1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2010 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 /* 28 * This file contains all the routines used when modifying on-disk SPA state. 29 * This includes opening, importing, destroying, exporting a pool, and syncing a 30 * pool. 31 */ 32 33 #include <sys/zfs_context.h> 34 #include <sys/fm/fs/zfs.h> 35 #include <sys/spa_impl.h> 36 #include <sys/zio.h> 37 #include <sys/zio_checksum.h> 38 #include <sys/dmu.h> 39 #include <sys/dmu_tx.h> 40 #include <sys/zap.h> 41 #include <sys/zil.h> 42 #include <sys/ddt.h> 43 #include <sys/vdev_impl.h> 44 #include <sys/metaslab.h> 45 #include <sys/metaslab_impl.h> 46 #include <sys/uberblock_impl.h> 47 #include <sys/txg.h> 48 #include <sys/avl.h> 49 #include <sys/dmu_traverse.h> 50 #include <sys/dmu_objset.h> 51 #include <sys/unique.h> 52 #include <sys/dsl_pool.h> 53 #include <sys/dsl_dataset.h> 54 #include <sys/dsl_dir.h> 55 #include <sys/dsl_prop.h> 56 #include <sys/dsl_synctask.h> 57 #include <sys/fs/zfs.h> 58 #include <sys/arc.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/spa_boot.h> 62 #include <sys/zfs_ioctl.h> 63 64 #ifdef _KERNEL 65 #include <sys/bootprops.h> 66 #include <sys/callb.h> 67 #include <sys/cpupart.h> 68 #include <sys/pool.h> 69 #include <sys/sysdc.h> 70 #include <sys/zone.h> 71 #endif /* _KERNEL */ 72 73 #include "zfs_prop.h" 74 #include "zfs_comutil.h" 75 76 typedef enum zti_modes { 77 zti_mode_fixed, /* value is # of threads (min 1) */ 78 zti_mode_online_percent, /* value is % of online CPUs */ 79 zti_mode_batch, /* cpu-intensive; value is ignored */ 80 zti_mode_null, /* don't create a taskq */ 81 zti_nmodes 82 } zti_modes_t; 83 84 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 85 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 86 #define ZTI_BATCH { zti_mode_batch, 0 } 87 #define ZTI_NULL { zti_mode_null, 0 } 88 89 #define ZTI_ONE ZTI_FIX(1) 90 91 typedef struct zio_taskq_info { 92 enum zti_modes zti_mode; 93 uint_t zti_value; 94 } zio_taskq_info_t; 95 96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 97 "issue", "issue_high", "intr", "intr_high" 98 }; 99 100 /* 101 * Define the taskq threads for the following I/O types: 102 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 103 */ 104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 105 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 106 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 107 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 108 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 109 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 110 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 111 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 }; 113 114 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx); 115 static boolean_t spa_has_active_shared_spare(spa_t *spa); 116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 117 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 118 char **ereport); 119 120 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 121 id_t zio_taskq_psrset_bind = PS_NONE; 122 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 123 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 124 125 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 126 127 /* 128 * This (illegal) pool name is used when temporarily importing a spa_t in order 129 * to get the vdev stats associated with the imported devices. 130 */ 131 #define TRYIMPORT_NAME "$import" 132 133 /* 134 * ========================================================================== 135 * SPA properties routines 136 * ========================================================================== 137 */ 138 139 /* 140 * Add a (source=src, propname=propval) list to an nvlist. 141 */ 142 static void 143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 144 uint64_t intval, zprop_source_t src) 145 { 146 const char *propname = zpool_prop_to_name(prop); 147 nvlist_t *propval; 148 149 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 150 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 151 152 if (strval != NULL) 153 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 154 else 155 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 156 157 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 158 nvlist_free(propval); 159 } 160 161 /* 162 * Get property values from the spa configuration. 163 */ 164 static void 165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 166 { 167 uint64_t size; 168 uint64_t alloc; 169 uint64_t cap, version; 170 zprop_source_t src = ZPROP_SRC_NONE; 171 spa_config_dirent_t *dp; 172 173 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 174 175 if (spa->spa_root_vdev != NULL) { 176 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 177 size = metaslab_class_get_space(spa_normal_class(spa)); 178 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 179 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 180 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 181 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 182 size - alloc, src); 183 184 cap = (size == 0) ? 0 : (alloc * 100 / size); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 186 187 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 188 ddt_get_pool_dedup_ratio(spa), src); 189 190 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 191 spa->spa_root_vdev->vdev_state, src); 192 193 version = spa_version(spa); 194 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 195 src = ZPROP_SRC_DEFAULT; 196 else 197 src = ZPROP_SRC_LOCAL; 198 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 199 } 200 201 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 202 203 if (spa->spa_root != NULL) 204 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 205 0, ZPROP_SRC_LOCAL); 206 207 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 208 if (dp->scd_path == NULL) { 209 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 210 "none", 0, ZPROP_SRC_LOCAL); 211 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 212 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 213 dp->scd_path, 0, ZPROP_SRC_LOCAL); 214 } 215 } 216 } 217 218 /* 219 * Get zpool property values. 220 */ 221 int 222 spa_prop_get(spa_t *spa, nvlist_t **nvp) 223 { 224 objset_t *mos = spa->spa_meta_objset; 225 zap_cursor_t zc; 226 zap_attribute_t za; 227 int err; 228 229 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 230 231 mutex_enter(&spa->spa_props_lock); 232 233 /* 234 * Get properties from the spa config. 235 */ 236 spa_prop_get_config(spa, nvp); 237 238 /* If no pool property object, no more prop to get. */ 239 if (mos == NULL || spa->spa_pool_props_object == 0) { 240 mutex_exit(&spa->spa_props_lock); 241 return (0); 242 } 243 244 /* 245 * Get properties from the MOS pool property object. 246 */ 247 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 248 (err = zap_cursor_retrieve(&zc, &za)) == 0; 249 zap_cursor_advance(&zc)) { 250 uint64_t intval = 0; 251 char *strval = NULL; 252 zprop_source_t src = ZPROP_SRC_DEFAULT; 253 zpool_prop_t prop; 254 255 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 256 continue; 257 258 switch (za.za_integer_length) { 259 case 8: 260 /* integer property */ 261 if (za.za_first_integer != 262 zpool_prop_default_numeric(prop)) 263 src = ZPROP_SRC_LOCAL; 264 265 if (prop == ZPOOL_PROP_BOOTFS) { 266 dsl_pool_t *dp; 267 dsl_dataset_t *ds = NULL; 268 269 dp = spa_get_dsl(spa); 270 rw_enter(&dp->dp_config_rwlock, RW_READER); 271 if (err = dsl_dataset_hold_obj(dp, 272 za.za_first_integer, FTAG, &ds)) { 273 rw_exit(&dp->dp_config_rwlock); 274 break; 275 } 276 277 strval = kmem_alloc( 278 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 279 KM_SLEEP); 280 dsl_dataset_name(ds, strval); 281 dsl_dataset_rele(ds, FTAG); 282 rw_exit(&dp->dp_config_rwlock); 283 } else { 284 strval = NULL; 285 intval = za.za_first_integer; 286 } 287 288 spa_prop_add_list(*nvp, prop, strval, intval, src); 289 290 if (strval != NULL) 291 kmem_free(strval, 292 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 293 294 break; 295 296 case 1: 297 /* string property */ 298 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 299 err = zap_lookup(mos, spa->spa_pool_props_object, 300 za.za_name, 1, za.za_num_integers, strval); 301 if (err) { 302 kmem_free(strval, za.za_num_integers); 303 break; 304 } 305 spa_prop_add_list(*nvp, prop, strval, 0, src); 306 kmem_free(strval, za.za_num_integers); 307 break; 308 309 default: 310 break; 311 } 312 } 313 zap_cursor_fini(&zc); 314 mutex_exit(&spa->spa_props_lock); 315 out: 316 if (err && err != ENOENT) { 317 nvlist_free(*nvp); 318 *nvp = NULL; 319 return (err); 320 } 321 322 return (0); 323 } 324 325 /* 326 * Validate the given pool properties nvlist and modify the list 327 * for the property values to be set. 328 */ 329 static int 330 spa_prop_validate(spa_t *spa, nvlist_t *props) 331 { 332 nvpair_t *elem; 333 int error = 0, reset_bootfs = 0; 334 uint64_t objnum; 335 336 elem = NULL; 337 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 338 zpool_prop_t prop; 339 char *propname, *strval; 340 uint64_t intval; 341 objset_t *os; 342 char *slash; 343 344 propname = nvpair_name(elem); 345 346 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 347 return (EINVAL); 348 349 switch (prop) { 350 case ZPOOL_PROP_VERSION: 351 error = nvpair_value_uint64(elem, &intval); 352 if (!error && 353 (intval < spa_version(spa) || intval > SPA_VERSION)) 354 error = EINVAL; 355 break; 356 357 case ZPOOL_PROP_DELEGATION: 358 case ZPOOL_PROP_AUTOREPLACE: 359 case ZPOOL_PROP_LISTSNAPS: 360 case ZPOOL_PROP_AUTOEXPAND: 361 error = nvpair_value_uint64(elem, &intval); 362 if (!error && intval > 1) 363 error = EINVAL; 364 break; 365 366 case ZPOOL_PROP_BOOTFS: 367 /* 368 * If the pool version is less than SPA_VERSION_BOOTFS, 369 * or the pool is still being created (version == 0), 370 * the bootfs property cannot be set. 371 */ 372 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 373 error = ENOTSUP; 374 break; 375 } 376 377 /* 378 * Make sure the vdev config is bootable 379 */ 380 if (!vdev_is_bootable(spa->spa_root_vdev)) { 381 error = ENOTSUP; 382 break; 383 } 384 385 reset_bootfs = 1; 386 387 error = nvpair_value_string(elem, &strval); 388 389 if (!error) { 390 uint64_t compress; 391 392 if (strval == NULL || strval[0] == '\0') { 393 objnum = zpool_prop_default_numeric( 394 ZPOOL_PROP_BOOTFS); 395 break; 396 } 397 398 if (error = dmu_objset_hold(strval, FTAG, &os)) 399 break; 400 401 /* Must be ZPL and not gzip compressed. */ 402 403 if (dmu_objset_type(os) != DMU_OST_ZFS) { 404 error = ENOTSUP; 405 } else if ((error = dsl_prop_get_integer(strval, 406 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 407 &compress, NULL)) == 0 && 408 !BOOTFS_COMPRESS_VALID(compress)) { 409 error = ENOTSUP; 410 } else { 411 objnum = dmu_objset_id(os); 412 } 413 dmu_objset_rele(os, FTAG); 414 } 415 break; 416 417 case ZPOOL_PROP_FAILUREMODE: 418 error = nvpair_value_uint64(elem, &intval); 419 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 420 intval > ZIO_FAILURE_MODE_PANIC)) 421 error = EINVAL; 422 423 /* 424 * This is a special case which only occurs when 425 * the pool has completely failed. This allows 426 * the user to change the in-core failmode property 427 * without syncing it out to disk (I/Os might 428 * currently be blocked). We do this by returning 429 * EIO to the caller (spa_prop_set) to trick it 430 * into thinking we encountered a property validation 431 * error. 432 */ 433 if (!error && spa_suspended(spa)) { 434 spa->spa_failmode = intval; 435 error = EIO; 436 } 437 break; 438 439 case ZPOOL_PROP_CACHEFILE: 440 if ((error = nvpair_value_string(elem, &strval)) != 0) 441 break; 442 443 if (strval[0] == '\0') 444 break; 445 446 if (strcmp(strval, "none") == 0) 447 break; 448 449 if (strval[0] != '/') { 450 error = EINVAL; 451 break; 452 } 453 454 slash = strrchr(strval, '/'); 455 ASSERT(slash != NULL); 456 457 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 458 strcmp(slash, "/..") == 0) 459 error = EINVAL; 460 break; 461 462 case ZPOOL_PROP_DEDUPDITTO: 463 if (spa_version(spa) < SPA_VERSION_DEDUP) 464 error = ENOTSUP; 465 else 466 error = nvpair_value_uint64(elem, &intval); 467 if (error == 0 && 468 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 469 error = EINVAL; 470 break; 471 } 472 473 if (error) 474 break; 475 } 476 477 if (!error && reset_bootfs) { 478 error = nvlist_remove(props, 479 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 480 481 if (!error) { 482 error = nvlist_add_uint64(props, 483 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 484 } 485 } 486 487 return (error); 488 } 489 490 void 491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 492 { 493 char *cachefile; 494 spa_config_dirent_t *dp; 495 496 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 497 &cachefile) != 0) 498 return; 499 500 dp = kmem_alloc(sizeof (spa_config_dirent_t), 501 KM_SLEEP); 502 503 if (cachefile[0] == '\0') 504 dp->scd_path = spa_strdup(spa_config_path); 505 else if (strcmp(cachefile, "none") == 0) 506 dp->scd_path = NULL; 507 else 508 dp->scd_path = spa_strdup(cachefile); 509 510 list_insert_head(&spa->spa_config_list, dp); 511 if (need_sync) 512 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 513 } 514 515 int 516 spa_prop_set(spa_t *spa, nvlist_t *nvp) 517 { 518 int error; 519 nvpair_t *elem; 520 boolean_t need_sync = B_FALSE; 521 zpool_prop_t prop; 522 523 if ((error = spa_prop_validate(spa, nvp)) != 0) 524 return (error); 525 526 elem = NULL; 527 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 528 if ((prop = zpool_name_to_prop( 529 nvpair_name(elem))) == ZPROP_INVAL) 530 return (EINVAL); 531 532 if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT) 533 continue; 534 535 need_sync = B_TRUE; 536 break; 537 } 538 539 if (need_sync) 540 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 541 spa, nvp, 3)); 542 else 543 return (0); 544 } 545 546 /* 547 * If the bootfs property value is dsobj, clear it. 548 */ 549 void 550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 551 { 552 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 553 VERIFY(zap_remove(spa->spa_meta_objset, 554 spa->spa_pool_props_object, 555 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 556 spa->spa_bootfs = 0; 557 } 558 } 559 560 /* 561 * ========================================================================== 562 * SPA state manipulation (open/create/destroy/import/export) 563 * ========================================================================== 564 */ 565 566 static int 567 spa_error_entry_compare(const void *a, const void *b) 568 { 569 spa_error_entry_t *sa = (spa_error_entry_t *)a; 570 spa_error_entry_t *sb = (spa_error_entry_t *)b; 571 int ret; 572 573 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 574 sizeof (zbookmark_t)); 575 576 if (ret < 0) 577 return (-1); 578 else if (ret > 0) 579 return (1); 580 else 581 return (0); 582 } 583 584 /* 585 * Utility function which retrieves copies of the current logs and 586 * re-initializes them in the process. 587 */ 588 void 589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 590 { 591 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 592 593 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 594 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 595 596 avl_create(&spa->spa_errlist_scrub, 597 spa_error_entry_compare, sizeof (spa_error_entry_t), 598 offsetof(spa_error_entry_t, se_avl)); 599 avl_create(&spa->spa_errlist_last, 600 spa_error_entry_compare, sizeof (spa_error_entry_t), 601 offsetof(spa_error_entry_t, se_avl)); 602 } 603 604 static taskq_t * 605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 606 uint_t value) 607 { 608 uint_t flags = TASKQ_PREPOPULATE; 609 boolean_t batch = B_FALSE; 610 611 switch (mode) { 612 case zti_mode_null: 613 return (NULL); /* no taskq needed */ 614 615 case zti_mode_fixed: 616 ASSERT3U(value, >=, 1); 617 value = MAX(value, 1); 618 break; 619 620 case zti_mode_batch: 621 batch = B_TRUE; 622 flags |= TASKQ_THREADS_CPU_PCT; 623 value = zio_taskq_batch_pct; 624 break; 625 626 case zti_mode_online_percent: 627 flags |= TASKQ_THREADS_CPU_PCT; 628 break; 629 630 default: 631 panic("unrecognized mode for %s taskq (%u:%u) in " 632 "spa_activate()", 633 name, mode, value); 634 break; 635 } 636 637 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 638 if (batch) 639 flags |= TASKQ_DC_BATCH; 640 641 return (taskq_create_sysdc(name, value, 50, INT_MAX, 642 spa->spa_proc, zio_taskq_basedc, flags)); 643 } 644 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 645 spa->spa_proc, flags)); 646 } 647 648 static void 649 spa_create_zio_taskqs(spa_t *spa) 650 { 651 for (int t = 0; t < ZIO_TYPES; t++) { 652 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 653 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 654 enum zti_modes mode = ztip->zti_mode; 655 uint_t value = ztip->zti_value; 656 char name[32]; 657 658 (void) snprintf(name, sizeof (name), 659 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 660 661 spa->spa_zio_taskq[t][q] = 662 spa_taskq_create(spa, name, mode, value); 663 } 664 } 665 } 666 667 #ifdef _KERNEL 668 static void 669 spa_thread(void *arg) 670 { 671 callb_cpr_t cprinfo; 672 673 spa_t *spa = arg; 674 user_t *pu = PTOU(curproc); 675 676 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 677 spa->spa_name); 678 679 ASSERT(curproc != &p0); 680 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 681 "zpool-%s", spa->spa_name); 682 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 683 684 /* bind this thread to the requested psrset */ 685 if (zio_taskq_psrset_bind != PS_NONE) { 686 pool_lock(); 687 mutex_enter(&cpu_lock); 688 mutex_enter(&pidlock); 689 mutex_enter(&curproc->p_lock); 690 691 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 692 0, NULL, NULL) == 0) { 693 curthread->t_bind_pset = zio_taskq_psrset_bind; 694 } else { 695 cmn_err(CE_WARN, 696 "Couldn't bind process for zfs pool \"%s\" to " 697 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 698 } 699 700 mutex_exit(&curproc->p_lock); 701 mutex_exit(&pidlock); 702 mutex_exit(&cpu_lock); 703 pool_unlock(); 704 } 705 706 if (zio_taskq_sysdc) { 707 sysdc_thread_enter(curthread, 100, 0); 708 } 709 710 spa->spa_proc = curproc; 711 spa->spa_did = curthread->t_did; 712 713 spa_create_zio_taskqs(spa); 714 715 mutex_enter(&spa->spa_proc_lock); 716 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 717 718 spa->spa_proc_state = SPA_PROC_ACTIVE; 719 cv_broadcast(&spa->spa_proc_cv); 720 721 CALLB_CPR_SAFE_BEGIN(&cprinfo); 722 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 723 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 724 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 725 726 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 727 spa->spa_proc_state = SPA_PROC_GONE; 728 spa->spa_proc = &p0; 729 cv_broadcast(&spa->spa_proc_cv); 730 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 731 732 mutex_enter(&curproc->p_lock); 733 lwp_exit(); 734 } 735 #endif 736 737 /* 738 * Activate an uninitialized pool. 739 */ 740 static void 741 spa_activate(spa_t *spa, int mode) 742 { 743 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 744 745 spa->spa_state = POOL_STATE_ACTIVE; 746 spa->spa_mode = mode; 747 748 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 749 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 750 751 /* Try to create a covering process */ 752 mutex_enter(&spa->spa_proc_lock); 753 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 754 ASSERT(spa->spa_proc == &p0); 755 spa->spa_did = 0; 756 757 /* Only create a process if we're going to be around a while. */ 758 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 759 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 760 NULL, 0) == 0) { 761 spa->spa_proc_state = SPA_PROC_CREATED; 762 while (spa->spa_proc_state == SPA_PROC_CREATED) { 763 cv_wait(&spa->spa_proc_cv, 764 &spa->spa_proc_lock); 765 } 766 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 767 ASSERT(spa->spa_proc != &p0); 768 ASSERT(spa->spa_did != 0); 769 } else { 770 #ifdef _KERNEL 771 cmn_err(CE_WARN, 772 "Couldn't create process for zfs pool \"%s\"\n", 773 spa->spa_name); 774 #endif 775 } 776 } 777 mutex_exit(&spa->spa_proc_lock); 778 779 /* If we didn't create a process, we need to create our taskqs. */ 780 if (spa->spa_proc == &p0) { 781 spa_create_zio_taskqs(spa); 782 } 783 784 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 785 offsetof(vdev_t, vdev_config_dirty_node)); 786 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 787 offsetof(vdev_t, vdev_state_dirty_node)); 788 789 txg_list_create(&spa->spa_vdev_txg_list, 790 offsetof(struct vdev, vdev_txg_node)); 791 792 avl_create(&spa->spa_errlist_scrub, 793 spa_error_entry_compare, sizeof (spa_error_entry_t), 794 offsetof(spa_error_entry_t, se_avl)); 795 avl_create(&spa->spa_errlist_last, 796 spa_error_entry_compare, sizeof (spa_error_entry_t), 797 offsetof(spa_error_entry_t, se_avl)); 798 } 799 800 /* 801 * Opposite of spa_activate(). 