spa, RW_READER, FTAG);
1030 	error = vdev_validate(rvd);
1031 	spa_config_exit(spa, FTAG);
1032 
1033 	if (error != 0)
1034 		goto out;
1035 
1036 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1037 		error = ENXIO;
1038 		goto out;
1039 	}
1040 
1041 	/*
1042 	 * Find the best uberblock.
1043 	 */
1044 	bzero(ub, sizeof (uberblock_t));
1045 
1046 	zio = zio_root(spa, NULL, NULL,
1047 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1048 	vdev_uberblock_load(zio, rvd, ub);
1049 	error = zio_wait(zio);
1050 
1051 	/*
1052 	 * If we weren't able to find a single valid uberblock, return failure.
1053 	 */
1054 	if (ub->ub_txg == 0) {
1055 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1056 		    VDEV_AUX_CORRUPT_DATA);
1057 		error = ENXIO;
1058 		goto out;
1059 	}
1060 
1061 	/*
1062 	 * If the pool is newer than the code, we can't open it.
1063 	 */
1064 	if (ub->ub_version > SPA_VERSION) {
1065 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1066 		    VDEV_AUX_VERSION_NEWER);
1067 		error = ENOTSUP;
1068 		goto out;
1069 	}
1070 
1071 	/*
1072 	 * If the vdev guid sum doesn't match the uberblock, we have an
1073 	 * incomplete configuration.
1074 	 */
1075 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
1076 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1077 		    VDEV_AUX_BAD_GUID_SUM);
1078 		error = ENXIO;
1079 		goto out;
1080 	}
1081 
1082 	/*
1083 	 * Initialize internal SPA structures.
1084 	 */
1085 	spa->spa_state = POOL_STATE_ACTIVE;
1086 	spa->spa_ubsync = spa->spa_uberblock;
1087 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
1088 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1089 	if (error) {
1090 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1091 		    VDEV_AUX_CORRUPT_DATA);
1092 		goto out;
1093 	}
1094 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1095 
1096 	if (zap_lookup(spa->spa_meta_objset,
1097 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1098 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
1099 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1100 		    VDEV_AUX_CORRUPT_DATA);
1101 		error = EIO;
1102 		goto out;
1103 	}
1104 
1105 	if (!mosconfig) {
1106 		nvlist_t *newconfig;
1107 		uint64_t hostid;
1108 
1109 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
1110 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1111 			    VDEV_AUX_CORRUPT_DATA);
1112 			error = EIO;
1113 			goto out;
1114 		}
1115 
1116 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
1117 		    &hostid) == 0) {
1118 			char *hostname;
1119 			unsigned long myhostid = 0;
1120 
1121 			VERIFY(nvlist_lookup_string(newconfig,
1122 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1123 
1124 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1125 			if (hostid != 0 && myhostid != 0 &&
1126 			    (unsigned long)hostid != myhostid) {
1127 				cmn_err(CE_WARN, "pool '%s' could not be "
1128 				    "loaded as it was last accessed by "
1129 				    "another system (host: %s hostid: 0x%lx).  "
1130 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1131 				    spa->spa_name, hostname,
1132 				    (unsigned long)hostid);
1133 				error = EBADF;
1134 				goto out;
1135 			}
1136 		}
1137 
1138 		spa_config_set(spa, newconfig);
1139 		spa_unload(spa);
1140 		spa_deactivate(spa);
1141 		spa_activate(spa);
1142 
1143 		return (spa_load(spa, newconfig, state, B_TRUE));
1144 	}
1145 
1146 	if (zap_lookup(spa->spa_meta_objset,
1147 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1148 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
1149 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1150 		    VDEV_AUX_CORRUPT_DATA);
1151 		error = EIO;
1152 		goto out;
1153 	}
1154 
1155 	/*
1156 	 * Load the bit that tells us to use the new accounting function
1157 	 * (raid-z deflation).  If we have an older pool, this will not
1158 	 * be present.
1159 	 */
1160 	error = zap_lookup(spa->spa_meta_objset,
1161 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1162 	    sizeof (uint64_t), 1, &spa->spa_deflate);
1163 	if (error != 0 && error != ENOENT) {
1164 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1165 		    VDEV_AUX_CORRUPT_DATA);
1166 		error = EIO;
1167 		goto out;
1168 	}
1169 
1170 	/*
1171 	 * Load the persistent error log.  If we have an older pool, this will
1172 	 * not be present.
1173 	 */
1174 	error = zap_lookup(spa->spa_meta_objset,
1175 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
1176 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
1177 	if (error != 0 && error != ENOENT) {
1178 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1179 		    VDEV_AUX_CORRUPT_DATA);
1180 		error = EIO;
1181 		goto out;
1182 	}
1183 
1184 	error = zap_lookup(spa->spa_meta_objset,
1185 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
1186 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
1187 	if (error != 0 && error != ENOENT) {
1188 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1189 		    VDEV_AUX_CORRUPT_DATA);
1190 		error = EIO;
1191 		goto out;
1192 	}
1193 
1194 	/*
1195 	 * Load the history object.  If we have an older pool, this
1196 	 * will not be present.
1197 	 */
1198 	error = zap_lookup(spa->spa_meta_objset,
1199 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
1200 	    sizeof (uint64_t), 1, &spa->spa_history);
1201 	if (error != 0 && error != ENOENT) {
1202 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1203 		    VDEV_AUX_CORRUPT_DATA);
1204 		error = EIO;
1205 		goto out;
1206 	}
1207 
1208 	/*
1209 	 * Load any hot spares for this pool.
1210 	 */
1211 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1212 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object);
1213 	if (error != 0 && error != ENOENT) {
1214 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1215 		    VDEV_AUX_CORRUPT_DATA);
1216 		error = EIO;
1217 		goto out;
1218 	}
1219 	if (error == 0) {
1220 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1221 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1222 		    &spa->spa_spares.sav_config) != 0) {
1223 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1224 			    VDEV_AUX_CORRUPT_DATA);
1225 			error = EIO;
1226 			goto out;
1227 		}
1228 
1229 		spa_config_enter(spa, RW_WRITER, FTAG);
1230 		spa_load_spares(spa);
1231 		spa_config_exit(spa, FTAG);
1232 	}
1233 
1234 	/*
1235 	 * Load any level 2 ARC devices for this pool.
1236 	 */
1237 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1238 	    DMU_POOL_L2CACHE, sizeof (uint64_t), 1,
1239 	    &spa->spa_l2cache.sav_object);
1240 	if (error != 0 && error != ENOENT) {
1241 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1242 		    VDEV_AUX_CORRUPT_DATA);
1243 		error = EIO;
1244 		goto out;
1245 	}
1246 	if (error == 0) {
1247 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1248 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1249 		    &spa->spa_l2cache.sav_config) != 0) {
1250 			vdev_set_state(rvd, B_TRUE,
1251 			    VDEV_STATE_CANT_OPEN,
1252 			    VDEV_AUX_CORRUPT_DATA);
1253 			error = EIO;
1254 			goto out;
1255 		}
1256 
1257 		spa_config_enter(spa, RW_WRITER, FTAG);
1258 		spa_load_l2cache(spa);
1259 		spa_config_exit(spa, FTAG);
1260 	}
1261 
1262 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1263 
1264 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1265 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
1266 
1267 	if (error && error != ENOENT) {
1268 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
1269 		    VDEV_AUX_CORRUPT_DATA);
1270 		error = EIO;
1271 		goto out;
1272 	}
1273 
1274 	if (error == 0) {
1275 		(void) zap_lookup(spa->spa_meta_objset,
1276 		    spa->spa_pool_props_object,
1277 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
1278 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
1279 		(void) zap_lookup(spa->spa_meta_objset,
1280 		    spa->spa_pool_props_object,
1281 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
1282 		    sizeof (uint64_t), 1, &autoreplace);
1283 		(void) zap_lookup(spa->spa_meta_objset,
1284 		    spa->spa_pool_props_object,
1285 		    zpool_prop_to_name(ZPOOL_PROP_DELEGATION),
1286 		    sizeof (uint64_t), 1, &spa->spa_delegation);
1287 		(void) zap_lookup(spa->spa_meta_objset,
1288 		    spa->spa_pool_props_object,
1289 		    zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE),
1290 		    sizeof (uint64_t), 1, &spa->spa_failmode);
1291 	}
1292 
1293 	/*
1294 	 * If the 'autoreplace' property is set, then post a resource notifying
1295 	 * the ZFS DE that it should not issue any faults for unopenable
1296 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1297 	 * unopenable vdevs so that the normal autoreplace handler can take
1298 	 * over.
1299 	 */
1300 	if (autoreplace && state != SPA_LOAD_TRYIMPORT)
1301 		spa_check_removed(spa->spa_root_vdev);
1302 
1303 	/*
1304 	 * Load the vdev state for all toplevel vdevs.
1305 	 */
1306 	vdev_load(rvd);
1307 
1308 	/*
1309 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1310 	 */
1311 	spa_config_enter(spa, RW_WRITER, FTAG);
1312 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1313 	spa_config_exit(spa, FTAG);
1314 
1315 	/*
1316 	 * Check the state of the root vdev.  If it can't be opened, it
1317 	 * indicates one or more toplevel vdevs are faulted.
1318 	 */
1319 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
1320 		error = ENXIO;
1321 		goto out;
1322 	}
1323 
1324 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
1325 		dmu_tx_t *tx;
1326 		int need_update = B_FALSE;
1327 		int c;
1328 
1329 		/*
1330 		 * Claim log blocks that haven't been committed yet.
1331 		 * This must all happen in a single txg.
1332 		 */
1333 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
1334 		    spa_first_txg(spa));
1335 		(void) dmu_objset_find(spa->spa_name,
1336 		    zil_claim, tx, DS_FIND_CHILDREN);
1337 		dmu_tx_commit(tx);
1338 
1339 		spa->spa_sync_on = B_TRUE;
1340 		txg_sync_start(spa->spa_dsl_pool);
1341 
1342 		/*
1343 		 * Wait for all claims to sync.
1344 		 */
1345 		txg_wait_synced(spa->spa_dsl_pool, 0);
1346 
1347 		/*
1348 		 * If the config cache is stale, or we have uninitialized
1349 		 * metaslabs (see spa_vdev_add()), then update the config.
1350 		 */
1351 		if (config_cache_txg != spa->spa_config_txg ||
1352 		    state == SPA_LOAD_IMPORT)
1353 			need_update = B_TRUE;
1354 
1355 		for (c = 0; c < rvd->vdev_children; c++)
1356 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
1357 				need_update = B_TRUE;
1358 
1359 		/*
1360 		 * Update the config cache asychronously in case we're the
1361 		 * root pool, in which case the config cache isn't writable yet.
1362 		 */
1363 		if (need_update)
1364 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
1365 	}
1366 
1367 	error = 0;
1368 out:
1369 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1370 	if (error && error != EBADF)
1371 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
1372 	spa->spa_load_state = SPA_LOAD_NONE;
1373 	spa->spa_ena = 0;
1374 
1375 	return (error);
1376 }
1377 
1378 /*
1379  * Pool Open/Import
1380  *
1381  * The import case is identical to an open except that the configuration is sent
1382  * down from userland, instead of grabbed from the configuration cache.  For the
1383  * case of an open, the pool configuration will exist in the
1384  * POOL_STATE_UNINITIALIZED state.
1385  *
1386  * The stats information (gen/count/ustats) is used to gather vdev statistics at
1387  * the same time open the pool, without having to keep around the spa_t in some
1388  * ambiguous state.
1389  */
1390 static int
1391 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
1392 {
1393 	spa_t *spa;
1394 	int error;
1395 	int locked = B_FALSE;
1396 
1397 	*spapp = NULL;
1398 
1399 	/*
1400 	 * As disgusting as this is, we need to support recursive calls to this
1401 	 * function because dsl_dir_open() is called during spa_load(), and ends
1402 	 * up calling spa_open() again.  The real fix is to figure out how to
1403 	 * avoid dsl_dir_open() calling this in the first place.
1404 	 */
1405 	if (mutex_owner(&spa_namespace_lock) != curthread) {
1406 		mutex_enter(&spa_namespace_lock);
1407 		locked = B_TRUE;
1408 	}
1409 
1410 	if ((spa = spa_lookup(pool)) == NULL) {
1411 		if (locked)
1412 			mutex_exit(&spa_namespace_lock);
1413 		return (ENOENT);
1414 	}
1415 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
1416 
1417 		spa_activate(spa);
1418 
1419 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
1420 
1421 		if (error == EBADF) {
1422 			/*
1423 			 * If vdev_validate() returns failure (indicated by
1424 			 * EBADF), it indicates that one of the vdevs indicates
1425 			 * that the pool has been exported or destroyed.  If
1426 			 * this is the case, the config cache is out of sync and
1427 			 * we should remove the pool from the namespace.
