xref: /titanic_52/usr/src/uts/common/fs/zfs/spa.c (revision b1b8ab34de515a5e83206da22c3d7e563241b021)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 
61 int zio_taskq_threads = 8;
62 
63 /*
64  * ==========================================================================
65  * SPA state manipulation (open/create/destroy/import/export)
66  * ==========================================================================
67  */
68 
69 static int
70 spa_error_entry_compare(const void *a, const void *b)
71 {
72 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
73 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
74 	int ret;
75 
76 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
77 	    sizeof (zbookmark_t));
78 
79 	if (ret < 0)
80 		return (-1);
81 	else if (ret > 0)
82 		return (1);
83 	else
84 		return (0);
85 }
86 
87 /*
88  * Utility function which retrieves copies of the current logs and
89  * re-initializes them in the process.
90  */
91 void
92 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
93 {
94 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
95 
96 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
97 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
98 
99 	avl_create(&spa->spa_errlist_scrub,
100 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
101 	    offsetof(spa_error_entry_t, se_avl));
102 	avl_create(&spa->spa_errlist_last,
103 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
104 	    offsetof(spa_error_entry_t, se_avl));
105 }
106 
107 /*
108  * Activate an uninitialized pool.
109  */
110 static void
111 spa_activate(spa_t *spa)
112 {
113 	int t;
114 
115 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
116 
117 	spa->spa_state = POOL_STATE_ACTIVE;
118 
119 	spa->spa_normal_class = metaslab_class_create();
120 
121 	for (t = 0; t < ZIO_TYPES; t++) {
122 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
123 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
124 		    TASKQ_PREPOPULATE);
125 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
126 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
127 		    TASKQ_PREPOPULATE);
128 	}
129 
130 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
131 
132 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
133 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
134 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
135 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
136 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
137 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
138 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
139 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
140 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
141 
142 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
143 	    offsetof(vdev_t, vdev_dirty_node));
144 
145 	txg_list_create(&spa->spa_vdev_txg_list,
146 	    offsetof(struct vdev, vdev_txg_node));
147 
148 	avl_create(&spa->spa_errlist_scrub,
149 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
150 	    offsetof(spa_error_entry_t, se_avl));
151 	avl_create(&spa->spa_errlist_last,
152 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
153 	    offsetof(spa_error_entry_t, se_avl));
154 }
155 
156 /*
157  * Opposite of spa_activate().
158  */
159 static void
160 spa_deactivate(spa_t *spa)
161 {
162 	int t;
163 
164 	ASSERT(spa->spa_sync_on == B_FALSE);
165 	ASSERT(spa->spa_dsl_pool == NULL);
166 	ASSERT(spa->spa_root_vdev == NULL);
167 
168 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
169 
170 	txg_list_destroy(&spa->spa_vdev_txg_list);
171 
172 	list_destroy(&spa->spa_dirty_list);
173 
174 	rw_destroy(&spa->spa_traverse_lock);
175 
176 	for (t = 0; t < ZIO_TYPES; t++) {
177 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
178 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
179 		spa->spa_zio_issue_taskq[t] = NULL;
180 		spa->spa_zio_intr_taskq[t] = NULL;
181 	}
182 
183 	metaslab_class_destroy(spa->spa_normal_class);
184 	spa->spa_normal_class = NULL;
185 
186 	/*
187 	 * If this was part of an import or the open otherwise failed, we may
188 	 * still have errors left in the queues.  Empty them just in case.
189 	 */
190 	spa_errlog_drain(spa);
191 
192 	avl_destroy(&spa->spa_errlist_scrub);
193 	avl_destroy(&spa->spa_errlist_last);
194 
195 	spa->spa_state = POOL_STATE_UNINITIALIZED;
196 }
197 
198 /*
199  * Verify a pool configuration, and construct the vdev tree appropriately.  This
200  * will create all the necessary vdevs in the appropriate layout, with each vdev
201  * in the CLOSED state.  This will prep the pool before open/creation/import.
202  * All vdev validation is done by the vdev_alloc() routine.
203  */
204 static int
205 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
206     uint_t id, int atype)
207 {
208 	nvlist_t **child;
209 	uint_t c, children;
210 	int error;
211 
212 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
213 		return (error);
214 
215 	if ((*vdp)->vdev_ops->vdev_op_leaf)
216 		return (0);
217 
218 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
219 	    &child, &children) != 0) {
220 		vdev_free(*vdp);
221 		*vdp = NULL;
222 		return (EINVAL);
223 	}
224 
225 	for (c = 0; c < children; c++) {
226 		vdev_t *vd;
227 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
228 		    atype)) != 0) {
229 			vdev_free(*vdp);
230 			*vdp = NULL;
231 			return (error);
232 		}
233 	}
234 
235 	ASSERT(*vdp != NULL);
236 
237 	return (0);
238 }
239 
240 /*
241  * Opposite of spa_load().
242  */
243 static void
244 spa_unload(spa_t *spa)
245 {
246 	int i;
247 
248 	/*
249 	 * Stop async tasks.
250 	 */
251 	spa_async_suspend(spa);
252 
253 	/*
254 	 * Stop syncing.
255 	 */
256 	if (spa->spa_sync_on) {
257 		txg_sync_stop(spa->spa_dsl_pool);
258 		spa->spa_sync_on = B_FALSE;
259 	}
260 
261 	/*
262 	 * Wait for any outstanding prefetch I/O to complete.
263 	 */
264 	spa_config_enter(spa, RW_WRITER, FTAG);
265 	spa_config_exit(spa, FTAG);
266 
267 	/*
268 	 * Close the dsl pool.
269 	 */
270 	if (spa->spa_dsl_pool) {
271 		dsl_pool_close(spa->spa_dsl_pool);
272 		spa->spa_dsl_pool = NULL;
273 	}
274 
275 	/*
276 	 * Close all vdevs.
277 	 */
278 	if (spa->spa_root_vdev)
279 		vdev_free(spa->spa_root_vdev);
280 	ASSERT(spa->spa_root_vdev == NULL);
281 
282 	for (i = 0; i < spa->spa_nspares; i++)
283 		vdev_free(spa->spa_spares[i]);
284 	if (spa->spa_spares) {
285 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
286 		spa->spa_spares = NULL;
287 	}
288 	if (spa->spa_sparelist) {
289 		nvlist_free(spa->spa_sparelist);
290 		spa->spa_sparelist = NULL;
291 	}
292 
293 	spa->spa_async_suspended = 0;
294 }
295 
296 /*
297  * Load (or re-load) the current list of vdevs describing the active spares for
298  * this pool.  When this is called, we have some form of basic information in
299  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
300  * re-generate a more complete list including status information.
301  */
302 static void
303 spa_load_spares(spa_t *spa)
304 {
305 	nvlist_t **spares;
306 	uint_t nspares;
307 	int i;
308 	vdev_t *vd, *tvd;
309 
310 	/*
311 	 * First, close and free any existing spare vdevs.
312 	 */
313 	for (i = 0; i < spa->spa_nspares; i++) {
314 		vd = spa->spa_spares[i];
315 
316 		/* Undo the call to spa_activate() below */
317 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
318 		    tvd->vdev_isspare)
319 			spa_spare_remove(tvd);
320 		vdev_close(vd);
321 		vdev_free(vd);
322 	}
323 
324 	if (spa->spa_spares)
325 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
326 
327 	if (spa->spa_sparelist == NULL)
328 		nspares = 0;
329 	else
330 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
331 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
332 
333 	spa->spa_nspares = (int)nspares;
334 	spa->spa_spares = NULL;
335 
336 	if (nspares == 0)
337 		return;
338 
339 	/*
340 	 * Construct the array of vdevs, opening them to get status in the
341 	 * process.   For each spare, there is potentially two different vdev_t
342 	 * structures associated with it: one in the list of spares (used only
343 	 * for basic validation purposes) and one in the active vdev
344 	 * configuration (if it's spared in).  During this phase we open and
345 	 * validate each vdev on the spare list.  If the vdev also exists in the
346 	 * active configuration, then we also mark this vdev as an active spare.
347 	 */
348 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
349 	for (i = 0; i < spa->spa_nspares; i++) {
350 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
351 		    VDEV_ALLOC_SPARE) == 0);
352 		ASSERT(vd != NULL);
353 
354 		spa->spa_spares[i] = vd;
355 
356 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
357 			if (!tvd->vdev_isspare)
358 				spa_spare_add(tvd);
359 
360 			/*
361 			 * We only mark the spare active if we were successfully
362 			 * able to load the vdev.  Otherwise, importing a pool
363 			 * with a bad active spare would result in strange
364 			 * behavior, because multiple pool would think the spare
365 			 * is actively in use.
366 			 *
367 			 * There is a vulnerability here to an equally bizarre
368 			 * circumstance, where a dead active spare is later
369 			 * brought back to life (onlined or otherwise).  Given
370 			 * the rarity of this scenario, and the extra complexity
371 			 * it adds, we ignore the possibility.
372 			 */
373 			if (!vdev_is_dead(tvd))
374 				spa_spare_activate(tvd);
375 		}
376 
377 		if (vdev_open(vd) != 0)
378 			continue;
379 
380 		vd->vdev_top = vd;
381 		(void) vdev_validate_spare(vd);
382 	}
383 
384 	/*
385 	 * Recompute the stashed list of spares, with status information
386 	 * this time.
387 	 */
388 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
389 	    DATA_TYPE_NVLIST_ARRAY) == 0);
390 
391 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
392 	for (i = 0; i < spa->spa_nspares; i++)
393 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
394 		    B_TRUE, B_TRUE);
395 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
396 	    spares, spa->spa_nspares) == 0);
397 	for (i = 0; i < spa->spa_nspares; i++)
398 		nvlist_free(spares[i]);
399 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
400 }
401 
402 static int
403 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
404 {
405 	dmu_buf_t *db;
406 	char *packed = NULL;
407 	size_t nvsize = 0;
408 	int error;
409 	*value = NULL;
410 
411 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
412 	nvsize = *(uint64_t *)db->db_data;
413 	dmu_buf_rele(db, FTAG);
414 
415 	packed = kmem_alloc(nvsize, KM_SLEEP);
416 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
417 	if (error == 0)
418 		error = nvlist_unpack(packed, nvsize, value, 0);
419 	kmem_free(packed, nvsize);
420 
421 	return (error);
422 }
423 
424 /*
425  * Load an existing storage pool, using the pool's builtin spa_config as a
426  * source of configuration information.
427  */
428 static int
429 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
430 {
431 	int error = 0;
432 	nvlist_t *nvroot = NULL;
433 	vdev_t *rvd;
434 	uberblock_t *ub = &spa->spa_uberblock;
435 	uint64_t config_cache_txg = spa->spa_config_txg;
436 	uint64_t pool_guid;
437 	uint64_t version;
438 	zio_t *zio;
439 
440 	spa->spa_load_state = state;
441 
442 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
443 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
444 		error = EINVAL;
445 		goto out;
446 	}
447 
448 	/*
449 	 * Versioning wasn't explicitly added to the label until later, so if
450 	 * it's not present treat it as the initial version.
451 	 */
452 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
453 		version = ZFS_VERSION_INITIAL;
454 
455 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
456 	    &spa->spa_config_txg);
457 
458 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
459 	    spa_guid_exists(pool_guid, 0)) {
460 		error = EEXIST;
461 		goto out;
462 	}
463 
464 	spa->spa_load_guid = pool_guid;
465 
466 	/*
467 	 * Parse the configuration into a vdev tree.  We explicitly set the
468 	 * value that will be returned by spa_version() since parsing the
469 	 * configuration requires knowing the version number.
470 	 */
471 	spa_config_enter(spa, RW_WRITER, FTAG);
472 	spa->spa_ubsync.ub_version = version;
473 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
474 	spa_config_exit(spa, FTAG);
475 
476 	if (error != 0)
477 		goto out;
478 
479 	ASSERT(spa->spa_root_vdev == rvd);
480 	ASSERT(spa_guid(spa) == pool_guid);
481 
482 	/*
483 	 * Try to open all vdevs, loading each label in the process.
484 	 */
485 	if (vdev_open(rvd) != 0) {
486 		error = ENXIO;
487 		goto out;
488 	}
489 
490 	/*
491 	 * Validate the labels for all leaf vdevs.  We need to grab the config
492 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
493 	 * flag.