802 */ 803 static void 804 spa_deactivate(spa_t *spa) 805 { 806 ASSERT(spa->spa_sync_on == B_FALSE); 807 ASSERT(spa->spa_dsl_pool == NULL); 808 ASSERT(spa->spa_root_vdev == NULL); 809 ASSERT(spa->spa_async_zio_root == NULL); 810 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 811 812 txg_list_destroy(&spa->spa_vdev_txg_list); 813 814 list_destroy(&spa->spa_config_dirty_list); 815 list_destroy(&spa->spa_state_dirty_list); 816 817 for (int t = 0; t < ZIO_TYPES; t++) { 818 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 819 if (spa->spa_zio_taskq[t][q] != NULL) 820 taskq_destroy(spa->spa_zio_taskq[t][q]); 821 spa->spa_zio_taskq[t][q] = NULL; 822 } 823 } 824 825 metaslab_class_destroy(spa->spa_normal_class); 826 spa->spa_normal_class = NULL; 827 828 metaslab_class_destroy(spa->spa_log_class); 829 spa->spa_log_class = NULL; 830 831 /* 832 * If this was part of an import or the open otherwise failed, we may 833 * still have errors left in the queues. Empty them just in case. 834 */ 835 spa_errlog_drain(spa); 836 837 avl_destroy(&spa->spa_errlist_scrub); 838 avl_destroy(&spa->spa_errlist_last); 839 840 spa->spa_state = POOL_STATE_UNINITIALIZED; 841 842 mutex_enter(&spa->spa_proc_lock); 843 if (spa->spa_proc_state != SPA_PROC_NONE) { 844 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 845 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 846 cv_broadcast(&spa->spa_proc_cv); 847 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 848 ASSERT(spa->spa_proc != &p0); 849 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 850 } 851 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 852 spa->spa_proc_state = SPA_PROC_NONE; 853 } 854 ASSERT(spa->spa_proc == &p0); 855 mutex_exit(&spa->spa_proc_lock); 856 857 /* 858 * We want to make sure spa_thread() has actually exited the ZFS 859 * module, so that the module can't be unloaded out from underneath 860 * it. 861 */ 862 if (spa->spa_did != 0) { 863 thread_join(spa->spa_did); 864 spa->spa_did = 0; 865 } 866 } 867 868 /* 869 * Verify a pool configuration, and construct the vdev tree appropriately. This 870 * will create all the necessary vdevs in the appropriate layout, with each vdev 871 * in the CLOSED state. This will prep the pool before open/creation/import. 872 * All vdev validation is done by the vdev_alloc() routine. 873 */ 874 static int 875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 876 uint_t id, int atype) 877 { 878 nvlist_t **child; 879 uint_t children; 880 int error; 881 882 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 883 return (error); 884 885 if ((*vdp)->vdev_ops->vdev_op_leaf) 886 return (0); 887 888 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 889 &child, &children); 890 891 if (error == ENOENT) 892 return (0); 893 894 if (error) { 895 vdev_free(*vdp); 896 *vdp = NULL; 897 return (EINVAL); 898 } 899 900 for (int c = 0; c < children; c++) { 901 vdev_t *vd; 902 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 903 atype)) != 0) { 904 vdev_free(*vdp); 905 *vdp = NULL; 906 return (error); 907 } 908 } 909 910 ASSERT(*vdp != NULL); 911 912 return (0); 913 } 914 915 /* 916 * Opposite of spa_load(). 917 */ 918 static void 919 spa_unload(spa_t *spa) 920 { 921 int i; 922 923 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 924 925 /* 926 * Stop async tasks. 927 */ 928 spa_async_suspend(spa); 929 930 /* 931 * Stop syncing. 932 */ 933 if (spa->spa_sync_on) { 934 txg_sync_stop(spa->spa_dsl_pool); 935 spa->spa_sync_on = B_FALSE; 936 } 937 938 /* 939 * Wait for any outstanding async I/O to complete. 940 */ 941 if (spa->spa_async_zio_root != NULL) { 942 (void) zio_wait(spa->spa_async_zio_root); 943 spa->spa_async_zio_root = NULL; 944 } 945 946 /* 947 * Close the dsl pool. 948 */ 949 if (spa->spa_dsl_pool) { 950 dsl_pool_close(spa->spa_dsl_pool); 951 spa->spa_dsl_pool = NULL; 952 spa->spa_meta_objset = NULL; 953 } 954 955 ddt_unload(spa); 956 957 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 958 959 /* 960 * Drop and purge level 2 cache 961 */ 962 spa_l2cache_drop(spa); 963 964 /* 965 * Close all vdevs. 966 */ 967 if (spa->spa_root_vdev) 968 vdev_free(spa->spa_root_vdev); 969 ASSERT(spa->spa_root_vdev == NULL); 970 971 for (i = 0; i < spa->spa_spares.sav_count; i++) 972 vdev_free(spa->spa_spares.sav_vdevs[i]); 973 if (spa->spa_spares.sav_vdevs) { 974 kmem_free(spa->spa_spares.sav_vdevs, 975 spa->spa_spares.sav_count * sizeof (void *)); 976 spa->spa_spares.sav_vdevs = NULL; 977 } 978 if (spa->spa_spares.sav_config) { 979 nvlist_free(spa->spa_spares.sav_config); 980 spa->spa_spares.sav_config = NULL; 981 } 982 spa->spa_spares.sav_count = 0; 983 984 for (i = 0; i < spa->spa_l2cache.sav_count; i++) 985 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 986 if (spa->spa_l2cache.sav_vdevs) { 987 kmem_free(spa->spa_l2cache.sav_vdevs, 988 spa->spa_l2cache.sav_count * sizeof (void *)); 989 spa->spa_l2cache.sav_vdevs = NULL; 990 } 991 if (spa->spa_l2cache.sav_config) { 992 nvlist_free(spa->spa_l2cache.sav_config); 993 spa->spa_l2cache.sav_config = NULL; 994 } 995 spa->spa_l2cache.sav_count = 0; 996 997 spa->spa_async_suspended = 0; 998 999 spa_config_exit(spa, SCL_ALL, FTAG); 1000 } 1001 1002 /* 1003 * Load (or re-load) the current list of vdevs describing the active spares for 1004 * this pool. When this is called, we have some form of basic information in 1005 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1006 * then re-generate a more complete list including status information. 1007 */ 1008 static void 1009 spa_load_spares(spa_t *spa) 1010 { 1011 nvlist_t **spares; 1012 uint_t nspares; 1013 int i; 1014 vdev_t *vd, *tvd; 1015 1016 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1017 1018 /* 1019 * First, close and free any existing spare vdevs. 1020 */ 1021 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1022 vd = spa->spa_spares.sav_vdevs[i]; 1023 1024 /* Undo the call to spa_activate() below */ 1025 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1026 B_FALSE)) != NULL && tvd->vdev_isspare) 1027 spa_spare_remove(tvd); 1028 vdev_close(vd); 1029 vdev_free(vd); 1030 } 1031 1032 if (spa->spa_spares.sav_vdevs) 1033 kmem_free(spa->spa_spares.sav_vdevs, 1034 spa->spa_spares.sav_count * sizeof (void *)); 1035 1036 if (spa->spa_spares.sav_config == NULL) 1037 nspares = 0; 1038 else 1039 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1040 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1041 1042 spa->spa_spares.sav_count = (int)nspares; 1043 spa->spa_spares.sav_vdevs = NULL; 1044 1045 if (nspares == 0) 1046 return; 1047 1048 /* 1049 * Construct the array of vdevs, opening them to get status in the 1050 * process. For each spare, there is potentially two different vdev_t 1051 * structures associated with it: one in the list of spares (used only 1052 * for basic validation purposes) and one in the active vdev 1053 * configuration (if it's spared in). During this phase we open and 1054 * validate each vdev on the spare list. If the vdev also exists in the 1055 * active configuration, then we also mark this vdev as an active spare. 1056 */ 1057 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1058 KM_SLEEP); 1059 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1060 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1061 VDEV_ALLOC_SPARE) == 0); 1062 ASSERT(vd != NULL); 1063 1064 spa->spa_spares.sav_vdevs[i] = vd; 1065 1066 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1067 B_FALSE)) != NULL) { 1068 if (!tvd->vdev_isspare) 1069 spa_spare_add(tvd); 1070 1071 /* 1072 * We only mark the spare active if we were successfully 1073 * able to load the vdev. Otherwise, importing a pool 1074 * with a bad active spare would result in strange 1075 * behavior, because multiple pool would think the spare 1076 * is actively in use. 1077 * 1078 * There is a vulnerability here to an equally bizarre 1079 * circumstance, where a dead active spare is later 1080 * brought back to life (onlined or otherwise). Given 1081 * the rarity of this scenario, and the extra complexity 1082 * it adds, we ignore the possibility. 1083 */ 1084 if (!vdev_is_dead(tvd)) 1085 spa_spare_activate(tvd); 1086 } 1087 1088 vd->vdev_top = vd; 1089 vd->vdev_aux = &spa->spa_spares; 1090 1091 if (vdev_open(vd) != 0) 1092 continue; 1093 1094 if (vdev_validate_aux(vd) == 0) 1095 spa_spare_add(vd); 1096 } 1097 1098 /* 1099 * Recompute the stashed list of spares, with status information 1100 * this time. 1101 */ 1102 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1103 DATA_TYPE_NVLIST_ARRAY) == 0); 1104 1105 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1106 KM_SLEEP); 1107 for (i = 0; i < spa->spa_spares.sav_count; i++) 1108 spares[i] = vdev_config_generate(spa, 1109 spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE); 1110 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1111 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1112 for (i = 0; i < spa->spa_spares.sav_count; i++) 1113 nvlist_free(spares[i]); 1114 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1115 } 1116 1117 /* 1118 * Load (or re-load) the current list of vdevs describing the active l2cache for 1119 * this pool. When this is called, we have some form of basic information in 1120 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1121 * then re-generate a more complete list including status information. 1122 * Devices which are already active have their details maintained, and are 1123 * not re-opened. 1124 */ 1125 static void 1126 spa_load_l2cache(spa_t *spa) 1127 { 1128 nvlist_t **l2cache; 1129 uint_t nl2cache; 1130 int i, j, oldnvdevs; 1131 uint64_t guid; 1132 vdev_t *vd, **oldvdevs, **newvdevs; 1133 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1134 1135 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1136 1137 if (sav->sav_config != NULL) { 1138 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1139 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1140 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1141 } else { 1142 nl2cache = 0; 1143 } 1144 1145 oldvdevs = sav->sav_vdevs; 1146 oldnvdevs = sav->sav_count; 1147 sav->sav_vdevs = NULL; 1148 sav->sav_count = 0; 1149 1150 /* 1151 * Process new nvlist of vdevs. 1152 */ 1153 for (i = 0; i < nl2cache; i++) { 1154 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1155 &guid) == 0); 1156 1157 newvdevs[i] = NULL; 1158 for (j = 0; j < oldnvdevs; j++) { 1159 vd = oldvdevs[j]; 1160 if (vd != NULL && guid == vd->vdev_guid) { 1161 /* 1162 * Retain previous vdev for add/remove ops. 1163 */ 1164 newvdevs[i] = vd; 1165 oldvdevs[j] = NULL; 1166 break; 1167 } 1168 } 1169 1170 if (newvdevs[i] == NULL) { 1171 /* 1172 * Create new vdev 1173 */ 1174 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1175 VDEV_ALLOC_L2CACHE) == 0); 1176 ASSERT(vd != NULL); 1177 newvdevs[i] = vd; 1178 1179 /* 1180 * Commit this vdev as an l2cache device, 1181 * even if it fails to open. 1182 */ 1183 spa_l2cache_add(vd); 1184 1185 vd->vdev_top = vd; 1186 vd->vdev_aux = sav; 1187 1188 spa_l2cache_activate(vd); 1189 1190 if (vdev_open(vd) != 0) 1191 continue; 1192 1193 (void) vdev_validate_aux(vd); 1194 1195 if (!vdev_is_dead(vd)) 1196 l2arc_add_vdev(spa, vd); 1197 } 1198 } 1199 1200 /* 1201 * Purge vdevs that were dropped 1202 */ 1203 for (i = 0; i < oldnvdevs; i++) { 1204 uint64_t pool; 1205 1206 vd = oldvdevs[i]; 1207 if (vd != NULL) { 1208 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1209 pool != 0ULL && l2arc_vdev_present(vd)) 1210 l2arc_remove_vdev(vd); 1211 (void) vdev_close(vd); 1212 spa_l2cache_remove(vd); 1213 } 1214 } 1215 1216 if (oldvdevs) 1217 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1218 1219 if (sav->sav_config == NULL) 1220 goto out; 1221 1222 sav->sav_vdevs = newvdevs; 1223 sav->sav_count = (int)nl2cache; 1224 1225 /* 1226 * Recompute the stashed list of l2cache devices, with status 1227 * information this time. 1228 */ 1229 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1230 DATA_TYPE_NVLIST_ARRAY) == 0); 1231 1232 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1233 for (i = 0; i < sav->sav_count; i++) 1234 l2cache[i] = vdev_config_generate(spa, 1235 sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE); 1236 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1237 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1238 out: 1239 for (i = 0; i < sav->sav_count; i++) 1240 nvlist_free(l2cache[i]); 1241 if (sav->sav_count) 1242 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1243 } 1244 1245 static int 1246 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1247 { 1248 dmu_buf_t *db; 1249 char *packed = NULL; 1250 size_t nvsize = 0; 1251 int error; 1252 *value = NULL; 1253 1254 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1255 nvsize = *(uint64_t *)db->db_data; 1256 dmu_buf_rele(db, FTAG); 1257 1258 packed = kmem_alloc(nvsize, KM_SLEEP); 1259 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1260 DMU_READ_PREFETCH); 1261 if (error == 0) 1262 error = nvlist_unpack(packed, nvsize, value, 0); 1263 kmem_free(packed, nvsize); 1264 1265 return (error); 1266 } 1267 1268 /* 1269 * Checks to see if the given vdev could not be opened, in which case we post a 1270 * sysevent to notify the autoreplace code that the device has been removed. 1271 */ 1272 static void 1273 spa_check_removed(vdev_t *vd) 1274 { 1275 for (int c = 0; c < vd->vdev_children; c++) 1276 spa_check_removed(vd->vdev_child[c]); 1277 1278 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1279 zfs_post_autoreplace(vd->vdev_spa, vd); 1280 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1281 } 1282 } 1283 1284 /* 1285 * Load the slog device state from the config object since it's possible 1286 * that the label does not contain the most up-to-date information. 1287 */ 1288 void 1289 spa_load_log_state(spa_t *spa, nvlist_t *nv) 1290 { 1291 vdev_t *ovd, *rvd = spa->spa_root_vdev; 1292 1293 /* 1294 * Load the original root vdev tree from the passed config. 1295 */ 1296 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1297 VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1298 1299 for (int c = 0; c < rvd->vdev_children; c++) { 1300 vdev_t *cvd = rvd->vdev_child[c]; 1301 if (cvd->vdev_islog) 1302 vdev_load_log_state(cvd, ovd->vdev_child[c]); 1303 } 1304 vdev_free(ovd); 1305 spa_config_exit(spa, SCL_ALL, FTAG); 1306 } 1307 1308 /* 1309 * Check for missing log devices 1310 */ 1311 int 1312 spa_check_logs(spa_t *spa) 1313 { 1314 switch (spa->spa_log_state) { 1315 case SPA_LOG_MISSING: 1316 /* need to recheck in case slog has been restored */ 1317 case SPA_LOG_UNKNOWN: 1318 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1319 DS_FIND_CHILDREN)) { 1320 spa_set_log_state(spa, SPA_LOG_MISSING); 1321 return (1); 1322 } 1323 break; 1324 } 1325 return (0); 1326 } 1327 1328 static boolean_t 1329 spa_passivate_log(spa_t *spa) 1330 { 1331 vdev_t *rvd = spa->spa_root_vdev; 1332 boolean_t slog_found = B_FALSE; 1333 1334 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1335 1336 if (!spa_has_slogs(spa)) 1337 return (B_FALSE); 1338 1339 for (int c = 0; c < rvd->vdev_children; c++) { 1340 vdev_t *tvd = rvd->vdev_child[c]; 1341 metaslab_group_t *mg = tvd->vdev_mg; 1342 1343 if (tvd->vdev_islog) { 1344 metaslab_group_passivate(mg); 1345 slog_found = B_TRUE; 1346 } 1347 } 1348 1349 return (slog_found); 1350 } 1351 1352 static void 1353 spa_activate_log(spa_t *spa) 1354 { 1355 vdev_t *rvd = spa->spa_root_vdev; 1356 1357 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1358 1359 for (int c = 0; c < rvd->vdev_children; c++) { 1360 vdev_t *tvd = rvd->vdev_child[c]; 1361 metaslab_group_t *mg = tvd->vdev_mg; 1362 1363 if (tvd->vdev_islog) 1364 metaslab_group_activate(mg); 1365 } 1366 } 1367 1368 int 1369 spa_offline_log(spa_t *spa) 1370 { 1371 int error = 0; 1372 1373 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1374 NULL, DS_FIND_CHILDREN)) == 0) { 1375 1376 /* 1377 * We successfully offlined the log device, sync out the 1378 * current txg so that the "stubby" block can be removed 1379 * by zil_sync(). 1380 */ 1381 txg_wait_synced(spa->spa_dsl_pool, 0); 1382 } 1383 return (error); 1384 } 1385 1386 static void 1387 spa_aux_check_removed(spa_aux_vdev_t *sav) 1388 { 1389 for (int i = 0; i < sav->sav_count; i++) 1390 spa_check_removed(sav->sav_vdevs[i]); 1391 } 1392 1393 void 1394 spa_claim_notify(zio_t *zio) 1395 { 1396 spa_t *spa = zio->io_spa; 1397 1398 if (zio->io_error) 1399 return; 1400 1401 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1402 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1403 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1404 mutex_exit(&spa->spa_props_lock); 1405 } 1406 1407 typedef struct spa_load_error { 1408 uint64_t sle_meta_count; 1409 uint64_t sle_data_count; 1410 } spa_load_error_t; 1411 1412 static void 1413 spa_load_verify_done(zio_t *zio) 1414 { 1415 blkptr_t *bp = zio->io_bp; 1416 spa_load_error_t *sle = zio->io_private; 1417 dmu_object_type_t type = BP_GET_TYPE(bp); 1418 int error = zio->io_error; 1419 1420 if (error) { 1421 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1422 type != DMU_OT_INTENT_LOG) 1423 atomic_add_64(&sle->sle_meta_count, 1); 1424 else 1425 atomic_add_64(&sle->sle_data_count, 1); 1426 } 1427 zio_data_buf_free(zio->io_data, zio->io_size); 1428 } 1429 1430 /*ARGSUSED*/ 1431 static int 1432 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1433 const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1434 { 1435 if (bp != NULL) { 1436 zio_t *rio = arg; 1437 size_t size = BP_GET_PSIZE(bp); 1438 void *data = zio_data_buf_alloc(size); 1439 1440 zio_nowait(zio_read(rio, spa, bp, data, size, 1441 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1442 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1443 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1444 } 1445 return (0); 1446 } 1447 1448 static int 1449 spa_load_verify(spa_t *spa) 1450 { 1451 zio_t *rio; 1452 spa_load_error_t sle = { 0 }; 1453 zpool_rewind_policy_t policy; 1454 boolean_t verify_ok = B_FALSE; 1455 int error; 1456 1457 zpool_get_rewind_policy(spa->spa_config, &policy); 1458 1459 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1460 return (0); 1461 1462 rio = zio_root(spa, NULL, &sle, 1463 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1464 1465 error = traverse_pool(spa, spa->spa_verify_min_txg, 1466 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1467 1468 (void) zio_wait(rio); 1469 1470 spa->spa_load_meta_errors = sle.sle_meta_count; 1471 spa->spa_load_data_errors = sle.sle_data_count; 1472 1473 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1474 sle.sle_data_count <= policy.zrp_maxdata) { 1475 verify_ok = B_TRUE; 1476 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1477 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1478 } else { 1479 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1480 } 1481 1482 if (error) { 1483 if (error != ENXIO && error != EIO) 1484 error = EIO; 1485 return (error); 1486 } 1487 1488 return (verify_ok ? 0 : EIO); 1489 } 1490 1491 /* 1492 * Find a value in the pool props object. 1493 */ 1494 static void 1495 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1496 { 1497 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1498 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1499 } 1500 1501 /* 1502 * Find a value in the pool directory object. 