xref: /titanic_52/usr/src/uts/common/fs/zfs/spa.c (revision ba3594ba9b5dd4c846c472a8d657edcb7c8109ac)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  * Copyright (c) 2011, 2014 by Delphix. All rights reserved.
25  * Copyright (c) 2013, 2014, Nexenta Systems, Inc.  All rights reserved.
26  */
27 
28 /*
29  * SPA: Storage Pool Allocator
30  *
31  * This file contains all the routines used when modifying on-disk SPA state.
32  * This includes opening, importing, destroying, exporting a pool, and syncing a
33  * pool.
34  */
35 
36 #include <sys/zfs_context.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/spa_impl.h>
39 #include <sys/zio.h>
40 #include <sys/zio_checksum.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/ddt.h>
46 #include <sys/vdev_impl.h>
47 #include <sys/metaslab.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/uberblock_impl.h>
50 #include <sys/txg.h>
51 #include <sys/avl.h>
52 #include <sys/dmu_traverse.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/unique.h>
55 #include <sys/dsl_pool.h>
56 #include <sys/dsl_dataset.h>
57 #include <sys/dsl_dir.h>
58 #include <sys/dsl_prop.h>
59 #include <sys/dsl_synctask.h>
60 #include <sys/fs/zfs.h>
61 #include <sys/arc.h>
62 #include <sys/callb.h>
63 #include <sys/systeminfo.h>
64 #include <sys/spa_boot.h>
65 #include <sys/zfs_ioctl.h>
66 #include <sys/dsl_scan.h>
67 #include <sys/zfeature.h>
68 #include <sys/dsl_destroy.h>
69 
70 #ifdef	_KERNEL
71 #include <sys/bootprops.h>
72 #include <sys/callb.h>
73 #include <sys/cpupart.h>
74 #include <sys/pool.h>
75 #include <sys/sysdc.h>
76 #include <sys/zone.h>
77 #endif	/* _KERNEL */
78 
79 #include "zfs_prop.h"
80 #include "zfs_comutil.h"
81 
82 /*
83  * The interval, in seconds, at which failed configuration cache file writes
84  * should be retried.
85  */
86 static int zfs_ccw_retry_interval = 300;
87 
88 typedef enum zti_modes {
89 	ZTI_MODE_FIXED,			/* value is # of threads (min 1) */
90 	ZTI_MODE_BATCH,			/* cpu-intensive; value is ignored */
91 	ZTI_MODE_NULL,			/* don't create a taskq */
92 	ZTI_NMODES
93 } zti_modes_t;
94 
95 #define	ZTI_P(n, q)	{ ZTI_MODE_FIXED, (n), (q) }
96 #define	ZTI_BATCH	{ ZTI_MODE_BATCH, 0, 1 }
97 #define	ZTI_NULL	{ ZTI_MODE_NULL, 0, 0 }
98 
99 #define	ZTI_N(n)	ZTI_P(n, 1)
100 #define	ZTI_ONE		ZTI_N(1)
101 
102 typedef struct zio_taskq_info {
103 	zti_modes_t zti_mode;
104 	uint_t zti_value;
105 	uint_t zti_count;
106 } zio_taskq_info_t;
107 
108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
109 	"issue", "issue_high", "intr", "intr_high"
110 };
111 
112 /*
113  * This table defines the taskq settings for each ZFS I/O type. When
114  * initializing a pool, we use this table to create an appropriately sized
115  * taskq. Some operations are low volume and therefore have a small, static
116  * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
117  * macros. Other operations process a large amount of data; the ZTI_BATCH
118  * macro causes us to create a taskq oriented for throughput. Some operations
119  * are so high frequency and short-lived that the taskq itself can become a a
120  * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
121  * additional degree of parallelism specified by the number of threads per-
122  * taskq and the number of taskqs; when dispatching an event in this case, the
123  * particular taskq is chosen at random.
124  *
125  * The different taskq priorities are to handle the different contexts (issue
126  * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that
127  * need to be handled with minimum delay.
128  */
129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
130 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
131 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* NULL */
132 	{ ZTI_N(8),	ZTI_NULL,	ZTI_P(12, 8),	ZTI_NULL }, /* READ */
133 	{ ZTI_BATCH,	ZTI_N(5),	ZTI_N(8),	ZTI_N(5) }, /* WRITE */
134 	{ ZTI_P(12, 8),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* FREE */
135 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* CLAIM */
136 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL }, /* IOCTL */
137 };
138 
139 static void spa_sync_version(void *arg, dmu_tx_t *tx);
140 static void spa_sync_props(void *arg, dmu_tx_t *tx);
141 static boolean_t spa_has_active_shared_spare(spa_t *spa);
142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
143     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
144     char **ereport);
145 static void spa_vdev_resilver_done(spa_t *spa);
146 
147 uint_t		zio_taskq_batch_pct = 75;	/* 1 thread per cpu in pset */
148 id_t		zio_taskq_psrset_bind = PS_NONE;
149 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
150 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
151 
152 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
153 extern int	zfs_sync_pass_deferred_free;
154 
155 /*
156  * This (illegal) pool name is used when temporarily importing a spa_t in order
157  * to get the vdev stats associated with the imported devices.
158  */
159 #define	TRYIMPORT_NAME	"$import"
160 
161 /*
162  * ==========================================================================
163  * SPA properties routines
164  * ==========================================================================
165  */
166 
167 /*
168  * Add a (source=src, propname=propval) list to an nvlist.
169  */
170 static void
171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
172     uint64_t intval, zprop_source_t src)
173 {
174 	const char *propname = zpool_prop_to_name(prop);
175 	nvlist_t *propval;
176 
177 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
178 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
179 
180 	if (strval != NULL)
181 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
182 	else
183 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
184 
185 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
186 	nvlist_free(propval);
187 }
188 
189 /*
190  * Get property values from the spa configuration.
191  */
192 static void
193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
194 {
195 	vdev_t *rvd = spa->spa_root_vdev;
196 	dsl_pool_t *pool = spa->spa_dsl_pool;
197 	uint64_t size, alloc, cap, version;
198 	zprop_source_t src = ZPROP_SRC_NONE;
199 	spa_config_dirent_t *dp;
200 	metaslab_class_t *mc = spa_normal_class(spa);
201 
202 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
203 
204 	if (rvd != NULL) {
205 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
206 		size = metaslab_class_get_space(spa_normal_class(spa));
207 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
208 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
209 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
210 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
211 		    size - alloc, src);
212 
213 		spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL,
214 		    metaslab_class_fragmentation(mc), src);
215 		spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL,
216 		    metaslab_class_expandable_space(mc), src);
217 		spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL,
218 		    (spa_mode(spa) == FREAD), src);
219 
220 		cap = (size == 0) ? 0 : (alloc * 100 / size);
221 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
222 
223 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
224 		    ddt_get_pool_dedup_ratio(spa), src);
225 
226 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
227 		    rvd->vdev_state, src);
228 
229 		version = spa_version(spa);
230 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
231 			src = ZPROP_SRC_DEFAULT;
232 		else
233 			src = ZPROP_SRC_LOCAL;
234 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
235 	}
236 
237 	if (pool != NULL) {
238 		/*
239 		 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
240 		 * when opening pools before this version freedir will be NULL.
241 		 */
242 		if (pool->dp_free_dir != NULL) {
243 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL,
244 			    pool->dp_free_dir->dd_phys->dd_used_bytes, src);
245 		} else {
246 			spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING,
247 			    NULL, 0, src);
248 		}
249 
250 		if (pool->dp_leak_dir != NULL) {
251 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL,
252 			    pool->dp_leak_dir->dd_phys->dd_used_bytes, src);
253 		} else {
254 			spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED,
255 			    NULL, 0, src);
256 		}
257 	}
258 
259 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
260 
261 	if (spa->spa_comment != NULL) {
262 		spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment,
263 		    0, ZPROP_SRC_LOCAL);
264 	}
265 
266 	if (spa->spa_root != NULL)
267 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
268 		    0, ZPROP_SRC_LOCAL);
269 
270 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
271 		if (dp->scd_path == NULL) {
272 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
273 			    "none", 0, ZPROP_SRC_LOCAL);
274 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
275 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
276 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
277 		}
278 	}
279 }
280 
281 /*
282  * Get zpool property values.
283  */
284 int
285 spa_prop_get(spa_t *spa, nvlist_t **nvp)
286 {
287 	objset_t *mos = spa->spa_meta_objset;
288 	zap_cursor_t zc;
289 	zap_attribute_t za;
290 	int err;
291 
292 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
293 
294 	mutex_enter(&spa->spa_props_lock);
295 
296 	/*
297 	 * Get properties from the spa config.
298 	 */
299 	spa_prop_get_config(spa, nvp);
300 
301 	/* If no pool property object, no more prop to get. */
302 	if (mos == NULL || spa->spa_pool_props_object == 0) {
303 		mutex_exit(&spa->spa_props_lock);
304 		return (0);
305 	}
306 
307 	/*
308 	 * Get properties from the MOS pool property object.
309 	 */
310 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
311 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
312 	    zap_cursor_advance(&zc)) {
313 		uint64_t intval = 0;
314 		char *strval = NULL;
315 		zprop_source_t src = ZPROP_SRC_DEFAULT;
316 		zpool_prop_t prop;
317 
318 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
319 			continue;
320 
321 		switch (za.za_integer_length) {
322 		case 8:
323 			/* integer property */
324 			if (za.za_first_integer !=
325 			    zpool_prop_default_numeric(prop))
326 				src = ZPROP_SRC_LOCAL;
327 
328 			if (prop == ZPOOL_PROP_BOOTFS) {
329 				dsl_pool_t *dp;
330 				dsl_dataset_t *ds = NULL;
331 
332 				dp = spa_get_dsl(spa);
333 				dsl_pool_config_enter(dp, FTAG);
334 				if (err = dsl_dataset_hold_obj(dp,
335 				    za.za_first_integer, FTAG, &ds)) {
336 					dsl_pool_config_exit(dp, FTAG);
337 					break;
338 				}
339 
340 				strval = kmem_alloc(
341 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
342 				    KM_SLEEP);
343 				dsl_dataset_name(ds, strval);
344 				dsl_dataset_rele(ds, FTAG);
345 				dsl_pool_config_exit(dp, FTAG);
346 			} else {
347 				strval = NULL;
348 				intval = za.za_first_integer;
349 			}
350 
351 			spa_prop_add_list(*nvp, prop, strval, intval, src);
352 
353 			if (strval != NULL)
354 				kmem_free(strval,
355 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
356 
357 			break;
358 
359 		case 1:
360 			/* string property */
361 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
362 			err = zap_lookup(mos, spa->spa_pool_props_object,
363 			    za.za_name, 1, za.za_num_integers, strval);
364 			if (err) {
365 				kmem_free(strval, za.za_num_integers);
366 				break;
367 			}
368 			spa_prop_add_list(*nvp, prop, strval, 0, src);
369 			kmem_free(strval, za.za_num_integers);
370 			break;
371 
372 		default:
373 			break;
374 		}
375 	}
376 	zap_cursor_fini(&zc);
377 	mutex_exit(&spa->spa_props_lock);
378 out:
379 	if (err && err != ENOENT) {
380 		nvlist_free(*nvp);
381 		*nvp = NULL;
382 		return (err);
383 	}
384 
385 	return (0);
386 }
387 
388 /*
389  * Validate the given pool properties nvlist and modify the list
390  * for the property values to be set.
391  */
392 static int
393 spa_prop_validate(spa_t *spa, nvlist_t *props)
394 {
395 	nvpair_t *elem;
396 	int error = 0, reset_bootfs = 0;
397 	uint64_t objnum = 0;
398 	boolean_t has_feature = B_FALSE;
399 
400 	elem = NULL;
401 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
402 		uint64_t intval;
403 		char *strval, *slash, *check, *fname;
404 		const char *propname = nvpair_name(elem);
405 		zpool_prop_t prop = zpool_name_to_prop(propname);
406 
407 		switch (prop) {
408 		case ZPROP_INVAL:
409 			if (!zpool_prop_feature(propname)) {
410 				error = SET_ERROR(EINVAL);
411 				break;
412 			}
413 
414 			/*
415 			 * Sanitize the input.
416 			 */
417 			if (nvpair_type(elem) != DATA_TYPE_UINT64) {
418 				error = SET_ERROR(EINVAL);
419 				break;
420 			}
421 
422 			if (nvpair_value_uint64(elem, &intval) != 0) {
423 				error = SET_ERROR(EINVAL);
424 				break;
425 			}
426 
427 			if (intval != 0) {
428 				error = SET_ERROR(EINVAL);
429 				break;
430 			}
431 
432 			fname = strchr(propname, '@') + 1;
433 			if (zfeature_lookup_name(fname, NULL) != 0) {
434 				error = SET_ERROR(EINVAL);
435 				break;
436 			}
437 
438 			has_feature = B_TRUE;
439 			break;
440 
441 		case ZPOOL_PROP_VERSION:
442 			error = nvpair_value_uint64(elem, &intval);
443 			if (!error &&
444 			    (intval < spa_version(spa) ||
445 			    intval > SPA_VERSION_BEFORE_FEATURES ||
446 			    has_feature))
447 				error = SET_ERROR(EINVAL);
448 			break;
449 
450 		case ZPOOL_PROP_DELEGATION:
451 		case ZPOOL_PROP_AUTOREPLACE:
452 		case ZPOOL_PROP_LISTSNAPS:
453 		case ZPOOL_PROP_AUTOEXPAND:
454 			error = nvpair_value_uint64(elem, &intval);
455 			if (!error && intval > 1)
456 				error = SET_ERROR(EINVAL);
457 			break;
458 
459 		case ZPOOL_PROP_BOOTFS:
460 			/*
461 			 * If the pool version is less than SPA_VERSION_BOOTFS,
462 			 * or the pool is still being created (version == 0),
463 			 * the bootfs property cannot be set.
464 			 */
465 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
466 				error = SET_ERROR(ENOTSUP);
467 				break;
468 			}
469 
470 			/*
471 			 * Make sure the vdev config is bootable
472 			 */
473 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
474 				error = SET_ERROR(ENOTSUP);
475 				break;
476 			}
477 
478 			reset_bootfs = 1;
479 
480 			error = nvpair_value_string(elem, &strval);
481 
482 			if (!error) {
483 				objset_t *os;
484 				uint64_t compress;
485 
486 				if (strval == NULL || strval[0] == '\0') {
487 					objnum = zpool_prop_default_numeric(
488 					    ZPOOL_PROP_BOOTFS);
489 					break;
490 				}
491 
492 				if (error = dmu_objset_hold(strval, FTAG, &os))
493 					break;
494 
495 				/* Must be ZPL and not gzip compressed. */
496 
497 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
498 					error = SET_ERROR(ENOTSUP);
499 				} else if ((error =
500 				    dsl_prop_get_int_ds(dmu_objset_ds(os),
501 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
502 				    &compress)) == 0 &&
503 				    !BOOTFS_COMPRESS_VALID(compress)) {
504 					error = SET_ERROR(ENOTSUP);
505 				} else {
506 					objnum = dmu_objset_id(os);
507 				}
508 				dmu_objset_rele(os, FTAG);
509 			}
510 			break;
511 
512 		case ZPOOL_PROP_FAILUREMODE:
513 			error = nvpair_value_uint64(elem, &intval);
514 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
515 			    intval > ZIO_FAILURE_MODE_PANIC))
516 				error = SET_ERROR(EINVAL);
517 
518 			/*
519 			 * This is a special case which only occurs when
520 			 * the pool has completely failed. This allows
521 			 * the user to change the in-core failmode property
522 			 * without syncing it out to disk (I/Os might
523 			 * currently be blocked). We do this by returning
524 			 * EIO to the caller (spa_prop_set) to trick it
525 			 * into thinking we encountered a property validation
526 			 * error.
527 			 */
528 			if (!error && spa_suspended(spa)) {
529 				spa->spa_failmode = intval;
530 				error = SET_ERROR(EIO);
531 			}
532 			break;
533 
534 		case ZPOOL_PROP_CACHEFILE:
535 			if ((error = nvpair_value_string(elem, &strval)) != 0)
536 				break;
537 
538 			if (strval[0] == '\0')
539 				break;
540 
541 			if (strcmp(strval, "none") == 0)
542 				break;
543 
544 			if (strval[0] != '/') {
545 				error = SET_ERROR(EINVAL);
546 				break;
547 			}
548 
549 			slash = strrchr(strval, '/');
550 			ASSERT(slash != NULL);
551 
552 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
553 			    strcmp(slash, "/..") == 0)
554 				error = SET_ERROR(EINVAL);
555 			break;
556 
557 		case ZPOOL_PROP_COMMENT:
558 			if ((error = nvpair_value_string(elem, &strval)) != 0)
559 				break;
560 			for (check = strval; *check != '\0'; check++) {
561 				/*
562 				 * The kernel doesn't have an easy isprint()
563 				 * check.  For this kernel check, we merely
564 				 * check ASCII apart from DEL.  Fix this if
565 				 * there is an easy-to-use kernel isprint().
566 				 */
567 				if (*check >= 0x7f) {
568 					error = SET_ERROR(EINVAL);
569 					break;
570 				}
571 				check++;
572 			}
573 			if (strlen(strval) > ZPROP_MAX_COMMENT)
574 				error = E2BIG;
575 			break;
576 
577 		case ZPOOL_PROP_DEDUPDITTO:
578 			if (spa_version(spa) < SPA_VERSION_DEDUP)
579 				error = SET_ERROR(ENOTSUP);
580 			else
581 				error = nvpair_value_uint64(elem, &intval);
582 			if (error == 0 &&
583 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
584 				error = SET_ERROR(EINVAL);
585 			break;
586 		}
587 
588 		if (error)
589 			break;
590 	}
591 
592 	if (!error && reset_bootfs) {
593 		error = nvlist_remove(props,
594 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
595 
596 		if (!error) {
597 			error = nvlist_add_uint64(props,
598 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
599 		}
600 	}
601 
602 	return (error);
603 }
604 
605 void
606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
607 {
608 	char *cachefile;
609 	spa_config_dirent_t *dp;
610 
611 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
612 	    &cachefile) != 0)
613 		return;
614 
615 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
616 	    KM_SLEEP);
617 
618 	if (cachefile[0] == '\0')
619 		dp->scd_path = spa_strdup(spa_config_path);
620 	else if (strcmp(cachefile, "none") == 0)
621 		dp->scd_path = NULL;
622 	else
623 		dp->scd_path = spa_strdup(cachefile);
624 
625 	list_insert_head(&spa->spa_config_list, dp);
626 	if (need_sync)
627 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
628 }
629 
630 int
631 spa_prop_set(spa_t *spa, nvlist_t *nvp)
632 {
633 	int error;
634 	nvpair_t *elem = NULL;
635 	boolean_t need_sync = B_FALSE;
636 
637 	if ((error = spa_prop_validate(spa, nvp)) != 0)
638 		return (error);
639 
640 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
641 		zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
642 
643 		if (prop == ZPOOL_PROP_CACHEFILE ||
644 		    prop == ZPOOL_PROP_ALTROOT ||
645 		    prop == ZPOOL_PROP_READONLY)
646 			continue;
647 
648 		if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) {
649 			uint64_t ver;
650 
651 			if (prop == ZPOOL_PROP_VERSION) {
652 				VERIFY(nvpair_value_uint64(elem, &ver) == 0);
653 			} else {
654 				ASSERT(zpool_prop_feature(nvpair_name(elem)));
655 				ver = SPA_VERSION_FEATURES;
656 				need_sync = B_TRUE;
657 			}
658 
659 			/* Save time if the version is already set. */
660 			if (ver == spa_version(spa))
661 				continue;
662 
663 			/*
664 			 * In addition to the pool directory object, we might
665 			 * create the pool properties object, the features for
666 			 * read object, the features for write object, or the
667 			 * feature descriptions object.
668 			 */
669 			error = dsl_sync_task(spa->spa_name, NULL,
670 			    spa_sync_version, &ver,
671 			    6, ZFS_SPACE_CHECK_RESERVED);
672 			if (error)
673 				return (error);
674 			continue;
675 		}
676 
677 		need_sync = B_TRUE;
678 		break;
679 	}
680 
681 	if (need_sync) {
682 		return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
683 		    nvp, 6, ZFS_SPACE_CHECK_RESERVED));
684 	}
685 
686 	return (0);
687 }
688 
689 /*
690  * If the bootfs property value is dsobj, clear it.
691  */
692 void
693 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
694 {
695 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
696 		VERIFY(zap_remove(spa->spa_meta_objset,
697 		    spa->spa_pool_props_object,
698 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
699 		spa->spa_bootfs = 0;
700 	}
701 }
702 
703 /*ARGSUSED*/
704 static int
705 spa_change_guid_check(void *arg, dmu_tx_t *tx)
706 {
707 	uint64_t *newguid = arg;
708 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
709 	vdev_t *rvd = spa->spa_root_vdev;
710 	uint64_t vdev_state;
711 
712 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
713 	vdev_state = rvd->vdev_state;
714 	spa_config_exit(spa, SCL_STATE, FTAG);
715 
716 	if (vdev_state != VDEV_STATE_HEALTHY)
717 		return (SET_ERROR(ENXIO));
718 
719 	ASSERT3U(spa_guid(spa), !=, *newguid);
720 
721 	return (0);
722 }
723 
724 static void
725 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
726 {
727 	uint64_t *newguid = arg;
728 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
729 	uint64_t oldguid;
730 	vdev_t *rvd = spa->spa_root_vdev;
731 
732 	oldguid = spa_guid(spa);
733 
734 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
735 	rvd->vdev_guid = *newguid;
736 	rvd->vdev_guid_sum += (*newguid - oldguid);
737 	vdev_config_dirty(rvd);
738 	spa_config_exit(spa, SCL_STATE, FTAG);
739 
740 	spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
741 	    oldguid, *newguid);
742 }
743 
744 /*
745  * Change the GUID for the pool.  This is done so that we can later
746  * re-import a pool built from a clone of our own vdevs.  We will modify
747  * the root vdev's guid, our own pool guid, and then mark all of our
748  * vdevs dirty.  Note that we must make sure that all our vdevs are
749  * online when we do this, or else any vdevs that weren't present
750  * would be orphaned from our pool.  We are also going to issue a
751  * sysevent to update any watchers.
752  */
753 int
754 spa_change_guid(spa_t *spa)
755 {
756 	int error;
757 	uint64_t guid;
758 
759 	mutex_enter(&spa->spa_vdev_top_lock);
760 	mutex_enter(&spa_namespace_lock);
761 	guid = spa_generate_guid(NULL);
762 
763 	error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
764 	    spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
765 
766 	if (error == 0) {
767 		spa_config_sync(spa, B_FALSE, B_TRUE);
768 		spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID);
769 	}
770 
771 	mutex_exit(&spa_namespace_lock);
772 	mutex_exit(&spa->spa_vdev_top_lock);
773 
774 	return (error);
775 }
776 
777 /*
778  * ==========================================================================
779  * SPA state manipulation (open/create/destroy/import/export)
780  * ==========================================================================
781  */
782 
783 static int
784 spa_error_entry_compare(const void *a, const void *b)
785 {
786 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
787 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
788 	int ret;
789 
790 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
791 	    sizeof (zbookmark_phys_t));
792 
793 	if (ret < 0)
794 		return (-1);
795 	else if (ret > 0)
796 		return (1);
797 	else
798 		return (0);
799 }
800 
801 /*
802  * Utility function which retrieves copies of the current logs and
803  * re-initializes them in the process.
804  */
805 void
806 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
807 {
808 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
809 
810 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
811 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
812 
813 	avl_create(&spa->spa_errlist_scrub,
814 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
815 	    offsetof(spa_error_entry_t, se_avl));
816 	avl_create(&spa->spa_errlist_last,
817 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
818 	    offsetof(spa_error_entry_t, se_avl));
819 }
820 
821 static void
822 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
823 {
824 	const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
825 	enum zti_modes mode = ztip->zti_mode;
826 	uint_t value = ztip->zti_value;
827 	uint_t count = ztip->zti_count;
828 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
829 	char name[32];
830 	uint_t flags = 0;
831 	boolean_t batch = B_FALSE;
832 
833 	if (mode == ZTI_MODE_NULL) {
834 		tqs->stqs_count = 0;
835 		tqs->stqs_taskq = NULL;
836 		return;
837 	}
838 
839 	ASSERT3U(count, >, 0);
840 
841 	tqs->stqs_count = count;
842 	tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
843 
844 	switch (mode) {
845 	case ZTI_MODE_FIXED:
846 		ASSERT3U(value, >=, 1);
847 		value = MAX(value, 1);
848 		break;
849 
850 	case ZTI_MODE_BATCH:
851 		batch = B_TRUE;
852 		flags |= TASKQ_THREADS_CPU_PCT;
853 		value = zio_taskq_batch_pct;
854 		break;
855 
856 	default:
857 		panic("unrecognized mode for %s_%s taskq (%u:%u) in "
858 		    "spa_activate()",
859 		    zio_type_name[t], zio_taskq_types[q], mode, value);
860 		break;
861 	}
862 
863 	for (uint_t i = 0; i < count; i++) {
864 		taskq_t *tq;
865 
866 		if (count > 1) {
867 			(void) snprintf(name, sizeof (name), "%s_%s_%u",
868 			    zio_type_name[t], zio_taskq_types[q], i);
869 		} else {
870 			(void) snprintf(name, sizeof (name), "%s_%s",
871 			    zio_type_name[t], zio_taskq_types[q]);
872 		}
873 
874 		if (zio_taskq_sysdc && spa->spa_proc != &p0) {
875 			if (batch)
876 				flags |= TASKQ_DC_BATCH;
877 
878 			tq = taskq_create_sysdc(name, value, 50, INT_MAX,
879 			    spa->spa_proc, zio_taskq_basedc, flags);
880 		} else {
881 			pri_t pri = maxclsyspri;
882 			/*
883 			 * The write issue taskq can be extremely CPU
884 			 * intensive.  Run it at slightly lower priority
885 			 * than the other taskqs.