494 	 */
495 	spa_config_enter(spa, RW_READER, FTAG);
496 	error = vdev_validate(rvd);
497 	spa_config_exit(spa, FTAG);
498 
499 	if (error != 0) {
500 		error = EBADF;
501 		goto out;
502 	}
503 
504 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
505 		error = ENXIO;
506 		goto out;
507 	}
508 
509 	/*
510 	 * Find the best uberblock.
511 	 */
512 	bzero(ub, sizeof (uberblock_t));
513 
514 	zio = zio_root(spa, NULL, NULL,
515 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
516 	vdev_uberblock_load(zio, rvd, ub);
517 	error = zio_wait(zio);
518 
519 	/*
520 	 * If we weren't able to find a single valid uberblock, return failure.
521 	 */
522 	if (ub->ub_txg == 0) {
523 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
524 		    VDEV_AUX_CORRUPT_DATA);
525 		error = ENXIO;
526 		goto out;
527 	}
528 
529 	/*
530 	 * If the pool is newer than the code, we can't open it.
531 	 */
532 	if (ub->ub_version > ZFS_VERSION) {
533 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
534 		    VDEV_AUX_VERSION_NEWER);
535 		error = ENOTSUP;
536 		goto out;
537 	}
538 
539 	/*
540 	 * If the vdev guid sum doesn't match the uberblock, we have an
541 	 * incomplete configuration.
542 	 */
543 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
544 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
545 		    VDEV_AUX_BAD_GUID_SUM);
546 		error = ENXIO;
547 		goto out;
548 	}
549 
550 	/*
551 	 * Initialize internal SPA structures.
552 	 */
553 	spa->spa_state = POOL_STATE_ACTIVE;
554 	spa->spa_ubsync = spa->spa_uberblock;
555 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
556 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
557 	if (error) {
558 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
559 		    VDEV_AUX_CORRUPT_DATA);
560 		goto out;
561 	}
562 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
563 
564 	if (zap_lookup(spa->spa_meta_objset,
565 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
566 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
567 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
568 		    VDEV_AUX_CORRUPT_DATA);
569 		error = EIO;
570 		goto out;
571 	}
572 
573 	if (!mosconfig) {
574 		nvlist_t *newconfig;
575 
576 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
577 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
578 			    VDEV_AUX_CORRUPT_DATA);
579 			error = EIO;
580 			goto out;
581 		}
582 
583 		spa_config_set(spa, newconfig);
584 		spa_unload(spa);
585 		spa_deactivate(spa);
586 		spa_activate(spa);
587 
588 		return (spa_load(spa, newconfig, state, B_TRUE));
589 	}
590 
591 	if (zap_lookup(spa->spa_meta_objset,
592 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
593 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
594 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
595 		    VDEV_AUX_CORRUPT_DATA);
596 		error = EIO;
597 		goto out;
598 	}
599 
600 	/*
601 	 * Load the bit that tells us to use the new accounting function
602 	 * (raid-z deflation).  If we have an older pool, this will not
603 	 * be present.
604 	 */
605 	error = zap_lookup(spa->spa_meta_objset,
606 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
607 	    sizeof (uint64_t), 1, &spa->spa_deflate);
608 	if (error != 0 && error != ENOENT) {
609 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
610 		    VDEV_AUX_CORRUPT_DATA);
611 		error = EIO;
612 		goto out;
613 	}
614 
615 	/*
616 	 * Load the persistent error log.  If we have an older pool, this will
617 	 * not be present.
618 	 */
619 	error = zap_lookup(spa->spa_meta_objset,
620 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
621 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
622 	if (error != 0 && error != ENOENT) {
623 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
624 		    VDEV_AUX_CORRUPT_DATA);
625 		error = EIO;
626 		goto out;
627 	}
628 
629 	error = zap_lookup(spa->spa_meta_objset,
630 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
631 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
632 	if (error != 0 && error != ENOENT) {
633 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
634 		    VDEV_AUX_CORRUPT_DATA);
635 		error = EIO;
636 		goto out;
637 	}
638 
639 	/*
640 	 * Load the history object.  If we have an older pool, this
641 	 * will not be present.
642 	 */
643 	error = zap_lookup(spa->spa_meta_objset,
644 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
645 	    sizeof (uint64_t), 1, &spa->spa_history);
646 	if (error != 0 && error != ENOENT) {
647 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
648 		    VDEV_AUX_CORRUPT_DATA);
649 		error = EIO;
650 		goto out;
651 	}
652 
653 	/*
654 	 * Load any hot spares for this pool.
655 	 */
656 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
657 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
658 	if (error != 0 && error != ENOENT) {
659 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
660 		    VDEV_AUX_CORRUPT_DATA);
661 		error = EIO;
662 		goto out;
663 	}
664 	if (error == 0) {
665 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
666 		if (load_nvlist(spa, spa->spa_spares_object,
667 		    &spa->spa_sparelist) != 0) {
668 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
669 			    VDEV_AUX_CORRUPT_DATA);
670 			error = EIO;
671 			goto out;
672 		}
673 
674 		spa_config_enter(spa, RW_WRITER, FTAG);
675 		spa_load_spares(spa);
676 		spa_config_exit(spa, FTAG);
677 	}
678 
679 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
680 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
681 
682 	if (error && error != ENOENT) {
683 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
684 		    VDEV_AUX_CORRUPT_DATA);
685 		error = EIO;
686 		goto out;
687 	}
688 
689 	if (error == 0) {
690 		(void) zap_lookup(spa->spa_meta_objset,
691 		    spa->spa_pool_props_object,
692 		    zpool_prop_to_name(ZFS_PROP_BOOTFS),
693 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
694 	}
695 
696 	/*
697 	 * Load the vdev state for all toplevel vdevs.
698 	 */
699 	vdev_load(rvd);
700 
701 	/*
702 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
703 	 */
704 	spa_config_enter(spa, RW_WRITER, FTAG);
705 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
706 	spa_config_exit(spa, FTAG);
707 
708 	/*
709 	 * Check the state of the root vdev.  If it can't be opened, it
710 	 * indicates one or more toplevel vdevs are faulted.
711 	 */
712 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
713 		error = ENXIO;
714 		goto out;
715 	}
716 
717 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
718 		dmu_tx_t *tx;
719 		int need_update = B_FALSE;
720 		int c;
721 
722 		/*
723 		 * Claim log blocks that haven't been committed yet.
724 		 * This must all happen in a single txg.
725 		 */
726 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
727 		    spa_first_txg(spa));
728 		(void) dmu_objset_find(spa->spa_name,
729 		    zil_claim, tx, DS_FIND_CHILDREN);
730 		dmu_tx_commit(tx);
731 
732 		spa->spa_sync_on = B_TRUE;
733 		txg_sync_start(spa->spa_dsl_pool);
734 
735 		/*
736 		 * Wait for all claims to sync.
737 		 */
738 		txg_wait_synced(spa->spa_dsl_pool, 0);
739 
740 		/*
741 		 * If the config cache is stale, or we have uninitialized
742 		 * metaslabs (see spa_vdev_add()), then update the config.
743 		 */
744 		if (config_cache_txg != spa->spa_config_txg ||
745 		    state == SPA_LOAD_IMPORT)
746 			need_update = B_TRUE;
747 
748 		for (c = 0; c < rvd->vdev_children; c++)
749 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
750 				need_update = B_TRUE;
751 
752 		/*
753 		 * Update the config cache asychronously in case we're the
754 		 * root pool, in which case the config cache isn't writable yet.
755 		 */
756 		if (need_update)
757 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
758 	}
759 
760 	error = 0;
761 out:
762 	if (error && error != EBADF)
763 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
764 	spa->spa_load_state = SPA_LOAD_NONE;
765 	spa->spa_ena = 0;
766 
767 	return (error);
768 }
769 
770 /*
771  * Pool Open/Import
772  *
773  * The import case is identical to an open except that the configuration is sent
774  * down from userland, instead of grabbed from the configuration cache.  For the
775  * case of an open, the pool configuration will exist in the
776  * POOL_STATE_UNITIALIZED state.
777  *
778  * The stats information (gen/count/ustats) is used to gather vdev statistics at
779  * the same time open the pool, without having to keep around the spa_t in some
780  * ambiguous state.
781  */
782 static int
783 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
784 {
785 	spa_t *spa;
786 	int error;
787 	int loaded = B_FALSE;
788 	int locked = B_FALSE;
789 
790 	*spapp = NULL;
791 
792 	/*
793 	 * As disgusting as this is, we need to support recursive calls to this
794 	 * function because dsl_dir_open() is called during spa_load(), and ends
795 	 * up calling spa_open() again.  The real fix is to figure out how to
796 	 * avoid dsl_dir_open() calling this in the first place.
797 	 */
798 	if (mutex_owner(&spa_namespace_lock) != curthread) {
799 		mutex_enter(&spa_namespace_lock);
800 		locked = B_TRUE;
801 	}
802 
803 	if ((spa = spa_lookup(pool)) == NULL) {
804 		if (locked)
805 			mutex_exit(&spa_namespace_lock);
806 		return (ENOENT);
807 	}
808 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
809 
810 		spa_activate(spa);
811 
812 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
813 
814 		if (error == EBADF) {
815 			/*
816 			 * If vdev_validate() returns failure (indicated by
817 			 * EBADF), it indicates that one of the vdevs indicates
818 			 * that the pool has been exported or destroyed.  If
819 			 * this is the case, the config cache is out of sync and
820 			 * we should remove the pool from the namespace.
821 			 */
822 			zfs_post_ok(spa, NULL);
823 			spa_unload(spa);
824 			spa_deactivate(spa);
825 			spa_remove(spa);
826 			spa_config_sync();
827 			if (locked)
828 				mutex_exit(&spa_namespace_lock);
829 			return (ENOENT);
830 		}
831 
832 		if (error) {
833 			/*
834 			 * We can't open the pool, but we still have useful
835 			 * information: the state of each vdev after the
836 			 * attempted vdev_open().  Return this to the user.
837 			 */
838 			if (config != NULL && spa->spa_root_vdev != NULL) {
839 				spa_config_enter(spa, RW_READER, FTAG);
840 				*config = spa_config_generate(spa, NULL, -1ULL,
841 				    B_TRUE);
842 				spa_config_exit(spa, FTAG);
843 			}
844 			spa_unload(spa);
845 			spa_deactivate(spa);
846 			spa->spa_last_open_failed = B_TRUE;
847 			if (locked)
848 				mutex_exit(&spa_namespace_lock);
849 			*spapp = NULL;
850 			return (error);
851 		} else {
852 			zfs_post_ok(spa, NULL);
853 			spa->spa_last_open_failed = B_FALSE;
854 		}
855 
856 		loaded = B_TRUE;
857 	}
858 
859 	spa_open_ref(spa, tag);
860 	if (locked)
861 		mutex_exit(&spa_namespace_lock);
862 
863 	*spapp = spa;
864 
865 	if (config != NULL) {
866 		spa_config_enter(spa, RW_READER, FTAG);
867 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
868 		spa_config_exit(spa, FTAG);
869 	}
870 
871 	/*
872 	 * If we just loaded the pool, resilver anything that's out of date.
873 	 */
874 	if (loaded && (spa_mode & FWRITE))
875 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
876 
877 	return (0);
878 }
879 
880 int
881 spa_open(const char *name, spa_t **spapp, void *tag)
882 {
883 	return (spa_open_common(name, spapp, tag, NULL));
884 }
885 
886 /*
887  * Lookup the given spa_t, incrementing the inject count in the process,
888  * preventing it from being exported or destroyed.
889  */
890 spa_t *
891 spa_inject_addref(char *name)
892 {
893 	spa_t *spa;
894 
895 	mutex_enter(&spa_namespace_lock);
896 	if ((spa = spa_lookup(name)) == NULL) {
897 		mutex_exit(&spa_namespace_lock);
898 		return (NULL);
899 	}
900 	spa->spa_inject_ref++;
901 	mutex_exit(&spa_namespace_lock);
902 
903 	return (spa);
904 }
905 
906 void
907 spa_inject_delref(spa_t *spa)
908 {
909 	mutex_enter(&spa_namespace_lock);
910 	spa->spa_inject_ref--;
911 	mutex_exit(&spa_namespace_lock);
912 }
913 
914 static void
915 spa_add_spares(spa_t *spa, nvlist_t *config)
916 {
917 	nvlist_t **spares;
918 	uint_t i, nspares;
919 	nvlist_t *nvroot;
920 	uint64_t guid;
921 	vdev_stat_t *vs;
922 	uint_t vsc;
923 	uint64_t pool;
924 
925 	if (spa->spa_nspares == 0)
926 		return;
927 
928 	VERIFY(nvlist_lookup_nvlist(config,
929 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
930 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
931 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
932 	if (nspares != 0) {
933 		VERIFY(nvlist_add_nvlist_array(nvroot,
934 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
935 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
936 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
937 
938 		/*
939 		 * Go through and find any spares which have since been
940 		 * repurposed as an active spare.  If this is the case, update
941 		 * their status appropriately.
