1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains all the routines used when modifying on-disk SPA state. 31 * This includes opening, importing, destroying, exporting a pool, and syncing a 32 * pool. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/sunddi.h> 63 #include <sys/spa_boot.h> 64 65 #include "zfs_prop.h" 66 #include "zfs_comutil.h" 67 68 int zio_taskq_threads = 8; 69 70 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 71 static boolean_t spa_has_active_shared_spare(spa_t *spa); 72 73 /* 74 * ========================================================================== 75 * SPA properties routines 76 * ========================================================================== 77 */ 78 79 /* 80 * Add a (source=src, propname=propval) list to an nvlist. 81 */ 82 static void 83 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 84 uint64_t intval, zprop_source_t src) 85 { 86 const char *propname = zpool_prop_to_name(prop); 87 nvlist_t *propval; 88 89 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 90 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 91 92 if (strval != NULL) 93 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 94 else 95 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 96 97 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 98 nvlist_free(propval); 99 } 100 101 /* 102 * Get property values from the spa configuration. 103 */ 104 static void 105 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 106 { 107 uint64_t size = spa_get_space(spa); 108 uint64_t used = spa_get_alloc(spa); 109 uint64_t cap, version; 110 zprop_source_t src = ZPROP_SRC_NONE; 111 spa_config_dirent_t *dp; 112 113 /* 114 * readonly properties 115 */ 116 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa->spa_name, 0, src); 117 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 118 spa_prop_add_list(*nvp, ZPOOL_PROP_USED, NULL, used, src); 119 spa_prop_add_list(*nvp, ZPOOL_PROP_AVAILABLE, NULL, size - used, src); 120 121 cap = (size == 0) ? 0 : (used * 100 / size); 122 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 123 124 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 125 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 126 spa->spa_root_vdev->vdev_state, src); 127 128 /* 129 * settable properties that are not stored in the pool property object. 130 */ 131 version = spa_version(spa); 132 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 133 src = ZPROP_SRC_DEFAULT; 134 else 135 src = ZPROP_SRC_LOCAL; 136 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 137 138 if (spa->spa_root != NULL) 139 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 140 0, ZPROP_SRC_LOCAL); 141 142 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 143 if (dp->scd_path == NULL) { 144 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 145 "none", 0, ZPROP_SRC_LOCAL); 146 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 147 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 148 dp->scd_path, 0, ZPROP_SRC_LOCAL); 149 } 150 } 151 } 152 153 /* 154 * Get zpool property values. 155 */ 156 int 157 spa_prop_get(spa_t *spa, nvlist_t **nvp) 158 { 159 zap_cursor_t zc; 160 zap_attribute_t za; 161 objset_t *mos = spa->spa_meta_objset; 162 int err; 163 164 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 165 166 /* 167 * Get properties from the spa config. 168 */ 169 spa_prop_get_config(spa, nvp); 170 171 mutex_enter(&spa->spa_props_lock); 172 /* If no pool property object, no more prop to get. */ 173 if (spa->spa_pool_props_object == 0) { 174 mutex_exit(&spa->spa_props_lock); 175 return (0); 176 } 177 178 /* 179 * Get properties from the MOS pool property object. 180 */ 181 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 182 (err = zap_cursor_retrieve(&zc, &za)) == 0; 183 zap_cursor_advance(&zc)) { 184 uint64_t intval = 0; 185 char *strval = NULL; 186 zprop_source_t src = ZPROP_SRC_DEFAULT; 187 zpool_prop_t prop; 188 189 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 190 continue; 191 192 switch (za.za_integer_length) { 193 case 8: 194 /* integer property */ 195 if (za.za_first_integer != 196 zpool_prop_default_numeric(prop)) 197 src = ZPROP_SRC_LOCAL; 198 199 if (prop == ZPOOL_PROP_BOOTFS) { 200 dsl_pool_t *dp; 201 dsl_dataset_t *ds = NULL; 202 203 dp = spa_get_dsl(spa); 204 rw_enter(&dp->dp_config_rwlock, RW_READER); 205 if (err = dsl_dataset_hold_obj(dp, 206 za.za_first_integer, FTAG, &ds)) { 207 rw_exit(&dp->dp_config_rwlock); 208 break; 209 } 210 211 strval = kmem_alloc( 212 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 213 KM_SLEEP); 214 dsl_dataset_name(ds, strval); 215 dsl_dataset_rele(ds, FTAG); 216 rw_exit(&dp->dp_config_rwlock); 217 } else { 218 strval = NULL; 219 intval = za.za_first_integer; 220 } 221 222 spa_prop_add_list(*nvp, prop, strval, intval, src); 223 224 if (strval != NULL) 225 kmem_free(strval, 226 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 227 228 break; 229 230 case 1: 231 /* string property */ 232 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 233 err = zap_lookup(mos, spa->spa_pool_props_object, 234 za.za_name, 1, za.za_num_integers, strval); 235 if (err) { 236 kmem_free(strval, za.za_num_integers); 237 break; 238 } 239 spa_prop_add_list(*nvp, prop, strval, 0, src); 240 kmem_free(strval, za.za_num_integers); 241 break; 242 243 default: 244 break; 245 } 246 } 247 zap_cursor_fini(&zc); 248 mutex_exit(&spa->spa_props_lock); 249 out: 250 if (err && err != ENOENT) { 251 nvlist_free(*nvp); 252 *nvp = NULL; 253 return (err); 254 } 255 256 return (0); 257 } 258 259 /* 260 * Validate the given pool properties nvlist and modify the list 261 * for the property values to be set. 262 */ 263 static int 264 spa_prop_validate(spa_t *spa, nvlist_t *props) 265 { 266 nvpair_t *elem; 267 int error = 0, reset_bootfs = 0; 268 uint64_t objnum; 269 270 elem = NULL; 271 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 272 zpool_prop_t prop; 273 char *propname, *strval; 274 uint64_t intval; 275 objset_t *os; 276 char *slash; 277 278 propname = nvpair_name(elem); 279 280 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 281 return (EINVAL); 282 283 switch (prop) { 284 case ZPOOL_PROP_VERSION: 285 error = nvpair_value_uint64(elem, &intval); 286 if (!error && 287 (intval < spa_version(spa) || intval > SPA_VERSION)) 288 error = EINVAL; 289 break; 290 291 case ZPOOL_PROP_DELEGATION: 292 case ZPOOL_PROP_AUTOREPLACE: 293 error = nvpair_value_uint64(elem, &intval); 294 if (!error && intval > 1) 295 error = EINVAL; 296 break; 297 298 case ZPOOL_PROP_BOOTFS: 299 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 300 error = ENOTSUP; 301 break; 302 } 303 304 /* 305 * Make sure the vdev config is bootable 306 */ 307 if (!vdev_is_bootable(spa->spa_root_vdev)) { 308 error = ENOTSUP; 309 break; 310 } 311 312 reset_bootfs = 1; 313 314 error = nvpair_value_string(elem, &strval); 315 316 if (!error) { 317 uint64_t compress; 318 319 if (strval == NULL || strval[0] == '\0') { 320 objnum = zpool_prop_default_numeric( 321 ZPOOL_PROP_BOOTFS); 322 break; 323 } 324 325 if (error = dmu_objset_open(strval, DMU_OST_ZFS, 326 DS_MODE_USER | DS_MODE_READONLY, &os)) 327 break; 328 329 /* We don't support gzip bootable datasets */ 330 if ((error = dsl_prop_get_integer(strval, 331 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 332 &compress, NULL)) == 0 && 333 !BOOTFS_COMPRESS_VALID(compress)) { 334 error = ENOTSUP; 335 } else { 336 objnum = dmu_objset_id(os); 337 } 338 dmu_objset_close(os); 339 } 340 break; 341 case ZPOOL_PROP_FAILUREMODE: 342 error = nvpair_value_uint64(elem, &intval); 343 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 344 intval > ZIO_FAILURE_MODE_PANIC)) 345 error = EINVAL; 346 347 /* 348 * This is a special case which only occurs when 349 * the pool has completely failed. This allows 350 * the user to change the in-core failmode property 351 * without syncing it out to disk (I/Os might 352 * currently be blocked). We do this by returning 353 * EIO to the caller (spa_prop_set) to trick it 354 * into thinking we encountered a property validation 355 * error. 356 */ 357 if (!error && spa_state(spa) == POOL_STATE_IO_FAILURE) { 358 spa->spa_failmode = intval; 359 error = EIO; 360 } 361 break; 362 363 case ZPOOL_PROP_CACHEFILE: 364 if ((error = nvpair_value_string(elem, &strval)) != 0) 365 break; 366 367 if (strval[0] == '\0') 368 break; 369 370 if (strcmp(strval, "none") == 0) 371 break; 372 373 if (strval[0] != '/') { 374 error = EINVAL; 375 break; 376 } 377 378 slash = strrchr(strval, '/'); 379 ASSERT(slash != NULL); 380 381 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 382 strcmp(slash, "/..") == 0) 383 error = EINVAL; 384 break; 385 } 386 387 if (error) 388 break; 389 } 390 391 if (!error && reset_bootfs) { 392 error = nvlist_remove(props, 393 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 394 395 if (!error) { 396 error = nvlist_add_uint64(props, 397 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 398 } 399 } 400 401 return (error); 402 } 403 404 int 405 spa_prop_set(spa_t *spa, nvlist_t *nvp) 406 { 407 int error; 408 409 if ((error = spa_prop_validate(spa, nvp)) != 0) 410 return (error); 411 412 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 413 spa, nvp, 3)); 414 } 415 416 /* 417 * If the bootfs property value is dsobj, clear it. 418 */ 419 void 420 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 421 { 422 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 423 VERIFY(zap_remove(spa->spa_meta_objset, 424 spa->spa_pool_props_object, 425 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 426 spa->spa_bootfs = 0; 427 } 428 } 429 430 /* 431 * ========================================================================== 432 * SPA state manipulation (open/create/destroy/import/export) 433 * ========================================================================== 434 */ 435 436 static int 437 spa_error_entry_compare(const void *a, const void *b) 438 { 439 spa_error_entry_t *sa = (spa_error_entry_t *)a; 440 spa_error_entry_t *sb = (spa_error_entry_t *)b; 441 int ret; 442 443 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 444 sizeof (zbookmark_t)); 445 446 if (ret < 0) 447 return (-1); 448 else if (ret > 0) 449 return (1); 450 else 451 return (0); 452 } 453 454 /* 455 * Utility function which retrieves copies of the current logs and 456 * re-initializes them in the process. 457 */ 458 void 459 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 460 { 461 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 462 463 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 464 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 465 466 avl_create(&spa->spa_errlist_scrub, 467 spa_error_entry_compare, sizeof (spa_error_entry_t), 468 offsetof(spa_error_entry_t, se_avl)); 469 avl_create(&spa->spa_errlist_last, 470 spa_error_entry_compare, sizeof (spa_error_entry_t), 471 offsetof(spa_error_entry_t, se_avl)); 472 } 473 474 /* 475 * Activate an uninitialized pool. 476 */ 477 static void 478 spa_activate(spa_t *spa) 479 { 480 int t; 481 482 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 483 484 spa->spa_state = POOL_STATE_ACTIVE; 485 486 spa->spa_normal_class = metaslab_class_create(); 487 spa->spa_log_class = metaslab_class_create(); 488 489 for (t = 0; t < ZIO_TYPES; t++) { 490 spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", 491 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 492 TASKQ_PREPOPULATE); 493 spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", 494 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 495 TASKQ_PREPOPULATE); 496 } 497 498 list_create(&spa->spa_dirty_list, sizeof (vdev_t), 499 offsetof(vdev_t, vdev_dirty_node)); 500 list_create(&spa->spa_zio_list, sizeof (zio_t), 501 offsetof(zio_t, zio_link_node)); 502 503 txg_list_create(&spa->spa_vdev_txg_list, 504 offsetof(struct vdev, vdev_txg_node)); 505 506 avl_create(&spa->spa_errlist_scrub, 507 spa_error_entry_compare, sizeof (spa_error_entry_t), 508 offsetof(spa_error_entry_t, se_avl)); 509 avl_create(&spa->spa_errlist_last, 510 spa_error_entry_compare, sizeof (spa_error_entry_t), 511 offsetof(spa_error_entry_t, se_avl)); 512 } 513 514 /* 515 * Opposite of spa_activate(). 516 */ 517 static void 518 spa_deactivate(spa_t *spa) 519 { 520 int t; 521 522 ASSERT(spa->spa_sync_on == B_FALSE); 523 ASSERT(spa->spa_dsl_pool == NULL); 524 ASSERT(spa->spa_root_vdev == NULL); 525 526 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 527 528 txg_list_destroy(&spa->spa_vdev_txg_list); 529 530 list_destroy(&spa->spa_dirty_list); 531 list_destroy(&spa->spa_zio_list); 532 533 for (t = 0; t < ZIO_TYPES; t++) { 534 taskq_destroy(spa->spa_zio_issue_taskq[t]); 535 taskq_destroy(spa->spa_zio_intr_taskq[t]); 536 spa->spa_zio_issue_taskq[t] = NULL; 537 spa->spa_zio_intr_taskq[t] = NULL; 538 } 539 540 metaslab_class_destroy(spa->spa_normal_class); 541 spa->spa_normal_class = NULL; 542 543 metaslab_class_destroy(spa->spa_log_class); 544 spa->spa_log_class = NULL; 545 546 /* 547 * If this was part of an import or the open otherwise failed, we may 548 * still have errors left in the queues. Empty them just in case. 549 */ 550 spa_errlog_drain(spa); 551 552 avl_destroy(&spa->spa_errlist_scrub); 553 avl_destroy(&spa->spa_errlist_last); 554 555 spa->spa_state = POOL_STATE_UNINITIALIZED; 556 } 557 558 /* 559 * Verify a pool configuration, and construct the vdev tree appropriately. This 560 * will create all the necessary vdevs in the appropriate layout, with each vdev 561 * in the CLOSED state. This will prep the pool before open/creation/import. 562 * All vdev validation is done by the vdev_alloc() routine. 563 */ 564 static int 565 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 566 uint_t id, int atype) 567 { 568 nvlist_t **child; 569 uint_t c, children; 570 int error; 571 572 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 573 return (error); 574 575 if ((*vdp)->vdev_ops->vdev_op_leaf) 576 return (0); 577 578 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 579 &child, &children) != 0) { 580 vdev_free(*vdp); 581 *vdp = NULL; 582 return (EINVAL); 583 } 584 585 for (c = 0; c < children; c++) { 586 vdev_t *vd; 587 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 588 atype)) != 0) { 589 vdev_free(*vdp); 590 *vdp = NULL; 591 return (error); 592 } 593 } 594 595 ASSERT(*vdp != NULL); 596 597 return (0); 598 } 599 600 /* 601 * Opposite of spa_load(). 602 */ 603 static void 604 spa_unload(spa_t *spa) 605 { 606 int i; 607 608 /* 609 * Stop async tasks. 610 */ 611 spa_async_suspend(spa); 612 613 /* 614 * Stop syncing. 615 */ 616 if (spa->spa_sync_on) { 617 txg_sync_stop(spa->spa_dsl_pool); 618 spa->spa_sync_on = B_FALSE; 619 } 620 621 /* 622 * Wait for any outstanding prefetch I/O to complete. 623 */ 624 spa_config_enter(spa, RW_WRITER, FTAG); 625 spa_config_exit(spa, FTAG); 626 627 /* 628 * Drop and purge level 2 cache 629 */ 630 spa_l2cache_drop(spa); 631 632 /* 633 * Close the dsl pool. 634 */ 635 if (spa->spa_dsl_pool) { 636 dsl_pool_close(spa->spa_dsl_pool); 637 spa->spa_dsl_pool = NULL; 638 } 639 640 /* 641 * Close all vdevs. 