1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved. 25 * Copyright (c) 2012 by Delphix. All rights reserved. 26 */ 27 28 /* 29 * This file contains all the routines used when modifying on-disk SPA state. 30 * This includes opening, importing, destroying, exporting a pool, and syncing a 31 * pool. 32 */ 33 34 #include <sys/zfs_context.h> 35 #include <sys/fm/fs/zfs.h> 36 #include <sys/spa_impl.h> 37 #include <sys/zio.h> 38 #include <sys/zio_checksum.h> 39 #include <sys/dmu.h> 40 #include <sys/dmu_tx.h> 41 #include <sys/zap.h> 42 #include <sys/zil.h> 43 #include <sys/ddt.h> 44 #include <sys/vdev_impl.h> 45 #include <sys/metaslab.h> 46 #include <sys/metaslab_impl.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/arc.h> 60 #include <sys/callb.h> 61 #include <sys/systeminfo.h> 62 #include <sys/spa_boot.h> 63 #include <sys/zfs_ioctl.h> 64 #include <sys/dsl_scan.h> 65 66 #ifdef _KERNEL 67 #include <sys/bootprops.h> 68 #include <sys/callb.h> 69 #include <sys/cpupart.h> 70 #include <sys/pool.h> 71 #include <sys/sysdc.h> 72 #include <sys/zone.h> 73 #endif /* _KERNEL */ 74 75 #include "zfs_prop.h" 76 #include "zfs_comutil.h" 77 78 typedef enum zti_modes { 79 zti_mode_fixed, /* value is # of threads (min 1) */ 80 zti_mode_online_percent, /* value is % of online CPUs */ 81 zti_mode_batch, /* cpu-intensive; value is ignored */ 82 zti_mode_null, /* don't create a taskq */ 83 zti_nmodes 84 } zti_modes_t; 85 86 #define ZTI_FIX(n) { zti_mode_fixed, (n) } 87 #define ZTI_PCT(n) { zti_mode_online_percent, (n) } 88 #define ZTI_BATCH { zti_mode_batch, 0 } 89 #define ZTI_NULL { zti_mode_null, 0 } 90 91 #define ZTI_ONE ZTI_FIX(1) 92 93 typedef struct zio_taskq_info { 94 enum zti_modes zti_mode; 95 uint_t zti_value; 96 } zio_taskq_info_t; 97 98 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 99 "issue", "issue_high", "intr", "intr_high" 100 }; 101 102 /* 103 * Define the taskq threads for the following I/O types: 104 * NULL, READ, WRITE, FREE, CLAIM, and IOCTL 105 */ 106 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 107 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 108 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 109 { ZTI_FIX(8), ZTI_NULL, ZTI_BATCH, ZTI_NULL }, 110 { ZTI_BATCH, ZTI_FIX(5), ZTI_FIX(8), ZTI_FIX(5) }, 111 { ZTI_FIX(100), ZTI_NULL, ZTI_ONE, ZTI_NULL }, 112 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 113 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, 114 }; 115 116 static dsl_syncfunc_t spa_sync_props; 117 static boolean_t spa_has_active_shared_spare(spa_t *spa); 118 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 119 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 120 char **ereport); 121 static void spa_vdev_resilver_done(spa_t *spa); 122 123 uint_t zio_taskq_batch_pct = 100; /* 1 thread per cpu in pset */ 124 id_t zio_taskq_psrset_bind = PS_NONE; 125 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 126 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 127 128 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 129 130 /* 131 * This (illegal) pool name is used when temporarily importing a spa_t in order 132 * to get the vdev stats associated with the imported devices. 133 */ 134 #define TRYIMPORT_NAME "$import" 135 136 /* 137 * ========================================================================== 138 * SPA properties routines 139 * ========================================================================== 140 */ 141 142 /* 143 * Add a (source=src, propname=propval) list to an nvlist. 144 */ 145 static void 146 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 147 uint64_t intval, zprop_source_t src) 148 { 149 const char *propname = zpool_prop_to_name(prop); 150 nvlist_t *propval; 151 152 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 153 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 154 155 if (strval != NULL) 156 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 157 else 158 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 159 160 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 161 nvlist_free(propval); 162 } 163 164 /* 165 * Get property values from the spa configuration. 166 */ 167 static void 168 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 169 { 170 vdev_t *rvd = spa->spa_root_vdev; 171 uint64_t size; 172 uint64_t alloc; 173 uint64_t space; 174 uint64_t cap, version; 175 zprop_source_t src = ZPROP_SRC_NONE; 176 spa_config_dirent_t *dp; 177 178 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 179 180 if (rvd != NULL) { 181 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 182 size = metaslab_class_get_space(spa_normal_class(spa)); 183 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 184 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 185 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 186 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 187 size - alloc, src); 188 189 space = 0; 190 for (int c = 0; c < rvd->vdev_children; c++) { 191 vdev_t *tvd = rvd->vdev_child[c]; 192 space += tvd->vdev_max_asize - tvd->vdev_asize; 193 } 194 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, space, 195 src); 196 197 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 198 (spa_mode(spa) == FREAD), src); 199 200 cap = (size == 0) ? 0 : (alloc * 100 / size); 201 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 202 203 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 204 ddt_get_pool_dedup_ratio(spa), src); 205 206 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 207 rvd->vdev_state, src); 208 209 version = spa_version(spa); 210 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 211 src = ZPROP_SRC_DEFAULT; 212 else 213 src = ZPROP_SRC_LOCAL; 214 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 215 } 216 217 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 218 219 if (spa->spa_comment != NULL) { 220 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 221 0, ZPROP_SRC_LOCAL); 222 } 223 224 if (spa->spa_root != NULL) 225 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 226 0, ZPROP_SRC_LOCAL); 227 228 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 229 if (dp->scd_path == NULL) { 230 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 231 "none", 0, ZPROP_SRC_LOCAL); 232 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 233 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 234 dp->scd_path, 0, ZPROP_SRC_LOCAL); 235 } 236 } 237 } 238 239 /* 240 * Get zpool property values. 241 */ 242 int 243 spa_prop_get(spa_t *spa, nvlist_t **nvp) 244 { 245 objset_t *mos = spa->spa_meta_objset; 246 zap_cursor_t zc; 247 zap_attribute_t za; 248 int err; 249 250 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 251 252 mutex_enter(&spa->spa_props_lock); 253 254 /* 255 * Get properties from the spa config. 256 */ 257 spa_prop_get_config(spa, nvp); 258 259 /* If no pool property object, no more prop to get. */ 260 if (mos == NULL || spa->spa_pool_props_object == 0) { 261 mutex_exit(&spa->spa_props_lock); 262 return (0); 263 } 264 265 /* 266 * Get properties from the MOS pool property object. 267 */ 268 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 269 (err = zap_cursor_retrieve(&zc, &za)) == 0; 270 zap_cursor_advance(&zc)) { 271 uint64_t intval = 0; 272 char *strval = NULL; 273 zprop_source_t src = ZPROP_SRC_DEFAULT; 274 zpool_prop_t prop; 275 276 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 277 continue; 278 279 switch (za.za_integer_length) { 280 case 8: 281 /* integer property */ 282 if (za.za_first_integer != 283 zpool_prop_default_numeric(prop)) 284 src = ZPROP_SRC_LOCAL; 285 286 if (prop == ZPOOL_PROP_BOOTFS) { 287 dsl_pool_t *dp; 288 dsl_dataset_t *ds = NULL; 289 290 dp = spa_get_dsl(spa); 291 rw_enter(&dp->dp_config_rwlock, RW_READER); 292 if (err = dsl_dataset_hold_obj(dp, 293 za.za_first_integer, FTAG, &ds)) { 294 rw_exit(&dp->dp_config_rwlock); 295 break; 296 } 297 298 strval = kmem_alloc( 299 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 300 KM_SLEEP); 301 dsl_dataset_name(ds, strval); 302 dsl_dataset_rele(ds, FTAG); 303 rw_exit(&dp->dp_config_rwlock); 304 } else { 305 strval = NULL; 306 intval = za.za_first_integer; 307 } 308 309 spa_prop_add_list(*nvp, prop, strval, intval, src); 310 311 if (strval != NULL) 312 kmem_free(strval, 313 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 314 315 break; 316 317 case 1: 318 /* string property */ 319 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 320 err = zap_lookup(mos, spa->spa_pool_props_object, 321 za.za_name, 1, za.za_num_integers, strval); 322 if (err) { 323 kmem_free(strval, za.za_num_integers); 324 break; 325 } 326 spa_prop_add_list(*nvp, prop, strval, 0, src); 327 kmem_free(strval, za.za_num_integers); 328 break; 329 330 default: 331 break; 332 } 333 } 334 zap_cursor_fini(&zc); 335 mutex_exit(&spa->spa_props_lock); 336 out: 337 if (err && err != ENOENT) { 338 nvlist_free(*nvp); 339 *nvp = NULL; 340 return (err); 341 } 342 343 return (0); 344 } 345 346 /* 347 * Validate the given pool properties nvlist and modify the list 348 * for the property values to be set. 349 */ 350 static int 351 spa_prop_validate(spa_t *spa, nvlist_t *props) 352 { 353 nvpair_t *elem; 354 int error = 0, reset_bootfs = 0; 355 uint64_t objnum; 356 357 elem = NULL; 358 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 359 zpool_prop_t prop; 360 char *propname, *strval; 361 uint64_t intval; 362 objset_t *os; 363 char *slash, *check; 364 365 propname = nvpair_name(elem); 366 367 if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL) 368 return (EINVAL); 369 370 switch (prop) { 371 case ZPOOL_PROP_VERSION: 372 error = nvpair_value_uint64(elem, &intval); 373 if (!error && 374 (intval < spa_version(spa) || intval > SPA_VERSION)) 375 error = EINVAL; 376 break; 377 378 case ZPOOL_PROP_DELEGATION: 379 case ZPOOL_PROP_AUTOREPLACE: 380 case ZPOOL_PROP_LISTSNAPS: 381 case ZPOOL_PROP_AUTOEXPAND: 382 error = nvpair_value_uint64(elem, &intval); 383 if (!error && intval > 1) 384 error = EINVAL; 385 break; 386 387 case ZPOOL_PROP_BOOTFS: 388 /* 389 * If the pool version is less than SPA_VERSION_BOOTFS, 390 * or the pool is still being created (version == 0), 391 * the bootfs property cannot be set. 392 */ 393 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 394 error = ENOTSUP; 395 break; 396 } 397 398 /* 399 * Make sure the vdev config is bootable 400 */ 401 if (!vdev_is_bootable(spa->spa_root_vdev)) { 402 error = ENOTSUP; 403 break; 404 } 405 406 reset_bootfs = 1; 407 408 error = nvpair_value_string(elem, &strval); 409 410 if (!error) { 411 uint64_t compress; 412 413 if (strval == NULL || strval[0] == '\0') { 414 objnum = zpool_prop_default_numeric( 415 ZPOOL_PROP_BOOTFS); 416 break; 417 } 418 419 if (error = dmu_objset_hold(strval, FTAG, &os)) 420 break; 421 422 /* Must be ZPL and not gzip compressed. */ 423 424 if (dmu_objset_type(os) != DMU_OST_ZFS) { 425 error = ENOTSUP; 426 } else if ((error = dsl_prop_get_integer(strval, 427 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 428 &compress, NULL)) == 0 && 429 !BOOTFS_COMPRESS_VALID(compress)) { 430 error = ENOTSUP; 431 } else { 432 objnum = dmu_objset_id(os); 433 } 434 dmu_objset_rele(os, FTAG); 435 } 436 break; 437 438 case ZPOOL_PROP_FAILUREMODE: 439 error = nvpair_value_uint64(elem, &intval); 440 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 441 intval > ZIO_FAILURE_MODE_PANIC)) 442 error = EINVAL; 443 444 /* 445 * This is a special case which only occurs when 446 * the pool has completely failed. This allows 447 * the user to change the in-core failmode property 448 * without syncing it out to disk (I/Os might 449 * currently be blocked). We do this by returning 450 * EIO to the caller (spa_prop_set) to trick it 451 * into thinking we encountered a property validation 452 * error. 453 */ 454 if (!error && spa_suspended(spa)) { 455 spa->spa_failmode = intval; 456 error = EIO; 457 } 458 break; 459 460 case ZPOOL_PROP_CACHEFILE: 461 if ((error = nvpair_value_string(elem, &strval)) != 0) 462 break; 463 464 if (strval[0] == '\0') 465 break; 466 467 if (strcmp(strval, "none") == 0) 468 break; 469 470 if (strval[0] != '/') { 471 error = EINVAL; 472 break; 473 } 474 475 slash = strrchr(strval, '/'); 476 ASSERT(slash != NULL); 477 478 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 479 strcmp(slash, "/..") == 0) 480 error = EINVAL; 481 break; 482 483 case ZPOOL_PROP_COMMENT: 484 if ((error = nvpair_value_string(elem, &strval)) != 0) 485 break; 486 for (check = strval; *check != '\0'; check++) { 487 /* 488 * The kernel doesn't have an easy isprint() 489 * check. For this kernel check, we merely 490 * check ASCII apart from DEL. Fix this if 491 * there is an easy-to-use kernel isprint(). 492 */ 493 if (*check >= 0x7f) { 494 error = EINVAL; 495 break; 496 } 497 check++; 498 } 499 if (strlen(strval) > ZPROP_MAX_COMMENT) 500 error = E2BIG; 501 break; 502 503 case ZPOOL_PROP_DEDUPDITTO: 504 if (spa_version(spa) < SPA_VERSION_DEDUP) 505 error = ENOTSUP; 506 else 507 error = nvpair_value_uint64(elem, &intval); 508 if (error == 0 && 509 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 510 error = EINVAL; 511 break; 512 } 513 514 if (error) 515 break; 516 } 517 518 if (!error && reset_bootfs) { 519 error = nvlist_remove(props, 520 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 521 522 if (!error) { 523 error = nvlist_add_uint64(props, 524 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 525 } 526 } 527 528 return (error); 529 } 530 531 void 532 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 533 { 534 char *cachefile; 535 spa_config_dirent_t *dp; 536 537 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 538 &cachefile) != 0) 539 return; 540 541 dp = kmem_alloc(sizeof (spa_config_dirent_t), 542 KM_SLEEP); 543 544 if (cachefile[0] == '\0') 545 dp->scd_path = spa_strdup(spa_config_path); 546 else if (strcmp(cachefile, "none") == 0) 547 dp->scd_path = NULL; 548 else 549 dp->scd_path = spa_strdup(cachefile); 550 551 list_insert_head(&spa->spa_config_list, dp); 552 if (need_sync) 553 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 554 } 555 556 int 557 spa_prop_set(spa_t *spa, nvlist_t *nvp) 558 { 559 int error; 560 nvpair_t *elem; 561 boolean_t need_sync = B_FALSE; 562 zpool_prop_t prop; 563 564 if ((error = spa_prop_validate(spa, nvp)) != 0) 565 return (error); 566 567 elem = NULL; 568 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 569 if ((prop = zpool_name_to_prop( 570 nvpair_name(elem))) == ZPROP_INVAL) 571 return (EINVAL); 572 573 if (prop == ZPOOL_PROP_CACHEFILE || 574 prop == ZPOOL_PROP_ALTROOT || 575 prop == ZPOOL_PROP_READONLY) 576 continue; 577 578 need_sync = B_TRUE; 579 break; 580 } 581 582 if (need_sync) 583 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 584 spa, nvp, 3)); 585 else 586 return (0); 587 } 588 589 /* 590 * If the bootfs property value is dsobj, clear it. 591 */ 592 void 593 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 594 { 595 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 596 VERIFY(zap_remove(spa->spa_meta_objset, 597 spa->spa_pool_props_object, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 599 spa->spa_bootfs = 0; 600 } 601 } 602 603 /* 604 * Change the GUID for the pool. This is done so that we can later 605 * re-import a pool built from a clone of our own vdevs. We will modify 606 * the root vdev's guid, our own pool guid, and then mark all of our 607 * vdevs dirty. Note that we must make sure that all our vdevs are 608 * online when we do this, or else any vdevs that weren't present 609 * would be orphaned from our pool. We are also going to issue a 610 * sysevent to update any watchers. 611 */ 612 int 613 spa_change_guid(spa_t *spa) 614 { 615 uint64_t oldguid, newguid; 616 uint64_t txg; 617 618 if (!(spa_mode_global & FWRITE)) 619 return (EROFS); 620 621 txg = spa_vdev_enter(spa); 622 623 if (spa->spa_root_vdev->vdev_state != VDEV_STATE_HEALTHY) 624 return (spa_vdev_exit(spa, NULL, txg, ENXIO)); 625 626 oldguid = spa_guid(spa); 627 newguid = spa_generate_guid(NULL); 628 ASSERT3U(oldguid, !=, newguid); 629 630 spa->spa_root_vdev->vdev_guid = newguid; 631 spa->spa_root_vdev->vdev_guid_sum += (newguid - oldguid); 632 633 vdev_config_dirty(spa->spa_root_vdev); 634 635 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 636 637 return (spa_vdev_exit(spa, NULL, txg, 0)); 638 } 639 640 /* 641 * ========================================================================== 642 * SPA state manipulation (open/create/destroy/import/export) 643 * ========================================================================== 644 */ 645 646 static int 647 spa_error_entry_compare(const void *a, const void *b) 648 { 649 spa_error_entry_t *sa = (spa_error_entry_t *)a; 650 spa_error_entry_t *sb = (spa_error_entry_t *)b; 651 int ret; 652 653 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 654 sizeof (zbookmark_t)); 655 656 if (ret < 0) 657 return (-1); 658 else if (ret > 0) 659 return (1); 660 else 661 return (0); 662 } 663 664 /* 665 * Utility function which retrieves copies of the current logs and 666 * re-initializes them in the process. 