942 		 */
943 		for (i = 0; i < nspares; i++) {
944 			VERIFY(nvlist_lookup_uint64(spares[i],
945 			    ZPOOL_CONFIG_GUID, &guid) == 0);
946 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
947 				VERIFY(nvlist_lookup_uint64_array(
948 				    spares[i], ZPOOL_CONFIG_STATS,
949 				    (uint64_t **)&vs, &vsc) == 0);
950 				vs->vs_state = VDEV_STATE_CANT_OPEN;
951 				vs->vs_aux = VDEV_AUX_SPARED;
952 			}
953 		}
954 	}
955 }
956 
957 int
958 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
959 {
960 	int error;
961 	spa_t *spa;
962 
963 	*config = NULL;
964 	error = spa_open_common(name, &spa, FTAG, config);
965 
966 	if (spa && *config != NULL) {
967 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
968 		    spa_get_errlog_size(spa)) == 0);
969 
970 		spa_add_spares(spa, *config);
971 	}
972 
973 	/*
974 	 * We want to get the alternate root even for faulted pools, so we cheat
975 	 * and call spa_lookup() directly.
976 	 */
977 	if (altroot) {
978 		if (spa == NULL) {
979 			mutex_enter(&spa_namespace_lock);
980 			spa = spa_lookup(name);
981 			if (spa)
982 				spa_altroot(spa, altroot, buflen);
983 			else
984 				altroot[0] = '\0';
985 			spa = NULL;
986 			mutex_exit(&spa_namespace_lock);
987 		} else {
988 			spa_altroot(spa, altroot, buflen);
989 		}
990 	}
991 
992 	if (spa != NULL)
993 		spa_close(spa, FTAG);
994 
995 	return (error);
996 }
997 
998 /*
999  * Validate that the 'spares' array is well formed.  We must have an array of
1000  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1001  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1002  * as they are well-formed.
1003  */
1004 static int
1005 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1006 {
1007 	nvlist_t **spares;
1008 	uint_t i, nspares;
1009 	vdev_t *vd;
1010 	int error;
1011 
1012 	/*
1013 	 * It's acceptable to have no spares specified.
1014 	 */
1015 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1016 	    &spares, &nspares) != 0)
1017 		return (0);
1018 
1019 	if (nspares == 0)
1020 		return (EINVAL);
1021 
1022 	/*
1023 	 * Make sure the pool is formatted with a version that supports hot
1024 	 * spares.
1025 	 */
1026 	if (spa_version(spa) < ZFS_VERSION_SPARES)
1027 		return (ENOTSUP);
1028 
1029 	/*
1030 	 * Set the pending spare list so we correctly handle device in-use
1031 	 * checking.
1032 	 */
1033 	spa->spa_pending_spares = spares;
1034 	spa->spa_pending_nspares = nspares;
1035 
1036 	for (i = 0; i < nspares; i++) {
1037 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1038 		    mode)) != 0)
1039 			goto out;
1040 
1041 		if (!vd->vdev_ops->vdev_op_leaf) {
1042 			vdev_free(vd);
1043 			error = EINVAL;
1044 			goto out;
1045 		}
1046 
1047 		vd->vdev_top = vd;
1048 
1049 		if ((error = vdev_open(vd)) == 0 &&
1050 		    (error = vdev_label_init(vd, crtxg,
1051 		    VDEV_LABEL_SPARE)) == 0) {
1052 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1053 			    vd->vdev_guid) == 0);
1054 		}
1055 
1056 		vdev_free(vd);
1057 
1058 		if (error && mode != VDEV_ALLOC_SPARE)
1059 			goto out;
1060 		else
1061 			error = 0;
1062 	}
1063 
1064 out:
1065 	spa->spa_pending_spares = NULL;
1066 	spa->spa_pending_nspares = 0;
1067 	return (error);
1068 }
1069 
1070 /*
1071  * Pool Creation
1072  */
1073 int
1074 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
1075 {
1076 	spa_t *spa;
1077 	vdev_t *rvd;
1078 	dsl_pool_t *dp;
1079 	dmu_tx_t *tx;
1080 	int c, error = 0;
1081 	uint64_t txg = TXG_INITIAL;
1082 	nvlist_t **spares;
1083 	uint_t nspares;
1084 
1085 	/*
1086 	 * If this pool already exists, return failure.
1087 	 */
1088 	mutex_enter(&spa_namespace_lock);
1089 	if (spa_lookup(pool) != NULL) {
1090 		mutex_exit(&spa_namespace_lock);
1091 		return (EEXIST);
1092 	}
1093 
1094 	/*
1095 	 * Allocate a new spa_t structure.
1096 	 */
1097 	spa = spa_add(pool, altroot);
1098 	spa_activate(spa);
1099 
1100 	spa->spa_uberblock.ub_txg = txg - 1;
1101 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1102 	spa->spa_ubsync = spa->spa_uberblock;
1103 
1104 	/*
1105 	 * Create the root vdev.
1106 	 */
1107 	spa_config_enter(spa, RW_WRITER, FTAG);
1108 
1109 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1110 
1111 	ASSERT(error != 0 || rvd != NULL);
1112 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1113 
1114 	if (error == 0 && rvd->vdev_children == 0)
1115 		error = EINVAL;
1116 
1117 	if (error == 0 &&
1118 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1119 	    (error = spa_validate_spares(spa, nvroot, txg,
1120 	    VDEV_ALLOC_ADD)) == 0) {
1121 		for (c = 0; c < rvd->vdev_children; c++)
1122 			vdev_init(rvd->vdev_child[c], txg);
1123 		vdev_config_dirty(rvd);
1124 	}
1125 
1126 	spa_config_exit(spa, FTAG);
1127 
1128 	if (error != 0) {
1129 		spa_unload(spa);
1130 		spa_deactivate(spa);
1131 		spa_remove(spa);
1132 		mutex_exit(&spa_namespace_lock);
1133 		return (error);
1134 	}
1135 
1136 	/*
1137 	 * Get the list of spares, if specified.
1138 	 */
1139 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1140 	    &spares, &nspares) == 0) {
1141 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1142 		    KM_SLEEP) == 0);
1143 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1144 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1145 		spa_config_enter(spa, RW_WRITER, FTAG);
1146 		spa_load_spares(spa);
1147 		spa_config_exit(spa, FTAG);
1148 		spa->spa_sync_spares = B_TRUE;
1149 	}
1150 
1151 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1152 	spa->spa_meta_objset = dp->dp_meta_objset;
1153 
1154 	tx = dmu_tx_create_assigned(dp, txg);
1155 
1156 	/*
1157 	 * Create the pool config object.
1158 	 */
1159 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1160 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1161 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1162 
1163 	if (zap_add(spa->spa_meta_objset,
1164 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1165 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1166 		cmn_err(CE_PANIC, "failed to add pool config");
1167 	}
1168 
1169 	/* Newly created pools are always deflated. */
1170 	spa->spa_deflate = TRUE;
1171 	if (zap_add(spa->spa_meta_objset,
1172 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1173 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1174 		cmn_err(CE_PANIC, "failed to add deflate");
1175 	}
1176 
1177 	/*
1178 	 * Create the deferred-free bplist object.  Turn off compression
1179 	 * because sync-to-convergence takes longer if the blocksize
1180 	 * keeps changing.
1181 	 */
1182 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1183 	    1 << 14, tx);
1184 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1185 	    ZIO_COMPRESS_OFF, tx);
1186 
1187 	if (zap_add(spa->spa_meta_objset,
1188 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1189 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1190 		cmn_err(CE_PANIC, "failed to add bplist");
1191 	}
1192 
1193 	/*
1194 	 * Create the pool's history object.
1195 	 */
1196 	spa_history_create_obj(spa, tx);
1197 
1198 	dmu_tx_commit(tx);
1199 
1200 	spa->spa_bootfs = zfs_prop_default_numeric(ZFS_PROP_BOOTFS);
1201 	spa->spa_sync_on = B_TRUE;
1202 	txg_sync_start(spa->spa_dsl_pool);
1203 
1204 	/*
1205 	 * We explicitly wait for the first transaction to complete so that our
1206 	 * bean counters are appropriately updated.
1207 	 */
1208 	txg_wait_synced(spa->spa_dsl_pool, txg);
1209 
1210 	spa_config_sync();
1211 
1212 	mutex_exit(&spa_namespace_lock);
1213 
1214 	return (0);
1215 }
1216 
1217 /*
1218  * Import the given pool into the system.  We set up the necessary spa_t and
1219  * then call spa_load() to do the dirty work.
1220  */
1221 int
1222 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1223 {
1224 	spa_t *spa;
1225 	int error;
1226 	nvlist_t *nvroot;
1227 	nvlist_t **spares;
1228 	uint_t nspares;
1229 
1230 	if (!(spa_mode & FWRITE))
1231 		return (EROFS);
1232 
1233 	/*
1234 	 * If a pool with this name exists, return failure.
1235 	 */
1236 	mutex_enter(&spa_namespace_lock);
1237 	if (spa_lookup(pool) != NULL) {
1238 		mutex_exit(&spa_namespace_lock);
1239 		return (EEXIST);
1240 	}
1241 
1242 	/*
1243 	 * Create and initialize the spa structure.
1244 	 */
1245 	spa = spa_add(pool, altroot);
1246 	spa_activate(spa);
1247 
1248 	/*
1249 	 * Pass off the heavy lifting to spa_load().
1250 	 * Pass TRUE for mosconfig because the user-supplied config
1251 	 * is actually the one to trust when doing an import.
1252 	 */
1253 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1254 
1255 	spa_config_enter(spa, RW_WRITER, FTAG);
1256 	/*
1257 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1258 	 * and conflicts with spa_has_spare().
1259 	 */
1260 	if (spa->spa_sparelist) {
1261 		nvlist_free(spa->spa_sparelist);
1262 		spa->spa_sparelist = NULL;
1263 		spa_load_spares(spa);
1264 	}
1265 
1266 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1267 	    &nvroot) == 0);
1268 	if (error == 0)
1269 		error = spa_validate_spares(spa, nvroot, -1ULL,
1270 		    VDEV_ALLOC_SPARE);
1271 	spa_config_exit(spa, FTAG);
1272 
1273 	if (error != 0) {
1274 		spa_unload(spa);
1275 		spa_deactivate(spa);
1276 		spa_remove(spa);
1277 		mutex_exit(&spa_namespace_lock);
1278 		return (error);
1279 	}
1280 
1281 	/*
1282 	 * Override any spares as specified by the user, as these may have
1283 	 * correct device names/devids, etc.
1284 	 */
1285 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1286 	    &spares, &nspares) == 0) {
1287 		if (spa->spa_sparelist)
1288 			VERIFY(nvlist_remove(spa->spa_sparelist,
1289 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1290 		else
1291 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1292 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1293 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1294 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1295 		spa_config_enter(spa, RW_WRITER, FTAG);
1296 		spa_load_spares(spa);
1297 		spa_config_exit(spa, FTAG);
1298 		spa->spa_sync_spares = B_TRUE;
1299 	}
1300 
1301 	/*
1302 	 * Update the config cache to include the newly-imported pool.
1303 	 */
1304 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1305 
1306 	mutex_exit(&spa_namespace_lock);
1307 
1308 	/*
1309 	 * Resilver anything that's out of date.
1310 	 */
1311 	if (spa_mode & FWRITE)
1312 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1313 
1314 	return (0);
1315 }
1316 
1317 /*
1318  * This (illegal) pool name is used when temporarily importing a spa_t in order
1319  * to get the vdev stats associated with the imported devices.