886 			 */
887 			if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE)
888 				pri--;
889 
890 			tq = taskq_create_proc(name, value, pri, 50,
891 			    INT_MAX, spa->spa_proc, flags);
892 		}
893 
894 		tqs->stqs_taskq[i] = tq;
895 	}
896 }
897 
898 static void
899 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
900 {
901 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
902 
903 	if (tqs->stqs_taskq == NULL) {
904 		ASSERT0(tqs->stqs_count);
905 		return;
906 	}
907 
908 	for (uint_t i = 0; i < tqs->stqs_count; i++) {
909 		ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
910 		taskq_destroy(tqs->stqs_taskq[i]);
911 	}
912 
913 	kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
914 	tqs->stqs_taskq = NULL;
915 }
916 
917 /*
918  * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
919  * Note that a type may have multiple discrete taskqs to avoid lock contention
920  * on the taskq itself. In that case we choose which taskq at random by using
921  * the low bits of gethrtime().
922  */
923 void
924 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
925     task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent)
926 {
927 	spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
928 	taskq_t *tq;
929 
930 	ASSERT3P(tqs->stqs_taskq, !=, NULL);
931 	ASSERT3U(tqs->stqs_count, !=, 0);
932 
933 	if (tqs->stqs_count == 1) {
934 		tq = tqs->stqs_taskq[0];
935 	} else {
936 		tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count];
937 	}
938 
939 	taskq_dispatch_ent(tq, func, arg, flags, ent);
940 }
941 
942 static void
943 spa_create_zio_taskqs(spa_t *spa)
944 {
945 	for (int t = 0; t < ZIO_TYPES; t++) {
946 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
947 			spa_taskqs_init(spa, t, q);
948 		}
949 	}
950 }
951 
952 #ifdef _KERNEL
953 static void
954 spa_thread(void *arg)
955 {
956 	callb_cpr_t cprinfo;
957 
958 	spa_t *spa = arg;
959 	user_t *pu = PTOU(curproc);
960 
961 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
962 	    spa->spa_name);
963 
964 	ASSERT(curproc != &p0);
965 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
966 	    "zpool-%s", spa->spa_name);
967 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
968 
969 	/* bind this thread to the requested psrset */
970 	if (zio_taskq_psrset_bind != PS_NONE) {
971 		pool_lock();
972 		mutex_enter(&cpu_lock);
973 		mutex_enter(&pidlock);
974 		mutex_enter(&curproc->p_lock);
975 
976 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
977 		    0, NULL, NULL) == 0)  {
978 			curthread->t_bind_pset = zio_taskq_psrset_bind;
979 		} else {
980 			cmn_err(CE_WARN,
981 			    "Couldn't bind process for zfs pool \"%s\" to "
982 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
983 		}
984 
985 		mutex_exit(&curproc->p_lock);
986 		mutex_exit(&pidlock);
987 		mutex_exit(&cpu_lock);
988 		pool_unlock();
989 	}
990 
991 	if (zio_taskq_sysdc) {
992 		sysdc_thread_enter(curthread, 100, 0);
993 	}
994 
995 	spa->spa_proc = curproc;
996 	spa->spa_did = curthread->t_did;
997 
998 	spa_create_zio_taskqs(spa);
999 
1000 	mutex_enter(&spa->spa_proc_lock);
1001 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1002 
1003 	spa->spa_proc_state = SPA_PROC_ACTIVE;
1004 	cv_broadcast(&spa->spa_proc_cv);
1005 
1006 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
1007 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1008 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1009 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1010 
1011 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1012 	spa->spa_proc_state = SPA_PROC_GONE;
1013 	spa->spa_proc = &p0;
1014 	cv_broadcast(&spa->spa_proc_cv);
1015 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
1016 
1017 	mutex_enter(&curproc->p_lock);
1018 	lwp_exit();
1019 }
1020 #endif
1021 
1022 /*
1023  * Activate an uninitialized pool.
1024  */
1025 static void
1026 spa_activate(spa_t *spa, int mode)
1027 {
1028 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1029 
1030 	spa->spa_state = POOL_STATE_ACTIVE;
1031 	spa->spa_mode = mode;
1032 
1033 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
1034 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
1035 
1036 	/* Try to create a covering process */
1037 	mutex_enter(&spa->spa_proc_lock);
1038 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1039 	ASSERT(spa->spa_proc == &p0);
1040 	spa->spa_did = 0;
1041 
1042 	/* Only create a process if we're going to be around a while. */
1043 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1044 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1045 		    NULL, 0) == 0) {
1046 			spa->spa_proc_state = SPA_PROC_CREATED;
1047 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
1048 				cv_wait(&spa->spa_proc_cv,
1049 				    &spa->spa_proc_lock);
1050 			}
1051 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1052 			ASSERT(spa->spa_proc != &p0);
1053 			ASSERT(spa->spa_did != 0);
1054 		} else {
1055 #ifdef _KERNEL
1056 			cmn_err(CE_WARN,
1057 			    "Couldn't create process for zfs pool \"%s\"\n",
1058 			    spa->spa_name);
1059 #endif
1060 		}
1061 	}
1062 	mutex_exit(&spa->spa_proc_lock);
1063 
1064 	/* If we didn't create a process, we need to create our taskqs. */
1065 	if (spa->spa_proc == &p0) {
1066 		spa_create_zio_taskqs(spa);
1067 	}
1068 
1069 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1070 	    offsetof(vdev_t, vdev_config_dirty_node));
1071 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1072 	    offsetof(vdev_t, vdev_state_dirty_node));
1073 
1074 	txg_list_create(&spa->spa_vdev_txg_list,
1075 	    offsetof(struct vdev, vdev_txg_node));
1076 
1077 	avl_create(&spa->spa_errlist_scrub,
1078 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1079 	    offsetof(spa_error_entry_t, se_avl));
1080 	avl_create(&spa->spa_errlist_last,
1081 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
1082 	    offsetof(spa_error_entry_t, se_avl));
1083 }
1084 
1085 /*
1086  * Opposite of spa_activate().
1087  */
1088 static void
1089 spa_deactivate(spa_t *spa)
1090 {
1091 	ASSERT(spa->spa_sync_on == B_FALSE);
1092 	ASSERT(spa->spa_dsl_pool == NULL);
1093 	ASSERT(spa->spa_root_vdev == NULL);
1094 	ASSERT(spa->spa_async_zio_root == NULL);
1095 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1096 
1097 	txg_list_destroy(&spa->spa_vdev_txg_list);
1098 
1099 	list_destroy(&spa->spa_config_dirty_list);
1100 	list_destroy(&spa->spa_state_dirty_list);
1101 
1102 	for (int t = 0; t < ZIO_TYPES; t++) {
1103 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1104 			spa_taskqs_fini(spa, t, q);
1105 		}
1106 	}
1107 
1108 	metaslab_class_destroy(spa->spa_normal_class);
1109 	spa->spa_normal_class = NULL;
1110 
1111 	metaslab_class_destroy(spa->spa_log_class);
1112 	spa->spa_log_class = NULL;
1113 
1114 	/*
1115 	 * If this was part of an import or the open otherwise failed, we may
1116 	 * still have errors left in the queues.  Empty them just in case.
1117 	 */
1118 	spa_errlog_drain(spa);
1119 
1120 	avl_destroy(&spa->spa_errlist_scrub);
1121 	avl_destroy(&spa->spa_errlist_last);
1122 
1123 	spa->spa_state = POOL_STATE_UNINITIALIZED;
1124 
1125 	mutex_enter(&spa->spa_proc_lock);
1126 	if (spa->spa_proc_state != SPA_PROC_NONE) {
1127 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1128 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1129 		cv_broadcast(&spa->spa_proc_cv);
1130 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1131 			ASSERT(spa->spa_proc != &p0);
1132 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1133 		}
1134 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1135 		spa->spa_proc_state = SPA_PROC_NONE;
1136 	}
1137 	ASSERT(spa->spa_proc == &p0);
1138 	mutex_exit(&spa->spa_proc_lock);
1139 
1140 	/*
1141 	 * We want to make sure spa_thread() has actually exited the ZFS
1142 	 * module, so that the module can't be unloaded out from underneath
1143 	 * it.
1144 	 */
1145 	if (spa->spa_did != 0) {
1146 		thread_join(spa->spa_did);
1147 		spa->spa_did = 0;
1148 	}
1149 }
1150 
1151 /*
1152  * Verify a pool configuration, and construct the vdev tree appropriately.  This
1153  * will create all the necessary vdevs in the appropriate layout, with each vdev
1154  * in the CLOSED state.  This will prep the pool before open/creation/import.
1155  * All vdev validation is done by the vdev_alloc() routine.
1156  */
1157 static int
1158 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1159     uint_t id, int atype)
1160 {
1161 	nvlist_t **child;
1162 	uint_t children;
1163 	int error;
1164 
1165 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1166 		return (error);
1167 
1168 	if ((*vdp)->vdev_ops->vdev_op_leaf)
1169 		return (0);
1170 
1171 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1172 	    &child, &children);
1173 
1174 	if (error == ENOENT)
1175 		return (0);
1176 
1177 	if (error) {
1178 		vdev_free(*vdp);
1179 		*vdp = NULL;
1180 		return (SET_ERROR(EINVAL));
1181 	}
1182 
1183 	for (int c = 0; c < children; c++) {
1184 		vdev_t *vd;
1185 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1186 		    atype)) != 0) {
1187 			vdev_free(*vdp);
1188 			*vdp = NULL;
1189 			return (error);
1190 		}
1191 	}
1192 
1193 	ASSERT(*vdp != NULL);
1194 
1195 	return (0);
1196 }
1197 
1198 /*
1199  * Opposite of spa_load().
1200  */
1201 static void
1202 spa_unload(spa_t *spa)
1203 {
1204 	int i;
1205 
1206 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1207 
1208 	/*
1209 	 * Stop async tasks.
1210 	 */
1211 	spa_async_suspend(spa);
1212 
1213 	/*
1214 	 * Stop syncing.
1215 	 */
1216 	if (spa->spa_sync_on) {
1217 		txg_sync_stop(spa->spa_dsl_pool);
1218 		spa->spa_sync_on = B_FALSE;
1219 	}
1220 
1221 	/*
1222 	 * Wait for any outstanding async I/O to complete.
1223 	 */
1224 	if (spa->spa_async_zio_root != NULL) {
1225 		(void) zio_wait(spa->spa_async_zio_root);
1226 		spa->spa_async_zio_root = NULL;
1227 	}
1228 
1229 	bpobj_close(&spa->spa_deferred_bpobj);
1230 
1231 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1232 
1233 	/*
1234 	 * Close all vdevs.
1235 	 */
1236 	if (spa->spa_root_vdev)
1237 		vdev_free(spa->spa_root_vdev);
1238 	ASSERT(spa->spa_root_vdev == NULL);
1239 
1240 	/*
1241 	 * Close the dsl pool.
1242 	 */
1243 	if (spa->spa_dsl_pool) {
1244 		dsl_pool_close(spa->spa_dsl_pool);
1245 		spa->spa_dsl_pool = NULL;
1246 		spa->spa_meta_objset = NULL;
1247 	}
1248 
1249 	ddt_unload(spa);
1250 
1251 
1252 	/*
1253 	 * Drop and purge level 2 cache
1254 	 */
1255 	spa_l2cache_drop(spa);
1256 
1257 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1258 		vdev_free(spa->spa_spares.sav_vdevs[i]);
1259 	if (spa->spa_spares.sav_vdevs) {
1260 		kmem_free(spa->spa_spares.sav_vdevs,
1261 		    spa->spa_spares.sav_count * sizeof (void *));
1262 		spa->spa_spares.sav_vdevs = NULL;
1263 	}
1264 	if (spa->spa_spares.sav_config) {
1265 		nvlist_free(spa->spa_spares.sav_config);
1266 		spa->spa_spares.sav_config = NULL;
1267 	}
1268 	spa->spa_spares.sav_count = 0;
1269 
1270 	for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
1271 		vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
1272 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
1273 	}
1274 	if (spa->spa_l2cache.sav_vdevs) {
1275 		kmem_free(spa->spa_l2cache.sav_vdevs,
1276 		    spa->spa_l2cache.sav_count * sizeof (void *));
1277 		spa->spa_l2cache.sav_vdevs = NULL;
1278 	}
1279 	if (spa->spa_l2cache.sav_config) {
1280 		nvlist_free(spa->spa_l2cache.sav_config);
1281 		spa->spa_l2cache.sav_config = NULL;
1282 	}
1283 	spa->spa_l2cache.sav_count = 0;
1284 
1285 	spa->spa_async_suspended = 0;
1286 
1287 	if (spa->spa_comment != NULL) {
1288 		spa_strfree(spa->spa_comment);
1289 		spa->spa_comment = NULL;
1290 	}
1291 
1292 	spa_config_exit(spa, SCL_ALL, FTAG);
1293 }
1294 
1295 /*
1296  * Load (or re-load) the current list of vdevs describing the active spares for
1297  * this pool.  When this is called, we have some form of basic information in
1298  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1299  * then re-generate a more complete list including status information.
1300  */
1301 static void
1302 spa_load_spares(spa_t *spa)
1303 {
1304 	nvlist_t **spares;
1305 	uint_t nspares;
1306 	int i;
1307 	vdev_t *vd, *tvd;
1308 
1309 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1310 
1311 	/*
1312 	 * First, close and free any existing spare vdevs.
1313 	 */
1314 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1315 		vd = spa->spa_spares.sav_vdevs[i];
1316 
1317 		/* Undo the call to spa_activate() below */
1318 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1319 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1320 			spa_spare_remove(tvd);
1321 		vdev_close(vd);
1322 		vdev_free(vd);
1323 	}
1324 
1325 	if (spa->spa_spares.sav_vdevs)
1326 		kmem_free(spa->spa_spares.sav_vdevs,
1327 		    spa->spa_spares.sav_count * sizeof (void *));
1328 
1329 	if (spa->spa_spares.sav_config == NULL)
1330 		nspares = 0;
1331 	else
1332 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1333 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1334 
1335 	spa->spa_spares.sav_count = (int)nspares;
1336 	spa->spa_spares.sav_vdevs = NULL;
1337 
1338 	if (nspares == 0)
1339 		return;
1340 
1341 	/*
1342 	 * Construct the array of vdevs, opening them to get status in the
1343 	 * process.   For each spare, there is potentially two different vdev_t
1344 	 * structures associated with it: one in the list of spares (used only
1345 	 * for basic validation purposes) and one in the active vdev
1346 	 * configuration (if it's spared in).  During this phase we open and
1347 	 * validate each vdev on the spare list.  If the vdev also exists in the
1348 	 * active configuration, then we also mark this vdev as an active spare.
1349 	 */
1350 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1351 	    KM_SLEEP);
1352 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1353 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1354 		    VDEV_ALLOC_SPARE) == 0);
1355 		ASSERT(vd != NULL);
1356 
1357 		spa->spa_spares.sav_vdevs[i] = vd;
1358 
1359 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1360 		    B_FALSE)) != NULL) {
1361 			if (!tvd->vdev_isspare)
1362 				spa_spare_add(tvd);
1363 
1364 			/*
1365 			 * We only mark the spare active if we were successfully
1366 			 * able to load the vdev.  Otherwise, importing a pool
1367 			 * with a bad active spare would result in strange
1368 			 * behavior, because multiple pool would think the spare
1369 			 * is actively in use.
1370 			 *
1371 			 * There is a vulnerability here to an equally bizarre
1372 			 * circumstance, where a dead active spare is later
1373 			 * brought back to life (onlined or otherwise).  Given
1374 			 * the rarity of this scenario, and the extra complexity
1375 			 * it adds, we ignore the possibility.
1376 			 */
1377 			if (!vdev_is_dead(tvd))
1378 				spa_spare_activate(tvd);
1379 		}
1380 
1381 		vd->vdev_top = vd;
1382 		vd->vdev_aux = &spa->spa_spares;
1383 
1384 		if (vdev_open(vd) != 0)
1385 			continue;
1386 
1387 		if (vdev_validate_aux(vd) == 0)
1388 			spa_spare_add(vd);
1389 	}
1390 
1391 	/*
1392 	 * Recompute the stashed list of spares, with status information
1393 	 * this time.
1394 	 */
1395 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1396 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1397 
1398 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1399 	    KM_SLEEP);
1400 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1401 		spares[i] = vdev_config_generate(spa,
1402 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1403 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1404 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1405 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1406 		nvlist_free(spares[i]);
1407 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1408 }
1409 
1410 /*
1411  * Load (or re-load) the current list of vdevs describing the active l2cache for
1412  * this pool.  When this is called, we have some form of basic information in
1413  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1414  * then re-generate a more complete list including status information.
1415  * Devices which are already active have their details maintained, and are
1416  * not re-opened.
1417  */
1418 static void
1419 spa_load_l2cache(spa_t *spa)
1420 {
1421 	nvlist_t **l2cache;
1422 	uint_t nl2cache;
1423 	int i, j, oldnvdevs;
1424 	uint64_t guid;
1425 	vdev_t *vd, **oldvdevs, **newvdevs;
1426 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1427 
1428 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1429 
1430 	if (sav->sav_config != NULL) {
1431 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1432 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1433 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1434 	} else {
1435 		nl2cache = 0;
1436 		newvdevs = NULL;
1437 	}
1438 
1439 	oldvdevs = sav->sav_vdevs;
1440 	oldnvdevs = sav->sav_count;
1441 	sav->sav_vdevs = NULL;
1442 	sav->sav_count = 0;
1443 
1444 	/*
1445 	 * Process new nvlist of vdevs.
1446 	 */
1447 	for (i = 0; i < nl2cache; i++) {
1448 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1449 		    &guid) == 0);
1450 
1451 		newvdevs[i] = NULL;
1452 		for (j = 0; j < oldnvdevs; j++) {
1453 			vd = oldvdevs[j];
1454 			if (vd != NULL && guid == vd->vdev_guid) {
1455 				/*
1456 				 * Retain previous vdev for add/remove ops.
1457 				 */
1458 				newvdevs[i] = vd;
1459 				oldvdevs[j] = NULL;
1460 				break;
1461 			}
1462 		}
1463 
1464 		if (newvdevs[i] == NULL) {
1465 			/*
1466 			 * Create new vdev
1467 			 */
1468 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1469 			    VDEV_ALLOC_L2CACHE) == 0);
1470 			ASSERT(vd != NULL);
1471 			newvdevs[i] = vd;
1472 
1473 			/*
1474 			 * Commit this vdev as an l2cache device,
1475 			 * even if it fails to open.
1476 			 */
1477 			spa_l2cache_add(vd);
1478 
1479 			vd->vdev_top = vd;
1480 			vd->vdev_aux = sav;
1481 
1482 			spa_l2cache_activate(vd);
1483 
1484 			if (vdev_open(vd) != 0)
1485 				continue;
1486 
1487 			(void) vdev_validate_aux(vd);
1488 
1489 			if (!vdev_is_dead(vd))
1490 				l2arc_add_vdev(spa, vd);
1491 		}
1492 	}
1493 
1494 	/*
1495 	 * Purge vdevs that were dropped
1496 	 */
1497 	for (i = 0; i < oldnvdevs; i++) {
1498 		uint64_t pool;
1499 
1500 		vd = oldvdevs[i];
1501 		if (vd != NULL) {
1502 			ASSERT(vd->vdev_isl2cache);
1503 
1504 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1505 			    pool != 0ULL && l2arc_vdev_present(vd))
1506 				l2arc_remove_vdev(vd);
1507 			vdev_clear_stats(vd);
1508 			vdev_free(vd);
1509 		}
1510 	}
1511 
1512 	if (oldvdevs)
1513 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1514 
1515 	if (sav->sav_config == NULL)
1516 		goto out;
1517 
1518 	sav->sav_vdevs = newvdevs;
1519 	sav->sav_count = (int)nl2cache;
1520 
1521 	/*
1522 	 * Recompute the stashed list of l2cache devices, with status
1523 	 * information this time.
1524 	 */
1525 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1526 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1527 
1528 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1529 	for (i = 0; i < sav->sav_count; i++)
1530 		l2cache[i] = vdev_config_generate(spa,
1531 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1532 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1533 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1534 out:
1535 	for (i = 0; i < sav->sav_count; i++)
1536 		nvlist_free(l2cache[i]);
1537 	if (sav->sav_count)
1538 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1539 }
1540 
1541 static int
1542 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1543 {
1544 	dmu_buf_t *db;
1545 	char *packed = NULL;
1546 	size_t nvsize = 0;
1547 	int error;
1548 	*value = NULL;
1549 
1550 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1551 	nvsize = *(uint64_t *)db->db_data;
1552 	dmu_buf_rele(db, FTAG);
1553 
1554 	packed = kmem_alloc(nvsize, KM_SLEEP);
1555 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1556 	    DMU_READ_PREFETCH);
1557 	if (error == 0)
1558 		error = nvlist_unpack(packed, nvsize, value, 0);
1559 	kmem_free(packed, nvsize);
1560 
1561 	return (error);
1562 }
1563 
1564 /*
1565  * Checks to see if the given vdev could not be opened, in which case we post a
1566  * sysevent to notify the autoreplace code that the device has been removed.
1567  */
1568 static void
1569 spa_check_removed(vdev_t *vd)
1570 {
1571 	for (int c = 0; c < vd->vdev_children; c++)
1572 		spa_check_removed(vd->vdev_child[c]);
1573 
1574 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
1575 	    !vd->vdev_ishole) {
1576 		zfs_post_autoreplace(vd->vdev_spa, vd);
1577 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1578 	}
1579 }
1580 
1581 /*
1582  * Validate the current config against the MOS config
1583  */
1584 static boolean_t
1585 spa_config_valid(spa_t *spa, nvlist_t *config)
1586 {
1587 	vdev_t *mrvd, *rvd = spa->spa_root_vdev;
1588 	nvlist_t *nv;
1589 
1590 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0);
1591 
1592 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1593 	VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1594 
1595 	ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children);
1596 
1597 	/*
1598 	 * If we're doing a normal import, then build up any additional
1599 	 * diagnostic information about missing devices in this config.
1600 	 * We'll pass this up to the user for further processing.
1601 	 */
1602 	if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
1603 		nvlist_t **child, *nv;
1604 		uint64_t idx = 0;
1605 
1606 		child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **),
1607 		    KM_SLEEP);
1608 		VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0);
1609 
1610 		for (int c = 0; c < rvd->vdev_children; c++) {
1611 			vdev_t *tvd = rvd->vdev_child[c];
1612 			vdev_t *mtvd  = mrvd->vdev_child[c];
1613 
1614 			if (tvd->vdev_ops == &vdev_missing_ops &&
1615 			    mtvd->vdev_ops != &vdev_missing_ops &&
1616 			    mtvd->vdev_islog)
1617 				child[idx++] = vdev_config_generate(spa, mtvd,
1618 				    B_FALSE, 0);
1619 		}
1620 
1621 		if (idx) {
1622 			VERIFY(nvlist_add_nvlist_array(nv,
1623 			    ZPOOL_CONFIG_CHILDREN, child, idx) == 0);
1624 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
1625 			    ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0);
1626 
1627 			for (int i = 0; i < idx; i++)
1628 				nvlist_free(child[i]);
1629 		}
1630 		nvlist_free(nv);
1631 		kmem_free(child, rvd->vdev_children * sizeof (char **));
1632 	}
1633 
1634 	/*
1635 	 * Compare the root vdev tree with the information we have
1636 	 * from the MOS config (mrvd). Check each top-level vdev
1637 	 * with the corresponding MOS config top-level (mtvd).
1638 	 */
1639 	for (int c = 0; c < rvd->vdev_children; c++) {
1640 		vdev_t *tvd = rvd->vdev_child[c];
1641 		vdev_t *mtvd  = mrvd->vdev_child[c];
1642 
1643 		/*
1644 		 * Resolve any "missing" vdevs in the current configuration.
1645 		 * If we find that the MOS config has more accurate information
1646 		 * about the top-level vdev then use that vdev instead.
1647 		 */
1648 		if (tvd->vdev_ops == &vdev_missing_ops &&
1649 		    mtvd->vdev_ops != &vdev_missing_ops) {
1650 
1651 			if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG))
1652 				continue;
1653 
1654 			/*
1655 			 * Device specific actions.
1656 			 */
1657 			if (mtvd->vdev_islog) {
1658 				spa_set_log_state(spa, SPA_LOG_CLEAR);
1659 			} else {
1660 				/*
1661 				 * XXX - once we have 'readonly' pool
1662 				 * support we should be able to handle
1663 				 * missing data devices by transitioning
1664 				 * the pool to readonly.
1665 				 */
1666 				continue;
1667 			}
1668 
1669 			/*
1670 			 * Swap the missing vdev with the data we were
1671 			 * able to obtain from the MOS config.
1672 			 */
1673 			vdev_remove_child(rvd, tvd);
1674 			vdev_remove_child(mrvd, mtvd);
1675 
1676 			vdev_add_child(rvd, mtvd);
1677 			vdev_add_child(mrvd, tvd);
1678 
1679 			spa_config_exit(spa, SCL_ALL, FTAG);
1680 			vdev_load(mtvd);
1681 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1682 
1683 			vdev_reopen(rvd);
1684 		} else if (mtvd->vdev_islog) {
1685 			/*
1686 			 * Load the slog device's state from the MOS config
1687 			 * since it's possible that the label does not
1688 			 * contain the most up-to-date information.