1428 			 */
1429 			spa_unload(spa);
1430 			spa_deactivate(spa);
1431 			spa_config_sync(spa, B_TRUE, B_TRUE);
1432 			spa_remove(spa);
1433 			if (locked)
1434 				mutex_exit(&spa_namespace_lock);
1435 			return (ENOENT);
1436 		}
1437 
1438 		if (error) {
1439 			/*
1440 			 * We can't open the pool, but we still have useful
1441 			 * information: the state of each vdev after the
1442 			 * attempted vdev_open().  Return this to the user.
1443 			 */
1444 			if (config != NULL && spa->spa_root_vdev != NULL) {
1445 				spa_config_enter(spa, RW_READER, FTAG);
1446 				*config = spa_config_generate(spa, NULL, -1ULL,
1447 				    B_TRUE);
1448 				spa_config_exit(spa, FTAG);
1449 			}
1450 			spa_unload(spa);
1451 			spa_deactivate(spa);
1452 			spa->spa_last_open_failed = B_TRUE;
1453 			if (locked)
1454 				mutex_exit(&spa_namespace_lock);
1455 			*spapp = NULL;
1456 			return (error);
1457 		} else {
1458 			spa->spa_last_open_failed = B_FALSE;
1459 		}
1460 	}
1461 
1462 	spa_open_ref(spa, tag);
1463 
1464 	if (locked)
1465 		mutex_exit(&spa_namespace_lock);
1466 
1467 	*spapp = spa;
1468 
1469 	if (config != NULL) {
1470 		spa_config_enter(spa, RW_READER, FTAG);
1471 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1472 		spa_config_exit(spa, FTAG);
1473 	}
1474 
1475 	return (0);
1476 }
1477 
1478 int
1479 spa_open(const char *name, spa_t **spapp, void *tag)
1480 {
1481 	return (spa_open_common(name, spapp, tag, NULL));
1482 }
1483 
1484 /*
1485  * Lookup the given spa_t, incrementing the inject count in the process,
1486  * preventing it from being exported or destroyed.
1487  */
1488 spa_t *
1489 spa_inject_addref(char *name)
1490 {
1491 	spa_t *spa;
1492 
1493 	mutex_enter(&spa_namespace_lock);
1494 	if ((spa = spa_lookup(name)) == NULL) {
1495 		mutex_exit(&spa_namespace_lock);
1496 		return (NULL);
1497 	}
1498 	spa->spa_inject_ref++;
1499 	mutex_exit(&spa_namespace_lock);
1500 
1501 	return (spa);
1502 }
1503 
1504 void
1505 spa_inject_delref(spa_t *spa)
1506 {
1507 	mutex_enter(&spa_namespace_lock);
1508 	spa->spa_inject_ref--;
1509 	mutex_exit(&spa_namespace_lock);
1510 }
1511 
1512 /*
1513  * Add spares device information to the nvlist.
1514  */
1515 static void
1516 spa_add_spares(spa_t *spa, nvlist_t *config)
1517 {
1518 	nvlist_t **spares;
1519 	uint_t i, nspares;
1520 	nvlist_t *nvroot;
1521 	uint64_t guid;
1522 	vdev_stat_t *vs;
1523 	uint_t vsc;
1524 	uint64_t pool;
1525 
1526 	if (spa->spa_spares.sav_count == 0)
1527 		return;
1528 
1529 	VERIFY(nvlist_lookup_nvlist(config,
1530 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1531 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1532 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1533 	if (nspares != 0) {
1534 		VERIFY(nvlist_add_nvlist_array(nvroot,
1535 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1536 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1537 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1538 
1539 		/*
1540 		 * Go through and find any spares which have since been
1541 		 * repurposed as an active spare.  If this is the case, update
1542 		 * their status appropriately.
1543 		 */
1544 		for (i = 0; i < nspares; i++) {
1545 			VERIFY(nvlist_lookup_uint64(spares[i],
1546 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1547 			if (spa_spare_exists(guid, &pool, NULL) &&
1548 			    pool != 0ULL) {
1549 				VERIFY(nvlist_lookup_uint64_array(
1550 				    spares[i], ZPOOL_CONFIG_STATS,
1551 				    (uint64_t **)&vs, &vsc) == 0);
1552 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1553 				vs->vs_aux = VDEV_AUX_SPARED;
1554 			}
1555 		}
1556 	}
1557 }
1558 
1559 /*
1560  * Add l2cache device information to the nvlist, including vdev stats.
1561  */
1562 static void
1563 spa_add_l2cache(spa_t *spa, nvlist_t *config)
1564 {
1565 	nvlist_t **l2cache;
1566 	uint_t i, j, nl2cache;
1567 	nvlist_t *nvroot;
1568 	uint64_t guid;
1569 	vdev_t *vd;
1570 	vdev_stat_t *vs;
1571 	uint_t vsc;
1572 
1573 	if (spa->spa_l2cache.sav_count == 0)
1574 		return;
1575 
1576 	spa_config_enter(spa, RW_READER, FTAG);
1577 
1578 	VERIFY(nvlist_lookup_nvlist(config,
1579 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
1580 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
1581 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1582 	if (nl2cache != 0) {
1583 		VERIFY(nvlist_add_nvlist_array(nvroot,
1584 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1585 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
1586 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1587 
1588 		/*
1589 		 * Update level 2 cache device stats.
1590 		 */
1591 
1592 		for (i = 0; i < nl2cache; i++) {
1593 			VERIFY(nvlist_lookup_uint64(l2cache[i],
1594 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1595 
1596 			vd = NULL;
1597 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
1598 				if (guid ==
1599 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
1600 					vd = spa->spa_l2cache.sav_vdevs[j];
1601 					break;
1602 				}
1603 			}
1604 			ASSERT(vd != NULL);
1605 
1606 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
1607 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
1608 			vdev_get_stats(vd, vs);
1609 		}
1610 	}
1611 
1612 	spa_config_exit(spa, FTAG);
1613 }
1614 
1615 int
1616 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1617 {
1618 	int error;
1619 	spa_t *spa;
1620 
1621 	*config = NULL;
1622 	error = spa_open_common(name, &spa, FTAG, config);
1623 
1624 	if (spa && *config != NULL) {
1625 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1626 		    spa_get_errlog_size(spa)) == 0);
1627 
1628 		spa_add_spares(spa, *config);
1629 		spa_add_l2cache(spa, *config);
1630 	}
1631 
1632 	/*
1633 	 * We want to get the alternate root even for faulted pools, so we cheat
1634 	 * and call spa_lookup() directly.
1635 	 */
1636 	if (altroot) {
1637 		if (spa == NULL) {
1638 			mutex_enter(&spa_namespace_lock);
1639 			spa = spa_lookup(name);
1640 			if (spa)
1641 				spa_altroot(spa, altroot, buflen);
1642 			else
1643 				altroot[0] = '\0';
1644 			spa = NULL;
1645 			mutex_exit(&spa_namespace_lock);
1646 		} else {
1647 			spa_altroot(spa, altroot, buflen);
1648 		}
1649 	}
1650 
1651 	if (spa != NULL)
1652 		spa_close(spa, FTAG);
1653 
1654 	return (error);
1655 }
1656 
1657 /*
1658  * Validate that the auxiliary device array is well formed.  We must have an
1659  * array of nvlists, each which describes a valid leaf vdev.  If this is an
1660  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
1661  * specified, as long as they are well-formed.
1662  */
1663 static int
1664 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
1665     spa_aux_vdev_t *sav, const char *config, uint64_t version,
1666     vdev_labeltype_t label)
1667 {
1668 	nvlist_t **dev;
1669 	uint_t i, ndev;
1670 	vdev_t *vd;
1671 	int error;
1672 
1673 	/*
1674 	 * It's acceptable to have no devs specified.
1675 	 */
1676 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
1677 		return (0);
1678 
1679 	if (ndev == 0)
1680 		return (EINVAL);
1681 
1682 	/*
1683 	 * Make sure the pool is formatted with a version that supports this
1684 	 * device type.
1685 	 */
1686 	if (spa_version(spa) < version)
1687 		return (ENOTSUP);
1688 
1689 	/*
1690 	 * Set the pending device list so we correctly handle device in-use
1691 	 * checking.
1692 	 */
1693 	sav->sav_pending = dev;
1694 	sav->sav_npending = ndev;
1695 
1696 	for (i = 0; i < ndev; i++) {
1697 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
1698 		    mode)) != 0)
1699 			goto out;
1700 
1701 		if (!vd->vdev_ops->vdev_op_leaf) {
1702 			vdev_free(vd);
1703 			error = EINVAL;
1704 			goto out;
1705 		}
1706 
1707 		/*
1708 		 * The L2ARC currently only supports disk devices.
1709 		 */
1710 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
1711 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
1712 			error = ENOTBLK;
1713 			goto out;
1714 		}
1715 
1716 		vd->vdev_top = vd;
1717 
1718 		if ((error = vdev_open(vd)) == 0 &&
1719 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
1720 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
1721 			    vd->vdev_guid) == 0);
1722 		}
1723 
1724 		vdev_free(vd);
1725 
1726 		if (error &&
1727 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
1728 			goto out;
1729 		else
1730 			error = 0;
1731 	}
1732 
1733 out:
1734 	sav->sav_pending = NULL;
1735 	sav->sav_npending = 0;
1736 	return (error);
1737 }
1738 
1739 static int
1740 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1741 {
1742 	int error;
1743 
1744 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1745 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
1746 	    VDEV_LABEL_SPARE)) != 0) {
1747 		return (error);
1748 	}
1749 
1750 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
1751 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
1752 	    VDEV_LABEL_L2CACHE));
1753 }
1754 
1755 static void
1756 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
1757     const char *config)
1758 {
1759 	int i;
1760 
1761 	if (sav->sav_config != NULL) {
1762 		nvlist_t **olddevs;
1763 		uint_t oldndevs;
1764 		nvlist_t **newdevs;
1765 
1766 		/*
1767 		 * Generate new dev list by concatentating with the
1768 		 * current dev list.
1769 		 */
1770 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
1771 		    &olddevs, &oldndevs) == 0);
1772 
1773 		newdevs = kmem_alloc(sizeof (void *) *
1774 		    (ndevs + oldndevs), KM_SLEEP);
1775 		for (i = 0; i < oldndevs; i++)
1776 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
1777 			    KM_SLEEP) == 0);
1778 		for (i = 0; i < ndevs; i++)
1779 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
1780 			    KM_SLEEP) == 0);
1781 
1782 		VERIFY(nvlist_remove(sav->sav_config, config,
1783 		    DATA_TYPE_NVLIST_ARRAY) == 0);
1784 
1785 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1786 		    config, newdevs, ndevs + oldndevs) == 0);
1787 		for (i = 0; i < oldndevs + ndevs; i++)
1788 			nvlist_free(newdevs[i]);
1789 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
1790 	} else {
1791 		/*
1792 		 * Generate a new dev list.
1793 		 */
1794 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
1795 		    KM_SLEEP) == 0);
1796 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
1797 		    devs, ndevs) == 0);
1798 	}
1799 }
1800 
1801 /*
1802  * Stop and drop level 2 ARC devices
1803  */
1804 void
1805 spa_l2cache_drop(spa_t *spa)
1806 {
1807 	vdev_t *vd;
1808 	int i;
1809 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1810 
1811 	for (i = 0; i < sav->sav_count; i++) {
1812 		uint64_t pool;
1813 
1814 		vd = sav->sav_vdevs[i];
1815 		ASSERT(vd != NULL);
1816 
1817 		if (spa_mode & FWRITE &&
1818 		    spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL &&
1819 		    l2arc_vdev_present(vd)) {
1820 			l2arc_remove_vdev(vd);
1821 		}
1822 		if (vd->vdev_isl2cache)
1823 			spa_l2cache_remove(vd);
1824 		vdev_clear_stats(vd);
1825 		(void) vdev_close(vd);
1826 	}
1827 }
1828 
1829 /*
1830  * Pool Creation
1831  */
1832 int
1833 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
1834     const char *history_str, nvlist_t *zplprops)
1835 {
1836 	spa_t *spa;
1837 	char *altroot = NULL;
1838 	vdev_t *rvd;
1839 	dsl_pool_t *dp;
1840 	dmu_tx_t *tx;
1841 	int c, error = 0;
1842 	uint64_t txg = TXG_INITIAL;
1843 	nvlist_t **spares, **l2cache;
1844 	uint_t nspares, nl2cache;
1845 	uint64_t version;
1846 
1847 	/*
1848 	 * If this pool already exists, return failure.
1849 	 */
1850 	mutex_enter(&spa_namespace_lock);
1851 	if (spa_lookup(pool) != NULL) {
1852 		mutex_exit(&spa_namespace_lock);
1853 		return (EEXIST);
1854 	}
1855 
1856 	/*
1857 	 * Allocate a new spa_t structure.