1320  */
1321 #define	TRYIMPORT_NAME	"$import"
1322 
1323 nvlist_t *
1324 spa_tryimport(nvlist_t *tryconfig)
1325 {
1326 	nvlist_t *config = NULL;
1327 	char *poolname;
1328 	spa_t *spa;
1329 	uint64_t state;
1330 
1331 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1332 		return (NULL);
1333 
1334 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1335 		return (NULL);
1336 
1337 	/*
1338 	 * Create and initialize the spa structure.
1339 	 */
1340 	mutex_enter(&spa_namespace_lock);
1341 	spa = spa_add(TRYIMPORT_NAME, NULL);
1342 	spa_activate(spa);
1343 
1344 	/*
1345 	 * Pass off the heavy lifting to spa_load().
1346 	 * Pass TRUE for mosconfig because the user-supplied config
1347 	 * is actually the one to trust when doing an import.
1348 	 */
1349 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1350 
1351 	/*
1352 	 * If 'tryconfig' was at least parsable, return the current config.
1353 	 */
1354 	if (spa->spa_root_vdev != NULL) {
1355 		spa_config_enter(spa, RW_READER, FTAG);
1356 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1357 		spa_config_exit(spa, FTAG);
1358 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1359 		    poolname) == 0);
1360 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1361 		    state) == 0);
1362 
1363 		/*
1364 		 * Add the list of hot spares.
1365 		 */
1366 		spa_add_spares(spa, config);
1367 	}
1368 
1369 	spa_unload(spa);
1370 	spa_deactivate(spa);
1371 	spa_remove(spa);
1372 	mutex_exit(&spa_namespace_lock);
1373 
1374 	return (config);
1375 }
1376 
1377 /*
1378  * Pool export/destroy
1379  *
1380  * The act of destroying or exporting a pool is very simple.  We make sure there
1381  * is no more pending I/O and any references to the pool are gone.  Then, we
1382  * update the pool state and sync all the labels to disk, removing the
1383  * configuration from the cache afterwards.
1384  */
1385 static int
1386 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1387 {
1388 	spa_t *spa;
1389 
1390 	if (oldconfig)
1391 		*oldconfig = NULL;
1392 
1393 	if (!(spa_mode & FWRITE))
1394 		return (EROFS);
1395 
1396 	mutex_enter(&spa_namespace_lock);
1397 	if ((spa = spa_lookup(pool)) == NULL) {
1398 		mutex_exit(&spa_namespace_lock);
1399 		return (ENOENT);
1400 	}
1401 
1402 	/*
1403 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1404 	 * reacquire the namespace lock, and see if we can export.
1405 	 */
1406 	spa_open_ref(spa, FTAG);
1407 	mutex_exit(&spa_namespace_lock);
1408 	spa_async_suspend(spa);
1409 	mutex_enter(&spa_namespace_lock);
1410 	spa_close(spa, FTAG);
1411 
1412 	/*
1413 	 * The pool will be in core if it's openable,
1414 	 * in which case we can modify its state.
1415 	 */
1416 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1417 		/*
1418 		 * Objsets may be open only because they're dirty, so we
1419 		 * have to force it to sync before checking spa_refcnt.
1420 		 */
1421 		spa_scrub_suspend(spa);
1422 		txg_wait_synced(spa->spa_dsl_pool, 0);
1423 
1424 		/*
1425 		 * A pool cannot be exported or destroyed if there are active
1426 		 * references.  If we are resetting a pool, allow references by
1427 		 * fault injection handlers.
1428 		 */
1429 		if (!spa_refcount_zero(spa) ||
1430 		    (spa->spa_inject_ref != 0 &&
1431 		    new_state != POOL_STATE_UNINITIALIZED)) {
1432 			spa_scrub_resume(spa);
1433 			spa_async_resume(spa);
1434 			mutex_exit(&spa_namespace_lock);
1435 			return (EBUSY);
1436 		}
1437 
1438 		spa_scrub_resume(spa);
1439 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1440 
1441 		/*
1442 		 * We want this to be reflected on every label,
1443 		 * so mark them all dirty.  spa_unload() will do the
1444 		 * final sync that pushes these changes out.
1445 		 */
1446 		if (new_state != POOL_STATE_UNINITIALIZED) {
1447 			spa_config_enter(spa, RW_WRITER, FTAG);
1448 			spa->spa_state = new_state;
1449 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1450 			vdev_config_dirty(spa->spa_root_vdev);
1451 			spa_config_exit(spa, FTAG);
1452 		}
1453 	}
1454 
1455 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1456 		spa_unload(spa);
1457 		spa_deactivate(spa);
1458 	}
1459 
1460 	if (oldconfig && spa->spa_config)
1461 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1462 
1463 	if (new_state != POOL_STATE_UNINITIALIZED) {
1464 		spa_remove(spa);
1465 		spa_config_sync();
1466 	}
1467 	mutex_exit(&spa_namespace_lock);
1468 
1469 	return (0);
1470 }
1471 
1472 /*
1473  * Destroy a storage pool.
1474  */
1475 int
1476 spa_destroy(char *pool)
1477 {
1478 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1479 }
1480 
1481 /*
1482  * Export a storage pool.
1483  */
1484 int
1485 spa_export(char *pool, nvlist_t **oldconfig)
1486 {
1487 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1488 }
1489 
1490 /*
1491  * Similar to spa_export(), this unloads the spa_t without actually removing it
1492  * from the namespace in any way.
1493  */
1494 int
1495 spa_reset(char *pool)
1496 {
1497 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1498 }
1499 
1500 
1501 /*
1502  * ==========================================================================
1503  * Device manipulation
1504  * ==========================================================================
1505  */
1506 
1507 /*
1508  * Add capacity to a storage pool.
1509  */
1510 int
1511 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1512 {
1513 	uint64_t txg;
1514 	int c, error;
1515 	vdev_t *rvd = spa->spa_root_vdev;
1516 	vdev_t *vd, *tvd;
1517 	nvlist_t **spares;
1518 	uint_t i, nspares;
1519 
1520 	txg = spa_vdev_enter(spa);
1521 
1522 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1523 	    VDEV_ALLOC_ADD)) != 0)
1524 		return (spa_vdev_exit(spa, NULL, txg, error));
1525 
1526 	spa->spa_pending_vdev = vd;
1527 
1528 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1529 	    &spares, &nspares) != 0)
1530 		nspares = 0;
1531 
1532 	if (vd->vdev_children == 0 && nspares == 0) {
1533 		spa->spa_pending_vdev = NULL;
1534 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1535 	}
1536 
1537 	if (vd->vdev_children != 0) {
1538 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1539 			spa->spa_pending_vdev = NULL;
1540 			return (spa_vdev_exit(spa, vd, txg, error));
1541 		}
1542 	}
1543 
1544 	/*
1545 	 * We must validate the spares after checking the children.  Otherwise,
1546 	 * vdev_inuse() will blindly overwrite the spare.
1547 	 */
1548 	if ((error = spa_validate_spares(spa, nvroot, txg,
1549 	    VDEV_ALLOC_ADD)) != 0) {
1550 		spa->spa_pending_vdev = NULL;
1551 		return (spa_vdev_exit(spa, vd, txg, error));
1552 	}
1553 
1554 	spa->spa_pending_vdev = NULL;
1555 
1556 	/*
1557 	 * Transfer each new top-level vdev from vd to rvd.
1558 	 */
1559 	for (c = 0; c < vd->vdev_children; c++) {
1560 		tvd = vd->vdev_child[c];
1561 		vdev_remove_child(vd, tvd);
1562 		tvd->vdev_id = rvd->vdev_children;
1563 		vdev_add_child(rvd, tvd);
1564 		vdev_config_dirty(tvd);
1565 	}
1566 
1567 	if (nspares != 0) {
1568 		if (spa->spa_sparelist != NULL) {
1569 			nvlist_t **oldspares;
1570 			uint_t oldnspares;
1571 			nvlist_t **newspares;
1572 
1573 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1574 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1575 
1576 			newspares = kmem_alloc(sizeof (void *) *
1577 			    (nspares + oldnspares), KM_SLEEP);
1578 			for (i = 0; i < oldnspares; i++)
1579 				VERIFY(nvlist_dup(oldspares[i],
1580 				    &newspares[i], KM_SLEEP) == 0);
1581 			for (i = 0; i < nspares; i++)
1582 				VERIFY(nvlist_dup(spares[i],
1583 				    &newspares[i + oldnspares],
1584 				    KM_SLEEP) == 0);
1585 
1586 			VERIFY(nvlist_remove(spa->spa_sparelist,
1587 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1588 
1589 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1590 			    ZPOOL_CONFIG_SPARES, newspares,
1591 			    nspares + oldnspares) == 0);
1592 			for (i = 0; i < oldnspares + nspares; i++)
1593 				nvlist_free(newspares[i]);
1594 			kmem_free(newspares, (oldnspares + nspares) *
1595 			    sizeof (void *));
1596 		} else {
1597 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1598 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1599 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1600 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1601 		}
1602 
1603 		spa_load_spares(spa);
1604 		spa->spa_sync_spares = B_TRUE;
1605 	}
1606 
1607 	/*
1608 	 * We have to be careful when adding new vdevs to an existing pool.
1609 	 * If other threads start allocating from these vdevs before we
1610 	 * sync the config cache, and we lose power, then upon reboot we may
1611 	 * fail to open the pool because there are DVAs that the config cache
1612 	 * can't translate.  Therefore, we first add the vdevs without
1613 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1614 	 * and then let spa_config_update() initialize the new metaslabs.
1615 	 *
1616 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1617 	 * if we lose power at any point in this sequence, the remaining
1618 	 * steps will be completed the next time we load the pool.
1619 	 */
1620 	(void) spa_vdev_exit(spa, vd, txg, 0);
1621 
1622 	mutex_enter(&spa_namespace_lock);
1623 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1624 	mutex_exit(&spa_namespace_lock);
1625 
1626 	return (0);
1627 }
1628 
1629 /*
1630  * Attach a device to a mirror.  The arguments are the path to any device
1631  * in the mirror, and the nvroot for the new device.  If the path specifies
1632  * a device that is not mirrored, we automatically insert the mirror vdev.
1633  *
1634  * If 'replacing' is specified, the new device is intended to replace the
1635  * existing device; in this case the two devices are made into their own
1636  * mirror using the 'replacing' vdev, which is functionally idendical to
1637  * the mirror vdev (it actually reuses all the same ops) but has a few
1638  * extra rules: you can't attach to it after it's been created, and upon
1639  * completion of resilvering, the first disk (the one being replaced)
1640  * is automatically detached.
1641  */
1642 int
1643 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1644 {
1645 	uint64_t txg, open_txg;
1646 	int error;
1647 	vdev_t *rvd = spa->spa_root_vdev;
1648 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1649 	vdev_ops_t *pvops;
1650 
1651 	txg = spa_vdev_enter(spa);
1652 
1653 	oldvd = vdev_lookup_by_guid(rvd, guid);
1654 
1655 	if (oldvd == NULL)
1656 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1657 
1658 	if (!oldvd->vdev_ops->vdev_op_leaf)
1659 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1660 
1661 	pvd = oldvd->vdev_parent;
1662 
1663 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1664 	    VDEV_ALLOC_ADD)) != 0 || newrootvd->vdev_children != 1)
1665 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1666 
1667 	newvd = newrootvd->vdev_child[0];
1668 
1669 	if (!newvd->vdev_ops->vdev_op_leaf)
1670 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1671 
1672 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1673 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1674 
1675 	if (!replacing) {
1676 		/*
1677 		 * For attach, the only allowable parent is a mirror or the root
1678 		 * vdev.
1679 		 */
1680 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1681 		    pvd->vdev_ops != &vdev_root_ops)
1682 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1683 
1684 		pvops = &vdev_mirror_ops;
1685 	} else {
1686 		/*
1687 		 * Active hot spares can only be replaced by inactive hot
1688 		 * spares.
1689 		 */
1690 		if (pvd->vdev_ops == &vdev_spare_ops &&
1691 		    pvd->vdev_child[1] == oldvd &&
1692 		    !spa_has_spare(spa, newvd->vdev_guid))
1693 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1694 
1695 		/*
1696 		 * If the source is a hot spare, and the parent isn't already a
1697 		 * spare, then we want to create a new hot spare.  Otherwise, we
1698 		 * want to create a replacing vdev.  The user is not allowed to
1699 		 * attach to a spared vdev child unless the 'isspare' state is
1700 		 * the same (spare replaces spare, non-spare replaces
1701 		 * non-spare).