667 */ 668 void 669 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 670 { 671 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 672 673 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 674 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 675 676 avl_create(&spa->spa_errlist_scrub, 677 spa_error_entry_compare, sizeof (spa_error_entry_t), 678 offsetof(spa_error_entry_t, se_avl)); 679 avl_create(&spa->spa_errlist_last, 680 spa_error_entry_compare, sizeof (spa_error_entry_t), 681 offsetof(spa_error_entry_t, se_avl)); 682 } 683 684 static taskq_t * 685 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode, 686 uint_t value) 687 { 688 uint_t flags = 0; 689 boolean_t batch = B_FALSE; 690 691 switch (mode) { 692 case zti_mode_null: 693 return (NULL); /* no taskq needed */ 694 695 case zti_mode_fixed: 696 ASSERT3U(value, >=, 1); 697 value = MAX(value, 1); 698 break; 699 700 case zti_mode_batch: 701 batch = B_TRUE; 702 flags |= TASKQ_THREADS_CPU_PCT; 703 value = zio_taskq_batch_pct; 704 break; 705 706 case zti_mode_online_percent: 707 flags |= TASKQ_THREADS_CPU_PCT; 708 break; 709 710 default: 711 panic("unrecognized mode for %s taskq (%u:%u) in " 712 "spa_activate()", 713 name, mode, value); 714 break; 715 } 716 717 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 718 if (batch) 719 flags |= TASKQ_DC_BATCH; 720 721 return (taskq_create_sysdc(name, value, 50, INT_MAX, 722 spa->spa_proc, zio_taskq_basedc, flags)); 723 } 724 return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX, 725 spa->spa_proc, flags)); 726 } 727 728 static void 729 spa_create_zio_taskqs(spa_t *spa) 730 { 731 for (int t = 0; t < ZIO_TYPES; t++) { 732 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 733 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 734 enum zti_modes mode = ztip->zti_mode; 735 uint_t value = ztip->zti_value; 736 char name[32]; 737 738 (void) snprintf(name, sizeof (name), 739 "%s_%s", zio_type_name[t], zio_taskq_types[q]); 740 741 spa->spa_zio_taskq[t][q] = 742 spa_taskq_create(spa, name, mode, value); 743 } 744 } 745 } 746 747 #ifdef _KERNEL 748 static void 749 spa_thread(void *arg) 750 { 751 callb_cpr_t cprinfo; 752 753 spa_t *spa = arg; 754 user_t *pu = PTOU(curproc); 755 756 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 757 spa->spa_name); 758 759 ASSERT(curproc != &p0); 760 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 761 "zpool-%s", spa->spa_name); 762 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 763 764 /* bind this thread to the requested psrset */ 765 if (zio_taskq_psrset_bind != PS_NONE) { 766 pool_lock(); 767 mutex_enter(&cpu_lock); 768 mutex_enter(&pidlock); 769 mutex_enter(&curproc->p_lock); 770 771 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 772 0, NULL, NULL) == 0) { 773 curthread->t_bind_pset = zio_taskq_psrset_bind; 774 } else { 775 cmn_err(CE_WARN, 776 "Couldn't bind process for zfs pool \"%s\" to " 777 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 778 } 779 780 mutex_exit(&curproc->p_lock); 781 mutex_exit(&pidlock); 782 mutex_exit(&cpu_lock); 783 pool_unlock(); 784 } 785 786 if (zio_taskq_sysdc) { 787 sysdc_thread_enter(curthread, 100, 0); 788 } 789 790 spa->spa_proc = curproc; 791 spa->spa_did = curthread->t_did; 792 793 spa_create_zio_taskqs(spa); 794 795 mutex_enter(&spa->spa_proc_lock); 796 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 797 798 spa->spa_proc_state = SPA_PROC_ACTIVE; 799 cv_broadcast(&spa->spa_proc_cv); 800 801 CALLB_CPR_SAFE_BEGIN(&cprinfo); 802 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 803 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 804 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 805 806 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 807 spa->spa_proc_state = SPA_PROC_GONE; 808 spa->spa_proc = &p0; 809 cv_broadcast(&spa->spa_proc_cv); 810 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 811 812 mutex_enter(&curproc->p_lock); 813 lwp_exit(); 814 } 815 #endif 816 817 /* 818 * Activate an uninitialized pool. 819 */ 820 static void 821 spa_activate(spa_t *spa, int mode) 822 { 823 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 824 825 spa->spa_state = POOL_STATE_ACTIVE; 826 spa->spa_mode = mode; 827 828 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 829 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 830 831 /* Try to create a covering process */ 832 mutex_enter(&spa->spa_proc_lock); 833 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 834 ASSERT(spa->spa_proc == &p0); 835 spa->spa_did = 0; 836 837 /* Only create a process if we're going to be around a while. */ 838 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 839 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 840 NULL, 0) == 0) { 841 spa->spa_proc_state = SPA_PROC_CREATED; 842 while (spa->spa_proc_state == SPA_PROC_CREATED) { 843 cv_wait(&spa->spa_proc_cv, 844 &spa->spa_proc_lock); 845 } 846 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 847 ASSERT(spa->spa_proc != &p0); 848 ASSERT(spa->spa_did != 0); 849 } else { 850 #ifdef _KERNEL 851 cmn_err(CE_WARN, 852 "Couldn't create process for zfs pool \"%s\"\n", 853 spa->spa_name); 854 #endif 855 } 856 } 857 mutex_exit(&spa->spa_proc_lock); 858 859 /* If we didn't create a process, we need to create our taskqs. */ 860 if (spa->spa_proc == &p0) { 861 spa_create_zio_taskqs(spa); 862 } 863 864 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 865 offsetof(vdev_t, vdev_config_dirty_node)); 866 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 867 offsetof(vdev_t, vdev_state_dirty_node)); 868 869 txg_list_create(&spa->spa_vdev_txg_list, 870 offsetof(struct vdev, vdev_txg_node)); 871 872 avl_create(&spa->spa_errlist_scrub, 873 spa_error_entry_compare, sizeof (spa_error_entry_t), 874 offsetof(spa_error_entry_t, se_avl)); 875 avl_create(&spa->spa_errlist_last, 876 spa_error_entry_compare, sizeof (spa_error_entry_t), 877 offsetof(spa_error_entry_t, se_avl)); 878 } 879 880 /* 881 * Opposite of spa_activate(). 882 */ 883 static void 884 spa_deactivate(spa_t *spa) 885 { 886 ASSERT(spa->spa_sync_on == B_FALSE); 887 ASSERT(spa->spa_dsl_pool == NULL); 888 ASSERT(spa->spa_root_vdev == NULL); 889 ASSERT(spa->spa_async_zio_root == NULL); 890 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 891 892 txg_list_destroy(&spa->spa_vdev_txg_list); 893 894 list_destroy(&spa->spa_config_dirty_list); 895 list_destroy(&spa->spa_state_dirty_list); 896 897 for (int t = 0; t < ZIO_TYPES; t++) { 898 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 899 if (spa->spa_zio_taskq[t][q] != NULL) 900 taskq_destroy(spa->spa_zio_taskq[t][q]); 901 spa->spa_zio_taskq[t][q] = NULL; 902 } 903 } 904 905 metaslab_class_destroy(spa->spa_normal_class); 906 spa->spa_normal_class = NULL; 907 908 metaslab_class_destroy(spa->spa_log_class); 909 spa->spa_log_class = NULL; 910 911 /* 912 * If this was part of an import or the open otherwise failed, we may 913 * still have errors left in the queues. Empty them just in case. 914 */ 915 spa_errlog_drain(spa); 916 917 avl_destroy(&spa->spa_errlist_scrub); 918 avl_destroy(&spa->spa_errlist_last); 919 920 spa->spa_state = POOL_STATE_UNINITIALIZED; 921 922 mutex_enter(&spa->spa_proc_lock); 923 if (spa->spa_proc_state != SPA_PROC_NONE) { 924 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 925 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 926 cv_broadcast(&spa->spa_proc_cv); 927 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 928 ASSERT(spa->spa_proc != &p0); 929 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 930 } 931 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 932 spa->spa_proc_state = SPA_PROC_NONE; 933 } 934 ASSERT(spa->spa_proc == &p0); 935 mutex_exit(&spa->spa_proc_lock); 936 937 /* 938 * We want to make sure spa_thread() has actually exited the ZFS 939 * module, so that the module can't be unloaded out from underneath 940 * it. 941 */ 942 if (spa->spa_did != 0) { 943 thread_join(spa->spa_did); 944 spa->spa_did = 0; 945 } 946 } 947 948 /* 949 * Verify a pool configuration, and construct the vdev tree appropriately. This 950 * will create all the necessary vdevs in the appropriate layout, with each vdev 951 * in the CLOSED state. This will prep the pool before open/creation/import. 952 * All vdev validation is done by the vdev_alloc() routine. 953 */ 954 static int 955 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 956 uint_t id, int atype) 957 { 958 nvlist_t **child; 959 uint_t children; 960 int error; 961 962 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 963 return (error); 964 965 if ((*vdp)->vdev_ops->vdev_op_leaf) 966 return (0); 967 968 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 969 &child, &children); 970 971 if (error == ENOENT) 972 return (0); 973 974 if (error) { 975 vdev_free(*vdp); 976 *vdp = NULL; 977 return (EINVAL); 978 } 979 980 for (int c = 0; c < children; c++) { 981 vdev_t *vd; 982 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 983 atype)) != 0) { 984 vdev_free(*vdp); 985 *vdp = NULL; 986 return (error); 987 } 988 } 989 990 ASSERT(*vdp != NULL); 991 992 return (0); 993 } 994 995 /* 996 * Opposite of spa_load(). 997 */ 998 static void 999 spa_unload(spa_t *spa) 1000 { 1001 int i; 1002 1003 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1004 1005 /* 1006 * Stop async tasks. 1007 */ 1008 spa_async_suspend(spa); 1009 1010 /* 1011 * Stop syncing. 1012 */ 1013 if (spa->spa_sync_on) { 1014 txg_sync_stop(spa->spa_dsl_pool); 1015 spa->spa_sync_on = B_FALSE; 1016 } 1017 1018 /* 1019 * Wait for any outstanding async I/O to complete. 1020 */ 1021 if (spa->spa_async_zio_root != NULL) { 1022 (void) zio_wait(spa->spa_async_zio_root); 1023 spa->spa_async_zio_root = NULL; 1024 } 1025 1026 bpobj_close(&spa->spa_deferred_bpobj); 1027 1028 /* 1029 * Close the dsl pool. 1030 */ 1031 if (spa->spa_dsl_pool) { 1032 dsl_pool_close(spa->spa_dsl_pool); 1033 spa->spa_dsl_pool = NULL; 1034 spa->spa_meta_objset = NULL; 1035 } 1036 1037 ddt_unload(spa); 1038 1039 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1040 1041 /* 1042 * Drop and purge level 2 cache 1043 */ 1044 spa_l2cache_drop(spa); 1045 1046 /* 1047 * Close all vdevs. 1048 */ 1049 if (spa->spa_root_vdev) 1050 vdev_free(spa->spa_root_vdev); 1051 ASSERT(spa->spa_root_vdev == NULL); 1052 1053 for (i = 0; i < spa->spa_spares.sav_count; i++) 1054 vdev_free(spa->spa_spares.sav_vdevs[i]); 1055 if (spa->spa_spares.sav_vdevs) { 1056 kmem_free(spa->spa_spares.sav_vdevs, 1057 spa->spa_spares.sav_count * sizeof (void *)); 1058 spa->spa_spares.sav_vdevs = NULL; 1059 } 1060 if (spa->spa_spares.sav_config) { 1061 nvlist_free(spa->spa_spares.sav_config); 1062 spa->spa_spares.sav_config = NULL; 1063 } 1064 spa->spa_spares.sav_count = 0; 1065 1066 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1067 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1068 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1069 } 1070 if (spa->spa_l2cache.sav_vdevs) { 1071 kmem_free(spa->spa_l2cache.sav_vdevs, 1072 spa->spa_l2cache.sav_count * sizeof (void *)); 1073 spa->spa_l2cache.sav_vdevs = NULL; 1074 } 1075 if (spa->spa_l2cache.sav_config) { 1076 nvlist_free(spa->spa_l2cache.sav_config); 1077 spa->spa_l2cache.sav_config = NULL; 1078 } 1079 spa->spa_l2cache.sav_count = 0; 1080 1081 spa->spa_async_suspended = 0; 1082 1083 if (spa->spa_comment != NULL) { 1084 spa_strfree(spa->spa_comment); 1085 spa->spa_comment = NULL; 1086 } 1087 1088 spa_config_exit(spa, SCL_ALL, FTAG); 1089 } 1090 1091 /* 1092 * Load (or re-load) the current list of vdevs describing the active spares for 1093 * this pool. When this is called, we have some form of basic information in 1094 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1095 * then re-generate a more complete list including status information. 1096 */ 1097 static void 1098 spa_load_spares(spa_t *spa) 1099 { 1100 nvlist_t **spares; 1101 uint_t nspares; 1102 int i; 1103 vdev_t *vd, *tvd; 1104 1105 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1106 1107 /* 1108 * First, close and free any existing spare vdevs. 1109 */ 1110 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1111 vd = spa->spa_spares.sav_vdevs[i]; 1112 1113 /* Undo the call to spa_activate() below */ 1114 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1115 B_FALSE)) != NULL && tvd->vdev_isspare) 1116 spa_spare_remove(tvd); 1117 vdev_close(vd); 1118 vdev_free(vd); 1119 } 1120 1121 if (spa->spa_spares.sav_vdevs) 1122 kmem_free(spa->spa_spares.sav_vdevs, 1123 spa->spa_spares.sav_count * sizeof (void *)); 1124 1125 if (spa->spa_spares.sav_config == NULL) 1126 nspares = 0; 1127 else 1128 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1129 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1130 1131 spa->spa_spares.sav_count = (int)nspares; 1132 spa->spa_spares.sav_vdevs = NULL; 1133 1134 if (nspares == 0) 1135 return; 1136 1137 /* 1138 * Construct the array of vdevs, opening them to get status in the 1139 * process. For each spare, there is potentially two different vdev_t 1140 * structures associated with it: one in the list of spares (used only 1141 * for basic validation purposes) and one in the active vdev 1142 * configuration (if it's spared in). During this phase we open and 1143 * validate each vdev on the spare list. If the vdev also exists in the 1144 * active configuration, then we also mark this vdev as an active spare. 1145 */ 1146 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1147 KM_SLEEP); 1148 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1149 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1150 VDEV_ALLOC_SPARE) == 0); 1151 ASSERT(vd != NULL); 1152 1153 spa->spa_spares.sav_vdevs[i] = vd; 1154 1155 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1156 B_FALSE)) != NULL) { 1157 if (!tvd->vdev_isspare) 1158 spa_spare_add(tvd); 1159 1160 /* 1161 * We only mark the spare active if we were successfully 1162 * able to load the vdev. Otherwise, importing a pool 1163 * with a bad active spare would result in strange 1164 * behavior, because multiple pool would think the spare 1165 * is actively in use. 1166 * 1167 * There is a vulnerability here to an equally bizarre 1168 * circumstance, where a dead active spare is later 1169 * brought back to life (onlined or otherwise). Given 1170 * the rarity of this scenario, and the extra complexity 1171 * it adds, we ignore the possibility. 1172 */ 1173 if (!vdev_is_dead(tvd)) 1174 spa_spare_activate(tvd); 1175 } 1176 1177 vd->vdev_top = vd; 1178 vd->vdev_aux = &spa->spa_spares; 1179 1180 if (vdev_open(vd) != 0) 1181 continue; 1182 1183 if (vdev_validate_aux(vd) == 0) 1184 spa_spare_add(vd); 1185 } 1186 1187 /* 1188 * Recompute the stashed list of spares, with status information 1189 * this time. 1190 */ 1191 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1192 DATA_TYPE_NVLIST_ARRAY) == 0); 1193 1194 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1195 KM_SLEEP); 1196 for (i = 0; i < spa->spa_spares.sav_count; i++) 1197 spares[i] = vdev_config_generate(spa, 1198 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1199 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1200 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1201 for (i = 0; i < spa->spa_spares.sav_count; i++) 1202 nvlist_free(spares[i]); 1203 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1204 } 1205 1206 /* 1207 * Load (or re-load) the current list of vdevs describing the active l2cache for 1208 * this pool. When this is called, we have some form of basic information in 1209 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1210 * then re-generate a more complete list including status information. 1211 * Devices which are already active have their details maintained, and are 1212 * not re-opened. 1213 */ 1214 static void 1215 spa_load_l2cache(spa_t *spa) 1216 { 1217 nvlist_t **l2cache; 1218 uint_t nl2cache; 1219 int i, j, oldnvdevs; 1220 uint64_t guid; 1221 vdev_t *vd, **oldvdevs, **newvdevs; 1222 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1223 1224 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1225 1226 if (sav->sav_config != NULL) { 1227 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1228 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1229 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1230 } else { 1231 nl2cache = 0; 1232 } 1233 1234 oldvdevs = sav->sav_vdevs; 1235 oldnvdevs = sav->sav_count; 1236 sav->sav_vdevs = NULL; 1237 sav->sav_count = 0; 1238 1239 /* 1240 * Process new nvlist of vdevs. 