1503 */ 1504 static int 1505 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1506 { 1507 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1508 name, sizeof (uint64_t), 1, val)); 1509 } 1510 1511 static int 1512 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1513 { 1514 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1515 return (err); 1516 } 1517 1518 /* 1519 * Fix up config after a partly-completed split. This is done with the 1520 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1521 * pool have that entry in their config, but only the splitting one contains 1522 * a list of all the guids of the vdevs that are being split off. 1523 * 1524 * This function determines what to do with that list: either rejoin 1525 * all the disks to the pool, or complete the splitting process. To attempt 1526 * the rejoin, each disk that is offlined is marked online again, and 1527 * we do a reopen() call. If the vdev label for every disk that was 1528 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1529 * then we call vdev_split() on each disk, and complete the split. 1530 * 1531 * Otherwise we leave the config alone, with all the vdevs in place in 1532 * the original pool. 1533 */ 1534 static void 1535 spa_try_repair(spa_t *spa, nvlist_t *config) 1536 { 1537 uint_t extracted; 1538 uint64_t *glist; 1539 uint_t i, gcount; 1540 nvlist_t *nvl; 1541 vdev_t **vd; 1542 boolean_t attempt_reopen; 1543 1544 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1545 return; 1546 1547 /* check that the config is complete */ 1548 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1549 &glist, &gcount) != 0) 1550 return; 1551 1552 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1553 1554 /* attempt to online all the vdevs & validate */ 1555 attempt_reopen = B_TRUE; 1556 for (i = 0; i < gcount; i++) { 1557 if (glist[i] == 0) /* vdev is hole */ 1558 continue; 1559 1560 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1561 if (vd[i] == NULL) { 1562 /* 1563 * Don't bother attempting to reopen the disks; 1564 * just do the split. 1565 */ 1566 attempt_reopen = B_FALSE; 1567 } else { 1568 /* attempt to re-online it */ 1569 vd[i]->vdev_offline = B_FALSE; 1570 } 1571 } 1572 1573 if (attempt_reopen) { 1574 vdev_reopen(spa->spa_root_vdev); 1575 1576 /* check each device to see what state it's in */ 1577 for (extracted = 0, i = 0; i < gcount; i++) { 1578 if (vd[i] != NULL && 1579 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1580 break; 1581 ++extracted; 1582 } 1583 } 1584 1585 /* 1586 * If every disk has been moved to the new pool, or if we never 1587 * even attempted to look at them, then we split them off for 1588 * good. 1589 */ 1590 if (!attempt_reopen || gcount == extracted) { 1591 for (i = 0; i < gcount; i++) 1592 if (vd[i] != NULL) 1593 vdev_split(vd[i]); 1594 vdev_reopen(spa->spa_root_vdev); 1595 } 1596 1597 kmem_free(vd, gcount * sizeof (vdev_t *)); 1598 } 1599 1600 static int 1601 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1602 boolean_t mosconfig) 1603 { 1604 nvlist_t *config = spa->spa_config; 1605 char *ereport = FM_EREPORT_ZFS_POOL; 1606 int error; 1607 uint64_t pool_guid; 1608 nvlist_t *nvl; 1609 1610 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1611 return (EINVAL); 1612 1613 /* 1614 * Versioning wasn't explicitly added to the label until later, so if 1615 * it's not present treat it as the initial version. 1616 */ 1617 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1618 &spa->spa_ubsync.ub_version) != 0) 1619 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1620 1621 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1622 &spa->spa_config_txg); 1623 1624 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1625 spa_guid_exists(pool_guid, 0)) { 1626 error = EEXIST; 1627 } else { 1628 spa->spa_load_guid = pool_guid; 1629 1630 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1631 &nvl) == 0) { 1632 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1633 KM_SLEEP) == 0); 1634 } 1635 1636 error = spa_load_impl(spa, pool_guid, config, state, type, 1637 mosconfig, &ereport); 1638 } 1639 1640 spa->spa_minref = refcount_count(&spa->spa_refcount); 1641 if (error && error != EBADF) 1642 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1643 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1644 spa->spa_ena = 0; 1645 1646 return (error); 1647 } 1648 1649 /* 1650 * Load an existing storage pool, using the pool's builtin spa_config as a 1651 * source of configuration information. 1652 */ 1653 static int 1654 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1655 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1656 char **ereport) 1657 { 1658 int error = 0; 1659 nvlist_t *nvconfig, *nvroot = NULL; 1660 vdev_t *rvd; 1661 uberblock_t *ub = &spa->spa_uberblock; 1662 uint64_t config_cache_txg = spa->spa_config_txg; 1663 int orig_mode = spa->spa_mode; 1664 int parse; 1665 1666 /* 1667 * If this is an untrusted config, access the pool in read-only mode. 1668 * This prevents things like resilvering recently removed devices. 1669 */ 1670 if (!mosconfig) 1671 spa->spa_mode = FREAD; 1672 1673 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1674 1675 spa->spa_load_state = state; 1676 1677 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1678 return (EINVAL); 1679 1680 parse = (type == SPA_IMPORT_EXISTING ? 1681 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1682 1683 /* 1684 * Create "The Godfather" zio to hold all async IOs 1685 */ 1686 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1687 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1688 1689 /* 1690 * Parse the configuration into a vdev tree. We explicitly set the 1691 * value that will be returned by spa_version() since parsing the 1692 * configuration requires knowing the version number. 1693 */ 1694 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1695 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1696 spa_config_exit(spa, SCL_ALL, FTAG); 1697 1698 if (error != 0) 1699 return (error); 1700 1701 ASSERT(spa->spa_root_vdev == rvd); 1702 1703 if (type != SPA_IMPORT_ASSEMBLE) { 1704 ASSERT(spa_guid(spa) == pool_guid); 1705 } 1706 1707 /* 1708 * Try to open all vdevs, loading each label in the process. 1709 */ 1710 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1711 error = vdev_open(rvd); 1712 spa_config_exit(spa, SCL_ALL, FTAG); 1713 if (error != 0) 1714 return (error); 1715 1716 /* 1717 * We need to validate the vdev labels against the configuration that 1718 * we have in hand, which is dependent on the setting of mosconfig. If 1719 * mosconfig is true then we're validating the vdev labels based on 1720 * that config. Otherwise, we're validating against the cached config 1721 * (zpool.cache) that was read when we loaded the zfs module, and then 1722 * later we will recursively call spa_load() and validate against 1723 * the vdev config. 1724 * 1725 * If we're assembling a new pool that's been split off from an 1726 * existing pool, the labels haven't yet been updated so we skip 1727 * validation for now. 1728 */ 1729 if (type != SPA_IMPORT_ASSEMBLE) { 1730 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1731 error = vdev_validate(rvd); 1732 spa_config_exit(spa, SCL_ALL, FTAG); 1733 1734 if (error != 0) 1735 return (error); 1736 1737 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1738 return (ENXIO); 1739 } 1740 1741 /* 1742 * Find the best uberblock. 1743 */ 1744 vdev_uberblock_load(NULL, rvd, ub); 1745 1746 /* 1747 * If we weren't able to find a single valid uberblock, return failure. 1748 */ 1749 if (ub->ub_txg == 0) 1750 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1751 1752 /* 1753 * If the pool is newer than the code, we can't open it. 1754 */ 1755 if (ub->ub_version > SPA_VERSION) 1756 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1757 1758 /* 1759 * If the vdev guid sum doesn't match the uberblock, we have an 1760 * incomplete configuration. 1761 */ 1762 if (mosconfig && type != SPA_IMPORT_ASSEMBLE && 1763 rvd->vdev_guid_sum != ub->ub_guid_sum) 1764 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1765 1766 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1767 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1768 spa_try_repair(spa, config); 1769 spa_config_exit(spa, SCL_ALL, FTAG); 1770 nvlist_free(spa->spa_config_splitting); 1771 spa->spa_config_splitting = NULL; 1772 } 1773 1774 /* 1775 * Initialize internal SPA structures. 1776 */ 1777 spa->spa_state = POOL_STATE_ACTIVE; 1778 spa->spa_ubsync = spa->spa_uberblock; 1779 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1780 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1781 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1782 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 1783 spa->spa_claim_max_txg = spa->spa_first_txg; 1784 1785 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 1786 if (error) 1787 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1788 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 1789 1790 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 1791 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1792 1793 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 1794 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1795 1796 if (!mosconfig) { 1797 uint64_t hostid; 1798 nvlist_t *policy = NULL; 1799 1800 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 1801 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 1802 char *hostname; 1803 unsigned long myhostid = 0; 1804 1805 VERIFY(nvlist_lookup_string(nvconfig, 1806 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 1807 1808 #ifdef _KERNEL 1809 myhostid = zone_get_hostid(NULL); 1810 #else /* _KERNEL */ 1811 /* 1812 * We're emulating the system's hostid in userland, so 1813 * we can't use zone_get_hostid(). 1814 */ 1815 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 1816 #endif /* _KERNEL */ 1817 if (hostid != 0 && myhostid != 0 && 1818 hostid != myhostid) { 1819 cmn_err(CE_WARN, "pool '%s' could not be " 1820 "loaded as it was last accessed by " 1821 "another system (host: %s hostid: 0x%lx). " 1822 "See: http://www.sun.com/msg/ZFS-8000-EY", 1823 spa_name(spa), hostname, 1824 (unsigned long)hostid); 1825 return (EBADF); 1826 } 1827 } 1828 if (nvlist_lookup_nvlist(spa->spa_config, 1829 ZPOOL_REWIND_POLICY, &policy) == 0) 1830 VERIFY(nvlist_add_nvlist(nvconfig, 1831 ZPOOL_REWIND_POLICY, policy) == 0); 1832 1833 spa_config_set(spa, nvconfig); 1834 spa_unload(spa); 1835 spa_deactivate(spa); 1836 spa_activate(spa, orig_mode); 1837 1838 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 1839 } 1840 1841 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST, 1842 &spa->spa_deferred_bplist_obj) != 0) 1843 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1844 1845 /* 1846 * Load the bit that tells us to use the new accounting function 1847 * (raid-z deflation). If we have an older pool, this will not 1848 * be present. 1849 */ 1850 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 1851 if (error != 0 && error != ENOENT) 1852 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1853 1854 /* 1855 * Load the persistent error log. If we have an older pool, this will 1856 * not be present. 1857 */ 1858 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 1859 if (error != 0 && error != ENOENT) 1860 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1861 1862 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 1863 &spa->spa_errlog_scrub); 1864 if (error != 0 && error != ENOENT) 1865 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1866 1867 /* 1868 * Load the history object. If we have an older pool, this 1869 * will not be present. 1870 */ 1871 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 1872 if (error != 0 && error != ENOENT) 1873 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1874 1875 /* 1876 * If we're assembling the pool from the split-off vdevs of 1877 * an existing pool, we don't want to attach the spares & cache 1878 * devices. 1879 */ 1880 1881 /* 1882 * Load any hot spares for this pool. 1883 */ 1884 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 1885 if (error != 0 && error != ENOENT) 1886 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1887 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1888 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 1889 if (load_nvlist(spa, spa->spa_spares.sav_object, 1890 &spa->spa_spares.sav_config) != 0) 1891 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1892 1893 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1894 spa_load_spares(spa); 1895 spa_config_exit(spa, SCL_ALL, FTAG); 1896 } else if (error == 0) { 1897 spa->spa_spares.sav_sync = B_TRUE; 1898 } 1899 1900 /* 1901 * Load any level 2 ARC devices for this pool. 1902 */ 1903 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 1904 &spa->spa_l2cache.sav_object); 1905 if (error != 0 && error != ENOENT) 1906 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1907 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 1908 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 1909 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 1910 &spa->spa_l2cache.sav_config) != 0) 1911 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1912 1913 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1914 spa_load_l2cache(spa); 1915 spa_config_exit(spa, SCL_ALL, FTAG); 1916 } else if (error == 0) { 1917 spa->spa_l2cache.sav_sync = B_TRUE; 1918 } 1919 1920 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 1921 1922 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 1923 if (error && error != ENOENT) 1924 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1925 1926 if (error == 0) { 1927 uint64_t autoreplace; 1928 1929 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 1930 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 1931 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 1932 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 1933 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 1934 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 1935 &spa->spa_dedup_ditto); 1936 1937 spa->spa_autoreplace = (autoreplace != 0); 1938 } 1939 1940 /* 1941 * If the 'autoreplace' property is set, then post a resource notifying 1942 * the ZFS DE that it should not issue any faults for unopenable 1943 * devices. We also iterate over the vdevs, and post a sysevent for any 1944 * unopenable vdevs so that the normal autoreplace handler can take 1945 * over. 1946 */ 1947 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 1948 spa_check_removed(spa->spa_root_vdev); 1949 /* 1950 * For the import case, this is done in spa_import(), because 1951 * at this point we're using the spare definitions from 1952 * the MOS config, not necessarily from the userland config. 1953 */ 1954 if (state != SPA_LOAD_IMPORT) { 1955 spa_aux_check_removed(&spa->spa_spares); 1956 spa_aux_check_removed(&spa->spa_l2cache); 1957 } 1958 } 1959 1960 /* 1961 * Load the vdev state for all toplevel vdevs. 1962 */ 1963 vdev_load(rvd); 1964 1965 /* 1966 * Propagate the leaf DTLs we just loaded all the way up the tree. 1967 */ 1968 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1969 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 1970 spa_config_exit(spa, SCL_ALL, FTAG); 1971 1972 /* 1973 * Check the state of the root vdev. If it can't be opened, it 1974 * indicates one or more toplevel vdevs are faulted. 1975 */ 1976 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1977 return (ENXIO); 1978 1979 /* 1980 * Load the DDTs (dedup tables). 1981 */ 1982 error = ddt_load(spa); 1983 if (error != 0) 1984 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 1985 1986 spa_update_dspace(spa); 1987 1988 if (state != SPA_LOAD_TRYIMPORT) { 1989 error = spa_load_verify(spa); 1990 if (error) 1991 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 1992 error)); 1993 } 1994 1995 /* 1996 * Load the intent log state and check log integrity. If we're 1997 * assembling a pool from a split, the log is not transferred over. 1998 */ 1999 if (type != SPA_IMPORT_ASSEMBLE) { 2000 VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE, 2001 &nvroot) == 0); 2002 spa_load_log_state(spa, nvroot); 2003 nvlist_free(nvconfig); 2004 2005 if (spa_check_logs(spa)) { 2006 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2007 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2008 } 2009 } 2010 2011 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2012 spa->spa_load_max_txg == UINT64_MAX)) { 2013 dmu_tx_t *tx; 2014 int need_update = B_FALSE; 2015 2016 ASSERT(state != SPA_LOAD_TRYIMPORT); 2017 2018 /* 2019 * Claim log blocks that haven't been committed yet. 2020 * This must all happen in a single txg. 2021 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2022 * invoked from zil_claim_log_block()'s i/o done callback. 2023 * Price of rollback is that we abandon the log. 2024 */ 2025 spa->spa_claiming = B_TRUE; 2026 2027 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2028 spa_first_txg(spa)); 2029 (void) dmu_objset_find(spa_name(spa), 2030 zil_claim, tx, DS_FIND_CHILDREN); 2031 dmu_tx_commit(tx); 2032 2033 spa->spa_claiming = B_FALSE; 2034 2035 spa_set_log_state(spa, SPA_LOG_GOOD); 2036 spa->spa_sync_on = B_TRUE; 2037 txg_sync_start(spa->spa_dsl_pool); 2038 2039 /* 2040 * Wait for all claims to sync. We sync up to the highest 2041 * claimed log block birth time so that claimed log blocks 2042 * don't appear to be from the future. spa_claim_max_txg 2043 * will have been set for us by either zil_check_log_chain() 2044 * (invoked from spa_check_logs()) or zil_claim() above. 2045 */ 2046 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2047 2048 /* 2049 * If the config cache is stale, or we have uninitialized 2050 * metaslabs (see spa_vdev_add()), then update the config. 2051 * 2052 * If spa_load_verbatim is true, trust the current 2053 * in-core spa_config and update the disk labels. 2054 */ 2055 if (config_cache_txg != spa->spa_config_txg || 2056 state == SPA_LOAD_IMPORT || spa->spa_load_verbatim || 2057 state == SPA_LOAD_RECOVER) 2058 need_update = B_TRUE; 2059 2060 for (int c = 0; c < rvd->vdev_children; c++) 2061 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2062 need_update = B_TRUE; 2063 2064 /* 2065 * Update the config cache asychronously in case we're the 2066 * root pool, in which case the config cache isn't writable yet. 2067 */ 2068 if (need_update) 2069 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2070 2071 /* 2072 * Check all DTLs to see if anything needs resilvering. 2073 */ 2074 if (vdev_resilver_needed(rvd, NULL, NULL)) 2075 spa_async_request(spa, SPA_ASYNC_RESILVER); 2076 2077 /* 2078 * Delete any inconsistent datasets. 2079 */ 2080 (void) dmu_objset_find(spa_name(spa), 2081 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2082 2083 /* 2084 * Clean up any stale temporary dataset userrefs. 2085 */ 2086 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2087 } 2088 2089 return (0); 2090 } 2091 2092 static int 2093 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2094 { 2095 spa_unload(spa); 2096 spa_deactivate(spa); 2097 2098 spa->spa_load_max_txg--; 2099 2100 spa_activate(spa, spa_mode_global); 2101 spa_async_suspend(spa); 2102 2103 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2104 } 2105 2106 static int 2107 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2108 uint64_t max_request, int rewind_flags) 2109 { 2110 nvlist_t *config = NULL; 2111 int load_error, rewind_error; 2112 uint64_t safe_rewind_txg; 2113 uint64_t min_txg; 2114 2115 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2116 spa->spa_load_max_txg = spa->spa_load_txg; 2117 spa_set_log_state(spa, SPA_LOG_CLEAR); 2118 } else { 2119 spa->spa_load_max_txg = max_request; 2120 } 2121 2122 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2123 mosconfig); 2124 if (load_error == 0) 2125 return (0); 2126 2127 if (spa->spa_root_vdev != NULL) 2128 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2129 2130 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2131 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2132 2133 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2134 nvlist_free(config); 2135 return (load_error); 2136 } 2137 2138 /* Price of rolling back is discarding txgs, including log */ 2139 if (state == SPA_LOAD_RECOVER) 2140 spa_set_log_state(spa, SPA_LOG_CLEAR); 2141 2142 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2143 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2144 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2145 TXG_INITIAL : safe_rewind_txg; 2146 2147 /* 2148 * Continue as long as we're finding errors, we're still within 2149 * the acceptable rewind range, and we're still finding uberblocks 2150 */ 2151 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2152 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2153 if (spa->spa_load_max_txg < safe_rewind_txg) 2154 spa->spa_extreme_rewind = B_TRUE; 2155 rewind_error = spa_load_retry(spa, state, mosconfig); 2156 } 2157 2158 if (config) 2159 spa_rewind_data_to_nvlist(spa, config); 2160 2161 spa->spa_extreme_rewind = B_FALSE; 2162 spa->spa_load_max_txg = UINT64_MAX; 2163 2164 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2165 spa_config_set(spa, config); 2166 2167 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2168 } 2169 2170 /* 2171 * Pool Open/Import 2172 * 2173 * The import case is identical to an open except that the configuration is sent 2174 * down from userland, instead of grabbed from the configuration cache. For the 2175 * case of an open, the pool configuration will exist in the 2176 * POOL_STATE_UNINITIALIZED state. 