1702 		 */
1703 		if (pvd->vdev_ops == &vdev_replacing_ops)
1704 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1705 		else if (pvd->vdev_ops == &vdev_spare_ops &&
1706 		    newvd->vdev_isspare != oldvd->vdev_isspare)
1707 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1708 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1709 		    newvd->vdev_isspare)
1710 			pvops = &vdev_spare_ops;
1711 		else
1712 			pvops = &vdev_replacing_ops;
1713 	}
1714 
1715 	/*
1716 	 * Compare the new device size with the replaceable/attachable
1717 	 * device size.
1718 	 */
1719 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1720 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1721 
1722 	/*
1723 	 * The new device cannot have a higher alignment requirement
1724 	 * than the top-level vdev.
1725 	 */
1726 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1727 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1728 
1729 	/*
1730 	 * If this is an in-place replacement, update oldvd's path and devid
1731 	 * to make it distinguishable from newvd, and unopenable from now on.
1732 	 */
1733 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1734 		spa_strfree(oldvd->vdev_path);
1735 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1736 		    KM_SLEEP);
1737 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1738 		    newvd->vdev_path, "old");
1739 		if (oldvd->vdev_devid != NULL) {
1740 			spa_strfree(oldvd->vdev_devid);
1741 			oldvd->vdev_devid = NULL;
1742 		}
1743 	}
1744 
1745 	/*
1746 	 * If the parent is not a mirror, or if we're replacing, insert the new
1747 	 * mirror/replacing/spare vdev above oldvd.
1748 	 */
1749 	if (pvd->vdev_ops != pvops)
1750 		pvd = vdev_add_parent(oldvd, pvops);
1751 
1752 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1753 	ASSERT(pvd->vdev_ops == pvops);
1754 	ASSERT(oldvd->vdev_parent == pvd);
1755 
1756 	/*
1757 	 * Extract the new device from its root and add it to pvd.
1758 	 */
1759 	vdev_remove_child(newrootvd, newvd);
1760 	newvd->vdev_id = pvd->vdev_children;
1761 	vdev_add_child(pvd, newvd);
1762 
1763 	/*
1764 	 * If newvd is smaller than oldvd, but larger than its rsize,
1765 	 * the addition of newvd may have decreased our parent's asize.
1766 	 */
1767 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1768 
1769 	tvd = newvd->vdev_top;
1770 	ASSERT(pvd->vdev_top == tvd);
1771 	ASSERT(tvd->vdev_parent == rvd);
1772 
1773 	vdev_config_dirty(tvd);
1774 
1775 	/*
1776 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1777 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1778 	 */
1779 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1780 
1781 	mutex_enter(&newvd->vdev_dtl_lock);
1782 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1783 	    open_txg - TXG_INITIAL + 1);
1784 	mutex_exit(&newvd->vdev_dtl_lock);
1785 
1786 	if (newvd->vdev_isspare)
1787 		spa_spare_activate(newvd);
1788 
1789 	/*
1790 	 * Mark newvd's DTL dirty in this txg.
1791 	 */
1792 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1793 
1794 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1795 
1796 	/*
1797 	 * Kick off a resilver to update newvd.
1798 	 */
1799 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1800 
1801 	return (0);
1802 }
1803 
1804 /*
1805  * Detach a device from a mirror or replacing vdev.
1806  * If 'replace_done' is specified, only detach if the parent
1807  * is a replacing vdev.
1808  */
1809 int
1810 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1811 {
1812 	uint64_t txg;
1813 	int c, t, error;
1814 	vdev_t *rvd = spa->spa_root_vdev;
1815 	vdev_t *vd, *pvd, *cvd, *tvd;
1816 	boolean_t unspare = B_FALSE;
1817 	uint64_t unspare_guid;
1818 
1819 	txg = spa_vdev_enter(spa);
1820 
1821 	vd = vdev_lookup_by_guid(rvd, guid);
1822 
1823 	if (vd == NULL)
1824 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1825 
1826 	if (!vd->vdev_ops->vdev_op_leaf)
1827 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1828 
1829 	pvd = vd->vdev_parent;
1830 
1831 	/*
1832 	 * If replace_done is specified, only remove this device if it's
1833 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1834 	 * disk can be removed.
1835 	 */
1836 	if (replace_done) {
1837 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1838 			if (vd->vdev_id != 0)
1839 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1840 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1841 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1842 		}
1843 	}
1844 
1845 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1846 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1847 
1848 	/*
1849 	 * Only mirror, replacing, and spare vdevs support detach.
1850 	 */
1851 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1852 	    pvd->vdev_ops != &vdev_mirror_ops &&
1853 	    pvd->vdev_ops != &vdev_spare_ops)
1854 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1855 
1856 	/*
1857 	 * If there's only one replica, you can't detach it.
1858 	 */
1859 	if (pvd->vdev_children <= 1)
1860 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1861 
1862 	/*
1863 	 * If all siblings have non-empty DTLs, this device may have the only
1864 	 * valid copy of the data, which means we cannot safely detach it.
1865 	 *
1866 	 * XXX -- as in the vdev_offline() case, we really want a more
1867 	 * precise DTL check.
1868 	 */
1869 	for (c = 0; c < pvd->vdev_children; c++) {
1870 		uint64_t dirty;
1871 
1872 		cvd = pvd->vdev_child[c];
1873 		if (cvd == vd)
1874 			continue;
1875 		if (vdev_is_dead(cvd))
1876 			continue;
1877 		mutex_enter(&cvd->vdev_dtl_lock);
1878 		dirty = cvd->vdev_dtl_map.sm_space |
1879 		    cvd->vdev_dtl_scrub.sm_space;
1880 		mutex_exit(&cvd->vdev_dtl_lock);
1881 		if (!dirty)
1882 			break;
1883 	}
1884 
1885 	/*
1886 	 * If we are a replacing or spare vdev, then we can always detach the
1887 	 * latter child, as that is how one cancels the operation.
1888 	 */
1889 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1890 	    c == pvd->vdev_children)
1891 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1892 
1893 	/*
1894 	 * If we are detaching the original disk from a spare, then it implies
1895 	 * that the spare should become a real disk, and be removed from the
1896 	 * active spare list for the pool.
1897 	 */
1898 	if (pvd->vdev_ops == &vdev_spare_ops &&
1899 	    vd->vdev_id == 0)
1900 		unspare = B_TRUE;
1901 
1902 	/*
1903 	 * Erase the disk labels so the disk can be used for other things.
1904 	 * This must be done after all other error cases are handled,
1905 	 * but before we disembowel vd (so we can still do I/O to it).
1906 	 * But if we can't do it, don't treat the error as fatal --
1907 	 * it may be that the unwritability of the disk is the reason
1908 	 * it's being detached!
1909 	 */
1910 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1911 
1912 	/*
1913 	 * Remove vd from its parent and compact the parent's children.
1914 	 */
1915 	vdev_remove_child(pvd, vd);
1916 	vdev_compact_children(pvd);
1917 
1918 	/*
1919 	 * Remember one of the remaining children so we can get tvd below.
1920 	 */
1921 	cvd = pvd->vdev_child[0];
1922 
1923 	/*
1924 	 * If we need to remove the remaining child from the list of hot spares,
1925 	 * do it now, marking the vdev as no longer a spare in the process.  We
1926 	 * must do this before vdev_remove_parent(), because that can change the
1927 	 * GUID if it creates a new toplevel GUID.
1928 	 */
1929 	if (unspare) {
1930 		ASSERT(cvd->vdev_isspare);
1931 		spa_spare_remove(cvd);
1932 		unspare_guid = cvd->vdev_guid;
1933 	}
1934 
1935 	/*
1936 	 * If the parent mirror/replacing vdev only has one child,
1937 	 * the parent is no longer needed.  Remove it from the tree.
1938 	 */
1939 	if (pvd->vdev_children == 1)
1940 		vdev_remove_parent(cvd);
1941 
1942 	/*
1943 	 * We don't set tvd until now because the parent we just removed
1944 	 * may have been the previous top-level vdev.
1945 	 */
1946 	tvd = cvd->vdev_top;
1947 	ASSERT(tvd->vdev_parent == rvd);
1948 
1949 	/*
1950 	 * Reevaluate the parent vdev state.
1951 	 */
1952 	vdev_propagate_state(cvd->vdev_parent);
1953 
1954 	/*
1955 	 * If the device we just detached was smaller than the others, it may be
1956 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
1957 	 * can't fail because the existing metaslabs are already in core, so
1958 	 * there's nothing to read from disk.
1959 	 */
1960 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
1961 
1962 	vdev_config_dirty(tvd);
1963 
1964 	/*
1965 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
1966 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
1967 	 * But first make sure we're not on any *other* txg's DTL list, to
1968 	 * prevent vd from being accessed after it's freed.
1969 	 */
1970 	for (t = 0; t < TXG_SIZE; t++)
1971 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
1972 	vd->vdev_detached = B_TRUE;
1973 	vdev_dirty(tvd, VDD_DTL, vd, txg);
1974 
1975 	error = spa_vdev_exit(spa, vd, txg, 0);
1976 
1977 	/*
1978 	 * If this was the removal of the original device in a hot spare vdev,
1979 	 * then we want to go through and remove the device from the hot spare
1980 	 * list of every other pool.
1981 	 */
1982 	if (unspare) {
1983 		spa = NULL;
1984 		mutex_enter(&spa_namespace_lock);
1985 		while ((spa = spa_next(spa)) != NULL) {
1986 			if (spa->spa_state != POOL_STATE_ACTIVE)
1987 				continue;
1988 
1989 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
1990 		}
1991 		mutex_exit(&spa_namespace_lock);
1992 	}
1993 
1994 	return (error);
1995 }
1996 
1997 /*
1998  * Remove a device from the pool.  Currently, this supports removing only hot
1999  * spares.
2000  */
2001 int
2002 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2003 {
2004 	vdev_t *vd;
2005 	nvlist_t **spares, *nv, **newspares;
2006 	uint_t i, j, nspares;
2007 	int ret = 0;
2008 
2009 	spa_config_enter(spa, RW_WRITER, FTAG);
2010 
2011 	vd = spa_lookup_by_guid(spa, guid);
2012 
2013 	nv = NULL;
2014 	if (spa->spa_spares != NULL &&
2015 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2016 	    &spares, &nspares) == 0) {
2017 		for (i = 0; i < nspares; i++) {
2018 			uint64_t theguid;
2019 
2020 			VERIFY(nvlist_lookup_uint64(spares[i],
2021 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2022 			if (theguid == guid) {
2023 				nv = spares[i];
2024 				break;
2025 			}
2026 		}
2027 	}
2028 
2029 	/*
2030 	 * We only support removing a hot spare, and only if it's not currently
2031 	 * in use in this pool.
2032 	 */
2033 	if (nv == NULL && vd == NULL) {
2034 		ret = ENOENT;
2035 		goto out;
2036 	}
2037 
2038 	if (nv == NULL && vd != NULL) {
2039 		ret = ENOTSUP;
2040 		goto out;
2041 	}
2042 
2043 	if (!unspare && nv != NULL && vd != NULL) {
2044 		ret = EBUSY;
2045 		goto out;
2046 	}
2047 
2048 	if (nspares == 1) {
2049 		newspares = NULL;
2050 	} else {
2051 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2052 		    KM_SLEEP);
2053 		for (i = 0, j = 0; i < nspares; i++) {
2054 			if (spares[i] != nv)
2055 				VERIFY(nvlist_dup(spares[i],
2056 				    &newspares[j++], KM_SLEEP) == 0);
2057 		}
2058 	}
2059 
2060 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2061 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2062 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2063 	    newspares, nspares - 1) == 0);
2064 	for (i = 0; i < nspares - 1; i++)
2065 		nvlist_free(newspares[i]);
2066 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2067 	spa_load_spares(spa);
2068 	spa->spa_sync_spares = B_TRUE;
2069 
2070 out:
2071 	spa_config_exit(spa, FTAG);
2072 
2073 	return (ret);
2074 }
2075 
2076 /*
2077  * Find any device that's done replacing, so we can detach it.