1858 	 */
1859 	(void) nvlist_lookup_string(props,
1860 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
1861 	spa = spa_add(pool, altroot);
1862 	spa_activate(spa);
1863 
1864 	spa->spa_uberblock.ub_txg = txg - 1;
1865 
1866 	if (props && (error = spa_prop_validate(spa, props))) {
1867 		spa_unload(spa);
1868 		spa_deactivate(spa);
1869 		spa_remove(spa);
1870 		mutex_exit(&spa_namespace_lock);
1871 		return (error);
1872 	}
1873 
1874 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
1875 	    &version) != 0)
1876 		version = SPA_VERSION;
1877 	ASSERT(version <= SPA_VERSION);
1878 	spa->spa_uberblock.ub_version = version;
1879 	spa->spa_ubsync = spa->spa_uberblock;
1880 
1881 	/*
1882 	 * Create the root vdev.
1883 	 */
1884 	spa_config_enter(spa, RW_WRITER, FTAG);
1885 
1886 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1887 
1888 	ASSERT(error != 0 || rvd != NULL);
1889 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1890 
1891 	if (error == 0 && !zfs_allocatable_devs(nvroot))
1892 		error = EINVAL;
1893 
1894 	if (error == 0 &&
1895 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1896 	    (error = spa_validate_aux(spa, nvroot, txg,
1897 	    VDEV_ALLOC_ADD)) == 0) {
1898 		for (c = 0; c < rvd->vdev_children; c++)
1899 			vdev_init(rvd->vdev_child[c], txg);
1900 		vdev_config_dirty(rvd);
1901 	}
1902 
1903 	spa_config_exit(spa, FTAG);
1904 
1905 	if (error != 0) {
1906 		spa_unload(spa);
1907 		spa_deactivate(spa);
1908 		spa_remove(spa);
1909 		mutex_exit(&spa_namespace_lock);
1910 		return (error);
1911 	}
1912 
1913 	/*
1914 	 * Get the list of spares, if specified.
1915 	 */
1916 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1917 	    &spares, &nspares) == 0) {
1918 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
1919 		    KM_SLEEP) == 0);
1920 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1921 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1922 		spa_config_enter(spa, RW_WRITER, FTAG);
1923 		spa_load_spares(spa);
1924 		spa_config_exit(spa, FTAG);
1925 		spa->spa_spares.sav_sync = B_TRUE;
1926 	}
1927 
1928 	/*
1929 	 * Get the list of level 2 cache devices, if specified.
1930 	 */
1931 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
1932 	    &l2cache, &nl2cache) == 0) {
1933 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
1934 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1935 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
1936 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
1937 		spa_config_enter(spa, RW_WRITER, FTAG);
1938 		spa_load_l2cache(spa);
1939 		spa_config_exit(spa, FTAG);
1940 		spa->spa_l2cache.sav_sync = B_TRUE;
1941 	}
1942 
1943 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
1944 	spa->spa_meta_objset = dp->dp_meta_objset;
1945 
1946 	tx = dmu_tx_create_assigned(dp, txg);
1947 
1948 	/*
1949 	 * Create the pool config object.
1950 	 */
1951 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1952 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1953 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1954 
1955 	if (zap_add(spa->spa_meta_objset,
1956 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1957 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1958 		cmn_err(CE_PANIC, "failed to add pool config");
1959 	}
1960 
1961 	/* Newly created pools with the right version are always deflated. */
1962 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
1963 		spa->spa_deflate = TRUE;
1964 		if (zap_add(spa->spa_meta_objset,
1965 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1966 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1967 			cmn_err(CE_PANIC, "failed to add deflate");
1968 		}
1969 	}
1970 
1971 	/*
1972 	 * Create the deferred-free bplist object.  Turn off compression
1973 	 * because sync-to-convergence takes longer if the blocksize
1974 	 * keeps changing.
1975 	 */
1976 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1977 	    1 << 14, tx);
1978 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1979 	    ZIO_COMPRESS_OFF, tx);
1980 
1981 	if (zap_add(spa->spa_meta_objset,
1982 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1983 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1984 		cmn_err(CE_PANIC, "failed to add bplist");
1985 	}
1986 
1987 	/*
1988 	 * Create the pool's history object.
1989 	 */
1990 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
1991 		spa_history_create_obj(spa, tx);
1992 
1993 	/*
1994 	 * Set pool properties.
1995 	 */
1996 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1997 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1998 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
1999 	if (props)
2000 		spa_sync_props(spa, props, CRED(), tx);
2001 
2002 	dmu_tx_commit(tx);
2003 
2004 	spa->spa_sync_on = B_TRUE;
2005 	txg_sync_start(spa->spa_dsl_pool);
2006 
2007 	/*
2008 	 * We explicitly wait for the first transaction to complete so that our
2009 	 * bean counters are appropriately updated.
2010 	 */
2011 	txg_wait_synced(spa->spa_dsl_pool, txg);
2012 
2013 	spa_config_sync(spa, B_FALSE, B_TRUE);
2014 
2015 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2016 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2017 
2018 	mutex_exit(&spa_namespace_lock);
2019 
2020 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2021 
2022 	return (0);
2023 }
2024 
2025 /*
2026  * Import the given pool into the system.  We set up the necessary spa_t and
2027  * then call spa_load() to do the dirty work.
2028  */
2029 static int
2030 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props,
2031     boolean_t isroot, boolean_t allowfaulted)
2032 {
2033 	spa_t *spa;
2034 	char *altroot = NULL;
2035 	int error, loaderr;
2036 	nvlist_t *nvroot;
2037 	nvlist_t **spares, **l2cache;
2038 	uint_t nspares, nl2cache;
2039 
2040 	/*
2041 	 * If a pool with this name exists, return failure.
2042 	 */
2043 	mutex_enter(&spa_namespace_lock);
2044 	if (spa_lookup(pool) != NULL) {
2045 		mutex_exit(&spa_namespace_lock);
2046 		return (EEXIST);
2047 	}
2048 
2049 	/*
2050 	 * Create and initialize the spa structure.
2051 	 */
2052 	(void) nvlist_lookup_string(props,
2053 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2054 	spa = spa_add(pool, altroot);
2055 	spa_activate(spa);
2056 
2057 	if (allowfaulted)
2058 		spa->spa_import_faulted = B_TRUE;
2059 	spa->spa_is_root = isroot;
2060 
2061 	/*
2062 	 * Pass off the heavy lifting to spa_load().
2063 	 * Pass TRUE for mosconfig (unless this is a root pool) because
2064 	 * the user-supplied config is actually the one to trust when
2065 	 * doing an import.
2066 	 */
2067 	loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot);
2068 
2069 	spa_config_enter(spa, RW_WRITER, FTAG);
2070 	/*
2071 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
2072 	 * and conflicts with spa_has_spare().
2073 	 */
2074 	if (!isroot && spa->spa_spares.sav_config) {
2075 		nvlist_free(spa->spa_spares.sav_config);
2076 		spa->spa_spares.sav_config = NULL;
2077 		spa_load_spares(spa);
2078 	}
2079 	if (!isroot && spa->spa_l2cache.sav_config) {
2080 		nvlist_free(spa->spa_l2cache.sav_config);
2081 		spa->spa_l2cache.sav_config = NULL;
2082 		spa_load_l2cache(spa);
2083 	}
2084 
2085 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2086 	    &nvroot) == 0);
2087 	if (error == 0)
2088 		error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE);
2089 	if (error == 0)
2090 		error = spa_validate_aux(spa, nvroot, -1ULL,
2091 		    VDEV_ALLOC_L2CACHE);
2092 	spa_config_exit(spa, FTAG);
2093 
2094 	if (error != 0 || (props && (error = spa_prop_set(spa, props)))) {
2095 		if (loaderr != 0 && loaderr != EINVAL && allowfaulted) {
2096 			/*
2097 			 * If we failed to load the pool, but 'allowfaulted' is
2098 			 * set, then manually set the config as if the config
2099 			 * passed in was specified in the cache file.
2100 			 */
2101 			error = 0;
2102 			spa->spa_import_faulted = B_FALSE;
2103 			if (spa->spa_config == NULL) {
2104 				spa_config_enter(spa, RW_READER, FTAG);
2105 				spa->spa_config = spa_config_generate(spa,
2106 				    NULL, -1ULL, B_TRUE);
2107 				spa_config_exit(spa, FTAG);
2108 			}
2109 			spa_unload(spa);
2110 			spa_deactivate(spa);
2111 			spa_config_sync(spa, B_FALSE, B_TRUE);
2112 		} else {
2113 			spa_unload(spa);
2114 			spa_deactivate(spa);
2115 			spa_remove(spa);
2116 		}
2117 		mutex_exit(&spa_namespace_lock);
2118 		return (error);
2119 	}
2120 
2121 	/*
2122 	 * Override any spares and level 2 cache devices as specified by
2123 	 * the user, as these may have correct device names/devids, etc.
2124 	 */
2125 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2126 	    &spares, &nspares) == 0) {
2127 		if (spa->spa_spares.sav_config)
2128 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
2129 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
2130 		else
2131 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
2132 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2133 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2134 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2135 		spa_config_enter(spa, RW_WRITER, FTAG);
2136 		spa_load_spares(spa);
2137 		spa_config_exit(spa, FTAG);
2138 		spa->spa_spares.sav_sync = B_TRUE;
2139 	}
2140 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2141 	    &l2cache, &nl2cache) == 0) {
2142 		if (spa->spa_l2cache.sav_config)
2143 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
2144 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
2145 		else
2146 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2147 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2148 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2149 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2150 		spa_config_enter(spa, RW_WRITER, FTAG);
2151 		spa_load_l2cache(spa);
2152 		spa_config_exit(spa, FTAG);
2153 		spa->spa_l2cache.sav_sync = B_TRUE;
2154 	}
2155 
2156 	if (spa_mode & FWRITE) {
2157 		/*
2158 		 * Update the config cache to include the newly-imported pool.
2159 		 */
2160 		spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot);
2161 	}
2162 
2163 	spa->spa_import_faulted = B_FALSE;
2164 	mutex_exit(&spa_namespace_lock);
2165 
2166 	return (0);
2167 }
2168 
2169 #ifdef _KERNEL
2170 /*
2171  * Build a "root" vdev for a top level vdev read in from a rootpool
2172  * device label.
2173  */
2174 static void
2175 spa_build_rootpool_config(nvlist_t *config)
2176 {
2177 	nvlist_t *nvtop, *nvroot;
2178 	uint64_t pgid;
2179 
2180 	/*
2181 	 * Add this top-level vdev to the child array.
2182 	 */
2183 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop)
2184 	    == 0);
2185 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid)
2186 	    == 0);
2187 
2188 	/*
2189 	 * Put this pool's top-level vdevs into a root vdev.
2190 	 */
2191 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2192 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT)
2193 	    == 0);
2194 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2195 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2196 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2197 	    &nvtop, 1) == 0);
2198 
2199 	/*
2200 	 * Replace the existing vdev_tree with the new root vdev in
2201 	 * this pool's configuration (remove the old, add the new).
2202 	 */
2203 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2204 	nvlist_free(nvroot);
2205 }
2206 
2207 /*
2208  * Get the root pool information from the root disk, then import the root pool
2209  * during the system boot up time.
2210  */
2211 extern nvlist_t *vdev_disk_read_rootlabel(char *, char *);
2212 
2213 int
2214 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf,
2215     uint64_t *besttxg)
2216 {
2217 	nvlist_t *config;
2218 	uint64_t txg;
2219 
2220 	if ((config = vdev_disk_read_rootlabel(devpath, devid)) == NULL)
2221 		return (-1);
2222 
2223 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
2224 
2225 	if (bestconf != NULL)
2226 		*bestconf = config;
2227 	*besttxg = txg;
2228 	return (0);
2229 }
2230 
2231 boolean_t
2232 spa_rootdev_validate(nvlist_t *nv)
2233 {
2234 	uint64_t ival;
2235 
2236 	if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 ||
2237 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 ||
2238 	    nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0)
2239 		return (B_FALSE);
2240 
2241 	return (B_TRUE);
2242 }
2243 
2244 
2245 /*
2246  * Given the boot device's physical path or devid, check if the device
2247  * is in a valid state.  If so, return the configuration from the vdev
2248  * label.