2177 * 2178 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2179 * the same time open the pool, without having to keep around the spa_t in some 2180 * ambiguous state. 2181 */ 2182 static int 2183 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2184 nvlist_t **config) 2185 { 2186 spa_t *spa; 2187 zpool_rewind_policy_t policy; 2188 spa_load_state_t state = SPA_LOAD_OPEN; 2189 int error; 2190 int locked = B_FALSE; 2191 2192 *spapp = NULL; 2193 2194 /* 2195 * As disgusting as this is, we need to support recursive calls to this 2196 * function because dsl_dir_open() is called during spa_load(), and ends 2197 * up calling spa_open() again. The real fix is to figure out how to 2198 * avoid dsl_dir_open() calling this in the first place. 2199 */ 2200 if (mutex_owner(&spa_namespace_lock) != curthread) { 2201 mutex_enter(&spa_namespace_lock); 2202 locked = B_TRUE; 2203 } 2204 2205 if ((spa = spa_lookup(pool)) == NULL) { 2206 if (locked) 2207 mutex_exit(&spa_namespace_lock); 2208 return (ENOENT); 2209 } 2210 2211 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, &policy); 2212 if (policy.zrp_request & ZPOOL_DO_REWIND) 2213 state = SPA_LOAD_RECOVER; 2214 2215 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2216 2217 spa_activate(spa, spa_mode_global); 2218 2219 if (spa->spa_last_open_failed && (policy.zrp_request & 2220 (ZPOOL_NO_REWIND | ZPOOL_NEVER_REWIND))) { 2221 if (config != NULL && spa->spa_config) 2222 VERIFY(nvlist_dup(spa->spa_config, 2223 config, KM_SLEEP) == 0); 2224 spa_deactivate(spa); 2225 if (locked) 2226 mutex_exit(&spa_namespace_lock); 2227 return (spa->spa_last_open_failed); 2228 } 2229 2230 if (state != SPA_LOAD_RECOVER) 2231 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2232 2233 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2234 policy.zrp_request); 2235 2236 if (error == EBADF) { 2237 /* 2238 * If vdev_validate() returns failure (indicated by 2239 * EBADF), it indicates that one of the vdevs indicates 2240 * that the pool has been exported or destroyed. If 2241 * this is the case, the config cache is out of sync and 2242 * we should remove the pool from the namespace. 2243 */ 2244 spa_unload(spa); 2245 spa_deactivate(spa); 2246 spa_config_sync(spa, B_TRUE, B_TRUE); 2247 spa_remove(spa); 2248 if (locked) 2249 mutex_exit(&spa_namespace_lock); 2250 return (ENOENT); 2251 } 2252 2253 if (error) { 2254 /* 2255 * We can't open the pool, but we still have useful 2256 * information: the state of each vdev after the 2257 * attempted vdev_open(). Return this to the user. 2258 */ 2259 if (config != NULL && spa->spa_config) 2260 VERIFY(nvlist_dup(spa->spa_config, config, 2261 KM_SLEEP) == 0); 2262 spa_unload(spa); 2263 spa_deactivate(spa); 2264 spa->spa_last_open_failed = error; 2265 if (locked) 2266 mutex_exit(&spa_namespace_lock); 2267 *spapp = NULL; 2268 return (error); 2269 } 2270 2271 } 2272 2273 spa_open_ref(spa, tag); 2274 2275 2276 if (config != NULL) 2277 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2278 2279 if (locked) { 2280 spa->spa_last_open_failed = 0; 2281 spa->spa_last_ubsync_txg = 0; 2282 spa->spa_load_txg = 0; 2283 mutex_exit(&spa_namespace_lock); 2284 } 2285 2286 *spapp = spa; 2287 2288 return (0); 2289 } 2290 2291 int 2292 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2293 nvlist_t **config) 2294 { 2295 return (spa_open_common(name, spapp, tag, policy, config)); 2296 } 2297 2298 int 2299 spa_open(const char *name, spa_t **spapp, void *tag) 2300 { 2301 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2302 } 2303 2304 /* 2305 * Lookup the given spa_t, incrementing the inject count in the process, 2306 * preventing it from being exported or destroyed. 2307 */ 2308 spa_t * 2309 spa_inject_addref(char *name) 2310 { 2311 spa_t *spa; 2312 2313 mutex_enter(&spa_namespace_lock); 2314 if ((spa = spa_lookup(name)) == NULL) { 2315 mutex_exit(&spa_namespace_lock); 2316 return (NULL); 2317 } 2318 spa->spa_inject_ref++; 2319 mutex_exit(&spa_namespace_lock); 2320 2321 return (spa); 2322 } 2323 2324 void 2325 spa_inject_delref(spa_t *spa) 2326 { 2327 mutex_enter(&spa_namespace_lock); 2328 spa->spa_inject_ref--; 2329 mutex_exit(&spa_namespace_lock); 2330 } 2331 2332 /* 2333 * Add spares device information to the nvlist. 2334 */ 2335 static void 2336 spa_add_spares(spa_t *spa, nvlist_t *config) 2337 { 2338 nvlist_t **spares; 2339 uint_t i, nspares; 2340 nvlist_t *nvroot; 2341 uint64_t guid; 2342 vdev_stat_t *vs; 2343 uint_t vsc; 2344 uint64_t pool; 2345 2346 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2347 2348 if (spa->spa_spares.sav_count == 0) 2349 return; 2350 2351 VERIFY(nvlist_lookup_nvlist(config, 2352 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2353 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2354 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2355 if (nspares != 0) { 2356 VERIFY(nvlist_add_nvlist_array(nvroot, 2357 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2358 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2359 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2360 2361 /* 2362 * Go through and find any spares which have since been 2363 * repurposed as an active spare. If this is the case, update 2364 * their status appropriately. 2365 */ 2366 for (i = 0; i < nspares; i++) { 2367 VERIFY(nvlist_lookup_uint64(spares[i], 2368 ZPOOL_CONFIG_GUID, &guid) == 0); 2369 if (spa_spare_exists(guid, &pool, NULL) && 2370 pool != 0ULL) { 2371 VERIFY(nvlist_lookup_uint64_array( 2372 spares[i], ZPOOL_CONFIG_STATS, 2373 (uint64_t **)&vs, &vsc) == 0); 2374 vs->vs_state = VDEV_STATE_CANT_OPEN; 2375 vs->vs_aux = VDEV_AUX_SPARED; 2376 } 2377 } 2378 } 2379 } 2380 2381 /* 2382 * Add l2cache device information to the nvlist, including vdev stats. 2383 */ 2384 static void 2385 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2386 { 2387 nvlist_t **l2cache; 2388 uint_t i, j, nl2cache; 2389 nvlist_t *nvroot; 2390 uint64_t guid; 2391 vdev_t *vd; 2392 vdev_stat_t *vs; 2393 uint_t vsc; 2394 2395 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2396 2397 if (spa->spa_l2cache.sav_count == 0) 2398 return; 2399 2400 VERIFY(nvlist_lookup_nvlist(config, 2401 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2402 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2403 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2404 if (nl2cache != 0) { 2405 VERIFY(nvlist_add_nvlist_array(nvroot, 2406 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2407 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2408 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2409 2410 /* 2411 * Update level 2 cache device stats. 2412 */ 2413 2414 for (i = 0; i < nl2cache; i++) { 2415 VERIFY(nvlist_lookup_uint64(l2cache[i], 2416 ZPOOL_CONFIG_GUID, &guid) == 0); 2417 2418 vd = NULL; 2419 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2420 if (guid == 2421 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2422 vd = spa->spa_l2cache.sav_vdevs[j]; 2423 break; 2424 } 2425 } 2426 ASSERT(vd != NULL); 2427 2428 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2429 ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0); 2430 vdev_get_stats(vd, vs); 2431 } 2432 } 2433 } 2434 2435 int 2436 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2437 { 2438 int error; 2439 spa_t *spa; 2440 2441 *config = NULL; 2442 error = spa_open_common(name, &spa, FTAG, NULL, config); 2443 2444 if (spa != NULL) { 2445 /* 2446 * This still leaves a window of inconsistency where the spares 2447 * or l2cache devices could change and the config would be 2448 * self-inconsistent. 2449 */ 2450 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2451 2452 if (*config != NULL) { 2453 VERIFY(nvlist_add_uint64(*config, 2454 ZPOOL_CONFIG_ERRCOUNT, 2455 spa_get_errlog_size(spa)) == 0); 2456 2457 if (spa_suspended(spa)) 2458 VERIFY(nvlist_add_uint64(*config, 2459 ZPOOL_CONFIG_SUSPENDED, 2460 spa->spa_failmode) == 0); 2461 2462 spa_add_spares(spa, *config); 2463 spa_add_l2cache(spa, *config); 2464 } 2465 } 2466 2467 /* 2468 * We want to get the alternate root even for faulted pools, so we cheat 2469 * and call spa_lookup() directly. 2470 */ 2471 if (altroot) { 2472 if (spa == NULL) { 2473 mutex_enter(&spa_namespace_lock); 2474 spa = spa_lookup(name); 2475 if (spa) 2476 spa_altroot(spa, altroot, buflen); 2477 else 2478 altroot[0] = '\0'; 2479 spa = NULL; 2480 mutex_exit(&spa_namespace_lock); 2481 } else { 2482 spa_altroot(spa, altroot, buflen); 2483 } 2484 } 2485 2486 if (spa != NULL) { 2487 spa_config_exit(spa, SCL_CONFIG, FTAG); 2488 spa_close(spa, FTAG); 2489 } 2490 2491 return (error); 2492 } 2493 2494 /* 2495 * Validate that the auxiliary device array is well formed. We must have an 2496 * array of nvlists, each which describes a valid leaf vdev. If this is an 2497 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2498 * specified, as long as they are well-formed. 2499 */ 2500 static int 2501 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2502 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2503 vdev_labeltype_t label) 2504 { 2505 nvlist_t **dev; 2506 uint_t i, ndev; 2507 vdev_t *vd; 2508 int error; 2509 2510 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2511 2512 /* 2513 * It's acceptable to have no devs specified. 2514 */ 2515 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2516 return (0); 2517 2518 if (ndev == 0) 2519 return (EINVAL); 2520 2521 /* 2522 * Make sure the pool is formatted with a version that supports this 2523 * device type. 2524 */ 2525 if (spa_version(spa) < version) 2526 return (ENOTSUP); 2527 2528 /* 2529 * Set the pending device list so we correctly handle device in-use 2530 * checking. 2531 */ 2532 sav->sav_pending = dev; 2533 sav->sav_npending = ndev; 2534 2535 for (i = 0; i < ndev; i++) { 2536 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2537 mode)) != 0) 2538 goto out; 2539 2540 if (!vd->vdev_ops->vdev_op_leaf) { 2541 vdev_free(vd); 2542 error = EINVAL; 2543 goto out; 2544 } 2545 2546 /* 2547 * The L2ARC currently only supports disk devices in 2548 * kernel context. For user-level testing, we allow it. 2549 */ 2550 #ifdef _KERNEL 2551 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2552 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2553 error = ENOTBLK; 2554 goto out; 2555 } 2556 #endif 2557 vd->vdev_top = vd; 2558 2559 if ((error = vdev_open(vd)) == 0 && 2560 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2561 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2562 vd->vdev_guid) == 0); 2563 } 2564 2565 vdev_free(vd); 2566 2567 if (error && 2568 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2569 goto out; 2570 else 2571 error = 0; 2572 } 2573 2574 out: 2575 sav->sav_pending = NULL; 2576 sav->sav_npending = 0; 2577 return (error); 2578 } 2579 2580 static int 2581 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2582 { 2583 int error; 2584 2585 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2586 2587 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2588 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2589 VDEV_LABEL_SPARE)) != 0) { 2590 return (error); 2591 } 2592 2593 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2594 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2595 VDEV_LABEL_L2CACHE)); 2596 } 2597 2598 static void 2599 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2600 const char *config) 2601 { 2602 int i; 2603 2604 if (sav->sav_config != NULL) { 2605 nvlist_t **olddevs; 2606 uint_t oldndevs; 2607 nvlist_t **newdevs; 2608 2609 /* 2610 * Generate new dev list by concatentating with the 2611 * current dev list. 2612 */ 2613 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2614 &olddevs, &oldndevs) == 0); 2615 2616 newdevs = kmem_alloc(sizeof (void *) * 2617 (ndevs + oldndevs), KM_SLEEP); 2618 for (i = 0; i < oldndevs; i++) 2619 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2620 KM_SLEEP) == 0); 2621 for (i = 0; i < ndevs; i++) 2622 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2623 KM_SLEEP) == 0); 2624 2625 VERIFY(nvlist_remove(sav->sav_config, config, 2626 DATA_TYPE_NVLIST_ARRAY) == 0); 2627 2628 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2629 config, newdevs, ndevs + oldndevs) == 0); 2630 for (i = 0; i < oldndevs + ndevs; i++) 2631 nvlist_free(newdevs[i]); 2632 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2633 } else { 2634 /* 2635 * Generate a new dev list. 2636 */ 2637 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2638 KM_SLEEP) == 0); 2639 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2640 devs, ndevs) == 0); 2641 } 2642 } 2643 2644 /* 2645 * Stop and drop level 2 ARC devices 2646 */ 2647 void 2648 spa_l2cache_drop(spa_t *spa) 2649 { 2650 vdev_t *vd; 2651 int i; 2652 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2653 2654 for (i = 0; i < sav->sav_count; i++) { 2655 uint64_t pool; 2656 2657 vd = sav->sav_vdevs[i]; 2658 ASSERT(vd != NULL); 2659 2660 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2661 pool != 0ULL && l2arc_vdev_present(vd)) 2662 l2arc_remove_vdev(vd); 2663 if (vd->vdev_isl2cache) 2664 spa_l2cache_remove(vd); 2665 vdev_clear_stats(vd); 2666 (void) vdev_close(vd); 2667 } 2668 } 2669 2670 /* 2671 * Pool Creation 2672 */ 2673 int 2674 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2675 const char *history_str, nvlist_t *zplprops) 2676 { 2677 spa_t *spa; 2678 char *altroot = NULL; 2679 vdev_t *rvd; 2680 dsl_pool_t *dp; 2681 dmu_tx_t *tx; 2682 int error = 0; 2683 uint64_t txg = TXG_INITIAL; 2684 nvlist_t **spares, **l2cache; 2685 uint_t nspares, nl2cache; 2686 uint64_t version; 2687 2688 /* 2689 * If this pool already exists, return failure. 2690 */ 2691 mutex_enter(&spa_namespace_lock); 2692 if (spa_lookup(pool) != NULL) { 2693 mutex_exit(&spa_namespace_lock); 2694 return (EEXIST); 2695 } 2696 2697 /* 2698 * Allocate a new spa_t structure. 2699 */ 2700 (void) nvlist_lookup_string(props, 2701 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2702 spa = spa_add(pool, NULL, altroot); 2703 spa_activate(spa, spa_mode_global); 2704 2705 if (props && (error = spa_prop_validate(spa, props))) { 2706 spa_deactivate(spa); 2707 spa_remove(spa); 2708 mutex_exit(&spa_namespace_lock); 2709 return (error); 2710 } 2711 2712 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2713 &version) != 0) 2714 version = SPA_VERSION; 2715 ASSERT(version <= SPA_VERSION); 2716 2717 spa->spa_first_txg = txg; 2718 spa->spa_uberblock.ub_txg = txg - 1; 2719 spa->spa_uberblock.ub_version = version; 2720 spa->spa_ubsync = spa->spa_uberblock; 2721 2722 /* 2723 * Create "The Godfather" zio to hold all async IOs 2724 */ 2725 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2726 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2727 2728 /* 2729 * Create the root vdev. 2730 */ 2731 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2732 2733 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2734 2735 ASSERT(error != 0 || rvd != NULL); 2736 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2737 2738 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2739 error = EINVAL; 2740 2741 if (error == 0 && 2742 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2743 (error = spa_validate_aux(spa, nvroot, txg, 2744 VDEV_ALLOC_ADD)) == 0) { 2745 for (int c = 0; c < rvd->vdev_children; c++) { 2746 vdev_metaslab_set_size(rvd->vdev_child[c]); 2747 vdev_expand(rvd->vdev_child[c], txg); 2748 } 2749 } 2750 2751 spa_config_exit(spa, SCL_ALL, FTAG); 2752 2753 if (error != 0) { 2754 spa_unload(spa); 2755 spa_deactivate(spa); 2756 spa_remove(spa); 2757 mutex_exit(&spa_namespace_lock); 2758 return (error); 2759 } 2760 2761 /* 2762 * Get the list of spares, if specified. 2763 */ 2764 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2765 &spares, &nspares) == 0) { 2766 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 2767 KM_SLEEP) == 0); 2768 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 2769 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2770 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2771 spa_load_spares(spa); 2772 spa_config_exit(spa, SCL_ALL, FTAG); 2773 spa->spa_spares.sav_sync = B_TRUE; 2774 } 2775 2776 /* 2777 * Get the list of level 2 cache devices, if specified. 2778 */ 2779 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 2780 &l2cache, &nl2cache) == 0) { 2781 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 2782 NV_UNIQUE_NAME, KM_SLEEP) == 0); 2783 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 2784 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2785 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2786 spa_load_l2cache(spa); 2787 spa_config_exit(spa, SCL_ALL, FTAG); 2788 spa->spa_l2cache.sav_sync = B_TRUE; 2789 } 2790 2791 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 2792 spa->spa_meta_objset = dp->dp_meta_objset; 2793 2794 /* 2795 * Create DDTs (dedup tables). 2796 */ 2797 ddt_create(spa); 2798 2799 spa_update_dspace(spa); 2800 2801 tx = dmu_tx_create_assigned(dp, txg); 2802 2803 /* 2804 * Create the pool config object. 2805 */ 2806 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 2807 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 2808 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2809 2810 if (zap_add(spa->spa_meta_objset, 2811 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 2812 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 2813 cmn_err(CE_PANIC, "failed to add pool config"); 2814 } 2815 2816 /* Newly created pools with the right version are always deflated. */ 2817 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 2818 spa->spa_deflate = TRUE; 2819 if (zap_add(spa->spa_meta_objset, 2820 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 2821 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 2822 cmn_err(CE_PANIC, "failed to add deflate"); 2823 } 2824 } 2825 2826 /* 2827 * Create the deferred-free bplist object. Turn off compression 2828 * because sync-to-convergence takes longer if the blocksize 2829 * keeps changing. 2830 */ 2831 spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset, 2832 1 << 14, tx); 2833 dmu_object_set_compress(spa->spa_meta_objset, 2834 spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx); 2835 2836 if (zap_add(spa->spa_meta_objset, 2837 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 2838 sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) { 2839 cmn_err(CE_PANIC, "failed to add bplist"); 2840 } 2841 2842 /* 2843 * Create the pool's history object. 2844 */ 2845 if (version >= SPA_VERSION_ZPOOL_HISTORY) 2846 spa_history_create_obj(spa, tx); 2847 2848 /* 2849 * Set pool properties. 2850 */ 2851 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 2852 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2853 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 2854 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 2855 2856 if (props != NULL) { 2857 spa_configfile_set(spa, props, B_FALSE); 2858 spa_sync_props(spa, props, CRED(), tx); 2859 } 2860 2861 dmu_tx_commit(tx); 2862 2863 spa->spa_sync_on = B_TRUE; 2864 txg_sync_start(spa->spa_dsl_pool); 2865 2866 /* 2867 * We explicitly wait for the first transaction to complete so that our 2868 * bean counters are appropriately updated. 