1689 			 */
1690 			vdev_load_log_state(tvd, mtvd);
1691 			vdev_reopen(tvd);
1692 		}
1693 	}
1694 	vdev_free(mrvd);
1695 	spa_config_exit(spa, SCL_ALL, FTAG);
1696 
1697 	/*
1698 	 * Ensure we were able to validate the config.
1699 	 */
1700 	return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum);
1701 }
1702 
1703 /*
1704  * Check for missing log devices
1705  */
1706 static boolean_t
1707 spa_check_logs(spa_t *spa)
1708 {
1709 	boolean_t rv = B_FALSE;
1710 
1711 	switch (spa->spa_log_state) {
1712 	case SPA_LOG_MISSING:
1713 		/* need to recheck in case slog has been restored */
1714 	case SPA_LOG_UNKNOWN:
1715 		rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain,
1716 		    NULL, DS_FIND_CHILDREN) != 0);
1717 		if (rv)
1718 			spa_set_log_state(spa, SPA_LOG_MISSING);
1719 		break;
1720 	}
1721 	return (rv);
1722 }
1723 
1724 static boolean_t
1725 spa_passivate_log(spa_t *spa)
1726 {
1727 	vdev_t *rvd = spa->spa_root_vdev;
1728 	boolean_t slog_found = B_FALSE;
1729 
1730 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1731 
1732 	if (!spa_has_slogs(spa))
1733 		return (B_FALSE);
1734 
1735 	for (int c = 0; c < rvd->vdev_children; c++) {
1736 		vdev_t *tvd = rvd->vdev_child[c];
1737 		metaslab_group_t *mg = tvd->vdev_mg;
1738 
1739 		if (tvd->vdev_islog) {
1740 			metaslab_group_passivate(mg);
1741 			slog_found = B_TRUE;
1742 		}
1743 	}
1744 
1745 	return (slog_found);
1746 }
1747 
1748 static void
1749 spa_activate_log(spa_t *spa)
1750 {
1751 	vdev_t *rvd = spa->spa_root_vdev;
1752 
1753 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1754 
1755 	for (int c = 0; c < rvd->vdev_children; c++) {
1756 		vdev_t *tvd = rvd->vdev_child[c];
1757 		metaslab_group_t *mg = tvd->vdev_mg;
1758 
1759 		if (tvd->vdev_islog)
1760 			metaslab_group_activate(mg);
1761 	}
1762 }
1763 
1764 int
1765 spa_offline_log(spa_t *spa)
1766 {
1767 	int error;
1768 
1769 	error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1770 	    NULL, DS_FIND_CHILDREN);
1771 	if (error == 0) {
1772 		/*
1773 		 * We successfully offlined the log device, sync out the
1774 		 * current txg so that the "stubby" block can be removed
1775 		 * by zil_sync().
1776 		 */
1777 		txg_wait_synced(spa->spa_dsl_pool, 0);
1778 	}
1779 	return (error);
1780 }
1781 
1782 static void
1783 spa_aux_check_removed(spa_aux_vdev_t *sav)
1784 {
1785 	for (int i = 0; i < sav->sav_count; i++)
1786 		spa_check_removed(sav->sav_vdevs[i]);
1787 }
1788 
1789 void
1790 spa_claim_notify(zio_t *zio)
1791 {
1792 	spa_t *spa = zio->io_spa;
1793 
1794 	if (zio->io_error)
1795 		return;
1796 
1797 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1798 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1799 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1800 	mutex_exit(&spa->spa_props_lock);
1801 }
1802 
1803 typedef struct spa_load_error {
1804 	uint64_t	sle_meta_count;
1805 	uint64_t	sle_data_count;
1806 } spa_load_error_t;
1807 
1808 static void
1809 spa_load_verify_done(zio_t *zio)
1810 {
1811 	blkptr_t *bp = zio->io_bp;
1812 	spa_load_error_t *sle = zio->io_private;
1813 	dmu_object_type_t type = BP_GET_TYPE(bp);
1814 	int error = zio->io_error;
1815 	spa_t *spa = zio->io_spa;
1816 
1817 	if (error) {
1818 		if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
1819 		    type != DMU_OT_INTENT_LOG)
1820 			atomic_inc_64(&sle->sle_meta_count);
1821 		else
1822 			atomic_inc_64(&sle->sle_data_count);
1823 	}
1824 	zio_data_buf_free(zio->io_data, zio->io_size);
1825 
1826 	mutex_enter(&spa->spa_scrub_lock);
1827 	spa->spa_scrub_inflight--;
1828 	cv_broadcast(&spa->spa_scrub_io_cv);
1829 	mutex_exit(&spa->spa_scrub_lock);
1830 }
1831 
1832 /*
1833  * Maximum number of concurrent scrub i/os to create while verifying
1834  * a pool while importing it.
1835  */
1836 int spa_load_verify_maxinflight = 10000;
1837 boolean_t spa_load_verify_metadata = B_TRUE;
1838 boolean_t spa_load_verify_data = B_TRUE;
1839 
1840 /*ARGSUSED*/
1841 static int
1842 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1843     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1844 {
1845 	if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp))
1846 		return (0);
1847 	/*
1848 	 * Note: normally this routine will not be called if
1849 	 * spa_load_verify_metadata is not set.  However, it may be useful
1850 	 * to manually set the flag after the traversal has begun.
1851 	 */
1852 	if (!spa_load_verify_metadata)
1853 		return (0);
1854 	if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data)
1855 		return (0);
1856 
1857 	zio_t *rio = arg;
1858 	size_t size = BP_GET_PSIZE(bp);
1859 	void *data = zio_data_buf_alloc(size);
1860 
1861 	mutex_enter(&spa->spa_scrub_lock);
1862 	while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight)
1863 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
1864 	spa->spa_scrub_inflight++;
1865 	mutex_exit(&spa->spa_scrub_lock);
1866 
1867 	zio_nowait(zio_read(rio, spa, bp, data, size,
1868 	    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1869 	    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1870 	    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1871 	return (0);
1872 }
1873 
1874 static int
1875 spa_load_verify(spa_t *spa)
1876 {
1877 	zio_t *rio;
1878 	spa_load_error_t sle = { 0 };
1879 	zpool_rewind_policy_t policy;
1880 	boolean_t verify_ok = B_FALSE;
1881 	int error = 0;
1882 
1883 	zpool_get_rewind_policy(spa->spa_config, &policy);
1884 
1885 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1886 		return (0);
1887 
1888 	rio = zio_root(spa, NULL, &sle,
1889 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1890 
1891 	if (spa_load_verify_metadata) {
1892 		error = traverse_pool(spa, spa->spa_verify_min_txg,
1893 		    TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA,
1894 		    spa_load_verify_cb, rio);
1895 	}
1896 
1897 	(void) zio_wait(rio);
1898 
1899 	spa->spa_load_meta_errors = sle.sle_meta_count;
1900 	spa->spa_load_data_errors = sle.sle_data_count;
1901 
1902 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1903 	    sle.sle_data_count <= policy.zrp_maxdata) {
1904 		int64_t loss = 0;
1905 
1906 		verify_ok = B_TRUE;
1907 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1908 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1909 
1910 		loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
1911 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1912 		    ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0);
1913 		VERIFY(nvlist_add_int64(spa->spa_load_info,
1914 		    ZPOOL_CONFIG_REWIND_TIME, loss) == 0);
1915 		VERIFY(nvlist_add_uint64(spa->spa_load_info,
1916 		    ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0);
1917 	} else {
1918 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1919 	}
1920 
1921 	if (error) {
1922 		if (error != ENXIO && error != EIO)
1923 			error = SET_ERROR(EIO);
1924 		return (error);
1925 	}
1926 
1927 	return (verify_ok ? 0 : EIO);
1928 }
1929 
1930 /*
1931  * Find a value in the pool props object.
1932  */
1933 static void
1934 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1935 {
1936 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1937 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1938 }
1939 
1940 /*
1941  * Find a value in the pool directory object.
1942  */
1943 static int
1944 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1945 {
1946 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1947 	    name, sizeof (uint64_t), 1, val));
1948 }
1949 
1950 static int
1951 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1952 {
1953 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1954 	return (err);
1955 }
1956 
1957 /*
1958  * Fix up config after a partly-completed split.  This is done with the
1959  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1960  * pool have that entry in their config, but only the splitting one contains
1961  * a list of all the guids of the vdevs that are being split off.
1962  *
1963  * This function determines what to do with that list: either rejoin
1964  * all the disks to the pool, or complete the splitting process.  To attempt
1965  * the rejoin, each disk that is offlined is marked online again, and
1966  * we do a reopen() call.  If the vdev label for every disk that was
1967  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1968  * then we call vdev_split() on each disk, and complete the split.
1969  *
1970  * Otherwise we leave the config alone, with all the vdevs in place in
1971  * the original pool.
1972  */
1973 static void
1974 spa_try_repair(spa_t *spa, nvlist_t *config)
1975 {
1976 	uint_t extracted;
1977 	uint64_t *glist;
1978 	uint_t i, gcount;
1979 	nvlist_t *nvl;
1980 	vdev_t **vd;
1981 	boolean_t attempt_reopen;
1982 
1983 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1984 		return;
1985 
1986 	/* check that the config is complete */
1987 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1988 	    &glist, &gcount) != 0)
1989 		return;
1990 
1991 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1992 
1993 	/* attempt to online all the vdevs & validate */
1994 	attempt_reopen = B_TRUE;
1995 	for (i = 0; i < gcount; i++) {
1996 		if (glist[i] == 0)	/* vdev is hole */
1997 			continue;
1998 
1999 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
2000 		if (vd[i] == NULL) {
2001 			/*
2002 			 * Don't bother attempting to reopen the disks;
2003 			 * just do the split.
2004 			 */
2005 			attempt_reopen = B_FALSE;
2006 		} else {
2007 			/* attempt to re-online it */
2008 			vd[i]->vdev_offline = B_FALSE;
2009 		}
2010 	}
2011 
2012 	if (attempt_reopen) {
2013 		vdev_reopen(spa->spa_root_vdev);
2014 
2015 		/* check each device to see what state it's in */
2016 		for (extracted = 0, i = 0; i < gcount; i++) {
2017 			if (vd[i] != NULL &&
2018 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
2019 				break;
2020 			++extracted;
2021 		}
2022 	}
2023 
2024 	/*
2025 	 * If every disk has been moved to the new pool, or if we never
2026 	 * even attempted to look at them, then we split them off for
2027 	 * good.
2028 	 */
2029 	if (!attempt_reopen || gcount == extracted) {
2030 		for (i = 0; i < gcount; i++)
2031 			if (vd[i] != NULL)
2032 				vdev_split(vd[i]);
2033 		vdev_reopen(spa->spa_root_vdev);
2034 	}
2035 
2036 	kmem_free(vd, gcount * sizeof (vdev_t *));
2037 }
2038 
2039 static int
2040 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
2041     boolean_t mosconfig)
2042 {
2043 	nvlist_t *config = spa->spa_config;
2044 	char *ereport = FM_EREPORT_ZFS_POOL;
2045 	char *comment;
2046 	int error;
2047 	uint64_t pool_guid;
2048 	nvlist_t *nvl;
2049 
2050 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
2051 		return (SET_ERROR(EINVAL));
2052 
2053 	ASSERT(spa->spa_comment == NULL);
2054 	if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
2055 		spa->spa_comment = spa_strdup(comment);
2056 
2057 	/*
2058 	 * Versioning wasn't explicitly added to the label until later, so if
2059 	 * it's not present treat it as the initial version.
2060 	 */
2061 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
2062 	    &spa->spa_ubsync.ub_version) != 0)
2063 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
2064 
2065 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
2066 	    &spa->spa_config_txg);
2067 
2068 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
2069 	    spa_guid_exists(pool_guid, 0)) {
2070 		error = SET_ERROR(EEXIST);
2071 	} else {
2072 		spa->spa_config_guid = pool_guid;
2073 
2074 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
2075 		    &nvl) == 0) {
2076 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
2077 			    KM_SLEEP) == 0);
2078 		}
2079 
2080 		nvlist_free(spa->spa_load_info);
2081 		spa->spa_load_info = fnvlist_alloc();
2082 
2083 		gethrestime(&spa->spa_loaded_ts);
2084 		error = spa_load_impl(spa, pool_guid, config, state, type,
2085 		    mosconfig, &ereport);
2086 	}
2087 
2088 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2089 	if (error) {
2090 		if (error != EEXIST) {
2091 			spa->spa_loaded_ts.tv_sec = 0;
2092 			spa->spa_loaded_ts.tv_nsec = 0;
2093 		}
2094 		if (error != EBADF) {
2095 			zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
2096 		}
2097 	}
2098 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
2099 	spa->spa_ena = 0;
2100 
2101 	return (error);
2102 }
2103 
2104 /*
2105  * Load an existing storage pool, using the pool's builtin spa_config as a
2106  * source of configuration information.
2107  */
2108 static int
2109 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
2110     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
2111     char **ereport)
2112 {
2113 	int error = 0;
2114 	nvlist_t *nvroot = NULL;
2115 	nvlist_t *label;
2116 	vdev_t *rvd;
2117 	uberblock_t *ub = &spa->spa_uberblock;
2118 	uint64_t children, config_cache_txg = spa->spa_config_txg;
2119 	int orig_mode = spa->spa_mode;
2120 	int parse;
2121 	uint64_t obj;
2122 	boolean_t missing_feat_write = B_FALSE;
2123 
2124 	/*
2125 	 * If this is an untrusted config, access the pool in read-only mode.
2126 	 * This prevents things like resilvering recently removed devices.
2127 	 */
2128 	if (!mosconfig)
2129 		spa->spa_mode = FREAD;
2130 
2131 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
2132 
2133 	spa->spa_load_state = state;
2134 
2135 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
2136 		return (SET_ERROR(EINVAL));
2137 
2138 	parse = (type == SPA_IMPORT_EXISTING ?
2139 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
2140 
2141 	/*
2142 	 * Create "The Godfather" zio to hold all async IOs
2143 	 */
2144 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2145 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2146 
2147 	/*
2148 	 * Parse the configuration into a vdev tree.  We explicitly set the
2149 	 * value that will be returned by spa_version() since parsing the
2150 	 * configuration requires knowing the version number.
2151 	 */
2152 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2153 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
2154 	spa_config_exit(spa, SCL_ALL, FTAG);
2155 
2156 	if (error != 0)
2157 		return (error);
2158 
2159 	ASSERT(spa->spa_root_vdev == rvd);
2160 
2161 	if (type != SPA_IMPORT_ASSEMBLE) {
2162 		ASSERT(spa_guid(spa) == pool_guid);
2163 	}
2164 
2165 	/*
2166 	 * Try to open all vdevs, loading each label in the process.
2167 	 */
2168 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2169 	error = vdev_open(rvd);
2170 	spa_config_exit(spa, SCL_ALL, FTAG);
2171 	if (error != 0)
2172 		return (error);
2173 
2174 	/*
2175 	 * We need to validate the vdev labels against the configuration that
2176 	 * we have in hand, which is dependent on the setting of mosconfig. If
2177 	 * mosconfig is true then we're validating the vdev labels based on
2178 	 * that config.  Otherwise, we're validating against the cached config
2179 	 * (zpool.cache) that was read when we loaded the zfs module, and then
2180 	 * later we will recursively call spa_load() and validate against
2181 	 * the vdev config.
2182 	 *
2183 	 * If we're assembling a new pool that's been split off from an
2184 	 * existing pool, the labels haven't yet been updated so we skip
2185 	 * validation for now.
2186 	 */
2187 	if (type != SPA_IMPORT_ASSEMBLE) {
2188 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2189 		error = vdev_validate(rvd, mosconfig);
2190 		spa_config_exit(spa, SCL_ALL, FTAG);
2191 
2192 		if (error != 0)
2193 			return (error);
2194 
2195 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2196 			return (SET_ERROR(ENXIO));
2197 	}
2198 
2199 	/*
2200 	 * Find the best uberblock.
2201 	 */
2202 	vdev_uberblock_load(rvd, ub, &label);
2203 
2204 	/*
2205 	 * If we weren't able to find a single valid uberblock, return failure.
2206 	 */
2207 	if (ub->ub_txg == 0) {
2208 		nvlist_free(label);
2209 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
2210 	}
2211 
2212 	/*
2213 	 * If the pool has an unsupported version we can't open it.
2214 	 */
2215 	if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
2216 		nvlist_free(label);
2217 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
2218 	}
2219 
2220 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2221 		nvlist_t *features;
2222 
2223 		/*
2224 		 * If we weren't able to find what's necessary for reading the
2225 		 * MOS in the label, return failure.
2226 		 */
2227 		if (label == NULL || nvlist_lookup_nvlist(label,
2228 		    ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) {
2229 			nvlist_free(label);
2230 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2231 			    ENXIO));
2232 		}
2233 
2234 		/*
2235 		 * Update our in-core representation with the definitive values
2236 		 * from the label.
2237 		 */
2238 		nvlist_free(spa->spa_label_features);
2239 		VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0);
2240 	}
2241 
2242 	nvlist_free(label);
2243 
2244 	/*
2245 	 * Look through entries in the label nvlist's features_for_read. If
2246 	 * there is a feature listed there which we don't understand then we
2247 	 * cannot open a pool.
2248 	 */
2249 	if (ub->ub_version >= SPA_VERSION_FEATURES) {
2250 		nvlist_t *unsup_feat;
2251 
2252 		VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) ==
2253 		    0);
2254 
2255 		for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
2256 		    NULL); nvp != NULL;
2257 		    nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
2258 			if (!zfeature_is_supported(nvpair_name(nvp))) {
2259 				VERIFY(nvlist_add_string(unsup_feat,
2260 				    nvpair_name(nvp), "") == 0);
2261 			}
2262 		}
2263 
2264 		if (!nvlist_empty(unsup_feat)) {
2265 			VERIFY(nvlist_add_nvlist(spa->spa_load_info,
2266 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0);
2267 			nvlist_free(unsup_feat);
2268 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2269 			    ENOTSUP));
2270 		}
2271 
2272 		nvlist_free(unsup_feat);
2273 	}
2274 
2275 	/*
2276 	 * If the vdev guid sum doesn't match the uberblock, we have an
2277 	 * incomplete configuration.  We first check to see if the pool
2278 	 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN).
2279 	 * If it is, defer the vdev_guid_sum check till later so we
2280 	 * can handle missing vdevs.
2281 	 */
2282 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN,
2283 	    &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE &&
2284 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
2285 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
2286 
2287 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
2288 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2289 		spa_try_repair(spa, config);
2290 		spa_config_exit(spa, SCL_ALL, FTAG);
2291 		nvlist_free(spa->spa_config_splitting);
2292 		spa->spa_config_splitting = NULL;
2293 	}
2294 
2295 	/*
2296 	 * Initialize internal SPA structures.
2297 	 */
2298 	spa->spa_state = POOL_STATE_ACTIVE;
2299 	spa->spa_ubsync = spa->spa_uberblock;
2300 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
2301 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
2302 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
2303 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
2304 	spa->spa_claim_max_txg = spa->spa_first_txg;
2305 	spa->spa_prev_software_version = ub->ub_software_version;
2306 
2307 	error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
2308 	if (error)
2309 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2310 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
2311 
2312 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
2313 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2314 
2315 	if (spa_version(spa) >= SPA_VERSION_FEATURES) {
2316 		boolean_t missing_feat_read = B_FALSE;
2317 		nvlist_t *unsup_feat, *enabled_feat;
2318 
2319 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
2320 		    &spa->spa_feat_for_read_obj) != 0) {
2321 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2322 		}
2323 
2324 		if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
2325 		    &spa->spa_feat_for_write_obj) != 0) {
2326 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2327 		}
2328 
2329 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
2330 		    &spa->spa_feat_desc_obj) != 0) {
2331 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2332 		}
2333 
2334 		enabled_feat = fnvlist_alloc();
2335 		unsup_feat = fnvlist_alloc();
2336 
2337 		if (!spa_features_check(spa, B_FALSE,
2338 		    unsup_feat, enabled_feat))
2339 			missing_feat_read = B_TRUE;
2340 
2341 		if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) {
2342 			if (!spa_features_check(spa, B_TRUE,
2343 			    unsup_feat, enabled_feat)) {
2344 				missing_feat_write = B_TRUE;
2345 			}
2346 		}
2347 
2348 		fnvlist_add_nvlist(spa->spa_load_info,
2349 		    ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
2350 
2351 		if (!nvlist_empty(unsup_feat)) {
2352 			fnvlist_add_nvlist(spa->spa_load_info,
2353 			    ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
2354 		}
2355 
2356 		fnvlist_free(enabled_feat);
2357 		fnvlist_free(unsup_feat);
2358 
2359 		if (!missing_feat_read) {
2360 			fnvlist_add_boolean(spa->spa_load_info,
2361 			    ZPOOL_CONFIG_CAN_RDONLY);
2362 		}
2363 
2364 		/*
2365 		 * If the state is SPA_LOAD_TRYIMPORT, our objective is
2366 		 * twofold: to determine whether the pool is available for
2367 		 * import in read-write mode and (if it is not) whether the
2368 		 * pool is available for import in read-only mode. If the pool
2369 		 * is available for import in read-write mode, it is displayed
2370 		 * as available in userland; if it is not available for import
2371 		 * in read-only mode, it is displayed as unavailable in
2372 		 * userland. If the pool is available for import in read-only
2373 		 * mode but not read-write mode, it is displayed as unavailable
2374 		 * in userland with a special note that the pool is actually
2375 		 * available for open in read-only mode.
2376 		 *
2377 		 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
2378 		 * missing a feature for write, we must first determine whether
2379 		 * the pool can be opened read-only before returning to
2380 		 * userland in order to know whether to display the
2381 		 * abovementioned note.
2382 		 */
2383 		if (missing_feat_read || (missing_feat_write &&
2384 		    spa_writeable(spa))) {
2385 			return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
2386 			    ENOTSUP));
2387 		}
2388 
2389 		/*
2390 		 * Load refcounts for ZFS features from disk into an in-memory
2391 		 * cache during SPA initialization.
2392 		 */
2393 		for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
2394 			uint64_t refcount;
2395 
2396 			error = feature_get_refcount_from_disk(spa,
2397 			    &spa_feature_table[i], &refcount);
2398 			if (error == 0) {
2399 				spa->spa_feat_refcount_cache[i] = refcount;
2400 			} else if (error == ENOTSUP) {
2401 				spa->spa_feat_refcount_cache[i] =
2402 				    SPA_FEATURE_DISABLED;
2403 			} else {
2404 				return (spa_vdev_err(rvd,
2405 				    VDEV_AUX_CORRUPT_DATA, EIO));
2406 			}
2407 		}
2408 	}
2409 
2410 	if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
2411 		if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
2412 		    &spa->spa_feat_enabled_txg_obj) != 0)
2413 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2414 	}
2415 
2416 	spa->spa_is_initializing = B_TRUE;
2417 	error = dsl_pool_open(spa->spa_dsl_pool);
2418 	spa->spa_is_initializing = B_FALSE;
2419 	if (error != 0)
2420 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2421 
2422 	if (!mosconfig) {
2423 		uint64_t hostid;
2424 		nvlist_t *policy = NULL, *nvconfig;
2425 
2426 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2427 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2428 
2429 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
2430 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
2431 			char *hostname;
2432 			unsigned long myhostid = 0;
2433 
2434 			VERIFY(nvlist_lookup_string(nvconfig,
2435 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
2436 
2437 #ifdef	_KERNEL
2438 			myhostid = zone_get_hostid(NULL);
2439 #else	/* _KERNEL */
2440 			/*
2441 			 * We're emulating the system's hostid in userland, so
2442 			 * we can't use zone_get_hostid().
2443 			 */
2444 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
2445 #endif	/* _KERNEL */
2446 			if (hostid != 0 && myhostid != 0 &&
2447 			    hostid != myhostid) {
2448 				nvlist_free(nvconfig);
2449 				cmn_err(CE_WARN, "pool '%s' could not be "
2450 				    "loaded as it was last accessed by "
2451 				    "another system (host: %s hostid: 0x%lx). "
2452 				    "See: http://illumos.org/msg/ZFS-8000-EY",
2453 				    spa_name(spa), hostname,
2454 				    (unsigned long)hostid);
2455 				return (SET_ERROR(EBADF));
2456 			}
2457 		}
2458 		if (nvlist_lookup_nvlist(spa->spa_config,
2459 		    ZPOOL_REWIND_POLICY, &policy) == 0)
2460 			VERIFY(nvlist_add_nvlist(nvconfig,
2461 			    ZPOOL_REWIND_POLICY, policy) == 0);
2462 
2463 		spa_config_set(spa, nvconfig);
2464 		spa_unload(spa);
2465 		spa_deactivate(spa);
2466 		spa_activate(spa, orig_mode);
2467 
2468 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
2469 	}
2470 
2471 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
2472 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2473 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
2474 	if (error != 0)
2475 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2476 
2477 	/*
2478 	 * Load the bit that tells us to use the new accounting function
2479 	 * (raid-z deflation).  If we have an older pool, this will not
2480 	 * be present.
2481 	 */
2482 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
2483 	if (error != 0 && error != ENOENT)
2484 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2485 
2486 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
2487 	    &spa->spa_creation_version);
2488 	if (error != 0 && error != ENOENT)
2489 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2490 
2491 	/*
2492 	 * Load the persistent error log.  If we have an older pool, this will
2493 	 * not be present.
2494 	 */
2495 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
2496 	if (error != 0 && error != ENOENT)
2497 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2498 
2499 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
2500 	    &spa->spa_errlog_scrub);
2501 	if (error != 0 && error != ENOENT)
2502 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2503 
2504 	/*
2505 	 * Load the history object.  If we have an older pool, this
2506 	 * will not be present.