1241 */ 1242 for (i = 0; i < nl2cache; i++) { 1243 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1244 &guid) == 0); 1245 1246 newvdevs[i] = NULL; 1247 for (j = 0; j < oldnvdevs; j++) { 1248 vd = oldvdevs[j]; 1249 if (vd != NULL && guid == vd->vdev_guid) { 1250 /* 1251 * Retain previous vdev for add/remove ops. 1252 */ 1253 newvdevs[i] = vd; 1254 oldvdevs[j] = NULL; 1255 break; 1256 } 1257 } 1258 1259 if (newvdevs[i] == NULL) { 1260 /* 1261 * Create new vdev 1262 */ 1263 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1264 VDEV_ALLOC_L2CACHE) == 0); 1265 ASSERT(vd != NULL); 1266 newvdevs[i] = vd; 1267 1268 /* 1269 * Commit this vdev as an l2cache device, 1270 * even if it fails to open. 1271 */ 1272 spa_l2cache_add(vd); 1273 1274 vd->vdev_top = vd; 1275 vd->vdev_aux = sav; 1276 1277 spa_l2cache_activate(vd); 1278 1279 if (vdev_open(vd) != 0) 1280 continue; 1281 1282 (void) vdev_validate_aux(vd); 1283 1284 if (!vdev_is_dead(vd)) 1285 l2arc_add_vdev(spa, vd); 1286 } 1287 } 1288 1289 /* 1290 * Purge vdevs that were dropped 1291 */ 1292 for (i = 0; i < oldnvdevs; i++) { 1293 uint64_t pool; 1294 1295 vd = oldvdevs[i]; 1296 if (vd != NULL) { 1297 ASSERT(vd->vdev_isl2cache); 1298 1299 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1300 pool != 0ULL && l2arc_vdev_present(vd)) 1301 l2arc_remove_vdev(vd); 1302 vdev_clear_stats(vd); 1303 vdev_free(vd); 1304 } 1305 } 1306 1307 if (oldvdevs) 1308 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1309 1310 if (sav->sav_config == NULL) 1311 goto out; 1312 1313 sav->sav_vdevs = newvdevs; 1314 sav->sav_count = (int)nl2cache; 1315 1316 /* 1317 * Recompute the stashed list of l2cache devices, with status 1318 * information this time. 1319 */ 1320 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1321 DATA_TYPE_NVLIST_ARRAY) == 0); 1322 1323 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1324 for (i = 0; i < sav->sav_count; i++) 1325 l2cache[i] = vdev_config_generate(spa, 1326 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1327 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1328 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1329 out: 1330 for (i = 0; i < sav->sav_count; i++) 1331 nvlist_free(l2cache[i]); 1332 if (sav->sav_count) 1333 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1334 } 1335 1336 static int 1337 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1338 { 1339 dmu_buf_t *db; 1340 char *packed = NULL; 1341 size_t nvsize = 0; 1342 int error; 1343 *value = NULL; 1344 1345 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1346 nvsize = *(uint64_t *)db->db_data; 1347 dmu_buf_rele(db, FTAG); 1348 1349 packed = kmem_alloc(nvsize, KM_SLEEP); 1350 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1351 DMU_READ_PREFETCH); 1352 if (error == 0) 1353 error = nvlist_unpack(packed, nvsize, value, 0); 1354 kmem_free(packed, nvsize); 1355 1356 return (error); 1357 } 1358 1359 /* 1360 * Checks to see if the given vdev could not be opened, in which case we post a 1361 * sysevent to notify the autoreplace code that the device has been removed. 1362 */ 1363 static void 1364 spa_check_removed(vdev_t *vd) 1365 { 1366 for (int c = 0; c < vd->vdev_children; c++) 1367 spa_check_removed(vd->vdev_child[c]); 1368 1369 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 1370 zfs_post_autoreplace(vd->vdev_spa, vd); 1371 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1372 } 1373 } 1374 1375 /* 1376 * Validate the current config against the MOS config 1377 */ 1378 static boolean_t 1379 spa_config_valid(spa_t *spa, nvlist_t *config) 1380 { 1381 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1382 nvlist_t *nv; 1383 1384 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1385 1386 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1387 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1388 1389 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1390 1391 /* 1392 * If we're doing a normal import, then build up any additional 1393 * diagnostic information about missing devices in this config. 1394 * We'll pass this up to the user for further processing. 1395 */ 1396 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1397 nvlist_t **child, *nv; 1398 uint64_t idx = 0; 1399 1400 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1401 KM_SLEEP); 1402 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1403 1404 for (int c = 0; c < rvd->vdev_children; c++) { 1405 vdev_t *tvd = rvd->vdev_child[c]; 1406 vdev_t *mtvd = mrvd->vdev_child[c]; 1407 1408 if (tvd->vdev_ops == &vdev_missing_ops && 1409 mtvd->vdev_ops != &vdev_missing_ops && 1410 mtvd->vdev_islog) 1411 child[idx++] = vdev_config_generate(spa, mtvd, 1412 B_FALSE, 0); 1413 } 1414 1415 if (idx) { 1416 VERIFY(nvlist_add_nvlist_array(nv, 1417 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1418 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1419 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1420 1421 for (int i = 0; i < idx; i++) 1422 nvlist_free(child[i]); 1423 } 1424 nvlist_free(nv); 1425 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1426 } 1427 1428 /* 1429 * Compare the root vdev tree with the information we have 1430 * from the MOS config (mrvd). Check each top-level vdev 1431 * with the corresponding MOS config top-level (mtvd). 1432 */ 1433 for (int c = 0; c < rvd->vdev_children; c++) { 1434 vdev_t *tvd = rvd->vdev_child[c]; 1435 vdev_t *mtvd = mrvd->vdev_child[c]; 1436 1437 /* 1438 * Resolve any "missing" vdevs in the current configuration. 1439 * If we find that the MOS config has more accurate information 1440 * about the top-level vdev then use that vdev instead. 1441 */ 1442 if (tvd->vdev_ops == &vdev_missing_ops && 1443 mtvd->vdev_ops != &vdev_missing_ops) { 1444 1445 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1446 continue; 1447 1448 /* 1449 * Device specific actions. 1450 */ 1451 if (mtvd->vdev_islog) { 1452 spa_set_log_state(spa, SPA_LOG_CLEAR); 1453 } else { 1454 /* 1455 * XXX - once we have 'readonly' pool 1456 * support we should be able to handle 1457 * missing data devices by transitioning 1458 * the pool to readonly. 1459 */ 1460 continue; 1461 } 1462 1463 /* 1464 * Swap the missing vdev with the data we were 1465 * able to obtain from the MOS config. 1466 */ 1467 vdev_remove_child(rvd, tvd); 1468 vdev_remove_child(mrvd, mtvd); 1469 1470 vdev_add_child(rvd, mtvd); 1471 vdev_add_child(mrvd, tvd); 1472 1473 spa_config_exit(spa, SCL_ALL, FTAG); 1474 vdev_load(mtvd); 1475 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1476 1477 vdev_reopen(rvd); 1478 } else if (mtvd->vdev_islog) { 1479 /* 1480 * Load the slog device's state from the MOS config 1481 * since it's possible that the label does not 1482 * contain the most up-to-date information. 1483 */ 1484 vdev_load_log_state(tvd, mtvd); 1485 vdev_reopen(tvd); 1486 } 1487 } 1488 vdev_free(mrvd); 1489 spa_config_exit(spa, SCL_ALL, FTAG); 1490 1491 /* 1492 * Ensure we were able to validate the config. 1493 */ 1494 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1495 } 1496 1497 /* 1498 * Check for missing log devices 1499 */ 1500 static int 1501 spa_check_logs(spa_t *spa) 1502 { 1503 switch (spa->spa_log_state) { 1504 case SPA_LOG_MISSING: 1505 /* need to recheck in case slog has been restored */ 1506 case SPA_LOG_UNKNOWN: 1507 if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL, 1508 DS_FIND_CHILDREN)) { 1509 spa_set_log_state(spa, SPA_LOG_MISSING); 1510 return (1); 1511 } 1512 break; 1513 } 1514 return (0); 1515 } 1516 1517 static boolean_t 1518 spa_passivate_log(spa_t *spa) 1519 { 1520 vdev_t *rvd = spa->spa_root_vdev; 1521 boolean_t slog_found = B_FALSE; 1522 1523 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1524 1525 if (!spa_has_slogs(spa)) 1526 return (B_FALSE); 1527 1528 for (int c = 0; c < rvd->vdev_children; c++) { 1529 vdev_t *tvd = rvd->vdev_child[c]; 1530 metaslab_group_t *mg = tvd->vdev_mg; 1531 1532 if (tvd->vdev_islog) { 1533 metaslab_group_passivate(mg); 1534 slog_found = B_TRUE; 1535 } 1536 } 1537 1538 return (slog_found); 1539 } 1540 1541 static void 1542 spa_activate_log(spa_t *spa) 1543 { 1544 vdev_t *rvd = spa->spa_root_vdev; 1545 1546 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1547 1548 for (int c = 0; c < rvd->vdev_children; c++) { 1549 vdev_t *tvd = rvd->vdev_child[c]; 1550 metaslab_group_t *mg = tvd->vdev_mg; 1551 1552 if (tvd->vdev_islog) 1553 metaslab_group_activate(mg); 1554 } 1555 } 1556 1557 int 1558 spa_offline_log(spa_t *spa) 1559 { 1560 int error = 0; 1561 1562 if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1563 NULL, DS_FIND_CHILDREN)) == 0) { 1564 1565 /* 1566 * We successfully offlined the log device, sync out the 1567 * current txg so that the "stubby" block can be removed 1568 * by zil_sync(). 1569 */ 1570 txg_wait_synced(spa->spa_dsl_pool, 0); 1571 } 1572 return (error); 1573 } 1574 1575 static void 1576 spa_aux_check_removed(spa_aux_vdev_t *sav) 1577 { 1578 for (int i = 0; i < sav->sav_count; i++) 1579 spa_check_removed(sav->sav_vdevs[i]); 1580 } 1581 1582 void 1583 spa_claim_notify(zio_t *zio) 1584 { 1585 spa_t *spa = zio->io_spa; 1586 1587 if (zio->io_error) 1588 return; 1589 1590 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1591 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1592 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1593 mutex_exit(&spa->spa_props_lock); 1594 } 1595 1596 typedef struct spa_load_error { 1597 uint64_t sle_meta_count; 1598 uint64_t sle_data_count; 1599 } spa_load_error_t; 1600 1601 static void 1602 spa_load_verify_done(zio_t *zio) 1603 { 1604 blkptr_t *bp = zio->io_bp; 1605 spa_load_error_t *sle = zio->io_private; 1606 dmu_object_type_t type = BP_GET_TYPE(bp); 1607 int error = zio->io_error; 1608 1609 if (error) { 1610 if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) && 1611 type != DMU_OT_INTENT_LOG) 1612 atomic_add_64(&sle->sle_meta_count, 1); 1613 else 1614 atomic_add_64(&sle->sle_data_count, 1); 1615 } 1616 zio_data_buf_free(zio->io_data, zio->io_size); 1617 } 1618 1619 /*ARGSUSED*/ 1620 static int 1621 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1622 arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg) 1623 { 1624 if (bp != NULL) { 1625 zio_t *rio = arg; 1626 size_t size = BP_GET_PSIZE(bp); 1627 void *data = zio_data_buf_alloc(size); 1628 1629 zio_nowait(zio_read(rio, spa, bp, data, size, 1630 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1631 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1632 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1633 } 1634 return (0); 1635 } 1636 1637 static int 1638 spa_load_verify(spa_t *spa) 1639 { 1640 zio_t *rio; 1641 spa_load_error_t sle = { 0 }; 1642 zpool_rewind_policy_t policy; 1643 boolean_t verify_ok = B_FALSE; 1644 int error; 1645 1646 zpool_get_rewind_policy(spa->spa_config, &policy); 1647 1648 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1649 return (0); 1650 1651 rio = zio_root(spa, NULL, &sle, 1652 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1653 1654 error = traverse_pool(spa, spa->spa_verify_min_txg, 1655 TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio); 1656 1657 (void) zio_wait(rio); 1658 1659 spa->spa_load_meta_errors = sle.sle_meta_count; 1660 spa->spa_load_data_errors = sle.sle_data_count; 1661 1662 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1663 sle.sle_data_count <= policy.zrp_maxdata) { 1664 int64_t loss = 0; 1665 1666 verify_ok = B_TRUE; 1667 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1668 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1669 1670 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1671 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1672 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1673 VERIFY(nvlist_add_int64(spa->spa_load_info, 1674 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1675 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1676 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1677 } else { 1678 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1679 } 1680 1681 if (error) { 1682 if (error != ENXIO && error != EIO) 1683 error = EIO; 1684 return (error); 1685 } 1686 1687 return (verify_ok ? 0 : EIO); 1688 } 1689 1690 /* 1691 * Find a value in the pool props object. 1692 */ 1693 static void 1694 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1695 { 1696 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1697 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1698 } 1699 1700 /* 1701 * Find a value in the pool directory object. 1702 */ 1703 static int 1704 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1705 { 1706 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1707 name, sizeof (uint64_t), 1, val)); 1708 } 1709 1710 static int 1711 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1712 { 1713 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1714 return (err); 1715 } 1716 1717 /* 1718 * Fix up config after a partly-completed split. This is done with the 1719 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1720 * pool have that entry in their config, but only the splitting one contains 1721 * a list of all the guids of the vdevs that are being split off. 1722 * 1723 * This function determines what to do with that list: either rejoin 1724 * all the disks to the pool, or complete the splitting process. To attempt 1725 * the rejoin, each disk that is offlined is marked online again, and 1726 * we do a reopen() call. If the vdev label for every disk that was 1727 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1728 * then we call vdev_split() on each disk, and complete the split. 1729 * 1730 * Otherwise we leave the config alone, with all the vdevs in place in 1731 * the original pool. 1732 */ 1733 static void 1734 spa_try_repair(spa_t *spa, nvlist_t *config) 1735 { 1736 uint_t extracted; 1737 uint64_t *glist; 1738 uint_t i, gcount; 1739 nvlist_t *nvl; 1740 vdev_t **vd; 1741 boolean_t attempt_reopen; 1742 1743 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1744 return; 1745 1746 /* check that the config is complete */ 1747 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1748 &glist, &gcount) != 0) 1749 return; 1750 1751 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1752 1753 /* attempt to online all the vdevs & validate */ 1754 attempt_reopen = B_TRUE; 1755 for (i = 0; i < gcount; i++) { 1756 if (glist[i] == 0) /* vdev is hole */ 1757 continue; 1758 1759 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 1760 if (vd[i] == NULL) { 1761 /* 1762 * Don't bother attempting to reopen the disks; 1763 * just do the split. 1764 */ 1765 attempt_reopen = B_FALSE; 1766 } else { 1767 /* attempt to re-online it */ 1768 vd[i]->vdev_offline = B_FALSE; 1769 } 1770 } 1771 1772 if (attempt_reopen) { 1773 vdev_reopen(spa->spa_root_vdev); 1774 1775 /* check each device to see what state it's in */ 1776 for (extracted = 0, i = 0; i < gcount; i++) { 1777 if (vd[i] != NULL && 1778 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 1779 break; 1780 ++extracted; 1781 } 1782 } 1783 1784 /* 1785 * If every disk has been moved to the new pool, or if we never 1786 * even attempted to look at them, then we split them off for 1787 * good. 1788 */ 1789 if (!attempt_reopen || gcount == extracted) { 1790 for (i = 0; i < gcount; i++) 1791 if (vd[i] != NULL) 1792 vdev_split(vd[i]); 1793 vdev_reopen(spa->spa_root_vdev); 1794 } 1795 1796 kmem_free(vd, gcount * sizeof (vdev_t *)); 1797 } 1798 1799 static int 1800 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 1801 boolean_t mosconfig) 1802 { 1803 nvlist_t *config = spa->spa_config; 1804 char *ereport = FM_EREPORT_ZFS_POOL; 1805 char *comment; 1806 int error; 1807 uint64_t pool_guid; 1808 nvlist_t *nvl; 1809 1810 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 1811 return (EINVAL); 1812 1813 ASSERT(spa->spa_comment == NULL); 1814 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 1815 spa->spa_comment = spa_strdup(comment); 1816 1817 /* 1818 * Versioning wasn't explicitly added to the label until later, so if 1819 * it's not present treat it as the initial version. 1820 */ 1821 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 1822 &spa->spa_ubsync.ub_version) != 0) 1823 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 1824 1825 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 1826 &spa->spa_config_txg); 1827 1828 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 1829 spa_guid_exists(pool_guid, 0)) { 1830 error = EEXIST; 1831 } else { 1832 spa->spa_config_guid = pool_guid; 1833 1834 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 1835 &nvl) == 0) { 1836 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 1837 KM_SLEEP) == 0); 1838 } 1839 1840 gethrestime(&spa->spa_loaded_ts); 1841 error = spa_load_impl(spa, pool_guid, config, state, type, 1842 mosconfig, &ereport); 1843 } 1844 1845 spa->spa_minref = refcount_count(&spa->spa_refcount); 1846 if (error) { 1847 if (error != EEXIST) { 1848 spa->spa_loaded_ts.tv_sec = 0; 1849 spa->spa_loaded_ts.tv_nsec = 0; 1850 } 1851 if (error != EBADF) { 1852 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 1853 } 1854 } 1855 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 1856 spa->spa_ena = 0; 1857 1858 return (error); 1859 } 1860 1861 /* 1862 * Load an existing storage pool, using the pool's builtin spa_config as a 1863 * source of configuration information. 