2249  */
2250 int
2251 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf)
2252 {
2253 	nvlist_t *conf = NULL;
2254 	uint64_t txg = 0;
2255 	nvlist_t *nvtop, **child;
2256 	char *type;
2257 	char *bootpath = NULL;
2258 	uint_t children, c;
2259 	char *tmp;
2260 
2261 	if (devpath && ((tmp = strchr(devpath, ' ')) != NULL))
2262 		*tmp = '\0';
2263 	if (spa_check_rootconf(devpath, devid, &conf, &txg) < 0) {
2264 		cmn_err(CE_NOTE, "error reading device label");
2265 		nvlist_free(conf);
2266 		return (EINVAL);
2267 	}
2268 	if (txg == 0) {
2269 		cmn_err(CE_NOTE, "this device is detached");
2270 		nvlist_free(conf);
2271 		return (EINVAL);
2272 	}
2273 
2274 	VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE,
2275 	    &nvtop) == 0);
2276 	VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0);
2277 
2278 	if (strcmp(type, VDEV_TYPE_DISK) == 0) {
2279 		if (spa_rootdev_validate(nvtop)) {
2280 			goto out;
2281 		} else {
2282 			nvlist_free(conf);
2283 			return (EINVAL);
2284 		}
2285 	}
2286 
2287 	ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0);
2288 
2289 	VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN,
2290 	    &child, &children) == 0);
2291 
2292 	/*
2293 	 * Go thru vdevs in the mirror to see if the given device
2294 	 * has the most recent txg. Only the device with the most
2295 	 * recent txg has valid information and should be booted.
2296 	 */
2297 	for (c = 0; c < children; c++) {
2298 		char *cdevid, *cpath;
2299 		uint64_t tmptxg;
2300 
2301 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH,
2302 		    &cpath) != 0)
2303 			return (EINVAL);
2304 		if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID,
2305 		    &cdevid) != 0)
2306 			return (EINVAL);
2307 		if ((spa_check_rootconf(cpath, cdevid, NULL,
2308 		    &tmptxg) == 0) && (tmptxg > txg)) {
2309 			txg = tmptxg;
2310 			VERIFY(nvlist_lookup_string(child[c],
2311 			    ZPOOL_CONFIG_PATH, &bootpath) == 0);
2312 		}
2313 	}
2314 
2315 	/* Does the best device match the one we've booted from? */
2316 	if (bootpath) {
2317 		cmn_err(CE_NOTE, "try booting from '%s'", bootpath);
2318 		return (EINVAL);
2319 	}
2320 out:
2321 	*bestconf = conf;
2322 	return (0);
2323 }
2324 
2325 /*
2326  * Import a root pool.
2327  *
2328  * For x86. devpath_list will consist of devid and/or physpath name of
2329  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2330  * The GRUB "findroot" command will return the vdev we should boot.
2331  *
2332  * For Sparc, devpath_list consists the physpath name of the booting device
2333  * no matter the rootpool is a single device pool or a mirrored pool.
2334  * e.g.
2335  *	"/pci@1f,0/ide@d/disk@0,0:a"
2336  */
2337 int
2338 spa_import_rootpool(char *devpath, char *devid)
2339 {
2340 	nvlist_t *conf = NULL;
2341 	char *pname;
2342 	int error;
2343 
2344 	/*
2345 	 * Get the vdev pathname and configuation from the most
2346 	 * recently updated vdev (highest txg).
2347 	 */
2348 	if (error = spa_get_rootconf(devpath, devid, &conf))
2349 		goto msg_out;
2350 
2351 	/*
2352 	 * Add type "root" vdev to the config.
2353 	 */
2354 	spa_build_rootpool_config(conf);
2355 
2356 	VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0);
2357 
2358 	/*
2359 	 * We specify 'allowfaulted' for this to be treated like spa_open()
2360 	 * instead of spa_import().  This prevents us from marking vdevs as
2361 	 * persistently unavailable, and generates FMA ereports as if it were a
2362 	 * pool open, not import.
2363 	 */
2364 	error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE);
2365 	if (error == EEXIST)
2366 		error = 0;
2367 
2368 	nvlist_free(conf);
2369 	return (error);
2370 
2371 msg_out:
2372 	cmn_err(CE_NOTE, "\n"
2373 	    "  ***************************************************  \n"
2374 	    "  *  This device is not bootable!                   *  \n"
2375 	    "  *  It is either offlined or detached or faulted.  *  \n"
2376 	    "  *  Please try to boot from a different device.    *  \n"
2377 	    "  ***************************************************  ");
2378 
2379 	return (error);
2380 }
2381 #endif
2382 
2383 /*
2384  * Import a non-root pool into the system.
2385  */
2386 int
2387 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
2388 {
2389 	return (spa_import_common(pool, config, props, B_FALSE, B_FALSE));
2390 }
2391 
2392 int
2393 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props)
2394 {
2395 	return (spa_import_common(pool, config, props, B_FALSE, B_TRUE));
2396 }
2397 
2398 
2399 /*
2400  * This (illegal) pool name is used when temporarily importing a spa_t in order
2401  * to get the vdev stats associated with the imported devices.
2402  */
2403 #define	TRYIMPORT_NAME	"$import"
2404 
2405 nvlist_t *
2406 spa_tryimport(nvlist_t *tryconfig)
2407 {
2408 	nvlist_t *config = NULL;
2409 	char *poolname;
2410 	spa_t *spa;
2411 	uint64_t state;
2412 
2413 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
2414 		return (NULL);
2415 
2416 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
2417 		return (NULL);
2418 
2419 	/*
2420 	 * Create and initialize the spa structure.
2421 	 */
2422 	mutex_enter(&spa_namespace_lock);
2423 	spa = spa_add(TRYIMPORT_NAME, NULL);
2424 	spa_activate(spa);
2425 
2426 	/*
2427 	 * Pass off the heavy lifting to spa_load().
2428 	 * Pass TRUE for mosconfig because the user-supplied config
2429 	 * is actually the one to trust when doing an import.
2430 	 */
2431 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
2432 
2433 	/*
2434 	 * If 'tryconfig' was at least parsable, return the current config.
2435 	 */
2436 	if (spa->spa_root_vdev != NULL) {
2437 		spa_config_enter(spa, RW_READER, FTAG);
2438 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2439 		spa_config_exit(spa, FTAG);
2440 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
2441 		    poolname) == 0);
2442 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
2443 		    state) == 0);
2444 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
2445 		    spa->spa_uberblock.ub_timestamp) == 0);
2446 
2447 		/*
2448 		 * If the bootfs property exists on this pool then we
2449 		 * copy it out so that external consumers can tell which
2450 		 * pools are bootable.
2451 		 */
2452 		if (spa->spa_bootfs) {
2453 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2454 
2455 			/*
2456 			 * We have to play games with the name since the
2457 			 * pool was opened as TRYIMPORT_NAME.
2458 			 */
2459 			if (dsl_dsobj_to_dsname(spa->spa_name,
2460 			    spa->spa_bootfs, tmpname) == 0) {
2461 				char *cp;
2462 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
2463 
2464 				cp = strchr(tmpname, '/');
2465 				if (cp == NULL) {
2466 					(void) strlcpy(dsname, tmpname,
2467 					    MAXPATHLEN);
2468 				} else {
2469 					(void) snprintf(dsname, MAXPATHLEN,
2470 					    "%s/%s", poolname, ++cp);
2471 				}
2472 				VERIFY(nvlist_add_string(config,
2473 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
2474 				kmem_free(dsname, MAXPATHLEN);
2475 			}
2476 			kmem_free(tmpname, MAXPATHLEN);
2477 		}
2478 
2479 		/*
2480 		 * Add the list of hot spares and level 2 cache devices.
2481 		 */
2482 		spa_add_spares(spa, config);
2483 		spa_add_l2cache(spa, config);
2484 	}
2485 
2486 	spa_unload(spa);
2487 	spa_deactivate(spa);
2488 	spa_remove(spa);
2489 	mutex_exit(&spa_namespace_lock);
2490 
2491 	return (config);
2492 }
2493 
2494 /*
2495  * Pool export/destroy
2496  *
2497  * The act of destroying or exporting a pool is very simple.  We make sure there
2498  * is no more pending I/O and any references to the pool are gone.  Then, we
2499  * update the pool state and sync all the labels to disk, removing the
2500  * configuration from the cache afterwards.
2501  */
2502 static int
2503 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
2504     boolean_t force)
2505 {
2506 	spa_t *spa;
2507 
2508 	if (oldconfig)
2509 		*oldconfig = NULL;
2510 
2511 	if (!(spa_mode & FWRITE))
2512 		return (EROFS);
2513 
2514 	mutex_enter(&spa_namespace_lock);
2515 	if ((spa = spa_lookup(pool)) == NULL) {
2516 		mutex_exit(&spa_namespace_lock);
2517 		return (ENOENT);
2518 	}
2519 
2520 	/*
2521 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
2522 	 * reacquire the namespace lock, and see if we can export.
2523 	 */
2524 	spa_open_ref(spa, FTAG);
2525 	mutex_exit(&spa_namespace_lock);
2526 	spa_async_suspend(spa);
2527 	mutex_enter(&spa_namespace_lock);
2528 	spa_close(spa, FTAG);
2529 
2530 	/*
2531 	 * The pool will be in core if it's openable,
2532 	 * in which case we can modify its state.
2533 	 */
2534 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
2535 		/*
2536 		 * Objsets may be open only because they're dirty, so we
2537 		 * have to force it to sync before checking spa_refcnt.
2538 		 */
2539 		txg_wait_synced(spa->spa_dsl_pool, 0);
2540 
2541 		/*
2542 		 * A pool cannot be exported or destroyed if there are active
2543 		 * references.  If we are resetting a pool, allow references by
2544 		 * fault injection handlers.
2545 		 */
2546 		if (!spa_refcount_zero(spa) ||
2547 		    (spa->spa_inject_ref != 0 &&
2548 		    new_state != POOL_STATE_UNINITIALIZED)) {
2549 			spa_async_resume(spa);
2550 			mutex_exit(&spa_namespace_lock);
2551 			return (EBUSY);
2552 		}
2553 
2554 		/*
2555 		 * A pool cannot be exported if it has an active shared spare.
2556 		 * This is to prevent other pools stealing the active spare
2557 		 * from an exported pool. At user's own will, such pool can
2558 		 * be forcedly exported.
2559 		 */
2560 		if (!force && new_state == POOL_STATE_EXPORTED &&
2561 		    spa_has_active_shared_spare(spa)) {
2562 			spa_async_resume(spa);
2563 			mutex_exit(&spa_namespace_lock);
2564 			return (EXDEV);
2565 		}
2566 
2567 		/*
2568 		 * We want this to be reflected on every label,
2569 		 * so mark them all dirty.  spa_unload() will do the
2570 		 * final sync that pushes these changes out.
2571 		 */
2572 		if (new_state != POOL_STATE_UNINITIALIZED) {
2573 			spa_config_enter(spa, RW_WRITER, FTAG);
2574 			spa->spa_state = new_state;
2575 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
2576 			vdev_config_dirty(spa->spa_root_vdev);
2577 			spa_config_exit(spa, FTAG);
2578 		}
2579 	}
2580 
2581 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
2582 
2583 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
2584 		spa_unload(spa);
2585 		spa_deactivate(spa);
2586 	}
2587 
2588 	if (oldconfig && spa->spa_config)
2589 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
2590 
2591 	if (new_state != POOL_STATE_UNINITIALIZED) {
2592 		spa_config_sync(spa, B_TRUE, B_TRUE);
2593 		spa_remove(spa);
2594 	}
2595 	mutex_exit(&spa_namespace_lock);
2596 
2597 	return (0);
2598 }
2599 
2600 /*
2601  * Destroy a storage pool.
2602  */
2603 int
2604 spa_destroy(char *pool)
2605 {
2606 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE));
2607 }
2608 
2609 /*
2610  * Export a storage pool.
2611  */
2612 int
2613 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force)
2614 {
2615 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force));
2616 }
2617 
2618 /*
2619  * Similar to spa_export(), this unloads the spa_t without actually removing it
2620  * from the namespace in any way.
2621  */
2622 int
2623 spa_reset(char *pool)
2624 {
2625 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
2626 	    B_FALSE));
2627 }
2628 
2629 /*
2630  * ==========================================================================
2631  * Device manipulation
2632  * ==========================================================================
2633  */
2634 
2635 /*
2636  * Add a device to a storage pool.
2637  */
2638 int
2639 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
2640 {
2641 	uint64_t txg;
2642 	int c, error;
2643 	vdev_t *rvd = spa->spa_root_vdev;
2644 	vdev_t *vd, *tvd;
2645 	nvlist_t **spares, **l2cache;
2646 	uint_t nspares, nl2cache;
2647 
2648 	txg = spa_vdev_enter(spa);
2649 
2650 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
2651 	    VDEV_ALLOC_ADD)) != 0)
2652 		return (spa_vdev_exit(spa, NULL, txg, error));
2653 
2654 	spa->spa_pending_vdev = vd;
2655 
2656 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
2657 	    &nspares) != 0)
2658 		nspares = 0;
2659 
2660 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
2661 	    &nl2cache) != 0)
2662 		nl2cache = 0;
2663 
2664 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) {
2665 		spa->spa_pending_vdev = NULL;
2666 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
2667 	}
2668 
2669 	if (vd->vdev_children != 0) {
2670 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
2671 			spa->spa_pending_vdev = NULL;
2672 			return (spa_vdev_exit(spa, vd, txg, error));
2673 		}
2674 	}
2675 
2676 	/*
2677 	 * We must validate the spares and l2cache devices after checking the
2678 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
2679 	 */
2680 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) {
2681 		spa->spa_pending_vdev = NULL;
2682 		return (spa_vdev_exit(spa, vd, txg, error));
2683 	}
2684 
2685 	spa->spa_pending_vdev = NULL;
2686 
2687 	/*
2688 	 * Transfer each new top-level vdev from vd to rvd.