2507 	 */
2508 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
2509 	if (error != 0 && error != ENOENT)
2510 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2511 
2512 	/*
2513 	 * If we're assembling the pool from the split-off vdevs of
2514 	 * an existing pool, we don't want to attach the spares & cache
2515 	 * devices.
2516 	 */
2517 
2518 	/*
2519 	 * Load any hot spares for this pool.
2520 	 */
2521 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
2522 	if (error != 0 && error != ENOENT)
2523 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2524 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2525 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
2526 		if (load_nvlist(spa, spa->spa_spares.sav_object,
2527 		    &spa->spa_spares.sav_config) != 0)
2528 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2529 
2530 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2531 		spa_load_spares(spa);
2532 		spa_config_exit(spa, SCL_ALL, FTAG);
2533 	} else if (error == 0) {
2534 		spa->spa_spares.sav_sync = B_TRUE;
2535 	}
2536 
2537 	/*
2538 	 * Load any level 2 ARC devices for this pool.
2539 	 */
2540 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
2541 	    &spa->spa_l2cache.sav_object);
2542 	if (error != 0 && error != ENOENT)
2543 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2544 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
2545 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
2546 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
2547 		    &spa->spa_l2cache.sav_config) != 0)
2548 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2549 
2550 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2551 		spa_load_l2cache(spa);
2552 		spa_config_exit(spa, SCL_ALL, FTAG);
2553 	} else if (error == 0) {
2554 		spa->spa_l2cache.sav_sync = B_TRUE;
2555 	}
2556 
2557 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2558 
2559 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
2560 	if (error && error != ENOENT)
2561 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2562 
2563 	if (error == 0) {
2564 		uint64_t autoreplace;
2565 
2566 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
2567 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
2568 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
2569 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
2570 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
2571 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
2572 		    &spa->spa_dedup_ditto);
2573 
2574 		spa->spa_autoreplace = (autoreplace != 0);
2575 	}
2576 
2577 	/*
2578 	 * If the 'autoreplace' property is set, then post a resource notifying
2579 	 * the ZFS DE that it should not issue any faults for unopenable
2580 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
2581 	 * unopenable vdevs so that the normal autoreplace handler can take
2582 	 * over.
2583 	 */
2584 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
2585 		spa_check_removed(spa->spa_root_vdev);
2586 		/*
2587 		 * For the import case, this is done in spa_import(), because
2588 		 * at this point we're using the spare definitions from
2589 		 * the MOS config, not necessarily from the userland config.
2590 		 */
2591 		if (state != SPA_LOAD_IMPORT) {
2592 			spa_aux_check_removed(&spa->spa_spares);
2593 			spa_aux_check_removed(&spa->spa_l2cache);
2594 		}
2595 	}
2596 
2597 	/*
2598 	 * Load the vdev state for all toplevel vdevs.
2599 	 */
2600 	vdev_load(rvd);
2601 
2602 	/*
2603 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
2604 	 */
2605 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2606 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
2607 	spa_config_exit(spa, SCL_ALL, FTAG);
2608 
2609 	/*
2610 	 * Load the DDTs (dedup tables).
2611 	 */
2612 	error = ddt_load(spa);
2613 	if (error != 0)
2614 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2615 
2616 	spa_update_dspace(spa);
2617 
2618 	/*
2619 	 * Validate the config, using the MOS config to fill in any
2620 	 * information which might be missing.  If we fail to validate
2621 	 * the config then declare the pool unfit for use. If we're
2622 	 * assembling a pool from a split, the log is not transferred
2623 	 * over.
2624 	 */
2625 	if (type != SPA_IMPORT_ASSEMBLE) {
2626 		nvlist_t *nvconfig;
2627 
2628 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2629 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2630 
2631 		if (!spa_config_valid(spa, nvconfig)) {
2632 			nvlist_free(nvconfig);
2633 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
2634 			    ENXIO));
2635 		}
2636 		nvlist_free(nvconfig);
2637 
2638 		/*
2639 		 * Now that we've validated the config, check the state of the
2640 		 * root vdev.  If it can't be opened, it indicates one or
2641 		 * more toplevel vdevs are faulted.
2642 		 */
2643 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
2644 			return (SET_ERROR(ENXIO));
2645 
2646 		if (spa_check_logs(spa)) {
2647 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2648 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2649 		}
2650 	}
2651 
2652 	if (missing_feat_write) {
2653 		ASSERT(state == SPA_LOAD_TRYIMPORT);
2654 
2655 		/*
2656 		 * At this point, we know that we can open the pool in
2657 		 * read-only mode but not read-write mode. We now have enough
2658 		 * information and can return to userland.
2659 		 */
2660 		return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP));
2661 	}
2662 
2663 	/*
2664 	 * We've successfully opened the pool, verify that we're ready
2665 	 * to start pushing transactions.
2666 	 */
2667 	if (state != SPA_LOAD_TRYIMPORT) {
2668 		if (error = spa_load_verify(spa))
2669 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2670 			    error));
2671 	}
2672 
2673 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2674 	    spa->spa_load_max_txg == UINT64_MAX)) {
2675 		dmu_tx_t *tx;
2676 		int need_update = B_FALSE;
2677 
2678 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2679 
2680 		/*
2681 		 * Claim log blocks that haven't been committed yet.
2682 		 * This must all happen in a single txg.
2683 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2684 		 * invoked from zil_claim_log_block()'s i/o done callback.
2685 		 * Price of rollback is that we abandon the log.
2686 		 */
2687 		spa->spa_claiming = B_TRUE;
2688 
2689 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2690 		    spa_first_txg(spa));
2691 		(void) dmu_objset_find(spa_name(spa),
2692 		    zil_claim, tx, DS_FIND_CHILDREN);
2693 		dmu_tx_commit(tx);
2694 
2695 		spa->spa_claiming = B_FALSE;
2696 
2697 		spa_set_log_state(spa, SPA_LOG_GOOD);
2698 		spa->spa_sync_on = B_TRUE;
2699 		txg_sync_start(spa->spa_dsl_pool);
2700 
2701 		/*
2702 		 * Wait for all claims to sync.  We sync up to the highest
2703 		 * claimed log block birth time so that claimed log blocks
2704 		 * don't appear to be from the future.  spa_claim_max_txg
2705 		 * will have been set for us by either zil_check_log_chain()
2706 		 * (invoked from spa_check_logs()) or zil_claim() above.
2707 		 */
2708 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2709 
2710 		/*
2711 		 * If the config cache is stale, or we have uninitialized
2712 		 * metaslabs (see spa_vdev_add()), then update the config.
2713 		 *
2714 		 * If this is a verbatim import, trust the current
2715 		 * in-core spa_config and update the disk labels.
2716 		 */
2717 		if (config_cache_txg != spa->spa_config_txg ||
2718 		    state == SPA_LOAD_IMPORT ||
2719 		    state == SPA_LOAD_RECOVER ||
2720 		    (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
2721 			need_update = B_TRUE;
2722 
2723 		for (int c = 0; c < rvd->vdev_children; c++)
2724 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2725 				need_update = B_TRUE;
2726 
2727 		/*
2728 		 * Update the config cache asychronously in case we're the
2729 		 * root pool, in which case the config cache isn't writable yet.
2730 		 */
2731 		if (need_update)
2732 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2733 
2734 		/*
2735 		 * Check all DTLs to see if anything needs resilvering.
2736 		 */
2737 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2738 		    vdev_resilver_needed(rvd, NULL, NULL))
2739 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2740 
2741 		/*
2742 		 * Log the fact that we booted up (so that we can detect if
2743 		 * we rebooted in the middle of an operation).
2744 		 */
2745 		spa_history_log_version(spa, "open");
2746 
2747 		/*
2748 		 * Delete any inconsistent datasets.
2749 		 */
2750 		(void) dmu_objset_find(spa_name(spa),
2751 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2752 
2753 		/*
2754 		 * Clean up any stale temporary dataset userrefs.
2755 		 */
2756 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2757 	}
2758 
2759 	return (0);
2760 }
2761 
2762 static int
2763 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2764 {
2765 	int mode = spa->spa_mode;
2766 
2767 	spa_unload(spa);
2768 	spa_deactivate(spa);
2769 
2770 	spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
2771 
2772 	spa_activate(spa, mode);
2773 	spa_async_suspend(spa);
2774 
2775 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2776 }
2777 
2778 /*
2779  * If spa_load() fails this function will try loading prior txg's. If
2780  * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
2781  * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
2782  * function will not rewind the pool and will return the same error as
2783  * spa_load().
2784  */
2785 static int
2786 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2787     uint64_t max_request, int rewind_flags)
2788 {
2789 	nvlist_t *loadinfo = NULL;
2790 	nvlist_t *config = NULL;
2791 	int load_error, rewind_error;
2792 	uint64_t safe_rewind_txg;
2793 	uint64_t min_txg;
2794 
2795 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2796 		spa->spa_load_max_txg = spa->spa_load_txg;
2797 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2798 	} else {
2799 		spa->spa_load_max_txg = max_request;
2800 		if (max_request != UINT64_MAX)
2801 			spa->spa_extreme_rewind = B_TRUE;
2802 	}
2803 
2804 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2805 	    mosconfig);
2806 	if (load_error == 0)
2807 		return (0);
2808 
2809 	if (spa->spa_root_vdev != NULL)
2810 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2811 
2812 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2813 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2814 
2815 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2816 		nvlist_free(config);
2817 		return (load_error);
2818 	}
2819 
2820 	if (state == SPA_LOAD_RECOVER) {
2821 		/* Price of rolling back is discarding txgs, including log */
2822 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2823 	} else {
2824 		/*
2825 		 * If we aren't rolling back save the load info from our first
2826 		 * import attempt so that we can restore it after attempting
2827 		 * to rewind.
2828 		 */
2829 		loadinfo = spa->spa_load_info;
2830 		spa->spa_load_info = fnvlist_alloc();
2831 	}
2832 
2833 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2834 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2835 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2836 	    TXG_INITIAL : safe_rewind_txg;
2837 
2838 	/*
2839 	 * Continue as long as we're finding errors, we're still within
2840 	 * the acceptable rewind range, and we're still finding uberblocks
2841 	 */
2842 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2843 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2844 		if (spa->spa_load_max_txg < safe_rewind_txg)
2845 			spa->spa_extreme_rewind = B_TRUE;
2846 		rewind_error = spa_load_retry(spa, state, mosconfig);
2847 	}
2848 
2849 	spa->spa_extreme_rewind = B_FALSE;
2850 	spa->spa_load_max_txg = UINT64_MAX;
2851 
2852 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2853 		spa_config_set(spa, config);
2854 
2855 	if (state == SPA_LOAD_RECOVER) {
2856 		ASSERT3P(loadinfo, ==, NULL);
2857 		return (rewind_error);
2858 	} else {
2859 		/* Store the rewind info as part of the initial load info */
2860 		fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
2861 		    spa->spa_load_info);
2862 
2863 		/* Restore the initial load info */
2864 		fnvlist_free(spa->spa_load_info);
2865 		spa->spa_load_info = loadinfo;
2866 
2867 		return (load_error);
2868 	}
2869 }
2870 
2871 /*
2872  * Pool Open/Import
2873  *
2874  * The import case is identical to an open except that the configuration is sent
2875  * down from userland, instead of grabbed from the configuration cache.  For the
2876  * case of an open, the pool configuration will exist in the
2877  * POOL_STATE_UNINITIALIZED state.
2878  *
2879  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2880  * the same time open the pool, without having to keep around the spa_t in some
2881  * ambiguous state.
2882  */
2883 static int
2884 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2885     nvlist_t **config)
2886 {
2887 	spa_t *spa;
2888 	spa_load_state_t state = SPA_LOAD_OPEN;
2889 	int error;
2890 	int locked = B_FALSE;
2891 
2892 	*spapp = NULL;
2893 
2894 	/*
2895 	 * As disgusting as this is, we need to support recursive calls to this
2896 	 * function because dsl_dir_open() is called during spa_load(), and ends
2897 	 * up calling spa_open() again.  The real fix is to figure out how to
2898 	 * avoid dsl_dir_open() calling this in the first place.
2899 	 */
2900 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2901 		mutex_enter(&spa_namespace_lock);
2902 		locked = B_TRUE;
2903 	}
2904 
2905 	if ((spa = spa_lookup(pool)) == NULL) {
2906 		if (locked)
2907 			mutex_exit(&spa_namespace_lock);
2908 		return (SET_ERROR(ENOENT));
2909 	}
2910 
2911 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2912 		zpool_rewind_policy_t policy;
2913 
2914 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2915 		    &policy);
2916 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2917 			state = SPA_LOAD_RECOVER;
2918 
2919 		spa_activate(spa, spa_mode_global);
2920 
2921 		if (state != SPA_LOAD_RECOVER)
2922 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2923 
2924 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2925 		    policy.zrp_request);
2926 
2927 		if (error == EBADF) {
2928 			/*
2929 			 * If vdev_validate() returns failure (indicated by
2930 			 * EBADF), it indicates that one of the vdevs indicates
2931 			 * that the pool has been exported or destroyed.  If
2932 			 * this is the case, the config cache is out of sync and
2933 			 * we should remove the pool from the namespace.
2934 			 */
2935 			spa_unload(spa);
2936 			spa_deactivate(spa);
2937 			spa_config_sync(spa, B_TRUE, B_TRUE);
2938 			spa_remove(spa);
2939 			if (locked)
2940 				mutex_exit(&spa_namespace_lock);
2941 			return (SET_ERROR(ENOENT));
2942 		}
2943 
2944 		if (error) {
2945 			/*
2946 			 * We can't open the pool, but we still have useful
2947 			 * information: the state of each vdev after the
2948 			 * attempted vdev_open().  Return this to the user.
2949 			 */
2950 			if (config != NULL && spa->spa_config) {
2951 				VERIFY(nvlist_dup(spa->spa_config, config,
2952 				    KM_SLEEP) == 0);
2953 				VERIFY(nvlist_add_nvlist(*config,
2954 				    ZPOOL_CONFIG_LOAD_INFO,
2955 				    spa->spa_load_info) == 0);
2956 			}
2957 			spa_unload(spa);
2958 			spa_deactivate(spa);
2959 			spa->spa_last_open_failed = error;
2960 			if (locked)
2961 				mutex_exit(&spa_namespace_lock);
2962 			*spapp = NULL;
2963 			return (error);
2964 		}
2965 	}
2966 
2967 	spa_open_ref(spa, tag);
2968 
2969 	if (config != NULL)
2970 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2971 
2972 	/*
2973 	 * If we've recovered the pool, pass back any information we
2974 	 * gathered while doing the load.
2975 	 */
2976 	if (state == SPA_LOAD_RECOVER) {
2977 		VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
2978 		    spa->spa_load_info) == 0);
2979 	}
2980 
2981 	if (locked) {
2982 		spa->spa_last_open_failed = 0;
2983 		spa->spa_last_ubsync_txg = 0;
2984 		spa->spa_load_txg = 0;
2985 		mutex_exit(&spa_namespace_lock);
2986 	}
2987 
2988 	*spapp = spa;
2989 
2990 	return (0);
2991 }
2992 
2993 int
2994 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2995     nvlist_t **config)
2996 {
2997 	return (spa_open_common(name, spapp, tag, policy, config));
2998 }
2999 
3000 int
3001 spa_open(const char *name, spa_t **spapp, void *tag)
3002 {
3003 	return (spa_open_common(name, spapp, tag, NULL, NULL));
3004 }
3005 
3006 /*
3007  * Lookup the given spa_t, incrementing the inject count in the process,
3008  * preventing it from being exported or destroyed.
3009  */
3010 spa_t *
3011 spa_inject_addref(char *name)
3012 {
3013 	spa_t *spa;
3014 
3015 	mutex_enter(&spa_namespace_lock);
3016 	if ((spa = spa_lookup(name)) == NULL) {
3017 		mutex_exit(&spa_namespace_lock);
3018 		return (NULL);
3019 	}
3020 	spa->spa_inject_ref++;
3021 	mutex_exit(&spa_namespace_lock);
3022 
3023 	return (spa);
3024 }
3025 
3026 void
3027 spa_inject_delref(spa_t *spa)
3028 {
3029 	mutex_enter(&spa_namespace_lock);
3030 	spa->spa_inject_ref--;
3031 	mutex_exit(&spa_namespace_lock);
3032 }
3033 
3034 /*
3035  * Add spares device information to the nvlist.
3036  */
3037 static void
3038 spa_add_spares(spa_t *spa, nvlist_t *config)
3039 {
3040 	nvlist_t **spares;
3041 	uint_t i, nspares;
3042 	nvlist_t *nvroot;
3043 	uint64_t guid;
3044 	vdev_stat_t *vs;
3045 	uint_t vsc;
3046 	uint64_t pool;
3047 
3048 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3049 
3050 	if (spa->spa_spares.sav_count == 0)
3051 		return;
3052 
3053 	VERIFY(nvlist_lookup_nvlist(config,
3054 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3055 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
3056 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3057 	if (nspares != 0) {
3058 		VERIFY(nvlist_add_nvlist_array(nvroot,
3059 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3060 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3061 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
3062 
3063 		/*
3064 		 * Go through and find any spares which have since been
3065 		 * repurposed as an active spare.  If this is the case, update
3066 		 * their status appropriately.
3067 		 */
3068 		for (i = 0; i < nspares; i++) {
3069 			VERIFY(nvlist_lookup_uint64(spares[i],
3070 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3071 			if (spa_spare_exists(guid, &pool, NULL) &&
3072 			    pool != 0ULL) {
3073 				VERIFY(nvlist_lookup_uint64_array(
3074 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
3075 				    (uint64_t **)&vs, &vsc) == 0);
3076 				vs->vs_state = VDEV_STATE_CANT_OPEN;
3077 				vs->vs_aux = VDEV_AUX_SPARED;
3078 			}
3079 		}
3080 	}
3081 }
3082 
3083 /*
3084  * Add l2cache device information to the nvlist, including vdev stats.
3085  */
3086 static void
3087 spa_add_l2cache(spa_t *spa, nvlist_t *config)
3088 {
3089 	nvlist_t **l2cache;
3090 	uint_t i, j, nl2cache;
3091 	nvlist_t *nvroot;
3092 	uint64_t guid;
3093 	vdev_t *vd;
3094 	vdev_stat_t *vs;
3095 	uint_t vsc;
3096 
3097 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3098 
3099 	if (spa->spa_l2cache.sav_count == 0)
3100 		return;
3101 
3102 	VERIFY(nvlist_lookup_nvlist(config,
3103 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
3104 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
3105 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3106 	if (nl2cache != 0) {
3107 		VERIFY(nvlist_add_nvlist_array(nvroot,
3108 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3109 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
3110 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
3111 
3112 		/*
3113 		 * Update level 2 cache device stats.
3114 		 */
3115 
3116 		for (i = 0; i < nl2cache; i++) {
3117 			VERIFY(nvlist_lookup_uint64(l2cache[i],
3118 			    ZPOOL_CONFIG_GUID, &guid) == 0);
3119 
3120 			vd = NULL;
3121 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
3122 				if (guid ==
3123 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
3124 					vd = spa->spa_l2cache.sav_vdevs[j];
3125 					break;
3126 				}
3127 			}
3128 			ASSERT(vd != NULL);
3129 
3130 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
3131 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
3132 			    == 0);
3133 			vdev_get_stats(vd, vs);
3134 		}
3135 	}
3136 }
3137 
3138 static void
3139 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
3140 {
3141 	nvlist_t *features;
3142 	zap_cursor_t zc;
3143 	zap_attribute_t za;
3144 
3145 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
3146 	VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3147 
3148 	if (spa->spa_feat_for_read_obj != 0) {
3149 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3150 		    spa->spa_feat_for_read_obj);
3151 		    zap_cursor_retrieve(&zc, &za) == 0;
3152 		    zap_cursor_advance(&zc)) {
3153 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3154 			    za.za_num_integers == 1);
3155 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3156 			    za.za_first_integer));
3157 		}
3158 		zap_cursor_fini(&zc);
3159 	}
3160 
3161 	if (spa->spa_feat_for_write_obj != 0) {
3162 		for (zap_cursor_init(&zc, spa->spa_meta_objset,
3163 		    spa->spa_feat_for_write_obj);
3164 		    zap_cursor_retrieve(&zc, &za) == 0;
3165 		    zap_cursor_advance(&zc)) {
3166 			ASSERT(za.za_integer_length == sizeof (uint64_t) &&
3167 			    za.za_num_integers == 1);
3168 			VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name,
3169 			    za.za_first_integer));
3170 		}
3171 		zap_cursor_fini(&zc);
3172 	}
3173 
3174 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
3175 	    features) == 0);
3176 	nvlist_free(features);
3177 }
3178 
3179 int
3180 spa_get_stats(const char *name, nvlist_t **config,
3181     char *altroot, size_t buflen)
3182 {
3183 	int error;
3184 	spa_t *spa;
3185 
3186 	*config = NULL;
3187 	error = spa_open_common(name, &spa, FTAG, NULL, config);
3188 
3189 	if (spa != NULL) {
3190 		/*
3191 		 * This still leaves a window of inconsistency where the spares
3192 		 * or l2cache devices could change and the config would be
3193 		 * self-inconsistent.
3194 		 */
3195 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3196 
3197 		if (*config != NULL) {
3198 			uint64_t loadtimes[2];
3199 
3200 			loadtimes[0] = spa->spa_loaded_ts.tv_sec;
3201 			loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
3202 			VERIFY(nvlist_add_uint64_array(*config,
3203 			    ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0);
3204 
3205 			VERIFY(nvlist_add_uint64(*config,
3206 			    ZPOOL_CONFIG_ERRCOUNT,
3207 			    spa_get_errlog_size(spa)) == 0);
3208 
3209 			if (spa_suspended(spa))
3210 				VERIFY(nvlist_add_uint64(*config,
3211 				    ZPOOL_CONFIG_SUSPENDED,
3212 				    spa->spa_failmode) == 0);
3213 
3214 			spa_add_spares(spa, *config);
3215 			spa_add_l2cache(spa, *config);
3216 			spa_add_feature_stats(spa, *config);
3217 		}
3218 	}
3219 
3220 	/*
3221 	 * We want to get the alternate root even for faulted pools, so we cheat
3222 	 * and call spa_lookup() directly.
3223 	 */
3224 	if (altroot) {
3225 		if (spa == NULL) {
3226 			mutex_enter(&spa_namespace_lock);
3227 			spa = spa_lookup(name);
3228 			if (spa)
3229 				spa_altroot(spa, altroot, buflen);
3230 			else
3231 				altroot[0] = '\0';
3232 			spa = NULL;
3233 			mutex_exit(&spa_namespace_lock);
3234 		} else {
3235 			spa_altroot(spa, altroot, buflen);
3236 		}
3237 	}
3238 
3239 	if (spa != NULL) {
3240 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3241 		spa_close(spa, FTAG);
3242 	}
3243 
3244 	return (error);
3245 }
3246 
3247 /*
3248  * Validate that the auxiliary device array is well formed.  We must have an
3249  * array of nvlists, each which describes a valid leaf vdev.  If this is an
3250  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
3251  * specified, as long as they are well-formed.
3252  */
3253 static int
3254 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
3255     spa_aux_vdev_t *sav, const char *config, uint64_t version,
3256     vdev_labeltype_t label)
3257 {
3258 	nvlist_t **dev;
3259 	uint_t i, ndev;
3260 	vdev_t *vd;
3261 	int error;
3262 
3263 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3264 
3265 	/*
3266 	 * It's acceptable to have no devs specified.
3267 	 */
3268 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
3269 		return (0);
3270 
3271 	if (ndev == 0)
3272 		return (SET_ERROR(EINVAL));
3273 
3274 	/*
3275 	 * Make sure the pool is formatted with a version that supports this
3276 	 * device type.
3277 	 */
3278 	if (spa_version(spa) < version)
3279 		return (SET_ERROR(ENOTSUP));
3280 
3281 	/*
3282 	 * Set the pending device list so we correctly handle device in-use
3283 	 * checking.
3284 	 */
3285 	sav->sav_pending = dev;
3286 	sav->sav_npending = ndev;
3287 
3288 	for (i = 0; i < ndev; i++) {
3289 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
3290 		    mode)) != 0)
3291 			goto out;
3292 
3293 		if (!vd->vdev_ops->vdev_op_leaf) {
3294 			vdev_free(vd);
3295 			error = SET_ERROR(EINVAL);
3296 			goto out;
3297 		}
3298 
3299 		/*
3300 		 * The L2ARC currently only supports disk devices in
3301 		 * kernel context.  For user-level testing, we allow it.
3302 		 */
3303 #ifdef _KERNEL
3304 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
3305 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
3306 			error = SET_ERROR(ENOTBLK);
3307 			vdev_free(vd);
3308 			goto out;
3309 		}
3310 #endif
3311 		vd->vdev_top = vd;
3312 
3313 		if ((error = vdev_open(vd)) == 0 &&
3314 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
3315 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
3316 			    vd->vdev_guid) == 0);
3317 		}
3318 
3319 		vdev_free(vd);
3320 
3321 		if (error &&
3322 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
3323 			goto out;
3324 		else
3325 			error = 0;
3326 	}
3327 
3328 out:
3329 	sav->sav_pending = NULL;
3330 	sav->sav_npending = 0;
3331 	return (error);
3332 }
3333 
3334 static int
3335 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
3336 {
3337 	int error;
3338 
3339 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
3340 
3341 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3342 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
3343 	    VDEV_LABEL_SPARE)) != 0) {
3344 		return (error);
3345 	}
3346 
3347 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
3348 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
3349 	    VDEV_LABEL_L2CACHE));
3350 }
3351 
3352 static void
3353 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
3354     const char *config)
3355 {
3356 	int i;
3357 
3358 	if (sav->sav_config != NULL) {
3359 		nvlist_t **olddevs;
3360 		uint_t oldndevs;
3361 		nvlist_t **newdevs;
3362 
3363 		/*
3364 		 * Generate new dev list by concatentating with the
3365 		 * current dev list.