2078  */
2079 static vdev_t *
2080 spa_vdev_replace_done_hunt(vdev_t *vd)
2081 {
2082 	vdev_t *newvd, *oldvd;
2083 	int c;
2084 
2085 	for (c = 0; c < vd->vdev_children; c++) {
2086 		oldvd = spa_vdev_replace_done_hunt(vd->vdev_child[c]);
2087 		if (oldvd != NULL)
2088 			return (oldvd);
2089 	}
2090 
2091 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2092 		oldvd = vd->vdev_child[0];
2093 		newvd = vd->vdev_child[1];
2094 
2095 		mutex_enter(&newvd->vdev_dtl_lock);
2096 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2097 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2098 			mutex_exit(&newvd->vdev_dtl_lock);
2099 			return (oldvd);
2100 		}
2101 		mutex_exit(&newvd->vdev_dtl_lock);
2102 	}
2103 
2104 	return (NULL);
2105 }
2106 
2107 static void
2108 spa_vdev_replace_done(spa_t *spa)
2109 {
2110 	vdev_t *vd;
2111 	vdev_t *pvd;
2112 	uint64_t guid;
2113 	uint64_t pguid = 0;
2114 
2115 	spa_config_enter(spa, RW_READER, FTAG);
2116 
2117 	while ((vd = spa_vdev_replace_done_hunt(spa->spa_root_vdev)) != NULL) {
2118 		guid = vd->vdev_guid;
2119 		/*
2120 		 * If we have just finished replacing a hot spared device, then
2121 		 * we need to detach the parent's first child (the original hot
2122 		 * spare) as well.
2123 		 */
2124 		pvd = vd->vdev_parent;
2125 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2126 		    pvd->vdev_id == 0) {
2127 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2128 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2129 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2130 		}
2131 		spa_config_exit(spa, FTAG);
2132 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2133 			return;
2134 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2135 			return;
2136 		spa_config_enter(spa, RW_READER, FTAG);
2137 	}
2138 
2139 	spa_config_exit(spa, FTAG);
2140 }
2141 
2142 /*
2143  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2144  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2145  */
2146 int
2147 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2148 {
2149 	vdev_t *rvd, *vd;
2150 	uint64_t txg;
2151 
2152 	rvd = spa->spa_root_vdev;
2153 
2154 	txg = spa_vdev_enter(spa);
2155 
2156 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2157 		/*
2158 		 * Determine if this is a reference to a hot spare.  In that
2159 		 * case, update the path as stored in the spare list.
2160 		 */
2161 		nvlist_t **spares;
2162 		uint_t i, nspares;
2163 		if (spa->spa_sparelist != NULL) {
2164 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2165 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2166 			for (i = 0; i < nspares; i++) {
2167 				uint64_t theguid;
2168 				VERIFY(nvlist_lookup_uint64(spares[i],
2169 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2170 				if (theguid == guid)
2171 					break;
2172 			}
2173 
2174 			if (i == nspares)
2175 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2176 
2177 			VERIFY(nvlist_add_string(spares[i],
2178 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2179 			spa_load_spares(spa);
2180 			spa->spa_sync_spares = B_TRUE;
2181 			return (spa_vdev_exit(spa, NULL, txg, 0));
2182 		} else {
2183 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2184 		}
2185 	}
2186 
2187 	if (!vd->vdev_ops->vdev_op_leaf)
2188 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2189 
2190 	spa_strfree(vd->vdev_path);
2191 	vd->vdev_path = spa_strdup(newpath);
2192 
2193 	vdev_config_dirty(vd->vdev_top);
2194 
2195 	return (spa_vdev_exit(spa, NULL, txg, 0));
2196 }
2197 
2198 /*
2199  * ==========================================================================
2200  * SPA Scrubbing
2201  * ==========================================================================
2202  */
2203 
2204 static void
2205 spa_scrub_io_done(zio_t *zio)
2206 {
2207 	spa_t *spa = zio->io_spa;
2208 
2209 	zio_data_buf_free(zio->io_data, zio->io_size);
2210 
2211 	mutex_enter(&spa->spa_scrub_lock);
2212 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2213 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2214 		spa->spa_scrub_errors++;
2215 		mutex_enter(&vd->vdev_stat_lock);
2216 		vd->vdev_stat.vs_scrub_errors++;
2217 		mutex_exit(&vd->vdev_stat_lock);
2218 	}
2219 
2220 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2221 		cv_broadcast(&spa->spa_scrub_io_cv);
2222 
2223 	ASSERT(spa->spa_scrub_inflight >= 0);
2224 
2225 	mutex_exit(&spa->spa_scrub_lock);
2226 }
2227 
2228 static void
2229 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2230     zbookmark_t *zb)
2231 {
2232 	size_t size = BP_GET_LSIZE(bp);
2233 	void *data;
2234 
2235 	mutex_enter(&spa->spa_scrub_lock);
2236 	/*
2237 	 * Do not give too much work to vdev(s).
2238 	 */
2239 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2240 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2241 	}
2242 	spa->spa_scrub_inflight++;
2243 	mutex_exit(&spa->spa_scrub_lock);
2244 
2245 	data = zio_data_buf_alloc(size);
2246 
2247 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2248 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2249 
2250 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2251 
2252 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2253 	    spa_scrub_io_done, NULL, priority, flags, zb));
2254 }
2255 
2256 /* ARGSUSED */
2257 static int
2258 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2259 {
2260 	blkptr_t *bp = &bc->bc_blkptr;
2261 	vdev_t *vd = spa->spa_root_vdev;
2262 	dva_t *dva = bp->blk_dva;
2263 	int needs_resilver = B_FALSE;
2264 	int d;
2265 
2266 	if (bc->bc_errno) {
2267 		/*
2268 		 * We can't scrub this block, but we can continue to scrub
2269 		 * the rest of the pool.  Note the error and move along.
2270 		 */
2271 		mutex_enter(&spa->spa_scrub_lock);
2272 		spa->spa_scrub_errors++;
2273 		mutex_exit(&spa->spa_scrub_lock);
2274 
2275 		mutex_enter(&vd->vdev_stat_lock);
2276 		vd->vdev_stat.vs_scrub_errors++;
2277 		mutex_exit(&vd->vdev_stat_lock);
2278 
2279 		return (ERESTART);
2280 	}
2281 
2282 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2283 
2284 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2285 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2286 
2287 		ASSERT(vd != NULL);
2288 
2289 		/*
2290 		 * Keep track of how much data we've examined so that
2291 		 * zpool(1M) status can make useful progress reports.
2292 		 */
2293 		mutex_enter(&vd->vdev_stat_lock);
2294 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2295 		mutex_exit(&vd->vdev_stat_lock);
2296 
2297 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2298 			if (DVA_GET_GANG(&dva[d])) {
2299 				/*
2300 				 * Gang members may be spread across multiple
2301 				 * vdevs, so the best we can do is look at the
2302 				 * pool-wide DTL.
2303 				 * XXX -- it would be better to change our
2304 				 * allocation policy to ensure that this can't
2305 				 * happen.
2306 				 */
2307 				vd = spa->spa_root_vdev;
2308 			}
2309 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2310 			    bp->blk_birth, 1))
2311 				needs_resilver = B_TRUE;
2312 		}
2313 	}
2314 
2315 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2316 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2317 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2318 	else if (needs_resilver)
2319 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2320 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2321 
2322 	return (0);
2323 }
2324 
2325 static void
2326 spa_scrub_thread(spa_t *spa)
2327 {
2328 	callb_cpr_t cprinfo;
2329 	traverse_handle_t *th = spa->spa_scrub_th;
2330 	vdev_t *rvd = spa->spa_root_vdev;
2331 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2332 	int error = 0;
2333 	boolean_t complete;
2334 
2335 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2336 
2337 	/*
2338 	 * If we're restarting due to a snapshot create/delete,
2339 	 * wait for that to complete.
2340 	 */
2341 	txg_wait_synced(spa_get_dsl(spa), 0);
2342 
2343 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2344 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2345 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2346 
2347 	spa_config_enter(spa, RW_WRITER, FTAG);
2348 	vdev_reopen(rvd);		/* purge all vdev caches */
2349 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2350 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2351 	spa_config_exit(spa, FTAG);
2352 
2353 	mutex_enter(&spa->spa_scrub_lock);
2354 	spa->spa_scrub_errors = 0;
2355 	spa->spa_scrub_active = 1;
2356 	ASSERT(spa->spa_scrub_inflight == 0);
2357 
2358 	while (!spa->spa_scrub_stop) {
2359 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2360 		while (spa->spa_scrub_suspended) {
2361 			spa->spa_scrub_active = 0;
2362 			cv_broadcast(&spa->spa_scrub_cv);
2363 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2364 			spa->spa_scrub_active = 1;
2365 		}
2366 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2367 
2368 		if (spa->spa_scrub_restart_txg != 0)
2369 			break;
2370 
2371 		mutex_exit(&spa->spa_scrub_lock);
2372 		error = traverse_more(th);
2373 		mutex_enter(&spa->spa_scrub_lock);
2374 		if (error != EAGAIN)
2375 			break;
2376 	}
2377 
2378 	while (spa->spa_scrub_inflight)
2379 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2380 
2381 	spa->spa_scrub_active = 0;
2382 	cv_broadcast(&spa->spa_scrub_cv);
2383 
2384 	mutex_exit(&spa->spa_scrub_lock);
2385 
2386 	spa_config_enter(spa, RW_WRITER, FTAG);
2387 
2388 	mutex_enter(&spa->spa_scrub_lock);
2389 
2390 	/*
2391 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2392 	 * AND the spa config lock to synchronize with any config changes
2393 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2394 	 */
2395 	if (spa->spa_scrub_restart_txg != 0)
2396 		error = ERESTART;
2397 
2398 	if (spa->spa_scrub_stop)
2399 		error = EINTR;
2400 
2401 	/*
2402 	 * Even if there were uncorrectable errors, we consider the scrub
2403 	 * completed.  The downside is that if there is a transient error during
2404 	 * a resilver, we won't resilver the data properly to the target.  But
2405 	 * if the damage is permanent (more likely) we will resilver forever,
2406 	 * which isn't really acceptable.  Since there is enough information for
2407 	 * the user to know what has failed and why, this seems like a more
2408 	 * tractable approach.
2409 	 */
2410 	complete = (error == 0);
2411 
2412 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2413 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2414 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2415 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2416 
2417 	mutex_exit(&spa->spa_scrub_lock);
2418 
2419 	/*
2420 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2421 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2422 	 */
2423 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2424 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2425 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2426 	spa_errlog_rotate(spa);
2427 
2428 	spa_config_exit(spa, FTAG);
2429 
2430 	mutex_enter(&spa->spa_scrub_lock);
2431 
2432 	/*
2433 	 * We may have finished replacing a device.
2434 	 * Let the async thread assess this and handle the detach.
2435 	 */
2436 	spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2437 
2438 	/*
2439 	 * If we were told to restart, our final act is to start a new scrub.
2440 	 */
2441 	if (error == ERESTART)
2442 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2443 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2444 
2445 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2446 	spa->spa_scrub_active = 0;
2447 	spa->spa_scrub_thread = NULL;
2448 	cv_broadcast(&spa->spa_scrub_cv);
2449 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2450 	thread_exit();
2451 }
2452 
2453 void
2454 spa_scrub_suspend(spa_t *spa)
2455 {
2456 	mutex_enter(&spa->spa_scrub_lock);
2457 	spa->spa_scrub_suspended++;
2458 	while (spa->spa_scrub_active) {
2459 		cv_broadcast(&spa->spa_scrub_cv);
2460 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2461 	}
2462 	while (spa->spa_scrub_inflight)
2463 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2464 	mutex_exit(&spa->spa_scrub_lock);
2465 }
2466 
2467 void
2468 spa_scrub_resume(spa_t *spa)
2469 {
2470 	mutex_enter(&spa->spa_scrub_lock);
2471 	ASSERT(spa->spa_scrub_suspended != 0);
2472 	if (--spa->spa_scrub_suspended == 0)
2473 		cv_broadcast(&spa->spa_scrub_cv);
2474 	mutex_exit(&spa->spa_scrub_lock);
2475 }
2476 
2477 void
2478 spa_scrub_restart(spa_t *spa, uint64_t txg)
2479 {
2480 	/*
2481 	 * Something happened (e.g. snapshot create/delete) that means
2482 	 * we must restart any in-progress scrubs.  The itinerary will
2483 	 * fix this properly.