642 */ 643 if (spa->spa_root_vdev) 644 vdev_free(spa->spa_root_vdev); 645 ASSERT(spa->spa_root_vdev == NULL); 646 647 for (i = 0; i < spa->spa_spares.sav_count; i++) 648 vdev_free(spa->spa_spares.sav_vdevs[i]); 649 if (spa->spa_spares.sav_vdevs) { 650 kmem_free(spa->spa_spares.sav_vdevs, 651 spa->spa_spares.sav_count * sizeof (void *)); 652 spa->spa_spares.sav_vdevs = NULL; 653 } 654 if (spa->spa_spares.sav_config) { 655 nvlist_free(spa->spa_spares.sav_config); 656 spa->spa_spares.sav_config = NULL; 657 } 658 659 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 660 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 661 if (spa->spa_l2cache.sav_vdevs) { 662 kmem_free(spa->spa_l2cache.sav_vdevs, 663 spa->spa_l2cache.sav_count * sizeof (void *)); 664 spa->spa_l2cache.sav_vdevs = NULL; 665 } 666 if (spa->spa_l2cache.sav_config) { 667 nvlist_free(spa->spa_l2cache.sav_config); 668 spa->spa_l2cache.sav_config = NULL; 669 } 670 671 spa->spa_async_suspended = 0; 672 } 673 674 /* 675 * Load (or re-load) the current list of vdevs describing the active spares for 676 * this pool. When this is called, we have some form of basic information in 677 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 678 * then re-generate a more complete list including status information. 679 */ 680 static void 681 spa_load_spares(spa_t *spa) 682 { 683 nvlist_t **spares; 684 uint_t nspares; 685 int i; 686 vdev_t *vd, *tvd; 687 688 /* 689 * First, close and free any existing spare vdevs. 690 */ 691 for (i = 0; i < spa->spa_spares.sav_count; i++) { 692 vd = spa->spa_spares.sav_vdevs[i]; 693 694 /* Undo the call to spa_activate() below */ 695 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 696 B_FALSE)) != NULL && tvd->vdev_isspare) 697 spa_spare_remove(tvd); 698 vdev_close(vd); 699 vdev_free(vd); 700 } 701 702 if (spa->spa_spares.sav_vdevs) 703 kmem_free(spa->spa_spares.sav_vdevs, 704 spa->spa_spares.sav_count * sizeof (void *)); 705 706 if (spa->spa_spares.sav_config == NULL) 707 nspares = 0; 708 else 709 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 710 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 711 712 spa->spa_spares.sav_count = (int)nspares; 713 spa->spa_spares.sav_vdevs = NULL; 714 715 if (nspares == 0) 716 return; 717 718 /* 719 * Construct the array of vdevs, opening them to get status in the 720 * process. For each spare, there is potentially two different vdev_t 721 * structures associated with it: one in the list of spares (used only 722 * for basic validation purposes) and one in the active vdev 723 * configuration (if it's spared in). During this phase we open and 724 * validate each vdev on the spare list. If the vdev also exists in the 725 * active configuration, then we also mark this vdev as an active spare. 726 */ 727 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 728 KM_SLEEP); 729 for (i = 0; i < spa->spa_spares.sav_count; i++) { 730 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 731 VDEV_ALLOC_SPARE) == 0); 732 ASSERT(vd != NULL); 733 734 spa->spa_spares.sav_vdevs[i] = vd; 735 736 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 737 B_FALSE)) != NULL) { 738 if (!tvd->vdev_isspare) 739 spa_spare_add(tvd); 740 741 /* 742 * We only mark the spare active if we were successfully 743 * able to load the vdev. Otherwise, importing a pool 744 * with a bad active spare would result in strange 745 * behavior, because multiple pool would think the spare 746 * is actively in use. 747 * 748 * There is a vulnerability here to an equally bizarre 749 * circumstance, where a dead active spare is later 750 * brought back to life (onlined or otherwise). Given 751 * the rarity of this scenario, and the extra complexity 752 * it adds, we ignore the possibility. 753 */ 754 if (!vdev_is_dead(tvd)) 755 spa_spare_activate(tvd); 756 } 757 758 if (vdev_open(vd) != 0) 759 continue; 760 761 vd->vdev_top = vd; 762 if (vdev_validate_aux(vd) == 0) 763 spa_spare_add(vd); 764 } 765 766 /* 767 * Recompute the stashed list of spares, with status information 768 * this time. 769 */ 770 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 771 DATA_TYPE_NVLIST_ARRAY) == 0); 772 773 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 774 KM_SLEEP); 775 for (i = 0; i < spa->spa_spares.sav_count; i++) 776 spares[i] = vdev_config_generate(spa, 777 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 778 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 779 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 780 for (i = 0; i < spa->spa_spares.sav_count; i++) 781 nvlist_free(spares[i]); 782 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 783 } 784 785 /* 786 * Load (or re-load) the current list of vdevs describing the active l2cache for 787 * this pool. When this is called, we have some form of basic information in 788 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 789 * then re-generate a more complete list including status information. 790 * Devices which are already active have their details maintained, and are 791 * not re-opened. 792 */ 793 static void 794 spa_load_l2cache(spa_t *spa) 795 { 796 nvlist_t **l2cache; 797 uint_t nl2cache; 798 int i, j, oldnvdevs; 799 uint64_t guid, size; 800 vdev_t *vd, **oldvdevs, **newvdevs; 801 spa_aux_vdev_t *sav = &spa->spa_l2cache; 802 803 if (sav->sav_config != NULL) { 804 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 805 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 806 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 807 } else { 808 nl2cache = 0; 809 } 810 811 oldvdevs = sav->sav_vdevs; 812 oldnvdevs = sav->sav_count; 813 sav->sav_vdevs = NULL; 814 sav->sav_count = 0; 815 816 /* 817 * Process new nvlist of vdevs. 818 */ 819 for (i = 0; i < nl2cache; i++) { 820 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 821 &guid) == 0); 822 823 newvdevs[i] = NULL; 824 for (j = 0; j < oldnvdevs; j++) { 825 vd = oldvdevs[j]; 826 if (vd != NULL && guid == vd->vdev_guid) { 827 /* 828 * Retain previous vdev for add/remove ops. 829 */ 830 newvdevs[i] = vd; 831 oldvdevs[j] = NULL; 832 break; 833 } 834 } 835 836 if (newvdevs[i] == NULL) { 837 /* 838 * Create new vdev 839 */ 840 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 841 VDEV_ALLOC_L2CACHE) == 0); 842 ASSERT(vd != NULL); 843 newvdevs[i] = vd; 844 845 /* 846 * Commit this vdev as an l2cache device, 847 * even if it fails to open. 848 */ 849 spa_l2cache_add(vd); 850 851 vd->vdev_top = vd; 852 vd->vdev_aux = sav; 853 854 spa_l2cache_activate(vd); 855 856 if (vdev_open(vd) != 0) 857 continue; 858 859 (void) vdev_validate_aux(vd); 860 861 if (!vdev_is_dead(vd)) { 862 size = vdev_get_rsize(vd); 863 l2arc_add_vdev(spa, vd, 864 VDEV_LABEL_START_SIZE, 865 size - VDEV_LABEL_START_SIZE); 866 } 867 } 868 } 869 870 /* 871 * Purge vdevs that were dropped 872 */ 873 for (i = 0; i < oldnvdevs; i++) { 874 uint64_t pool; 875 876 vd = oldvdevs[i]; 877 if (vd != NULL) { 878 if (spa_mode & FWRITE && 879 spa_l2cache_exists(vd->vdev_guid, &pool) && 880 pool != 0ULL && 881 l2arc_vdev_present(vd)) { 882 l2arc_remove_vdev(vd); 883 } 884 (void) vdev_close(vd); 885 spa_l2cache_remove(vd); 886 } 887 } 888 889 if (oldvdevs) 890 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 891 892 if (sav->sav_config == NULL) 893 goto out; 894 895 sav->sav_vdevs = newvdevs; 896 sav->sav_count = (int)nl2cache; 897 898 /* 899 * Recompute the stashed list of l2cache devices, with status 900 * information this time. 901 */ 902 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 903 DATA_TYPE_NVLIST_ARRAY) == 0); 904 905 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 906 for (i = 0; i < sav->sav_count; i++) 907 l2cache[i] = vdev_config_generate(spa, 908 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 909 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 910 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 911 out: 912 for (i = 0; i < sav->sav_count; i++) 913 nvlist_free(l2cache[i]); 914 if (sav->sav_count) 915 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 916 } 917 918 static int 919 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 920 { 921 dmu_buf_t *db; 922 char *packed = NULL; 923 size_t nvsize = 0; 924 int error; 925 *value = NULL; 926 927 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 928 nvsize = *(uint64_t *)db->db_data; 929 dmu_buf_rele(db, FTAG); 930 931 packed = kmem_alloc(nvsize, KM_SLEEP); 932 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); 933 if (error == 0) 934 error = nvlist_unpack(packed, nvsize, value, 0); 935 kmem_free(packed, nvsize); 936 937 return (error); 938 } 939 940 /* 941 * Checks to see if the given vdev could not be opened, in which case we post a 942 * sysevent to notify the autoreplace code that the device has been removed. 943 */ 944 static void 945 spa_check_removed(vdev_t *vd) 946 { 947 int c; 948 949 for (c = 0; c < vd->vdev_children; c++) 950 spa_check_removed(vd->vdev_child[c]); 951 952 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 953 zfs_post_autoreplace(vd->vdev_spa, vd); 954 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 955 } 956 } 957 958 /* 959 * Check for missing log devices 960 */ 961 int 962 spa_check_logs(spa_t *spa) 963 { 964 switch (spa->spa_log_state) { 965 case SPA_LOG_MISSING: 966 /* need to recheck in case slog has been restored */ 967 case SPA_LOG_UNKNOWN: 968 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 969 DS_FIND_CHILDREN)) { 970 spa->spa_log_state = SPA_LOG_MISSING; 971 return (1); 972 } 973 break; 974 975 case SPA_LOG_CLEAR: 976 (void) dmu_objset_find(spa->spa_name, zil_clear_log_chain, NULL, 977 DS_FIND_CHILDREN); 978 break; 979 } 980 spa->spa_log_state = SPA_LOG_GOOD; 981 return (0); 982 } 983 984 /* 985 * Load an existing storage pool, using the pool's builtin spa_config as a 986 * source of configuration information. 987 */ 988 static int 989 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 990 { 991 int error = 0; 992 nvlist_t *nvroot = NULL; 993 vdev_t *rvd; 994 uberblock_t *ub = &spa->spa_uberblock; 995 uint64_t config_cache_txg = spa->spa_config_txg; 996 uint64_t pool_guid; 997 uint64_t version; 998 zio_t *zio; 999 uint64_t autoreplace = 0; 1000 char *ereport = FM_EREPORT_ZFS_POOL; 1001 1002 spa->spa_load_state = state; 1003 1004 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 1005 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 1006 error = EINVAL; 1007 goto out; 1008 } 1009 1010 /* 1011 * Versioning wasn't explicitly added to the label until later, so if 1012 * it's not present treat it as the initial version. 1013 */ 1014 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 1015 version = SPA_VERSION_INITIAL; 1016 1017 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1018 &spa->spa_config_txg); 1019 1020 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1021 spa_guid_exists(pool_guid, 0)) { 1022 error = EEXIST; 1023 goto out; 1024 } 1025 1026 spa->spa_load_guid = pool_guid; 1027 1028 /* 1029 * Parse the configuration into a vdev tree. We explicitly set the 1030 * value that will be returned by spa_version() since parsing the 1031 * configuration requires knowing the version number. 1032 */ 1033 spa_config_enter(spa, RW_WRITER, FTAG); 1034 spa->spa_ubsync.ub_version = version; 1035 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 1036 spa_config_exit(spa, FTAG); 1037 1038 if (error != 0) 1039 goto out; 1040 1041 ASSERT(spa->spa_root_vdev == rvd); 1042 ASSERT(spa_guid(spa) == pool_guid); 1043 1044 /* 1045 * Try to open all vdevs, loading each label in the process. 1046 */ 1047 error = vdev_open(rvd); 1048 if (error != 0) 1049 goto out; 1050 1051 /* 1052 * Validate the labels for all leaf vdevs. We need to grab the config 1053 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD 1054 * flag. 1055 */ 1056 spa_config_enter(spa, RW_READER, FTAG); 1057 error = vdev_validate(rvd); 1058 spa_config_exit(spa, FTAG); 1059 1060 if (error != 0) 1061 goto out; 1062 1063 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1064 error = ENXIO; 1065 goto out; 1066 } 1067 1068 /* 1069 * Find the best uberblock. 1070 */ 1071 bzero(ub, sizeof (uberblock_t)); 1072 1073 zio = zio_root(spa, NULL, NULL, 1074 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1075 vdev_uberblock_load(zio, rvd, ub); 1076 error = zio_wait(zio); 1077 1078 /* 1079 * If we weren't able to find a single valid uberblock, return failure. 1080 */ 1081 if (ub->ub_txg == 0) { 1082 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1083 VDEV_AUX_CORRUPT_DATA); 1084 error = ENXIO; 1085 goto out; 1086 } 1087 1088 /* 1089 * If the pool is newer than the code, we can't open it. 1090 */ 1091 if (ub->ub_version > SPA_VERSION) { 1092 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1093 VDEV_AUX_VERSION_NEWER); 1094 error = ENOTSUP; 1095 goto out; 1096 } 1097 1098 /* 1099 * If the vdev guid sum doesn't match the uberblock, we have an 1100 * incomplete configuration. 1101 */ 1102 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 1103 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1104 VDEV_AUX_BAD_GUID_SUM); 1105 error = ENXIO; 1106 goto out; 1107 } 1108 1109 /* 1110 * Initialize internal SPA structures. 1111 */ 1112 spa->spa_state = POOL_STATE_ACTIVE; 1113 spa->spa_ubsync = spa->spa_uberblock; 1114 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 1115 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1116 if (error) { 1117 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1118 VDEV_AUX_CORRUPT_DATA); 1119 goto out; 1120 } 1121 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1122 1123 if (zap_lookup(spa->spa_meta_objset, 1124 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1125 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 1126 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1127 VDEV_AUX_CORRUPT_DATA); 1128 error = EIO; 1129 goto out; 1130 } 1131 1132 if (!mosconfig) { 1133 nvlist_t *newconfig; 1134 uint64_t hostid; 1135 1136 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 1137 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1138 VDEV_AUX_CORRUPT_DATA); 1139 error = EIO; 1140 goto out; 1141 } 1142 1143 if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, 1144 &hostid) == 0) { 1145 char *hostname; 1146 unsigned long myhostid = 0; 1147 1148 VERIFY(nvlist_lookup_string(newconfig, 1149 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1150 1151 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1152 if (hostid != 0 && myhostid != 0 && 1153 (unsigned long)hostid != myhostid) { 1154 cmn_err(CE_WARN, "pool '%s' could not be " 1155 "loaded as it was last accessed by " 1156 "another system (host: %s hostid: 0x%lx). " 1157 "See: http://www.sun.com/msg/ZFS-8000-EY", 1158 spa->spa_name, hostname, 1159 (unsigned long)hostid); 1160 error = EBADF; 1161 goto out; 1162 } 1163 } 1164 1165 spa_config_set(spa, newconfig); 1166 spa_unload(spa); 1167 spa_deactivate(spa); 1168 spa_activate(spa); 1169 1170 return (spa_load(spa, newconfig, state, B_TRUE)); 1171 } 1172 1173 if (zap_lookup(spa->spa_meta_objset, 1174 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1175 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 1176 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1177 VDEV_AUX_CORRUPT_DATA); 1178 error = EIO; 1179 goto out; 1180 } 1181 1182 /* 1183 * Load the bit that tells us to use the new accounting function 1184 * (raid-z deflation). If we have an older pool, this will not 1185 * be present. 