3366 		 */
3367 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
3368 		    &olddevs, &oldndevs) == 0);
3369 
3370 		newdevs = kmem_alloc(sizeof (void *) *
3371 		    (ndevs + oldndevs), KM_SLEEP);
3372 		for (i = 0; i < oldndevs; i++)
3373 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
3374 			    KM_SLEEP) == 0);
3375 		for (i = 0; i < ndevs; i++)
3376 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
3377 			    KM_SLEEP) == 0);
3378 
3379 		VERIFY(nvlist_remove(sav->sav_config, config,
3380 		    DATA_TYPE_NVLIST_ARRAY) == 0);
3381 
3382 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
3383 		    config, newdevs, ndevs + oldndevs) == 0);
3384 		for (i = 0; i < oldndevs + ndevs; i++)
3385 			nvlist_free(newdevs[i]);
3386 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
3387 	} else {
3388 		/*
3389 		 * Generate a new dev list.
3390 		 */
3391 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
3392 		    KM_SLEEP) == 0);
3393 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
3394 		    devs, ndevs) == 0);
3395 	}
3396 }
3397 
3398 /*
3399  * Stop and drop level 2 ARC devices
3400  */
3401 void
3402 spa_l2cache_drop(spa_t *spa)
3403 {
3404 	vdev_t *vd;
3405 	int i;
3406 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
3407 
3408 	for (i = 0; i < sav->sav_count; i++) {
3409 		uint64_t pool;
3410 
3411 		vd = sav->sav_vdevs[i];
3412 		ASSERT(vd != NULL);
3413 
3414 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
3415 		    pool != 0ULL && l2arc_vdev_present(vd))
3416 			l2arc_remove_vdev(vd);
3417 	}
3418 }
3419 
3420 /*
3421  * Pool Creation
3422  */
3423 int
3424 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
3425     nvlist_t *zplprops)
3426 {
3427 	spa_t *spa;
3428 	char *altroot = NULL;
3429 	vdev_t *rvd;
3430 	dsl_pool_t *dp;
3431 	dmu_tx_t *tx;
3432 	int error = 0;
3433 	uint64_t txg = TXG_INITIAL;
3434 	nvlist_t **spares, **l2cache;
3435 	uint_t nspares, nl2cache;
3436 	uint64_t version, obj;
3437 	boolean_t has_features;
3438 
3439 	/*
3440 	 * If this pool already exists, return failure.
3441 	 */
3442 	mutex_enter(&spa_namespace_lock);
3443 	if (spa_lookup(pool) != NULL) {
3444 		mutex_exit(&spa_namespace_lock);
3445 		return (SET_ERROR(EEXIST));
3446 	}
3447 
3448 	/*
3449 	 * Allocate a new spa_t structure.
3450 	 */
3451 	(void) nvlist_lookup_string(props,
3452 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3453 	spa = spa_add(pool, NULL, altroot);
3454 	spa_activate(spa, spa_mode_global);
3455 
3456 	if (props && (error = spa_prop_validate(spa, props))) {
3457 		spa_deactivate(spa);
3458 		spa_remove(spa);
3459 		mutex_exit(&spa_namespace_lock);
3460 		return (error);
3461 	}
3462 
3463 	has_features = B_FALSE;
3464 	for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
3465 	    elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
3466 		if (zpool_prop_feature(nvpair_name(elem)))
3467 			has_features = B_TRUE;
3468 	}
3469 
3470 	if (has_features || nvlist_lookup_uint64(props,
3471 	    zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
3472 		version = SPA_VERSION;
3473 	}
3474 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
3475 
3476 	spa->spa_first_txg = txg;
3477 	spa->spa_uberblock.ub_txg = txg - 1;
3478 	spa->spa_uberblock.ub_version = version;
3479 	spa->spa_ubsync = spa->spa_uberblock;
3480 
3481 	/*
3482 	 * Create "The Godfather" zio to hold all async IOs
3483 	 */
3484 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
3485 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
3486 
3487 	/*
3488 	 * Create the root vdev.
3489 	 */
3490 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3491 
3492 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
3493 
3494 	ASSERT(error != 0 || rvd != NULL);
3495 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
3496 
3497 	if (error == 0 && !zfs_allocatable_devs(nvroot))
3498 		error = SET_ERROR(EINVAL);
3499 
3500 	if (error == 0 &&
3501 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
3502 	    (error = spa_validate_aux(spa, nvroot, txg,
3503 	    VDEV_ALLOC_ADD)) == 0) {
3504 		for (int c = 0; c < rvd->vdev_children; c++) {
3505 			vdev_metaslab_set_size(rvd->vdev_child[c]);
3506 			vdev_expand(rvd->vdev_child[c], txg);
3507 		}
3508 	}
3509 
3510 	spa_config_exit(spa, SCL_ALL, FTAG);
3511 
3512 	if (error != 0) {
3513 		spa_unload(spa);
3514 		spa_deactivate(spa);
3515 		spa_remove(spa);
3516 		mutex_exit(&spa_namespace_lock);
3517 		return (error);
3518 	}
3519 
3520 	/*
3521 	 * Get the list of spares, if specified.
3522 	 */
3523 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3524 	    &spares, &nspares) == 0) {
3525 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
3526 		    KM_SLEEP) == 0);
3527 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3528 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3529 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3530 		spa_load_spares(spa);
3531 		spa_config_exit(spa, SCL_ALL, FTAG);
3532 		spa->spa_spares.sav_sync = B_TRUE;
3533 	}
3534 
3535 	/*
3536 	 * Get the list of level 2 cache devices, if specified.
3537 	 */
3538 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3539 	    &l2cache, &nl2cache) == 0) {
3540 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3541 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3542 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3543 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3544 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3545 		spa_load_l2cache(spa);
3546 		spa_config_exit(spa, SCL_ALL, FTAG);
3547 		spa->spa_l2cache.sav_sync = B_TRUE;
3548 	}
3549 
3550 	spa->spa_is_initializing = B_TRUE;
3551 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
3552 	spa->spa_meta_objset = dp->dp_meta_objset;
3553 	spa->spa_is_initializing = B_FALSE;
3554 
3555 	/*
3556 	 * Create DDTs (dedup tables).
3557 	 */
3558 	ddt_create(spa);
3559 
3560 	spa_update_dspace(spa);
3561 
3562 	tx = dmu_tx_create_assigned(dp, txg);
3563 
3564 	/*
3565 	 * Create the pool config object.
3566 	 */
3567 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
3568 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
3569 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
3570 
3571 	if (zap_add(spa->spa_meta_objset,
3572 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
3573 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
3574 		cmn_err(CE_PANIC, "failed to add pool config");
3575 	}
3576 
3577 	if (spa_version(spa) >= SPA_VERSION_FEATURES)
3578 		spa_feature_create_zap_objects(spa, tx);
3579 
3580 	if (zap_add(spa->spa_meta_objset,
3581 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
3582 	    sizeof (uint64_t), 1, &version, tx) != 0) {
3583 		cmn_err(CE_PANIC, "failed to add pool version");
3584 	}
3585 
3586 	/* Newly created pools with the right version are always deflated. */
3587 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
3588 		spa->spa_deflate = TRUE;
3589 		if (zap_add(spa->spa_meta_objset,
3590 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3591 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
3592 			cmn_err(CE_PANIC, "failed to add deflate");
3593 		}
3594 	}
3595 
3596 	/*
3597 	 * Create the deferred-free bpobj.  Turn off compression
3598 	 * because sync-to-convergence takes longer if the blocksize
3599 	 * keeps changing.
3600 	 */
3601 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
3602 	dmu_object_set_compress(spa->spa_meta_objset, obj,
3603 	    ZIO_COMPRESS_OFF, tx);
3604 	if (zap_add(spa->spa_meta_objset,
3605 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
3606 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
3607 		cmn_err(CE_PANIC, "failed to add bpobj");
3608 	}
3609 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
3610 	    spa->spa_meta_objset, obj));
3611 
3612 	/*
3613 	 * Create the pool's history object.
3614 	 */
3615 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
3616 		spa_history_create_obj(spa, tx);
3617 
3618 	/*
3619 	 * Set pool properties.
3620 	 */
3621 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
3622 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
3623 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
3624 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
3625 
3626 	if (props != NULL) {
3627 		spa_configfile_set(spa, props, B_FALSE);
3628 		spa_sync_props(props, tx);
3629 	}
3630 
3631 	dmu_tx_commit(tx);
3632 
3633 	spa->spa_sync_on = B_TRUE;
3634 	txg_sync_start(spa->spa_dsl_pool);
3635 
3636 	/*
3637 	 * We explicitly wait for the first transaction to complete so that our
3638 	 * bean counters are appropriately updated.
3639 	 */
3640 	txg_wait_synced(spa->spa_dsl_pool, txg);
3641 
3642 	spa_config_sync(spa, B_FALSE, B_TRUE);
3643 
3644 	spa_history_log_version(spa, "create");
3645 
3646 	spa->spa_minref = refcount_count(&spa->spa_refcount);
3647 
3648 	mutex_exit(&spa_namespace_lock);
3649 
3650 	return (0);
3651 }
3652 
3653 #ifdef _KERNEL
3654 /*
3655  * Get the root pool information from the root disk, then import the root pool
3656  * during the system boot up time.
3657  */
3658 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
3659 
3660 static nvlist_t *
3661 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
3662 {
3663 	nvlist_t *config;
3664 	nvlist_t *nvtop, *nvroot;
3665 	uint64_t pgid;
3666 
3667 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
3668 		return (NULL);
3669 
3670 	/*
3671 	 * Add this top-level vdev to the child array.
3672 	 */
3673 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3674 	    &nvtop) == 0);
3675 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
3676 	    &pgid) == 0);
3677 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
3678 
3679 	/*
3680 	 * Put this pool's top-level vdevs into a root vdev.
3681 	 */
3682 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3683 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
3684 	    VDEV_TYPE_ROOT) == 0);
3685 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
3686 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
3687 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
3688 	    &nvtop, 1) == 0);
3689 
3690 	/*
3691 	 * Replace the existing vdev_tree with the new root vdev in
3692 	 * this pool's configuration (remove the old, add the new).
3693 	 */
3694 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
3695 	nvlist_free(nvroot);
3696 	return (config);
3697 }
3698 
3699 /*
3700  * Walk the vdev tree and see if we can find a device with "better"
3701  * configuration. A configuration is "better" if the label on that
3702  * device has a more recent txg.
3703  */
3704 static void
3705 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
3706 {
3707 	for (int c = 0; c < vd->vdev_children; c++)
3708 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
3709 
3710 	if (vd->vdev_ops->vdev_op_leaf) {
3711 		nvlist_t *label;
3712 		uint64_t label_txg;
3713 
3714 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
3715 		    &label) != 0)
3716 			return;
3717 
3718 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
3719 		    &label_txg) == 0);
3720 
3721 		/*
3722 		 * Do we have a better boot device?
3723 		 */
3724 		if (label_txg > *txg) {
3725 			*txg = label_txg;
3726 			*avd = vd;
3727 		}
3728 		nvlist_free(label);
3729 	}
3730 }
3731 
3732 /*
3733  * Import a root pool.
3734  *
3735  * For x86. devpath_list will consist of devid and/or physpath name of
3736  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
3737  * The GRUB "findroot" command will return the vdev we should boot.
3738  *
3739  * For Sparc, devpath_list consists the physpath name of the booting device
3740  * no matter the rootpool is a single device pool or a mirrored pool.
3741  * e.g.
3742  *	"/pci@1f,0/ide@d/disk@0,0:a"
3743  */
3744 int
3745 spa_import_rootpool(char *devpath, char *devid)
3746 {
3747 	spa_t *spa;
3748 	vdev_t *rvd, *bvd, *avd = NULL;
3749 	nvlist_t *config, *nvtop;
3750 	uint64_t guid, txg;
3751 	char *pname;
3752 	int error;
3753 
3754 	/*
3755 	 * Read the label from the boot device and generate a configuration.
3756 	 */
3757 	config = spa_generate_rootconf(devpath, devid, &guid);
3758 #if defined(_OBP) && defined(_KERNEL)
3759 	if (config == NULL) {
3760 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3761 			/* iscsi boot */
3762 			get_iscsi_bootpath_phy(devpath);
3763 			config = spa_generate_rootconf(devpath, devid, &guid);
3764 		}
3765 	}
3766 #endif
3767 	if (config == NULL) {
3768 		cmn_err(CE_NOTE, "Cannot read the pool label from '%s'",
3769 		    devpath);
3770 		return (SET_ERROR(EIO));
3771 	}
3772 
3773 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3774 	    &pname) == 0);
3775 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3776 
3777 	mutex_enter(&spa_namespace_lock);
3778 	if ((spa = spa_lookup(pname)) != NULL) {
3779 		/*
3780 		 * Remove the existing root pool from the namespace so that we
3781 		 * can replace it with the correct config we just read in.
3782 		 */
3783 		spa_remove(spa);
3784 	}
3785 
3786 	spa = spa_add(pname, config, NULL);
3787 	spa->spa_is_root = B_TRUE;
3788 	spa->spa_import_flags = ZFS_IMPORT_VERBATIM;
3789 
3790 	/*
3791 	 * Build up a vdev tree based on the boot device's label config.
3792 	 */
3793 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3794 	    &nvtop) == 0);
3795 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3796 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3797 	    VDEV_ALLOC_ROOTPOOL);
3798 	spa_config_exit(spa, SCL_ALL, FTAG);
3799 	if (error) {
3800 		mutex_exit(&spa_namespace_lock);
3801 		nvlist_free(config);
3802 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3803 		    pname);
3804 		return (error);
3805 	}
3806 
3807 	/*
3808 	 * Get the boot vdev.
3809 	 */
3810 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3811 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3812 		    (u_longlong_t)guid);
3813 		error = SET_ERROR(ENOENT);
3814 		goto out;
3815 	}
3816 
3817 	/*
3818 	 * Determine if there is a better boot device.
3819 	 */
3820 	avd = bvd;
3821 	spa_alt_rootvdev(rvd, &avd, &txg);
3822 	if (avd != bvd) {
3823 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3824 		    "try booting from '%s'", avd->vdev_path);
3825 		error = SET_ERROR(EINVAL);
3826 		goto out;
3827 	}
3828 
3829 	/*
3830 	 * If the boot device is part of a spare vdev then ensure that
3831 	 * we're booting off the active spare.
3832 	 */
3833 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3834 	    !bvd->vdev_isspare) {
3835 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3836 		    "try booting from '%s'",
3837 		    bvd->vdev_parent->
3838 		    vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path);
3839 		error = SET_ERROR(EINVAL);
3840 		goto out;
3841 	}
3842 
3843 	error = 0;
3844 out:
3845 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3846 	vdev_free(rvd);
3847 	spa_config_exit(spa, SCL_ALL, FTAG);
3848 	mutex_exit(&spa_namespace_lock);
3849 
3850 	nvlist_free(config);
3851 	return (error);
3852 }
3853 
3854 #endif
3855 
3856 /*
3857  * Import a non-root pool into the system.
3858  */
3859 int
3860 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
3861 {
3862 	spa_t *spa;
3863 	char *altroot = NULL;
3864 	spa_load_state_t state = SPA_LOAD_IMPORT;
3865 	zpool_rewind_policy_t policy;
3866 	uint64_t mode = spa_mode_global;
3867 	uint64_t readonly = B_FALSE;
3868 	int error;
3869 	nvlist_t *nvroot;
3870 	nvlist_t **spares, **l2cache;
3871 	uint_t nspares, nl2cache;
3872 
3873 	/*
3874 	 * If a pool with this name exists, return failure.
3875 	 */
3876 	mutex_enter(&spa_namespace_lock);
3877 	if (spa_lookup(pool) != NULL) {
3878 		mutex_exit(&spa_namespace_lock);
3879 		return (SET_ERROR(EEXIST));
3880 	}
3881 
3882 	/*
3883 	 * Create and initialize the spa structure.
3884 	 */
3885 	(void) nvlist_lookup_string(props,
3886 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3887 	(void) nvlist_lookup_uint64(props,
3888 	    zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
3889 	if (readonly)
3890 		mode = FREAD;
3891 	spa = spa_add(pool, config, altroot);
3892 	spa->spa_import_flags = flags;
3893 
3894 	/*
3895 	 * Verbatim import - Take a pool and insert it into the namespace
3896 	 * as if it had been loaded at boot.
3897 	 */
3898 	if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
3899 		if (props != NULL)
3900 			spa_configfile_set(spa, props, B_FALSE);
3901 
3902 		spa_config_sync(spa, B_FALSE, B_TRUE);
3903 
3904 		mutex_exit(&spa_namespace_lock);
3905 		return (0);
3906 	}
3907 
3908 	spa_activate(spa, mode);
3909 
3910 	/*
3911 	 * Don't start async tasks until we know everything is healthy.
3912 	 */
3913 	spa_async_suspend(spa);
3914 
3915 	zpool_get_rewind_policy(config, &policy);
3916 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3917 		state = SPA_LOAD_RECOVER;
3918 
3919 	/*
3920 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3921 	 * because the user-supplied config is actually the one to trust when
3922 	 * doing an import.
3923 	 */
3924 	if (state != SPA_LOAD_RECOVER)
3925 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3926 
3927 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3928 	    policy.zrp_request);
3929 
3930 	/*
3931 	 * Propagate anything learned while loading the pool and pass it
3932 	 * back to caller (i.e. rewind info, missing devices, etc).
3933 	 */
3934 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
3935 	    spa->spa_load_info) == 0);
3936 
3937 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3938 	/*
3939 	 * Toss any existing sparelist, as it doesn't have any validity
3940 	 * anymore, and conflicts with spa_has_spare().
3941 	 */
3942 	if (spa->spa_spares.sav_config) {
3943 		nvlist_free(spa->spa_spares.sav_config);
3944 		spa->spa_spares.sav_config = NULL;
3945 		spa_load_spares(spa);
3946 	}
3947 	if (spa->spa_l2cache.sav_config) {
3948 		nvlist_free(spa->spa_l2cache.sav_config);
3949 		spa->spa_l2cache.sav_config = NULL;
3950 		spa_load_l2cache(spa);
3951 	}
3952 
3953 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3954 	    &nvroot) == 0);
3955 	if (error == 0)
3956 		error = spa_validate_aux(spa, nvroot, -1ULL,
3957 		    VDEV_ALLOC_SPARE);
3958 	if (error == 0)
3959 		error = spa_validate_aux(spa, nvroot, -1ULL,
3960 		    VDEV_ALLOC_L2CACHE);
3961 	spa_config_exit(spa, SCL_ALL, FTAG);
3962 
3963 	if (props != NULL)
3964 		spa_configfile_set(spa, props, B_FALSE);
3965 
3966 	if (error != 0 || (props && spa_writeable(spa) &&
3967 	    (error = spa_prop_set(spa, props)))) {
3968 		spa_unload(spa);
3969 		spa_deactivate(spa);
3970 		spa_remove(spa);
3971 		mutex_exit(&spa_namespace_lock);
3972 		return (error);
3973 	}
3974 
3975 	spa_async_resume(spa);
3976 
3977 	/*
3978 	 * Override any spares and level 2 cache devices as specified by
3979 	 * the user, as these may have correct device names/devids, etc.
3980 	 */
3981 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3982 	    &spares, &nspares) == 0) {
3983 		if (spa->spa_spares.sav_config)
3984 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3985 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3986 		else
3987 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3988 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3989 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3990 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3991 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3992 		spa_load_spares(spa);
3993 		spa_config_exit(spa, SCL_ALL, FTAG);
3994 		spa->spa_spares.sav_sync = B_TRUE;
3995 	}
3996 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3997 	    &l2cache, &nl2cache) == 0) {
3998 		if (spa->spa_l2cache.sav_config)
3999 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
4000 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
4001 		else
4002 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
4003 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4004 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
4005 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
4006 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4007 		spa_load_l2cache(spa);
4008 		spa_config_exit(spa, SCL_ALL, FTAG);
4009 		spa->spa_l2cache.sav_sync = B_TRUE;
4010 	}
4011 
4012 	/*
4013 	 * Check for any removed devices.
4014 	 */
4015 	if (spa->spa_autoreplace) {
4016 		spa_aux_check_removed(&spa->spa_spares);
4017 		spa_aux_check_removed(&spa->spa_l2cache);
4018 	}
4019 
4020 	if (spa_writeable(spa)) {
4021 		/*
4022 		 * Update the config cache to include the newly-imported pool.
4023 		 */
4024 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4025 	}
4026 
4027 	/*
4028 	 * It's possible that the pool was expanded while it was exported.
4029 	 * We kick off an async task to handle this for us.
4030 	 */
4031 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
4032 
4033 	mutex_exit(&spa_namespace_lock);
4034 	spa_history_log_version(spa, "import");
4035 
4036 	return (0);
4037 }
4038 
4039 nvlist_t *
4040 spa_tryimport(nvlist_t *tryconfig)
4041 {
4042 	nvlist_t *config = NULL;
4043 	char *poolname;
4044 	spa_t *spa;
4045 	uint64_t state;
4046 	int error;
4047 
4048 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
4049 		return (NULL);
4050 
4051 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
4052 		return (NULL);
4053 
4054 	/*
4055 	 * Create and initialize the spa structure.
4056 	 */
4057 	mutex_enter(&spa_namespace_lock);
4058 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
4059 	spa_activate(spa, FREAD);
4060 
4061 	/*
4062 	 * Pass off the heavy lifting to spa_load().
4063 	 * Pass TRUE for mosconfig because the user-supplied config
4064 	 * is actually the one to trust when doing an import.
4065 	 */
4066 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
4067 
4068 	/*
4069 	 * If 'tryconfig' was at least parsable, return the current config.
4070 	 */
4071 	if (spa->spa_root_vdev != NULL) {
4072 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
4073 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
4074 		    poolname) == 0);
4075 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4076 		    state) == 0);
4077 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
4078 		    spa->spa_uberblock.ub_timestamp) == 0);
4079 		VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
4080 		    spa->spa_load_info) == 0);
4081 
4082 		/*
4083 		 * If the bootfs property exists on this pool then we
4084 		 * copy it out so that external consumers can tell which
4085 		 * pools are bootable.
4086 		 */
4087 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
4088 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4089 
4090 			/*
4091 			 * We have to play games with the name since the
4092 			 * pool was opened as TRYIMPORT_NAME.
4093 			 */
4094 			if (dsl_dsobj_to_dsname(spa_name(spa),
4095 			    spa->spa_bootfs, tmpname) == 0) {
4096 				char *cp;
4097 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
4098 
4099 				cp = strchr(tmpname, '/');
4100 				if (cp == NULL) {
4101 					(void) strlcpy(dsname, tmpname,
4102 					    MAXPATHLEN);
4103 				} else {
4104 					(void) snprintf(dsname, MAXPATHLEN,
4105 					    "%s/%s", poolname, ++cp);
4106 				}
4107 				VERIFY(nvlist_add_string(config,
4108 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
4109 				kmem_free(dsname, MAXPATHLEN);
4110 			}
4111 			kmem_free(tmpname, MAXPATHLEN);
4112 		}
4113 
4114 		/*
4115 		 * Add the list of hot spares and level 2 cache devices.
4116 		 */
4117 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4118 		spa_add_spares(spa, config);
4119 		spa_add_l2cache(spa, config);
4120 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4121 	}
4122 
4123 	spa_unload(spa);
4124 	spa_deactivate(spa);
4125 	spa_remove(spa);
4126 	mutex_exit(&spa_namespace_lock);
4127 
4128 	return (config);
4129 }
4130 
4131 /*
4132  * Pool export/destroy
4133  *
4134  * The act of destroying or exporting a pool is very simple.  We make sure there
4135  * is no more pending I/O and any references to the pool are gone.  Then, we
4136  * update the pool state and sync all the labels to disk, removing the
4137  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
4138  * we don't sync the labels or remove the configuration cache.
4139  */
4140 static int
4141 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
4142     boolean_t force, boolean_t hardforce)
4143 {
4144 	spa_t *spa;
4145 
4146 	if (oldconfig)
4147 		*oldconfig = NULL;
4148 
4149 	if (!(spa_mode_global & FWRITE))
4150 		return (SET_ERROR(EROFS));
4151 
4152 	mutex_enter(&spa_namespace_lock);
4153 	if ((spa = spa_lookup(pool)) == NULL) {
4154 		mutex_exit(&spa_namespace_lock);
4155 		return (SET_ERROR(ENOENT));
4156 	}
4157 
4158 	/*
4159 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
4160 	 * reacquire the namespace lock, and see if we can export.
4161 	 */
4162 	spa_open_ref(spa, FTAG);
4163 	mutex_exit(&spa_namespace_lock);
4164 	spa_async_suspend(spa);
4165 	mutex_enter(&spa_namespace_lock);
4166 	spa_close(spa, FTAG);
4167 
4168 	/*
4169 	 * The pool will be in core if it's openable,
4170 	 * in which case we can modify its state.
4171 	 */
4172 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
4173 		/*
4174 		 * Objsets may be open only because they're dirty, so we
4175 		 * have to force it to sync before checking spa_refcnt.
4176 		 */
4177 		txg_wait_synced(spa->spa_dsl_pool, 0);
4178 
4179 		/*
4180 		 * A pool cannot be exported or destroyed if there are active
4181 		 * references.  If we are resetting a pool, allow references by
4182 		 * fault injection handlers.
4183 		 */
4184 		if (!spa_refcount_zero(spa) ||
4185 		    (spa->spa_inject_ref != 0 &&
4186 		    new_state != POOL_STATE_UNINITIALIZED)) {
4187 			spa_async_resume(spa);
4188 			mutex_exit(&spa_namespace_lock);
4189 			return (SET_ERROR(EBUSY));
4190 		}
4191 
4192 		/*
4193 		 * A pool cannot be exported if it has an active shared spare.