1864 */ 1865 static int 1866 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 1867 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 1868 char **ereport) 1869 { 1870 int error = 0; 1871 nvlist_t *nvroot = NULL; 1872 vdev_t *rvd; 1873 uberblock_t *ub = &spa->spa_uberblock; 1874 uint64_t children, config_cache_txg = spa->spa_config_txg; 1875 int orig_mode = spa->spa_mode; 1876 int parse; 1877 uint64_t obj; 1878 1879 /* 1880 * If this is an untrusted config, access the pool in read-only mode. 1881 * This prevents things like resilvering recently removed devices. 1882 */ 1883 if (!mosconfig) 1884 spa->spa_mode = FREAD; 1885 1886 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1887 1888 spa->spa_load_state = state; 1889 1890 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 1891 return (EINVAL); 1892 1893 parse = (type == SPA_IMPORT_EXISTING ? 1894 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 1895 1896 /* 1897 * Create "The Godfather" zio to hold all async IOs 1898 */ 1899 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 1900 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 1901 1902 /* 1903 * Parse the configuration into a vdev tree. We explicitly set the 1904 * value that will be returned by spa_version() since parsing the 1905 * configuration requires knowing the version number. 1906 */ 1907 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1908 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 1909 spa_config_exit(spa, SCL_ALL, FTAG); 1910 1911 if (error != 0) 1912 return (error); 1913 1914 ASSERT(spa->spa_root_vdev == rvd); 1915 1916 if (type != SPA_IMPORT_ASSEMBLE) { 1917 ASSERT(spa_guid(spa) == pool_guid); 1918 } 1919 1920 /* 1921 * Try to open all vdevs, loading each label in the process. 1922 */ 1923 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1924 error = vdev_open(rvd); 1925 spa_config_exit(spa, SCL_ALL, FTAG); 1926 if (error != 0) 1927 return (error); 1928 1929 /* 1930 * We need to validate the vdev labels against the configuration that 1931 * we have in hand, which is dependent on the setting of mosconfig. If 1932 * mosconfig is true then we're validating the vdev labels based on 1933 * that config. Otherwise, we're validating against the cached config 1934 * (zpool.cache) that was read when we loaded the zfs module, and then 1935 * later we will recursively call spa_load() and validate against 1936 * the vdev config. 1937 * 1938 * If we're assembling a new pool that's been split off from an 1939 * existing pool, the labels haven't yet been updated so we skip 1940 * validation for now. 1941 */ 1942 if (type != SPA_IMPORT_ASSEMBLE) { 1943 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1944 error = vdev_validate(rvd, mosconfig); 1945 spa_config_exit(spa, SCL_ALL, FTAG); 1946 1947 if (error != 0) 1948 return (error); 1949 1950 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 1951 return (ENXIO); 1952 } 1953 1954 /* 1955 * Find the best uberblock. 1956 */ 1957 vdev_uberblock_load(NULL, rvd, ub); 1958 1959 /* 1960 * If we weren't able to find a single valid uberblock, return failure. 1961 */ 1962 if (ub->ub_txg == 0) 1963 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 1964 1965 /* 1966 * If the pool is newer than the code, we can't open it. 1967 */ 1968 if (ub->ub_version > SPA_VERSION) 1969 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 1970 1971 /* 1972 * If the vdev guid sum doesn't match the uberblock, we have an 1973 * incomplete configuration. We first check to see if the pool 1974 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 1975 * If it is, defer the vdev_guid_sum check till later so we 1976 * can handle missing vdevs. 1977 */ 1978 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 1979 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 1980 rvd->vdev_guid_sum != ub->ub_guid_sum) 1981 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 1982 1983 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 1984 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1985 spa_try_repair(spa, config); 1986 spa_config_exit(spa, SCL_ALL, FTAG); 1987 nvlist_free(spa->spa_config_splitting); 1988 spa->spa_config_splitting = NULL; 1989 } 1990 1991 /* 1992 * Initialize internal SPA structures. 1993 */ 1994 spa->spa_state = POOL_STATE_ACTIVE; 1995 spa->spa_ubsync = spa->spa_uberblock; 1996 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 1997 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 1998 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 1999 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2000 spa->spa_claim_max_txg = spa->spa_first_txg; 2001 spa->spa_prev_software_version = ub->ub_software_version; 2002 2003 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2004 if (error) 2005 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2006 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2007 2008 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2009 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2010 2011 if (!mosconfig) { 2012 uint64_t hostid; 2013 nvlist_t *policy = NULL, *nvconfig; 2014 2015 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2016 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2017 2018 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2019 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2020 char *hostname; 2021 unsigned long myhostid = 0; 2022 2023 VERIFY(nvlist_lookup_string(nvconfig, 2024 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2025 2026 #ifdef _KERNEL 2027 myhostid = zone_get_hostid(NULL); 2028 #else /* _KERNEL */ 2029 /* 2030 * We're emulating the system's hostid in userland, so 2031 * we can't use zone_get_hostid(). 2032 */ 2033 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2034 #endif /* _KERNEL */ 2035 if (hostid != 0 && myhostid != 0 && 2036 hostid != myhostid) { 2037 nvlist_free(nvconfig); 2038 cmn_err(CE_WARN, "pool '%s' could not be " 2039 "loaded as it was last accessed by " 2040 "another system (host: %s hostid: 0x%lx). " 2041 "See: http://illumos.org/msg/ZFS-8000-EY", 2042 spa_name(spa), hostname, 2043 (unsigned long)hostid); 2044 return (EBADF); 2045 } 2046 } 2047 if (nvlist_lookup_nvlist(spa->spa_config, 2048 ZPOOL_REWIND_POLICY, &policy) == 0) 2049 VERIFY(nvlist_add_nvlist(nvconfig, 2050 ZPOOL_REWIND_POLICY, policy) == 0); 2051 2052 spa_config_set(spa, nvconfig); 2053 spa_unload(spa); 2054 spa_deactivate(spa); 2055 spa_activate(spa, orig_mode); 2056 2057 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2058 } 2059 2060 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2061 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2062 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2063 if (error != 0) 2064 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2065 2066 /* 2067 * Load the bit that tells us to use the new accounting function 2068 * (raid-z deflation). If we have an older pool, this will not 2069 * be present. 2070 */ 2071 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2072 if (error != 0 && error != ENOENT) 2073 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2074 2075 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2076 &spa->spa_creation_version); 2077 if (error != 0 && error != ENOENT) 2078 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2079 2080 /* 2081 * Load the persistent error log. If we have an older pool, this will 2082 * not be present. 2083 */ 2084 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2085 if (error != 0 && error != ENOENT) 2086 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2087 2088 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2089 &spa->spa_errlog_scrub); 2090 if (error != 0 && error != ENOENT) 2091 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2092 2093 /* 2094 * Load the history object. If we have an older pool, this 2095 * will not be present. 2096 */ 2097 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2098 if (error != 0 && error != ENOENT) 2099 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2100 2101 /* 2102 * If we're assembling the pool from the split-off vdevs of 2103 * an existing pool, we don't want to attach the spares & cache 2104 * devices. 2105 */ 2106 2107 /* 2108 * Load any hot spares for this pool. 2109 */ 2110 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2111 if (error != 0 && error != ENOENT) 2112 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2113 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2114 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2115 if (load_nvlist(spa, spa->spa_spares.sav_object, 2116 &spa->spa_spares.sav_config) != 0) 2117 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2118 2119 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2120 spa_load_spares(spa); 2121 spa_config_exit(spa, SCL_ALL, FTAG); 2122 } else if (error == 0) { 2123 spa->spa_spares.sav_sync = B_TRUE; 2124 } 2125 2126 /* 2127 * Load any level 2 ARC devices for this pool. 2128 */ 2129 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2130 &spa->spa_l2cache.sav_object); 2131 if (error != 0 && error != ENOENT) 2132 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2133 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2134 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2135 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2136 &spa->spa_l2cache.sav_config) != 0) 2137 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2138 2139 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2140 spa_load_l2cache(spa); 2141 spa_config_exit(spa, SCL_ALL, FTAG); 2142 } else if (error == 0) { 2143 spa->spa_l2cache.sav_sync = B_TRUE; 2144 } 2145 2146 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2147 2148 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2149 if (error && error != ENOENT) 2150 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2151 2152 if (error == 0) { 2153 uint64_t autoreplace; 2154 2155 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2156 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2157 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2158 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2159 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2160 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2161 &spa->spa_dedup_ditto); 2162 2163 spa->spa_autoreplace = (autoreplace != 0); 2164 } 2165 2166 /* 2167 * If the 'autoreplace' property is set, then post a resource notifying 2168 * the ZFS DE that it should not issue any faults for unopenable 2169 * devices. We also iterate over the vdevs, and post a sysevent for any 2170 * unopenable vdevs so that the normal autoreplace handler can take 2171 * over. 2172 */ 2173 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2174 spa_check_removed(spa->spa_root_vdev); 2175 /* 2176 * For the import case, this is done in spa_import(), because 2177 * at this point we're using the spare definitions from 2178 * the MOS config, not necessarily from the userland config. 2179 */ 2180 if (state != SPA_LOAD_IMPORT) { 2181 spa_aux_check_removed(&spa->spa_spares); 2182 spa_aux_check_removed(&spa->spa_l2cache); 2183 } 2184 } 2185 2186 /* 2187 * Load the vdev state for all toplevel vdevs. 2188 */ 2189 vdev_load(rvd); 2190 2191 /* 2192 * Propagate the leaf DTLs we just loaded all the way up the tree. 2193 */ 2194 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2195 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2196 spa_config_exit(spa, SCL_ALL, FTAG); 2197 2198 /* 2199 * Load the DDTs (dedup tables). 2200 */ 2201 error = ddt_load(spa); 2202 if (error != 0) 2203 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2204 2205 spa_update_dspace(spa); 2206 2207 /* 2208 * Validate the config, using the MOS config to fill in any 2209 * information which might be missing. If we fail to validate 2210 * the config then declare the pool unfit for use. If we're 2211 * assembling a pool from a split, the log is not transferred 2212 * over. 2213 */ 2214 if (type != SPA_IMPORT_ASSEMBLE) { 2215 nvlist_t *nvconfig; 2216 2217 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2218 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2219 2220 if (!spa_config_valid(spa, nvconfig)) { 2221 nvlist_free(nvconfig); 2222 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2223 ENXIO)); 2224 } 2225 nvlist_free(nvconfig); 2226 2227 /* 2228 * Now that we've validate the config, check the state of the 2229 * root vdev. If it can't be opened, it indicates one or 2230 * more toplevel vdevs are faulted. 2231 */ 2232 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2233 return (ENXIO); 2234 2235 if (spa_check_logs(spa)) { 2236 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2237 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2238 } 2239 } 2240 2241 /* 2242 * We've successfully opened the pool, verify that we're ready 2243 * to start pushing transactions. 2244 */ 2245 if (state != SPA_LOAD_TRYIMPORT) { 2246 if (error = spa_load_verify(spa)) 2247 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2248 error)); 2249 } 2250 2251 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2252 spa->spa_load_max_txg == UINT64_MAX)) { 2253 dmu_tx_t *tx; 2254 int need_update = B_FALSE; 2255 2256 ASSERT(state != SPA_LOAD_TRYIMPORT); 2257 2258 /* 2259 * Claim log blocks that haven't been committed yet. 2260 * This must all happen in a single txg. 2261 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2262 * invoked from zil_claim_log_block()'s i/o done callback. 2263 * Price of rollback is that we abandon the log. 2264 */ 2265 spa->spa_claiming = B_TRUE; 2266 2267 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2268 spa_first_txg(spa)); 2269 (void) dmu_objset_find(spa_name(spa), 2270 zil_claim, tx, DS_FIND_CHILDREN); 2271 dmu_tx_commit(tx); 2272 2273 spa->spa_claiming = B_FALSE; 2274 2275 spa_set_log_state(spa, SPA_LOG_GOOD); 2276 spa->spa_sync_on = B_TRUE; 2277 txg_sync_start(spa->spa_dsl_pool); 2278 2279 /* 2280 * Wait for all claims to sync. We sync up to the highest 2281 * claimed log block birth time so that claimed log blocks 2282 * don't appear to be from the future. spa_claim_max_txg 2283 * will have been set for us by either zil_check_log_chain() 2284 * (invoked from spa_check_logs()) or zil_claim() above. 2285 */ 2286 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2287 2288 /* 2289 * If the config cache is stale, or we have uninitialized 2290 * metaslabs (see spa_vdev_add()), then update the config. 2291 * 2292 * If this is a verbatim import, trust the current 2293 * in-core spa_config and update the disk labels. 2294 */ 2295 if (config_cache_txg != spa->spa_config_txg || 2296 state == SPA_LOAD_IMPORT || 2297 state == SPA_LOAD_RECOVER || 2298 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2299 need_update = B_TRUE; 2300 2301 for (int c = 0; c < rvd->vdev_children; c++) 2302 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2303 need_update = B_TRUE; 2304 2305 /* 2306 * Update the config cache asychronously in case we're the 2307 * root pool, in which case the config cache isn't writable yet. 2308 */ 2309 if (need_update) 2310 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2311 2312 /* 2313 * Check all DTLs to see if anything needs resilvering. 2314 */ 2315 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2316 vdev_resilver_needed(rvd, NULL, NULL)) 2317 spa_async_request(spa, SPA_ASYNC_RESILVER); 2318 2319 /* 2320 * Delete any inconsistent datasets. 2321 */ 2322 (void) dmu_objset_find(spa_name(spa), 2323 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2324 2325 /* 2326 * Clean up any stale temporary dataset userrefs. 2327 */ 2328 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2329 } 2330 2331 return (0); 2332 } 2333 2334 static int 2335 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2336 { 2337 int mode = spa->spa_mode; 2338 2339 spa_unload(spa); 2340 spa_deactivate(spa); 2341 2342 spa->spa_load_max_txg--; 2343 2344 spa_activate(spa, mode); 2345 spa_async_suspend(spa); 2346 2347 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2348 } 2349 2350 static int 2351 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2352 uint64_t max_request, int rewind_flags) 2353 { 2354 nvlist_t *config = NULL; 2355 int load_error, rewind_error; 2356 uint64_t safe_rewind_txg; 2357 uint64_t min_txg; 2358 2359 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2360 spa->spa_load_max_txg = spa->spa_load_txg; 2361 spa_set_log_state(spa, SPA_LOG_CLEAR); 2362 } else { 2363 spa->spa_load_max_txg = max_request; 2364 } 2365 2366 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2367 mosconfig); 2368 if (load_error == 0) 2369 return (0); 2370 2371 if (spa->spa_root_vdev != NULL) 2372 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2373 2374 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2375 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2376 2377 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2378 nvlist_free(config); 2379 return (load_error); 2380 } 2381 2382 /* Price of rolling back is discarding txgs, including log */ 2383 if (state == SPA_LOAD_RECOVER) 2384 spa_set_log_state(spa, SPA_LOG_CLEAR); 2385 2386 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2387 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2388 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2389 TXG_INITIAL : safe_rewind_txg; 2390 2391 /* 2392 * Continue as long as we're finding errors, we're still within 2393 * the acceptable rewind range, and we're still finding uberblocks 2394 */ 2395 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2396 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2397 if (spa->spa_load_max_txg < safe_rewind_txg) 2398 spa->spa_extreme_rewind = B_TRUE; 2399 rewind_error = spa_load_retry(spa, state, mosconfig); 2400 } 2401 2402 spa->spa_extreme_rewind = B_FALSE; 2403 spa->spa_load_max_txg = UINT64_MAX; 2404 2405 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2406 spa_config_set(spa, config); 2407 2408 return (state == SPA_LOAD_RECOVER ? rewind_error : load_error); 2409 } 2410 2411 /* 2412 * Pool Open/Import 2413 * 2414 * The import case is identical to an open except that the configuration is sent 2415 * down from userland, instead of grabbed from the configuration cache. For the 2416 * case of an open, the pool configuration will exist in the 2417 * POOL_STATE_UNINITIALIZED state. 