1186 */ 1187 error = zap_lookup(spa->spa_meta_objset, 1188 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1189 sizeof (uint64_t), 1, &spa->spa_deflate); 1190 if (error != 0 && error != ENOENT) { 1191 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1192 VDEV_AUX_CORRUPT_DATA); 1193 error = EIO; 1194 goto out; 1195 } 1196 1197 /* 1198 * Load the persistent error log. If we have an older pool, this will 1199 * not be present. 1200 */ 1201 error = zap_lookup(spa->spa_meta_objset, 1202 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 1203 sizeof (uint64_t), 1, &spa->spa_errlog_last); 1204 if (error != 0 && error != ENOENT) { 1205 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1206 VDEV_AUX_CORRUPT_DATA); 1207 error = EIO; 1208 goto out; 1209 } 1210 1211 error = zap_lookup(spa->spa_meta_objset, 1212 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 1213 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 1214 if (error != 0 && error != ENOENT) { 1215 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1216 VDEV_AUX_CORRUPT_DATA); 1217 error = EIO; 1218 goto out; 1219 } 1220 1221 /* 1222 * Load the history object. If we have an older pool, this 1223 * will not be present. 1224 */ 1225 error = zap_lookup(spa->spa_meta_objset, 1226 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 1227 sizeof (uint64_t), 1, &spa->spa_history); 1228 if (error != 0 && error != ENOENT) { 1229 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1230 VDEV_AUX_CORRUPT_DATA); 1231 error = EIO; 1232 goto out; 1233 } 1234 1235 /* 1236 * Load any hot spares for this pool. 1237 */ 1238 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1239 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares.sav_object); 1240 if (error != 0 && error != ENOENT) { 1241 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1242 VDEV_AUX_CORRUPT_DATA); 1243 error = EIO; 1244 goto out; 1245 } 1246 if (error == 0) { 1247 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1248 if (load_nvlist(spa, spa->spa_spares.sav_object, 1249 &spa->spa_spares.sav_config) != 0) { 1250 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1251 VDEV_AUX_CORRUPT_DATA); 1252 error = EIO; 1253 goto out; 1254 } 1255 1256 spa_config_enter(spa, RW_WRITER, FTAG); 1257 spa_load_spares(spa); 1258 spa_config_exit(spa, FTAG); 1259 } 1260 1261 /* 1262 * Load any level 2 ARC devices for this pool. 1263 */ 1264 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1265 DMU_POOL_L2CACHE, sizeof (uint64_t), 1, 1266 &spa->spa_l2cache.sav_object); 1267 if (error != 0 && error != ENOENT) { 1268 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1269 VDEV_AUX_CORRUPT_DATA); 1270 error = EIO; 1271 goto out; 1272 } 1273 if (error == 0) { 1274 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1275 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1276 &spa->spa_l2cache.sav_config) != 0) { 1277 vdev_set_state(rvd, B_TRUE, 1278 VDEV_STATE_CANT_OPEN, 1279 VDEV_AUX_CORRUPT_DATA); 1280 error = EIO; 1281 goto out; 1282 } 1283 1284 spa_config_enter(spa, RW_WRITER, FTAG); 1285 spa_load_l2cache(spa); 1286 spa_config_exit(spa, FTAG); 1287 } 1288 1289 if (spa_check_logs(spa)) { 1290 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1291 VDEV_AUX_BAD_LOG); 1292 error = ENXIO; 1293 ereport = FM_EREPORT_ZFS_LOG_REPLAY; 1294 goto out; 1295 } 1296 1297 1298 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1299 1300 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1301 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 1302 1303 if (error && error != ENOENT) { 1304 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 1305 VDEV_AUX_CORRUPT_DATA); 1306 error = EIO; 1307 goto out; 1308 } 1309 1310 if (error == 0) { 1311 (void) zap_lookup(spa->spa_meta_objset, 1312 spa->spa_pool_props_object, 1313 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 1314 sizeof (uint64_t), 1, &spa->spa_bootfs); 1315 (void) zap_lookup(spa->spa_meta_objset, 1316 spa->spa_pool_props_object, 1317 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 1318 sizeof (uint64_t), 1, &autoreplace); 1319 (void) zap_lookup(spa->spa_meta_objset, 1320 spa->spa_pool_props_object, 1321 zpool_prop_to_name(ZPOOL_PROP_DELEGATION), 1322 sizeof (uint64_t), 1, &spa->spa_delegation); 1323 (void) zap_lookup(spa->spa_meta_objset, 1324 spa->spa_pool_props_object, 1325 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE), 1326 sizeof (uint64_t), 1, &spa->spa_failmode); 1327 } 1328 1329 /* 1330 * If the 'autoreplace' property is set, then post a resource notifying 1331 * the ZFS DE that it should not issue any faults for unopenable 1332 * devices. We also iterate over the vdevs, and post a sysevent for any 1333 * unopenable vdevs so that the normal autoreplace handler can take 1334 * over. 1335 */ 1336 if (autoreplace && state != SPA_LOAD_TRYIMPORT) 1337 spa_check_removed(spa->spa_root_vdev); 1338 1339 /* 1340 * Load the vdev state for all toplevel vdevs. 1341 */ 1342 vdev_load(rvd); 1343 1344 /* 1345 * Propagate the leaf DTLs we just loaded all the way up the tree. 1346 */ 1347 spa_config_enter(spa, RW_WRITER, FTAG); 1348 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1349 spa_config_exit(spa, FTAG); 1350 1351 /* 1352 * Check the state of the root vdev. If it can't be opened, it 1353 * indicates one or more toplevel vdevs are faulted. 1354 */ 1355 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 1356 error = ENXIO; 1357 goto out; 1358 } 1359 1360 if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { 1361 dmu_tx_t *tx; 1362 int need_update = B_FALSE; 1363 int c; 1364 1365 /* 1366 * Claim log blocks that haven't been committed yet. 1367 * This must all happen in a single txg. 1368 */ 1369 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 1370 spa_first_txg(spa)); 1371 (void) dmu_objset_find(spa->spa_name, 1372 zil_claim, tx, DS_FIND_CHILDREN); 1373 dmu_tx_commit(tx); 1374 1375 spa->spa_sync_on = B_TRUE; 1376 txg_sync_start(spa->spa_dsl_pool); 1377 1378 /* 1379 * Wait for all claims to sync. 1380 */ 1381 txg_wait_synced(spa->spa_dsl_pool, 0); 1382 1383 /* 1384 * If the config cache is stale, or we have uninitialized 1385 * metaslabs (see spa_vdev_add()), then update the config. 1386 */ 1387 if (config_cache_txg != spa->spa_config_txg || 1388 state == SPA_LOAD_IMPORT) 1389 need_update = B_TRUE; 1390 1391 for (c = 0; c < rvd->vdev_children; c++) 1392 if (rvd->vdev_child[c]->vdev_ms_array == 0) 1393 need_update = B_TRUE; 1394 1395 /* 1396 * Update the config cache asychronously in case we're the 1397 * root pool, in which case the config cache isn't writable yet. 1398 */ 1399 if (need_update) 1400 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 1401 } 1402 1403 error = 0; 1404 out: 1405 spa->spa_minref = refcount_count(&spa->spa_refcount); 1406 if (error && error != EBADF) 1407 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1408 spa->spa_load_state = SPA_LOAD_NONE; 1409 spa->spa_ena = 0; 1410 1411 return (error); 1412 } 1413 1414 /* 1415 * Pool Open/Import 1416 * 1417 * The import case is identical to an open except that the configuration is sent 1418 * down from userland, instead of grabbed from the configuration cache. For the 1419 * case of an open, the pool configuration will exist in the 1420 * POOL_STATE_UNINITIALIZED state. 1421 * 1422 * The stats information (gen/count/ustats) is used to gather vdev statistics at 1423 * the same time open the pool, without having to keep around the spa_t in some 1424 * ambiguous state. 1425 */ 1426 static int 1427 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 1428 { 1429 spa_t *spa; 1430 int error; 1431 int locked = B_FALSE; 1432 1433 *spapp = NULL; 1434 1435 /* 1436 * As disgusting as this is, we need to support recursive calls to this 1437 * function because dsl_dir_open() is called during spa_load(), and ends 1438 * up calling spa_open() again. The real fix is to figure out how to 1439 * avoid dsl_dir_open() calling this in the first place. 1440 */ 1441 if (mutex_owner(&spa_namespace_lock) != curthread) { 1442 mutex_enter(&spa_namespace_lock); 1443 locked = B_TRUE; 1444 } 1445 1446 if ((spa = spa_lookup(pool)) == NULL) { 1447 if (locked) 1448 mutex_exit(&spa_namespace_lock); 1449 return (ENOENT); 1450 } 1451 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 1452 1453 spa_activate(spa); 1454 1455 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 1456 1457 if (error == EBADF) { 1458 /* 1459 * If vdev_validate() returns failure (indicated by 1460 * EBADF), it indicates that one of the vdevs indicates 1461 * that the pool has been exported or destroyed. If 1462 * this is the case, the config cache is out of sync and 1463 * we should remove the pool from the namespace. 1464 */ 1465 spa_unload(spa); 1466 spa_deactivate(spa); 1467 spa_config_sync(spa, B_TRUE, B_TRUE); 1468 spa_remove(spa); 1469 if (locked) 1470 mutex_exit(&spa_namespace_lock); 1471 return (ENOENT); 1472 } 1473 1474 if (error) { 1475 /* 1476 * We can't open the pool, but we still have useful 1477 * information: the state of each vdev after the 1478 * attempted vdev_open(). Return this to the user. 1479 */ 1480 if (config != NULL && spa->spa_root_vdev != NULL) { 1481 spa_config_enter(spa, RW_READER, FTAG); 1482 *config = spa_config_generate(spa, NULL, -1ULL, 1483 B_TRUE); 1484 spa_config_exit(spa, FTAG); 1485 } 1486 spa_unload(spa); 1487 spa_deactivate(spa); 1488 spa->spa_last_open_failed = B_TRUE; 1489 if (locked) 1490 mutex_exit(&spa_namespace_lock); 1491 *spapp = NULL; 1492 return (error); 1493 } else { 1494 spa->spa_last_open_failed = B_FALSE; 1495 } 1496 } 1497 1498 spa_open_ref(spa, tag); 1499 1500 if (locked) 1501 mutex_exit(&spa_namespace_lock); 1502 1503 *spapp = spa; 1504 1505 if (config != NULL) { 1506 spa_config_enter(spa, RW_READER, FTAG); 1507 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1508 spa_config_exit(spa, FTAG); 1509 } 1510 1511 return (0); 1512 } 1513 1514 int 1515 spa_open(const char *name, spa_t **spapp, void *tag) 1516 { 1517 return (spa_open_common(name, spapp, tag, NULL)); 1518 } 1519 1520 /* 1521 * Lookup the given spa_t, incrementing the inject count in the process, 1522 * preventing it from being exported or destroyed. 1523 */ 1524 spa_t * 1525 spa_inject_addref(char *name) 1526 { 1527 spa_t *spa; 1528 1529 mutex_enter(&spa_namespace_lock); 1530 if ((spa = spa_lookup(name)) == NULL) { 1531 mutex_exit(&spa_namespace_lock); 1532 return (NULL); 1533 } 1534 spa->spa_inject_ref++; 1535 mutex_exit(&spa_namespace_lock); 1536 1537 return (spa); 1538 } 1539 1540 void 1541 spa_inject_delref(spa_t *spa) 1542 { 1543 mutex_enter(&spa_namespace_lock); 1544 spa->spa_inject_ref--; 1545 mutex_exit(&spa_namespace_lock); 1546 } 1547 1548 /* 1549 * Add spares device information to the nvlist. 1550 */ 1551 static void 1552 spa_add_spares(spa_t *spa, nvlist_t *config) 1553 { 1554 nvlist_t **spares; 1555 uint_t i, nspares; 1556 nvlist_t *nvroot; 1557 uint64_t guid; 1558 vdev_stat_t *vs; 1559 uint_t vsc; 1560 uint64_t pool; 1561 1562 if (spa->spa_spares.sav_count == 0) 1563 return; 1564 1565 VERIFY(nvlist_lookup_nvlist(config, 1566 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1567 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1568 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1569 if (nspares != 0) { 1570 VERIFY(nvlist_add_nvlist_array(nvroot, 1571 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1572 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1573 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1574 1575 /* 1576 * Go through and find any spares which have since been 1577 * repurposed as an active spare. If this is the case, update 1578 * their status appropriately. 1579 */ 1580 for (i = 0; i < nspares; i++) { 1581 VERIFY(nvlist_lookup_uint64(spares[i], 1582 ZPOOL_CONFIG_GUID, &guid) == 0); 1583 if (spa_spare_exists(guid, &pool, NULL) && 1584 pool != 0ULL) { 1585 VERIFY(nvlist_lookup_uint64_array( 1586 spares[i], ZPOOL_CONFIG_STATS, 1587 (uint64_t **)&vs, &vsc) == 0); 1588 vs->vs_state = VDEV_STATE_CANT_OPEN; 1589 vs->vs_aux = VDEV_AUX_SPARED; 1590 } 1591 } 1592 } 1593 } 1594 1595 /* 1596 * Add l2cache device information to the nvlist, including vdev stats. 1597 */ 1598 static void 1599 spa_add_l2cache(spa_t *spa, nvlist_t *config) 1600 { 1601 nvlist_t **l2cache; 1602 uint_t i, j, nl2cache; 1603 nvlist_t *nvroot; 1604 uint64_t guid; 1605 vdev_t *vd; 1606 vdev_stat_t *vs; 1607 uint_t vsc; 1608 1609 if (spa->spa_l2cache.sav_count == 0) 1610 return; 1611 1612 spa_config_enter(spa, RW_READER, FTAG); 1613 1614 VERIFY(nvlist_lookup_nvlist(config, 1615 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 1616 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 1617 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1618 if (nl2cache != 0) { 1619 VERIFY(nvlist_add_nvlist_array(nvroot, 1620 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1621 VERIFY(nvlist_lookup_nvlist_array(nvroot, 1622 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1623 1624 /* 1625 * Update level 2 cache device stats. 1626 */ 1627 1628 for (i = 0; i < nl2cache; i++) { 1629 VERIFY(nvlist_lookup_uint64(l2cache[i], 1630 ZPOOL_CONFIG_GUID, &guid) == 0); 1631 1632 vd = NULL; 1633 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 1634 if (guid == 1635 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 1636 vd = spa->spa_l2cache.sav_vdevs[j]; 1637 break; 1638 } 1639 } 1640 ASSERT(vd != NULL); 1641 1642 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 1643 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 1644 vdev_get_stats(vd, vs); 1645 } 1646 } 1647 1648 spa_config_exit(spa, FTAG); 1649 } 1650 1651 int 1652 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1653 { 1654 int error; 1655 spa_t *spa; 1656 1657 *config = NULL; 1658 error = spa_open_common(name, &spa, FTAG, config); 1659 1660 if (spa && *config != NULL) { 1661 VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, 1662 spa_get_errlog_size(spa)) == 0); 1663 1664 spa_add_spares(spa, *config); 1665 spa_add_l2cache(spa, *config); 1666 } 1667 1668 /* 1669 * We want to get the alternate root even for faulted pools, so we cheat 1670 * and call spa_lookup() directly. 1671 */ 1672 if (altroot) { 1673 if (spa == NULL) { 1674 mutex_enter(&spa_namespace_lock); 1675 spa = spa_lookup(name); 1676 if (spa) 1677 spa_altroot(spa, altroot, buflen); 1678 else 1679 altroot[0] = '\0'; 1680 spa = NULL; 1681 mutex_exit(&spa_namespace_lock); 1682 } else { 1683 spa_altroot(spa, altroot, buflen); 1684 } 1685 } 1686 1687 if (spa != NULL) 1688 spa_close(spa, FTAG); 1689 1690 return (error); 1691 } 1692 1693 /* 1694 * Validate that the auxiliary device array is well formed. We must have an 1695 * array of nvlists, each which describes a valid leaf vdev. If this is an 1696 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 1697 * specified, as long as they are well-formed. 