4194 		 * This is to prevent other pools stealing the active spare
4195 		 * from an exported pool. At user's own will, such pool can
4196 		 * be forcedly exported.
4197 		 */
4198 		if (!force && new_state == POOL_STATE_EXPORTED &&
4199 		    spa_has_active_shared_spare(spa)) {
4200 			spa_async_resume(spa);
4201 			mutex_exit(&spa_namespace_lock);
4202 			return (SET_ERROR(EXDEV));
4203 		}
4204 
4205 		/*
4206 		 * We want this to be reflected on every label,
4207 		 * so mark them all dirty.  spa_unload() will do the
4208 		 * final sync that pushes these changes out.
4209 		 */
4210 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
4211 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4212 			spa->spa_state = new_state;
4213 			spa->spa_final_txg = spa_last_synced_txg(spa) +
4214 			    TXG_DEFER_SIZE + 1;
4215 			vdev_config_dirty(spa->spa_root_vdev);
4216 			spa_config_exit(spa, SCL_ALL, FTAG);
4217 		}
4218 	}
4219 
4220 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
4221 
4222 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
4223 		spa_unload(spa);
4224 		spa_deactivate(spa);
4225 	}
4226 
4227 	if (oldconfig && spa->spa_config)
4228 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
4229 
4230 	if (new_state != POOL_STATE_UNINITIALIZED) {
4231 		if (!hardforce)
4232 			spa_config_sync(spa, B_TRUE, B_TRUE);
4233 		spa_remove(spa);
4234 	}
4235 	mutex_exit(&spa_namespace_lock);
4236 
4237 	return (0);
4238 }
4239 
4240 /*
4241  * Destroy a storage pool.
4242  */
4243 int
4244 spa_destroy(char *pool)
4245 {
4246 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
4247 	    B_FALSE, B_FALSE));
4248 }
4249 
4250 /*
4251  * Export a storage pool.
4252  */
4253 int
4254 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
4255     boolean_t hardforce)
4256 {
4257 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
4258 	    force, hardforce));
4259 }
4260 
4261 /*
4262  * Similar to spa_export(), this unloads the spa_t without actually removing it
4263  * from the namespace in any way.
4264  */
4265 int
4266 spa_reset(char *pool)
4267 {
4268 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
4269 	    B_FALSE, B_FALSE));
4270 }
4271 
4272 /*
4273  * ==========================================================================
4274  * Device manipulation
4275  * ==========================================================================
4276  */
4277 
4278 /*
4279  * Add a device to a storage pool.
4280  */
4281 int
4282 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
4283 {
4284 	uint64_t txg, id;
4285 	int error;
4286 	vdev_t *rvd = spa->spa_root_vdev;
4287 	vdev_t *vd, *tvd;
4288 	nvlist_t **spares, **l2cache;
4289 	uint_t nspares, nl2cache;
4290 
4291 	ASSERT(spa_writeable(spa));
4292 
4293 	txg = spa_vdev_enter(spa);
4294 
4295 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
4296 	    VDEV_ALLOC_ADD)) != 0)
4297 		return (spa_vdev_exit(spa, NULL, txg, error));
4298 
4299 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
4300 
4301 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
4302 	    &nspares) != 0)
4303 		nspares = 0;
4304 
4305 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
4306 	    &nl2cache) != 0)
4307 		nl2cache = 0;
4308 
4309 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
4310 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
4311 
4312 	if (vd->vdev_children != 0 &&
4313 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
4314 		return (spa_vdev_exit(spa, vd, txg, error));
4315 
4316 	/*
4317 	 * We must validate the spares and l2cache devices after checking the
4318 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
4319 	 */
4320 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
4321 		return (spa_vdev_exit(spa, vd, txg, error));
4322 
4323 	/*
4324 	 * Transfer each new top-level vdev from vd to rvd.
4325 	 */
4326 	for (int c = 0; c < vd->vdev_children; c++) {
4327 
4328 		/*
4329 		 * Set the vdev id to the first hole, if one exists.
4330 		 */
4331 		for (id = 0; id < rvd->vdev_children; id++) {
4332 			if (rvd->vdev_child[id]->vdev_ishole) {
4333 				vdev_free(rvd->vdev_child[id]);
4334 				break;
4335 			}
4336 		}
4337 		tvd = vd->vdev_child[c];
4338 		vdev_remove_child(vd, tvd);
4339 		tvd->vdev_id = id;
4340 		vdev_add_child(rvd, tvd);
4341 		vdev_config_dirty(tvd);
4342 	}
4343 
4344 	if (nspares != 0) {
4345 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
4346 		    ZPOOL_CONFIG_SPARES);
4347 		spa_load_spares(spa);
4348 		spa->spa_spares.sav_sync = B_TRUE;
4349 	}
4350 
4351 	if (nl2cache != 0) {
4352 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
4353 		    ZPOOL_CONFIG_L2CACHE);
4354 		spa_load_l2cache(spa);
4355 		spa->spa_l2cache.sav_sync = B_TRUE;
4356 	}
4357 
4358 	/*
4359 	 * We have to be careful when adding new vdevs to an existing pool.
4360 	 * If other threads start allocating from these vdevs before we
4361 	 * sync the config cache, and we lose power, then upon reboot we may
4362 	 * fail to open the pool because there are DVAs that the config cache
4363 	 * can't translate.  Therefore, we first add the vdevs without
4364 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
4365 	 * and then let spa_config_update() initialize the new metaslabs.
4366 	 *
4367 	 * spa_load() checks for added-but-not-initialized vdevs, so that
4368 	 * if we lose power at any point in this sequence, the remaining
4369 	 * steps will be completed the next time we load the pool.
4370 	 */
4371 	(void) spa_vdev_exit(spa, vd, txg, 0);
4372 
4373 	mutex_enter(&spa_namespace_lock);
4374 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4375 	mutex_exit(&spa_namespace_lock);
4376 
4377 	return (0);
4378 }
4379 
4380 /*
4381  * Attach a device to a mirror.  The arguments are the path to any device
4382  * in the mirror, and the nvroot for the new device.  If the path specifies
4383  * a device that is not mirrored, we automatically insert the mirror vdev.
4384  *
4385  * If 'replacing' is specified, the new device is intended to replace the
4386  * existing device; in this case the two devices are made into their own
4387  * mirror using the 'replacing' vdev, which is functionally identical to
4388  * the mirror vdev (it actually reuses all the same ops) but has a few
4389  * extra rules: you can't attach to it after it's been created, and upon
4390  * completion of resilvering, the first disk (the one being replaced)
4391  * is automatically detached.
4392  */
4393 int
4394 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
4395 {
4396 	uint64_t txg, dtl_max_txg;
4397 	vdev_t *rvd = spa->spa_root_vdev;
4398 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
4399 	vdev_ops_t *pvops;
4400 	char *oldvdpath, *newvdpath;
4401 	int newvd_isspare;
4402 	int error;
4403 
4404 	ASSERT(spa_writeable(spa));
4405 
4406 	txg = spa_vdev_enter(spa);
4407 
4408 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
4409 
4410 	if (oldvd == NULL)
4411 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4412 
4413 	if (!oldvd->vdev_ops->vdev_op_leaf)
4414 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4415 
4416 	pvd = oldvd->vdev_parent;
4417 
4418 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
4419 	    VDEV_ALLOC_ATTACH)) != 0)
4420 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4421 
4422 	if (newrootvd->vdev_children != 1)
4423 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4424 
4425 	newvd = newrootvd->vdev_child[0];
4426 
4427 	if (!newvd->vdev_ops->vdev_op_leaf)
4428 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
4429 
4430 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
4431 		return (spa_vdev_exit(spa, newrootvd, txg, error));
4432 
4433 	/*
4434 	 * Spares can't replace logs
4435 	 */
4436 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
4437 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4438 
4439 	if (!replacing) {
4440 		/*
4441 		 * For attach, the only allowable parent is a mirror or the root
4442 		 * vdev.
4443 		 */
4444 		if (pvd->vdev_ops != &vdev_mirror_ops &&
4445 		    pvd->vdev_ops != &vdev_root_ops)
4446 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4447 
4448 		pvops = &vdev_mirror_ops;
4449 	} else {
4450 		/*
4451 		 * Active hot spares can only be replaced by inactive hot
4452 		 * spares.
4453 		 */
4454 		if (pvd->vdev_ops == &vdev_spare_ops &&
4455 		    oldvd->vdev_isspare &&
4456 		    !spa_has_spare(spa, newvd->vdev_guid))
4457 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4458 
4459 		/*
4460 		 * If the source is a hot spare, and the parent isn't already a
4461 		 * spare, then we want to create a new hot spare.  Otherwise, we
4462 		 * want to create a replacing vdev.  The user is not allowed to
4463 		 * attach to a spared vdev child unless the 'isspare' state is
4464 		 * the same (spare replaces spare, non-spare replaces
4465 		 * non-spare).
4466 		 */
4467 		if (pvd->vdev_ops == &vdev_replacing_ops &&
4468 		    spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
4469 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4470 		} else if (pvd->vdev_ops == &vdev_spare_ops &&
4471 		    newvd->vdev_isspare != oldvd->vdev_isspare) {
4472 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
4473 		}
4474 
4475 		if (newvd->vdev_isspare)
4476 			pvops = &vdev_spare_ops;
4477 		else
4478 			pvops = &vdev_replacing_ops;
4479 	}
4480 
4481 	/*
4482 	 * Make sure the new device is big enough.
4483 	 */
4484 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
4485 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
4486 
4487 	/*
4488 	 * The new device cannot have a higher alignment requirement
4489 	 * than the top-level vdev.
4490 	 */
4491 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
4492 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
4493 
4494 	/*
4495 	 * If this is an in-place replacement, update oldvd's path and devid
4496 	 * to make it distinguishable from newvd, and unopenable from now on.
4497 	 */
4498 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
4499 		spa_strfree(oldvd->vdev_path);
4500 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
4501 		    KM_SLEEP);
4502 		(void) sprintf(oldvd->vdev_path, "%s/%s",
4503 		    newvd->vdev_path, "old");
4504 		if (oldvd->vdev_devid != NULL) {
4505 			spa_strfree(oldvd->vdev_devid);
4506 			oldvd->vdev_devid = NULL;
4507 		}
4508 	}
4509 
4510 	/* mark the device being resilvered */
4511 	newvd->vdev_resilver_txg = txg;
4512 
4513 	/*
4514 	 * If the parent is not a mirror, or if we're replacing, insert the new
4515 	 * mirror/replacing/spare vdev above oldvd.
4516 	 */
4517 	if (pvd->vdev_ops != pvops)
4518 		pvd = vdev_add_parent(oldvd, pvops);
4519 
4520 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
4521 	ASSERT(pvd->vdev_ops == pvops);
4522 	ASSERT(oldvd->vdev_parent == pvd);
4523 
4524 	/*
4525 	 * Extract the new device from its root and add it to pvd.
4526 	 */
4527 	vdev_remove_child(newrootvd, newvd);
4528 	newvd->vdev_id = pvd->vdev_children;
4529 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
4530 	vdev_add_child(pvd, newvd);
4531 
4532 	tvd = newvd->vdev_top;
4533 	ASSERT(pvd->vdev_top == tvd);
4534 	ASSERT(tvd->vdev_parent == rvd);
4535 
4536 	vdev_config_dirty(tvd);
4537 
4538 	/*
4539 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
4540 	 * for any dmu_sync-ed blocks.  It will propagate upward when
4541 	 * spa_vdev_exit() calls vdev_dtl_reassess().
4542 	 */
4543 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
4544 
4545 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
4546 	    dtl_max_txg - TXG_INITIAL);
4547 
4548 	if (newvd->vdev_isspare) {
4549 		spa_spare_activate(newvd);
4550 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
4551 	}
4552 
4553 	oldvdpath = spa_strdup(oldvd->vdev_path);
4554 	newvdpath = spa_strdup(newvd->vdev_path);
4555 	newvd_isspare = newvd->vdev_isspare;
4556 
4557 	/*
4558 	 * Mark newvd's DTL dirty in this txg.
4559 	 */
4560 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
4561 
4562 	/*
4563 	 * Schedule the resilver to restart in the future. We do this to
4564 	 * ensure that dmu_sync-ed blocks have been stitched into the
4565 	 * respective datasets.
4566 	 */
4567 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
4568 
4569 	/*
4570 	 * Commit the config
4571 	 */
4572 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
4573 
4574 	spa_history_log_internal(spa, "vdev attach", NULL,
4575 	    "%s vdev=%s %s vdev=%s",
4576 	    replacing && newvd_isspare ? "spare in" :
4577 	    replacing ? "replace" : "attach", newvdpath,
4578 	    replacing ? "for" : "to", oldvdpath);
4579 
4580 	spa_strfree(oldvdpath);
4581 	spa_strfree(newvdpath);
4582 
4583 	if (spa->spa_bootfs)
4584 		spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH);
4585 
4586 	return (0);
4587 }
4588 
4589 /*
4590  * Detach a device from a mirror or replacing vdev.
4591  *
4592  * If 'replace_done' is specified, only detach if the parent
4593  * is a replacing vdev.
4594  */
4595 int
4596 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
4597 {
4598 	uint64_t txg;
4599 	int error;
4600 	vdev_t *rvd = spa->spa_root_vdev;
4601 	vdev_t *vd, *pvd, *cvd, *tvd;
4602 	boolean_t unspare = B_FALSE;
4603 	uint64_t unspare_guid = 0;
4604 	char *vdpath;
4605 
4606 	ASSERT(spa_writeable(spa));
4607 
4608 	txg = spa_vdev_enter(spa);
4609 
4610 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4611 
4612 	if (vd == NULL)
4613 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
4614 
4615 	if (!vd->vdev_ops->vdev_op_leaf)
4616 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4617 
4618 	pvd = vd->vdev_parent;
4619 
4620 	/*
4621 	 * If the parent/child relationship is not as expected, don't do it.
4622 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
4623 	 * vdev that's replacing B with C.  The user's intent in replacing
4624 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
4625 	 * the replace by detaching C, the expected behavior is to end up
4626 	 * M(A,B).  But suppose that right after deciding to detach C,
4627 	 * the replacement of B completes.  We would have M(A,C), and then
4628 	 * ask to detach C, which would leave us with just A -- not what
4629 	 * the user wanted.  To prevent this, we make sure that the
4630 	 * parent/child relationship hasn't changed -- in this example,
4631 	 * that C's parent is still the replacing vdev R.
4632 	 */
4633 	if (pvd->vdev_guid != pguid && pguid != 0)
4634 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4635 
4636 	/*
4637 	 * Only 'replacing' or 'spare' vdevs can be replaced.
4638 	 */
4639 	if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
4640 	    pvd->vdev_ops != &vdev_spare_ops)
4641 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4642 
4643 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
4644 	    spa_version(spa) >= SPA_VERSION_SPARES);
4645 
4646 	/*
4647 	 * Only mirror, replacing, and spare vdevs support detach.
4648 	 */
4649 	if (pvd->vdev_ops != &vdev_replacing_ops &&
4650 	    pvd->vdev_ops != &vdev_mirror_ops &&
4651 	    pvd->vdev_ops != &vdev_spare_ops)
4652 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
4653 
4654 	/*
4655 	 * If this device has the only valid copy of some data,
4656 	 * we cannot safely detach it.
4657 	 */
4658 	if (vdev_dtl_required(vd))
4659 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
4660 
4661 	ASSERT(pvd->vdev_children >= 2);
4662 
4663 	/*
4664 	 * If we are detaching the second disk from a replacing vdev, then
4665 	 * check to see if we changed the original vdev's path to have "/old"
4666 	 * at the end in spa_vdev_attach().  If so, undo that change now.
4667 	 */
4668 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
4669 	    vd->vdev_path != NULL) {
4670 		size_t len = strlen(vd->vdev_path);
4671 
4672 		for (int c = 0; c < pvd->vdev_children; c++) {
4673 			cvd = pvd->vdev_child[c];
4674 
4675 			if (cvd == vd || cvd->vdev_path == NULL)
4676 				continue;
4677 
4678 			if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
4679 			    strcmp(cvd->vdev_path + len, "/old") == 0) {
4680 				spa_strfree(cvd->vdev_path);
4681 				cvd->vdev_path = spa_strdup(vd->vdev_path);
4682 				break;
4683 			}
4684 		}
4685 	}
4686 
4687 	/*
4688 	 * If we are detaching the original disk from a spare, then it implies
4689 	 * that the spare should become a real disk, and be removed from the
4690 	 * active spare list for the pool.
4691 	 */
4692 	if (pvd->vdev_ops == &vdev_spare_ops &&
4693 	    vd->vdev_id == 0 &&
4694 	    pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare)
4695 		unspare = B_TRUE;
4696 
4697 	/*
4698 	 * Erase the disk labels so the disk can be used for other things.
4699 	 * This must be done after all other error cases are handled,
4700 	 * but before we disembowel vd (so we can still do I/O to it).
4701 	 * But if we can't do it, don't treat the error as fatal --
4702 	 * it may be that the unwritability of the disk is the reason
4703 	 * it's being detached!
4704 	 */
4705 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4706 
4707 	/*
4708 	 * Remove vd from its parent and compact the parent's children.
4709 	 */
4710 	vdev_remove_child(pvd, vd);
4711 	vdev_compact_children(pvd);
4712 
4713 	/*
4714 	 * Remember one of the remaining children so we can get tvd below.
4715 	 */
4716 	cvd = pvd->vdev_child[pvd->vdev_children - 1];
4717 
4718 	/*
4719 	 * If we need to remove the remaining child from the list of hot spares,
4720 	 * do it now, marking the vdev as no longer a spare in the process.
4721 	 * We must do this before vdev_remove_parent(), because that can
4722 	 * change the GUID if it creates a new toplevel GUID.  For a similar
4723 	 * reason, we must remove the spare now, in the same txg as the detach;
4724 	 * otherwise someone could attach a new sibling, change the GUID, and
4725 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
4726 	 */
4727 	if (unspare) {
4728 		ASSERT(cvd->vdev_isspare);
4729 		spa_spare_remove(cvd);
4730 		unspare_guid = cvd->vdev_guid;
4731 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4732 		cvd->vdev_unspare = B_TRUE;
4733 	}
4734 
4735 	/*
4736 	 * If the parent mirror/replacing vdev only has one child,
4737 	 * the parent is no longer needed.  Remove it from the tree.
4738 	 */
4739 	if (pvd->vdev_children == 1) {
4740 		if (pvd->vdev_ops == &vdev_spare_ops)
4741 			cvd->vdev_unspare = B_FALSE;
4742 		vdev_remove_parent(cvd);
4743 	}
4744 
4745 
4746 	/*
4747 	 * We don't set tvd until now because the parent we just removed
4748 	 * may have been the previous top-level vdev.
4749 	 */
4750 	tvd = cvd->vdev_top;
4751 	ASSERT(tvd->vdev_parent == rvd);
4752 
4753 	/*
4754 	 * Reevaluate the parent vdev state.
4755 	 */
4756 	vdev_propagate_state(cvd);
4757 
4758 	/*
4759 	 * If the 'autoexpand' property is set on the pool then automatically
4760 	 * try to expand the size of the pool. For example if the device we
4761 	 * just detached was smaller than the others, it may be possible to
4762 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
4763 	 * first so that we can obtain the updated sizes of the leaf vdevs.
4764 	 */
4765 	if (spa->spa_autoexpand) {
4766 		vdev_reopen(tvd);
4767 		vdev_expand(tvd, txg);
4768 	}
4769 
4770 	vdev_config_dirty(tvd);
4771 
4772 	/*
4773 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4774 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4775 	 * But first make sure we're not on any *other* txg's DTL list, to
4776 	 * prevent vd from being accessed after it's freed.
4777 	 */
4778 	vdpath = spa_strdup(vd->vdev_path);
4779 	for (int t = 0; t < TXG_SIZE; t++)
4780 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4781 	vd->vdev_detached = B_TRUE;
4782 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4783 
4784 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4785 
4786 	/* hang on to the spa before we release the lock */
4787 	spa_open_ref(spa, FTAG);
4788 
4789 	error = spa_vdev_exit(spa, vd, txg, 0);
4790 
4791 	spa_history_log_internal(spa, "detach", NULL,
4792 	    "vdev=%s", vdpath);
4793 	spa_strfree(vdpath);
4794 
4795 	/*
4796 	 * If this was the removal of the original device in a hot spare vdev,
4797 	 * then we want to go through and remove the device from the hot spare
4798 	 * list of every other pool.
4799 	 */
4800 	if (unspare) {
4801 		spa_t *altspa = NULL;
4802 
4803 		mutex_enter(&spa_namespace_lock);
4804 		while ((altspa = spa_next(altspa)) != NULL) {
4805 			if (altspa->spa_state != POOL_STATE_ACTIVE ||
4806 			    altspa == spa)
4807 				continue;
4808 
4809 			spa_open_ref(altspa, FTAG);
4810 			mutex_exit(&spa_namespace_lock);
4811 			(void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
4812 			mutex_enter(&spa_namespace_lock);
4813 			spa_close(altspa, FTAG);
4814 		}
4815 		mutex_exit(&spa_namespace_lock);
4816 
4817 		/* search the rest of the vdevs for spares to remove */
4818 		spa_vdev_resilver_done(spa);
4819 	}
4820 
4821 	/* all done with the spa; OK to release */
4822 	mutex_enter(&spa_namespace_lock);
4823 	spa_close(spa, FTAG);
4824 	mutex_exit(&spa_namespace_lock);
4825 
4826 	return (error);
4827 }
4828 
4829 /*
4830  * Split a set of devices from their mirrors, and create a new pool from them.
4831  */
4832 int
4833 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4834     nvlist_t *props, boolean_t exp)
4835 {
4836 	int error = 0;
4837 	uint64_t txg, *glist;
4838 	spa_t *newspa;
4839 	uint_t c, children, lastlog;
4840 	nvlist_t **child, *nvl, *tmp;
4841 	dmu_tx_t *tx;
4842 	char *altroot = NULL;
4843 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4844 	boolean_t activate_slog;
4845 
4846 	ASSERT(spa_writeable(spa));
4847 
4848 	txg = spa_vdev_enter(spa);
4849 
4850 	/* clear the log and flush everything up to now */
4851 	activate_slog = spa_passivate_log(spa);
4852 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4853 	error = spa_offline_log(spa);
4854 	txg = spa_vdev_config_enter(spa);
4855 
4856 	if (activate_slog)
4857 		spa_activate_log(spa);
4858 
4859 	if (error != 0)
4860 		return (spa_vdev_exit(spa, NULL, txg, error));
4861 
4862 	/* check new spa name before going any further */
4863 	if (spa_lookup(newname) != NULL)
4864 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4865 
4866 	/*
4867 	 * scan through all the children to ensure they're all mirrors
4868 	 */
4869 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4870 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4871 	    &children) != 0)
4872 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4873 
4874 	/* first, check to ensure we've got the right child count */
4875 	rvd = spa->spa_root_vdev;
4876 	lastlog = 0;
4877 	for (c = 0; c < rvd->vdev_children; c++) {
4878 		vdev_t *vd = rvd->vdev_child[c];
4879 
4880 		/* don't count the holes & logs as children */
4881 		if (vd->vdev_islog || vd->vdev_ishole) {
4882 			if (lastlog == 0)
4883 				lastlog = c;
4884 			continue;
4885 		}
4886 
4887 		lastlog = 0;
4888 	}
4889 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4890 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4891 
4892 	/* next, ensure no spare or cache devices are part of the split */
4893 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4894 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4895 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4896 
4897 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4898 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4899 
4900 	/* then, loop over each vdev and validate it */
4901 	for (c = 0; c < children; c++) {
4902 		uint64_t is_hole = 0;
4903 
4904 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4905 		    &is_hole);
4906 
4907 		if (is_hole != 0) {
4908 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4909 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4910 				continue;
4911 			} else {
4912 				error = SET_ERROR(EINVAL);
4913 				break;
4914 			}
4915 		}
4916 
4917 		/* which disk is going to be split? */
4918 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4919 		    &glist[c]) != 0) {
4920 			error = SET_ERROR(EINVAL);
4921 			break;
4922 		}
4923 
4924 		/* look it up in the spa */
4925 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4926 		if (vml[c] == NULL) {
4927 			error = SET_ERROR(ENODEV);
4928 			break;
4929 		}
4930 
4931 		/* make sure there's nothing stopping the split */
4932 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4933 		    vml[c]->vdev_islog ||
4934 		    vml[c]->vdev_ishole ||
4935 		    vml[c]->vdev_isspare ||
4936 		    vml[c]->vdev_isl2cache ||
4937 		    !vdev_writeable(vml[c]) ||
4938 		    vml[c]->vdev_children != 0 ||
4939 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4940 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4941 			error = SET_ERROR(EINVAL);
4942 			break;
4943 		}
4944 
4945 		if (vdev_dtl_required(vml[c])) {
4946 			error = SET_ERROR(EBUSY);
4947 			break;
4948 		}
4949 
4950 		/* we need certain info from the top level */
4951 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4952 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4953 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4954 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4955 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4956 		    vml[c]->vdev_top->vdev_asize) == 0);
4957 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4958 		    vml[c]->vdev_top->vdev_ashift) == 0);
4959 	}
4960 
4961 	if (error != 0) {
4962 		kmem_free(vml, children * sizeof (vdev_t *));
4963 		kmem_free(glist, children * sizeof (uint64_t));
4964 		return (spa_vdev_exit(spa, NULL, txg, error));
4965 	}
4966 
4967 	/* stop writers from using the disks */
4968 	for (c = 0; c < children; c++) {
4969 		if (vml[c] != NULL)
4970 			vml[c]->vdev_offline = B_TRUE;
4971 	}
4972 	vdev_reopen(spa->spa_root_vdev);
4973 
4974 	/*
4975 	 * Temporarily record the splitting vdevs in the spa config.  This
4976 	 * will disappear once the config is regenerated.