2418 * 2419 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2420 * the same time open the pool, without having to keep around the spa_t in some 2421 * ambiguous state. 2422 */ 2423 static int 2424 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2425 nvlist_t **config) 2426 { 2427 spa_t *spa; 2428 spa_load_state_t state = SPA_LOAD_OPEN; 2429 int error; 2430 int locked = B_FALSE; 2431 2432 *spapp = NULL; 2433 2434 /* 2435 * As disgusting as this is, we need to support recursive calls to this 2436 * function because dsl_dir_open() is called during spa_load(), and ends 2437 * up calling spa_open() again. The real fix is to figure out how to 2438 * avoid dsl_dir_open() calling this in the first place. 2439 */ 2440 if (mutex_owner(&spa_namespace_lock) != curthread) { 2441 mutex_enter(&spa_namespace_lock); 2442 locked = B_TRUE; 2443 } 2444 2445 if ((spa = spa_lookup(pool)) == NULL) { 2446 if (locked) 2447 mutex_exit(&spa_namespace_lock); 2448 return (ENOENT); 2449 } 2450 2451 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2452 zpool_rewind_policy_t policy; 2453 2454 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2455 &policy); 2456 if (policy.zrp_request & ZPOOL_DO_REWIND) 2457 state = SPA_LOAD_RECOVER; 2458 2459 spa_activate(spa, spa_mode_global); 2460 2461 if (state != SPA_LOAD_RECOVER) 2462 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2463 2464 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2465 policy.zrp_request); 2466 2467 if (error == EBADF) { 2468 /* 2469 * If vdev_validate() returns failure (indicated by 2470 * EBADF), it indicates that one of the vdevs indicates 2471 * that the pool has been exported or destroyed. If 2472 * this is the case, the config cache is out of sync and 2473 * we should remove the pool from the namespace. 2474 */ 2475 spa_unload(spa); 2476 spa_deactivate(spa); 2477 spa_config_sync(spa, B_TRUE, B_TRUE); 2478 spa_remove(spa); 2479 if (locked) 2480 mutex_exit(&spa_namespace_lock); 2481 return (ENOENT); 2482 } 2483 2484 if (error) { 2485 /* 2486 * We can't open the pool, but we still have useful 2487 * information: the state of each vdev after the 2488 * attempted vdev_open(). Return this to the user. 2489 */ 2490 if (config != NULL && spa->spa_config) { 2491 VERIFY(nvlist_dup(spa->spa_config, config, 2492 KM_SLEEP) == 0); 2493 VERIFY(nvlist_add_nvlist(*config, 2494 ZPOOL_CONFIG_LOAD_INFO, 2495 spa->spa_load_info) == 0); 2496 } 2497 spa_unload(spa); 2498 spa_deactivate(spa); 2499 spa->spa_last_open_failed = error; 2500 if (locked) 2501 mutex_exit(&spa_namespace_lock); 2502 *spapp = NULL; 2503 return (error); 2504 } 2505 } 2506 2507 spa_open_ref(spa, tag); 2508 2509 if (config != NULL) 2510 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2511 2512 /* 2513 * If we've recovered the pool, pass back any information we 2514 * gathered while doing the load. 2515 */ 2516 if (state == SPA_LOAD_RECOVER) { 2517 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2518 spa->spa_load_info) == 0); 2519 } 2520 2521 if (locked) { 2522 spa->spa_last_open_failed = 0; 2523 spa->spa_last_ubsync_txg = 0; 2524 spa->spa_load_txg = 0; 2525 mutex_exit(&spa_namespace_lock); 2526 } 2527 2528 *spapp = spa; 2529 2530 return (0); 2531 } 2532 2533 int 2534 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2535 nvlist_t **config) 2536 { 2537 return (spa_open_common(name, spapp, tag, policy, config)); 2538 } 2539 2540 int 2541 spa_open(const char *name, spa_t **spapp, void *tag) 2542 { 2543 return (spa_open_common(name, spapp, tag, NULL, NULL)); 2544 } 2545 2546 /* 2547 * Lookup the given spa_t, incrementing the inject count in the process, 2548 * preventing it from being exported or destroyed. 2549 */ 2550 spa_t * 2551 spa_inject_addref(char *name) 2552 { 2553 spa_t *spa; 2554 2555 mutex_enter(&spa_namespace_lock); 2556 if ((spa = spa_lookup(name)) == NULL) { 2557 mutex_exit(&spa_namespace_lock); 2558 return (NULL); 2559 } 2560 spa->spa_inject_ref++; 2561 mutex_exit(&spa_namespace_lock); 2562 2563 return (spa); 2564 } 2565 2566 void 2567 spa_inject_delref(spa_t *spa) 2568 { 2569 mutex_enter(&spa_namespace_lock); 2570 spa->spa_inject_ref--; 2571 mutex_exit(&spa_namespace_lock); 2572 } 2573 2574 /* 2575 * Add spares device information to the nvlist. 2576 */ 2577 static void 2578 spa_add_spares(spa_t *spa, nvlist_t *config) 2579 { 2580 nvlist_t **spares; 2581 uint_t i, nspares; 2582 nvlist_t *nvroot; 2583 uint64_t guid; 2584 vdev_stat_t *vs; 2585 uint_t vsc; 2586 uint64_t pool; 2587 2588 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2589 2590 if (spa->spa_spares.sav_count == 0) 2591 return; 2592 2593 VERIFY(nvlist_lookup_nvlist(config, 2594 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2595 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 2596 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2597 if (nspares != 0) { 2598 VERIFY(nvlist_add_nvlist_array(nvroot, 2599 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 2600 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2601 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2602 2603 /* 2604 * Go through and find any spares which have since been 2605 * repurposed as an active spare. If this is the case, update 2606 * their status appropriately. 2607 */ 2608 for (i = 0; i < nspares; i++) { 2609 VERIFY(nvlist_lookup_uint64(spares[i], 2610 ZPOOL_CONFIG_GUID, &guid) == 0); 2611 if (spa_spare_exists(guid, &pool, NULL) && 2612 pool != 0ULL) { 2613 VERIFY(nvlist_lookup_uint64_array( 2614 spares[i], ZPOOL_CONFIG_VDEV_STATS, 2615 (uint64_t **)&vs, &vsc) == 0); 2616 vs->vs_state = VDEV_STATE_CANT_OPEN; 2617 vs->vs_aux = VDEV_AUX_SPARED; 2618 } 2619 } 2620 } 2621 } 2622 2623 /* 2624 * Add l2cache device information to the nvlist, including vdev stats. 2625 */ 2626 static void 2627 spa_add_l2cache(spa_t *spa, nvlist_t *config) 2628 { 2629 nvlist_t **l2cache; 2630 uint_t i, j, nl2cache; 2631 nvlist_t *nvroot; 2632 uint64_t guid; 2633 vdev_t *vd; 2634 vdev_stat_t *vs; 2635 uint_t vsc; 2636 2637 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 2638 2639 if (spa->spa_l2cache.sav_count == 0) 2640 return; 2641 2642 VERIFY(nvlist_lookup_nvlist(config, 2643 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 2644 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 2645 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2646 if (nl2cache != 0) { 2647 VERIFY(nvlist_add_nvlist_array(nvroot, 2648 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 2649 VERIFY(nvlist_lookup_nvlist_array(nvroot, 2650 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 2651 2652 /* 2653 * Update level 2 cache device stats. 2654 */ 2655 2656 for (i = 0; i < nl2cache; i++) { 2657 VERIFY(nvlist_lookup_uint64(l2cache[i], 2658 ZPOOL_CONFIG_GUID, &guid) == 0); 2659 2660 vd = NULL; 2661 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 2662 if (guid == 2663 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 2664 vd = spa->spa_l2cache.sav_vdevs[j]; 2665 break; 2666 } 2667 } 2668 ASSERT(vd != NULL); 2669 2670 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 2671 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 2672 == 0); 2673 vdev_get_stats(vd, vs); 2674 } 2675 } 2676 } 2677 2678 int 2679 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 2680 { 2681 int error; 2682 spa_t *spa; 2683 2684 *config = NULL; 2685 error = spa_open_common(name, &spa, FTAG, NULL, config); 2686 2687 if (spa != NULL) { 2688 /* 2689 * This still leaves a window of inconsistency where the spares 2690 * or l2cache devices could change and the config would be 2691 * self-inconsistent. 2692 */ 2693 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 2694 2695 if (*config != NULL) { 2696 uint64_t loadtimes[2]; 2697 2698 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 2699 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 2700 VERIFY(nvlist_add_uint64_array(*config, 2701 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 2702 2703 VERIFY(nvlist_add_uint64(*config, 2704 ZPOOL_CONFIG_ERRCOUNT, 2705 spa_get_errlog_size(spa)) == 0); 2706 2707 if (spa_suspended(spa)) 2708 VERIFY(nvlist_add_uint64(*config, 2709 ZPOOL_CONFIG_SUSPENDED, 2710 spa->spa_failmode) == 0); 2711 2712 spa_add_spares(spa, *config); 2713 spa_add_l2cache(spa, *config); 2714 } 2715 } 2716 2717 /* 2718 * We want to get the alternate root even for faulted pools, so we cheat 2719 * and call spa_lookup() directly. 2720 */ 2721 if (altroot) { 2722 if (spa == NULL) { 2723 mutex_enter(&spa_namespace_lock); 2724 spa = spa_lookup(name); 2725 if (spa) 2726 spa_altroot(spa, altroot, buflen); 2727 else 2728 altroot[0] = '\0'; 2729 spa = NULL; 2730 mutex_exit(&spa_namespace_lock); 2731 } else { 2732 spa_altroot(spa, altroot, buflen); 2733 } 2734 } 2735 2736 if (spa != NULL) { 2737 spa_config_exit(spa, SCL_CONFIG, FTAG); 2738 spa_close(spa, FTAG); 2739 } 2740 2741 return (error); 2742 } 2743 2744 /* 2745 * Validate that the auxiliary device array is well formed. We must have an 2746 * array of nvlists, each which describes a valid leaf vdev. If this is an 2747 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 2748 * specified, as long as they are well-formed. 2749 */ 2750 static int 2751 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 2752 spa_aux_vdev_t *sav, const char *config, uint64_t version, 2753 vdev_labeltype_t label) 2754 { 2755 nvlist_t **dev; 2756 uint_t i, ndev; 2757 vdev_t *vd; 2758 int error; 2759 2760 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2761 2762 /* 2763 * It's acceptable to have no devs specified. 2764 */ 2765 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 2766 return (0); 2767 2768 if (ndev == 0) 2769 return (EINVAL); 2770 2771 /* 2772 * Make sure the pool is formatted with a version that supports this 2773 * device type. 2774 */ 2775 if (spa_version(spa) < version) 2776 return (ENOTSUP); 2777 2778 /* 2779 * Set the pending device list so we correctly handle device in-use 2780 * checking. 2781 */ 2782 sav->sav_pending = dev; 2783 sav->sav_npending = ndev; 2784 2785 for (i = 0; i < ndev; i++) { 2786 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 2787 mode)) != 0) 2788 goto out; 2789 2790 if (!vd->vdev_ops->vdev_op_leaf) { 2791 vdev_free(vd); 2792 error = EINVAL; 2793 goto out; 2794 } 2795 2796 /* 2797 * The L2ARC currently only supports disk devices in 2798 * kernel context. For user-level testing, we allow it. 2799 */ 2800 #ifdef _KERNEL 2801 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 2802 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 2803 error = ENOTBLK; 2804 vdev_free(vd); 2805 goto out; 2806 } 2807 #endif 2808 vd->vdev_top = vd; 2809 2810 if ((error = vdev_open(vd)) == 0 && 2811 (error = vdev_label_init(vd, crtxg, label)) == 0) { 2812 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 2813 vd->vdev_guid) == 0); 2814 } 2815 2816 vdev_free(vd); 2817 2818 if (error && 2819 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 2820 goto out; 2821 else 2822 error = 0; 2823 } 2824 2825 out: 2826 sav->sav_pending = NULL; 2827 sav->sav_npending = 0; 2828 return (error); 2829 } 2830 2831 static int 2832 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 2833 { 2834 int error; 2835 2836 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 2837 2838 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2839 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 2840 VDEV_LABEL_SPARE)) != 0) { 2841 return (error); 2842 } 2843 2844 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 2845 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 2846 VDEV_LABEL_L2CACHE)); 2847 } 2848 2849 static void 2850 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 2851 const char *config) 2852 { 2853 int i; 2854 2855 if (sav->sav_config != NULL) { 2856 nvlist_t **olddevs; 2857 uint_t oldndevs; 2858 nvlist_t **newdevs; 2859 2860 /* 2861 * Generate new dev list by concatentating with the 2862 * current dev list. 2863 */ 2864 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 2865 &olddevs, &oldndevs) == 0); 2866 2867 newdevs = kmem_alloc(sizeof (void *) * 2868 (ndevs + oldndevs), KM_SLEEP); 2869 for (i = 0; i < oldndevs; i++) 2870 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 2871 KM_SLEEP) == 0); 2872 for (i = 0; i < ndevs; i++) 2873 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 2874 KM_SLEEP) == 0); 2875 2876 VERIFY(nvlist_remove(sav->sav_config, config, 2877 DATA_TYPE_NVLIST_ARRAY) == 0); 2878 2879 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 2880 config, newdevs, ndevs + oldndevs) == 0); 2881 for (i = 0; i < oldndevs + ndevs; i++) 2882 nvlist_free(newdevs[i]); 2883 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 2884 } else { 2885 /* 2886 * Generate a new dev list. 2887 */ 2888 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 2889 KM_SLEEP) == 0); 2890 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 2891 devs, ndevs) == 0); 2892 } 2893 } 2894 2895 /* 2896 * Stop and drop level 2 ARC devices 2897 */ 2898 void 2899 spa_l2cache_drop(spa_t *spa) 2900 { 2901 vdev_t *vd; 2902 int i; 2903 spa_aux_vdev_t *sav = &spa->spa_l2cache; 2904 2905 for (i = 0; i < sav->sav_count; i++) { 2906 uint64_t pool; 2907 2908 vd = sav->sav_vdevs[i]; 2909 ASSERT(vd != NULL); 2910 2911 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 2912 pool != 0ULL && l2arc_vdev_present(vd)) 2913 l2arc_remove_vdev(vd); 2914 } 2915 } 2916 2917 /* 2918 * Pool Creation 2919 */ 2920 int 2921 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 2922 const char *history_str, nvlist_t *zplprops) 2923 { 2924 spa_t *spa; 2925 char *altroot = NULL; 2926 vdev_t *rvd; 2927 dsl_pool_t *dp; 2928 dmu_tx_t *tx; 2929 int error = 0; 2930 uint64_t txg = TXG_INITIAL; 2931 nvlist_t **spares, **l2cache; 2932 uint_t nspares, nl2cache; 2933 uint64_t version, obj; 2934 2935 /* 2936 * If this pool already exists, return failure. 2937 */ 2938 mutex_enter(&spa_namespace_lock); 2939 if (spa_lookup(pool) != NULL) { 2940 mutex_exit(&spa_namespace_lock); 2941 return (EEXIST); 2942 } 2943 2944 /* 2945 * Allocate a new spa_t structure. 2946 */ 2947 (void) nvlist_lookup_string(props, 2948 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 2949 spa = spa_add(pool, NULL, altroot); 2950 spa_activate(spa, spa_mode_global); 2951 2952 if (props && (error = spa_prop_validate(spa, props))) { 2953 spa_deactivate(spa); 2954 spa_remove(spa); 2955 mutex_exit(&spa_namespace_lock); 2956 return (error); 2957 } 2958 2959 if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION), 2960 &version) != 0) 2961 version = SPA_VERSION; 2962 ASSERT(version <= SPA_VERSION); 2963 2964 spa->spa_first_txg = txg; 2965 spa->spa_uberblock.ub_txg = txg - 1; 2966 spa->spa_uberblock.ub_version = version; 2967 spa->spa_ubsync = spa->spa_uberblock; 2968 2969 /* 2970 * Create "The Godfather" zio to hold all async IOs 2971 */ 2972 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2973 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2974 2975 /* 2976 * Create the root vdev. 2977 */ 2978 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2979 2980 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 2981 2982 ASSERT(error != 0 || rvd != NULL); 2983 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 2984 2985 if (error == 0 && !zfs_allocatable_devs(nvroot)) 2986 error = EINVAL; 2987 2988 if (error == 0 && 2989 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 2990 (error = spa_validate_aux(spa, nvroot, txg, 2991 VDEV_ALLOC_ADD)) == 0) { 2992 for (int c = 0; c < rvd->vdev_children; c++) { 2993 vdev_metaslab_set_size(rvd->vdev_child[c]); 2994 vdev_expand(rvd->vdev_child[c], txg); 2995 } 2996 } 2997 2998 spa_config_exit(spa, SCL_ALL, FTAG); 2999 3000 if (error != 0) { 3001 spa_unload(spa); 3002 spa_deactivate(spa); 3003 spa_remove(spa); 3004 mutex_exit(&spa_namespace_lock); 3005 return (error); 3006 } 3007 3008 /* 3009 * Get the list of spares, if specified. 