2869 */ 2870 txg_wait_synced(spa->spa_dsl_pool, txg); 2871 2872 spa_config_sync(spa, B_FALSE, B_TRUE); 2873 2874 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 2875 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 2876 spa_history_log_version(spa, LOG_POOL_CREATE); 2877 2878 spa->spa_minref = refcount_count(&spa->spa_refcount); 2879 2880 mutex_exit(&spa_namespace_lock); 2881 2882 return (0); 2883 } 2884 2885 #ifdef _KERNEL 2886 /* 2887 * Get the root pool information from the root disk, then import the root pool 2888 * during the system boot up time. 2889 */ 2890 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 2891 2892 static nvlist_t * 2893 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 2894 { 2895 nvlist_t *config; 2896 nvlist_t *nvtop, *nvroot; 2897 uint64_t pgid; 2898 2899 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 2900 return (NULL); 2901 2902 /* 2903 * Add this top-level vdev to the child array. 2904 */ 2905 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 2906 &nvtop) == 0); 2907 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 2908 &pgid) == 0); 2909 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 2910 2911 /* 2912 * Put this pool's top-level vdevs into a root vdev. 2913 */ 2914 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2915 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 2916 VDEV_TYPE_ROOT) == 0); 2917 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 2918 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 2919 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 2920 &nvtop, 1) == 0); 2921 2922 /* 2923 * Replace the existing vdev_tree with the new root vdev in 2924 * this pool's configuration (remove the old, add the new). 2925 */ 2926 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 2927 nvlist_free(nvroot); 2928 return (config); 2929 } 2930 2931 /* 2932 * Walk the vdev tree and see if we can find a device with "better" 2933 * configuration. A configuration is "better" if the label on that 2934 * device has a more recent txg. 2935 */ 2936 static void 2937 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 2938 { 2939 for (int c = 0; c < vd->vdev_children; c++) 2940 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 2941 2942 if (vd->vdev_ops->vdev_op_leaf) { 2943 nvlist_t *label; 2944 uint64_t label_txg; 2945 2946 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 2947 &label) != 0) 2948 return; 2949 2950 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 2951 &label_txg) == 0); 2952 2953 /* 2954 * Do we have a better boot device? 2955 */ 2956 if (label_txg > *txg) { 2957 *txg = label_txg; 2958 *avd = vd; 2959 } 2960 nvlist_free(label); 2961 } 2962 } 2963 2964 /* 2965 * Import a root pool. 2966 * 2967 * For x86. devpath_list will consist of devid and/or physpath name of 2968 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 2969 * The GRUB "findroot" command will return the vdev we should boot. 2970 * 2971 * For Sparc, devpath_list consists the physpath name of the booting device 2972 * no matter the rootpool is a single device pool or a mirrored pool. 2973 * e.g. 2974 * "/pci@1f,0/ide@d/disk@0,0:a" 2975 */ 2976 int 2977 spa_import_rootpool(char *devpath, char *devid) 2978 { 2979 spa_t *spa; 2980 vdev_t *rvd, *bvd, *avd = NULL; 2981 nvlist_t *config, *nvtop; 2982 uint64_t guid, txg; 2983 char *pname; 2984 int error; 2985 2986 /* 2987 * Read the label from the boot device and generate a configuration. 2988 */ 2989 config = spa_generate_rootconf(devpath, devid, &guid); 2990 #if defined(_OBP) && defined(_KERNEL) 2991 if (config == NULL) { 2992 if (strstr(devpath, "/iscsi/ssd") != NULL) { 2993 /* iscsi boot */ 2994 get_iscsi_bootpath_phy(devpath); 2995 config = spa_generate_rootconf(devpath, devid, &guid); 2996 } 2997 } 2998 #endif 2999 if (config == NULL) { 3000 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3001 devpath); 3002 return (EIO); 3003 } 3004 3005 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3006 &pname) == 0); 3007 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3008 3009 mutex_enter(&spa_namespace_lock); 3010 if ((spa = spa_lookup(pname)) != NULL) { 3011 /* 3012 * Remove the existing root pool from the namespace so that we 3013 * can replace it with the correct config we just read in. 3014 */ 3015 spa_remove(spa); 3016 } 3017 3018 spa = spa_add(pname, config, NULL); 3019 spa->spa_is_root = B_TRUE; 3020 spa->spa_load_verbatim = B_TRUE; 3021 3022 /* 3023 * Build up a vdev tree based on the boot device's label config. 3024 */ 3025 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3026 &nvtop) == 0); 3027 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3028 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3029 VDEV_ALLOC_ROOTPOOL); 3030 spa_config_exit(spa, SCL_ALL, FTAG); 3031 if (error) { 3032 mutex_exit(&spa_namespace_lock); 3033 nvlist_free(config); 3034 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3035 pname); 3036 return (error); 3037 } 3038 3039 /* 3040 * Get the boot vdev. 3041 */ 3042 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3043 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3044 (u_longlong_t)guid); 3045 error = ENOENT; 3046 goto out; 3047 } 3048 3049 /* 3050 * Determine if there is a better boot device. 3051 */ 3052 avd = bvd; 3053 spa_alt_rootvdev(rvd, &avd, &txg); 3054 if (avd != bvd) { 3055 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3056 "try booting from '%s'", avd->vdev_path); 3057 error = EINVAL; 3058 goto out; 3059 } 3060 3061 /* 3062 * If the boot device is part of a spare vdev then ensure that 3063 * we're booting off the active spare. 3064 */ 3065 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3066 !bvd->vdev_isspare) { 3067 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3068 "try booting from '%s'", 3069 bvd->vdev_parent->vdev_child[1]->vdev_path); 3070 error = EINVAL; 3071 goto out; 3072 } 3073 3074 error = 0; 3075 spa_history_log_version(spa, LOG_POOL_IMPORT); 3076 out: 3077 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3078 vdev_free(rvd); 3079 spa_config_exit(spa, SCL_ALL, FTAG); 3080 mutex_exit(&spa_namespace_lock); 3081 3082 nvlist_free(config); 3083 return (error); 3084 } 3085 3086 #endif 3087 3088 /* 3089 * Take a pool and insert it into the namespace as if it had been loaded at 3090 * boot. 3091 */ 3092 int 3093 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props) 3094 { 3095 spa_t *spa; 3096 char *altroot = NULL; 3097 3098 mutex_enter(&spa_namespace_lock); 3099 if (spa_lookup(pool) != NULL) { 3100 mutex_exit(&spa_namespace_lock); 3101 return (EEXIST); 3102 } 3103 3104 (void) nvlist_lookup_string(props, 3105 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3106 spa = spa_add(pool, config, altroot); 3107 3108 spa->spa_load_verbatim = B_TRUE; 3109 3110 if (props != NULL) 3111 spa_configfile_set(spa, props, B_FALSE); 3112 3113 spa_config_sync(spa, B_FALSE, B_TRUE); 3114 3115 mutex_exit(&spa_namespace_lock); 3116 spa_history_log_version(spa, LOG_POOL_IMPORT); 3117 3118 return (0); 3119 } 3120 3121 /* 3122 * Import a non-root pool into the system. 3123 */ 3124 int 3125 spa_import(const char *pool, nvlist_t *config, nvlist_t *props) 3126 { 3127 spa_t *spa; 3128 char *altroot = NULL; 3129 spa_load_state_t state = SPA_LOAD_IMPORT; 3130 zpool_rewind_policy_t policy; 3131 int error; 3132 nvlist_t *nvroot; 3133 nvlist_t **spares, **l2cache; 3134 uint_t nspares, nl2cache; 3135 3136 /* 3137 * If a pool with this name exists, return failure. 3138 */ 3139 mutex_enter(&spa_namespace_lock); 3140 if (spa_lookup(pool) != NULL) { 3141 mutex_exit(&spa_namespace_lock); 3142 return (EEXIST); 3143 } 3144 3145 zpool_get_rewind_policy(config, &policy); 3146 if (policy.zrp_request & ZPOOL_DO_REWIND) 3147 state = SPA_LOAD_RECOVER; 3148 3149 /* 3150 * Create and initialize the spa structure. 3151 */ 3152 (void) nvlist_lookup_string(props, 3153 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3154 spa = spa_add(pool, config, altroot); 3155 spa_activate(spa, spa_mode_global); 3156 3157 /* 3158 * Don't start async tasks until we know everything is healthy. 3159 */ 3160 spa_async_suspend(spa); 3161 3162 /* 3163 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3164 * because the user-supplied config is actually the one to trust when 3165 * doing an import. 3166 */ 3167 if (state != SPA_LOAD_RECOVER) 3168 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3169 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3170 policy.zrp_request); 3171 3172 /* 3173 * Propagate anything learned about failing or best txgs 3174 * back to caller 3175 */ 3176 spa_rewind_data_to_nvlist(spa, config); 3177 3178 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3179 /* 3180 * Toss any existing sparelist, as it doesn't have any validity 3181 * anymore, and conflicts with spa_has_spare(). 3182 */ 3183 if (spa->spa_spares.sav_config) { 3184 nvlist_free(spa->spa_spares.sav_config); 3185 spa->spa_spares.sav_config = NULL; 3186 spa_load_spares(spa); 3187 } 3188 if (spa->spa_l2cache.sav_config) { 3189 nvlist_free(spa->spa_l2cache.sav_config); 3190 spa->spa_l2cache.sav_config = NULL; 3191 spa_load_l2cache(spa); 3192 } 3193 3194 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3195 &nvroot) == 0); 3196 if (error == 0) 3197 error = spa_validate_aux(spa, nvroot, -1ULL, 3198 VDEV_ALLOC_SPARE); 3199 if (error == 0) 3200 error = spa_validate_aux(spa, nvroot, -1ULL, 3201 VDEV_ALLOC_L2CACHE); 3202 spa_config_exit(spa, SCL_ALL, FTAG); 3203 3204 if (props != NULL) 3205 spa_configfile_set(spa, props, B_FALSE); 3206 3207 if (error != 0 || (props && spa_writeable(spa) && 3208 (error = spa_prop_set(spa, props)))) { 3209 spa_unload(spa); 3210 spa_deactivate(spa); 3211 spa_remove(spa); 3212 mutex_exit(&spa_namespace_lock); 3213 return (error); 3214 } 3215 3216 spa_async_resume(spa); 3217 3218 /* 3219 * Override any spares and level 2 cache devices as specified by 3220 * the user, as these may have correct device names/devids, etc. 3221 */ 3222 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3223 &spares, &nspares) == 0) { 3224 if (spa->spa_spares.sav_config) 3225 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3226 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3227 else 3228 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3229 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3230 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3231 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3232 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3233 spa_load_spares(spa); 3234 spa_config_exit(spa, SCL_ALL, FTAG); 3235 spa->spa_spares.sav_sync = B_TRUE; 3236 } 3237 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3238 &l2cache, &nl2cache) == 0) { 3239 if (spa->spa_l2cache.sav_config) 3240 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3241 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3242 else 3243 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3244 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3245 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3246 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3247 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3248 spa_load_l2cache(spa); 3249 spa_config_exit(spa, SCL_ALL, FTAG); 3250 spa->spa_l2cache.sav_sync = B_TRUE; 3251 } 3252 3253 /* 3254 * Check for any removed devices. 3255 */ 3256 if (spa->spa_autoreplace) { 3257 spa_aux_check_removed(&spa->spa_spares); 3258 spa_aux_check_removed(&spa->spa_l2cache); 3259 } 3260 3261 if (spa_writeable(spa)) { 3262 /* 3263 * Update the config cache to include the newly-imported pool. 3264 */ 3265 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3266 } 3267 3268 /* 3269 * It's possible that the pool was expanded while it was exported. 3270 * We kick off an async task to handle this for us. 3271 */ 3272 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3273 3274 mutex_exit(&spa_namespace_lock); 3275 spa_history_log_version(spa, LOG_POOL_IMPORT); 3276 3277 return (0); 3278 } 3279 3280 nvlist_t * 3281 spa_tryimport(nvlist_t *tryconfig) 3282 { 3283 nvlist_t *config = NULL; 3284 char *poolname; 3285 spa_t *spa; 3286 uint64_t state; 3287 int error; 3288 3289 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3290 return (NULL); 3291 3292 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3293 return (NULL); 3294 3295 /* 3296 * Create and initialize the spa structure. 3297 */ 3298 mutex_enter(&spa_namespace_lock); 3299 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3300 spa_activate(spa, FREAD); 3301 3302 /* 3303 * Pass off the heavy lifting to spa_load(). 3304 * Pass TRUE for mosconfig because the user-supplied config 3305 * is actually the one to trust when doing an import. 3306 */ 3307 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3308 3309 /* 3310 * If 'tryconfig' was at least parsable, return the current config. 3311 */ 3312 if (spa->spa_root_vdev != NULL) { 3313 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3314 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3315 poolname) == 0); 3316 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3317 state) == 0); 3318 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3319 spa->spa_uberblock.ub_timestamp) == 0); 3320 3321 /* 3322 * If the bootfs property exists on this pool then we 3323 * copy it out so that external consumers can tell which 3324 * pools are bootable. 3325 */ 3326 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3327 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3328 3329 /* 3330 * We have to play games with the name since the 3331 * pool was opened as TRYIMPORT_NAME. 3332 */ 3333 if (dsl_dsobj_to_dsname(spa_name(spa), 3334 spa->spa_bootfs, tmpname) == 0) { 3335 char *cp; 3336 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3337 3338 cp = strchr(tmpname, '/'); 3339 if (cp == NULL) { 3340 (void) strlcpy(dsname, tmpname, 3341 MAXPATHLEN); 3342 } else { 3343 (void) snprintf(dsname, MAXPATHLEN, 3344 "%s/%s", poolname, ++cp); 3345 } 3346 VERIFY(nvlist_add_string(config, 3347 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3348 kmem_free(dsname, MAXPATHLEN); 3349 } 3350 kmem_free(tmpname, MAXPATHLEN); 3351 } 3352 3353 /* 3354 * Add the list of hot spares and level 2 cache devices. 3355 */ 3356 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3357 spa_add_spares(spa, config); 3358 spa_add_l2cache(spa, config); 3359 spa_config_exit(spa, SCL_CONFIG, FTAG); 3360 } 3361 3362 spa_unload(spa); 3363 spa_deactivate(spa); 3364 spa_remove(spa); 3365 mutex_exit(&spa_namespace_lock); 3366 3367 return (config); 3368 } 3369 3370 /* 3371 * Pool export/destroy 3372 * 3373 * The act of destroying or exporting a pool is very simple. We make sure there 3374 * is no more pending I/O and any references to the pool are gone. Then, we 3375 * update the pool state and sync all the labels to disk, removing the 3376 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3377 * we don't sync the labels or remove the configuration cache. 3378 */ 3379 static int 3380 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3381 boolean_t force, boolean_t hardforce) 3382 { 3383 spa_t *spa; 3384 3385 if (oldconfig) 3386 *oldconfig = NULL; 3387 3388 if (!(spa_mode_global & FWRITE)) 3389 return (EROFS); 3390 3391 mutex_enter(&spa_namespace_lock); 3392 if ((spa = spa_lookup(pool)) == NULL) { 3393 mutex_exit(&spa_namespace_lock); 3394 return (ENOENT); 3395 } 3396 3397 /* 3398 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3399 * reacquire the namespace lock, and see if we can export. 3400 */ 3401 spa_open_ref(spa, FTAG); 3402 mutex_exit(&spa_namespace_lock); 3403 spa_async_suspend(spa); 3404 mutex_enter(&spa_namespace_lock); 3405 spa_close(spa, FTAG); 3406 3407 /* 3408 * The pool will be in core if it's openable, 3409 * in which case we can modify its state. 3410 */ 3411 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3412 /* 3413 * Objsets may be open only because they're dirty, so we 3414 * have to force it to sync before checking spa_refcnt. 3415 */ 3416 txg_wait_synced(spa->spa_dsl_pool, 0); 3417 3418 /* 3419 * A pool cannot be exported or destroyed if there are active 3420 * references. If we are resetting a pool, allow references by 3421 * fault injection handlers. 3422 */ 3423 if (!spa_refcount_zero(spa) || 3424 (spa->spa_inject_ref != 0 && 3425 new_state != POOL_STATE_UNINITIALIZED)) { 3426 spa_async_resume(spa); 3427 mutex_exit(&spa_namespace_lock); 3428 return (EBUSY); 3429 } 3430 3431 /* 3432 * A pool cannot be exported if it has an active shared spare. 3433 * This is to prevent other pools stealing the active spare 3434 * from an exported pool. At user's own will, such pool can 3435 * be forcedly exported. 3436 */ 3437 if (!force && new_state == POOL_STATE_EXPORTED && 3438 spa_has_active_shared_spare(spa)) { 3439 spa_async_resume(spa); 3440 mutex_exit(&spa_namespace_lock); 3441 return (EXDEV); 3442 } 3443 3444 /* 3445 * We want this to be reflected on every label, 3446 * so mark them all dirty. spa_unload() will do the 3447 * final sync that pushes these changes out. 3448 */ 3449 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3450 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3451 spa->spa_state = new_state; 3452 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 3453 vdev_config_dirty(spa->spa_root_vdev); 3454 spa_config_exit(spa, SCL_ALL, FTAG); 3455 } 3456 } 3457 3458 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3459 3460 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3461 spa_unload(spa); 3462 spa_deactivate(spa); 3463 } 3464 3465 if (oldconfig && spa->spa_config) 3466 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3467 3468 if (new_state != POOL_STATE_UNINITIALIZED) { 3469 if (!hardforce) 3470 spa_config_sync(spa, B_TRUE, B_TRUE); 3471 spa_remove(spa); 3472 } 3473 mutex_exit(&spa_namespace_lock); 3474 3475 return (0); 3476 } 3477 3478 /* 3479 * Destroy a storage pool. 3480 */ 3481 int 3482 spa_destroy(char *pool) 3483 { 3484 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3485 B_FALSE, B_FALSE)); 3486 } 3487 3488 /* 3489 * Export a storage pool. 3490 */ 3491 int 3492 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3493 boolean_t hardforce) 3494 { 3495 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3496 force, hardforce)); 3497 } 3498 3499 /* 3500 * Similar to spa_export(), this unloads the spa_t without actually removing it 3501 * from the namespace in any way. 3502 */ 3503 int 3504 spa_reset(char *pool) 3505 { 3506 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3507 B_FALSE, B_FALSE)); 3508 } 3509 3510 /* 3511 * ========================================================================== 3512 * Device manipulation 3513 * ========================================================================== 3514 */ 3515 3516 /* 3517 * Add a device to a storage pool. 3518 */ 3519 int 3520 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3521 { 3522 uint64_t txg, id; 3523 int error; 3524 vdev_t *rvd = spa->spa_root_vdev; 3525 vdev_t *vd, *tvd; 3526 nvlist_t **spares, **l2cache; 3527 uint_t nspares, nl2cache; 3528 3529 txg = spa_vdev_enter(spa); 3530 3531 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3532 VDEV_ALLOC_ADD)) != 0) 3533 return (spa_vdev_exit(spa, NULL, txg, error)); 3534 3535 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3536 3537 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3538 &nspares) != 0) 3539 nspares = 0; 3540 3541 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3542 &nl2cache) != 0) 3543 nl2cache = 0; 3544 3545 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3546 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3547 3548 if (vd->vdev_children != 0 && 3549 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3550 return (spa_vdev_exit(spa, vd, txg, error)); 3551 3552 /* 3553 * We must validate the spares and l2cache devices after checking the 3554 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3555 */ 3556 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3557 return (spa_vdev_exit(spa, vd, txg, error)); 3558 3559 /* 3560 * Transfer each new top-level vdev from vd to rvd. 3561 */ 3562 for (int c = 0; c < vd->vdev_children; c++) { 3563 3564 /* 3565 * Set the vdev id to the first hole, if one exists. 