2689 	 */
2690 	for (c = 0; c < vd->vdev_children; c++) {
2691 		tvd = vd->vdev_child[c];
2692 		vdev_remove_child(vd, tvd);
2693 		tvd->vdev_id = rvd->vdev_children;
2694 		vdev_add_child(rvd, tvd);
2695 		vdev_config_dirty(tvd);
2696 	}
2697 
2698 	if (nspares != 0) {
2699 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
2700 		    ZPOOL_CONFIG_SPARES);
2701 		spa_load_spares(spa);
2702 		spa->spa_spares.sav_sync = B_TRUE;
2703 	}
2704 
2705 	if (nl2cache != 0) {
2706 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
2707 		    ZPOOL_CONFIG_L2CACHE);
2708 		spa_load_l2cache(spa);
2709 		spa->spa_l2cache.sav_sync = B_TRUE;
2710 	}
2711 
2712 	/*
2713 	 * We have to be careful when adding new vdevs to an existing pool.
2714 	 * If other threads start allocating from these vdevs before we
2715 	 * sync the config cache, and we lose power, then upon reboot we may
2716 	 * fail to open the pool because there are DVAs that the config cache
2717 	 * can't translate.  Therefore, we first add the vdevs without
2718 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
2719 	 * and then let spa_config_update() initialize the new metaslabs.
2720 	 *
2721 	 * spa_load() checks for added-but-not-initialized vdevs, so that
2722 	 * if we lose power at any point in this sequence, the remaining
2723 	 * steps will be completed the next time we load the pool.
2724 	 */
2725 	(void) spa_vdev_exit(spa, vd, txg, 0);
2726 
2727 	mutex_enter(&spa_namespace_lock);
2728 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2729 	mutex_exit(&spa_namespace_lock);
2730 
2731 	return (0);
2732 }
2733 
2734 /*
2735  * Attach a device to a mirror.  The arguments are the path to any device
2736  * in the mirror, and the nvroot for the new device.  If the path specifies
2737  * a device that is not mirrored, we automatically insert the mirror vdev.
2738  *
2739  * If 'replacing' is specified, the new device is intended to replace the
2740  * existing device; in this case the two devices are made into their own
2741  * mirror using the 'replacing' vdev, which is functionally identical to
2742  * the mirror vdev (it actually reuses all the same ops) but has a few
2743  * extra rules: you can't attach to it after it's been created, and upon
2744  * completion of resilvering, the first disk (the one being replaced)
2745  * is automatically detached.
2746  */
2747 int
2748 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
2749 {
2750 	uint64_t txg, open_txg;
2751 	int error;
2752 	vdev_t *rvd = spa->spa_root_vdev;
2753 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
2754 	vdev_ops_t *pvops;
2755 	int is_log;
2756 
2757 	txg = spa_vdev_enter(spa);
2758 
2759 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
2760 
2761 	if (oldvd == NULL)
2762 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2763 
2764 	if (!oldvd->vdev_ops->vdev_op_leaf)
2765 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2766 
2767 	pvd = oldvd->vdev_parent;
2768 
2769 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
2770 	    VDEV_ALLOC_ADD)) != 0)
2771 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
2772 
2773 	if (newrootvd->vdev_children != 1)
2774 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2775 
2776 	newvd = newrootvd->vdev_child[0];
2777 
2778 	if (!newvd->vdev_ops->vdev_op_leaf)
2779 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
2780 
2781 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
2782 		return (spa_vdev_exit(spa, newrootvd, txg, error));
2783 
2784 	/*
2785 	 * Spares can't replace logs
2786 	 */
2787 	is_log = oldvd->vdev_islog;
2788 	if (is_log && newvd->vdev_isspare)
2789 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2790 
2791 	if (!replacing) {
2792 		/*
2793 		 * For attach, the only allowable parent is a mirror or the root
2794 		 * vdev.
2795 		 */
2796 		if (pvd->vdev_ops != &vdev_mirror_ops &&
2797 		    pvd->vdev_ops != &vdev_root_ops)
2798 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2799 
2800 		pvops = &vdev_mirror_ops;
2801 	} else {
2802 		/*
2803 		 * Active hot spares can only be replaced by inactive hot
2804 		 * spares.
2805 		 */
2806 		if (pvd->vdev_ops == &vdev_spare_ops &&
2807 		    pvd->vdev_child[1] == oldvd &&
2808 		    !spa_has_spare(spa, newvd->vdev_guid))
2809 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2810 
2811 		/*
2812 		 * If the source is a hot spare, and the parent isn't already a
2813 		 * spare, then we want to create a new hot spare.  Otherwise, we
2814 		 * want to create a replacing vdev.  The user is not allowed to
2815 		 * attach to a spared vdev child unless the 'isspare' state is
2816 		 * the same (spare replaces spare, non-spare replaces
2817 		 * non-spare).
2818 		 */
2819 		if (pvd->vdev_ops == &vdev_replacing_ops)
2820 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2821 		else if (pvd->vdev_ops == &vdev_spare_ops &&
2822 		    newvd->vdev_isspare != oldvd->vdev_isspare)
2823 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
2824 		else if (pvd->vdev_ops != &vdev_spare_ops &&
2825 		    newvd->vdev_isspare)
2826 			pvops = &vdev_spare_ops;
2827 		else
2828 			pvops = &vdev_replacing_ops;
2829 	}
2830 
2831 	/*
2832 	 * Compare the new device size with the replaceable/attachable
2833 	 * device size.
2834 	 */
2835 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
2836 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
2837 
2838 	/*
2839 	 * The new device cannot have a higher alignment requirement
2840 	 * than the top-level vdev.
2841 	 */
2842 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
2843 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
2844 
2845 	/*
2846 	 * If this is an in-place replacement, update oldvd's path and devid
2847 	 * to make it distinguishable from newvd, and unopenable from now on.
2848 	 */
2849 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
2850 		spa_strfree(oldvd->vdev_path);
2851 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
2852 		    KM_SLEEP);
2853 		(void) sprintf(oldvd->vdev_path, "%s/%s",
2854 		    newvd->vdev_path, "old");
2855 		if (oldvd->vdev_devid != NULL) {
2856 			spa_strfree(oldvd->vdev_devid);
2857 			oldvd->vdev_devid = NULL;
2858 		}
2859 	}
2860 
2861 	/*
2862 	 * If the parent is not a mirror, or if we're replacing, insert the new
2863 	 * mirror/replacing/spare vdev above oldvd.
2864 	 */
2865 	if (pvd->vdev_ops != pvops)
2866 		pvd = vdev_add_parent(oldvd, pvops);
2867 
2868 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
2869 	ASSERT(pvd->vdev_ops == pvops);
2870 	ASSERT(oldvd->vdev_parent == pvd);
2871 
2872 	/*
2873 	 * Extract the new device from its root and add it to pvd.
2874 	 */
2875 	vdev_remove_child(newrootvd, newvd);
2876 	newvd->vdev_id = pvd->vdev_children;
2877 	vdev_add_child(pvd, newvd);
2878 
2879 	/*
2880 	 * If newvd is smaller than oldvd, but larger than its rsize,
2881 	 * the addition of newvd may have decreased our parent's asize.
2882 	 */
2883 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
2884 
2885 	tvd = newvd->vdev_top;
2886 	ASSERT(pvd->vdev_top == tvd);
2887 	ASSERT(tvd->vdev_parent == rvd);
2888 
2889 	vdev_config_dirty(tvd);
2890 
2891 	/*
2892 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
2893 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
2894 	 */
2895 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
2896 
2897 	mutex_enter(&newvd->vdev_dtl_lock);
2898 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
2899 	    open_txg - TXG_INITIAL + 1);
2900 	mutex_exit(&newvd->vdev_dtl_lock);
2901 
2902 	if (newvd->vdev_isspare)
2903 		spa_spare_activate(newvd);
2904 
2905 	/*
2906 	 * Mark newvd's DTL dirty in this txg.
2907 	 */
2908 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
2909 
2910 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
2911 
2912 	/*
2913 	 * Kick off a resilver to update newvd.
2914 	 */
2915 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
2916 
2917 	return (0);
2918 }
2919 
2920 /*
2921  * Detach a device from a mirror or replacing vdev.
2922  * If 'replace_done' is specified, only detach if the parent
2923  * is a replacing vdev.
2924  */
2925 int
2926 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
2927 {
2928 	uint64_t txg;
2929 	int c, t, error;
2930 	vdev_t *rvd = spa->spa_root_vdev;
2931 	vdev_t *vd, *pvd, *cvd, *tvd;
2932 	boolean_t unspare = B_FALSE;
2933 	uint64_t unspare_guid;
2934 	size_t len;
2935 
2936 	txg = spa_vdev_enter(spa);
2937 
2938 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
2939 
2940 	if (vd == NULL)
2941 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
2942 
2943 	if (!vd->vdev_ops->vdev_op_leaf)
2944 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2945 
2946 	pvd = vd->vdev_parent;
2947 
2948 	/*
2949 	 * If replace_done is specified, only remove this device if it's
2950 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
2951 	 * disk can be removed.
2952 	 */
2953 	if (replace_done) {
2954 		if (pvd->vdev_ops == &vdev_replacing_ops) {
2955 			if (vd->vdev_id != 0)
2956 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2957 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
2958 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2959 		}
2960 	}
2961 
2962 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
2963 	    spa_version(spa) >= SPA_VERSION_SPARES);
2964 
2965 	/*
2966 	 * Only mirror, replacing, and spare vdevs support detach.
2967 	 */
2968 	if (pvd->vdev_ops != &vdev_replacing_ops &&
2969 	    pvd->vdev_ops != &vdev_mirror_ops &&
2970 	    pvd->vdev_ops != &vdev_spare_ops)
2971 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2972 
2973 	/*
2974 	 * If there's only one replica, you can't detach it.
2975 	 */
2976 	if (pvd->vdev_children <= 1)
2977 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
2978 
2979 	/*
2980 	 * If all siblings have non-empty DTLs, this device may have the only
2981 	 * valid copy of the data, which means we cannot safely detach it.
2982 	 *
2983 	 * XXX -- as in the vdev_offline() case, we really want a more
2984 	 * precise DTL check.
2985 	 */
2986 	for (c = 0; c < pvd->vdev_children; c++) {
2987 		uint64_t dirty;
2988 
2989 		cvd = pvd->vdev_child[c];
2990 		if (cvd == vd)
2991 			continue;
2992 		if (vdev_is_dead(cvd))
2993 			continue;
2994 		mutex_enter(&cvd->vdev_dtl_lock);
2995 		dirty = cvd->vdev_dtl_map.sm_space |
2996 		    cvd->vdev_dtl_scrub.sm_space;
2997 		mutex_exit(&cvd->vdev_dtl_lock);
2998 		if (!dirty)
2999 			break;
3000 	}
3001 
3002 	/*
3003 	 * If we are a replacing or spare vdev, then we can always detach the
3004 	 * latter child, as that is how one cancels the operation.
3005 	 */
3006 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
3007 	    c == pvd->vdev_children)
3008 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3009 
3010 	/*
3011 	 * If we are detaching the second disk from a replacing vdev, then
3012 	 * check to see if we changed the original vdev's path to have "/old"
3013 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3014 	 */
3015 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3016 	    pvd->vdev_child[0]->vdev_path != NULL &&
3017 	    pvd->vdev_child[1]->vdev_path != NULL) {
3018 		ASSERT(pvd->vdev_child[1] == vd);
3019 		cvd = pvd->vdev_child[0];
3020 		len = strlen(vd->vdev_path);
3021 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3022 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3023 			spa_strfree(cvd->vdev_path);
3024 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3025 		}
3026 	}
3027 
3028 	/*
3029 	 * If we are detaching the original disk from a spare, then it implies
3030 	 * that the spare should become a real disk, and be removed from the
3031 	 * active spare list for the pool.
3032 	 */
3033 	if (pvd->vdev_ops == &vdev_spare_ops &&
3034 	    vd->vdev_id == 0)
3035 		unspare = B_TRUE;
3036 
3037 	/*
3038 	 * Erase the disk labels so the disk can be used for other things.
3039 	 * This must be done after all other error cases are handled,
3040 	 * but before we disembowel vd (so we can still do I/O to it).
3041 	 * But if we can't do it, don't treat the error as fatal --
3042 	 * it may be that the unwritability of the disk is the reason
3043 	 * it's being detached!