4977 	 */
4978 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4979 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4980 	    glist, children) == 0);
4981 	kmem_free(glist, children * sizeof (uint64_t));
4982 
4983 	mutex_enter(&spa->spa_props_lock);
4984 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4985 	    nvl) == 0);
4986 	mutex_exit(&spa->spa_props_lock);
4987 	spa->spa_config_splitting = nvl;
4988 	vdev_config_dirty(spa->spa_root_vdev);
4989 
4990 	/* configure and create the new pool */
4991 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4992 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4993 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4994 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4995 	    spa_version(spa)) == 0);
4996 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4997 	    spa->spa_config_txg) == 0);
4998 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4999 	    spa_generate_guid(NULL)) == 0);
5000 	(void) nvlist_lookup_string(props,
5001 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
5002 
5003 	/* add the new pool to the namespace */
5004 	newspa = spa_add(newname, config, altroot);
5005 	newspa->spa_config_txg = spa->spa_config_txg;
5006 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
5007 
5008 	/* release the spa config lock, retaining the namespace lock */
5009 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5010 
5011 	if (zio_injection_enabled)
5012 		zio_handle_panic_injection(spa, FTAG, 1);
5013 
5014 	spa_activate(newspa, spa_mode_global);
5015 	spa_async_suspend(newspa);
5016 
5017 	/* create the new pool from the disks of the original pool */
5018 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
5019 	if (error)
5020 		goto out;
5021 
5022 	/* if that worked, generate a real config for the new pool */
5023 	if (newspa->spa_root_vdev != NULL) {
5024 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
5025 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
5026 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
5027 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
5028 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
5029 		    B_TRUE));
5030 	}
5031 
5032 	/* set the props */
5033 	if (props != NULL) {
5034 		spa_configfile_set(newspa, props, B_FALSE);
5035 		error = spa_prop_set(newspa, props);
5036 		if (error)
5037 			goto out;
5038 	}
5039 
5040 	/* flush everything */
5041 	txg = spa_vdev_config_enter(newspa);
5042 	vdev_config_dirty(newspa->spa_root_vdev);
5043 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
5044 
5045 	if (zio_injection_enabled)
5046 		zio_handle_panic_injection(spa, FTAG, 2);
5047 
5048 	spa_async_resume(newspa);
5049 
5050 	/* finally, update the original pool's config */
5051 	txg = spa_vdev_config_enter(spa);
5052 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
5053 	error = dmu_tx_assign(tx, TXG_WAIT);
5054 	if (error != 0)
5055 		dmu_tx_abort(tx);
5056 	for (c = 0; c < children; c++) {
5057 		if (vml[c] != NULL) {
5058 			vdev_split(vml[c]);
5059 			if (error == 0)
5060 				spa_history_log_internal(spa, "detach", tx,
5061 				    "vdev=%s", vml[c]->vdev_path);
5062 			vdev_free(vml[c]);
5063 		}
5064 	}
5065 	vdev_config_dirty(spa->spa_root_vdev);
5066 	spa->spa_config_splitting = NULL;
5067 	nvlist_free(nvl);
5068 	if (error == 0)
5069 		dmu_tx_commit(tx);
5070 	(void) spa_vdev_exit(spa, NULL, txg, 0);
5071 
5072 	if (zio_injection_enabled)
5073 		zio_handle_panic_injection(spa, FTAG, 3);
5074 
5075 	/* split is complete; log a history record */
5076 	spa_history_log_internal(newspa, "split", NULL,
5077 	    "from pool %s", spa_name(spa));
5078 
5079 	kmem_free(vml, children * sizeof (vdev_t *));
5080 
5081 	/* if we're not going to mount the filesystems in userland, export */
5082 	if (exp)
5083 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
5084 		    B_FALSE, B_FALSE);
5085 
5086 	return (error);
5087 
5088 out:
5089 	spa_unload(newspa);
5090 	spa_deactivate(newspa);
5091 	spa_remove(newspa);
5092 
5093 	txg = spa_vdev_config_enter(spa);
5094 
5095 	/* re-online all offlined disks */
5096 	for (c = 0; c < children; c++) {
5097 		if (vml[c] != NULL)
5098 			vml[c]->vdev_offline = B_FALSE;
5099 	}
5100 	vdev_reopen(spa->spa_root_vdev);
5101 
5102 	nvlist_free(spa->spa_config_splitting);
5103 	spa->spa_config_splitting = NULL;
5104 	(void) spa_vdev_exit(spa, NULL, txg, error);
5105 
5106 	kmem_free(vml, children * sizeof (vdev_t *));
5107 	return (error);
5108 }
5109 
5110 static nvlist_t *
5111 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
5112 {
5113 	for (int i = 0; i < count; i++) {
5114 		uint64_t guid;
5115 
5116 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
5117 		    &guid) == 0);
5118 
5119 		if (guid == target_guid)
5120 			return (nvpp[i]);
5121 	}
5122 
5123 	return (NULL);
5124 }
5125 
5126 static void
5127 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
5128 	nvlist_t *dev_to_remove)
5129 {
5130 	nvlist_t **newdev = NULL;
5131 
5132 	if (count > 1)
5133 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
5134 
5135 	for (int i = 0, j = 0; i < count; i++) {
5136 		if (dev[i] == dev_to_remove)
5137 			continue;
5138 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
5139 	}
5140 
5141 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
5142 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
5143 
5144 	for (int i = 0; i < count - 1; i++)
5145 		nvlist_free(newdev[i]);
5146 
5147 	if (count > 1)
5148 		kmem_free(newdev, (count - 1) * sizeof (void *));
5149 }
5150 
5151 /*
5152  * Evacuate the device.
5153  */
5154 static int
5155 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
5156 {
5157 	uint64_t txg;
5158 	int error = 0;
5159 
5160 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5161 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5162 	ASSERT(vd == vd->vdev_top);
5163 
5164 	/*
5165 	 * Evacuate the device.  We don't hold the config lock as writer
5166 	 * since we need to do I/O but we do keep the
5167 	 * spa_namespace_lock held.  Once this completes the device
5168 	 * should no longer have any blocks allocated on it.
5169 	 */
5170 	if (vd->vdev_islog) {
5171 		if (vd->vdev_stat.vs_alloc != 0)
5172 			error = spa_offline_log(spa);
5173 	} else {
5174 		error = SET_ERROR(ENOTSUP);
5175 	}
5176 
5177 	if (error)
5178 		return (error);
5179 
5180 	/*
5181 	 * The evacuation succeeded.  Remove any remaining MOS metadata
5182 	 * associated with this vdev, and wait for these changes to sync.
5183 	 */
5184 	ASSERT0(vd->vdev_stat.vs_alloc);
5185 	txg = spa_vdev_config_enter(spa);
5186 	vd->vdev_removing = B_TRUE;
5187 	vdev_dirty_leaves(vd, VDD_DTL, txg);
5188 	vdev_config_dirty(vd);
5189 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
5190 
5191 	return (0);
5192 }
5193 
5194 /*
5195  * Complete the removal by cleaning up the namespace.
5196  */
5197 static void
5198 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
5199 {
5200 	vdev_t *rvd = spa->spa_root_vdev;
5201 	uint64_t id = vd->vdev_id;
5202 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
5203 
5204 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
5205 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
5206 	ASSERT(vd == vd->vdev_top);
5207 
5208 	/*
5209 	 * Only remove any devices which are empty.
5210 	 */
5211 	if (vd->vdev_stat.vs_alloc != 0)
5212 		return;
5213 
5214 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
5215 
5216 	if (list_link_active(&vd->vdev_state_dirty_node))
5217 		vdev_state_clean(vd);
5218 	if (list_link_active(&vd->vdev_config_dirty_node))
5219 		vdev_config_clean(vd);
5220 
5221 	vdev_free(vd);
5222 
5223 	if (last_vdev) {
5224 		vdev_compact_children(rvd);
5225 	} else {
5226 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
5227 		vdev_add_child(rvd, vd);
5228 	}
5229 	vdev_config_dirty(rvd);
5230 
5231 	/*
5232 	 * Reassess the health of our root vdev.
5233 	 */
5234 	vdev_reopen(rvd);
5235 }
5236 
5237 /*
5238  * Remove a device from the pool -
5239  *
5240  * Removing a device from the vdev namespace requires several steps
5241  * and can take a significant amount of time.  As a result we use
5242  * the spa_vdev_config_[enter/exit] functions which allow us to
5243  * grab and release the spa_config_lock while still holding the namespace
5244  * lock.  During each step the configuration is synced out.
5245  *
5246  * Currently, this supports removing only hot spares, slogs, and level 2 ARC
5247  * devices.
5248  */
5249 int
5250 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
5251 {
5252 	vdev_t *vd;
5253 	metaslab_group_t *mg;
5254 	nvlist_t **spares, **l2cache, *nv;
5255 	uint64_t txg = 0;
5256 	uint_t nspares, nl2cache;
5257 	int error = 0;
5258 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
5259 
5260 	ASSERT(spa_writeable(spa));
5261 
5262 	if (!locked)
5263 		txg = spa_vdev_enter(spa);
5264 
5265 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
5266 
5267 	if (spa->spa_spares.sav_vdevs != NULL &&
5268 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5269 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
5270 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
5271 		/*
5272 		 * Only remove the hot spare if it's not currently in use
5273 		 * in this pool.
5274 		 */
5275 		if (vd == NULL || unspare) {
5276 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
5277 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
5278 			spa_load_spares(spa);
5279 			spa->spa_spares.sav_sync = B_TRUE;
5280 		} else {
5281 			error = SET_ERROR(EBUSY);
5282 		}
5283 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
5284 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
5285 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
5286 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
5287 		/*
5288 		 * Cache devices can always be removed.
5289 		 */
5290 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
5291 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
5292 		spa_load_l2cache(spa);
5293 		spa->spa_l2cache.sav_sync = B_TRUE;
5294 	} else if (vd != NULL && vd->vdev_islog) {
5295 		ASSERT(!locked);
5296 		ASSERT(vd == vd->vdev_top);
5297 
5298 		mg = vd->vdev_mg;
5299 
5300 		/*
5301 		 * Stop allocating from this vdev.
5302 		 */
5303 		metaslab_group_passivate(mg);
5304 
5305 		/*
5306 		 * Wait for the youngest allocations and frees to sync,
5307 		 * and then wait for the deferral of those frees to finish.
5308 		 */
5309 		spa_vdev_config_exit(spa, NULL,
5310 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
5311 
5312 		/*
5313 		 * Attempt to evacuate the vdev.
5314 		 */
5315 		error = spa_vdev_remove_evacuate(spa, vd);
5316 
5317 		txg = spa_vdev_config_enter(spa);
5318 
5319 		/*
5320 		 * If we couldn't evacuate the vdev, unwind.
5321 		 */
5322 		if (error) {
5323 			metaslab_group_activate(mg);
5324 			return (spa_vdev_exit(spa, NULL, txg, error));
5325 		}
5326 
5327 		/*
5328 		 * Clean up the vdev namespace.
5329 		 */
5330 		spa_vdev_remove_from_namespace(spa, vd);
5331 
5332 	} else if (vd != NULL) {
5333 		/*
5334 		 * Normal vdevs cannot be removed (yet).
5335 		 */
5336 		error = SET_ERROR(ENOTSUP);
5337 	} else {
5338 		/*
5339 		 * There is no vdev of any kind with the specified guid.
5340 		 */
5341 		error = SET_ERROR(ENOENT);
5342 	}
5343 
5344 	if (!locked)
5345 		return (spa_vdev_exit(spa, NULL, txg, error));
5346 
5347 	return (error);
5348 }
5349 
5350 /*
5351  * Find any device that's done replacing, or a vdev marked 'unspare' that's
5352  * currently spared, so we can detach it.
5353  */
5354 static vdev_t *
5355 spa_vdev_resilver_done_hunt(vdev_t *vd)
5356 {
5357 	vdev_t *newvd, *oldvd;
5358 
5359 	for (int c = 0; c < vd->vdev_children; c++) {
5360 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
5361 		if (oldvd != NULL)
5362 			return (oldvd);
5363 	}
5364 
5365 	/*
5366 	 * Check for a completed replacement.  We always consider the first
5367 	 * vdev in the list to be the oldest vdev, and the last one to be
5368 	 * the newest (see spa_vdev_attach() for how that works).  In
5369 	 * the case where the newest vdev is faulted, we will not automatically
5370 	 * remove it after a resilver completes.  This is OK as it will require
5371 	 * user intervention to determine which disk the admin wishes to keep.
5372 	 */
5373 	if (vd->vdev_ops == &vdev_replacing_ops) {
5374 		ASSERT(vd->vdev_children > 1);
5375 
5376 		newvd = vd->vdev_child[vd->vdev_children - 1];
5377 		oldvd = vd->vdev_child[0];
5378 
5379 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
5380 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5381 		    !vdev_dtl_required(oldvd))
5382 			return (oldvd);
5383 	}
5384 
5385 	/*
5386 	 * Check for a completed resilver with the 'unspare' flag set.
5387 	 */
5388 	if (vd->vdev_ops == &vdev_spare_ops) {
5389 		vdev_t *first = vd->vdev_child[0];
5390 		vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
5391 
5392 		if (last->vdev_unspare) {
5393 			oldvd = first;
5394 			newvd = last;
5395 		} else if (first->vdev_unspare) {
5396 			oldvd = last;
5397 			newvd = first;
5398 		} else {
5399 			oldvd = NULL;
5400 		}
5401 
5402 		if (oldvd != NULL &&
5403 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
5404 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
5405 		    !vdev_dtl_required(oldvd))
5406 			return (oldvd);
5407 
5408 		/*
5409 		 * If there are more than two spares attached to a disk,
5410 		 * and those spares are not required, then we want to
5411 		 * attempt to free them up now so that they can be used
5412 		 * by other pools.  Once we're back down to a single
5413 		 * disk+spare, we stop removing them.
5414 		 */
5415 		if (vd->vdev_children > 2) {
5416 			newvd = vd->vdev_child[1];
5417 
5418 			if (newvd->vdev_isspare && last->vdev_isspare &&
5419 			    vdev_dtl_empty(last, DTL_MISSING) &&
5420 			    vdev_dtl_empty(last, DTL_OUTAGE) &&
5421 			    !vdev_dtl_required(newvd))
5422 				return (newvd);
5423 		}
5424 	}
5425 
5426 	return (NULL);
5427 }
5428 
5429 static void
5430 spa_vdev_resilver_done(spa_t *spa)
5431 {
5432 	vdev_t *vd, *pvd, *ppvd;
5433 	uint64_t guid, sguid, pguid, ppguid;
5434 
5435 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5436 
5437 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
5438 		pvd = vd->vdev_parent;
5439 		ppvd = pvd->vdev_parent;
5440 		guid = vd->vdev_guid;
5441 		pguid = pvd->vdev_guid;
5442 		ppguid = ppvd->vdev_guid;
5443 		sguid = 0;
5444 		/*
5445 		 * If we have just finished replacing a hot spared device, then
5446 		 * we need to detach the parent's first child (the original hot
5447 		 * spare) as well.
5448 		 */
5449 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
5450 		    ppvd->vdev_children == 2) {
5451 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
5452 			sguid = ppvd->vdev_child[1]->vdev_guid;
5453 		}
5454 		ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
5455 
5456 		spa_config_exit(spa, SCL_ALL, FTAG);
5457 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
5458 			return;
5459 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
5460 			return;
5461 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5462 	}
5463 
5464 	spa_config_exit(spa, SCL_ALL, FTAG);
5465 }
5466 
5467 /*
5468  * Update the stored path or FRU for this vdev.
5469  */
5470 int
5471 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
5472     boolean_t ispath)
5473 {
5474 	vdev_t *vd;
5475 	boolean_t sync = B_FALSE;
5476 
5477 	ASSERT(spa_writeable(spa));
5478 
5479 	spa_vdev_state_enter(spa, SCL_ALL);
5480 
5481 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
5482 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
5483 
5484 	if (!vd->vdev_ops->vdev_op_leaf)
5485 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
5486 
5487 	if (ispath) {
5488 		if (strcmp(value, vd->vdev_path) != 0) {
5489 			spa_strfree(vd->vdev_path);
5490 			vd->vdev_path = spa_strdup(value);
5491 			sync = B_TRUE;
5492 		}
5493 	} else {
5494 		if (vd->vdev_fru == NULL) {
5495 			vd->vdev_fru = spa_strdup(value);
5496 			sync = B_TRUE;
5497 		} else if (strcmp(value, vd->vdev_fru) != 0) {
5498 			spa_strfree(vd->vdev_fru);
5499 			vd->vdev_fru = spa_strdup(value);
5500 			sync = B_TRUE;
5501 		}
5502 	}
5503 
5504 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
5505 }
5506 
5507 int
5508 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
5509 {
5510 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
5511 }
5512 
5513 int
5514 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
5515 {
5516 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
5517 }
5518 
5519 /*
5520  * ==========================================================================
5521  * SPA Scanning
5522  * ==========================================================================
5523  */
5524 
5525 int
5526 spa_scan_stop(spa_t *spa)
5527 {
5528 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5529 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
5530 		return (SET_ERROR(EBUSY));
5531 	return (dsl_scan_cancel(spa->spa_dsl_pool));
5532 }
5533 
5534 int
5535 spa_scan(spa_t *spa, pool_scan_func_t func)
5536 {
5537 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
5538 
5539 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
5540 		return (SET_ERROR(ENOTSUP));
5541 
5542 	/*
5543 	 * If a resilver was requested, but there is no DTL on a
5544 	 * writeable leaf device, we have nothing to do.
5545 	 */
5546 	if (func == POOL_SCAN_RESILVER &&
5547 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5548 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
5549 		return (0);
5550 	}
5551 
5552 	return (dsl_scan(spa->spa_dsl_pool, func));
5553 }
5554 
5555 /*
5556  * ==========================================================================
5557  * SPA async task processing
5558  * ==========================================================================
5559  */
5560 
5561 static void
5562 spa_async_remove(spa_t *spa, vdev_t *vd)
5563 {
5564 	if (vd->vdev_remove_wanted) {
5565 		vd->vdev_remove_wanted = B_FALSE;
5566 		vd->vdev_delayed_close = B_FALSE;
5567 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
5568 
5569 		/*
5570 		 * We want to clear the stats, but we don't want to do a full
5571 		 * vdev_clear() as that will cause us to throw away
5572 		 * degraded/faulted state as well as attempt to reopen the
5573 		 * device, all of which is a waste.
5574 		 */
5575 		vd->vdev_stat.vs_read_errors = 0;
5576 		vd->vdev_stat.vs_write_errors = 0;
5577 		vd->vdev_stat.vs_checksum_errors = 0;
5578 
5579 		vdev_state_dirty(vd->vdev_top);
5580 	}
5581 
5582 	for (int c = 0; c < vd->vdev_children; c++)
5583 		spa_async_remove(spa, vd->vdev_child[c]);
5584 }
5585 
5586 static void
5587 spa_async_probe(spa_t *spa, vdev_t *vd)
5588 {
5589 	if (vd->vdev_probe_wanted) {
5590 		vd->vdev_probe_wanted = B_FALSE;
5591 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
5592 	}
5593 
5594 	for (int c = 0; c < vd->vdev_children; c++)
5595 		spa_async_probe(spa, vd->vdev_child[c]);
5596 }
5597 
5598 static void
5599 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
5600 {
5601 	sysevent_id_t eid;
5602 	nvlist_t *attr;
5603 	char *physpath;
5604 
5605 	if (!spa->spa_autoexpand)
5606 		return;
5607 
5608 	for (int c = 0; c < vd->vdev_children; c++) {
5609 		vdev_t *cvd = vd->vdev_child[c];
5610 		spa_async_autoexpand(spa, cvd);
5611 	}
5612 
5613 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
5614 		return;
5615 
5616 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
5617 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
5618 
5619 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5620 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
5621 
5622 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
5623 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
5624 
5625 	nvlist_free(attr);
5626 	kmem_free(physpath, MAXPATHLEN);
5627 }
5628 
5629 static void
5630 spa_async_thread(spa_t *spa)
5631 {
5632 	int tasks;
5633 
5634 	ASSERT(spa->spa_sync_on);
5635 
5636 	mutex_enter(&spa->spa_async_lock);
5637 	tasks = spa->spa_async_tasks;
5638 	spa->spa_async_tasks = 0;
5639 	mutex_exit(&spa->spa_async_lock);
5640 
5641 	/*
5642 	 * See if the config needs to be updated.
5643 	 */
5644 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
5645 		uint64_t old_space, new_space;
5646 
5647 		mutex_enter(&spa_namespace_lock);
5648 		old_space = metaslab_class_get_space(spa_normal_class(spa));
5649 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
5650 		new_space = metaslab_class_get_space(spa_normal_class(spa));
5651 		mutex_exit(&spa_namespace_lock);
5652 
5653 		/*
5654 		 * If the pool grew as a result of the config update,
5655 		 * then log an internal history event.
5656 		 */
5657 		if (new_space != old_space) {
5658 			spa_history_log_internal(spa, "vdev online", NULL,
5659 			    "pool '%s' size: %llu(+%llu)",
5660 			    spa_name(spa), new_space, new_space - old_space);
5661 		}
5662 	}
5663 
5664 	/*
5665 	 * See if any devices need to be marked REMOVED.
5666 	 */
5667 	if (tasks & SPA_ASYNC_REMOVE) {
5668 		spa_vdev_state_enter(spa, SCL_NONE);
5669 		spa_async_remove(spa, spa->spa_root_vdev);
5670 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
5671 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
5672 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
5673 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
5674 		(void) spa_vdev_state_exit(spa, NULL, 0);
5675 	}
5676 
5677 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
5678 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5679 		spa_async_autoexpand(spa, spa->spa_root_vdev);
5680 		spa_config_exit(spa, SCL_CONFIG, FTAG);
5681 	}
5682 
5683 	/*
5684 	 * See if any devices need to be probed.
5685 	 */
5686 	if (tasks & SPA_ASYNC_PROBE) {
5687 		spa_vdev_state_enter(spa, SCL_NONE);
5688 		spa_async_probe(spa, spa->spa_root_vdev);
5689 		(void) spa_vdev_state_exit(spa, NULL, 0);
5690 	}
5691 
5692 	/*
5693 	 * If any devices are done replacing, detach them.
5694 	 */
5695 	if (tasks & SPA_ASYNC_RESILVER_DONE)
5696 		spa_vdev_resilver_done(spa);
5697 
5698 	/*
5699 	 * Kick off a resilver.
5700 	 */
5701 	if (tasks & SPA_ASYNC_RESILVER)
5702 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
5703 
5704 	/*
5705 	 * Let the world know that we're done.
5706 	 */
5707 	mutex_enter(&spa->spa_async_lock);
5708 	spa->spa_async_thread = NULL;
5709 	cv_broadcast(&spa->spa_async_cv);
5710 	mutex_exit(&spa->spa_async_lock);
5711 	thread_exit();
5712 }
5713 
5714 void
5715 spa_async_suspend(spa_t *spa)
5716 {
5717 	mutex_enter(&spa->spa_async_lock);
5718 	spa->spa_async_suspended++;
5719 	while (spa->spa_async_thread != NULL)
5720 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
5721 	mutex_exit(&spa->spa_async_lock);
5722 }
5723 
5724 void
5725 spa_async_resume(spa_t *spa)
5726 {
5727 	mutex_enter(&spa->spa_async_lock);
5728 	ASSERT(spa->spa_async_suspended != 0);
5729 	spa->spa_async_suspended--;
5730 	mutex_exit(&spa->spa_async_lock);
5731 }
5732 
5733 static boolean_t
5734 spa_async_tasks_pending(spa_t *spa)
5735 {
5736 	uint_t non_config_tasks;
5737 	uint_t config_task;
5738 	boolean_t config_task_suspended;
5739 
5740 	non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
5741 	config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
5742 	if (spa->spa_ccw_fail_time == 0) {
5743 		config_task_suspended = B_FALSE;
5744 	} else {
5745 		config_task_suspended =
5746 		    (gethrtime() - spa->spa_ccw_fail_time) <
5747 		    (zfs_ccw_retry_interval * NANOSEC);
5748 	}
5749 
5750 	return (non_config_tasks || (config_task && !config_task_suspended));
5751 }
5752 
5753 static void
5754 spa_async_dispatch(spa_t *spa)
5755 {
5756 	mutex_enter(&spa->spa_async_lock);
5757 	if (spa_async_tasks_pending(spa) &&
5758 	    !spa->spa_async_suspended &&
5759 	    spa->spa_async_thread == NULL &&
5760 	    rootdir != NULL)
5761 		spa->spa_async_thread = thread_create(NULL, 0,
5762 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
5763 	mutex_exit(&spa->spa_async_lock);
5764 }
5765 
5766 void
5767 spa_async_request(spa_t *spa, int task)
5768 {
5769 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
5770 	mutex_enter(&spa->spa_async_lock);
5771 	spa->spa_async_tasks |= task;
5772 	mutex_exit(&spa->spa_async_lock);
5773 }
5774 
5775 /*
5776  * ==========================================================================
5777  * SPA syncing routines
5778  * ==========================================================================
5779  */
5780 
5781 static int
5782 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5783 {
5784 	bpobj_t *bpo = arg;
5785 	bpobj_enqueue(bpo, bp, tx);
5786 	return (0);
5787 }
5788 
5789 static int
5790 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
5791 {
5792 	zio_t *zio = arg;
5793 
5794 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
5795 	    zio->io_flags));
5796 	return (0);
5797 }
5798 
5799 /*
5800  * Note: this simple function is not inlined to make it easier to dtrace the
5801  * amount of time spent syncing frees.