3010 */ 3011 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3012 &spares, &nspares) == 0) { 3013 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3014 KM_SLEEP) == 0); 3015 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3016 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3017 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3018 spa_load_spares(spa); 3019 spa_config_exit(spa, SCL_ALL, FTAG); 3020 spa->spa_spares.sav_sync = B_TRUE; 3021 } 3022 3023 /* 3024 * Get the list of level 2 cache devices, if specified. 3025 */ 3026 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3027 &l2cache, &nl2cache) == 0) { 3028 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3029 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3030 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3031 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3032 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3033 spa_load_l2cache(spa); 3034 spa_config_exit(spa, SCL_ALL, FTAG); 3035 spa->spa_l2cache.sav_sync = B_TRUE; 3036 } 3037 3038 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3039 spa->spa_meta_objset = dp->dp_meta_objset; 3040 3041 /* 3042 * Create DDTs (dedup tables). 3043 */ 3044 ddt_create(spa); 3045 3046 spa_update_dspace(spa); 3047 3048 tx = dmu_tx_create_assigned(dp, txg); 3049 3050 /* 3051 * Create the pool config object. 3052 */ 3053 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3054 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3055 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3056 3057 if (zap_add(spa->spa_meta_objset, 3058 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3059 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3060 cmn_err(CE_PANIC, "failed to add pool config"); 3061 } 3062 3063 if (zap_add(spa->spa_meta_objset, 3064 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3065 sizeof (uint64_t), 1, &version, tx) != 0) { 3066 cmn_err(CE_PANIC, "failed to add pool version"); 3067 } 3068 3069 /* Newly created pools with the right version are always deflated. */ 3070 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3071 spa->spa_deflate = TRUE; 3072 if (zap_add(spa->spa_meta_objset, 3073 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3074 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3075 cmn_err(CE_PANIC, "failed to add deflate"); 3076 } 3077 } 3078 3079 /* 3080 * Create the deferred-free bpobj. Turn off compression 3081 * because sync-to-convergence takes longer if the blocksize 3082 * keeps changing. 3083 */ 3084 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3085 dmu_object_set_compress(spa->spa_meta_objset, obj, 3086 ZIO_COMPRESS_OFF, tx); 3087 if (zap_add(spa->spa_meta_objset, 3088 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3089 sizeof (uint64_t), 1, &obj, tx) != 0) { 3090 cmn_err(CE_PANIC, "failed to add bpobj"); 3091 } 3092 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3093 spa->spa_meta_objset, obj)); 3094 3095 /* 3096 * Create the pool's history object. 3097 */ 3098 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3099 spa_history_create_obj(spa, tx); 3100 3101 /* 3102 * Set pool properties. 3103 */ 3104 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3105 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3106 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3107 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3108 3109 if (props != NULL) { 3110 spa_configfile_set(spa, props, B_FALSE); 3111 spa_sync_props(spa, props, tx); 3112 } 3113 3114 dmu_tx_commit(tx); 3115 3116 spa->spa_sync_on = B_TRUE; 3117 txg_sync_start(spa->spa_dsl_pool); 3118 3119 /* 3120 * We explicitly wait for the first transaction to complete so that our 3121 * bean counters are appropriately updated. 3122 */ 3123 txg_wait_synced(spa->spa_dsl_pool, txg); 3124 3125 spa_config_sync(spa, B_FALSE, B_TRUE); 3126 3127 if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL) 3128 (void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE); 3129 spa_history_log_version(spa, LOG_POOL_CREATE); 3130 3131 spa->spa_minref = refcount_count(&spa->spa_refcount); 3132 3133 mutex_exit(&spa_namespace_lock); 3134 3135 return (0); 3136 } 3137 3138 #ifdef _KERNEL 3139 /* 3140 * Get the root pool information from the root disk, then import the root pool 3141 * during the system boot up time. 3142 */ 3143 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3144 3145 static nvlist_t * 3146 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3147 { 3148 nvlist_t *config; 3149 nvlist_t *nvtop, *nvroot; 3150 uint64_t pgid; 3151 3152 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3153 return (NULL); 3154 3155 /* 3156 * Add this top-level vdev to the child array. 3157 */ 3158 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3159 &nvtop) == 0); 3160 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3161 &pgid) == 0); 3162 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3163 3164 /* 3165 * Put this pool's top-level vdevs into a root vdev. 3166 */ 3167 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3168 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3169 VDEV_TYPE_ROOT) == 0); 3170 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3171 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3172 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3173 &nvtop, 1) == 0); 3174 3175 /* 3176 * Replace the existing vdev_tree with the new root vdev in 3177 * this pool's configuration (remove the old, add the new). 3178 */ 3179 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3180 nvlist_free(nvroot); 3181 return (config); 3182 } 3183 3184 /* 3185 * Walk the vdev tree and see if we can find a device with "better" 3186 * configuration. A configuration is "better" if the label on that 3187 * device has a more recent txg. 3188 */ 3189 static void 3190 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3191 { 3192 for (int c = 0; c < vd->vdev_children; c++) 3193 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3194 3195 if (vd->vdev_ops->vdev_op_leaf) { 3196 nvlist_t *label; 3197 uint64_t label_txg; 3198 3199 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3200 &label) != 0) 3201 return; 3202 3203 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3204 &label_txg) == 0); 3205 3206 /* 3207 * Do we have a better boot device? 3208 */ 3209 if (label_txg > *txg) { 3210 *txg = label_txg; 3211 *avd = vd; 3212 } 3213 nvlist_free(label); 3214 } 3215 } 3216 3217 /* 3218 * Import a root pool. 3219 * 3220 * For x86. devpath_list will consist of devid and/or physpath name of 3221 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3222 * The GRUB "findroot" command will return the vdev we should boot. 3223 * 3224 * For Sparc, devpath_list consists the physpath name of the booting device 3225 * no matter the rootpool is a single device pool or a mirrored pool. 3226 * e.g. 3227 * "/pci@1f,0/ide@d/disk@0,0:a" 3228 */ 3229 int 3230 spa_import_rootpool(char *devpath, char *devid) 3231 { 3232 spa_t *spa; 3233 vdev_t *rvd, *bvd, *avd = NULL; 3234 nvlist_t *config, *nvtop; 3235 uint64_t guid, txg; 3236 char *pname; 3237 int error; 3238 3239 /* 3240 * Read the label from the boot device and generate a configuration. 3241 */ 3242 config = spa_generate_rootconf(devpath, devid, &guid); 3243 #if defined(_OBP) && defined(_KERNEL) 3244 if (config == NULL) { 3245 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3246 /* iscsi boot */ 3247 get_iscsi_bootpath_phy(devpath); 3248 config = spa_generate_rootconf(devpath, devid, &guid); 3249 } 3250 } 3251 #endif 3252 if (config == NULL) { 3253 cmn_err(CE_NOTE, "Can not read the pool label from '%s'", 3254 devpath); 3255 return (EIO); 3256 } 3257 3258 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3259 &pname) == 0); 3260 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3261 3262 mutex_enter(&spa_namespace_lock); 3263 if ((spa = spa_lookup(pname)) != NULL) { 3264 /* 3265 * Remove the existing root pool from the namespace so that we 3266 * can replace it with the correct config we just read in. 3267 */ 3268 spa_remove(spa); 3269 } 3270 3271 spa = spa_add(pname, config, NULL); 3272 spa->spa_is_root = B_TRUE; 3273 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3274 3275 /* 3276 * Build up a vdev tree based on the boot device's label config. 3277 */ 3278 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3279 &nvtop) == 0); 3280 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3281 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3282 VDEV_ALLOC_ROOTPOOL); 3283 spa_config_exit(spa, SCL_ALL, FTAG); 3284 if (error) { 3285 mutex_exit(&spa_namespace_lock); 3286 nvlist_free(config); 3287 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3288 pname); 3289 return (error); 3290 } 3291 3292 /* 3293 * Get the boot vdev. 3294 */ 3295 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3296 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3297 (u_longlong_t)guid); 3298 error = ENOENT; 3299 goto out; 3300 } 3301 3302 /* 3303 * Determine if there is a better boot device. 3304 */ 3305 avd = bvd; 3306 spa_alt_rootvdev(rvd, &avd, &txg); 3307 if (avd != bvd) { 3308 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3309 "try booting from '%s'", avd->vdev_path); 3310 error = EINVAL; 3311 goto out; 3312 } 3313 3314 /* 3315 * If the boot device is part of a spare vdev then ensure that 3316 * we're booting off the active spare. 3317 */ 3318 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3319 !bvd->vdev_isspare) { 3320 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3321 "try booting from '%s'", 3322 bvd->vdev_parent-> 3323 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3324 error = EINVAL; 3325 goto out; 3326 } 3327 3328 error = 0; 3329 spa_history_log_version(spa, LOG_POOL_IMPORT); 3330 out: 3331 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3332 vdev_free(rvd); 3333 spa_config_exit(spa, SCL_ALL, FTAG); 3334 mutex_exit(&spa_namespace_lock); 3335 3336 nvlist_free(config); 3337 return (error); 3338 } 3339 3340 #endif 3341 3342 /* 3343 * Import a non-root pool into the system. 3344 */ 3345 int 3346 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3347 { 3348 spa_t *spa; 3349 char *altroot = NULL; 3350 spa_load_state_t state = SPA_LOAD_IMPORT; 3351 zpool_rewind_policy_t policy; 3352 uint64_t mode = spa_mode_global; 3353 uint64_t readonly = B_FALSE; 3354 int error; 3355 nvlist_t *nvroot; 3356 nvlist_t **spares, **l2cache; 3357 uint_t nspares, nl2cache; 3358 3359 /* 3360 * If a pool with this name exists, return failure. 3361 */ 3362 mutex_enter(&spa_namespace_lock); 3363 if (spa_lookup(pool) != NULL) { 3364 mutex_exit(&spa_namespace_lock); 3365 return (EEXIST); 3366 } 3367 3368 /* 3369 * Create and initialize the spa structure. 3370 */ 3371 (void) nvlist_lookup_string(props, 3372 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3373 (void) nvlist_lookup_uint64(props, 3374 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3375 if (readonly) 3376 mode = FREAD; 3377 spa = spa_add(pool, config, altroot); 3378 spa->spa_import_flags = flags; 3379 3380 /* 3381 * Verbatim import - Take a pool and insert it into the namespace 3382 * as if it had been loaded at boot. 3383 */ 3384 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3385 if (props != NULL) 3386 spa_configfile_set(spa, props, B_FALSE); 3387 3388 spa_config_sync(spa, B_FALSE, B_TRUE); 3389 3390 mutex_exit(&spa_namespace_lock); 3391 spa_history_log_version(spa, LOG_POOL_IMPORT); 3392 3393 return (0); 3394 } 3395 3396 spa_activate(spa, mode); 3397 3398 /* 3399 * Don't start async tasks until we know everything is healthy. 3400 */ 3401 spa_async_suspend(spa); 3402 3403 zpool_get_rewind_policy(config, &policy); 3404 if (policy.zrp_request & ZPOOL_DO_REWIND) 3405 state = SPA_LOAD_RECOVER; 3406 3407 /* 3408 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3409 * because the user-supplied config is actually the one to trust when 3410 * doing an import. 3411 */ 3412 if (state != SPA_LOAD_RECOVER) 3413 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3414 3415 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3416 policy.zrp_request); 3417 3418 /* 3419 * Propagate anything learned while loading the pool and pass it 3420 * back to caller (i.e. rewind info, missing devices, etc). 3421 */ 3422 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3423 spa->spa_load_info) == 0); 3424 3425 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3426 /* 3427 * Toss any existing sparelist, as it doesn't have any validity 3428 * anymore, and conflicts with spa_has_spare(). 3429 */ 3430 if (spa->spa_spares.sav_config) { 3431 nvlist_free(spa->spa_spares.sav_config); 3432 spa->spa_spares.sav_config = NULL; 3433 spa_load_spares(spa); 3434 } 3435 if (spa->spa_l2cache.sav_config) { 3436 nvlist_free(spa->spa_l2cache.sav_config); 3437 spa->spa_l2cache.sav_config = NULL; 3438 spa_load_l2cache(spa); 3439 } 3440 3441 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3442 &nvroot) == 0); 3443 if (error == 0) 3444 error = spa_validate_aux(spa, nvroot, -1ULL, 3445 VDEV_ALLOC_SPARE); 3446 if (error == 0) 3447 error = spa_validate_aux(spa, nvroot, -1ULL, 3448 VDEV_ALLOC_L2CACHE); 3449 spa_config_exit(spa, SCL_ALL, FTAG); 3450 3451 if (props != NULL) 3452 spa_configfile_set(spa, props, B_FALSE); 3453 3454 if (error != 0 || (props && spa_writeable(spa) && 3455 (error = spa_prop_set(spa, props)))) { 3456 spa_unload(spa); 3457 spa_deactivate(spa); 3458 spa_remove(spa); 3459 mutex_exit(&spa_namespace_lock); 3460 return (error); 3461 } 3462 3463 spa_async_resume(spa); 3464 3465 /* 3466 * Override any spares and level 2 cache devices as specified by 3467 * the user, as these may have correct device names/devids, etc. 3468 */ 3469 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3470 &spares, &nspares) == 0) { 3471 if (spa->spa_spares.sav_config) 3472 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3473 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3474 else 3475 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3476 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3477 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3478 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3480 spa_load_spares(spa); 3481 spa_config_exit(spa, SCL_ALL, FTAG); 3482 spa->spa_spares.sav_sync = B_TRUE; 3483 } 3484 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3485 &l2cache, &nl2cache) == 0) { 3486 if (spa->spa_l2cache.sav_config) 3487 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 3488 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 3489 else 3490 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3491 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3492 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3493 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3494 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3495 spa_load_l2cache(spa); 3496 spa_config_exit(spa, SCL_ALL, FTAG); 3497 spa->spa_l2cache.sav_sync = B_TRUE; 3498 } 3499 3500 /* 3501 * Check for any removed devices. 3502 */ 3503 if (spa->spa_autoreplace) { 3504 spa_aux_check_removed(&spa->spa_spares); 3505 spa_aux_check_removed(&spa->spa_l2cache); 3506 } 3507 3508 if (spa_writeable(spa)) { 3509 /* 3510 * Update the config cache to include the newly-imported pool. 3511 */ 3512 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3513 } 3514 3515 /* 3516 * It's possible that the pool was expanded while it was exported. 3517 * We kick off an async task to handle this for us. 3518 */ 3519 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 3520 3521 mutex_exit(&spa_namespace_lock); 3522 spa_history_log_version(spa, LOG_POOL_IMPORT); 3523 3524 return (0); 3525 } 3526 3527 nvlist_t * 3528 spa_tryimport(nvlist_t *tryconfig) 3529 { 3530 nvlist_t *config = NULL; 3531 char *poolname; 3532 spa_t *spa; 3533 uint64_t state; 3534 int error; 3535 3536 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 3537 return (NULL); 3538 3539 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 3540 return (NULL); 3541 3542 /* 3543 * Create and initialize the spa structure. 3544 */ 3545 mutex_enter(&spa_namespace_lock); 3546 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 3547 spa_activate(spa, FREAD); 3548 3549 /* 3550 * Pass off the heavy lifting to spa_load(). 3551 * Pass TRUE for mosconfig because the user-supplied config 3552 * is actually the one to trust when doing an import. 3553 */ 3554 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 3555 3556 /* 3557 * If 'tryconfig' was at least parsable, return the current config. 3558 */ 3559 if (spa->spa_root_vdev != NULL) { 3560 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 3561 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 3562 poolname) == 0); 3563 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 3564 state) == 0); 3565 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 3566 spa->spa_uberblock.ub_timestamp) == 0); 3567 3568 /* 3569 * If the bootfs property exists on this pool then we 3570 * copy it out so that external consumers can tell which 3571 * pools are bootable. 