3044 	 */
3045 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3046 
3047 	/*
3048 	 * Remove vd from its parent and compact the parent's children.
3049 	 */
3050 	vdev_remove_child(pvd, vd);
3051 	vdev_compact_children(pvd);
3052 
3053 	/*
3054 	 * Remember one of the remaining children so we can get tvd below.
3055 	 */
3056 	cvd = pvd->vdev_child[0];
3057 
3058 	/*
3059 	 * If we need to remove the remaining child from the list of hot spares,
3060 	 * do it now, marking the vdev as no longer a spare in the process.  We
3061 	 * must do this before vdev_remove_parent(), because that can change the
3062 	 * GUID if it creates a new toplevel GUID.
3063 	 */
3064 	if (unspare) {
3065 		ASSERT(cvd->vdev_isspare);
3066 		spa_spare_remove(cvd);
3067 		unspare_guid = cvd->vdev_guid;
3068 	}
3069 
3070 	/*
3071 	 * If the parent mirror/replacing vdev only has one child,
3072 	 * the parent is no longer needed.  Remove it from the tree.
3073 	 */
3074 	if (pvd->vdev_children == 1)
3075 		vdev_remove_parent(cvd);
3076 
3077 	/*
3078 	 * We don't set tvd until now because the parent we just removed
3079 	 * may have been the previous top-level vdev.
3080 	 */
3081 	tvd = cvd->vdev_top;
3082 	ASSERT(tvd->vdev_parent == rvd);
3083 
3084 	/*
3085 	 * Reevaluate the parent vdev state.
3086 	 */
3087 	vdev_propagate_state(cvd);
3088 
3089 	/*
3090 	 * If the device we just detached was smaller than the others, it may be
3091 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
3092 	 * can't fail because the existing metaslabs are already in core, so
3093 	 * there's nothing to read from disk.
3094 	 */
3095 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
3096 
3097 	vdev_config_dirty(tvd);
3098 
3099 	/*
3100 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3101 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3102 	 * But first make sure we're not on any *other* txg's DTL list, to
3103 	 * prevent vd from being accessed after it's freed.
3104 	 */
3105 	for (t = 0; t < TXG_SIZE; t++)
3106 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
3107 	vd->vdev_detached = B_TRUE;
3108 	vdev_dirty(tvd, VDD_DTL, vd, txg);
3109 
3110 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
3111 
3112 	error = spa_vdev_exit(spa, vd, txg, 0);
3113 
3114 	/*
3115 	 * If this was the removal of the original device in a hot spare vdev,
3116 	 * then we want to go through and remove the device from the hot spare
3117 	 * list of every other pool.
3118 	 */
3119 	if (unspare) {
3120 		spa = NULL;
3121 		mutex_enter(&spa_namespace_lock);
3122 		while ((spa = spa_next(spa)) != NULL) {
3123 			if (spa->spa_state != POOL_STATE_ACTIVE)
3124 				continue;
3125 
3126 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3127 		}
3128 		mutex_exit(&spa_namespace_lock);
3129 	}
3130 
3131 	return (error);
3132 }
3133 
3134 /*
3135  * Remove a spares vdev from the nvlist config.
3136  */
3137 static int
3138 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare,
3139     nvlist_t **spares, int nspares, vdev_t *vd)
3140 {
3141 	nvlist_t *nv, **newspares;
3142 	int i, j;
3143 
3144 	nv = NULL;
3145 	for (i = 0; i < nspares; i++) {
3146 		uint64_t theguid;
3147 
3148 		VERIFY(nvlist_lookup_uint64(spares[i],
3149 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3150 		if (theguid == guid) {
3151 			nv = spares[i];
3152 			break;
3153 		}
3154 	}
3155 
3156 	/*
3157 	 * Only remove the hot spare if it's not currently in use in this pool.
3158 	 */
3159 	if (nv == NULL && vd == NULL)
3160 		return (ENOENT);
3161 
3162 	if (nv == NULL && vd != NULL)
3163 		return (ENOTSUP);
3164 
3165 	if (!unspare && nv != NULL && vd != NULL)
3166 		return (EBUSY);
3167 
3168 	if (nspares == 1) {
3169 		newspares = NULL;
3170 	} else {
3171 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
3172 		    KM_SLEEP);
3173 		for (i = 0, j = 0; i < nspares; i++) {
3174 			if (spares[i] != nv)
3175 				VERIFY(nvlist_dup(spares[i],
3176 				    &newspares[j++], KM_SLEEP) == 0);
3177 		}
3178 	}
3179 
3180 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES,
3181 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3182 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3183 	    ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0);
3184 	for (i = 0; i < nspares - 1; i++)
3185 		nvlist_free(newspares[i]);
3186 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
3187 
3188 	return (0);
3189 }
3190 
3191 /*
3192  * Remove an l2cache vdev from the nvlist config.
3193  */
3194 static int
3195 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache,
3196     int nl2cache, vdev_t *vd)
3197 {
3198 	nvlist_t *nv, **newl2cache;
3199 	int i, j;
3200 
3201 	nv = NULL;
3202 	for (i = 0; i < nl2cache; i++) {
3203 		uint64_t theguid;
3204 
3205 		VERIFY(nvlist_lookup_uint64(l2cache[i],
3206 		    ZPOOL_CONFIG_GUID, &theguid) == 0);
3207 		if (theguid == guid) {
3208 			nv = l2cache[i];
3209 			break;
3210 		}
3211 	}
3212 
3213 	if (vd == NULL) {
3214 		for (i = 0; i < nl2cache; i++) {
3215 			if (sav->sav_vdevs[i]->vdev_guid == guid) {
3216 				vd = sav->sav_vdevs[i];
3217 				break;
3218 			}
3219 		}
3220 	}
3221 
3222 	if (nv == NULL && vd == NULL)
3223 		return (ENOENT);
3224 
3225 	if (nv == NULL && vd != NULL)
3226 		return (ENOTSUP);
3227 
3228 	if (nl2cache == 1) {
3229 		newl2cache = NULL;
3230 	} else {
3231 		newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *),
3232 		    KM_SLEEP);
3233 		for (i = 0, j = 0; i < nl2cache; i++) {
3234 			if (l2cache[i] != nv)
3235 				VERIFY(nvlist_dup(l2cache[i],
3236 				    &newl2cache[j++], KM_SLEEP) == 0);
3237 		}
3238 	}
3239 
3240 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
3241 	    DATA_TYPE_NVLIST_ARRAY) == 0);
3242 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3243 	    ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0);
3244 	for (i = 0; i < nl2cache - 1; i++)
3245 		nvlist_free(newl2cache[i]);
3246 	kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *));
3247 
3248 	return (0);
3249 }
3250 
3251 /*
3252  * Remove a device from the pool.  Currently, this supports removing only hot
3253  * spares and level 2 ARC devices.
3254  */
3255 int
3256 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
3257 {
3258 	vdev_t *vd;
3259 	nvlist_t **spares, **l2cache;
3260 	uint_t nspares, nl2cache;
3261 	int error = 0;
3262 
3263 	spa_config_enter(spa, RW_WRITER, FTAG);
3264 
3265 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3266 
3267 	if (spa->spa_spares.sav_vdevs != NULL &&
3268 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3269 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) {
3270 		if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare,
3271 		    spares, nspares, vd)) != 0)
3272 			goto out;
3273 		spa_load_spares(spa);
3274 		spa->spa_spares.sav_sync = B_TRUE;
3275 		goto out;
3276 	}
3277 
3278 	if (spa->spa_l2cache.sav_vdevs != NULL &&
3279 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3280 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) {
3281 		if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid,
3282 		    l2cache, nl2cache, vd)) != 0)
3283 			goto out;
3284 		spa_load_l2cache(spa);
3285 		spa->spa_l2cache.sav_sync = B_TRUE;
3286 	}
3287 
3288 out:
3289 	spa_config_exit(spa, FTAG);
3290 	return (error);
3291 }
3292 
3293 /*
3294  * Find any device that's done replacing, or a vdev marked 'unspare' that's
3295  * current spared, so we can detach it.
3296  */
3297 static vdev_t *
3298 spa_vdev_resilver_done_hunt(vdev_t *vd)
3299 {
3300 	vdev_t *newvd, *oldvd;
3301 	int c;
3302 
3303 	for (c = 0; c < vd->vdev_children; c++) {
3304 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
3305 		if (oldvd != NULL)
3306 			return (oldvd);
3307 	}
3308 
3309 	/*
3310 	 * Check for a completed replacement.
3311 	 */
3312 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
3313 		oldvd = vd->vdev_child[0];
3314 		newvd = vd->vdev_child[1];
3315 
3316 		mutex_enter(&newvd->vdev_dtl_lock);
3317 		if (newvd->vdev_dtl_map.sm_space == 0 &&
3318 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3319 			mutex_exit(&newvd->vdev_dtl_lock);
3320 			return (oldvd);
3321 		}
3322 		mutex_exit(&newvd->vdev_dtl_lock);
3323 	}
3324 
3325 	/*
3326 	 * Check for a completed resilver with the 'unspare' flag set.
3327 	 */
3328 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
3329 		newvd = vd->vdev_child[0];
3330 		oldvd = vd->vdev_child[1];
3331 
3332 		mutex_enter(&newvd->vdev_dtl_lock);
3333 		if (newvd->vdev_unspare &&
3334 		    newvd->vdev_dtl_map.sm_space == 0 &&
3335 		    newvd->vdev_dtl_scrub.sm_space == 0) {
3336 			newvd->vdev_unspare = 0;
3337 			mutex_exit(&newvd->vdev_dtl_lock);
3338 			return (oldvd);
3339 		}
3340 		mutex_exit(&newvd->vdev_dtl_lock);
3341 	}
3342 
3343 	return (NULL);
3344 }
3345 
3346 static void
3347 spa_vdev_resilver_done(spa_t *spa)
3348 {
3349 	vdev_t *vd;
3350 	vdev_t *pvd;
3351 	uint64_t guid;
3352 	uint64_t pguid = 0;
3353 
3354 	spa_config_enter(spa, RW_READER, FTAG);
3355 
3356 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
3357 		guid = vd->vdev_guid;
3358 		/*
3359 		 * If we have just finished replacing a hot spared device, then
3360 		 * we need to detach the parent's first child (the original hot
3361 		 * spare) as well.
3362 		 */
3363 		pvd = vd->vdev_parent;
3364 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3365 		    pvd->vdev_id == 0) {
3366 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
3367 			ASSERT(pvd->vdev_parent->vdev_children == 2);
3368 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
3369 		}
3370 		spa_config_exit(spa, FTAG);
3371 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
3372 			return;
3373 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
3374 			return;
3375 		spa_config_enter(spa, RW_READER, FTAG);
3376 	}
3377 
3378 	spa_config_exit(spa, FTAG);
3379 }
3380 
3381 /*
3382  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
3383  * on spa_vdev_enter/exit() to synchronize the labels and cache.
3384  */
3385 int
3386 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
3387 {
3388 	vdev_t *vd;
3389 	uint64_t txg;
3390 
3391 	txg = spa_vdev_enter(spa);
3392 
3393 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) {
3394 		/*
3395 		 * Determine if this is a reference to a hot spare device.  If
3396 		 * it is, update the path manually as there is no associated
3397 		 * vdev_t that can be synced to disk.
3398 		 */
3399 		nvlist_t **spares;
3400 		uint_t i, nspares;
3401 
3402 		if (spa->spa_spares.sav_config != NULL) {
3403 			VERIFY(nvlist_lookup_nvlist_array(
3404 			    spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
3405 			    &spares, &nspares) == 0);
3406 			for (i = 0; i < nspares; i++) {
3407 				uint64_t theguid;
3408 				VERIFY(nvlist_lookup_uint64(spares[i],
3409 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
3410 				if (theguid == guid) {
3411 					VERIFY(nvlist_add_string(spares[i],
3412 					    ZPOOL_CONFIG_PATH, newpath) == 0);
3413 					spa_load_spares(spa);
3414 					spa->spa_spares.sav_sync = B_TRUE;
3415 					return (spa_vdev_exit(spa, NULL, txg,
3416 					    0));
3417 				}
3418 			}
3419 		}
3420 
3421 		return (spa_vdev_exit(spa, NULL, txg, ENOENT));
3422 	}
3423 
3424 	if (!vd->vdev_ops->vdev_op_leaf)
3425 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3426 
3427 	spa_strfree(vd->vdev_path);
3428 	vd->vdev_path = spa_strdup(newpath);
3429 
3430 	vdev_config_dirty(vd->vdev_top);
3431 
3432 	return (spa_vdev_exit(spa, NULL, txg, 0));
3433 }
3434 
3435 /*
3436  * ==========================================================================
3437  * SPA Scrubbing
3438  * ==========================================================================
3439  */
3440 
3441 int
3442 spa_scrub(spa_t *spa, pool_scrub_type_t type)
3443 {
3444 	ASSERT(!spa_config_held(spa, RW_WRITER));
3445 
3446 	if ((uint_t)type >= POOL_SCRUB_TYPES)
3447 		return (ENOTSUP);
3448 
3449 	/*
3450 	 * If a resilver was requested, but there is no DTL on a
3451 	 * writeable leaf device, we have nothing to do.