1698 */ 1699 static int 1700 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 1701 spa_aux_vdev_t *sav, const char *config, uint64_t version, 1702 vdev_labeltype_t label) 1703 { 1704 nvlist_t **dev; 1705 uint_t i, ndev; 1706 vdev_t *vd; 1707 int error; 1708 1709 /* 1710 * It's acceptable to have no devs specified. 1711 */ 1712 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 1713 return (0); 1714 1715 if (ndev == 0) 1716 return (EINVAL); 1717 1718 /* 1719 * Make sure the pool is formatted with a version that supports this 1720 * device type. 1721 */ 1722 if (spa_version(spa) < version) 1723 return (ENOTSUP); 1724 1725 /* 1726 * Set the pending device list so we correctly handle device in-use 1727 * checking. 1728 */ 1729 sav->sav_pending = dev; 1730 sav->sav_npending = ndev; 1731 1732 for (i = 0; i < ndev; i++) { 1733 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 1734 mode)) != 0) 1735 goto out; 1736 1737 if (!vd->vdev_ops->vdev_op_leaf) { 1738 vdev_free(vd); 1739 error = EINVAL; 1740 goto out; 1741 } 1742 1743 /* 1744 * The L2ARC currently only supports disk devices. 1745 */ 1746 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 1747 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 1748 error = ENOTBLK; 1749 goto out; 1750 } 1751 1752 vd->vdev_top = vd; 1753 1754 if ((error = vdev_open(vd)) == 0 && 1755 (error = vdev_label_init(vd, crtxg, label)) == 0) { 1756 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 1757 vd->vdev_guid) == 0); 1758 } 1759 1760 vdev_free(vd); 1761 1762 if (error && 1763 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 1764 goto out; 1765 else 1766 error = 0; 1767 } 1768 1769 out: 1770 sav->sav_pending = NULL; 1771 sav->sav_npending = 0; 1772 return (error); 1773 } 1774 1775 static int 1776 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1777 { 1778 int error; 1779 1780 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1781 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 1782 VDEV_LABEL_SPARE)) != 0) { 1783 return (error); 1784 } 1785 1786 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 1787 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 1788 VDEV_LABEL_L2CACHE)); 1789 } 1790 1791 static void 1792 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 1793 const char *config) 1794 { 1795 int i; 1796 1797 if (sav->sav_config != NULL) { 1798 nvlist_t **olddevs; 1799 uint_t oldndevs; 1800 nvlist_t **newdevs; 1801 1802 /* 1803 * Generate new dev list by concatentating with the 1804 * current dev list. 1805 */ 1806 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 1807 &olddevs, &oldndevs) == 0); 1808 1809 newdevs = kmem_alloc(sizeof (void *) * 1810 (ndevs + oldndevs), KM_SLEEP); 1811 for (i = 0; i < oldndevs; i++) 1812 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 1813 KM_SLEEP) == 0); 1814 for (i = 0; i < ndevs; i++) 1815 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 1816 KM_SLEEP) == 0); 1817 1818 VERIFY(nvlist_remove(sav->sav_config, config, 1819 DATA_TYPE_NVLIST_ARRAY) == 0); 1820 1821 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1822 config, newdevs, ndevs + oldndevs) == 0); 1823 for (i = 0; i < oldndevs + ndevs; i++) 1824 nvlist_free(newdevs[i]); 1825 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 1826 } else { 1827 /* 1828 * Generate a new dev list. 1829 */ 1830 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 1831 KM_SLEEP) == 0); 1832 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 1833 devs, ndevs) == 0); 1834 } 1835 } 1836 1837 /* 1838 * Stop and drop level 2 ARC devices 1839 */ 1840 void 1841 spa_l2cache_drop(spa_t *spa) 1842 { 1843 vdev_t *vd; 1844 int i; 1845 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1846 1847 for (i = 0; i < sav->sav_count; i++) { 1848 uint64_t pool; 1849 1850 vd = sav->sav_vdevs[i]; 1851 ASSERT(vd != NULL); 1852 1853 if (spa_mode & FWRITE && 1854 spa_l2cache_exists(vd->vdev_guid, &pool) && pool != 0ULL && 1855 l2arc_vdev_present(vd)) { 1856 l2arc_remove_vdev(vd); 1857 } 1858 if (vd->vdev_isl2cache) 1859 spa_l2cache_remove(vd); 1860 vdev_clear_stats(vd); 1861 (void) vdev_close(vd); 1862 } 1863 } 1864 1865 /* 1866 * Pool Creation 1867 */ 1868 int 1869 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 1870 const char *history_str, nvlist_t *zplprops) 1871 { 1872 spa_t *spa; 1873 char *altroot = NULL; 1874 vdev_t *rvd; 1875 dsl_pool_t *dp; 1876 dmu_tx_t *tx; 1877 int c, error = 0; 1878 uint64_t txg = TXG_INITIAL; 1879 nvlist_t **spares, **l2cache; 1880 uint_t nspares, nl2cache; 1881 uint64_t version; 1882 1883 /* 1884 * If this pool already exists, return failure. 1885 */ 1886 mutex_enter(&spa_namespace_lock); 1887 if (spa_lookup(pool) != NULL) { 1888 mutex_exit(&spa_namespace_lock); 1889 return (EEXIST); 1890 } 1891 1892 /* 1893 * Allocate a new spa_t structure. 1894 */ 1895 (void) nvlist_lookup_string(props, 1896 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 1897 spa = spa_add(pool, altroot); 1898 spa_activate(spa); 1899 1900 spa->spa_uberblock.ub_txg = txg - 1; 1901 1902 if (props && (error = spa_prop_validate(spa, props))) { 1903 spa_unload(spa); 1904 spa_deactivate(spa); 1905 spa_remove(spa); 1906 mutex_exit(&spa_namespace_lock); 1907 return (error); 1908 } 1909 1910 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 1911 &version) != 0) 1912 version = SPA_VERSION; 1913 ASSERT(version <= SPA_VERSION); 1914 spa->spa_uberblock.ub_version = version; 1915 spa->spa_ubsync = spa->spa_uberblock; 1916 1917 /* 1918 * Create the root vdev. 1919 */ 1920 spa_config_enter(spa, RW_WRITER, FTAG); 1921 1922 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 1923 1924 ASSERT(error != 0 || rvd != NULL); 1925 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 1926 1927 if (error == 0 && !zfs_allocatable_devs(nvroot)) 1928 error = EINVAL; 1929 1930 if (error == 0 && 1931 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 1932 (error = spa_validate_aux(spa, nvroot, txg, 1933 VDEV_ALLOC_ADD)) == 0) { 1934 for (c = 0; c < rvd->vdev_children; c++) 1935 vdev_init(rvd->vdev_child[c], txg); 1936 vdev_config_dirty(rvd); 1937 } 1938 1939 spa_config_exit(spa, FTAG); 1940 1941 if (error != 0) { 1942 spa_unload(spa); 1943 spa_deactivate(spa); 1944 spa_remove(spa); 1945 mutex_exit(&spa_namespace_lock); 1946 return (error); 1947 } 1948 1949 /* 1950 * Get the list of spares, if specified. 1951 */ 1952 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1953 &spares, &nspares) == 0) { 1954 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 1955 KM_SLEEP) == 0); 1956 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1957 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1958 spa_config_enter(spa, RW_WRITER, FTAG); 1959 spa_load_spares(spa); 1960 spa_config_exit(spa, FTAG); 1961 spa->spa_spares.sav_sync = B_TRUE; 1962 } 1963 1964 /* 1965 * Get the list of level 2 cache devices, if specified. 1966 */ 1967 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 1968 &l2cache, &nl2cache) == 0) { 1969 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 1970 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1971 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 1972 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 1973 spa_config_enter(spa, RW_WRITER, FTAG); 1974 spa_load_l2cache(spa); 1975 spa_config_exit(spa, FTAG); 1976 spa->spa_l2cache.sav_sync = B_TRUE; 1977 } 1978 1979 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 1980 spa->spa_meta_objset = dp->dp_meta_objset; 1981 1982 tx = dmu_tx_create_assigned(dp, txg); 1983 1984 /* 1985 * Create the pool config object. 1986 */ 1987 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 1988 DMU_OT_PACKED_NVLIST, 1 << 14, 1989 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 1990 1991 if (zap_add(spa->spa_meta_objset, 1992 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1993 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 1994 cmn_err(CE_PANIC, "failed to add pool config"); 1995 } 1996 1997 /* Newly created pools with the right version are always deflated. */ 1998 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 1999 spa->spa_deflate = TRUE; 2000 if (zap_add(spa->spa_meta_objset, 2001 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2002 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2003 cmn_err(CE_PANIC, "failed to add deflate"); 2004 } 2005 } 2006 2007 /* 2008 * Create the deferred-free bplist object. Turn off compression 2009 * because sync-to-convergence takes longer if the blocksize 2010 * keeps changing. 2011 */ 2012 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 2013 1 << 14, tx); 2014 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 2015 ZIO_COMPRESS_OFF, tx); 2016 2017 if (zap_add(spa->spa_meta_objset, 2018 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2019 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 2020 cmn_err(CE_PANIC, "failed to add bplist"); 2021 } 2022 2023 /* 2024 * Create the pool's history object. 2025 */ 2026 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2027 spa_history_create_obj(spa, tx); 2028 2029 /* 2030 * Set pool properties. 2031 */ 2032 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2033 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2034 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2035 if (props) 2036 spa_sync_props(spa, props, CRED(), tx); 2037 2038 dmu_tx_commit(tx); 2039 2040 spa->spa_sync_on = B_TRUE; 2041 txg_sync_start(spa->spa_dsl_pool); 2042 2043 /* 2044 * We explicitly wait for the first transaction to complete so that our 2045 * bean counters are appropriately updated. 2046 */ 2047 txg_wait_synced(spa->spa_dsl_pool, txg); 2048 2049 spa_config_sync(spa, B_FALSE, B_TRUE); 2050 2051 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2052 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2053 2054 mutex_exit(&spa_namespace_lock); 2055 2056 spa->spa_minref = refcount_count(&spa->spa_refcount); 2057 2058 return (0); 2059 } 2060 2061 /* 2062 * Import the given pool into the system. We set up the necessary spa_t and 2063 * then call spa_load() to do the dirty work. 2064 */ 2065 static int 2066 spa_import_common(const char *pool, nvlist_t *config, nvlist_t *props, 2067 boolean_t isroot, boolean_t allowfaulted) 2068 { 2069 spa_t *spa; 2070 char *altroot = NULL; 2071 int error, loaderr; 2072 nvlist_t *nvroot; 2073 nvlist_t **spares, **l2cache; 2074 uint_t nspares, nl2cache; 2075 2076 /* 2077 * If a pool with this name exists, return failure. 2078 */ 2079 mutex_enter(&spa_namespace_lock); 2080 if (spa_lookup(pool) != NULL) { 2081 mutex_exit(&spa_namespace_lock); 2082 return (EEXIST); 2083 } 2084 2085 /* 2086 * Create and initialize the spa structure. 2087 */ 2088 (void) nvlist_lookup_string(props, 2089 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2090 spa = spa_add(pool, altroot); 2091 spa_activate(spa); 2092 2093 if (allowfaulted) 2094 spa->spa_import_faulted = B_TRUE; 2095 spa->spa_is_root = isroot; 2096 2097 /* 2098 * Pass off the heavy lifting to spa_load(). 2099 * Pass TRUE for mosconfig (unless this is a root pool) because 2100 * the user-supplied config is actually the one to trust when 2101 * doing an import. 2102 */ 2103 loaderr = error = spa_load(spa, config, SPA_LOAD_IMPORT, !isroot); 2104 2105 spa_config_enter(spa, RW_WRITER, FTAG); 2106 /* 2107 * Toss any existing sparelist, as it doesn't have any validity anymore, 2108 * and conflicts with spa_has_spare(). 2109 */ 2110 if (!isroot && spa->spa_spares.sav_config) { 2111 nvlist_free(spa->spa_spares.sav_config); 2112 spa->spa_spares.sav_config = NULL; 2113 spa_load_spares(spa); 2114 } 2115 if (!isroot && spa->spa_l2cache.sav_config) { 2116 nvlist_free(spa->spa_l2cache.sav_config); 2117 spa->spa_l2cache.sav_config = NULL; 2118 spa_load_l2cache(spa); 2119 } 2120 2121 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2122 &nvroot) == 0); 2123 if (error == 0) 2124 error = spa_validate_aux(spa, nvroot, -1ULL, VDEV_ALLOC_SPARE); 2125 if (error == 0) 2126 error = spa_validate_aux(spa, nvroot, -1ULL, 2127 VDEV_ALLOC_L2CACHE); 2128 spa_config_exit(spa, FTAG); 2129 2130 if (error != 0 || (props && (error = spa_prop_set(spa, props)))) { 2131 if (loaderr != 0 && loaderr != EINVAL && allowfaulted) { 2132 /* 2133 * If we failed to load the pool, but 'allowfaulted' is 2134 * set, then manually set the config as if the config 2135 * passed in was specified in the cache file. 2136 */ 2137 error = 0; 2138 spa->spa_import_faulted = B_FALSE; 2139 if (spa->spa_config == NULL) { 2140 spa_config_enter(spa, RW_READER, FTAG); 2141 spa->spa_config = spa_config_generate(spa, 2142 NULL, -1ULL, B_TRUE); 2143 spa_config_exit(spa, FTAG); 2144 } 2145 spa_unload(spa); 2146 spa_deactivate(spa); 2147 spa_config_sync(spa, B_FALSE, B_TRUE); 2148 } else { 2149 spa_unload(spa); 2150 spa_deactivate(spa); 2151 spa_remove(spa); 2152 } 2153 mutex_exit(&spa_namespace_lock); 2154 return (error); 2155 } 2156 2157 /* 2158 * Override any spares and level 2 cache devices as specified by 2159 * the user, as these may have correct device names/devids, etc. 2160 */ 2161 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2162 &spares, &nspares) == 0) { 2163 if (spa->spa_spares.sav_config) 2164 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 2165 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 2166 else 2167 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 2168 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2169 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2170 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2171 spa_config_enter(spa, RW_WRITER, FTAG); 2172 spa_load_spares(spa); 2173 spa_config_exit(spa, FTAG); 2174 spa->spa_spares.sav_sync = B_TRUE; 2175 } 2176 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2177 &l2cache, &nl2cache) == 0) { 2178 if (spa->spa_l2cache.sav_config) 2179 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 2180 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 2181 else 2182 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2183 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2184 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2185 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2186 spa_config_enter(spa, RW_WRITER, FTAG); 2187 spa_load_l2cache(spa); 2188 spa_config_exit(spa, FTAG); 2189 spa->spa_l2cache.sav_sync = B_TRUE; 2190 } 2191 2192 if (spa_mode & FWRITE) { 2193 /* 2194 * Update the config cache to include the newly-imported pool. 2195 */ 2196 spa_config_update_common(spa, SPA_CONFIG_UPDATE_POOL, isroot); 2197 } 2198 2199 spa->spa_import_faulted = B_FALSE; 2200 mutex_exit(&spa_namespace_lock); 2201 2202 return (0); 2203 } 2204 2205 #ifdef _KERNEL 2206 /* 2207 * Build a "root" vdev for a top level vdev read in from a rootpool 2208 * device label. 