3566 */ 3567 for (id = 0; id < rvd->vdev_children; id++) { 3568 if (rvd->vdev_child[id]->vdev_ishole) { 3569 vdev_free(rvd->vdev_child[id]); 3570 break; 3571 } 3572 } 3573 tvd = vd->vdev_child[c]; 3574 vdev_remove_child(vd, tvd); 3575 tvd->vdev_id = id; 3576 vdev_add_child(rvd, tvd); 3577 vdev_config_dirty(tvd); 3578 } 3579 3580 if (nspares != 0) { 3581 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3582 ZPOOL_CONFIG_SPARES); 3583 spa_load_spares(spa); 3584 spa->spa_spares.sav_sync = B_TRUE; 3585 } 3586 3587 if (nl2cache != 0) { 3588 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3589 ZPOOL_CONFIG_L2CACHE); 3590 spa_load_l2cache(spa); 3591 spa->spa_l2cache.sav_sync = B_TRUE; 3592 } 3593 3594 /* 3595 * We have to be careful when adding new vdevs to an existing pool. 3596 * If other threads start allocating from these vdevs before we 3597 * sync the config cache, and we lose power, then upon reboot we may 3598 * fail to open the pool because there are DVAs that the config cache 3599 * can't translate. Therefore, we first add the vdevs without 3600 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3601 * and then let spa_config_update() initialize the new metaslabs. 3602 * 3603 * spa_load() checks for added-but-not-initialized vdevs, so that 3604 * if we lose power at any point in this sequence, the remaining 3605 * steps will be completed the next time we load the pool. 3606 */ 3607 (void) spa_vdev_exit(spa, vd, txg, 0); 3608 3609 mutex_enter(&spa_namespace_lock); 3610 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3611 mutex_exit(&spa_namespace_lock); 3612 3613 return (0); 3614 } 3615 3616 /* 3617 * Attach a device to a mirror. The arguments are the path to any device 3618 * in the mirror, and the nvroot for the new device. If the path specifies 3619 * a device that is not mirrored, we automatically insert the mirror vdev. 3620 * 3621 * If 'replacing' is specified, the new device is intended to replace the 3622 * existing device; in this case the two devices are made into their own 3623 * mirror using the 'replacing' vdev, which is functionally identical to 3624 * the mirror vdev (it actually reuses all the same ops) but has a few 3625 * extra rules: you can't attach to it after it's been created, and upon 3626 * completion of resilvering, the first disk (the one being replaced) 3627 * is automatically detached. 3628 */ 3629 int 3630 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3631 { 3632 uint64_t txg, open_txg; 3633 vdev_t *rvd = spa->spa_root_vdev; 3634 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3635 vdev_ops_t *pvops; 3636 char *oldvdpath, *newvdpath; 3637 int newvd_isspare; 3638 int error; 3639 3640 txg = spa_vdev_enter(spa); 3641 3642 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3643 3644 if (oldvd == NULL) 3645 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3646 3647 if (!oldvd->vdev_ops->vdev_op_leaf) 3648 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3649 3650 pvd = oldvd->vdev_parent; 3651 3652 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3653 VDEV_ALLOC_ADD)) != 0) 3654 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3655 3656 if (newrootvd->vdev_children != 1) 3657 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3658 3659 newvd = newrootvd->vdev_child[0]; 3660 3661 if (!newvd->vdev_ops->vdev_op_leaf) 3662 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3663 3664 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3665 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3666 3667 /* 3668 * Spares can't replace logs 3669 */ 3670 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3671 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3672 3673 if (!replacing) { 3674 /* 3675 * For attach, the only allowable parent is a mirror or the root 3676 * vdev. 3677 */ 3678 if (pvd->vdev_ops != &vdev_mirror_ops && 3679 pvd->vdev_ops != &vdev_root_ops) 3680 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3681 3682 pvops = &vdev_mirror_ops; 3683 } else { 3684 /* 3685 * Active hot spares can only be replaced by inactive hot 3686 * spares. 3687 */ 3688 if (pvd->vdev_ops == &vdev_spare_ops && 3689 pvd->vdev_child[1] == oldvd && 3690 !spa_has_spare(spa, newvd->vdev_guid)) 3691 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3692 3693 /* 3694 * If the source is a hot spare, and the parent isn't already a 3695 * spare, then we want to create a new hot spare. Otherwise, we 3696 * want to create a replacing vdev. The user is not allowed to 3697 * attach to a spared vdev child unless the 'isspare' state is 3698 * the same (spare replaces spare, non-spare replaces 3699 * non-spare). 3700 */ 3701 if (pvd->vdev_ops == &vdev_replacing_ops) 3702 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3703 else if (pvd->vdev_ops == &vdev_spare_ops && 3704 newvd->vdev_isspare != oldvd->vdev_isspare) 3705 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3706 else if (pvd->vdev_ops != &vdev_spare_ops && 3707 newvd->vdev_isspare) 3708 pvops = &vdev_spare_ops; 3709 else 3710 pvops = &vdev_replacing_ops; 3711 } 3712 3713 /* 3714 * Make sure the new device is big enough. 3715 */ 3716 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3717 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3718 3719 /* 3720 * The new device cannot have a higher alignment requirement 3721 * than the top-level vdev. 3722 */ 3723 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3724 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3725 3726 /* 3727 * If this is an in-place replacement, update oldvd's path and devid 3728 * to make it distinguishable from newvd, and unopenable from now on. 3729 */ 3730 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3731 spa_strfree(oldvd->vdev_path); 3732 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3733 KM_SLEEP); 3734 (void) sprintf(oldvd->vdev_path, "%s/%s", 3735 newvd->vdev_path, "old"); 3736 if (oldvd->vdev_devid != NULL) { 3737 spa_strfree(oldvd->vdev_devid); 3738 oldvd->vdev_devid = NULL; 3739 } 3740 } 3741 3742 /* 3743 * If the parent is not a mirror, or if we're replacing, insert the new 3744 * mirror/replacing/spare vdev above oldvd. 3745 */ 3746 if (pvd->vdev_ops != pvops) 3747 pvd = vdev_add_parent(oldvd, pvops); 3748 3749 ASSERT(pvd->vdev_top->vdev_parent == rvd); 3750 ASSERT(pvd->vdev_ops == pvops); 3751 ASSERT(oldvd->vdev_parent == pvd); 3752 3753 /* 3754 * Extract the new device from its root and add it to pvd. 3755 */ 3756 vdev_remove_child(newrootvd, newvd); 3757 newvd->vdev_id = pvd->vdev_children; 3758 newvd->vdev_crtxg = oldvd->vdev_crtxg; 3759 vdev_add_child(pvd, newvd); 3760 3761 tvd = newvd->vdev_top; 3762 ASSERT(pvd->vdev_top == tvd); 3763 ASSERT(tvd->vdev_parent == rvd); 3764 3765 vdev_config_dirty(tvd); 3766 3767 /* 3768 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 3769 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 3770 */ 3771 open_txg = txg + TXG_CONCURRENT_STATES - 1; 3772 3773 vdev_dtl_dirty(newvd, DTL_MISSING, 3774 TXG_INITIAL, open_txg - TXG_INITIAL + 1); 3775 3776 if (newvd->vdev_isspare) { 3777 spa_spare_activate(newvd); 3778 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 3779 } 3780 3781 oldvdpath = spa_strdup(oldvd->vdev_path); 3782 newvdpath = spa_strdup(newvd->vdev_path); 3783 newvd_isspare = newvd->vdev_isspare; 3784 3785 /* 3786 * Mark newvd's DTL dirty in this txg. 3787 */ 3788 vdev_dirty(tvd, VDD_DTL, newvd, txg); 3789 3790 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 3791 3792 spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL, 3793 CRED(), "%s vdev=%s %s vdev=%s", 3794 replacing && newvd_isspare ? "spare in" : 3795 replacing ? "replace" : "attach", newvdpath, 3796 replacing ? "for" : "to", oldvdpath); 3797 3798 spa_strfree(oldvdpath); 3799 spa_strfree(newvdpath); 3800 3801 /* 3802 * Kick off a resilver to update newvd. 3803 */ 3804 VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0); 3805 3806 return (0); 3807 } 3808 3809 /* 3810 * Detach a device from a mirror or replacing vdev. 3811 * If 'replace_done' is specified, only detach if the parent 3812 * is a replacing vdev. 3813 */ 3814 int 3815 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 3816 { 3817 uint64_t txg; 3818 int error; 3819 vdev_t *rvd = spa->spa_root_vdev; 3820 vdev_t *vd, *pvd, *cvd, *tvd; 3821 boolean_t unspare = B_FALSE; 3822 uint64_t unspare_guid; 3823 size_t len; 3824 char *vdpath; 3825 3826 txg = spa_vdev_enter(spa); 3827 3828 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 3829 3830 if (vd == NULL) 3831 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3832 3833 if (!vd->vdev_ops->vdev_op_leaf) 3834 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3835 3836 pvd = vd->vdev_parent; 3837 3838 /* 3839 * If the parent/child relationship is not as expected, don't do it. 3840 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 3841 * vdev that's replacing B with C. The user's intent in replacing 3842 * is to go from M(A,B) to M(A,C). If the user decides to cancel 3843 * the replace by detaching C, the expected behavior is to end up 3844 * M(A,B). But suppose that right after deciding to detach C, 3845 * the replacement of B completes. We would have M(A,C), and then 3846 * ask to detach C, which would leave us with just A -- not what 3847 * the user wanted. To prevent this, we make sure that the 3848 * parent/child relationship hasn't changed -- in this example, 3849 * that C's parent is still the replacing vdev R. 3850 */ 3851 if (pvd->vdev_guid != pguid && pguid != 0) 3852 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3853 3854 /* 3855 * If replace_done is specified, only remove this device if it's 3856 * the first child of a replacing vdev. For the 'spare' vdev, either 3857 * disk can be removed. 3858 */ 3859 if (replace_done) { 3860 if (pvd->vdev_ops == &vdev_replacing_ops) { 3861 if (vd->vdev_id != 0) 3862 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3863 } else if (pvd->vdev_ops != &vdev_spare_ops) { 3864 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3865 } 3866 } 3867 3868 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 3869 spa_version(spa) >= SPA_VERSION_SPARES); 3870 3871 /* 3872 * Only mirror, replacing, and spare vdevs support detach. 3873 */ 3874 if (pvd->vdev_ops != &vdev_replacing_ops && 3875 pvd->vdev_ops != &vdev_mirror_ops && 3876 pvd->vdev_ops != &vdev_spare_ops) 3877 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3878 3879 /* 3880 * If this device has the only valid copy of some data, 3881 * we cannot safely detach it. 3882 */ 3883 if (vdev_dtl_required(vd)) 3884 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 3885 3886 ASSERT(pvd->vdev_children >= 2); 3887 3888 /* 3889 * If we are detaching the second disk from a replacing vdev, then 3890 * check to see if we changed the original vdev's path to have "/old" 3891 * at the end in spa_vdev_attach(). If so, undo that change now. 3892 */ 3893 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 && 3894 pvd->vdev_child[0]->vdev_path != NULL && 3895 pvd->vdev_child[1]->vdev_path != NULL) { 3896 ASSERT(pvd->vdev_child[1] == vd); 3897 cvd = pvd->vdev_child[0]; 3898 len = strlen(vd->vdev_path); 3899 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 3900 strcmp(cvd->vdev_path + len, "/old") == 0) { 3901 spa_strfree(cvd->vdev_path); 3902 cvd->vdev_path = spa_strdup(vd->vdev_path); 3903 } 3904 } 3905 3906 /* 3907 * If we are detaching the original disk from a spare, then it implies 3908 * that the spare should become a real disk, and be removed from the 3909 * active spare list for the pool. 3910 */ 3911 if (pvd->vdev_ops == &vdev_spare_ops && 3912 vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare) 3913 unspare = B_TRUE; 3914 3915 /* 3916 * Erase the disk labels so the disk can be used for other things. 3917 * This must be done after all other error cases are handled, 3918 * but before we disembowel vd (so we can still do I/O to it). 3919 * But if we can't do it, don't treat the error as fatal -- 3920 * it may be that the unwritability of the disk is the reason 3921 * it's being detached! 3922 */ 3923 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 3924 3925 /* 3926 * Remove vd from its parent and compact the parent's children. 3927 */ 3928 vdev_remove_child(pvd, vd); 3929 vdev_compact_children(pvd); 3930 3931 /* 3932 * Remember one of the remaining children so we can get tvd below. 3933 */ 3934 cvd = pvd->vdev_child[0]; 3935 3936 /* 3937 * If we need to remove the remaining child from the list of hot spares, 3938 * do it now, marking the vdev as no longer a spare in the process. 3939 * We must do this before vdev_remove_parent(), because that can 3940 * change the GUID if it creates a new toplevel GUID. For a similar 3941 * reason, we must remove the spare now, in the same txg as the detach; 3942 * otherwise someone could attach a new sibling, change the GUID, and 3943 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 3944 */ 3945 if (unspare) { 3946 ASSERT(cvd->vdev_isspare); 3947 spa_spare_remove(cvd); 3948 unspare_guid = cvd->vdev_guid; 3949 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 3950 } 3951 3952 /* 3953 * If the parent mirror/replacing vdev only has one child, 3954 * the parent is no longer needed. Remove it from the tree. 3955 */ 3956 if (pvd->vdev_children == 1) 3957 vdev_remove_parent(cvd); 3958 3959 /* 3960 * We don't set tvd until now because the parent we just removed 3961 * may have been the previous top-level vdev. 3962 */ 3963 tvd = cvd->vdev_top; 3964 ASSERT(tvd->vdev_parent == rvd); 3965 3966 /* 3967 * Reevaluate the parent vdev state. 3968 */ 3969 vdev_propagate_state(cvd); 3970 3971 /* 3972 * If the 'autoexpand' property is set on the pool then automatically 3973 * try to expand the size of the pool. For example if the device we 3974 * just detached was smaller than the others, it may be possible to 3975 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 3976 * first so that we can obtain the updated sizes of the leaf vdevs. 3977 */ 3978 if (spa->spa_autoexpand) { 3979 vdev_reopen(tvd); 3980 vdev_expand(tvd, txg); 3981 } 3982 3983 vdev_config_dirty(tvd); 3984 3985 /* 3986 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 3987 * vd->vdev_detached is set and free vd's DTL object in syncing context. 3988 * But first make sure we're not on any *other* txg's DTL list, to 3989 * prevent vd from being accessed after it's freed. 3990 */ 3991 vdpath = spa_strdup(vd->vdev_path); 3992 for (int t = 0; t < TXG_SIZE; t++) 3993 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 3994 vd->vdev_detached = B_TRUE; 3995 vdev_dirty(tvd, VDD_DTL, vd, txg); 3996 3997 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 3998 3999 error = spa_vdev_exit(spa, vd, txg, 0); 4000 4001 spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(), 4002 "vdev=%s", vdpath); 4003 spa_strfree(vdpath); 4004 4005 /* 4006 * If this was the removal of the original device in a hot spare vdev, 4007 * then we want to go through and remove the device from the hot spare 4008 * list of every other pool. 4009 */ 4010 if (unspare) { 4011 spa_t *myspa = spa; 4012 spa = NULL; 4013 mutex_enter(&spa_namespace_lock); 4014 while ((spa = spa_next(spa)) != NULL) { 4015 if (spa->spa_state != POOL_STATE_ACTIVE) 4016 continue; 4017 if (spa == myspa) 4018 continue; 4019 spa_open_ref(spa, FTAG); 4020 mutex_exit(&spa_namespace_lock); 4021 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4022 mutex_enter(&spa_namespace_lock); 4023 spa_close(spa, FTAG); 4024 } 4025 mutex_exit(&spa_namespace_lock); 4026 } 4027 4028 return (error); 4029 } 4030 4031 /* 4032 * Split a set of devices from their mirrors, and create a new pool from them. 4033 */ 4034 int 4035 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4036 nvlist_t *props, boolean_t exp) 4037 { 4038 int error = 0; 4039 uint64_t txg, *glist; 4040 spa_t *newspa; 4041 uint_t c, children, lastlog; 4042 nvlist_t **child, *nvl, *tmp; 4043 dmu_tx_t *tx; 4044 char *altroot = NULL; 4045 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4046 boolean_t activate_slog; 4047 4048 if (!spa_writeable(spa)) 4049 return (EROFS); 4050 4051 txg = spa_vdev_enter(spa); 4052 4053 /* clear the log and flush everything up to now */ 4054 activate_slog = spa_passivate_log(spa); 4055 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4056 error = spa_offline_log(spa); 4057 txg = spa_vdev_config_enter(spa); 4058 4059 if (activate_slog) 4060 spa_activate_log(spa); 4061 4062 if (error != 0) 4063 return (spa_vdev_exit(spa, NULL, txg, error)); 4064 4065 /* check new spa name before going any further */ 4066 if (spa_lookup(newname) != NULL) 4067 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4068 4069 /* 4070 * scan through all the children to ensure they're all mirrors 4071 */ 4072 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4073 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4074 &children) != 0) 4075 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4076 4077 /* first, check to ensure we've got the right child count */ 4078 rvd = spa->spa_root_vdev; 4079 lastlog = 0; 4080 for (c = 0; c < rvd->vdev_children; c++) { 4081 vdev_t *vd = rvd->vdev_child[c]; 4082 4083 /* don't count the holes & logs as children */ 4084 if (vd->vdev_islog || vd->vdev_ishole) { 4085 if (lastlog == 0) 4086 lastlog = c; 4087 continue; 4088 } 4089 4090 lastlog = 0; 4091 } 4092 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4093 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4094 4095 /* next, ensure no spare or cache devices are part of the split */ 4096 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4097 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4098 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4099 4100 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4101 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4102 4103 /* then, loop over each vdev and validate it */ 4104 for (c = 0; c < children; c++) { 4105 uint64_t is_hole = 0; 4106 4107 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4108 &is_hole); 4109 4110 if (is_hole != 0) { 4111 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4112 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4113 continue; 4114 } else { 4115 error = EINVAL; 4116 break; 4117 } 4118 } 4119 4120 /* which disk is going to be split? */ 4121 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4122 &glist[c]) != 0) { 4123 error = EINVAL; 4124 break; 4125 } 4126 4127 /* look it up in the spa */ 4128 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4129 if (vml[c] == NULL) { 4130 error = ENODEV; 4131 break; 4132 } 4133 4134 /* make sure there's nothing stopping the split */ 4135 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4136 vml[c]->vdev_islog || 4137 vml[c]->vdev_ishole || 4138 vml[c]->vdev_isspare || 4139 vml[c]->vdev_isl2cache || 4140 !vdev_writeable(vml[c]) || 4141 vml[c]->vdev_children != 0 || 4142 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4143 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4144 error = EINVAL; 4145 break; 4146 } 4147 4148 if (vdev_dtl_required(vml[c])) { 4149 error = EBUSY; 4150 break; 4151 } 4152 4153 /* we need certain info from the top level */ 4154 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4155 vml[c]->vdev_top->vdev_ms_array) == 0); 4156 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4157 vml[c]->vdev_top->vdev_ms_shift) == 0); 4158 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4159 vml[c]->vdev_top->vdev_asize) == 0); 4160 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4161 vml[c]->vdev_top->vdev_ashift) == 0); 4162 } 4163 4164 if (error != 0) { 4165 kmem_free(vml, children * sizeof (vdev_t *)); 4166 kmem_free(glist, children * sizeof (uint64_t)); 4167 return (spa_vdev_exit(spa, NULL, txg, error)); 4168 } 4169 4170 /* stop writers from using the disks */ 4171 for (c = 0; c < children; c++) { 4172 if (vml[c] != NULL) 4173 vml[c]->vdev_offline = B_TRUE; 4174 } 4175 vdev_reopen(spa->spa_root_vdev); 4176 4177 /* 4178 * Temporarily record the splitting vdevs in the spa config. This 4179 * will disappear once the config is regenerated. 