3452 	 */
3453 	if (type == POOL_SCRUB_RESILVER &&
3454 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
3455 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
3456 		return (0);
3457 	}
3458 
3459 	if (type == POOL_SCRUB_EVERYTHING &&
3460 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
3461 	    spa->spa_dsl_pool->dp_scrub_isresilver)
3462 		return (EBUSY);
3463 
3464 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
3465 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
3466 	} else if (type == POOL_SCRUB_NONE) {
3467 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
3468 	} else {
3469 		return (EINVAL);
3470 	}
3471 }
3472 
3473 /*
3474  * ==========================================================================
3475  * SPA async task processing
3476  * ==========================================================================
3477  */
3478 
3479 static void
3480 spa_async_remove(spa_t *spa, vdev_t *vd)
3481 {
3482 	vdev_t *tvd;
3483 	int c;
3484 
3485 	for (c = 0; c < vd->vdev_children; c++) {
3486 		tvd = vd->vdev_child[c];
3487 		if (tvd->vdev_remove_wanted) {
3488 			tvd->vdev_remove_wanted = 0;
3489 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
3490 			    VDEV_AUX_NONE);
3491 			vdev_clear(spa, tvd, B_TRUE);
3492 			vdev_config_dirty(tvd->vdev_top);
3493 		}
3494 		spa_async_remove(spa, tvd);
3495 	}
3496 }
3497 
3498 static void
3499 spa_async_thread(spa_t *spa)
3500 {
3501 	int tasks;
3502 	uint64_t txg;
3503 
3504 	ASSERT(spa->spa_sync_on);
3505 
3506 	mutex_enter(&spa->spa_async_lock);
3507 	tasks = spa->spa_async_tasks;
3508 	spa->spa_async_tasks = 0;
3509 	mutex_exit(&spa->spa_async_lock);
3510 
3511 	/*
3512 	 * See if the config needs to be updated.
3513 	 */
3514 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
3515 		mutex_enter(&spa_namespace_lock);
3516 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3517 		mutex_exit(&spa_namespace_lock);
3518 	}
3519 
3520 	/*
3521 	 * See if any devices need to be marked REMOVED.
3522 	 *
3523 	 * XXX - We avoid doing this when we are in
3524 	 * I/O failure state since spa_vdev_enter() grabs
3525 	 * the namespace lock and would not be able to obtain
3526 	 * the writer config lock.
3527 	 */
3528 	if (tasks & SPA_ASYNC_REMOVE &&
3529 	    spa_state(spa) != POOL_STATE_IO_FAILURE) {
3530 		txg = spa_vdev_enter(spa);
3531 		spa_async_remove(spa, spa->spa_root_vdev);
3532 		(void) spa_vdev_exit(spa, NULL, txg, 0);
3533 	}
3534 
3535 	/*
3536 	 * If any devices are done replacing, detach them.
3537 	 */
3538 	if (tasks & SPA_ASYNC_RESILVER_DONE)
3539 		spa_vdev_resilver_done(spa);
3540 
3541 	/*
3542 	 * Kick off a resilver.
3543 	 */
3544 	if (tasks & SPA_ASYNC_RESILVER)
3545 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
3546 
3547 	/*
3548 	 * Let the world know that we're done.
3549 	 */
3550 	mutex_enter(&spa->spa_async_lock);
3551 	spa->spa_async_thread = NULL;
3552 	cv_broadcast(&spa->spa_async_cv);
3553 	mutex_exit(&spa->spa_async_lock);
3554 	thread_exit();
3555 }
3556 
3557 void
3558 spa_async_suspend(spa_t *spa)
3559 {
3560 	mutex_enter(&spa->spa_async_lock);
3561 	spa->spa_async_suspended++;
3562 	while (spa->spa_async_thread != NULL)
3563 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
3564 	mutex_exit(&spa->spa_async_lock);
3565 }
3566 
3567 void
3568 spa_async_resume(spa_t *spa)
3569 {
3570 	mutex_enter(&spa->spa_async_lock);
3571 	ASSERT(spa->spa_async_suspended != 0);
3572 	spa->spa_async_suspended--;
3573 	mutex_exit(&spa->spa_async_lock);
3574 }
3575 
3576 static void
3577 spa_async_dispatch(spa_t *spa)
3578 {
3579 	mutex_enter(&spa->spa_async_lock);
3580 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
3581 	    spa->spa_async_thread == NULL &&
3582 	    rootdir != NULL && !vn_is_readonly(rootdir))
3583 		spa->spa_async_thread = thread_create(NULL, 0,
3584 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
3585 	mutex_exit(&spa->spa_async_lock);
3586 }
3587 
3588 void
3589 spa_async_request(spa_t *spa, int task)
3590 {
3591 	mutex_enter(&spa->spa_async_lock);
3592 	spa->spa_async_tasks |= task;
3593 	mutex_exit(&spa->spa_async_lock);
3594 }
3595 
3596 /*
3597  * ==========================================================================
3598  * SPA syncing routines
3599  * ==========================================================================
3600  */
3601 
3602 static void
3603 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
3604 {
3605 	bplist_t *bpl = &spa->spa_sync_bplist;
3606 	dmu_tx_t *tx;
3607 	blkptr_t blk;
3608 	uint64_t itor = 0;
3609 	zio_t *zio;
3610 	int error;
3611 	uint8_t c = 1;
3612 
3613 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
3614 
3615 	while (bplist_iterate(bpl, &itor, &blk) == 0)
3616 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
3617 
3618 	error = zio_wait(zio);
3619 	ASSERT3U(error, ==, 0);
3620 
3621 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
3622 	bplist_vacate(bpl, tx);
3623 
3624 	/*
3625 	 * Pre-dirty the first block so we sync to convergence faster.
3626 	 * (Usually only the first block is needed.)
3627 	 */
3628 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
3629 	dmu_tx_commit(tx);
3630 }
3631 
3632 static void
3633 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
3634 {
3635 	char *packed = NULL;
3636 	size_t nvsize = 0;
3637 	dmu_buf_t *db;
3638 
3639 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
3640 
3641 	packed = kmem_alloc(nvsize, KM_SLEEP);
3642 
3643 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
3644 	    KM_SLEEP) == 0);
3645 
3646 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
3647 
3648 	kmem_free(packed, nvsize);
3649 
3650 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
3651 	dmu_buf_will_dirty(db, tx);
3652 	*(uint64_t *)db->db_data = nvsize;
3653 	dmu_buf_rele(db, FTAG);
3654 }
3655 
3656 static void
3657 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
3658     const char *config, const char *entry)
3659 {
3660 	nvlist_t *nvroot;
3661 	nvlist_t **list;
3662 	int i;
3663 
3664 	if (!sav->sav_sync)
3665 		return;
3666 
3667 	/*
3668 	 * Update the MOS nvlist describing the list of available devices.
3669 	 * spa_validate_aux() will have already made sure this nvlist is
3670 	 * valid and the vdevs are labeled appropriately.
3671 	 */
3672 	if (sav->sav_object == 0) {
3673 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
3674 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
3675 		    sizeof (uint64_t), tx);
3676 		VERIFY(zap_update(spa->spa_meta_objset,
3677 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
3678 		    &sav->sav_object, tx) == 0);
3679 	}
3680 
3681 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3682 	if (sav->sav_count == 0) {
3683 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
3684 	} else {
3685 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
3686 		for (i = 0; i < sav->sav_count; i++)
3687 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
3688 			    B_FALSE, B_FALSE, B_TRUE);
3689 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
3690 		    sav->sav_count) == 0);
3691 		for (i = 0; i < sav->sav_count; i++)
3692 			nvlist_free(list[i]);
3693 		kmem_free(list, sav->sav_count * sizeof (void *));
3694 	}
3695 
3696 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
3697 	nvlist_free(nvroot);
3698 
3699 	sav->sav_sync = B_FALSE;
3700 }
3701 
3702 static void
3703 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
3704 {
3705 	nvlist_t *config;
3706 
3707 	if (list_is_empty(&spa->spa_dirty_list))
3708 		return;
3709 
3710 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
3711 
3712 	if (spa->spa_config_syncing)
3713 		nvlist_free(spa->spa_config_syncing);
3714 	spa->spa_config_syncing = config;
3715 
3716 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
3717 }
3718 
3719 /*
3720  * Set zpool properties.
3721  */
3722 static void
3723 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
3724 {
3725 	spa_t *spa = arg1;
3726 	objset_t *mos = spa->spa_meta_objset;
3727 	nvlist_t *nvp = arg2;
3728 	nvpair_t *elem;
3729 	uint64_t intval;
3730 	char *strval;
3731 	zpool_prop_t prop;
3732 	const char *propname;
3733 	zprop_type_t proptype;
3734 	spa_config_dirent_t *dp;
3735 
3736 	elem = NULL;
3737 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
3738 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
3739 		case ZPOOL_PROP_VERSION:
3740 			/*
3741 			 * Only set version for non-zpool-creation cases
3742 			 * (set/import). spa_create() needs special care
3743 			 * for version setting.
3744 			 */
3745 			if (tx->tx_txg != TXG_INITIAL) {
3746 				VERIFY(nvpair_value_uint64(elem,
3747 				    &intval) == 0);
3748 				ASSERT(intval <= SPA_VERSION);
3749 				ASSERT(intval >= spa_version(spa));
3750 				spa->spa_uberblock.ub_version = intval;
3751 				vdev_config_dirty(spa->spa_root_vdev);
3752 			}
3753 			break;
3754 
3755 		case ZPOOL_PROP_ALTROOT:
3756 			/*
3757 			 * 'altroot' is a non-persistent property. It should
3758 			 * have been set temporarily at creation or import time.
3759 			 */
3760 			ASSERT(spa->spa_root != NULL);
3761 			break;
3762 
3763 		case ZPOOL_PROP_CACHEFILE:
3764 			/*
3765 			 * 'cachefile' is a non-persistent property, but note
3766 			 * an async request that the config cache needs to be
3767 			 * udpated.
3768 			 */
3769 			VERIFY(nvpair_value_string(elem, &strval) == 0);
3770 
3771 			dp = kmem_alloc(sizeof (spa_config_dirent_t),
3772 			    KM_SLEEP);
3773 
3774 			if (strval[0] == '\0')
3775 				dp->scd_path = spa_strdup(spa_config_path);
3776 			else if (strcmp(strval, "none") == 0)
3777 				dp->scd_path = NULL;
3778 			else
3779 				dp->scd_path = spa_strdup(strval);
3780 
3781 			list_insert_head(&spa->spa_config_list, dp);
3782 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
3783 			break;
3784 		default:
3785 			/*
3786 			 * Set pool property values in the poolprops mos object.
3787 			 */
3788 			mutex_enter(&spa->spa_props_lock);
3789 			if (spa->spa_pool_props_object == 0) {
3790 				objset_t *mos = spa->spa_meta_objset;
3791 
3792 				VERIFY((spa->spa_pool_props_object =
3793 				    zap_create(mos, DMU_OT_POOL_PROPS,
3794 				    DMU_OT_NONE, 0, tx)) > 0);
3795 
3796 				VERIFY(zap_update(mos,
3797 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
3798 				    8, 1, &spa->spa_pool_props_object, tx)
3799 				    == 0);
3800 			}
3801 			mutex_exit(&spa->spa_props_lock);
3802 
3803 			/* normalize the property name */
3804 			propname = zpool_prop_to_name(prop);
3805 			proptype = zpool_prop_get_type(prop);
3806 
3807 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
3808 				ASSERT(proptype == PROP_TYPE_STRING);
3809 				VERIFY(nvpair_value_string(elem, &strval) == 0);
3810 				VERIFY(zap_update(mos,
3811 				    spa->spa_pool_props_object, propname,
3812 				    1, strlen(strval) + 1, strval, tx) == 0);
3813 
3814 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
3815 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
3816 
3817 				if (proptype == PROP_TYPE_INDEX) {
3818 					const char *unused;
3819 					VERIFY(zpool_prop_index_to_string(
3820 					    prop, intval, &unused) == 0);
3821 				}
3822 				VERIFY(zap_update(mos,
3823 				    spa->spa_pool_props_object, propname,
3824 				    8, 1, &intval, tx) == 0);
3825 			} else {
3826 				ASSERT(0); /* not allowed */
3827 			}
3828 
3829 			switch (prop) {
3830 			case ZPOOL_PROP_DELEGATION:
3831 				spa->spa_delegation = intval;
3832 				break;
3833 			case ZPOOL_PROP_BOOTFS:
3834 				spa->spa_bootfs = intval;
3835 				break;
3836 			case ZPOOL_PROP_FAILUREMODE:
3837 				spa->spa_failmode = intval;
3838 				break;
3839 			default:
3840 				break;
3841 			}
3842 		}
3843 
3844 		/* log internal history if this is not a zpool create */
3845 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
3846 		    tx->tx_txg != TXG_INITIAL) {
3847 			spa_history_internal_log(LOG_POOL_PROPSET,
3848 			    spa, tx, cr, "%s %lld %s",
3849 			    nvpair_name(elem), intval, spa->spa_name);
3850 		}
3851 	}
3852 }
3853 
3854 /*
3855  * Sync the specified transaction group.  New blocks may be dirtied as
3856  * part of the process, so we iterate until it converges.