2209 */ 2210 static void 2211 spa_build_rootpool_config(nvlist_t *config) 2212 { 2213 nvlist_t *nvtop, *nvroot; 2214 uint64_t pgid; 2215 2216 /* 2217 * Add this top-level vdev to the child array. 2218 */ 2219 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtop) 2220 == 0); 2221 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pgid) 2222 == 0); 2223 2224 /* 2225 * Put this pool's top-level vdevs into a root vdev. 2226 */ 2227 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2228 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) 2229 == 0); 2230 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2231 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2232 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2233 &nvtop, 1) == 0); 2234 2235 /* 2236 * Replace the existing vdev_tree with the new root vdev in 2237 * this pool's configuration (remove the old, add the new). 2238 */ 2239 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2240 nvlist_free(nvroot); 2241 } 2242 2243 /* 2244 * Get the root pool information from the root disk, then import the root pool 2245 * during the system boot up time. 2246 */ 2247 extern nvlist_t *vdev_disk_read_rootlabel(char *, char *); 2248 2249 int 2250 spa_check_rootconf(char *devpath, char *devid, nvlist_t **bestconf, 2251 uint64_t *besttxg) 2252 { 2253 nvlist_t *config; 2254 uint64_t txg; 2255 2256 if ((config = vdev_disk_read_rootlabel(devpath, devid)) == NULL) 2257 return (-1); 2258 2259 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 2260 2261 if (bestconf != NULL) 2262 *bestconf = config; 2263 *besttxg = txg; 2264 return (0); 2265 } 2266 2267 boolean_t 2268 spa_rootdev_validate(nvlist_t *nv) 2269 { 2270 uint64_t ival; 2271 2272 if (nvlist_lookup_uint64(nv, ZPOOL_CONFIG_OFFLINE, &ival) == 0 || 2273 nvlist_lookup_uint64(nv, ZPOOL_CONFIG_FAULTED, &ival) == 0 || 2274 nvlist_lookup_uint64(nv, ZPOOL_CONFIG_REMOVED, &ival) == 0) 2275 return (B_FALSE); 2276 2277 return (B_TRUE); 2278 } 2279 2280 2281 /* 2282 * Given the boot device's physical path or devid, check if the device 2283 * is in a valid state. If so, return the configuration from the vdev 2284 * label. 2285 */ 2286 int 2287 spa_get_rootconf(char *devpath, char *devid, nvlist_t **bestconf) 2288 { 2289 nvlist_t *conf = NULL; 2290 uint64_t txg = 0; 2291 nvlist_t *nvtop, **child; 2292 char *type; 2293 char *bootpath = NULL; 2294 uint_t children, c; 2295 char *tmp; 2296 2297 if (devpath && ((tmp = strchr(devpath, ' ')) != NULL)) 2298 *tmp = '\0'; 2299 if (spa_check_rootconf(devpath, devid, &conf, &txg) < 0) { 2300 cmn_err(CE_NOTE, "error reading device label"); 2301 nvlist_free(conf); 2302 return (EINVAL); 2303 } 2304 if (txg == 0) { 2305 cmn_err(CE_NOTE, "this device is detached"); 2306 nvlist_free(conf); 2307 return (EINVAL); 2308 } 2309 2310 VERIFY(nvlist_lookup_nvlist(conf, ZPOOL_CONFIG_VDEV_TREE, 2311 &nvtop) == 0); 2312 VERIFY(nvlist_lookup_string(nvtop, ZPOOL_CONFIG_TYPE, &type) == 0); 2313 2314 if (strcmp(type, VDEV_TYPE_DISK) == 0) { 2315 if (spa_rootdev_validate(nvtop)) { 2316 goto out; 2317 } else { 2318 nvlist_free(conf); 2319 return (EINVAL); 2320 } 2321 } 2322 2323 ASSERT(strcmp(type, VDEV_TYPE_MIRROR) == 0); 2324 2325 VERIFY(nvlist_lookup_nvlist_array(nvtop, ZPOOL_CONFIG_CHILDREN, 2326 &child, &children) == 0); 2327 2328 /* 2329 * Go thru vdevs in the mirror to see if the given device 2330 * has the most recent txg. Only the device with the most 2331 * recent txg has valid information and should be booted. 2332 */ 2333 for (c = 0; c < children; c++) { 2334 char *cdevid, *cpath; 2335 uint64_t tmptxg; 2336 2337 if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_PHYS_PATH, 2338 &cpath) != 0) 2339 return (EINVAL); 2340 if (nvlist_lookup_string(child[c], ZPOOL_CONFIG_DEVID, 2341 &cdevid) != 0) 2342 return (EINVAL); 2343 if ((spa_check_rootconf(cpath, cdevid, NULL, 2344 &tmptxg) == 0) && (tmptxg > txg)) { 2345 txg = tmptxg; 2346 VERIFY(nvlist_lookup_string(child[c], 2347 ZPOOL_CONFIG_PATH, &bootpath) == 0); 2348 } 2349 } 2350 2351 /* Does the best device match the one we've booted from? */ 2352 if (bootpath) { 2353 cmn_err(CE_NOTE, "try booting from '%s'", bootpath); 2354 return (EINVAL); 2355 } 2356 out: 2357 *bestconf = conf; 2358 return (0); 2359 } 2360 2361 /* 2362 * Import a root pool. 2363 * 2364 * For x86. devpath_list will consist of devid and/or physpath name of 2365 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2366 * The GRUB "findroot" command will return the vdev we should boot. 2367 * 2368 * For Sparc, devpath_list consists the physpath name of the booting device 2369 * no matter the rootpool is a single device pool or a mirrored pool. 2370 * e.g. 2371 * "/pci@1f,0/ide@d/disk@0,0:a" 2372 */ 2373 int 2374 spa_import_rootpool(char *devpath, char *devid) 2375 { 2376 nvlist_t *conf = NULL; 2377 char *pname; 2378 int error; 2379 2380 /* 2381 * Get the vdev pathname and configuation from the most 2382 * recently updated vdev (highest txg). 2383 */ 2384 if (error = spa_get_rootconf(devpath, devid, &conf)) 2385 goto msg_out; 2386 2387 /* 2388 * Add type "root" vdev to the config. 2389 */ 2390 spa_build_rootpool_config(conf); 2391 2392 VERIFY(nvlist_lookup_string(conf, ZPOOL_CONFIG_POOL_NAME, &pname) == 0); 2393 2394 /* 2395 * We specify 'allowfaulted' for this to be treated like spa_open() 2396 * instead of spa_import(). This prevents us from marking vdevs as 2397 * persistently unavailable, and generates FMA ereports as if it were a 2398 * pool open, not import. 2399 */ 2400 error = spa_import_common(pname, conf, NULL, B_TRUE, B_TRUE); 2401 if (error == EEXIST) 2402 error = 0; 2403 2404 nvlist_free(conf); 2405 return (error); 2406 2407 msg_out: 2408 cmn_err(CE_NOTE, "\n" 2409 " *************************************************** \n" 2410 " * This device is not bootable! * \n" 2411 " * It is either offlined or detached or faulted. * \n" 2412 " * Please try to boot from a different device. * \n" 2413 " *************************************************** "); 2414 2415 return (error); 2416 } 2417 #endif 2418 2419 /* 2420 * Import a non-root pool into the system. 2421 */ 2422 int 2423 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 2424 { 2425 return (spa_import_common(pool, config, props, B_FALSE, B_FALSE)); 2426 } 2427 2428 int 2429 spa_import_faulted(const char *pool, nvlist_t *config, nvlist_t *props) 2430 { 2431 return (spa_import_common(pool, config, props, B_FALSE, B_TRUE)); 2432 } 2433 2434 2435 /* 2436 * This (illegal) pool name is used when temporarily importing a spa_t in order 2437 * to get the vdev stats associated with the imported devices. 2438 */ 2439 #define TRYIMPORT_NAME "$import" 2440 2441 nvlist_t * 2442 spa_tryimport(nvlist_t *tryconfig) 2443 { 2444 nvlist_t *config = NULL; 2445 char *poolname; 2446 spa_t *spa; 2447 uint64_t state; 2448 2449 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 2450 return (NULL); 2451 2452 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 2453 return (NULL); 2454 2455 /* 2456 * Create and initialize the spa structure. 2457 */ 2458 mutex_enter(&spa_namespace_lock); 2459 spa = spa_add(TRYIMPORT_NAME, NULL); 2460 spa_activate(spa); 2461 2462 /* 2463 * Pass off the heavy lifting to spa_load(). 2464 * Pass TRUE for mosconfig because the user-supplied config 2465 * is actually the one to trust when doing an import. 2466 */ 2467 (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 2468 2469 /* 2470 * If 'tryconfig' was at least parsable, return the current config. 2471 */ 2472 if (spa->spa_root_vdev != NULL) { 2473 spa_config_enter(spa, RW_READER, FTAG); 2474 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2475 spa_config_exit(spa, FTAG); 2476 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 2477 poolname) == 0); 2478 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 2479 state) == 0); 2480 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 2481 spa->spa_uberblock.ub_timestamp) == 0); 2482 2483 /* 2484 * If the bootfs property exists on this pool then we 2485 * copy it out so that external consumers can tell which 2486 * pools are bootable. 2487 */ 2488 if (spa->spa_bootfs) { 2489 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2490 2491 /* 2492 * We have to play games with the name since the 2493 * pool was opened as TRYIMPORT_NAME. 2494 */ 2495 if (dsl_dsobj_to_dsname(spa->spa_name, 2496 spa->spa_bootfs, tmpname) == 0) { 2497 char *cp; 2498 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 2499 2500 cp = strchr(tmpname, '/'); 2501 if (cp == NULL) { 2502 (void) strlcpy(dsname, tmpname, 2503 MAXPATHLEN); 2504 } else { 2505 (void) snprintf(dsname, MAXPATHLEN, 2506 "%s/%s", poolname, ++cp); 2507 } 2508 VERIFY(nvlist_add_string(config, 2509 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 2510 kmem_free(dsname, MAXPATHLEN); 2511 } 2512 kmem_free(tmpname, MAXPATHLEN); 2513 } 2514 2515 /* 2516 * Add the list of hot spares and level 2 cache devices. 2517 */ 2518 spa_add_spares(spa, config); 2519 spa_add_l2cache(spa, config); 2520 } 2521 2522 spa_unload(spa); 2523 spa_deactivate(spa); 2524 spa_remove(spa); 2525 mutex_exit(&spa_namespace_lock); 2526 2527 return (config); 2528 } 2529 2530 /* 2531 * Pool export/destroy 2532 * 2533 * The act of destroying or exporting a pool is very simple. We make sure there 2534 * is no more pending I/O and any references to the pool are gone. Then, we 2535 * update the pool state and sync all the labels to disk, removing the 2536 * configuration from the cache afterwards. 2537 */ 2538 static int 2539 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 2540 boolean_t force) 2541 { 2542 spa_t *spa; 2543 2544 if (oldconfig) 2545 *oldconfig = NULL; 2546 2547 if (!(spa_mode & FWRITE)) 2548 return (EROFS); 2549 2550 mutex_enter(&spa_namespace_lock); 2551 if ((spa = spa_lookup(pool)) == NULL) { 2552 mutex_exit(&spa_namespace_lock); 2553 return (ENOENT); 2554 } 2555 2556 /* 2557 * Put a hold on the pool, drop the namespace lock, stop async tasks, 2558 * reacquire the namespace lock, and see if we can export. 2559 */ 2560 spa_open_ref(spa, FTAG); 2561 mutex_exit(&spa_namespace_lock); 2562 spa_async_suspend(spa); 2563 mutex_enter(&spa_namespace_lock); 2564 spa_close(spa, FTAG); 2565 2566 /* 2567 * The pool will be in core if it's openable, 2568 * in which case we can modify its state. 2569 */ 2570 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 2571 /* 2572 * Objsets may be open only because they're dirty, so we 2573 * have to force it to sync before checking spa_refcnt. 2574 */ 2575 txg_wait_synced(spa->spa_dsl_pool, 0); 2576 2577 /* 2578 * A pool cannot be exported or destroyed if there are active 2579 * references. If we are resetting a pool, allow references by 2580 * fault injection handlers. 2581 */ 2582 if (!spa_refcount_zero(spa) || 2583 (spa->spa_inject_ref != 0 && 2584 new_state != POOL_STATE_UNINITIALIZED)) { 2585 spa_async_resume(spa); 2586 mutex_exit(&spa_namespace_lock); 2587 return (EBUSY); 2588 } 2589 2590 /* 2591 * A pool cannot be exported if it has an active shared spare. 2592 * This is to prevent other pools stealing the active spare 2593 * from an exported pool. At user's own will, such pool can 2594 * be forcedly exported. 2595 */ 2596 if (!force && new_state == POOL_STATE_EXPORTED && 2597 spa_has_active_shared_spare(spa)) { 2598 spa_async_resume(spa); 2599 mutex_exit(&spa_namespace_lock); 2600 return (EXDEV); 2601 } 2602 2603 /* 2604 * We want this to be reflected on every label, 2605 * so mark them all dirty. spa_unload() will do the 2606 * final sync that pushes these changes out. 2607 */ 2608 if (new_state != POOL_STATE_UNINITIALIZED) { 2609 spa_config_enter(spa, RW_WRITER, FTAG); 2610 spa->spa_state = new_state; 2611 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 2612 vdev_config_dirty(spa->spa_root_vdev); 2613 spa_config_exit(spa, FTAG); 2614 } 2615 } 2616 2617 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 2618 2619 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 2620 spa_unload(spa); 2621 spa_deactivate(spa); 2622 } 2623 2624 if (oldconfig && spa->spa_config) 2625 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 2626 2627 if (new_state != POOL_STATE_UNINITIALIZED) { 2628 spa_config_sync(spa, B_TRUE, B_TRUE); 2629 spa_remove(spa); 2630 } 2631 mutex_exit(&spa_namespace_lock); 2632 2633 return (0); 2634 } 2635 2636 /* 2637 * Destroy a storage pool. 2638 */ 2639 int 2640 spa_destroy(char *pool) 2641 { 2642 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, B_FALSE)); 2643 } 2644 2645 /* 2646 * Export a storage pool. 2647 */ 2648 int 2649 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force) 2650 { 2651 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, force)); 2652 } 2653 2654 /* 2655 * Similar to spa_export(), this unloads the spa_t without actually removing it 2656 * from the namespace in any way. 2657 */ 2658 int 2659 spa_reset(char *pool) 2660 { 2661 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 2662 B_FALSE)); 2663 } 2664 2665 /* 2666 * ========================================================================== 2667 * Device manipulation 2668 * ========================================================================== 2669 */ 2670 2671 /* 2672 * Add a device to a storage pool. 2673 */ 2674 int 2675 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 2676 { 2677 uint64_t txg; 2678 int c, error; 2679 vdev_t *rvd = spa->spa_root_vdev; 2680 vdev_t *vd, *tvd; 2681 nvlist_t **spares, **l2cache; 2682 uint_t nspares, nl2cache; 2683 2684 txg = spa_vdev_enter(spa); 2685 2686 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 2687 VDEV_ALLOC_ADD)) != 0) 2688 return (spa_vdev_exit(spa, NULL, txg, error)); 2689 2690 spa->spa_pending_vdev = vd; 2691 2692 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 2693 &nspares) != 0) 2694 nspares = 0; 2695 2696 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 2697 &nl2cache) != 0) 2698 nl2cache = 0; 2699 2700 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) { 2701 spa->spa_pending_vdev = NULL; 2702 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 2703 } 2704 2705 if (vd->vdev_children != 0) { 2706 if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { 2707 spa->spa_pending_vdev = NULL; 2708 return (spa_vdev_exit(spa, vd, txg, error)); 2709 } 2710 } 2711 2712 /* 2713 * We must validate the spares and l2cache devices after checking the 2714 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 2715 */ 2716 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) { 2717 spa->spa_pending_vdev = NULL; 2718 return (spa_vdev_exit(spa, vd, txg, error)); 2719 } 2720 2721 spa->spa_pending_vdev = NULL; 2722 2723 /* 2724 * Transfer each new top-level vdev from vd to rvd. 2725 */ 2726 for (c = 0; c < vd->vdev_children; c++) { 2727 tvd = vd->vdev_child[c]; 2728 vdev_remove_child(vd, tvd); 2729 tvd->vdev_id = rvd->vdev_children; 2730 vdev_add_child(rvd, tvd); 2731 vdev_config_dirty(tvd); 2732 } 2733 2734 if (nspares != 0) { 2735 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 2736 ZPOOL_CONFIG_SPARES); 2737 spa_load_spares(spa); 2738 spa->spa_spares.sav_sync = B_TRUE; 2739 } 2740 2741 if (nl2cache != 0) { 2742 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 2743 ZPOOL_CONFIG_L2CACHE); 2744 spa_load_l2cache(spa); 2745 spa->spa_l2cache.sav_sync = B_TRUE; 2746 } 2747 2748 /* 2749 * We have to be careful when adding new vdevs to an existing pool. 2750 * If other threads start allocating from these vdevs before we 2751 * sync the config cache, and we lose power, then upon reboot we may 2752 * fail to open the pool because there are DVAs that the config cache 2753 * can't translate. Therefore, we first add the vdevs without 2754 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 2755 * and then let spa_config_update() initialize the new metaslabs. 