2484 	 */
2485 	mutex_enter(&spa->spa_scrub_lock);
2486 	spa->spa_scrub_restart_txg = txg;
2487 	mutex_exit(&spa->spa_scrub_lock);
2488 }
2489 
2490 int
2491 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2492 {
2493 	space_seg_t *ss;
2494 	uint64_t mintxg, maxtxg;
2495 	vdev_t *rvd = spa->spa_root_vdev;
2496 
2497 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2498 		return (ENOTSUP);
2499 
2500 	mutex_enter(&spa->spa_scrub_lock);
2501 
2502 	/*
2503 	 * If there's a scrub or resilver already in progress, stop it.
2504 	 */
2505 	while (spa->spa_scrub_thread != NULL) {
2506 		/*
2507 		 * Don't stop a resilver unless forced.
2508 		 */
2509 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2510 			mutex_exit(&spa->spa_scrub_lock);
2511 			return (EBUSY);
2512 		}
2513 		spa->spa_scrub_stop = 1;
2514 		cv_broadcast(&spa->spa_scrub_cv);
2515 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2516 	}
2517 
2518 	/*
2519 	 * Terminate the previous traverse.
2520 	 */
2521 	if (spa->spa_scrub_th != NULL) {
2522 		traverse_fini(spa->spa_scrub_th);
2523 		spa->spa_scrub_th = NULL;
2524 	}
2525 
2526 	if (rvd == NULL) {
2527 		ASSERT(spa->spa_scrub_stop == 0);
2528 		ASSERT(spa->spa_scrub_type == type);
2529 		ASSERT(spa->spa_scrub_restart_txg == 0);
2530 		mutex_exit(&spa->spa_scrub_lock);
2531 		return (0);
2532 	}
2533 
2534 	mintxg = TXG_INITIAL - 1;
2535 	maxtxg = spa_last_synced_txg(spa) + 1;
2536 
2537 	mutex_enter(&rvd->vdev_dtl_lock);
2538 
2539 	if (rvd->vdev_dtl_map.sm_space == 0) {
2540 		/*
2541 		 * The pool-wide DTL is empty.
2542 		 * If this is a resilver, there's nothing to do except
2543 		 * check whether any in-progress replacements have completed.
2544 		 */
2545 		if (type == POOL_SCRUB_RESILVER) {
2546 			type = POOL_SCRUB_NONE;
2547 			spa_async_request(spa, SPA_ASYNC_REPLACE_DONE);
2548 		}
2549 	} else {
2550 		/*
2551 		 * The pool-wide DTL is non-empty.
2552 		 * If this is a normal scrub, upgrade to a resilver instead.
2553 		 */
2554 		if (type == POOL_SCRUB_EVERYTHING)
2555 			type = POOL_SCRUB_RESILVER;
2556 	}
2557 
2558 	if (type == POOL_SCRUB_RESILVER) {
2559 		/*
2560 		 * Determine the resilvering boundaries.
2561 		 *
2562 		 * Note: (mintxg, maxtxg) is an open interval,
2563 		 * i.e. mintxg and maxtxg themselves are not included.
2564 		 *
2565 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2566 		 * so we don't claim to resilver a txg that's still changing.
2567 		 */
2568 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2569 		mintxg = ss->ss_start - 1;
2570 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2571 		maxtxg = MIN(ss->ss_end, maxtxg);
2572 	}
2573 
2574 	mutex_exit(&rvd->vdev_dtl_lock);
2575 
2576 	spa->spa_scrub_stop = 0;
2577 	spa->spa_scrub_type = type;
2578 	spa->spa_scrub_restart_txg = 0;
2579 
2580 	if (type != POOL_SCRUB_NONE) {
2581 		spa->spa_scrub_mintxg = mintxg;
2582 		spa->spa_scrub_maxtxg = maxtxg;
2583 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2584 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2585 		    ZIO_FLAG_CANFAIL);
2586 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2587 		spa->spa_scrub_thread = thread_create(NULL, 0,
2588 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2589 	}
2590 
2591 	mutex_exit(&spa->spa_scrub_lock);
2592 
2593 	return (0);
2594 }
2595 
2596 /*
2597  * ==========================================================================
2598  * SPA async task processing
2599  * ==========================================================================
2600  */
2601 
2602 static void
2603 spa_async_reopen(spa_t *spa)
2604 {
2605 	vdev_t *rvd = spa->spa_root_vdev;
2606 	vdev_t *tvd;
2607 	int c;
2608 
2609 	spa_config_enter(spa, RW_WRITER, FTAG);
2610 
2611 	for (c = 0; c < rvd->vdev_children; c++) {
2612 		tvd = rvd->vdev_child[c];
2613 		if (tvd->vdev_reopen_wanted) {
2614 			tvd->vdev_reopen_wanted = 0;
2615 			vdev_reopen(tvd);
2616 		}
2617 	}
2618 
2619 	spa_config_exit(spa, FTAG);
2620 }
2621 
2622 static void
2623 spa_async_thread(spa_t *spa)
2624 {
2625 	int tasks;
2626 
2627 	ASSERT(spa->spa_sync_on);
2628 
2629 	mutex_enter(&spa->spa_async_lock);
2630 	tasks = spa->spa_async_tasks;
2631 	spa->spa_async_tasks = 0;
2632 	mutex_exit(&spa->spa_async_lock);
2633 
2634 	/*
2635 	 * See if the config needs to be updated.
2636 	 */
2637 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2638 		mutex_enter(&spa_namespace_lock);
2639 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2640 		mutex_exit(&spa_namespace_lock);
2641 	}
2642 
2643 	/*
2644 	 * See if any devices need to be reopened.
2645 	 */
2646 	if (tasks & SPA_ASYNC_REOPEN)
2647 		spa_async_reopen(spa);
2648 
2649 	/*
2650 	 * If any devices are done replacing, detach them.
2651 	 */
2652 	if (tasks & SPA_ASYNC_REPLACE_DONE)
2653 		spa_vdev_replace_done(spa);
2654 
2655 	/*
2656 	 * Kick off a scrub.
2657 	 */
2658 	if (tasks & SPA_ASYNC_SCRUB)
2659 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2660 
2661 	/*
2662 	 * Kick off a resilver.
2663 	 */
2664 	if (tasks & SPA_ASYNC_RESILVER)
2665 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2666 
2667 	/*
2668 	 * Let the world know that we're done.
2669 	 */
2670 	mutex_enter(&spa->spa_async_lock);
2671 	spa->spa_async_thread = NULL;
2672 	cv_broadcast(&spa->spa_async_cv);
2673 	mutex_exit(&spa->spa_async_lock);
2674 	thread_exit();
2675 }
2676 
2677 void
2678 spa_async_suspend(spa_t *spa)
2679 {
2680 	mutex_enter(&spa->spa_async_lock);
2681 	spa->spa_async_suspended++;
2682 	while (spa->spa_async_thread != NULL)
2683 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2684 	mutex_exit(&spa->spa_async_lock);
2685 }
2686 
2687 void
2688 spa_async_resume(spa_t *spa)
2689 {
2690 	mutex_enter(&spa->spa_async_lock);
2691 	ASSERT(spa->spa_async_suspended != 0);
2692 	spa->spa_async_suspended--;
2693 	mutex_exit(&spa->spa_async_lock);
2694 }
2695 
2696 static void
2697 spa_async_dispatch(spa_t *spa)
2698 {
2699 	mutex_enter(&spa->spa_async_lock);
2700 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2701 	    spa->spa_async_thread == NULL &&
2702 	    rootdir != NULL && !vn_is_readonly(rootdir))
2703 		spa->spa_async_thread = thread_create(NULL, 0,
2704 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2705 	mutex_exit(&spa->spa_async_lock);
2706 }
2707 
2708 void
2709 spa_async_request(spa_t *spa, int task)
2710 {
2711 	mutex_enter(&spa->spa_async_lock);
2712 	spa->spa_async_tasks |= task;
2713 	mutex_exit(&spa->spa_async_lock);
2714 }
2715 
2716 /*
2717  * ==========================================================================
2718  * SPA syncing routines
2719  * ==========================================================================
2720  */
2721 
2722 static void
2723 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2724 {
2725 	bplist_t *bpl = &spa->spa_sync_bplist;
2726 	dmu_tx_t *tx;
2727 	blkptr_t blk;
2728 	uint64_t itor = 0;
2729 	zio_t *zio;
2730 	int error;
2731 	uint8_t c = 1;
2732 
2733 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2734 
2735 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2736 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2737 
2738 	error = zio_wait(zio);
2739 	ASSERT3U(error, ==, 0);
2740 
2741 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2742 	bplist_vacate(bpl, tx);
2743 
2744 	/*
2745 	 * Pre-dirty the first block so we sync to convergence faster.
2746 	 * (Usually only the first block is needed.)
2747 	 */
2748 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2749 	dmu_tx_commit(tx);
2750 }
2751 
2752 static void
2753 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2754 {
2755 	char *packed = NULL;
2756 	size_t nvsize = 0;
2757 	dmu_buf_t *db;
2758 
2759 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2760 
2761 	packed = kmem_alloc(nvsize, KM_SLEEP);
2762 
2763 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2764 	    KM_SLEEP) == 0);
2765 
2766 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2767 
2768 	kmem_free(packed, nvsize);
2769 
2770 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2771 	dmu_buf_will_dirty(db, tx);
2772 	*(uint64_t *)db->db_data = nvsize;
2773 	dmu_buf_rele(db, FTAG);
2774 }
2775 
2776 static void
2777 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2778 {
2779 	nvlist_t *nvroot;
2780 	nvlist_t **spares;
2781 	int i;
2782 
2783 	if (!spa->spa_sync_spares)
2784 		return;
2785 
2786 	/*
2787 	 * Update the MOS nvlist describing the list of available spares.
2788 	 * spa_validate_spares() will have already made sure this nvlist is
2789 	 * valid and the vdevs are labelled appropriately.
2790 	 */
2791 	if (spa->spa_spares_object == 0) {
2792 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2793 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2794 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2795 		VERIFY(zap_update(spa->spa_meta_objset,
2796 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2797 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2798 	}
2799 
2800 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2801 	if (spa->spa_nspares == 0) {
2802 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2803 		    NULL, 0) == 0);
2804 	} else {
2805 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2806 		    KM_SLEEP);
2807 		for (i = 0; i < spa->spa_nspares; i++)
2808 			spares[i] = vdev_config_generate(spa,
2809 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2810 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2811 		    spares, spa->spa_nspares) == 0);
2812 		for (i = 0; i < spa->spa_nspares; i++)
2813 			nvlist_free(spares[i]);
2814 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2815 	}
2816 
2817 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2818 	nvlist_free(nvroot);
2819 
2820 	spa->spa_sync_spares = B_FALSE;
2821 }
2822 
2823 static void
2824 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2825 {
2826 	nvlist_t *config;
2827 
2828 	if (list_is_empty(&spa->spa_dirty_list))
2829 		return;
2830 
2831 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2832 
2833 	if (spa->spa_config_syncing)
2834 		nvlist_free(spa->spa_config_syncing);
2835 	spa->spa_config_syncing = config;
2836 
2837 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2838 }
2839 
2840 static void
2841 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
2842 {
2843 	spa_t *spa = arg1;
2844 	nvlist_t *nvp = arg2;
2845 	nvpair_t *nvpair;
2846 	objset_t *mos = spa->spa_meta_objset;
2847 	uint64_t zapobj;
2848 
2849 	mutex_enter(&spa->spa_props_lock);
2850 	if (spa->spa_pool_props_object == 0) {
2851 		zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
2852 		VERIFY(zapobj > 0);
2853 
2854 		spa->spa_pool_props_object = zapobj;
2855 
2856 		VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
2857 		    DMU_POOL_PROPS, 8, 1,
2858 		    &spa->spa_pool_props_object, tx) == 0);
2859 	}
2860 	mutex_exit(&spa->spa_props_lock);
2861 
2862 	nvpair = NULL;
2863 	while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
2864 		switch (zpool_name_to_prop(nvpair_name(nvpair))) {
2865 		case ZFS_PROP_BOOTFS:
2866 			VERIFY(nvlist_lookup_uint64(nvp,
2867 			    nvpair_name(nvpair), &spa->spa_bootfs) == 0);
2868 			VERIFY(zap_update(mos,
2869 			    spa->spa_pool_props_object,
2870 			    zpool_prop_to_name(ZFS_PROP_BOOTFS), 8, 1,
2871 			    &spa->spa_bootfs, tx) == 0);
2872 			break;
2873 		}
2874 	}
2875 }
2876 
2877 /*
2878  * Sync the specified transaction group.  New blocks may be dirtied as
2879  * part of the process, so we iterate until it converges.