3572 */ 3573 if ((!error || error == EEXIST) && spa->spa_bootfs) { 3574 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3575 3576 /* 3577 * We have to play games with the name since the 3578 * pool was opened as TRYIMPORT_NAME. 3579 */ 3580 if (dsl_dsobj_to_dsname(spa_name(spa), 3581 spa->spa_bootfs, tmpname) == 0) { 3582 char *cp; 3583 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 3584 3585 cp = strchr(tmpname, '/'); 3586 if (cp == NULL) { 3587 (void) strlcpy(dsname, tmpname, 3588 MAXPATHLEN); 3589 } else { 3590 (void) snprintf(dsname, MAXPATHLEN, 3591 "%s/%s", poolname, ++cp); 3592 } 3593 VERIFY(nvlist_add_string(config, 3594 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 3595 kmem_free(dsname, MAXPATHLEN); 3596 } 3597 kmem_free(tmpname, MAXPATHLEN); 3598 } 3599 3600 /* 3601 * Add the list of hot spares and level 2 cache devices. 3602 */ 3603 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3604 spa_add_spares(spa, config); 3605 spa_add_l2cache(spa, config); 3606 spa_config_exit(spa, SCL_CONFIG, FTAG); 3607 } 3608 3609 spa_unload(spa); 3610 spa_deactivate(spa); 3611 spa_remove(spa); 3612 mutex_exit(&spa_namespace_lock); 3613 3614 return (config); 3615 } 3616 3617 /* 3618 * Pool export/destroy 3619 * 3620 * The act of destroying or exporting a pool is very simple. We make sure there 3621 * is no more pending I/O and any references to the pool are gone. Then, we 3622 * update the pool state and sync all the labels to disk, removing the 3623 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 3624 * we don't sync the labels or remove the configuration cache. 3625 */ 3626 static int 3627 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 3628 boolean_t force, boolean_t hardforce) 3629 { 3630 spa_t *spa; 3631 3632 if (oldconfig) 3633 *oldconfig = NULL; 3634 3635 if (!(spa_mode_global & FWRITE)) 3636 return (EROFS); 3637 3638 mutex_enter(&spa_namespace_lock); 3639 if ((spa = spa_lookup(pool)) == NULL) { 3640 mutex_exit(&spa_namespace_lock); 3641 return (ENOENT); 3642 } 3643 3644 /* 3645 * Put a hold on the pool, drop the namespace lock, stop async tasks, 3646 * reacquire the namespace lock, and see if we can export. 3647 */ 3648 spa_open_ref(spa, FTAG); 3649 mutex_exit(&spa_namespace_lock); 3650 spa_async_suspend(spa); 3651 mutex_enter(&spa_namespace_lock); 3652 spa_close(spa, FTAG); 3653 3654 /* 3655 * The pool will be in core if it's openable, 3656 * in which case we can modify its state. 3657 */ 3658 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 3659 /* 3660 * Objsets may be open only because they're dirty, so we 3661 * have to force it to sync before checking spa_refcnt. 3662 */ 3663 txg_wait_synced(spa->spa_dsl_pool, 0); 3664 3665 /* 3666 * A pool cannot be exported or destroyed if there are active 3667 * references. If we are resetting a pool, allow references by 3668 * fault injection handlers. 3669 */ 3670 if (!spa_refcount_zero(spa) || 3671 (spa->spa_inject_ref != 0 && 3672 new_state != POOL_STATE_UNINITIALIZED)) { 3673 spa_async_resume(spa); 3674 mutex_exit(&spa_namespace_lock); 3675 return (EBUSY); 3676 } 3677 3678 /* 3679 * A pool cannot be exported if it has an active shared spare. 3680 * This is to prevent other pools stealing the active spare 3681 * from an exported pool. At user's own will, such pool can 3682 * be forcedly exported. 3683 */ 3684 if (!force && new_state == POOL_STATE_EXPORTED && 3685 spa_has_active_shared_spare(spa)) { 3686 spa_async_resume(spa); 3687 mutex_exit(&spa_namespace_lock); 3688 return (EXDEV); 3689 } 3690 3691 /* 3692 * We want this to be reflected on every label, 3693 * so mark them all dirty. spa_unload() will do the 3694 * final sync that pushes these changes out. 3695 */ 3696 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 3697 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3698 spa->spa_state = new_state; 3699 spa->spa_final_txg = spa_last_synced_txg(spa) + 3700 TXG_DEFER_SIZE + 1; 3701 vdev_config_dirty(spa->spa_root_vdev); 3702 spa_config_exit(spa, SCL_ALL, FTAG); 3703 } 3704 } 3705 3706 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 3707 3708 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3709 spa_unload(spa); 3710 spa_deactivate(spa); 3711 } 3712 3713 if (oldconfig && spa->spa_config) 3714 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 3715 3716 if (new_state != POOL_STATE_UNINITIALIZED) { 3717 if (!hardforce) 3718 spa_config_sync(spa, B_TRUE, B_TRUE); 3719 spa_remove(spa); 3720 } 3721 mutex_exit(&spa_namespace_lock); 3722 3723 return (0); 3724 } 3725 3726 /* 3727 * Destroy a storage pool. 3728 */ 3729 int 3730 spa_destroy(char *pool) 3731 { 3732 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 3733 B_FALSE, B_FALSE)); 3734 } 3735 3736 /* 3737 * Export a storage pool. 3738 */ 3739 int 3740 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 3741 boolean_t hardforce) 3742 { 3743 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 3744 force, hardforce)); 3745 } 3746 3747 /* 3748 * Similar to spa_export(), this unloads the spa_t without actually removing it 3749 * from the namespace in any way. 3750 */ 3751 int 3752 spa_reset(char *pool) 3753 { 3754 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 3755 B_FALSE, B_FALSE)); 3756 } 3757 3758 /* 3759 * ========================================================================== 3760 * Device manipulation 3761 * ========================================================================== 3762 */ 3763 3764 /* 3765 * Add a device to a storage pool. 3766 */ 3767 int 3768 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 3769 { 3770 uint64_t txg, id; 3771 int error; 3772 vdev_t *rvd = spa->spa_root_vdev; 3773 vdev_t *vd, *tvd; 3774 nvlist_t **spares, **l2cache; 3775 uint_t nspares, nl2cache; 3776 3777 ASSERT(spa_writeable(spa)); 3778 3779 txg = spa_vdev_enter(spa); 3780 3781 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 3782 VDEV_ALLOC_ADD)) != 0) 3783 return (spa_vdev_exit(spa, NULL, txg, error)); 3784 3785 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 3786 3787 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 3788 &nspares) != 0) 3789 nspares = 0; 3790 3791 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 3792 &nl2cache) != 0) 3793 nl2cache = 0; 3794 3795 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 3796 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 3797 3798 if (vd->vdev_children != 0 && 3799 (error = vdev_create(vd, txg, B_FALSE)) != 0) 3800 return (spa_vdev_exit(spa, vd, txg, error)); 3801 3802 /* 3803 * We must validate the spares and l2cache devices after checking the 3804 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 3805 */ 3806 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 3807 return (spa_vdev_exit(spa, vd, txg, error)); 3808 3809 /* 3810 * Transfer each new top-level vdev from vd to rvd. 3811 */ 3812 for (int c = 0; c < vd->vdev_children; c++) { 3813 3814 /* 3815 * Set the vdev id to the first hole, if one exists. 3816 */ 3817 for (id = 0; id < rvd->vdev_children; id++) { 3818 if (rvd->vdev_child[id]->vdev_ishole) { 3819 vdev_free(rvd->vdev_child[id]); 3820 break; 3821 } 3822 } 3823 tvd = vd->vdev_child[c]; 3824 vdev_remove_child(vd, tvd); 3825 tvd->vdev_id = id; 3826 vdev_add_child(rvd, tvd); 3827 vdev_config_dirty(tvd); 3828 } 3829 3830 if (nspares != 0) { 3831 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 3832 ZPOOL_CONFIG_SPARES); 3833 spa_load_spares(spa); 3834 spa->spa_spares.sav_sync = B_TRUE; 3835 } 3836 3837 if (nl2cache != 0) { 3838 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 3839 ZPOOL_CONFIG_L2CACHE); 3840 spa_load_l2cache(spa); 3841 spa->spa_l2cache.sav_sync = B_TRUE; 3842 } 3843 3844 /* 3845 * We have to be careful when adding new vdevs to an existing pool. 3846 * If other threads start allocating from these vdevs before we 3847 * sync the config cache, and we lose power, then upon reboot we may 3848 * fail to open the pool because there are DVAs that the config cache 3849 * can't translate. Therefore, we first add the vdevs without 3850 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 3851 * and then let spa_config_update() initialize the new metaslabs. 3852 * 3853 * spa_load() checks for added-but-not-initialized vdevs, so that 3854 * if we lose power at any point in this sequence, the remaining 3855 * steps will be completed the next time we load the pool. 3856 */ 3857 (void) spa_vdev_exit(spa, vd, txg, 0); 3858 3859 mutex_enter(&spa_namespace_lock); 3860 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 3861 mutex_exit(&spa_namespace_lock); 3862 3863 return (0); 3864 } 3865 3866 /* 3867 * Attach a device to a mirror. The arguments are the path to any device 3868 * in the mirror, and the nvroot for the new device. If the path specifies 3869 * a device that is not mirrored, we automatically insert the mirror vdev. 3870 * 3871 * If 'replacing' is specified, the new device is intended to replace the 3872 * existing device; in this case the two devices are made into their own 3873 * mirror using the 'replacing' vdev, which is functionally identical to 3874 * the mirror vdev (it actually reuses all the same ops) but has a few 3875 * extra rules: you can't attach to it after it's been created, and upon 3876 * completion of resilvering, the first disk (the one being replaced) 3877 * is automatically detached. 3878 */ 3879 int 3880 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 3881 { 3882 uint64_t txg, dtl_max_txg; 3883 vdev_t *rvd = spa->spa_root_vdev; 3884 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 3885 vdev_ops_t *pvops; 3886 char *oldvdpath, *newvdpath; 3887 int newvd_isspare; 3888 int error; 3889 3890 ASSERT(spa_writeable(spa)); 3891 3892 txg = spa_vdev_enter(spa); 3893 3894 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 3895 3896 if (oldvd == NULL) 3897 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 3898 3899 if (!oldvd->vdev_ops->vdev_op_leaf) 3900 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 3901 3902 pvd = oldvd->vdev_parent; 3903 3904 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 3905 VDEV_ALLOC_ATTACH)) != 0) 3906 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 3907 3908 if (newrootvd->vdev_children != 1) 3909 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3910 3911 newvd = newrootvd->vdev_child[0]; 3912 3913 if (!newvd->vdev_ops->vdev_op_leaf) 3914 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 3915 3916 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 3917 return (spa_vdev_exit(spa, newrootvd, txg, error)); 3918 3919 /* 3920 * Spares can't replace logs 3921 */ 3922 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 3923 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3924 3925 if (!replacing) { 3926 /* 3927 * For attach, the only allowable parent is a mirror or the root 3928 * vdev. 3929 */ 3930 if (pvd->vdev_ops != &vdev_mirror_ops && 3931 pvd->vdev_ops != &vdev_root_ops) 3932 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3933 3934 pvops = &vdev_mirror_ops; 3935 } else { 3936 /* 3937 * Active hot spares can only be replaced by inactive hot 3938 * spares. 3939 */ 3940 if (pvd->vdev_ops == &vdev_spare_ops && 3941 oldvd->vdev_isspare && 3942 !spa_has_spare(spa, newvd->vdev_guid)) 3943 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3944 3945 /* 3946 * If the source is a hot spare, and the parent isn't already a 3947 * spare, then we want to create a new hot spare. Otherwise, we 3948 * want to create a replacing vdev. The user is not allowed to 3949 * attach to a spared vdev child unless the 'isspare' state is 3950 * the same (spare replaces spare, non-spare replaces 3951 * non-spare). 3952 */ 3953 if (pvd->vdev_ops == &vdev_replacing_ops && 3954 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 3955 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3956 } else if (pvd->vdev_ops == &vdev_spare_ops && 3957 newvd->vdev_isspare != oldvd->vdev_isspare) { 3958 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 3959 } 3960 3961 if (newvd->vdev_isspare) 3962 pvops = &vdev_spare_ops; 3963 else 3964 pvops = &vdev_replacing_ops; 3965 } 3966 3967 /* 3968 * Make sure the new device is big enough. 3969 */ 3970 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 3971 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 3972 3973 /* 3974 * The new device cannot have a higher alignment requirement 3975 * than the top-level vdev. 3976 */ 3977 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 3978 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 3979 3980 /* 3981 * If this is an in-place replacement, update oldvd's path and devid 3982 * to make it distinguishable from newvd, and unopenable from now on. 3983 */ 3984 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 3985 spa_strfree(oldvd->vdev_path); 3986 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 3987 KM_SLEEP); 3988 (void) sprintf(oldvd->vdev_path, "%s/%s", 3989 newvd->vdev_path, "old"); 3990 if (oldvd->vdev_devid != NULL) { 3991 spa_strfree(oldvd->vdev_devid); 3992 oldvd->vdev_devid = NULL; 3993 } 3994 } 3995 3996 /* mark the device being resilvered */ 3997 newvd->vdev_resilvering = B_TRUE; 3998 3999 /* 4000 * If the parent is not a mirror, or if we're replacing, insert the new 4001 * mirror/replacing/spare vdev above oldvd. 4002 */ 4003 if (pvd->vdev_ops != pvops) 4004 pvd = vdev_add_parent(oldvd, pvops); 4005 4006 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4007 ASSERT(pvd->vdev_ops == pvops); 4008 ASSERT(oldvd->vdev_parent == pvd); 4009 4010 /* 4011 * Extract the new device from its root and add it to pvd. 4012 */ 4013 vdev_remove_child(newrootvd, newvd); 4014 newvd->vdev_id = pvd->vdev_children; 4015 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4016 vdev_add_child(pvd, newvd); 4017 4018 tvd = newvd->vdev_top; 4019 ASSERT(pvd->vdev_top == tvd); 4020 ASSERT(tvd->vdev_parent == rvd); 4021 4022 vdev_config_dirty(tvd); 4023 4024 /* 4025 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4026 * for any dmu_sync-ed blocks. It will propagate upward when 4027 * spa_vdev_exit() calls vdev_dtl_reassess(). 4028 */ 4029 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4030 4031 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4032 dtl_max_txg - TXG_INITIAL); 4033 4034 if (newvd->vdev_isspare) { 4035 spa_spare_activate(newvd); 4036 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4037 } 4038 4039 oldvdpath = spa_strdup(oldvd->vdev_path); 4040 newvdpath = spa_strdup(newvd->vdev_path); 4041 newvd_isspare = newvd->vdev_isspare; 4042 4043 /* 4044 * Mark newvd's DTL dirty in this txg. 4045 */ 4046 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4047 4048 /* 4049 * Restart the resilver 4050 */ 4051 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4052 4053 /* 4054 * Commit the config 4055 */ 4056 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4057 4058 spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL, 4059 "%s vdev=%s %s vdev=%s", 4060 replacing && newvd_isspare ? "spare in" : 4061 replacing ? "replace" : "attach", newvdpath, 4062 replacing ? "for" : "to", oldvdpath); 4063 4064 spa_strfree(oldvdpath); 4065 spa_strfree(newvdpath); 4066 4067 if (spa->spa_bootfs) 4068 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4069 4070 return (0); 4071 } 4072 4073 /* 4074 * Detach a device from a mirror or replacing vdev. 4075 * If 'replace_done' is specified, only detach if the parent 4076 * is a replacing vdev. 4077 */ 4078 int 4079 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4080 { 4081 uint64_t txg; 4082 int error; 4083 vdev_t *rvd = spa->spa_root_vdev; 4084 vdev_t *vd, *pvd, *cvd, *tvd; 4085 boolean_t unspare = B_FALSE; 4086 uint64_t unspare_guid; 4087 char *vdpath; 4088 4089 ASSERT(spa_writeable(spa)); 4090 4091 txg = spa_vdev_enter(spa); 4092 4093 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4094 4095 if (vd == NULL) 4096 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4097 4098 if (!vd->vdev_ops->vdev_op_leaf) 4099 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4100 4101 pvd = vd->vdev_parent; 4102 4103 /* 4104 * If the parent/child relationship is not as expected, don't do it. 4105 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4106 * vdev that's replacing B with C. The user's intent in replacing 4107 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4108 * the replace by detaching C, the expected behavior is to end up 4109 * M(A,B). But suppose that right after deciding to detach C, 4110 * the replacement of B completes. We would have M(A,C), and then 4111 * ask to detach C, which would leave us with just A -- not what 4112 * the user wanted. To prevent this, we make sure that the 4113 * parent/child relationship hasn't changed -- in this example, 4114 * that C's parent is still the replacing vdev R. 4115 */ 4116 if (pvd->vdev_guid != pguid && pguid != 0) 4117 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4118 4119 /* 4120 * Only 'replacing' or 'spare' vdevs can be replaced. 