2756 * 2757 * spa_load() checks for added-but-not-initialized vdevs, so that 2758 * if we lose power at any point in this sequence, the remaining 2759 * steps will be completed the next time we load the pool. 2760 */ 2761 (void) spa_vdev_exit(spa, vd, txg, 0); 2762 2763 mutex_enter(&spa_namespace_lock); 2764 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2765 mutex_exit(&spa_namespace_lock); 2766 2767 return (0); 2768 } 2769 2770 /* 2771 * Attach a device to a mirror. The arguments are the path to any device 2772 * in the mirror, and the nvroot for the new device. If the path specifies 2773 * a device that is not mirrored, we automatically insert the mirror vdev. 2774 * 2775 * If 'replacing' is specified, the new device is intended to replace the 2776 * existing device; in this case the two devices are made into their own 2777 * mirror using the 'replacing' vdev, which is functionally identical to 2778 * the mirror vdev (it actually reuses all the same ops) but has a few 2779 * extra rules: you can't attach to it after it's been created, and upon 2780 * completion of resilvering, the first disk (the one being replaced) 2781 * is automatically detached. 2782 */ 2783 int 2784 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 2785 { 2786 uint64_t txg, open_txg; 2787 int error; 2788 vdev_t *rvd = spa->spa_root_vdev; 2789 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 2790 vdev_ops_t *pvops; 2791 int is_log; 2792 2793 txg = spa_vdev_enter(spa); 2794 2795 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 2796 2797 if (oldvd == NULL) 2798 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 2799 2800 if (!oldvd->vdev_ops->vdev_op_leaf) 2801 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2802 2803 pvd = oldvd->vdev_parent; 2804 2805 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 2806 VDEV_ALLOC_ADD)) != 0) 2807 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 2808 2809 if (newrootvd->vdev_children != 1) 2810 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 2811 2812 newvd = newrootvd->vdev_child[0]; 2813 2814 if (!newvd->vdev_ops->vdev_op_leaf) 2815 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 2816 2817 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 2818 return (spa_vdev_exit(spa, newrootvd, txg, error)); 2819 2820 /* 2821 * Spares can't replace logs 2822 */ 2823 is_log = oldvd->vdev_islog; 2824 if (is_log && newvd->vdev_isspare) 2825 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2826 2827 if (!replacing) { 2828 /* 2829 * For attach, the only allowable parent is a mirror or the root 2830 * vdev. 2831 */ 2832 if (pvd->vdev_ops != &vdev_mirror_ops && 2833 pvd->vdev_ops != &vdev_root_ops) 2834 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2835 2836 pvops = &vdev_mirror_ops; 2837 } else { 2838 /* 2839 * Active hot spares can only be replaced by inactive hot 2840 * spares. 2841 */ 2842 if (pvd->vdev_ops == &vdev_spare_ops && 2843 pvd->vdev_child[1] == oldvd && 2844 !spa_has_spare(spa, newvd->vdev_guid)) 2845 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2846 2847 /* 2848 * If the source is a hot spare, and the parent isn't already a 2849 * spare, then we want to create a new hot spare. Otherwise, we 2850 * want to create a replacing vdev. The user is not allowed to 2851 * attach to a spared vdev child unless the 'isspare' state is 2852 * the same (spare replaces spare, non-spare replaces 2853 * non-spare). 2854 */ 2855 if (pvd->vdev_ops == &vdev_replacing_ops) 2856 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2857 else if (pvd->vdev_ops == &vdev_spare_ops && 2858 newvd->vdev_isspare != oldvd->vdev_isspare) 2859 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 2860 else if (pvd->vdev_ops != &vdev_spare_ops && 2861 newvd->vdev_isspare) 2862 pvops = &vdev_spare_ops; 2863 else 2864 pvops = &vdev_replacing_ops; 2865 } 2866 2867 /* 2868 * Compare the new device size with the replaceable/attachable 2869 * device size. 2870 */ 2871 if (newvd->vdev_psize < vdev_get_rsize(oldvd)) 2872 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 2873 2874 /* 2875 * The new device cannot have a higher alignment requirement 2876 * than the top-level vdev. 2877 */ 2878 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 2879 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 2880 2881 /* 2882 * If this is an in-place replacement, update oldvd's path and devid 2883 * to make it distinguishable from newvd, and unopenable from now on. 2884 */ 2885 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 2886 spa_strfree(oldvd->vdev_path); 2887 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 2888 KM_SLEEP); 2889 (void) sprintf(oldvd->vdev_path, "%s/%s", 2890 newvd->vdev_path, "old"); 2891 if (oldvd->vdev_devid != NULL) { 2892 spa_strfree(oldvd->vdev_devid); 2893 oldvd->vdev_devid = NULL; 2894 } 2895 } 2896 2897 /* 2898 * If the parent is not a mirror, or if we're replacing, insert the new 2899 * mirror/replacing/spare vdev above oldvd. 2900 */ 2901 if (pvd->vdev_ops != pvops) 2902 pvd = vdev_add_parent(oldvd, pvops); 2903 2904 ASSERT(pvd->vdev_top->vdev_parent == rvd); 2905 ASSERT(pvd->vdev_ops == pvops); 2906 ASSERT(oldvd->vdev_parent == pvd); 2907 2908 /* 2909 * Extract the new device from its root and add it to pvd. 2910 */ 2911 vdev_remove_child(newrootvd, newvd); 2912 newvd->vdev_id = pvd->vdev_children; 2913 vdev_add_child(pvd, newvd); 2914 2915 /* 2916 * If newvd is smaller than oldvd, but larger than its rsize, 2917 * the addition of newvd may have decreased our parent's asize. 2918 */ 2919 pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); 2920 2921 tvd = newvd->vdev_top; 2922 ASSERT(pvd->vdev_top == tvd); 2923 ASSERT(tvd->vdev_parent == rvd); 2924 2925 vdev_config_dirty(tvd); 2926 2927 /* 2928 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 2929 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 2930 */ 2931 open_txg = txg + TXG_CONCURRENT_STATES - 1; 2932 2933 mutex_enter(&newvd->vdev_dtl_lock); 2934 space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, 2935 open_txg - TXG_INITIAL + 1); 2936 mutex_exit(&newvd->vdev_dtl_lock); 2937 2938 if (newvd->vdev_isspare) 2939 spa_spare_activate(newvd); 2940 2941 /* 2942 * Mark newvd's DTL dirty in this txg. 2943 */ 2944 vdev_dirty(tvd, VDD_DTL, newvd, txg); 2945 2946 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 2947 2948 /* 2949 * Kick off a resilver to update newvd. 2950 */ 2951 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 2952 2953 return (0); 2954 } 2955 2956 /* 2957 * Detach a device from a mirror or replacing vdev. 2958 * If 'replace_done' is specified, only detach if the parent 2959 * is a replacing vdev. 2960 */ 2961 int 2962 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) 2963 { 2964 uint64_t txg; 2965 int c, t, error; 2966 vdev_t *rvd = spa->spa_root_vdev; 2967 vdev_t *vd, *pvd, *cvd, *tvd; 2968 boolean_t unspare = B_FALSE; 2969 uint64_t unspare_guid; 2970 size_t len; 2971 2972 txg = spa_vdev_enter(spa); 2973 2974 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 2975 2976 if (vd == NULL) 2977 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 2978 2979 if (!vd->vdev_ops->vdev_op_leaf) 2980 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2981 2982 pvd = vd->vdev_parent; 2983 2984 /* 2985 * If replace_done is specified, only remove this device if it's 2986 * the first child of a replacing vdev. For the 'spare' vdev, either 2987 * disk can be removed. 2988 */ 2989 if (replace_done) { 2990 if (pvd->vdev_ops == &vdev_replacing_ops) { 2991 if (vd->vdev_id != 0) 2992 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2993 } else if (pvd->vdev_ops != &vdev_spare_ops) { 2994 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2995 } 2996 } 2997 2998 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 2999 spa_version(spa) >= SPA_VERSION_SPARES); 3000 3001 /* 3002 * Only mirror, replacing, and spare vdevs support detach. 3003 */ 3004 if (pvd->vdev_ops != &vdev_replacing_ops && 3005 pvd->vdev_ops != &vdev_mirror_ops && 3006 pvd->vdev_ops != &vdev_spare_ops) 3007 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3008 3009 /* 3010 * If there's only one replica, you can't detach it. 3011 */ 3012 if (pvd->vdev_children <= 1) 3013 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3014 3015 /* 3016 * If all siblings have non-empty DTLs, this device may have the only 3017 * valid copy of the data, which means we cannot safely detach it. 3018 * 3019 * XXX -- as in the vdev_offline() case, we really want a more 3020 * precise DTL check. 3021 */ 3022 for (c = 0; c < pvd->vdev_children; c++) { 3023 uint64_t dirty; 3024 3025 cvd = pvd->vdev_child[c]; 3026 if (cvd == vd) 3027 continue; 3028 if (vdev_is_dead(cvd)) 3029 continue; 3030 mutex_enter(&cvd->vdev_dtl_lock); 3031 dirty = cvd->vdev_dtl_map.sm_space | 3032 cvd->vdev_dtl_scrub.sm_space; 3033 mutex_exit(&cvd->vdev_dtl_lock); 3034 if (!dirty) 3035 break; 3036 } 3037 3038 /* 3039 * If we are a replacing or spare vdev, then we can always detach the 3040 * latter child, as that is how one cancels the operation. 3041 */ 3042 if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && 3043 c == pvd->vdev_children) 3044 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3045 3046 /* 3047 * If we are detaching the second disk from a replacing vdev, then 3048 * check to see if we changed the original vdev's path to have "/old" 3049 * at the end in spa_vdev_attach(). If so, undo that change now. 3050 */ 3051 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3052 pvd->vdev_child[0]->vdev_path != NULL && 3053 pvd->vdev_child[1]->vdev_path != NULL) { 3054 ASSERT(pvd->vdev_child[1] == vd); 3055 cvd = pvd->vdev_child[0]; 3056 len = strlen(vd->vdev_path); 3057 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3058 strcmp(cvd->vdev_path + len, "/old") == 0) { 3059 spa_strfree(cvd->vdev_path); 3060 cvd->vdev_path = spa_strdup(vd->vdev_path); 3061 } 3062 } 3063 3064 /* 3065 * If we are detaching the original disk from a spare, then it implies 3066 * that the spare should become a real disk, and be removed from the 3067 * active spare list for the pool. 3068 */ 3069 if (pvd->vdev_ops == &vdev_spare_ops && 3070 vd->vdev_id == 0) 3071 unspare = B_TRUE; 3072 3073 /* 3074 * Erase the disk labels so the disk can be used for other things. 3075 * This must be done after all other error cases are handled, 3076 * but before we disembowel vd (so we can still do I/O to it). 3077 * But if we can't do it, don't treat the error as fatal -- 3078 * it may be that the unwritability of the disk is the reason 3079 * it's being detached! 3080 */ 3081 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3082 3083 /* 3084 * Remove vd from its parent and compact the parent's children. 3085 */ 3086 vdev_remove_child(pvd, vd); 3087 vdev_compact_children(pvd); 3088 3089 /* 3090 * Remember one of the remaining children so we can get tvd below. 3091 */ 3092 cvd = pvd->vdev_child[0]; 3093 3094 /* 3095 * If we need to remove the remaining child from the list of hot spares, 3096 * do it now, marking the vdev as no longer a spare in the process. We 3097 * must do this before vdev_remove_parent(), because that can change the 3098 * GUID if it creates a new toplevel GUID. 3099 */ 3100 if (unspare) { 3101 ASSERT(cvd->vdev_isspare); 3102 spa_spare_remove(cvd); 3103 unspare_guid = cvd->vdev_guid; 3104 } 3105 3106 /* 3107 * If the parent mirror/replacing vdev only has one child, 3108 * the parent is no longer needed. Remove it from the tree. 3109 */ 3110 if (pvd->vdev_children == 1) 3111 vdev_remove_parent(cvd); 3112 3113 /* 3114 * We don't set tvd until now because the parent we just removed 3115 * may have been the previous top-level vdev. 3116 */ 3117 tvd = cvd->vdev_top; 3118 ASSERT(tvd->vdev_parent == rvd); 3119 3120 /* 3121 * Reevaluate the parent vdev state. 3122 */ 3123 vdev_propagate_state(cvd); 3124 3125 /* 3126 * If the device we just detached was smaller than the others, it may be 3127 * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() 3128 * can't fail because the existing metaslabs are already in core, so 3129 * there's nothing to read from disk. 3130 */ 3131 VERIFY(vdev_metaslab_init(tvd, txg) == 0); 3132 3133 vdev_config_dirty(tvd); 3134 3135 /* 3136 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3137 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3138 * But first make sure we're not on any *other* txg's DTL list, to 3139 * prevent vd from being accessed after it's freed. 3140 */ 3141 for (t = 0; t < TXG_SIZE; t++) 3142 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3143 vd->vdev_detached = B_TRUE; 3144 vdev_dirty(tvd, VDD_DTL, vd, txg); 3145 3146 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3147 3148 error = spa_vdev_exit(spa, vd, txg, 0); 3149 3150 /* 3151 * If this was the removal of the original device in a hot spare vdev, 3152 * then we want to go through and remove the device from the hot spare 3153 * list of every other pool. 3154 */ 3155 if (unspare) { 3156 spa = NULL; 3157 mutex_enter(&spa_namespace_lock); 3158 while ((spa = spa_next(spa)) != NULL) { 3159 if (spa->spa_state != POOL_STATE_ACTIVE) 3160 continue; 3161 3162 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3163 } 3164 mutex_exit(&spa_namespace_lock); 3165 } 3166 3167 return (error); 3168 } 3169 3170 /* 3171 * Remove a spares vdev from the nvlist config. 3172 */ 3173 static int 3174 spa_remove_spares(spa_aux_vdev_t *sav, uint64_t guid, boolean_t unspare, 3175 nvlist_t **spares, int nspares, vdev_t *vd) 3176 { 3177 nvlist_t *nv, **newspares; 3178 int i, j; 3179 3180 nv = NULL; 3181 for (i = 0; i < nspares; i++) { 3182 uint64_t theguid; 3183 3184 VERIFY(nvlist_lookup_uint64(spares[i], 3185 ZPOOL_CONFIG_GUID, &theguid) == 0); 3186 if (theguid == guid) { 3187 nv = spares[i]; 3188 break; 3189 } 3190 } 3191 3192 /* 3193 * Only remove the hot spare if it's not currently in use in this pool. 3194 */ 3195 if (nv == NULL && vd == NULL) 3196 return (ENOENT); 3197 3198 if (nv == NULL && vd != NULL) 3199 return (ENOTSUP); 3200 3201 if (!unspare && nv != NULL && vd != NULL) 3202 return (EBUSY); 3203 3204 if (nspares == 1) { 3205 newspares = NULL; 3206 } else { 3207 newspares = kmem_alloc((nspares - 1) * sizeof (void *), 3208 KM_SLEEP); 3209 for (i = 0, j = 0; i < nspares; i++) { 3210 if (spares[i] != nv) 3211 VERIFY(nvlist_dup(spares[i], 3212 &newspares[j++], KM_SLEEP) == 0); 3213 } 3214 } 3215 3216 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_SPARES, 3217 DATA_TYPE_NVLIST_ARRAY) == 0); 3218 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3219 ZPOOL_CONFIG_SPARES, newspares, nspares - 1) == 0); 3220 for (i = 0; i < nspares - 1; i++) 3221 nvlist_free(newspares[i]); 3222 kmem_free(newspares, (nspares - 1) * sizeof (void *)); 3223 3224 return (0); 3225 } 3226 3227 /* 3228 * Remove an l2cache vdev from the nvlist config. 