3857  */
3858 void
3859 spa_sync(spa_t *spa, uint64_t txg)
3860 {
3861 	dsl_pool_t *dp = spa->spa_dsl_pool;
3862 	objset_t *mos = spa->spa_meta_objset;
3863 	bplist_t *bpl = &spa->spa_sync_bplist;
3864 	vdev_t *rvd = spa->spa_root_vdev;
3865 	vdev_t *vd;
3866 	dmu_tx_t *tx;
3867 	int dirty_vdevs;
3868 
3869 	/*
3870 	 * Lock out configuration changes.
3871 	 */
3872 	spa_config_enter(spa, RW_READER, FTAG);
3873 
3874 	spa->spa_syncing_txg = txg;
3875 	spa->spa_sync_pass = 0;
3876 
3877 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3878 
3879 	tx = dmu_tx_create_assigned(dp, txg);
3880 
3881 	/*
3882 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
3883 	 * set spa_deflate if we have no raid-z vdevs.
3884 	 */
3885 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
3886 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
3887 		int i;
3888 
3889 		for (i = 0; i < rvd->vdev_children; i++) {
3890 			vd = rvd->vdev_child[i];
3891 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3892 				break;
3893 		}
3894 		if (i == rvd->vdev_children) {
3895 			spa->spa_deflate = TRUE;
3896 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3897 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3898 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3899 		}
3900 	}
3901 
3902 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
3903 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
3904 		dsl_pool_create_origin(dp, tx);
3905 
3906 		/* Keeping the origin open increases spa_minref */
3907 		spa->spa_minref += 3;
3908 	}
3909 
3910 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
3911 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
3912 		dsl_pool_upgrade_clones(dp, tx);
3913 	}
3914 
3915 	/*
3916 	 * If anything has changed in this txg, push the deferred frees
3917 	 * from the previous txg.  If not, leave them alone so that we
3918 	 * don't generate work on an otherwise idle system.
3919 	 */
3920 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3921 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3922 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3923 		spa_sync_deferred_frees(spa, txg);
3924 
3925 	/*
3926 	 * Iterate to convergence.
3927 	 */
3928 	do {
3929 		spa->spa_sync_pass++;
3930 
3931 		spa_sync_config_object(spa, tx);
3932 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
3933 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
3934 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
3935 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
3936 		spa_errlog_sync(spa, txg);
3937 		dsl_pool_sync(dp, txg);
3938 
3939 		dirty_vdevs = 0;
3940 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3941 			vdev_sync(vd, txg);
3942 			dirty_vdevs++;
3943 		}
3944 
3945 		bplist_sync(bpl, tx);
3946 	} while (dirty_vdevs);
3947 
3948 	bplist_close(bpl);
3949 
3950 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3951 
3952 	/*
3953 	 * Rewrite the vdev configuration (which includes the uberblock)
3954 	 * to commit the transaction group.
3955 	 *
3956 	 * If there are no dirty vdevs, we sync the uberblock to a few
3957 	 * random top-level vdevs that are known to be visible in the
3958 	 * config cache (see spa_vdev_add() for details).  If there *are*
3959 	 * dirty vdevs -- or if the sync to our random subset fails --
3960 	 * then sync the uberblock to all vdevs.
3961 	 */
3962 	if (list_is_empty(&spa->spa_dirty_list)) {
3963 		vdev_t *svd[SPA_DVAS_PER_BP];
3964 		int svdcount = 0;
3965 		int children = rvd->vdev_children;
3966 		int c0 = spa_get_random(children);
3967 		int c;
3968 
3969 		for (c = 0; c < children; c++) {
3970 			vd = rvd->vdev_child[(c0 + c) % children];
3971 			if (vd->vdev_ms_array == 0 || vd->vdev_islog)
3972 				continue;
3973 			svd[svdcount++] = vd;
3974 			if (svdcount == SPA_DVAS_PER_BP)
3975 				break;
3976 		}
3977 		vdev_config_sync(svd, svdcount, txg);
3978 	} else {
3979 		vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg);
3980 	}
3981 	dmu_tx_commit(tx);
3982 
3983 	/*
3984 	 * Clear the dirty config list.
3985 	 */
3986 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3987 		vdev_config_clean(vd);
3988 
3989 	/*
3990 	 * Now that the new config has synced transactionally,
3991 	 * let it become visible to the config cache.
3992 	 */
3993 	if (spa->spa_config_syncing != NULL) {
3994 		spa_config_set(spa, spa->spa_config_syncing);
3995 		spa->spa_config_txg = txg;
3996 		spa->spa_config_syncing = NULL;
3997 	}
3998 
3999 	spa->spa_traverse_wanted = B_TRUE;
4000 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
4001 	spa->spa_traverse_wanted = B_FALSE;
4002 	spa->spa_ubsync = spa->spa_uberblock;
4003 	rw_exit(&spa->spa_traverse_lock);
4004 
4005 	/*
4006 	 * Clean up the ZIL records for the synced txg.
4007 	 */
4008 	dsl_pool_zil_clean(dp);
4009 
4010 	/*
4011 	 * Update usable space statistics.
4012 	 */
4013 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
4014 		vdev_sync_done(vd, txg);
4015 
4016 	/*
4017 	 * It had better be the case that we didn't dirty anything
4018 	 * since vdev_config_sync().
4019 	 */
4020 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
4021 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
4022 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
4023 	ASSERT(bpl->bpl_queue == NULL);
4024 
4025 	spa_config_exit(spa, FTAG);
4026 
4027 	/*
4028 	 * If any async tasks have been requested, kick them off.
4029 	 */
4030 	spa_async_dispatch(spa);
4031 }
4032 
4033 /*
4034  * Sync all pools.  We don't want to hold the namespace lock across these
4035  * operations, so we take a reference on the spa_t and drop the lock during the
4036  * sync.
4037  */
4038 void
4039 spa_sync_allpools(void)
4040 {
4041 	spa_t *spa = NULL;
4042 	mutex_enter(&spa_namespace_lock);
4043 	while ((spa = spa_next(spa)) != NULL) {
4044 		if (spa_state(spa) != POOL_STATE_ACTIVE)
4045 			continue;
4046 		spa_open_ref(spa, FTAG);
4047 		mutex_exit(&spa_namespace_lock);
4048 		txg_wait_synced(spa_get_dsl(spa), 0);
4049 		mutex_enter(&spa_namespace_lock);
4050 		spa_close(spa, FTAG);
4051 	}
4052 	mutex_exit(&spa_namespace_lock);
4053 }
4054 
4055 /*
4056  * ==========================================================================
4057  * Miscellaneous routines
4058  * ==========================================================================
4059  */
4060 
4061 /*
4062  * Remove all pools in the system.
4063  */
4064 void
4065 spa_evict_all(void)
4066 {
4067 	spa_t *spa;
4068 
4069 	/*
4070 	 * Remove all cached state.  All pools should be closed now,
4071 	 * so every spa in the AVL tree should be unreferenced.
4072 	 */
4073 	mutex_enter(&spa_namespace_lock);
4074 	while ((spa = spa_next(NULL)) != NULL) {
4075 		/*
4076 		 * Stop async tasks.  The async thread may need to detach
4077 		 * a device that's been replaced, which requires grabbing
4078 		 * spa_namespace_lock, so we must drop it here.
4079 		 */
4080 		spa_open_ref(spa, FTAG);
4081 		mutex_exit(&spa_namespace_lock);
4082 		spa_async_suspend(spa);
4083 		mutex_enter(&spa_namespace_lock);
4084 		spa_close(spa, FTAG);
4085 
4086 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4087 			spa_unload(spa);
4088 			spa_deactivate(spa);
4089 		}
4090 		spa_remove(spa);
4091 	}
4092 	mutex_exit(&spa_namespace_lock);
4093 }
4094 
4095 vdev_t *
4096 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache)
4097 {
4098 	vdev_t *vd;
4099 	int i;
4100 
4101 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
4102 		return (vd);
4103 
4104 	if (l2cache) {
4105 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
4106 			vd = spa->spa_l2cache.sav_vdevs[i];
4107 			if (vd->vdev_guid == guid)
4108 				return (vd);
4109 		}
4110 	}
4111 
4112 	return (NULL);
4113 }
4114 
4115 void
4116 spa_upgrade(spa_t *spa, uint64_t version)
4117 {
4118 	spa_config_enter(spa, RW_WRITER, FTAG);
4119 
4120 	/*
4121 	 * This should only be called for a non-faulted pool, and since a
4122 	 * future version would result in an unopenable pool, this shouldn't be
4123 	 * possible.
4124 	 */
4125 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
4126 	ASSERT(version >= spa->spa_uberblock.ub_version);
4127 
4128 	spa->spa_uberblock.ub_version = version;
4129 	vdev_config_dirty(spa->spa_root_vdev);
4130 
4131 	spa_config_exit(spa, FTAG);
4132 
4133 	txg_wait_synced(spa_get_dsl(spa), 0);
4134 }
4135 
4136 boolean_t
4137 spa_has_spare(spa_t *spa, uint64_t guid)
4138 {
4139 	int i;
4140 	uint64_t spareguid;
4141 	spa_aux_vdev_t *sav = &spa->spa_spares;
4142 
4143 	for (i = 0; i < sav->sav_count; i++)
4144 		if (sav->sav_vdevs[i]->vdev_guid == guid)
4145 			return (B_TRUE);
4146 
4147 	for (i = 0; i < sav->sav_npending; i++) {
4148 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
4149 		    &spareguid) == 0 && spareguid == guid)
4150 			return (B_TRUE);
4151 	}
4152 
4153 	return (B_FALSE);
4154 }
4155 
4156 /*
4157  * Check if a pool has an active shared spare device.
4158  * Note: reference count of an active spare is 2, as a spare and as a replace
4159  */
4160 static boolean_t
4161 spa_has_active_shared_spare(spa_t *spa)
4162 {
4163 	int i, refcnt;
4164 	uint64_t pool;
4165 	spa_aux_vdev_t *sav = &spa->spa_spares;
4166 
4167 	for (i = 0; i < sav->sav_count; i++) {
4168 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
4169 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
4170 		    refcnt > 2)
4171 			return (B_TRUE);
4172 	}
4173 
4174 	return (B_FALSE);
4175 }
4176 
4177 /*
4178  * Post a sysevent corresponding to the given event.  The 'name' must be one of
4179  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
4180  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
4181  * in the userland libzpool, as we don't want consumers to misinterpret ztest
4182  * or zdb as real changes.
4183  */
4184 void
4185 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
4186 {
4187 #ifdef _KERNEL
4188 	sysevent_t		*ev;
4189 	sysevent_attr_list_t	*attr = NULL;
4190 	sysevent_value_t	value;
4191 	sysevent_id_t		eid;
4192 
4193 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
4194 	    SE_SLEEP);
4195 
4196 	value.value_type = SE_DATA_TYPE_STRING;
4197 	value.value.sv_string = spa_name(spa);
4198 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
4199 		goto done;
4200 
4201 	value.value_type = SE_DATA_TYPE_UINT64;
4202 	value.value.sv_uint64 = spa_guid(spa);
4203 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
4204 		goto done;
4205 
4206 	if (vd) {
4207 		value.value_type = SE_DATA_TYPE_UINT64;
4208 		value.value.sv_uint64 = vd->vdev_guid;
4209 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
4210 		    SE_SLEEP) != 0)
4211 			goto done;
4212 
4213 		if (vd->vdev_path) {
4214 			value.value_type = SE_DATA_TYPE_STRING;
4215 			value.value.sv_string = vd->vdev_path;
4216 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
4217 			    &value, SE_SLEEP) != 0)
4218 				goto done;
4219 		}
4220 	}
4221 
4222 	if (sysevent_attach_attributes(ev, attr) != 0)
4223 		goto done;
4224 	attr = NULL;
4225 
4226 	(void) log_sysevent(ev, SE_SLEEP, &eid);
4227 
4228 done:
4229 	if (attr)
4230 		sysevent_free_attr(attr);
4231 	sysevent_free(ev);
4232 #endif
4233 }
4234