4180 */ 4181 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4182 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4183 glist, children) == 0); 4184 kmem_free(glist, children * sizeof (uint64_t)); 4185 4186 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4187 nvl) == 0); 4188 spa->spa_config_splitting = nvl; 4189 vdev_config_dirty(spa->spa_root_vdev); 4190 4191 /* configure and create the new pool */ 4192 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4193 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4194 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4195 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4196 spa_version(spa)) == 0); 4197 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4198 spa->spa_config_txg) == 0); 4199 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4200 spa_generate_guid(NULL)) == 0); 4201 (void) nvlist_lookup_string(props, 4202 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4203 4204 /* add the new pool to the namespace */ 4205 newspa = spa_add(newname, config, altroot); 4206 newspa->spa_config_txg = spa->spa_config_txg; 4207 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4208 4209 /* release the spa config lock, retaining the namespace lock */ 4210 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4211 4212 if (zio_injection_enabled) 4213 zio_handle_panic_injection(spa, FTAG, 1); 4214 4215 spa_activate(newspa, spa_mode_global); 4216 spa_async_suspend(newspa); 4217 4218 /* create the new pool from the disks of the original pool */ 4219 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4220 if (error) 4221 goto out; 4222 4223 /* if that worked, generate a real config for the new pool */ 4224 if (newspa->spa_root_vdev != NULL) { 4225 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4226 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4227 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4228 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4229 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4230 B_TRUE)); 4231 } 4232 4233 /* set the props */ 4234 if (props != NULL) { 4235 spa_configfile_set(newspa, props, B_FALSE); 4236 error = spa_prop_set(newspa, props); 4237 if (error) 4238 goto out; 4239 } 4240 4241 /* flush everything */ 4242 txg = spa_vdev_config_enter(newspa); 4243 vdev_config_dirty(newspa->spa_root_vdev); 4244 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4245 4246 if (zio_injection_enabled) 4247 zio_handle_panic_injection(spa, FTAG, 2); 4248 4249 spa_async_resume(newspa); 4250 4251 /* finally, update the original pool's config */ 4252 txg = spa_vdev_config_enter(spa); 4253 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4254 error = dmu_tx_assign(tx, TXG_WAIT); 4255 if (error != 0) 4256 dmu_tx_abort(tx); 4257 for (c = 0; c < children; c++) { 4258 if (vml[c] != NULL) { 4259 vdev_split(vml[c]); 4260 if (error == 0) 4261 spa_history_internal_log(LOG_POOL_VDEV_DETACH, 4262 spa, tx, CRED(), "vdev=%s", 4263 vml[c]->vdev_path); 4264 vdev_free(vml[c]); 4265 } 4266 } 4267 vdev_config_dirty(spa->spa_root_vdev); 4268 spa->spa_config_splitting = NULL; 4269 nvlist_free(nvl); 4270 if (error == 0) 4271 dmu_tx_commit(tx); 4272 (void) spa_vdev_exit(spa, NULL, txg, 0); 4273 4274 if (zio_injection_enabled) 4275 zio_handle_panic_injection(spa, FTAG, 3); 4276 4277 /* split is complete; log a history record */ 4278 spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(), 4279 "split new pool %s from pool %s", newname, spa_name(spa)); 4280 4281 kmem_free(vml, children * sizeof (vdev_t *)); 4282 4283 /* if we're not going to mount the filesystems in userland, export */ 4284 if (exp) 4285 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4286 B_FALSE, B_FALSE); 4287 4288 return (error); 4289 4290 out: 4291 spa_unload(newspa); 4292 spa_deactivate(newspa); 4293 spa_remove(newspa); 4294 4295 txg = spa_vdev_config_enter(spa); 4296 nvlist_free(spa->spa_config_splitting); 4297 spa->spa_config_splitting = NULL; 4298 (void) spa_vdev_exit(spa, NULL, txg, error); 4299 4300 kmem_free(vml, children * sizeof (vdev_t *)); 4301 return (error); 4302 } 4303 4304 static nvlist_t * 4305 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4306 { 4307 for (int i = 0; i < count; i++) { 4308 uint64_t guid; 4309 4310 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4311 &guid) == 0); 4312 4313 if (guid == target_guid) 4314 return (nvpp[i]); 4315 } 4316 4317 return (NULL); 4318 } 4319 4320 static void 4321 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4322 nvlist_t *dev_to_remove) 4323 { 4324 nvlist_t **newdev = NULL; 4325 4326 if (count > 1) 4327 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4328 4329 for (int i = 0, j = 0; i < count; i++) { 4330 if (dev[i] == dev_to_remove) 4331 continue; 4332 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4333 } 4334 4335 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4336 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4337 4338 for (int i = 0; i < count - 1; i++) 4339 nvlist_free(newdev[i]); 4340 4341 if (count > 1) 4342 kmem_free(newdev, (count - 1) * sizeof (void *)); 4343 } 4344 4345 /* 4346 * Removing a device from the vdev namespace requires several steps 4347 * and can take a significant amount of time. As a result we use 4348 * the spa_vdev_config_[enter/exit] functions which allow us to 4349 * grab and release the spa_config_lock while still holding the namespace 4350 * lock. During each step the configuration is synced out. 4351 */ 4352 4353 /* 4354 * Evacuate the device. 4355 */ 4356 int 4357 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4358 { 4359 int error = 0; 4360 uint64_t txg; 4361 4362 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4363 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4364 ASSERT(vd == vd->vdev_top); 4365 4366 /* 4367 * Evacuate the device. We don't hold the config lock as writer 4368 * since we need to do I/O but we do keep the 4369 * spa_namespace_lock held. Once this completes the device 4370 * should no longer have any blocks allocated on it. 4371 */ 4372 if (vd->vdev_islog) { 4373 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 4374 NULL, DS_FIND_CHILDREN); 4375 } else { 4376 error = ENOTSUP; /* until we have bp rewrite */ 4377 } 4378 4379 txg_wait_synced(spa_get_dsl(spa), 0); 4380 4381 if (error) 4382 return (error); 4383 4384 /* 4385 * The evacuation succeeded. Remove any remaining MOS metadata 4386 * associated with this vdev, and wait for these changes to sync. 4387 */ 4388 txg = spa_vdev_config_enter(spa); 4389 vd->vdev_removing = B_TRUE; 4390 vdev_dirty(vd, 0, NULL, txg); 4391 vdev_config_dirty(vd); 4392 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4393 4394 return (0); 4395 } 4396 4397 /* 4398 * Complete the removal by cleaning up the namespace. 4399 */ 4400 void 4401 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4402 { 4403 vdev_t *rvd = spa->spa_root_vdev; 4404 uint64_t id = vd->vdev_id; 4405 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4406 4407 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4408 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4409 ASSERT(vd == vd->vdev_top); 4410 4411 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4412 4413 if (list_link_active(&vd->vdev_state_dirty_node)) 4414 vdev_state_clean(vd); 4415 if (list_link_active(&vd->vdev_config_dirty_node)) 4416 vdev_config_clean(vd); 4417 4418 vdev_free(vd); 4419 4420 if (last_vdev) { 4421 vdev_compact_children(rvd); 4422 } else { 4423 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4424 vdev_add_child(rvd, vd); 4425 } 4426 vdev_config_dirty(rvd); 4427 4428 /* 4429 * Reassess the health of our root vdev. 4430 */ 4431 vdev_reopen(rvd); 4432 } 4433 4434 /* 4435 * Remove a device from the pool. Currently, this supports removing only hot 4436 * spares, slogs, and level 2 ARC devices. 4437 */ 4438 int 4439 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4440 { 4441 vdev_t *vd; 4442 metaslab_group_t *mg; 4443 nvlist_t **spares, **l2cache, *nv; 4444 uint64_t txg = 0; 4445 uint_t nspares, nl2cache; 4446 int error = 0; 4447 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4448 4449 if (!locked) 4450 txg = spa_vdev_enter(spa); 4451 4452 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4453 4454 if (spa->spa_spares.sav_vdevs != NULL && 4455 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4456 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4457 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4458 /* 4459 * Only remove the hot spare if it's not currently in use 4460 * in this pool. 4461 */ 4462 if (vd == NULL || unspare) { 4463 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4464 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4465 spa_load_spares(spa); 4466 spa->spa_spares.sav_sync = B_TRUE; 4467 } else { 4468 error = EBUSY; 4469 } 4470 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4471 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4472 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4473 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4474 /* 4475 * Cache devices can always be removed. 4476 */ 4477 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4478 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4479 spa_load_l2cache(spa); 4480 spa->spa_l2cache.sav_sync = B_TRUE; 4481 } else if (vd != NULL && vd->vdev_islog) { 4482 ASSERT(!locked); 4483 ASSERT(vd == vd->vdev_top); 4484 4485 /* 4486 * XXX - Once we have bp-rewrite this should 4487 * become the common case. 4488 */ 4489 4490 mg = vd->vdev_mg; 4491 4492 /* 4493 * Stop allocating from this vdev. 4494 */ 4495 metaslab_group_passivate(mg); 4496 4497 /* 4498 * Wait for the youngest allocations and frees to sync, 4499 * and then wait for the deferral of those frees to finish. 4500 */ 4501 spa_vdev_config_exit(spa, NULL, 4502 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4503 4504 /* 4505 * Attempt to evacuate the vdev. 4506 */ 4507 error = spa_vdev_remove_evacuate(spa, vd); 4508 4509 txg = spa_vdev_config_enter(spa); 4510 4511 /* 4512 * If we couldn't evacuate the vdev, unwind. 4513 */ 4514 if (error) { 4515 metaslab_group_activate(mg); 4516 return (spa_vdev_exit(spa, NULL, txg, error)); 4517 } 4518 4519 /* 4520 * Clean up the vdev namespace. 4521 */ 4522 spa_vdev_remove_from_namespace(spa, vd); 4523 4524 } else if (vd != NULL) { 4525 /* 4526 * Normal vdevs cannot be removed (yet). 4527 */ 4528 error = ENOTSUP; 4529 } else { 4530 /* 4531 * There is no vdev of any kind with the specified guid. 4532 */ 4533 error = ENOENT; 4534 } 4535 4536 if (!locked) 4537 return (spa_vdev_exit(spa, NULL, txg, error)); 4538 4539 return (error); 4540 } 4541 4542 /* 4543 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4544 * current spared, so we can detach it. 4545 */ 4546 static vdev_t * 4547 spa_vdev_resilver_done_hunt(vdev_t *vd) 4548 { 4549 vdev_t *newvd, *oldvd; 4550 4551 for (int c = 0; c < vd->vdev_children; c++) { 4552 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4553 if (oldvd != NULL) 4554 return (oldvd); 4555 } 4556 4557 /* 4558 * Check for a completed replacement. 4559 */ 4560 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 4561 oldvd = vd->vdev_child[0]; 4562 newvd = vd->vdev_child[1]; 4563 4564 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4565 !vdev_dtl_required(oldvd)) 4566 return (oldvd); 4567 } 4568 4569 /* 4570 * Check for a completed resilver with the 'unspare' flag set. 4571 */ 4572 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 4573 newvd = vd->vdev_child[0]; 4574 oldvd = vd->vdev_child[1]; 4575 4576 if (newvd->vdev_unspare && 4577 vdev_dtl_empty(newvd, DTL_MISSING) && 4578 !vdev_dtl_required(oldvd)) { 4579 newvd->vdev_unspare = 0; 4580 return (oldvd); 4581 } 4582 } 4583 4584 return (NULL); 4585 } 4586 4587 static void 4588 spa_vdev_resilver_done(spa_t *spa) 4589 { 4590 vdev_t *vd, *pvd, *ppvd; 4591 uint64_t guid, sguid, pguid, ppguid; 4592 4593 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4594 4595 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4596 pvd = vd->vdev_parent; 4597 ppvd = pvd->vdev_parent; 4598 guid = vd->vdev_guid; 4599 pguid = pvd->vdev_guid; 4600 ppguid = ppvd->vdev_guid; 4601 sguid = 0; 4602 /* 4603 * If we have just finished replacing a hot spared device, then 4604 * we need to detach the parent's first child (the original hot 4605 * spare) as well. 4606 */ 4607 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) { 4608 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4609 ASSERT(ppvd->vdev_children == 2); 4610 sguid = ppvd->vdev_child[1]->vdev_guid; 4611 } 4612 spa_config_exit(spa, SCL_ALL, FTAG); 4613 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4614 return; 4615 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4616 return; 4617 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4618 } 4619 4620 spa_config_exit(spa, SCL_ALL, FTAG); 4621 } 4622 4623 /* 4624 * Update the stored path or FRU for this vdev. 4625 */ 4626 int 4627 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4628 boolean_t ispath) 4629 { 4630 vdev_t *vd; 4631 4632 spa_vdev_state_enter(spa, SCL_ALL); 4633 4634 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4635 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4636 4637 if (!vd->vdev_ops->vdev_op_leaf) 4638 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4639 4640 if (ispath) { 4641 spa_strfree(vd->vdev_path); 4642 vd->vdev_path = spa_strdup(value); 4643 } else { 4644 if (vd->vdev_fru != NULL) 4645 spa_strfree(vd->vdev_fru); 4646 vd->vdev_fru = spa_strdup(value); 4647 } 4648 4649 return (spa_vdev_state_exit(spa, vd, 0)); 4650 } 4651 4652 int 4653 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4654 { 4655 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 4656 } 4657 4658 int 4659 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 4660 { 4661 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 4662 } 4663 4664 /* 4665 * ========================================================================== 4666 * SPA Scrubbing 4667 * ========================================================================== 4668 */ 4669 4670 int 4671 spa_scrub(spa_t *spa, pool_scrub_type_t type) 4672 { 4673 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4674 4675 if ((uint_t)type >= POOL_SCRUB_TYPES) 4676 return (ENOTSUP); 4677 4678 /* 4679 * If a resilver was requested, but there is no DTL on a 4680 * writeable leaf device, we have nothing to do. 4681 */ 4682 if (type == POOL_SCRUB_RESILVER && 4683 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 4684 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 4685 return (0); 4686 } 4687 4688 if (type == POOL_SCRUB_EVERYTHING && 4689 spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE && 4690 spa->spa_dsl_pool->dp_scrub_isresilver) 4691 return (EBUSY); 4692 4693 if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) { 4694 return (dsl_pool_scrub_clean(spa->spa_dsl_pool)); 4695 } else if (type == POOL_SCRUB_NONE) { 4696 return (dsl_pool_scrub_cancel(spa->spa_dsl_pool)); 4697 } else { 4698 return (EINVAL); 4699 } 4700 } 4701 4702 /* 4703 * ========================================================================== 4704 * SPA async task processing 4705 * ========================================================================== 4706 */ 4707 4708 static void 4709 spa_async_remove(spa_t *spa, vdev_t *vd) 4710 { 4711 if (vd->vdev_remove_wanted) { 4712 vd->vdev_remove_wanted = 0; 4713 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 4714 4715 /* 4716 * We want to clear the stats, but we don't want to do a full 4717 * vdev_clear() as that will cause us to throw away 4718 * degraded/faulted state as well as attempt to reopen the 4719 * device, all of which is a waste. 4720 */ 4721 vd->vdev_stat.vs_read_errors = 0; 4722 vd->vdev_stat.vs_write_errors = 0; 4723 vd->vdev_stat.vs_checksum_errors = 0; 4724 4725 vdev_state_dirty(vd->vdev_top); 4726 } 4727 4728 for (int c = 0; c < vd->vdev_children; c++) 4729 spa_async_remove(spa, vd->vdev_child[c]); 4730 } 4731 4732 static void 4733 spa_async_probe(spa_t *spa, vdev_t *vd) 4734 { 4735 if (vd->vdev_probe_wanted) { 4736 vd->vdev_probe_wanted = 0; 4737 vdev_reopen(vd); /* vdev_open() does the actual probe */ 4738 } 4739 4740 for (int c = 0; c < vd->vdev_children; c++) 4741 spa_async_probe(spa, vd->vdev_child[c]); 4742 } 4743 4744 static void 4745 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 4746 { 4747 sysevent_id_t eid; 4748 nvlist_t *attr; 4749 char *physpath; 4750 4751 if (!spa->spa_autoexpand) 4752 return; 4753 4754 for (int c = 0; c < vd->vdev_children; c++) { 4755 vdev_t *cvd = vd->vdev_child[c]; 4756 spa_async_autoexpand(spa, cvd); 4757 } 4758 4759 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 4760 return; 4761 4762 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 4763 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 4764 4765 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4766 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 4767 4768 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 4769 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 4770 4771 nvlist_free(attr); 4772 kmem_free(physpath, MAXPATHLEN); 4773 } 4774 4775 static void 4776 spa_async_thread(spa_t *spa) 4777 { 4778 int tasks; 4779 4780 ASSERT(spa->spa_sync_on); 4781 4782 mutex_enter(&spa->spa_async_lock); 4783 tasks = spa->spa_async_tasks; 4784 spa->spa_async_tasks = 0; 4785 mutex_exit(&spa->spa_async_lock); 4786 4787 /* 4788 * See if the config needs to be updated. 4789 */ 4790 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 4791 uint64_t old_space, new_space; 4792 4793 mutex_enter(&spa_namespace_lock); 4794 old_space = metaslab_class_get_space(spa_normal_class(spa)); 4795 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4796 new_space = metaslab_class_get_space(spa_normal_class(spa)); 4797 mutex_exit(&spa_namespace_lock); 4798 4799 /* 4800 * If the pool grew as a result of the config update, 4801 * then log an internal history event. 4802 */ 4803 if (new_space != old_space) { 4804 spa_history_internal_log(LOG_POOL_VDEV_ONLINE, 4805 spa, NULL, CRED(), 4806 "pool '%s' size: %llu(+%llu)", 4807 spa_name(spa), new_space, new_space - old_space); 4808 } 4809 } 4810 4811 /* 4812 * See if any devices need to be marked REMOVED. 4813 */ 4814 if (tasks & SPA_ASYNC_REMOVE) { 4815 spa_vdev_state_enter(spa, SCL_NONE); 4816 spa_async_remove(spa, spa->spa_root_vdev); 4817 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 4818 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 4819 for (int i = 0; i < spa->spa_spares.sav_count; i++) 4820 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 4821 (void) spa_vdev_state_exit(spa, NULL, 0); 4822 } 4823 4824 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 4825 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4826 spa_async_autoexpand(spa, spa->spa_root_vdev); 4827 spa_config_exit(spa, SCL_CONFIG, FTAG); 4828 } 4829 4830 /* 4831 * See if any devices need to be probed. 4832 */ 4833 if (tasks & SPA_ASYNC_PROBE) { 4834 spa_vdev_state_enter(spa, SCL_NONE); 4835 spa_async_probe(spa, spa->spa_root_vdev); 4836 (void) spa_vdev_state_exit(spa, NULL, 0); 4837 } 4838 4839 /* 4840 * If any devices are done replacing, detach them. 4841 */ 4842 if (tasks & SPA_ASYNC_RESILVER_DONE) 4843 spa_vdev_resilver_done(spa); 4844 4845 /* 4846 * Kick off a resilver. 4847 */ 4848 if (tasks & SPA_ASYNC_RESILVER) 4849 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0); 4850 4851 /* 4852 * Let the world know that we're done. 4853 */ 4854 mutex_enter(&spa->spa_async_lock); 4855 spa->spa_async_thread = NULL; 4856 cv_broadcast(&spa->spa_async_cv); 4857 mutex_exit(&spa->spa_async_lock); 4858 thread_exit(); 4859 } 4860 4861 void 4862 spa_async_suspend(spa_t *spa) 4863 { 4864 mutex_enter(&spa->spa_async_lock); 4865 spa->spa_async_suspended++; 4866 while (spa->spa_async_thread != NULL) 4867 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 4868 mutex_exit(&spa->spa_async_lock); 4869 } 4870 4871 void 4872 spa_async_resume(spa_t *spa) 4873 { 4874 mutex_enter(&spa->spa_async_lock); 4875 ASSERT(spa->spa_async_suspended != 0); 4876 spa->spa_async_suspended--; 4877 mutex_exit(&spa->spa_async_lock); 4878 } 4879 4880 static void 4881 spa_async_dispatch(spa_t *spa) 4882 { 4883 mutex_enter(&spa->spa_async_lock); 4884 if (spa->spa_async_tasks && !spa->spa_async_suspended && 4885 spa->spa_async_thread == NULL && 4886 rootdir != NULL && !vn_is_readonly(rootdir)) 4887 spa->spa_async_thread = thread_create(NULL, 0, 4888 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 4889 mutex_exit(&spa->spa_async_lock); 4890 } 4891 4892 void 4893 spa_async_request(spa_t *spa, int task) 4894 { 4895 mutex_enter(&spa->spa_async_lock); 4896 spa->spa_async_tasks |= task; 4897 mutex_exit(&spa->spa_async_lock); 4898 } 4899 4900 /* 4901 * ========================================================================== 4902 * SPA syncing routines 4903 * ========================================================================== 4904 */ 4905 static void 4906 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg) 4907 { 4908 blkptr_t blk; 4909 uint64_t itor = 0; 4910 uint8_t c = 1; 4911 4912 while (bplist_iterate(bpl, &itor, &blk) == 0) { 4913 ASSERT(blk.blk_birth < txg); 4914 zio_free(spa, txg, &blk); 4915 } 4916 4917 bplist_vacate(bpl, tx); 4918 4919 /* 4920 * Pre-dirty the first block so we sync to convergence faster. 