3229 */ 3230 static int 3231 spa_remove_l2cache(spa_aux_vdev_t *sav, uint64_t guid, nvlist_t **l2cache, 3232 int nl2cache, vdev_t *vd) 3233 { 3234 nvlist_t *nv, **newl2cache; 3235 int i, j; 3236 3237 nv = NULL; 3238 for (i = 0; i < nl2cache; i++) { 3239 uint64_t theguid; 3240 3241 VERIFY(nvlist_lookup_uint64(l2cache[i], 3242 ZPOOL_CONFIG_GUID, &theguid) == 0); 3243 if (theguid == guid) { 3244 nv = l2cache[i]; 3245 break; 3246 } 3247 } 3248 3249 if (vd == NULL) { 3250 for (i = 0; i < nl2cache; i++) { 3251 if (sav->sav_vdevs[i]->vdev_guid == guid) { 3252 vd = sav->sav_vdevs[i]; 3253 break; 3254 } 3255 } 3256 } 3257 3258 if (nv == NULL && vd == NULL) 3259 return (ENOENT); 3260 3261 if (nv == NULL && vd != NULL) 3262 return (ENOTSUP); 3263 3264 if (nl2cache == 1) { 3265 newl2cache = NULL; 3266 } else { 3267 newl2cache = kmem_alloc((nl2cache - 1) * sizeof (void *), 3268 KM_SLEEP); 3269 for (i = 0, j = 0; i < nl2cache; i++) { 3270 if (l2cache[i] != nv) 3271 VERIFY(nvlist_dup(l2cache[i], 3272 &newl2cache[j++], KM_SLEEP) == 0); 3273 } 3274 } 3275 3276 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 3277 DATA_TYPE_NVLIST_ARRAY) == 0); 3278 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3279 ZPOOL_CONFIG_L2CACHE, newl2cache, nl2cache - 1) == 0); 3280 for (i = 0; i < nl2cache - 1; i++) 3281 nvlist_free(newl2cache[i]); 3282 kmem_free(newl2cache, (nl2cache - 1) * sizeof (void *)); 3283 3284 return (0); 3285 } 3286 3287 /* 3288 * Remove a device from the pool. Currently, this supports removing only hot 3289 * spares and level 2 ARC devices. 3290 */ 3291 int 3292 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 3293 { 3294 vdev_t *vd; 3295 nvlist_t **spares, **l2cache; 3296 uint_t nspares, nl2cache; 3297 int error = 0; 3298 3299 spa_config_enter(spa, RW_WRITER, FTAG); 3300 3301 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3302 3303 if (spa->spa_spares.sav_vdevs != NULL && 3304 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3305 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0) { 3306 if ((error = spa_remove_spares(&spa->spa_spares, guid, unspare, 3307 spares, nspares, vd)) != 0) 3308 goto out; 3309 spa_load_spares(spa); 3310 spa->spa_spares.sav_sync = B_TRUE; 3311 goto out; 3312 } 3313 3314 if (spa->spa_l2cache.sav_vdevs != NULL && 3315 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3316 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0) { 3317 if ((error = spa_remove_l2cache(&spa->spa_l2cache, guid, 3318 l2cache, nl2cache, vd)) != 0) 3319 goto out; 3320 spa_load_l2cache(spa); 3321 spa->spa_l2cache.sav_sync = B_TRUE; 3322 } 3323 3324 out: 3325 spa_config_exit(spa, FTAG); 3326 return (error); 3327 } 3328 3329 /* 3330 * Find any device that's done replacing, or a vdev marked 'unspare' that's 3331 * current spared, so we can detach it. 3332 */ 3333 static vdev_t * 3334 spa_vdev_resilver_done_hunt(vdev_t *vd) 3335 { 3336 vdev_t *newvd, *oldvd; 3337 int c; 3338 3339 for (c = 0; c < vd->vdev_children; c++) { 3340 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 3341 if (oldvd != NULL) 3342 return (oldvd); 3343 } 3344 3345 /* 3346 * Check for a completed replacement. 3347 */ 3348 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 3349 oldvd = vd->vdev_child[0]; 3350 newvd = vd->vdev_child[1]; 3351 3352 mutex_enter(&newvd->vdev_dtl_lock); 3353 if (newvd->vdev_dtl_map.sm_space == 0 && 3354 newvd->vdev_dtl_scrub.sm_space == 0) { 3355 mutex_exit(&newvd->vdev_dtl_lock); 3356 return (oldvd); 3357 } 3358 mutex_exit(&newvd->vdev_dtl_lock); 3359 } 3360 3361 /* 3362 * Check for a completed resilver with the 'unspare' flag set. 3363 */ 3364 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 3365 newvd = vd->vdev_child[0]; 3366 oldvd = vd->vdev_child[1]; 3367 3368 mutex_enter(&newvd->vdev_dtl_lock); 3369 if (newvd->vdev_unspare && 3370 newvd->vdev_dtl_map.sm_space == 0 && 3371 newvd->vdev_dtl_scrub.sm_space == 0) { 3372 newvd->vdev_unspare = 0; 3373 mutex_exit(&newvd->vdev_dtl_lock); 3374 return (oldvd); 3375 } 3376 mutex_exit(&newvd->vdev_dtl_lock); 3377 } 3378 3379 return (NULL); 3380 } 3381 3382 static void 3383 spa_vdev_resilver_done(spa_t *spa) 3384 { 3385 vdev_t *vd; 3386 vdev_t *pvd; 3387 uint64_t guid; 3388 uint64_t pguid = 0; 3389 3390 spa_config_enter(spa, RW_READER, FTAG); 3391 3392 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 3393 guid = vd->vdev_guid; 3394 /* 3395 * If we have just finished replacing a hot spared device, then 3396 * we need to detach the parent's first child (the original hot 3397 * spare) as well. 3398 */ 3399 pvd = vd->vdev_parent; 3400 if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3401 pvd->vdev_id == 0) { 3402 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 3403 ASSERT(pvd->vdev_parent->vdev_children == 2); 3404 pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; 3405 } 3406 spa_config_exit(spa, FTAG); 3407 if (spa_vdev_detach(spa, guid, B_TRUE) != 0) 3408 return; 3409 if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) 3410 return; 3411 spa_config_enter(spa, RW_READER, FTAG); 3412 } 3413 3414 spa_config_exit(spa, FTAG); 3415 } 3416 3417 /* 3418 * Update the stored path for this vdev. Dirty the vdev configuration, relying 3419 * on spa_vdev_enter/exit() to synchronize the labels and cache. 3420 */ 3421 int 3422 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 3423 { 3424 vdev_t *vd; 3425 uint64_t txg; 3426 3427 txg = spa_vdev_enter(spa); 3428 3429 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) { 3430 /* 3431 * Determine if this is a reference to a hot spare device. If 3432 * it is, update the path manually as there is no associated 3433 * vdev_t that can be synced to disk. 3434 */ 3435 nvlist_t **spares; 3436 uint_t i, nspares; 3437 3438 if (spa->spa_spares.sav_config != NULL) { 3439 VERIFY(nvlist_lookup_nvlist_array( 3440 spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 3441 &spares, &nspares) == 0); 3442 for (i = 0; i < nspares; i++) { 3443 uint64_t theguid; 3444 VERIFY(nvlist_lookup_uint64(spares[i], 3445 ZPOOL_CONFIG_GUID, &theguid) == 0); 3446 if (theguid == guid) { 3447 VERIFY(nvlist_add_string(spares[i], 3448 ZPOOL_CONFIG_PATH, newpath) == 0); 3449 spa_load_spares(spa); 3450 spa->spa_spares.sav_sync = B_TRUE; 3451 return (spa_vdev_exit(spa, NULL, txg, 3452 0)); 3453 } 3454 } 3455 } 3456 3457 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 3458 } 3459 3460 if (!vd->vdev_ops->vdev_op_leaf) 3461 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3462 3463 spa_strfree(vd->vdev_path); 3464 vd->vdev_path = spa_strdup(newpath); 3465 3466 vdev_config_dirty(vd->vdev_top); 3467 3468 return (spa_vdev_exit(spa, NULL, txg, 0)); 3469 } 3470 3471 /* 3472 * ========================================================================== 3473 * SPA Scrubbing 3474 * ========================================================================== 3475 */ 3476 3477 int 3478 spa_scrub(spa_t *spa, pool_scrub_type_t type) 3479 { 3480 ASSERT(!spa_config_held(spa, RW_WRITER)); 3481 3482 if ((uint_t)type >= POOL_SCRUB_TYPES) 3483 return (ENOTSUP); 3484 3485 /* 3486 * If a resilver was requested, but there is no DTL on a 3487 * writeable leaf device, we have nothing to do. 3488 */ 3489 if (type == POOL_SCRUB_RESILVER && 3490 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 3491 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 3492 return (0); 3493 } 3494 3495 if (type == POOL_SCRUB_EVERYTHING && 3496 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 3497 spa->spa_dsl_pool->dp_scrub_isresilver) 3498 return (EBUSY); 3499 3500 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 3501 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 3502 } else if (type == POOL_SCRUB_NONE) { 3503 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 3504 } else { 3505 return (EINVAL); 3506 } 3507 } 3508 3509 /* 3510 * ========================================================================== 3511 * SPA async task processing 3512 * ========================================================================== 3513 */ 3514 3515 static void 3516 spa_async_remove(spa_t *spa, vdev_t *vd) 3517 { 3518 vdev_t *tvd; 3519 int c; 3520 3521 for (c = 0; c < vd->vdev_children; c++) { 3522 tvd = vd->vdev_child[c]; 3523 if (tvd->vdev_remove_wanted) { 3524 tvd->vdev_remove_wanted = 0; 3525 vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED, 3526 VDEV_AUX_NONE); 3527 vdev_clear(spa, tvd, B_TRUE); 3528 vdev_config_dirty(tvd->vdev_top); 3529 } 3530 spa_async_remove(spa, tvd); 3531 } 3532 } 3533 3534 static void 3535 spa_async_thread(spa_t *spa) 3536 { 3537 int tasks; 3538 uint64_t txg; 3539 3540 ASSERT(spa->spa_sync_on); 3541 3542 mutex_enter(&spa->spa_async_lock); 3543 tasks = spa->spa_async_tasks; 3544 spa->spa_async_tasks = 0; 3545 mutex_exit(&spa->spa_async_lock); 3546 3547 /* 3548 * See if the config needs to be updated. 3549 */ 3550 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 3551 mutex_enter(&spa_namespace_lock); 3552 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3553 mutex_exit(&spa_namespace_lock); 3554 } 3555 3556 /* 3557 * See if any devices need to be marked REMOVED. 3558 * 3559 * XXX - We avoid doing this when we are in 3560 * I/O failure state since spa_vdev_enter() grabs 3561 * the namespace lock and would not be able to obtain 3562 * the writer config lock. 3563 */ 3564 if (tasks & SPA_ASYNC_REMOVE && 3565 spa_state(spa) != POOL_STATE_IO_FAILURE) { 3566 txg = spa_vdev_enter(spa); 3567 spa_async_remove(spa, spa->spa_root_vdev); 3568 (void) spa_vdev_exit(spa, NULL, txg, 0); 3569 } 3570 3571 /* 3572 * If any devices are done replacing, detach them. 3573 */ 3574 if (tasks & SPA_ASYNC_RESILVER_DONE) 3575 spa_vdev_resilver_done(spa); 3576 3577 /* 3578 * Kick off a resilver. 3579 */ 3580 if (tasks & SPA_ASYNC_RESILVER) 3581 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 3582 3583 /* 3584 * Let the world know that we're done. 3585 */ 3586 mutex_enter(&spa->spa_async_lock); 3587 spa->spa_async_thread = NULL; 3588 cv_broadcast(&spa->spa_async_cv); 3589 mutex_exit(&spa->spa_async_lock); 3590 thread_exit(); 3591 } 3592 3593 void 3594 spa_async_suspend(spa_t *spa) 3595 { 3596 mutex_enter(&spa->spa_async_lock); 3597 spa->spa_async_suspended++; 3598 while (spa->spa_async_thread != NULL) 3599 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 3600 mutex_exit(&spa->spa_async_lock); 3601 } 3602 3603 void 3604 spa_async_resume(spa_t *spa) 3605 { 3606 mutex_enter(&spa->spa_async_lock); 3607 ASSERT(spa->spa_async_suspended != 0); 3608 spa->spa_async_suspended--; 3609 mutex_exit(&spa->spa_async_lock); 3610 } 3611 3612 static void 3613 spa_async_dispatch(spa_t *spa) 3614 { 3615 mutex_enter(&spa->spa_async_lock); 3616 if (spa->spa_async_tasks && !spa->spa_async_suspended && 3617 spa->spa_async_thread == NULL && 3618 rootdir != NULL && !vn_is_readonly(rootdir)) 3619 spa->spa_async_thread = thread_create(NULL, 0, 3620 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 3621 mutex_exit(&spa->spa_async_lock); 3622 } 3623 3624 void 3625 spa_async_request(spa_t *spa, int task) 3626 { 3627 mutex_enter(&spa->spa_async_lock); 3628 spa->spa_async_tasks |= task; 3629 mutex_exit(&spa->spa_async_lock); 3630 } 3631 3632 /* 3633 * ========================================================================== 3634 * SPA syncing routines 3635 * ========================================================================== 3636 */ 3637 3638 static void 3639 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 3640 { 3641 bplist_t *bpl = &spa->spa_sync_bplist; 3642 dmu_tx_t *tx; 3643 blkptr_t blk; 3644 uint64_t itor = 0; 3645 zio_t *zio; 3646 int error; 3647 uint8_t c = 1; 3648 3649 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); 3650 3651 while (bplist_iterate(bpl, &itor, &blk) == 0) 3652 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); 3653 3654 error = zio_wait(zio); 3655 ASSERT3U(error, ==, 0); 3656 3657 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 3658 bplist_vacate(bpl, tx); 3659 3660 /* 3661 * Pre-dirty the first block so we sync to convergence faster. 3662 * (Usually only the first block is needed.) 3663 */ 3664 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 3665 dmu_tx_commit(tx); 3666 } 3667 3668 static void 3669 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 3670 { 3671 char *packed = NULL; 3672 size_t nvsize = 0; 3673 dmu_buf_t *db; 3674 3675 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 3676 3677 packed = kmem_alloc(nvsize, KM_SLEEP); 3678 3679 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 3680 KM_SLEEP) == 0); 3681 3682 dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx); 3683 3684 kmem_free(packed, nvsize); 3685 3686 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 3687 dmu_buf_will_dirty(db, tx); 3688 *(uint64_t *)db->db_data = nvsize; 3689 dmu_buf_rele(db, FTAG); 3690 } 3691 3692 static void 3693 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 3694 const char *config, const char *entry) 3695 { 3696 nvlist_t *nvroot; 3697 nvlist_t **list; 3698 int i; 3699 3700 if (!sav->sav_sync) 3701 return; 3702 3703 /* 3704 * Update the MOS nvlist describing the list of available devices. 3705 * spa_validate_aux() will have already made sure this nvlist is 3706 * valid and the vdevs are labeled appropriately. 3707 */ 3708 if (sav->sav_object == 0) { 3709 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 3710 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 3711 sizeof (uint64_t), tx); 3712 VERIFY(zap_update(spa->spa_meta_objset, 3713 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 3714 &sav->sav_object, tx) == 0); 3715 } 3716 3717 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3718 if (sav->sav_count == 0) { 3719 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 3720 } else { 3721 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 3722 for (i = 0; i < sav->sav_count; i++) 3723 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 3724 B_FALSE, B_FALSE, B_TRUE); 3725 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 3726 sav->sav_count) == 0); 3727 for (i = 0; i < sav->sav_count; i++) 3728 nvlist_free(list[i]); 3729 kmem_free(list, sav->sav_count * sizeof (void *)); 3730 } 3731 3732 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 3733 nvlist_free(nvroot); 3734 3735 sav->sav_sync = B_FALSE; 3736 } 3737 3738 static void 3739 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 3740 { 3741 nvlist_t *config; 3742 3743 if (list_is_empty(&spa->spa_dirty_list)) 3744 return; 3745 3746 config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); 3747 3748 if (spa->spa_config_syncing) 3749 nvlist_free(spa->spa_config_syncing); 3750 spa->spa_config_syncing = config; 3751 3752 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 3753 } 3754 3755 /* 3756 * Set zpool properties. 