2880  */
2881 void
2882 spa_sync(spa_t *spa, uint64_t txg)
2883 {
2884 	dsl_pool_t *dp = spa->spa_dsl_pool;
2885 	objset_t *mos = spa->spa_meta_objset;
2886 	bplist_t *bpl = &spa->spa_sync_bplist;
2887 	vdev_t *rvd = spa->spa_root_vdev;
2888 	vdev_t *vd;
2889 	dmu_tx_t *tx;
2890 	int dirty_vdevs;
2891 
2892 	/*
2893 	 * Lock out configuration changes.
2894 	 */
2895 	spa_config_enter(spa, RW_READER, FTAG);
2896 
2897 	spa->spa_syncing_txg = txg;
2898 	spa->spa_sync_pass = 0;
2899 
2900 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
2901 
2902 	tx = dmu_tx_create_assigned(dp, txg);
2903 
2904 	/*
2905 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
2906 	 * set spa_deflate if we have no raid-z vdevs.
2907 	 */
2908 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
2909 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
2910 		int i;
2911 
2912 		for (i = 0; i < rvd->vdev_children; i++) {
2913 			vd = rvd->vdev_child[i];
2914 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
2915 				break;
2916 		}
2917 		if (i == rvd->vdev_children) {
2918 			spa->spa_deflate = TRUE;
2919 			VERIFY(0 == zap_add(spa->spa_meta_objset,
2920 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2921 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
2922 		}
2923 	}
2924 
2925 	/*
2926 	 * If anything has changed in this txg, push the deferred frees
2927 	 * from the previous txg.  If not, leave them alone so that we
2928 	 * don't generate work on an otherwise idle system.
2929 	 */
2930 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
2931 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
2932 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
2933 		spa_sync_deferred_frees(spa, txg);
2934 
2935 	/*
2936 	 * Iterate to convergence.
2937 	 */
2938 	do {
2939 		spa->spa_sync_pass++;
2940 
2941 		spa_sync_config_object(spa, tx);
2942 		spa_sync_spares(spa, tx);
2943 		spa_errlog_sync(spa, txg);
2944 		dsl_pool_sync(dp, txg);
2945 
2946 		dirty_vdevs = 0;
2947 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
2948 			vdev_sync(vd, txg);
2949 			dirty_vdevs++;
2950 		}
2951 
2952 		bplist_sync(bpl, tx);
2953 	} while (dirty_vdevs);
2954 
2955 	bplist_close(bpl);
2956 
2957 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
2958 
2959 	/*
2960 	 * Rewrite the vdev configuration (which includes the uberblock)
2961 	 * to commit the transaction group.
2962 	 *
2963 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
2964 	 * Otherwise, pick a random top-level vdev that's known to be
2965 	 * visible in the config cache (see spa_vdev_add() for details).
2966 	 * If the write fails, try the next vdev until we're tried them all.
2967 	 */
2968 	if (!list_is_empty(&spa->spa_dirty_list)) {
2969 		VERIFY(vdev_config_sync(rvd, txg) == 0);
2970 	} else {
2971 		int children = rvd->vdev_children;
2972 		int c0 = spa_get_random(children);
2973 		int c;
2974 
2975 		for (c = 0; c < children; c++) {
2976 			vd = rvd->vdev_child[(c0 + c) % children];
2977 			if (vd->vdev_ms_array == 0)
2978 				continue;
2979 			if (vdev_config_sync(vd, txg) == 0)
2980 				break;
2981 		}
2982 		if (c == children)
2983 			VERIFY(vdev_config_sync(rvd, txg) == 0);
2984 	}
2985 
2986 	dmu_tx_commit(tx);
2987 
2988 	/*
2989 	 * Clear the dirty config list.
2990 	 */
2991 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
2992 		vdev_config_clean(vd);
2993 
2994 	/*
2995 	 * Now that the new config has synced transactionally,
2996 	 * let it become visible to the config cache.
2997 	 */
2998 	if (spa->spa_config_syncing != NULL) {
2999 		spa_config_set(spa, spa->spa_config_syncing);
3000 		spa->spa_config_txg = txg;
3001 		spa->spa_config_syncing = NULL;
3002 	}
3003 
3004 	/*
3005 	 * Make a stable copy of the fully synced uberblock.
3006 	 * We use this as the root for pool traversals.
3007 	 */
3008 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3009 
3010 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3011 
3012 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3013 	spa->spa_traverse_wanted = 0;
3014 	spa->spa_ubsync = spa->spa_uberblock;
3015 	rw_exit(&spa->spa_traverse_lock);
3016 
3017 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3018 
3019 	/*
3020 	 * Clean up the ZIL records for the synced txg.
3021 	 */
3022 	dsl_pool_zil_clean(dp);
3023 
3024 	/*
3025 	 * Update usable space statistics.
3026 	 */
3027 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3028 		vdev_sync_done(vd, txg);
3029 
3030 	/*
3031 	 * It had better be the case that we didn't dirty anything
3032 	 * since vdev_config_sync().
3033 	 */
3034 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3035 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3036 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3037 	ASSERT(bpl->bpl_queue == NULL);
3038 
3039 	spa_config_exit(spa, FTAG);
3040 
3041 	/*
3042 	 * If any async tasks have been requested, kick them off.
3043 	 */
3044 	spa_async_dispatch(spa);
3045 }
3046 
3047 /*
3048  * Sync all pools.  We don't want to hold the namespace lock across these
3049  * operations, so we take a reference on the spa_t and drop the lock during the
3050  * sync.
3051  */
3052 void
3053 spa_sync_allpools(void)
3054 {
3055 	spa_t *spa = NULL;
3056 	mutex_enter(&spa_namespace_lock);
3057 	while ((spa = spa_next(spa)) != NULL) {
3058 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3059 			continue;
3060 		spa_open_ref(spa, FTAG);
3061 		mutex_exit(&spa_namespace_lock);
3062 		txg_wait_synced(spa_get_dsl(spa), 0);
3063 		mutex_enter(&spa_namespace_lock);
3064 		spa_close(spa, FTAG);
3065 	}
3066 	mutex_exit(&spa_namespace_lock);
3067 }
3068 
3069 /*
3070  * ==========================================================================
3071  * Miscellaneous routines
3072  * ==========================================================================
3073  */
3074 
3075 /*
3076  * Remove all pools in the system.
3077  */
3078 void
3079 spa_evict_all(void)
3080 {
3081 	spa_t *spa;
3082 
3083 	/*
3084 	 * Remove all cached state.  All pools should be closed now,
3085 	 * so every spa in the AVL tree should be unreferenced.
3086 	 */
3087 	mutex_enter(&spa_namespace_lock);
3088 	while ((spa = spa_next(NULL)) != NULL) {
3089 		/*
3090 		 * Stop async tasks.  The async thread may need to detach
3091 		 * a device that's been replaced, which requires grabbing
3092 		 * spa_namespace_lock, so we must drop it here.
3093 		 */
3094 		spa_open_ref(spa, FTAG);
3095 		mutex_exit(&spa_namespace_lock);
3096 		spa_async_suspend(spa);
3097 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3098 		mutex_enter(&spa_namespace_lock);
3099 		spa_close(spa, FTAG);
3100 
3101 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3102 			spa_unload(spa);
3103 			spa_deactivate(spa);
3104 		}
3105 		spa_remove(spa);
3106 	}
3107 	mutex_exit(&spa_namespace_lock);
3108 }
3109 
3110 vdev_t *
3111 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3112 {
3113 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3114 }
3115 
3116 void
3117 spa_upgrade(spa_t *spa)
3118 {
3119 	spa_config_enter(spa, RW_WRITER, FTAG);
3120 
3121 	/*
3122 	 * This should only be called for a non-faulted pool, and since a
3123 	 * future version would result in an unopenable pool, this shouldn't be
3124 	 * possible.
3125 	 */
3126 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
3127 
3128 	spa->spa_uberblock.ub_version = ZFS_VERSION;
3129 	vdev_config_dirty(spa->spa_root_vdev);
3130 
3131 	spa_config_exit(spa, FTAG);
3132 
3133 	txg_wait_synced(spa_get_dsl(spa), 0);
3134 }
3135 
3136 boolean_t
3137 spa_has_spare(spa_t *spa, uint64_t guid)
3138 {
3139 	int i;
3140 	uint64_t spareguid;
3141 
3142 	for (i = 0; i < spa->spa_nspares; i++)
3143 		if (spa->spa_spares[i]->vdev_guid == guid)
3144 			return (B_TRUE);
3145 
3146 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3147 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3148 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3149 		    spareguid == guid)
3150 			return (B_TRUE);
3151 	}
3152 
3153 	return (B_FALSE);
3154 }
3155 
3156 int
3157 spa_set_props(spa_t *spa, nvlist_t *nvp)
3158 {
3159 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
3160 	    spa, nvp, 3));
3161 }
3162 
3163 int
3164 spa_get_props(spa_t *spa, nvlist_t **nvp)
3165 {
3166 	zap_cursor_t zc;
3167 	zap_attribute_t za;
3168 	objset_t *mos = spa->spa_meta_objset;
3169 	zfs_source_t src;
3170 	zfs_prop_t prop;
3171 	nvlist_t *propval;
3172 	uint64_t value;
3173 	int err;
3174 
3175 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3176 
3177 	mutex_enter(&spa->spa_props_lock);
3178 	/* If no props object, then just return empty nvlist */
3179 	if (spa->spa_pool_props_object == 0) {
3180 		mutex_exit(&spa->spa_props_lock);
3181 		return (0);
3182 	}
3183 
3184 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
3185 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
3186 	    zap_cursor_advance(&zc)) {
3187 
3188 		if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
3189 			continue;
3190 
3191 		VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3192 		switch (za.za_integer_length) {
3193 		case 8:
3194 			if (zfs_prop_default_numeric(prop) ==
3195 			    za.za_first_integer)
3196 				src = ZFS_SRC_DEFAULT;
3197 			else
3198 				src = ZFS_SRC_LOCAL;
3199 			value = za.za_first_integer;
3200 
3201 			if (prop == ZFS_PROP_BOOTFS) {
3202 				dsl_pool_t *dp;
3203 				dsl_dataset_t *ds = NULL;
3204 				char strval[MAXPATHLEN];
3205 
3206 				dp = spa_get_dsl(spa);
3207 				rw_enter(&dp->dp_config_rwlock, RW_READER);
3208 				if ((err = dsl_dataset_open_obj(dp,
3209 				    za.za_first_integer, NULL, DS_MODE_NONE,
3210 				    FTAG, &ds)) != 0) {
3211 					rw_exit(&dp->dp_config_rwlock);
3212 					break;
3213 				}
3214 				dsl_dataset_name(ds, strval);
3215 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
3216 				rw_exit(&dp->dp_config_rwlock);
3217 
3218 				VERIFY(nvlist_add_uint64(propval,
3219 				    ZFS_PROP_SOURCE, src) == 0);
3220 				VERIFY(nvlist_add_string(propval,
3221 				    ZFS_PROP_VALUE, strval) == 0);
3222 			} else {
3223 				VERIFY(nvlist_add_uint64(propval,
3224 				    ZFS_PROP_SOURCE, src) == 0);
3225 				VERIFY(nvlist_add_uint64(propval,
3226 				    ZFS_PROP_VALUE, value) == 0);
3227 			}
3228 			VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
3229 			    propval) == 0);
3230 			break;
3231 		}
3232 		nvlist_free(propval);
3233 	}
3234 	zap_cursor_fini(&zc);
3235 	mutex_exit(&spa->spa_props_lock);
3236 	if (err && err != ENOENT) {
3237 		nvlist_free(*nvp);
3238 		return (err);
3239 	}
3240 
3241 	return (0);
3242 }
3243 
3244 /*
3245  * If the bootfs property value is dsobj, clear it.
3246  */
3247 void
3248 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
3249 {
3250 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
3251 		VERIFY(zap_remove(spa->spa_meta_objset,
3252 		    spa->spa_pool_props_object,
3253 		    zpool_prop_to_name(ZFS_PROP_BOOTFS), tx) == 0);
3254 		spa->spa_bootfs = 0;
3255 	}
3256 }
3257