4921 * (Usually only the first block is needed.) 4922 */ 4923 dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx); 4924 } 4925 4926 static void 4927 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 4928 { 4929 zio_t *zio = arg; 4930 4931 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 4932 zio->io_flags)); 4933 } 4934 4935 static void 4936 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 4937 { 4938 char *packed = NULL; 4939 size_t bufsize; 4940 size_t nvsize = 0; 4941 dmu_buf_t *db; 4942 4943 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 4944 4945 /* 4946 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 4947 * information. This avoids the dbuf_will_dirty() path and 4948 * saves us a pre-read to get data we don't actually care about. 4949 */ 4950 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 4951 packed = kmem_alloc(bufsize, KM_SLEEP); 4952 4953 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 4954 KM_SLEEP) == 0); 4955 bzero(packed + nvsize, bufsize - nvsize); 4956 4957 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 4958 4959 kmem_free(packed, bufsize); 4960 4961 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 4962 dmu_buf_will_dirty(db, tx); 4963 *(uint64_t *)db->db_data = nvsize; 4964 dmu_buf_rele(db, FTAG); 4965 } 4966 4967 static void 4968 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 4969 const char *config, const char *entry) 4970 { 4971 nvlist_t *nvroot; 4972 nvlist_t **list; 4973 int i; 4974 4975 if (!sav->sav_sync) 4976 return; 4977 4978 /* 4979 * Update the MOS nvlist describing the list of available devices. 4980 * spa_validate_aux() will have already made sure this nvlist is 4981 * valid and the vdevs are labeled appropriately. 4982 */ 4983 if (sav->sav_object == 0) { 4984 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 4985 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 4986 sizeof (uint64_t), tx); 4987 VERIFY(zap_update(spa->spa_meta_objset, 4988 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 4989 &sav->sav_object, tx) == 0); 4990 } 4991 4992 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4993 if (sav->sav_count == 0) { 4994 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 4995 } else { 4996 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 4997 for (i = 0; i < sav->sav_count; i++) 4998 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 4999 B_FALSE, B_FALSE, B_TRUE); 5000 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5001 sav->sav_count) == 0); 5002 for (i = 0; i < sav->sav_count; i++) 5003 nvlist_free(list[i]); 5004 kmem_free(list, sav->sav_count * sizeof (void *)); 5005 } 5006 5007 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5008 nvlist_free(nvroot); 5009 5010 sav->sav_sync = B_FALSE; 5011 } 5012 5013 static void 5014 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5015 { 5016 nvlist_t *config; 5017 5018 if (list_is_empty(&spa->spa_config_dirty_list)) 5019 return; 5020 5021 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5022 5023 config = spa_config_generate(spa, spa->spa_root_vdev, 5024 dmu_tx_get_txg(tx), B_FALSE); 5025 5026 spa_config_exit(spa, SCL_STATE, FTAG); 5027 5028 if (spa->spa_config_syncing) 5029 nvlist_free(spa->spa_config_syncing); 5030 spa->spa_config_syncing = config; 5031 5032 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5033 } 5034 5035 /* 5036 * Set zpool properties. 5037 */ 5038 static void 5039 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx) 5040 { 5041 spa_t *spa = arg1; 5042 objset_t *mos = spa->spa_meta_objset; 5043 nvlist_t *nvp = arg2; 5044 nvpair_t *elem; 5045 uint64_t intval; 5046 char *strval; 5047 zpool_prop_t prop; 5048 const char *propname; 5049 zprop_type_t proptype; 5050 5051 mutex_enter(&spa->spa_props_lock); 5052 5053 elem = NULL; 5054 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5055 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5056 case ZPOOL_PROP_VERSION: 5057 /* 5058 * Only set version for non-zpool-creation cases 5059 * (set/import). spa_create() needs special care 5060 * for version setting. 5061 */ 5062 if (tx->tx_txg != TXG_INITIAL) { 5063 VERIFY(nvpair_value_uint64(elem, 5064 &intval) == 0); 5065 ASSERT(intval <= SPA_VERSION); 5066 ASSERT(intval >= spa_version(spa)); 5067 spa->spa_uberblock.ub_version = intval; 5068 vdev_config_dirty(spa->spa_root_vdev); 5069 } 5070 break; 5071 5072 case ZPOOL_PROP_ALTROOT: 5073 /* 5074 * 'altroot' is a non-persistent property. It should 5075 * have been set temporarily at creation or import time. 5076 */ 5077 ASSERT(spa->spa_root != NULL); 5078 break; 5079 5080 case ZPOOL_PROP_CACHEFILE: 5081 /* 5082 * 'cachefile' is also a non-persisitent property. 5083 */ 5084 break; 5085 default: 5086 /* 5087 * Set pool property values in the poolprops mos object. 5088 */ 5089 if (spa->spa_pool_props_object == 0) { 5090 VERIFY((spa->spa_pool_props_object = 5091 zap_create(mos, DMU_OT_POOL_PROPS, 5092 DMU_OT_NONE, 0, tx)) > 0); 5093 5094 VERIFY(zap_update(mos, 5095 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5096 8, 1, &spa->spa_pool_props_object, tx) 5097 == 0); 5098 } 5099 5100 /* normalize the property name */ 5101 propname = zpool_prop_to_name(prop); 5102 proptype = zpool_prop_get_type(prop); 5103 5104 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5105 ASSERT(proptype == PROP_TYPE_STRING); 5106 VERIFY(nvpair_value_string(elem, &strval) == 0); 5107 VERIFY(zap_update(mos, 5108 spa->spa_pool_props_object, propname, 5109 1, strlen(strval) + 1, strval, tx) == 0); 5110 5111 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5112 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5113 5114 if (proptype == PROP_TYPE_INDEX) { 5115 const char *unused; 5116 VERIFY(zpool_prop_index_to_string( 5117 prop, intval, &unused) == 0); 5118 } 5119 VERIFY(zap_update(mos, 5120 spa->spa_pool_props_object, propname, 5121 8, 1, &intval, tx) == 0); 5122 } else { 5123 ASSERT(0); /* not allowed */ 5124 } 5125 5126 switch (prop) { 5127 case ZPOOL_PROP_DELEGATION: 5128 spa->spa_delegation = intval; 5129 break; 5130 case ZPOOL_PROP_BOOTFS: 5131 spa->spa_bootfs = intval; 5132 break; 5133 case ZPOOL_PROP_FAILUREMODE: 5134 spa->spa_failmode = intval; 5135 break; 5136 case ZPOOL_PROP_AUTOEXPAND: 5137 spa->spa_autoexpand = intval; 5138 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 5139 break; 5140 case ZPOOL_PROP_DEDUPDITTO: 5141 spa->spa_dedup_ditto = intval; 5142 break; 5143 default: 5144 break; 5145 } 5146 } 5147 5148 /* log internal history if this is not a zpool create */ 5149 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5150 tx->tx_txg != TXG_INITIAL) { 5151 spa_history_internal_log(LOG_POOL_PROPSET, 5152 spa, tx, cr, "%s %lld %s", 5153 nvpair_name(elem), intval, spa_name(spa)); 5154 } 5155 } 5156 5157 mutex_exit(&spa->spa_props_lock); 5158 } 5159 5160 /* 5161 * Sync the specified transaction group. New blocks may be dirtied as 5162 * part of the process, so we iterate until it converges. 5163 */ 5164 void 5165 spa_sync(spa_t *spa, uint64_t txg) 5166 { 5167 dsl_pool_t *dp = spa->spa_dsl_pool; 5168 objset_t *mos = spa->spa_meta_objset; 5169 bplist_t *defer_bpl = &spa->spa_deferred_bplist; 5170 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5171 vdev_t *rvd = spa->spa_root_vdev; 5172 vdev_t *vd; 5173 dmu_tx_t *tx; 5174 int error; 5175 5176 /* 5177 * Lock out configuration changes. 5178 */ 5179 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5180 5181 spa->spa_syncing_txg = txg; 5182 spa->spa_sync_pass = 0; 5183 5184 /* 5185 * If there are any pending vdev state changes, convert them 5186 * into config changes that go out with this transaction group. 5187 */ 5188 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5189 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5190 /* 5191 * We need the write lock here because, for aux vdevs, 5192 * calling vdev_config_dirty() modifies sav_config. 5193 * This is ugly and will become unnecessary when we 5194 * eliminate the aux vdev wart by integrating all vdevs 5195 * into the root vdev tree. 5196 */ 5197 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5198 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5199 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5200 vdev_state_clean(vd); 5201 vdev_config_dirty(vd); 5202 } 5203 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5204 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5205 } 5206 spa_config_exit(spa, SCL_STATE, FTAG); 5207 5208 VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj)); 5209 5210 tx = dmu_tx_create_assigned(dp, txg); 5211 5212 /* 5213 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5214 * set spa_deflate if we have no raid-z vdevs. 5215 */ 5216 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5217 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5218 int i; 5219 5220 for (i = 0; i < rvd->vdev_children; i++) { 5221 vd = rvd->vdev_child[i]; 5222 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5223 break; 5224 } 5225 if (i == rvd->vdev_children) { 5226 spa->spa_deflate = TRUE; 5227 VERIFY(0 == zap_add(spa->spa_meta_objset, 5228 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5229 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5230 } 5231 } 5232 5233 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5234 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5235 dsl_pool_create_origin(dp, tx); 5236 5237 /* Keeping the origin open increases spa_minref */ 5238 spa->spa_minref += 3; 5239 } 5240 5241 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5242 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5243 dsl_pool_upgrade_clones(dp, tx); 5244 } 5245 5246 /* 5247 * If anything has changed in this txg, push the deferred frees 5248 * from the previous txg. If not, leave them alone so that we 5249 * don't generate work on an otherwise idle system. 5250 */ 5251 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5252 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5253 !txg_list_empty(&dp->dp_sync_tasks, txg)) 5254 spa_sync_deferred_bplist(spa, defer_bpl, tx, txg); 5255 5256 /* 5257 * Iterate to convergence. 5258 */ 5259 do { 5260 int pass = ++spa->spa_sync_pass; 5261 5262 spa_sync_config_object(spa, tx); 5263 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5264 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5265 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5266 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5267 spa_errlog_sync(spa, txg); 5268 dsl_pool_sync(dp, txg); 5269 5270 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5271 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5272 bplist_sync(free_bpl, spa_sync_free, zio, tx); 5273 VERIFY(zio_wait(zio) == 0); 5274 } else { 5275 bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx); 5276 } 5277 5278 ddt_sync(spa, txg); 5279 5280 mutex_enter(&spa->spa_scrub_lock); 5281 while (spa->spa_scrub_inflight > 0) 5282 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 5283 mutex_exit(&spa->spa_scrub_lock); 5284 5285 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5286 vdev_sync(vd, txg); 5287 5288 } while (dmu_objset_is_dirty(mos, txg)); 5289 5290 ASSERT(free_bpl->bpl_queue == NULL); 5291 5292 bplist_close(defer_bpl); 5293 5294 /* 5295 * Rewrite the vdev configuration (which includes the uberblock) 5296 * to commit the transaction group. 5297 * 5298 * If there are no dirty vdevs, we sync the uberblock to a few 5299 * random top-level vdevs that are known to be visible in the 5300 * config cache (see spa_vdev_add() for a complete description). 5301 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5302 */ 5303 for (;;) { 5304 /* 5305 * We hold SCL_STATE to prevent vdev open/close/etc. 5306 * while we're attempting to write the vdev labels. 5307 */ 5308 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5309 5310 if (list_is_empty(&spa->spa_config_dirty_list)) { 5311 vdev_t *svd[SPA_DVAS_PER_BP]; 5312 int svdcount = 0; 5313 int children = rvd->vdev_children; 5314 int c0 = spa_get_random(children); 5315 5316 for (int c = 0; c < children; c++) { 5317 vd = rvd->vdev_child[(c0 + c) % children]; 5318 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5319 continue; 5320 svd[svdcount++] = vd; 5321 if (svdcount == SPA_DVAS_PER_BP) 5322 break; 5323 } 5324 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5325 if (error != 0) 5326 error = vdev_config_sync(svd, svdcount, txg, 5327 B_TRUE); 5328 } else { 5329 error = vdev_config_sync(rvd->vdev_child, 5330 rvd->vdev_children, txg, B_FALSE); 5331 if (error != 0) 5332 error = vdev_config_sync(rvd->vdev_child, 5333 rvd->vdev_children, txg, B_TRUE); 5334 } 5335 5336 spa_config_exit(spa, SCL_STATE, FTAG); 5337 5338 if (error == 0) 5339 break; 5340 zio_suspend(spa, NULL); 5341 zio_resume_wait(spa); 5342 } 5343 dmu_tx_commit(tx); 5344 5345 /* 5346 * Clear the dirty config list. 5347 */ 5348 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5349 vdev_config_clean(vd); 5350 5351 /* 5352 * Now that the new config has synced transactionally, 5353 * let it become visible to the config cache. 5354 */ 5355 if (spa->spa_config_syncing != NULL) { 5356 spa_config_set(spa, spa->spa_config_syncing); 5357 spa->spa_config_txg = txg; 5358 spa->spa_config_syncing = NULL; 5359 } 5360 5361 spa->spa_ubsync = spa->spa_uberblock; 5362 5363 dsl_pool_sync_done(dp, txg); 5364 5365 /* 5366 * Update usable space statistics. 5367 */ 5368 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5369 vdev_sync_done(vd, txg); 5370 5371 spa_update_dspace(spa); 5372 5373 /* 5374 * It had better be the case that we didn't dirty anything 5375 * since vdev_config_sync(). 5376 */ 5377 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5378 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5379 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5380 ASSERT(defer_bpl->bpl_queue == NULL); 5381 ASSERT(free_bpl->bpl_queue == NULL); 5382 5383 spa->spa_sync_pass = 0; 5384 5385 spa_config_exit(spa, SCL_CONFIG, FTAG); 5386 5387 spa_handle_ignored_writes(spa); 5388 5389 /* 5390 * If any async tasks have been requested, kick them off. 5391 */ 5392 spa_async_dispatch(spa); 5393 } 5394 5395 /* 5396 * Sync all pools. We don't want to hold the namespace lock across these 5397 * operations, so we take a reference on the spa_t and drop the lock during the 5398 * sync. 5399 */ 5400 void 5401 spa_sync_allpools(void) 5402 { 5403 spa_t *spa = NULL; 5404 mutex_enter(&spa_namespace_lock); 5405 while ((spa = spa_next(spa)) != NULL) { 5406 if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa)) 5407 continue; 5408 spa_open_ref(spa, FTAG); 5409 mutex_exit(&spa_namespace_lock); 5410 txg_wait_synced(spa_get_dsl(spa), 0); 5411 mutex_enter(&spa_namespace_lock); 5412 spa_close(spa, FTAG); 5413 } 5414 mutex_exit(&spa_namespace_lock); 5415 } 5416 5417 /* 5418 * ========================================================================== 5419 * Miscellaneous routines 5420 * ========================================================================== 5421 */ 5422 5423 /* 5424 * Remove all pools in the system. 5425 */ 5426 void 5427 spa_evict_all(void) 5428 { 5429 spa_t *spa; 5430 5431 /* 5432 * Remove all cached state. All pools should be closed now, 5433 * so every spa in the AVL tree should be unreferenced. 5434 */ 5435 mutex_enter(&spa_namespace_lock); 5436 while ((spa = spa_next(NULL)) != NULL) { 5437 /* 5438 * Stop async tasks. The async thread may need to detach 5439 * a device that's been replaced, which requires grabbing 5440 * spa_namespace_lock, so we must drop it here. 5441 */ 5442 spa_open_ref(spa, FTAG); 5443 mutex_exit(&spa_namespace_lock); 5444 spa_async_suspend(spa); 5445 mutex_enter(&spa_namespace_lock); 5446 spa_close(spa, FTAG); 5447 5448 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5449 spa_unload(spa); 5450 spa_deactivate(spa); 5451 } 5452 spa_remove(spa); 5453 } 5454 mutex_exit(&spa_namespace_lock); 5455 } 5456 5457 vdev_t * 5458 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5459 { 5460 vdev_t *vd; 5461 int i; 5462 5463 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5464 return (vd); 5465 5466 if (aux) { 5467 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5468 vd = spa->spa_l2cache.sav_vdevs[i]; 5469 if (vd->vdev_guid == guid) 5470 return (vd); 5471 } 5472 5473 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5474 vd = spa->spa_spares.sav_vdevs[i]; 5475 if (vd->vdev_guid == guid) 5476 return (vd); 5477 } 5478 } 5479 5480 return (NULL); 5481 } 5482 5483 void 5484 spa_upgrade(spa_t *spa, uint64_t version) 5485 { 5486 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5487 5488 /* 5489 * This should only be called for a non-faulted pool, and since a 5490 * future version would result in an unopenable pool, this shouldn't be 5491 * possible. 5492 */ 5493 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5494 ASSERT(version >= spa->spa_uberblock.ub_version); 5495 5496 spa->spa_uberblock.ub_version = version; 5497 vdev_config_dirty(spa->spa_root_vdev); 5498 5499 spa_config_exit(spa, SCL_ALL, FTAG); 5500 5501 txg_wait_synced(spa_get_dsl(spa), 0); 5502 } 5503 5504 boolean_t 5505 spa_has_spare(spa_t *spa, uint64_t guid) 5506 { 5507 int i; 5508 uint64_t spareguid; 5509 spa_aux_vdev_t *sav = &spa->spa_spares; 5510 5511 for (i = 0; i < sav->sav_count; i++) 5512 if (sav->sav_vdevs[i]->vdev_guid == guid) 5513 return (B_TRUE); 5514 5515 for (i = 0; i < sav->sav_npending; i++) { 5516 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5517 &spareguid) == 0 && spareguid == guid) 5518 return (B_TRUE); 5519 } 5520 5521 return (B_FALSE); 5522 } 5523 5524 /* 5525 * Check if a pool has an active shared spare device. 5526 * Note: reference count of an active spare is 2, as a spare and as a replace 5527 */ 5528 static boolean_t 5529 spa_has_active_shared_spare(spa_t *spa) 5530 { 5531 int i, refcnt; 5532 uint64_t pool; 5533 spa_aux_vdev_t *sav = &spa->spa_spares; 5534 5535 for (i = 0; i < sav->sav_count; i++) { 5536 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5537 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5538 refcnt > 2) 5539 return (B_TRUE); 5540 } 5541 5542 return (B_FALSE); 5543 } 5544 5545 /* 5546 * Post a sysevent corresponding to the given event. The 'name' must be one of 5547 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5548 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5549 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5550 * or zdb as real changes. 5551 */ 5552 void 5553 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5554 { 5555 #ifdef _KERNEL 5556 sysevent_t *ev; 5557 sysevent_attr_list_t *attr = NULL; 5558 sysevent_value_t value; 5559 sysevent_id_t eid; 5560 5561 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5562 SE_SLEEP); 5563 5564 value.value_type = SE_DATA_TYPE_STRING; 5565 value.value.sv_string = spa_name(spa); 5566 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5567 goto done; 5568 5569 value.value_type = SE_DATA_TYPE_UINT64; 5570 value.value.sv_uint64 = spa_guid(spa); 5571 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5572 goto done; 5573 5574 if (vd) { 5575 value.value_type = SE_DATA_TYPE_UINT64; 5576 value.value.sv_uint64 = vd->vdev_guid; 5577 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5578 SE_SLEEP) != 0) 5579 goto done; 5580 5581 if (vd->vdev_path) { 5582 value.value_type = SE_DATA_TYPE_STRING; 5583 value.value.sv_string = vd->vdev_path; 5584 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5585 &value, SE_SLEEP) != 0) 5586 goto done; 5587 } 5588 } 5589 5590 if (sysevent_attach_attributes(ev, attr) != 0) 5591 goto done; 5592 attr = NULL; 5593 5594 (void) log_sysevent(ev, SE_SLEEP, &eid); 5595 5596 done: 5597 if (attr) 5598 sysevent_free_attr(attr); 5599 sysevent_free(ev); 5600 #endif 5601 } 5602