3757 */ 3758 static void 3759 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 3760 { 3761 spa_t *spa = arg1; 3762 objset_t *mos = spa->spa_meta_objset; 3763 nvlist_t *nvp = arg2; 3764 nvpair_t *elem; 3765 uint64_t intval; 3766 char *strval; 3767 zpool_prop_t prop; 3768 const char *propname; 3769 zprop_type_t proptype; 3770 spa_config_dirent_t *dp; 3771 3772 elem = NULL; 3773 while ((elem = nvlist_next_nvpair(nvp, elem))) { 3774 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 3775 case ZPOOL_PROP_VERSION: 3776 /* 3777 * Only set version for non-zpool-creation cases 3778 * (set/import). spa_create() needs special care 3779 * for version setting. 3780 */ 3781 if (tx->tx_txg != TXG_INITIAL) { 3782 VERIFY(nvpair_value_uint64(elem, 3783 &intval) == 0); 3784 ASSERT(intval <= SPA_VERSION); 3785 ASSERT(intval >= spa_version(spa)); 3786 spa->spa_uberblock.ub_version = intval; 3787 vdev_config_dirty(spa->spa_root_vdev); 3788 } 3789 break; 3790 3791 case ZPOOL_PROP_ALTROOT: 3792 /* 3793 * 'altroot' is a non-persistent property. It should 3794 * have been set temporarily at creation or import time. 3795 */ 3796 ASSERT(spa->spa_root != NULL); 3797 break; 3798 3799 case ZPOOL_PROP_CACHEFILE: 3800 /* 3801 * 'cachefile' is a non-persistent property, but note 3802 * an async request that the config cache needs to be 3803 * udpated. 3804 */ 3805 VERIFY(nvpair_value_string(elem, &strval) == 0); 3806 3807 dp = kmem_alloc(sizeof (spa_config_dirent_t), 3808 KM_SLEEP); 3809 3810 if (strval[0] == '\0') 3811 dp->scd_path = spa_strdup(spa_config_path); 3812 else if (strcmp(strval, "none") == 0) 3813 dp->scd_path = NULL; 3814 else 3815 dp->scd_path = spa_strdup(strval); 3816 3817 list_insert_head(&spa->spa_config_list, dp); 3818 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 3819 break; 3820 default: 3821 /* 3822 * Set pool property values in the poolprops mos object. 3823 */ 3824 mutex_enter(&spa->spa_props_lock); 3825 if (spa->spa_pool_props_object == 0) { 3826 objset_t *mos = spa->spa_meta_objset; 3827 3828 VERIFY((spa->spa_pool_props_object = 3829 zap_create(mos, DMU_OT_POOL_PROPS, 3830 DMU_OT_NONE, 0, tx)) > 0); 3831 3832 VERIFY(zap_update(mos, 3833 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 3834 8, 1, &spa->spa_pool_props_object, tx) 3835 == 0); 3836 } 3837 mutex_exit(&spa->spa_props_lock); 3838 3839 /* normalize the property name */ 3840 propname = zpool_prop_to_name(prop); 3841 proptype = zpool_prop_get_type(prop); 3842 3843 if (nvpair_type(elem) == DATA_TYPE_STRING) { 3844 ASSERT(proptype == PROP_TYPE_STRING); 3845 VERIFY(nvpair_value_string(elem, &strval) == 0); 3846 VERIFY(zap_update(mos, 3847 spa->spa_pool_props_object, propname, 3848 1, strlen(strval) + 1, strval, tx) == 0); 3849 3850 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 3851 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 3852 3853 if (proptype == PROP_TYPE_INDEX) { 3854 const char *unused; 3855 VERIFY(zpool_prop_index_to_string( 3856 prop, intval, &unused) == 0); 3857 } 3858 VERIFY(zap_update(mos, 3859 spa->spa_pool_props_object, propname, 3860 8, 1, &intval, tx) == 0); 3861 } else { 3862 ASSERT(0); /* not allowed */ 3863 } 3864 3865 switch (prop) { 3866 case ZPOOL_PROP_DELEGATION: 3867 spa->spa_delegation = intval; 3868 break; 3869 case ZPOOL_PROP_BOOTFS: 3870 spa->spa_bootfs = intval; 3871 break; 3872 case ZPOOL_PROP_FAILUREMODE: 3873 spa->spa_failmode = intval; 3874 break; 3875 default: 3876 break; 3877 } 3878 } 3879 3880 /* log internal history if this is not a zpool create */ 3881 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 3882 tx->tx_txg != TXG_INITIAL) { 3883 spa_history_internal_log(LOG_POOL_PROPSET, 3884 spa, tx, cr, "%s %lld %s", 3885 nvpair_name(elem), intval, spa->spa_name); 3886 } 3887 } 3888 } 3889 3890 /* 3891 * Sync the specified transaction group. New blocks may be dirtied as 3892 * part of the process, so we iterate until it converges. 3893 */ 3894 void 3895 spa_sync(spa_t *spa, uint64_t txg) 3896 { 3897 dsl_pool_t *dp = spa->spa_dsl_pool; 3898 objset_t *mos = spa->spa_meta_objset; 3899 bplist_t *bpl = &spa->spa_sync_bplist; 3900 vdev_t *rvd = spa->spa_root_vdev; 3901 vdev_t *vd; 3902 dmu_tx_t *tx; 3903 int dirty_vdevs; 3904 3905 /* 3906 * Lock out configuration changes. 3907 */ 3908 spa_config_enter(spa, RW_READER, FTAG); 3909 3910 spa->spa_syncing_txg = txg; 3911 spa->spa_sync_pass = 0; 3912 3913 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 3914 3915 tx = dmu_tx_create_assigned(dp, txg); 3916 3917 /* 3918 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 3919 * set spa_deflate if we have no raid-z vdevs. 3920 */ 3921 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 3922 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 3923 int i; 3924 3925 for (i = 0; i < rvd->vdev_children; i++) { 3926 vd = rvd->vdev_child[i]; 3927 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 3928 break; 3929 } 3930 if (i == rvd->vdev_children) { 3931 spa->spa_deflate = TRUE; 3932 VERIFY(0 == zap_add(spa->spa_meta_objset, 3933 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3934 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 3935 } 3936 } 3937 3938 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 3939 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 3940 dsl_pool_create_origin(dp, tx); 3941 3942 /* Keeping the origin open increases spa_minref */ 3943 spa->spa_minref += 3; 3944 } 3945 3946 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 3947 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 3948 dsl_pool_upgrade_clones(dp, tx); 3949 } 3950 3951 /* 3952 * If anything has changed in this txg, push the deferred frees 3953 * from the previous txg. If not, leave them alone so that we 3954 * don't generate work on an otherwise idle system. 3955 */ 3956 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 3957 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 3958 !txg_list_empty(&dp->dp_sync_tasks, txg)) 3959 spa_sync_deferred_frees(spa, txg); 3960 3961 /* 3962 * Iterate to convergence. 3963 */ 3964 do { 3965 spa->spa_sync_pass++; 3966 3967 spa_sync_config_object(spa, tx); 3968 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 3969 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 3970 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 3971 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 3972 spa_errlog_sync(spa, txg); 3973 dsl_pool_sync(dp, txg); 3974 3975 dirty_vdevs = 0; 3976 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 3977 vdev_sync(vd, txg); 3978 dirty_vdevs++; 3979 } 3980 3981 bplist_sync(bpl, tx); 3982 } while (dirty_vdevs); 3983 3984 bplist_close(bpl); 3985 3986 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 3987 3988 /* 3989 * Rewrite the vdev configuration (which includes the uberblock) 3990 * to commit the transaction group. 3991 * 3992 * If there are no dirty vdevs, we sync the uberblock to a few 3993 * random top-level vdevs that are known to be visible in the 3994 * config cache (see spa_vdev_add() for details). If there *are* 3995 * dirty vdevs -- or if the sync to our random subset fails -- 3996 * then sync the uberblock to all vdevs. 3997 */ 3998 if (list_is_empty(&spa->spa_dirty_list)) { 3999 vdev_t *svd[SPA_DVAS_PER_BP]; 4000 int svdcount = 0; 4001 int children = rvd->vdev_children; 4002 int c0 = spa_get_random(children); 4003 int c; 4004 4005 for (c = 0; c < children; c++) { 4006 vd = rvd->vdev_child[(c0 + c) % children]; 4007 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 4008 continue; 4009 svd[svdcount++] = vd; 4010 if (svdcount == SPA_DVAS_PER_BP) 4011 break; 4012 } 4013 vdev_config_sync(svd, svdcount, txg); 4014 } else { 4015 vdev_config_sync(rvd->vdev_child, rvd->vdev_children, txg); 4016 } 4017 dmu_tx_commit(tx); 4018 4019 /* 4020 * Clear the dirty config list. 4021 */ 4022 while ((vd = list_head(&spa->spa_dirty_list)) != NULL) 4023 vdev_config_clean(vd); 4024 4025 /* 4026 * Now that the new config has synced transactionally, 4027 * let it become visible to the config cache. 4028 */ 4029 if (spa->spa_config_syncing != NULL) { 4030 spa_config_set(spa, spa->spa_config_syncing); 4031 spa->spa_config_txg = txg; 4032 spa->spa_config_syncing = NULL; 4033 } 4034 4035 spa->spa_traverse_wanted = B_TRUE; 4036 rw_enter(&spa->spa_traverse_lock, RW_WRITER); 4037 spa->spa_traverse_wanted = B_FALSE; 4038 spa->spa_ubsync = spa->spa_uberblock; 4039 rw_exit(&spa->spa_traverse_lock); 4040 4041 /* 4042 * Clean up the ZIL records for the synced txg. 4043 */ 4044 dsl_pool_zil_clean(dp); 4045 4046 /* 4047 * Update usable space statistics. 4048 */ 4049 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 4050 vdev_sync_done(vd, txg); 4051 4052 /* 4053 * It had better be the case that we didn't dirty anything 4054 * since vdev_config_sync(). 4055 */ 4056 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 4057 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 4058 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 4059 ASSERT(bpl->bpl_queue == NULL); 4060 4061 spa_config_exit(spa, FTAG); 4062 4063 /* 4064 * If any async tasks have been requested, kick them off. 4065 */ 4066 spa_async_dispatch(spa); 4067 } 4068 4069 /* 4070 * Sync all pools. We don't want to hold the namespace lock across these 4071 * operations, so we take a reference on the spa_t and drop the lock during the 4072 * sync. 4073 */ 4074 void 4075 spa_sync_allpools(void) 4076 { 4077 spa_t *spa = NULL; 4078 mutex_enter(&spa_namespace_lock); 4079 while ((spa = spa_next(spa)) != NULL) { 4080 if (spa_state(spa) != POOL_STATE_ACTIVE) 4081 continue; 4082 spa_open_ref(spa, FTAG); 4083 mutex_exit(&spa_namespace_lock); 4084 txg_wait_synced(spa_get_dsl(spa), 0); 4085 mutex_enter(&spa_namespace_lock); 4086 spa_close(spa, FTAG); 4087 } 4088 mutex_exit(&spa_namespace_lock); 4089 } 4090 4091 /* 4092 * ========================================================================== 4093 * Miscellaneous routines 4094 * ========================================================================== 4095 */ 4096 4097 /* 4098 * Remove all pools in the system. 4099 */ 4100 void 4101 spa_evict_all(void) 4102 { 4103 spa_t *spa; 4104 4105 /* 4106 * Remove all cached state. All pools should be closed now, 4107 * so every spa in the AVL tree should be unreferenced. 4108 */ 4109 mutex_enter(&spa_namespace_lock); 4110 while ((spa = spa_next(NULL)) != NULL) { 4111 /* 4112 * Stop async tasks. The async thread may need to detach 4113 * a device that's been replaced, which requires grabbing 4114 * spa_namespace_lock, so we must drop it here. 4115 */ 4116 spa_open_ref(spa, FTAG); 4117 mutex_exit(&spa_namespace_lock); 4118 spa_async_suspend(spa); 4119 mutex_enter(&spa_namespace_lock); 4120 spa_close(spa, FTAG); 4121 4122 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4123 spa_unload(spa); 4124 spa_deactivate(spa); 4125 } 4126 spa_remove(spa); 4127 } 4128 mutex_exit(&spa_namespace_lock); 4129 } 4130 4131 vdev_t * 4132 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t l2cache) 4133 { 4134 vdev_t *vd; 4135 int i; 4136 4137 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 4138 return (vd); 4139 4140 if (l2cache) { 4141 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 4142 vd = spa->spa_l2cache.sav_vdevs[i]; 4143 if (vd->vdev_guid == guid) 4144 return (vd); 4145 } 4146 } 4147 4148 return (NULL); 4149 } 4150 4151 void 4152 spa_upgrade(spa_t *spa, uint64_t version) 4153 { 4154 spa_config_enter(spa, RW_WRITER, FTAG); 4155 4156 /* 4157 * This should only be called for a non-faulted pool, and since a 4158 * future version would result in an unopenable pool, this shouldn't be 4159 * possible. 4160 */ 4161 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 4162 ASSERT(version >= spa->spa_uberblock.ub_version); 4163 4164 spa->spa_uberblock.ub_version = version; 4165 vdev_config_dirty(spa->spa_root_vdev); 4166 4167 spa_config_exit(spa, FTAG); 4168 4169 txg_wait_synced(spa_get_dsl(spa), 0); 4170 } 4171 4172 boolean_t 4173 spa_has_spare(spa_t *spa, uint64_t guid) 4174 { 4175 int i; 4176 uint64_t spareguid; 4177 spa_aux_vdev_t *sav = &spa->spa_spares; 4178 4179 for (i = 0; i < sav->sav_count; i++) 4180 if (sav->sav_vdevs[i]->vdev_guid == guid) 4181 return (B_TRUE); 4182 4183 for (i = 0; i < sav->sav_npending; i++) { 4184 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 4185 &spareguid) == 0 && spareguid == guid) 4186 return (B_TRUE); 4187 } 4188 4189 return (B_FALSE); 4190 } 4191 4192 /* 4193 * Check if a pool has an active shared spare device. 4194 * Note: reference count of an active spare is 2, as a spare and as a replace 4195 */ 4196 static boolean_t 4197 spa_has_active_shared_spare(spa_t *spa) 4198 { 4199 int i, refcnt; 4200 uint64_t pool; 4201 spa_aux_vdev_t *sav = &spa->spa_spares; 4202 4203 for (i = 0; i < sav->sav_count; i++) { 4204 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 4205 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 4206 refcnt > 2) 4207 return (B_TRUE); 4208 } 4209 4210 return (B_FALSE); 4211 } 4212 4213 /* 4214 * Post a sysevent corresponding to the given event. The 'name' must be one of 4215 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 4216 * filled in from the spa and (optionally) the vdev. This doesn't do anything 4217 * in the userland libzpool, as we don't want consumers to misinterpret ztest 4218 * or zdb as real changes. 4219 */ 4220 void 4221 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 4222 { 4223 #ifdef _KERNEL 4224 sysevent_t *ev; 4225 sysevent_attr_list_t *attr = NULL; 4226 sysevent_value_t value; 4227 sysevent_id_t eid; 4228 4229 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 4230 SE_SLEEP); 4231 4232 value.value_type = SE_DATA_TYPE_STRING; 4233 value.value.sv_string = spa_name(spa); 4234 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 4235 goto done; 4236 4237 value.value_type = SE_DATA_TYPE_UINT64; 4238 value.value.sv_uint64 = spa_guid(spa); 4239 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 4240 goto done; 4241 4242 if (vd) { 4243 value.value_type = SE_DATA_TYPE_UINT64; 4244 value.value.sv_uint64 = vd->vdev_guid; 4245 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 4246 SE_SLEEP) != 0) 4247 goto done; 4248 4249 if (vd->vdev_path) { 4250 value.value_type = SE_DATA_TYPE_STRING; 4251 value.value.sv_string = vd->vdev_path; 4252 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 4253 &value, SE_SLEEP) != 0) 4254 goto done; 4255 } 4256 } 4257 4258 if (sysevent_attach_attributes(ev, attr) != 0) 4259 goto done; 4260 attr = NULL; 4261 4262 (void) log_sysevent(ev, SE_SLEEP, &eid); 4263 4264 done: 4265 if (attr) 4266 sysevent_free_attr(attr); 4267 sysevent_free(ev); 4268 #endif 4269 } 4270