5802  */
5803 static void
5804 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
5805 {
5806 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5807 	bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
5808 	VERIFY(zio_wait(zio) == 0);
5809 }
5810 
5811 /*
5812  * Note: this simple function is not inlined to make it easier to dtrace the
5813  * amount of time spent syncing deferred frees.
5814  */
5815 static void
5816 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
5817 {
5818 	zio_t *zio = zio_root(spa, NULL, NULL, 0);
5819 	VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
5820 	    spa_free_sync_cb, zio, tx), ==, 0);
5821 	VERIFY0(zio_wait(zio));
5822 }
5823 
5824 
5825 static void
5826 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
5827 {
5828 	char *packed = NULL;
5829 	size_t bufsize;
5830 	size_t nvsize = 0;
5831 	dmu_buf_t *db;
5832 
5833 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
5834 
5835 	/*
5836 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
5837 	 * information.  This avoids the dmu_buf_will_dirty() path and
5838 	 * saves us a pre-read to get data we don't actually care about.
5839 	 */
5840 	bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
5841 	packed = kmem_alloc(bufsize, KM_SLEEP);
5842 
5843 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
5844 	    KM_SLEEP) == 0);
5845 	bzero(packed + nvsize, bufsize - nvsize);
5846 
5847 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
5848 
5849 	kmem_free(packed, bufsize);
5850 
5851 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5852 	dmu_buf_will_dirty(db, tx);
5853 	*(uint64_t *)db->db_data = nvsize;
5854 	dmu_buf_rele(db, FTAG);
5855 }
5856 
5857 static void
5858 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5859     const char *config, const char *entry)
5860 {
5861 	nvlist_t *nvroot;
5862 	nvlist_t **list;
5863 	int i;
5864 
5865 	if (!sav->sav_sync)
5866 		return;
5867 
5868 	/*
5869 	 * Update the MOS nvlist describing the list of available devices.
5870 	 * spa_validate_aux() will have already made sure this nvlist is
5871 	 * valid and the vdevs are labeled appropriately.
5872 	 */
5873 	if (sav->sav_object == 0) {
5874 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5875 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5876 		    sizeof (uint64_t), tx);
5877 		VERIFY(zap_update(spa->spa_meta_objset,
5878 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5879 		    &sav->sav_object, tx) == 0);
5880 	}
5881 
5882 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5883 	if (sav->sav_count == 0) {
5884 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5885 	} else {
5886 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5887 		for (i = 0; i < sav->sav_count; i++)
5888 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5889 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5890 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5891 		    sav->sav_count) == 0);
5892 		for (i = 0; i < sav->sav_count; i++)
5893 			nvlist_free(list[i]);
5894 		kmem_free(list, sav->sav_count * sizeof (void *));
5895 	}
5896 
5897 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5898 	nvlist_free(nvroot);
5899 
5900 	sav->sav_sync = B_FALSE;
5901 }
5902 
5903 static void
5904 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5905 {
5906 	nvlist_t *config;
5907 
5908 	if (list_is_empty(&spa->spa_config_dirty_list))
5909 		return;
5910 
5911 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5912 
5913 	config = spa_config_generate(spa, spa->spa_root_vdev,
5914 	    dmu_tx_get_txg(tx), B_FALSE);
5915 
5916 	/*
5917 	 * If we're upgrading the spa version then make sure that
5918 	 * the config object gets updated with the correct version.
5919 	 */
5920 	if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
5921 		fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
5922 		    spa->spa_uberblock.ub_version);
5923 
5924 	spa_config_exit(spa, SCL_STATE, FTAG);
5925 
5926 	if (spa->spa_config_syncing)
5927 		nvlist_free(spa->spa_config_syncing);
5928 	spa->spa_config_syncing = config;
5929 
5930 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5931 }
5932 
5933 static void
5934 spa_sync_version(void *arg, dmu_tx_t *tx)
5935 {
5936 	uint64_t *versionp = arg;
5937 	uint64_t version = *versionp;
5938 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5939 
5940 	/*
5941 	 * Setting the version is special cased when first creating the pool.
5942 	 */
5943 	ASSERT(tx->tx_txg != TXG_INITIAL);
5944 
5945 	ASSERT(SPA_VERSION_IS_SUPPORTED(version));
5946 	ASSERT(version >= spa_version(spa));
5947 
5948 	spa->spa_uberblock.ub_version = version;
5949 	vdev_config_dirty(spa->spa_root_vdev);
5950 	spa_history_log_internal(spa, "set", tx, "version=%lld", version);
5951 }
5952 
5953 /*
5954  * Set zpool properties.
5955  */
5956 static void
5957 spa_sync_props(void *arg, dmu_tx_t *tx)
5958 {
5959 	nvlist_t *nvp = arg;
5960 	spa_t *spa = dmu_tx_pool(tx)->dp_spa;
5961 	objset_t *mos = spa->spa_meta_objset;
5962 	nvpair_t *elem = NULL;
5963 
5964 	mutex_enter(&spa->spa_props_lock);
5965 
5966 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5967 		uint64_t intval;
5968 		char *strval, *fname;
5969 		zpool_prop_t prop;
5970 		const char *propname;
5971 		zprop_type_t proptype;
5972 		spa_feature_t fid;
5973 
5974 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5975 		case ZPROP_INVAL:
5976 			/*
5977 			 * We checked this earlier in spa_prop_validate().
5978 			 */
5979 			ASSERT(zpool_prop_feature(nvpair_name(elem)));
5980 
5981 			fname = strchr(nvpair_name(elem), '@') + 1;
5982 			VERIFY0(zfeature_lookup_name(fname, &fid));
5983 
5984 			spa_feature_enable(spa, fid, tx);
5985 			spa_history_log_internal(spa, "set", tx,
5986 			    "%s=enabled", nvpair_name(elem));
5987 			break;
5988 
5989 		case ZPOOL_PROP_VERSION:
5990 			intval = fnvpair_value_uint64(elem);
5991 			/*
5992 			 * The version is synced seperatly before other
5993 			 * properties and should be correct by now.
5994 			 */
5995 			ASSERT3U(spa_version(spa), >=, intval);
5996 			break;
5997 
5998 		case ZPOOL_PROP_ALTROOT:
5999 			/*
6000 			 * 'altroot' is a non-persistent property. It should
6001 			 * have been set temporarily at creation or import time.
6002 			 */
6003 			ASSERT(spa->spa_root != NULL);
6004 			break;
6005 
6006 		case ZPOOL_PROP_READONLY:
6007 		case ZPOOL_PROP_CACHEFILE:
6008 			/*
6009 			 * 'readonly' and 'cachefile' are also non-persisitent
6010 			 * properties.
6011 			 */
6012 			break;
6013 		case ZPOOL_PROP_COMMENT:
6014 			strval = fnvpair_value_string(elem);
6015 			if (spa->spa_comment != NULL)
6016 				spa_strfree(spa->spa_comment);
6017 			spa->spa_comment = spa_strdup(strval);
6018 			/*
6019 			 * We need to dirty the configuration on all the vdevs
6020 			 * so that their labels get updated.  It's unnecessary
6021 			 * to do this for pool creation since the vdev's
6022 			 * configuratoin has already been dirtied.
6023 			 */
6024 			if (tx->tx_txg != TXG_INITIAL)
6025 				vdev_config_dirty(spa->spa_root_vdev);
6026 			spa_history_log_internal(spa, "set", tx,
6027 			    "%s=%s", nvpair_name(elem), strval);
6028 			break;
6029 		default:
6030 			/*
6031 			 * Set pool property values in the poolprops mos object.
6032 			 */
6033 			if (spa->spa_pool_props_object == 0) {
6034 				spa->spa_pool_props_object =
6035 				    zap_create_link(mos, DMU_OT_POOL_PROPS,
6036 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
6037 				    tx);
6038 			}
6039 
6040 			/* normalize the property name */
6041 			propname = zpool_prop_to_name(prop);
6042 			proptype = zpool_prop_get_type(prop);
6043 
6044 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
6045 				ASSERT(proptype == PROP_TYPE_STRING);
6046 				strval = fnvpair_value_string(elem);
6047 				VERIFY0(zap_update(mos,
6048 				    spa->spa_pool_props_object, propname,
6049 				    1, strlen(strval) + 1, strval, tx));
6050 				spa_history_log_internal(spa, "set", tx,
6051 				    "%s=%s", nvpair_name(elem), strval);
6052 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
6053 				intval = fnvpair_value_uint64(elem);
6054 
6055 				if (proptype == PROP_TYPE_INDEX) {
6056 					const char *unused;
6057 					VERIFY0(zpool_prop_index_to_string(
6058 					    prop, intval, &unused));
6059 				}
6060 				VERIFY0(zap_update(mos,
6061 				    spa->spa_pool_props_object, propname,
6062 				    8, 1, &intval, tx));
6063 				spa_history_log_internal(spa, "set", tx,
6064 				    "%s=%lld", nvpair_name(elem), intval);
6065 			} else {
6066 				ASSERT(0); /* not allowed */
6067 			}
6068 
6069 			switch (prop) {
6070 			case ZPOOL_PROP_DELEGATION:
6071 				spa->spa_delegation = intval;
6072 				break;
6073 			case ZPOOL_PROP_BOOTFS:
6074 				spa->spa_bootfs = intval;
6075 				break;
6076 			case ZPOOL_PROP_FAILUREMODE:
6077 				spa->spa_failmode = intval;
6078 				break;
6079 			case ZPOOL_PROP_AUTOEXPAND:
6080 				spa->spa_autoexpand = intval;
6081 				if (tx->tx_txg != TXG_INITIAL)
6082 					spa_async_request(spa,
6083 					    SPA_ASYNC_AUTOEXPAND);
6084 				break;
6085 			case ZPOOL_PROP_DEDUPDITTO:
6086 				spa->spa_dedup_ditto = intval;
6087 				break;
6088 			default:
6089 				break;
6090 			}
6091 		}
6092 
6093 	}
6094 
6095 	mutex_exit(&spa->spa_props_lock);
6096 }
6097 
6098 /*
6099  * Perform one-time upgrade on-disk changes.  spa_version() does not
6100  * reflect the new version this txg, so there must be no changes this
6101  * txg to anything that the upgrade code depends on after it executes.
6102  * Therefore this must be called after dsl_pool_sync() does the sync
6103  * tasks.
6104  */
6105 static void
6106 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
6107 {
6108 	dsl_pool_t *dp = spa->spa_dsl_pool;
6109 
6110 	ASSERT(spa->spa_sync_pass == 1);
6111 
6112 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
6113 
6114 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
6115 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
6116 		dsl_pool_create_origin(dp, tx);
6117 
6118 		/* Keeping the origin open increases spa_minref */
6119 		spa->spa_minref += 3;
6120 	}
6121 
6122 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
6123 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
6124 		dsl_pool_upgrade_clones(dp, tx);
6125 	}
6126 
6127 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
6128 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
6129 		dsl_pool_upgrade_dir_clones(dp, tx);
6130 
6131 		/* Keeping the freedir open increases spa_minref */
6132 		spa->spa_minref += 3;
6133 	}
6134 
6135 	if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
6136 	    spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6137 		spa_feature_create_zap_objects(spa, tx);
6138 	}
6139 
6140 	/*
6141 	 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
6142 	 * when possibility to use lz4 compression for metadata was added
6143 	 * Old pools that have this feature enabled must be upgraded to have
6144 	 * this feature active
6145 	 */
6146 	if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
6147 		boolean_t lz4_en = spa_feature_is_enabled(spa,
6148 		    SPA_FEATURE_LZ4_COMPRESS);
6149 		boolean_t lz4_ac = spa_feature_is_active(spa,
6150 		    SPA_FEATURE_LZ4_COMPRESS);
6151 
6152 		if (lz4_en && !lz4_ac)
6153 			spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
6154 	}
6155 	rrw_exit(&dp->dp_config_rwlock, FTAG);
6156 }
6157 
6158 /*
6159  * Sync the specified transaction group.  New blocks may be dirtied as
6160  * part of the process, so we iterate until it converges.
6161  */
6162 void
6163 spa_sync(spa_t *spa, uint64_t txg)
6164 {
6165 	dsl_pool_t *dp = spa->spa_dsl_pool;
6166 	objset_t *mos = spa->spa_meta_objset;
6167 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
6168 	vdev_t *rvd = spa->spa_root_vdev;
6169 	vdev_t *vd;
6170 	dmu_tx_t *tx;
6171 	int error;
6172 
6173 	VERIFY(spa_writeable(spa));
6174 
6175 	/*
6176 	 * Lock out configuration changes.
6177 	 */
6178 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6179 
6180 	spa->spa_syncing_txg = txg;
6181 	spa->spa_sync_pass = 0;
6182 
6183 	/*
6184 	 * If there are any pending vdev state changes, convert them
6185 	 * into config changes that go out with this transaction group.
6186 	 */
6187 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6188 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
6189 		/*
6190 		 * We need the write lock here because, for aux vdevs,
6191 		 * calling vdev_config_dirty() modifies sav_config.
6192 		 * This is ugly and will become unnecessary when we
6193 		 * eliminate the aux vdev wart by integrating all vdevs
6194 		 * into the root vdev tree.
6195 		 */
6196 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6197 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
6198 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
6199 			vdev_state_clean(vd);
6200 			vdev_config_dirty(vd);
6201 		}
6202 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
6203 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
6204 	}
6205 	spa_config_exit(spa, SCL_STATE, FTAG);
6206 
6207 	tx = dmu_tx_create_assigned(dp, txg);
6208 
6209 	spa->spa_sync_starttime = gethrtime();
6210 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid,
6211 	    spa->spa_sync_starttime + spa->spa_deadman_synctime));
6212 
6213 	/*
6214 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
6215 	 * set spa_deflate if we have no raid-z vdevs.
6216 	 */
6217 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
6218 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
6219 		int i;
6220 
6221 		for (i = 0; i < rvd->vdev_children; i++) {
6222 			vd = rvd->vdev_child[i];
6223 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
6224 				break;
6225 		}
6226 		if (i == rvd->vdev_children) {
6227 			spa->spa_deflate = TRUE;
6228 			VERIFY(0 == zap_add(spa->spa_meta_objset,
6229 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6230 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
6231 		}
6232 	}
6233 
6234 	/*
6235 	 * If anything has changed in this txg, or if someone is waiting
6236 	 * for this txg to sync (eg, spa_vdev_remove()), push the
6237 	 * deferred frees from the previous txg.  If not, leave them
6238 	 * alone so that we don't generate work on an otherwise idle
6239 	 * system.
6240 	 */
6241 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
6242 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
6243 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
6244 	    ((dsl_scan_active(dp->dp_scan) ||
6245 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
6246 		spa_sync_deferred_frees(spa, tx);
6247 	}
6248 
6249 	/*
6250 	 * Iterate to convergence.
6251 	 */
6252 	do {
6253 		int pass = ++spa->spa_sync_pass;
6254 
6255 		spa_sync_config_object(spa, tx);
6256 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
6257 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
6258 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
6259 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
6260 		spa_errlog_sync(spa, txg);
6261 		dsl_pool_sync(dp, txg);
6262 
6263 		if (pass < zfs_sync_pass_deferred_free) {
6264 			spa_sync_frees(spa, free_bpl, tx);
6265 		} else {
6266 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
6267 			    &spa->spa_deferred_bpobj, tx);
6268 		}
6269 
6270 		ddt_sync(spa, txg);
6271 		dsl_scan_sync(dp, tx);
6272 
6273 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
6274 			vdev_sync(vd, txg);
6275 
6276 		if (pass == 1)
6277 			spa_sync_upgrades(spa, tx);
6278 
6279 	} while (dmu_objset_is_dirty(mos, txg));
6280 
6281 	/*
6282 	 * Rewrite the vdev configuration (which includes the uberblock)
6283 	 * to commit the transaction group.
6284 	 *
6285 	 * If there are no dirty vdevs, we sync the uberblock to a few
6286 	 * random top-level vdevs that are known to be visible in the
6287 	 * config cache (see spa_vdev_add() for a complete description).
6288 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
6289 	 */
6290 	for (;;) {
6291 		/*
6292 		 * We hold SCL_STATE to prevent vdev open/close/etc.
6293 		 * while we're attempting to write the vdev labels.
6294 		 */
6295 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
6296 
6297 		if (list_is_empty(&spa->spa_config_dirty_list)) {
6298 			vdev_t *svd[SPA_DVAS_PER_BP];
6299 			int svdcount = 0;
6300 			int children = rvd->vdev_children;
6301 			int c0 = spa_get_random(children);
6302 
6303 			for (int c = 0; c < children; c++) {
6304 				vd = rvd->vdev_child[(c0 + c) % children];
6305 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
6306 					continue;
6307 				svd[svdcount++] = vd;
6308 				if (svdcount == SPA_DVAS_PER_BP)
6309 					break;
6310 			}
6311 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
6312 			if (error != 0)
6313 				error = vdev_config_sync(svd, svdcount, txg,
6314 				    B_TRUE);
6315 		} else {
6316 			error = vdev_config_sync(rvd->vdev_child,
6317 			    rvd->vdev_children, txg, B_FALSE);
6318 			if (error != 0)
6319 				error = vdev_config_sync(rvd->vdev_child,
6320 				    rvd->vdev_children, txg, B_TRUE);
6321 		}
6322 
6323 		if (error == 0)
6324 			spa->spa_last_synced_guid = rvd->vdev_guid;
6325 
6326 		spa_config_exit(spa, SCL_STATE, FTAG);
6327 
6328 		if (error == 0)
6329 			break;
6330 		zio_suspend(spa, NULL);
6331 		zio_resume_wait(spa);
6332 	}
6333 	dmu_tx_commit(tx);
6334 
6335 	VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY));
6336 
6337 	/*
6338 	 * Clear the dirty config list.
6339 	 */
6340 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
6341 		vdev_config_clean(vd);
6342 
6343 	/*
6344 	 * Now that the new config has synced transactionally,
6345 	 * let it become visible to the config cache.
6346 	 */
6347 	if (spa->spa_config_syncing != NULL) {
6348 		spa_config_set(spa, spa->spa_config_syncing);
6349 		spa->spa_config_txg = txg;
6350 		spa->spa_config_syncing = NULL;
6351 	}
6352 
6353 	spa->spa_ubsync = spa->spa_uberblock;
6354 
6355 	dsl_pool_sync_done(dp, txg);
6356 
6357 	/*
6358 	 * Update usable space statistics.
6359 	 */
6360 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
6361 		vdev_sync_done(vd, txg);
6362 
6363 	spa_update_dspace(spa);
6364 
6365 	/*
6366 	 * It had better be the case that we didn't dirty anything
6367 	 * since vdev_config_sync().
6368 	 */
6369 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
6370 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
6371 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
6372 
6373 	spa->spa_sync_pass = 0;
6374 
6375 	spa_config_exit(spa, SCL_CONFIG, FTAG);
6376 
6377 	spa_handle_ignored_writes(spa);
6378 
6379 	/*
6380 	 * If any async tasks have been requested, kick them off.
6381 	 */
6382 	spa_async_dispatch(spa);
6383 }
6384 
6385 /*
6386  * Sync all pools.  We don't want to hold the namespace lock across these
6387  * operations, so we take a reference on the spa_t and drop the lock during the
6388  * sync.
6389  */
6390 void
6391 spa_sync_allpools(void)
6392 {
6393 	spa_t *spa = NULL;
6394 	mutex_enter(&spa_namespace_lock);
6395 	while ((spa = spa_next(spa)) != NULL) {
6396 		if (spa_state(spa) != POOL_STATE_ACTIVE ||
6397 		    !spa_writeable(spa) || spa_suspended(spa))
6398 			continue;
6399 		spa_open_ref(spa, FTAG);
6400 		mutex_exit(&spa_namespace_lock);
6401 		txg_wait_synced(spa_get_dsl(spa), 0);
6402 		mutex_enter(&spa_namespace_lock);
6403 		spa_close(spa, FTAG);
6404 	}
6405 	mutex_exit(&spa_namespace_lock);
6406 }
6407 
6408 /*
6409  * ==========================================================================
6410  * Miscellaneous routines
6411  * ==========================================================================
6412  */
6413 
6414 /*
6415  * Remove all pools in the system.
6416  */
6417 void
6418 spa_evict_all(void)
6419 {
6420 	spa_t *spa;
6421 
6422 	/*
6423 	 * Remove all cached state.  All pools should be closed now,
6424 	 * so every spa in the AVL tree should be unreferenced.
6425 	 */
6426 	mutex_enter(&spa_namespace_lock);
6427 	while ((spa = spa_next(NULL)) != NULL) {
6428 		/*
6429 		 * Stop async tasks.  The async thread may need to detach
6430 		 * a device that's been replaced, which requires grabbing
6431 		 * spa_namespace_lock, so we must drop it here.
6432 		 */
6433 		spa_open_ref(spa, FTAG);
6434 		mutex_exit(&spa_namespace_lock);
6435 		spa_async_suspend(spa);
6436 		mutex_enter(&spa_namespace_lock);
6437 		spa_close(spa, FTAG);
6438 
6439 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
6440 			spa_unload(spa);
6441 			spa_deactivate(spa);
6442 		}
6443 		spa_remove(spa);
6444 	}
6445 	mutex_exit(&spa_namespace_lock);
6446 }
6447 
6448 vdev_t *
6449 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
6450 {
6451 	vdev_t *vd;
6452 	int i;
6453 
6454 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
6455 		return (vd);
6456 
6457 	if (aux) {
6458 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
6459 			vd = spa->spa_l2cache.sav_vdevs[i];
6460 			if (vd->vdev_guid == guid)
6461 				return (vd);
6462 		}
6463 
6464 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
6465 			vd = spa->spa_spares.sav_vdevs[i];
6466 			if (vd->vdev_guid == guid)
6467 				return (vd);
6468 		}
6469 	}
6470 
6471 	return (NULL);
6472 }
6473 
6474 void
6475 spa_upgrade(spa_t *spa, uint64_t version)
6476 {
6477 	ASSERT(spa_writeable(spa));
6478 
6479 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6480 
6481 	/*
6482 	 * This should only be called for a non-faulted pool, and since a
6483 	 * future version would result in an unopenable pool, this shouldn't be
6484 	 * possible.
6485 	 */
6486 	ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
6487 	ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
6488 
6489 	spa->spa_uberblock.ub_version = version;
6490 	vdev_config_dirty(spa->spa_root_vdev);
6491 
6492 	spa_config_exit(spa, SCL_ALL, FTAG);
6493 
6494 	txg_wait_synced(spa_get_dsl(spa), 0);
6495 }
6496 
6497 boolean_t
6498 spa_has_spare(spa_t *spa, uint64_t guid)
6499 {
6500 	int i;
6501 	uint64_t spareguid;
6502 	spa_aux_vdev_t *sav = &spa->spa_spares;
6503 
6504 	for (i = 0; i < sav->sav_count; i++)
6505 		if (sav->sav_vdevs[i]->vdev_guid == guid)
6506 			return (B_TRUE);
6507 
6508 	for (i = 0; i < sav->sav_npending; i++) {
6509 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
6510 		    &spareguid) == 0 && spareguid == guid)
6511 			return (B_TRUE);
6512 	}
6513 
6514 	return (B_FALSE);
6515 }
6516 
6517 /*
6518  * Check if a pool has an active shared spare device.
6519  * Note: reference count of an active spare is 2, as a spare and as a replace
6520  */
6521 static boolean_t
6522 spa_has_active_shared_spare(spa_t *spa)
6523 {
6524 	int i, refcnt;
6525 	uint64_t pool;
6526 	spa_aux_vdev_t *sav = &spa->spa_spares;
6527 
6528 	for (i = 0; i < sav->sav_count; i++) {
6529 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
6530 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
6531 		    refcnt > 2)
6532 			return (B_TRUE);
6533 	}
6534 
6535 	return (B_FALSE);
6536 }
6537 
6538 /*
6539  * Post a sysevent corresponding to the given event.  The 'name' must be one of
6540  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
6541  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
6542  * in the userland libzpool, as we don't want consumers to misinterpret ztest
6543  * or zdb as real changes.
6544  */
6545 void
6546 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
6547 {
6548 #ifdef _KERNEL
6549 	sysevent_t		*ev;
6550 	sysevent_attr_list_t	*attr = NULL;
6551 	sysevent_value_t	value;
6552 	sysevent_id_t		eid;
6553 
6554 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
6555 	    SE_SLEEP);
6556 
6557 	value.value_type = SE_DATA_TYPE_STRING;
6558 	value.value.sv_string = spa_name(spa);
6559 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
6560 		goto done;
6561 
6562 	value.value_type = SE_DATA_TYPE_UINT64;
6563 	value.value.sv_uint64 = spa_guid(spa);
6564 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
6565 		goto done;
6566 
6567 	if (vd) {
6568 		value.value_type = SE_DATA_TYPE_UINT64;
6569 		value.value.sv_uint64 = vd->vdev_guid;
6570 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
6571 		    SE_SLEEP) != 0)
6572 			goto done;
6573 
6574 		if (vd->vdev_path) {
6575 			value.value_type = SE_DATA_TYPE_STRING;
6576 			value.value.sv_string = vd->vdev_path;
6577 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
6578 			    &value, SE_SLEEP) != 0)
6579 				goto done;
6580 		}
6581 	}
6582 
6583 	if (sysevent_attach_attributes(ev, attr) != 0)
6584 		goto done;
6585 	attr = NULL;
6586 
6587 	(void) log_sysevent(ev, SE_SLEEP, &eid);
6588 
6589 done:
6590 	if (attr)
6591 		sysevent_free_attr(attr);
6592 	sysevent_free(ev);
6593 #endif
6594 }
6595