4121 */ 4122 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4123 pvd->vdev_ops != &vdev_spare_ops) 4124 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4125 4126 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4127 spa_version(spa) >= SPA_VERSION_SPARES); 4128 4129 /* 4130 * Only mirror, replacing, and spare vdevs support detach. 4131 */ 4132 if (pvd->vdev_ops != &vdev_replacing_ops && 4133 pvd->vdev_ops != &vdev_mirror_ops && 4134 pvd->vdev_ops != &vdev_spare_ops) 4135 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4136 4137 /* 4138 * If this device has the only valid copy of some data, 4139 * we cannot safely detach it. 4140 */ 4141 if (vdev_dtl_required(vd)) 4142 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4143 4144 ASSERT(pvd->vdev_children >= 2); 4145 4146 /* 4147 * If we are detaching the second disk from a replacing vdev, then 4148 * check to see if we changed the original vdev's path to have "/old" 4149 * at the end in spa_vdev_attach(). If so, undo that change now. 4150 */ 4151 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4152 vd->vdev_path != NULL) { 4153 size_t len = strlen(vd->vdev_path); 4154 4155 for (int c = 0; c < pvd->vdev_children; c++) { 4156 cvd = pvd->vdev_child[c]; 4157 4158 if (cvd == vd || cvd->vdev_path == NULL) 4159 continue; 4160 4161 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4162 strcmp(cvd->vdev_path + len, "/old") == 0) { 4163 spa_strfree(cvd->vdev_path); 4164 cvd->vdev_path = spa_strdup(vd->vdev_path); 4165 break; 4166 } 4167 } 4168 } 4169 4170 /* 4171 * If we are detaching the original disk from a spare, then it implies 4172 * that the spare should become a real disk, and be removed from the 4173 * active spare list for the pool. 4174 */ 4175 if (pvd->vdev_ops == &vdev_spare_ops && 4176 vd->vdev_id == 0 && 4177 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4178 unspare = B_TRUE; 4179 4180 /* 4181 * Erase the disk labels so the disk can be used for other things. 4182 * This must be done after all other error cases are handled, 4183 * but before we disembowel vd (so we can still do I/O to it). 4184 * But if we can't do it, don't treat the error as fatal -- 4185 * it may be that the unwritability of the disk is the reason 4186 * it's being detached! 4187 */ 4188 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4189 4190 /* 4191 * Remove vd from its parent and compact the parent's children. 4192 */ 4193 vdev_remove_child(pvd, vd); 4194 vdev_compact_children(pvd); 4195 4196 /* 4197 * Remember one of the remaining children so we can get tvd below. 4198 */ 4199 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4200 4201 /* 4202 * If we need to remove the remaining child from the list of hot spares, 4203 * do it now, marking the vdev as no longer a spare in the process. 4204 * We must do this before vdev_remove_parent(), because that can 4205 * change the GUID if it creates a new toplevel GUID. For a similar 4206 * reason, we must remove the spare now, in the same txg as the detach; 4207 * otherwise someone could attach a new sibling, change the GUID, and 4208 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4209 */ 4210 if (unspare) { 4211 ASSERT(cvd->vdev_isspare); 4212 spa_spare_remove(cvd); 4213 unspare_guid = cvd->vdev_guid; 4214 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4215 cvd->vdev_unspare = B_TRUE; 4216 } 4217 4218 /* 4219 * If the parent mirror/replacing vdev only has one child, 4220 * the parent is no longer needed. Remove it from the tree. 4221 */ 4222 if (pvd->vdev_children == 1) { 4223 if (pvd->vdev_ops == &vdev_spare_ops) 4224 cvd->vdev_unspare = B_FALSE; 4225 vdev_remove_parent(cvd); 4226 cvd->vdev_resilvering = B_FALSE; 4227 } 4228 4229 4230 /* 4231 * We don't set tvd until now because the parent we just removed 4232 * may have been the previous top-level vdev. 4233 */ 4234 tvd = cvd->vdev_top; 4235 ASSERT(tvd->vdev_parent == rvd); 4236 4237 /* 4238 * Reevaluate the parent vdev state. 4239 */ 4240 vdev_propagate_state(cvd); 4241 4242 /* 4243 * If the 'autoexpand' property is set on the pool then automatically 4244 * try to expand the size of the pool. For example if the device we 4245 * just detached was smaller than the others, it may be possible to 4246 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4247 * first so that we can obtain the updated sizes of the leaf vdevs. 4248 */ 4249 if (spa->spa_autoexpand) { 4250 vdev_reopen(tvd); 4251 vdev_expand(tvd, txg); 4252 } 4253 4254 vdev_config_dirty(tvd); 4255 4256 /* 4257 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4258 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4259 * But first make sure we're not on any *other* txg's DTL list, to 4260 * prevent vd from being accessed after it's freed. 4261 */ 4262 vdpath = spa_strdup(vd->vdev_path); 4263 for (int t = 0; t < TXG_SIZE; t++) 4264 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4265 vd->vdev_detached = B_TRUE; 4266 vdev_dirty(tvd, VDD_DTL, vd, txg); 4267 4268 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4269 4270 /* hang on to the spa before we release the lock */ 4271 spa_open_ref(spa, FTAG); 4272 4273 error = spa_vdev_exit(spa, vd, txg, 0); 4274 4275 spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL, 4276 "vdev=%s", vdpath); 4277 spa_strfree(vdpath); 4278 4279 /* 4280 * If this was the removal of the original device in a hot spare vdev, 4281 * then we want to go through and remove the device from the hot spare 4282 * list of every other pool. 4283 */ 4284 if (unspare) { 4285 spa_t *altspa = NULL; 4286 4287 mutex_enter(&spa_namespace_lock); 4288 while ((altspa = spa_next(altspa)) != NULL) { 4289 if (altspa->spa_state != POOL_STATE_ACTIVE || 4290 altspa == spa) 4291 continue; 4292 4293 spa_open_ref(altspa, FTAG); 4294 mutex_exit(&spa_namespace_lock); 4295 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4296 mutex_enter(&spa_namespace_lock); 4297 spa_close(altspa, FTAG); 4298 } 4299 mutex_exit(&spa_namespace_lock); 4300 4301 /* search the rest of the vdevs for spares to remove */ 4302 spa_vdev_resilver_done(spa); 4303 } 4304 4305 /* all done with the spa; OK to release */ 4306 mutex_enter(&spa_namespace_lock); 4307 spa_close(spa, FTAG); 4308 mutex_exit(&spa_namespace_lock); 4309 4310 return (error); 4311 } 4312 4313 /* 4314 * Split a set of devices from their mirrors, and create a new pool from them. 4315 */ 4316 int 4317 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4318 nvlist_t *props, boolean_t exp) 4319 { 4320 int error = 0; 4321 uint64_t txg, *glist; 4322 spa_t *newspa; 4323 uint_t c, children, lastlog; 4324 nvlist_t **child, *nvl, *tmp; 4325 dmu_tx_t *tx; 4326 char *altroot = NULL; 4327 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4328 boolean_t activate_slog; 4329 4330 ASSERT(spa_writeable(spa)); 4331 4332 txg = spa_vdev_enter(spa); 4333 4334 /* clear the log and flush everything up to now */ 4335 activate_slog = spa_passivate_log(spa); 4336 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4337 error = spa_offline_log(spa); 4338 txg = spa_vdev_config_enter(spa); 4339 4340 if (activate_slog) 4341 spa_activate_log(spa); 4342 4343 if (error != 0) 4344 return (spa_vdev_exit(spa, NULL, txg, error)); 4345 4346 /* check new spa name before going any further */ 4347 if (spa_lookup(newname) != NULL) 4348 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4349 4350 /* 4351 * scan through all the children to ensure they're all mirrors 4352 */ 4353 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4354 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4355 &children) != 0) 4356 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4357 4358 /* first, check to ensure we've got the right child count */ 4359 rvd = spa->spa_root_vdev; 4360 lastlog = 0; 4361 for (c = 0; c < rvd->vdev_children; c++) { 4362 vdev_t *vd = rvd->vdev_child[c]; 4363 4364 /* don't count the holes & logs as children */ 4365 if (vd->vdev_islog || vd->vdev_ishole) { 4366 if (lastlog == 0) 4367 lastlog = c; 4368 continue; 4369 } 4370 4371 lastlog = 0; 4372 } 4373 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4374 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4375 4376 /* next, ensure no spare or cache devices are part of the split */ 4377 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4378 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4379 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4380 4381 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4382 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4383 4384 /* then, loop over each vdev and validate it */ 4385 for (c = 0; c < children; c++) { 4386 uint64_t is_hole = 0; 4387 4388 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4389 &is_hole); 4390 4391 if (is_hole != 0) { 4392 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4393 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4394 continue; 4395 } else { 4396 error = EINVAL; 4397 break; 4398 } 4399 } 4400 4401 /* which disk is going to be split? */ 4402 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4403 &glist[c]) != 0) { 4404 error = EINVAL; 4405 break; 4406 } 4407 4408 /* look it up in the spa */ 4409 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4410 if (vml[c] == NULL) { 4411 error = ENODEV; 4412 break; 4413 } 4414 4415 /* make sure there's nothing stopping the split */ 4416 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4417 vml[c]->vdev_islog || 4418 vml[c]->vdev_ishole || 4419 vml[c]->vdev_isspare || 4420 vml[c]->vdev_isl2cache || 4421 !vdev_writeable(vml[c]) || 4422 vml[c]->vdev_children != 0 || 4423 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4424 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4425 error = EINVAL; 4426 break; 4427 } 4428 4429 if (vdev_dtl_required(vml[c])) { 4430 error = EBUSY; 4431 break; 4432 } 4433 4434 /* we need certain info from the top level */ 4435 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4436 vml[c]->vdev_top->vdev_ms_array) == 0); 4437 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4438 vml[c]->vdev_top->vdev_ms_shift) == 0); 4439 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4440 vml[c]->vdev_top->vdev_asize) == 0); 4441 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4442 vml[c]->vdev_top->vdev_ashift) == 0); 4443 } 4444 4445 if (error != 0) { 4446 kmem_free(vml, children * sizeof (vdev_t *)); 4447 kmem_free(glist, children * sizeof (uint64_t)); 4448 return (spa_vdev_exit(spa, NULL, txg, error)); 4449 } 4450 4451 /* stop writers from using the disks */ 4452 for (c = 0; c < children; c++) { 4453 if (vml[c] != NULL) 4454 vml[c]->vdev_offline = B_TRUE; 4455 } 4456 vdev_reopen(spa->spa_root_vdev); 4457 4458 /* 4459 * Temporarily record the splitting vdevs in the spa config. This 4460 * will disappear once the config is regenerated. 4461 */ 4462 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4463 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4464 glist, children) == 0); 4465 kmem_free(glist, children * sizeof (uint64_t)); 4466 4467 mutex_enter(&spa->spa_props_lock); 4468 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4469 nvl) == 0); 4470 mutex_exit(&spa->spa_props_lock); 4471 spa->spa_config_splitting = nvl; 4472 vdev_config_dirty(spa->spa_root_vdev); 4473 4474 /* configure and create the new pool */ 4475 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4476 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4477 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4478 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4479 spa_version(spa)) == 0); 4480 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4481 spa->spa_config_txg) == 0); 4482 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4483 spa_generate_guid(NULL)) == 0); 4484 (void) nvlist_lookup_string(props, 4485 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 4486 4487 /* add the new pool to the namespace */ 4488 newspa = spa_add(newname, config, altroot); 4489 newspa->spa_config_txg = spa->spa_config_txg; 4490 spa_set_log_state(newspa, SPA_LOG_CLEAR); 4491 4492 /* release the spa config lock, retaining the namespace lock */ 4493 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4494 4495 if (zio_injection_enabled) 4496 zio_handle_panic_injection(spa, FTAG, 1); 4497 4498 spa_activate(newspa, spa_mode_global); 4499 spa_async_suspend(newspa); 4500 4501 /* create the new pool from the disks of the original pool */ 4502 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 4503 if (error) 4504 goto out; 4505 4506 /* if that worked, generate a real config for the new pool */ 4507 if (newspa->spa_root_vdev != NULL) { 4508 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 4509 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4510 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 4511 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 4512 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 4513 B_TRUE)); 4514 } 4515 4516 /* set the props */ 4517 if (props != NULL) { 4518 spa_configfile_set(newspa, props, B_FALSE); 4519 error = spa_prop_set(newspa, props); 4520 if (error) 4521 goto out; 4522 } 4523 4524 /* flush everything */ 4525 txg = spa_vdev_config_enter(newspa); 4526 vdev_config_dirty(newspa->spa_root_vdev); 4527 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 4528 4529 if (zio_injection_enabled) 4530 zio_handle_panic_injection(spa, FTAG, 2); 4531 4532 spa_async_resume(newspa); 4533 4534 /* finally, update the original pool's config */ 4535 txg = spa_vdev_config_enter(spa); 4536 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 4537 error = dmu_tx_assign(tx, TXG_WAIT); 4538 if (error != 0) 4539 dmu_tx_abort(tx); 4540 for (c = 0; c < children; c++) { 4541 if (vml[c] != NULL) { 4542 vdev_split(vml[c]); 4543 if (error == 0) 4544 spa_history_log_internal(LOG_POOL_VDEV_DETACH, 4545 spa, tx, "vdev=%s", 4546 vml[c]->vdev_path); 4547 vdev_free(vml[c]); 4548 } 4549 } 4550 vdev_config_dirty(spa->spa_root_vdev); 4551 spa->spa_config_splitting = NULL; 4552 nvlist_free(nvl); 4553 if (error == 0) 4554 dmu_tx_commit(tx); 4555 (void) spa_vdev_exit(spa, NULL, txg, 0); 4556 4557 if (zio_injection_enabled) 4558 zio_handle_panic_injection(spa, FTAG, 3); 4559 4560 /* split is complete; log a history record */ 4561 spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL, 4562 "split new pool %s from pool %s", newname, spa_name(spa)); 4563 4564 kmem_free(vml, children * sizeof (vdev_t *)); 4565 4566 /* if we're not going to mount the filesystems in userland, export */ 4567 if (exp) 4568 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 4569 B_FALSE, B_FALSE); 4570 4571 return (error); 4572 4573 out: 4574 spa_unload(newspa); 4575 spa_deactivate(newspa); 4576 spa_remove(newspa); 4577 4578 txg = spa_vdev_config_enter(spa); 4579 4580 /* re-online all offlined disks */ 4581 for (c = 0; c < children; c++) { 4582 if (vml[c] != NULL) 4583 vml[c]->vdev_offline = B_FALSE; 4584 } 4585 vdev_reopen(spa->spa_root_vdev); 4586 4587 nvlist_free(spa->spa_config_splitting); 4588 spa->spa_config_splitting = NULL; 4589 (void) spa_vdev_exit(spa, NULL, txg, error); 4590 4591 kmem_free(vml, children * sizeof (vdev_t *)); 4592 return (error); 4593 } 4594 4595 static nvlist_t * 4596 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 4597 { 4598 for (int i = 0; i < count; i++) { 4599 uint64_t guid; 4600 4601 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 4602 &guid) == 0); 4603 4604 if (guid == target_guid) 4605 return (nvpp[i]); 4606 } 4607 4608 return (NULL); 4609 } 4610 4611 static void 4612 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 4613 nvlist_t *dev_to_remove) 4614 { 4615 nvlist_t **newdev = NULL; 4616 4617 if (count > 1) 4618 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 4619 4620 for (int i = 0, j = 0; i < count; i++) { 4621 if (dev[i] == dev_to_remove) 4622 continue; 4623 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 4624 } 4625 4626 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 4627 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 4628 4629 for (int i = 0; i < count - 1; i++) 4630 nvlist_free(newdev[i]); 4631 4632 if (count > 1) 4633 kmem_free(newdev, (count - 1) * sizeof (void *)); 4634 } 4635 4636 /* 4637 * Evacuate the device. 4638 */ 4639 static int 4640 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 4641 { 4642 uint64_t txg; 4643 int error = 0; 4644 4645 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4646 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 4647 ASSERT(vd == vd->vdev_top); 4648 4649 /* 4650 * Evacuate the device. We don't hold the config lock as writer 4651 * since we need to do I/O but we do keep the 4652 * spa_namespace_lock held. Once this completes the device 4653 * should no longer have any blocks allocated on it. 4654 */ 4655 if (vd->vdev_islog) { 4656 if (vd->vdev_stat.vs_alloc != 0) 4657 error = spa_offline_log(spa); 4658 } else { 4659 error = ENOTSUP; 4660 } 4661 4662 if (error) 4663 return (error); 4664 4665 /* 4666 * The evacuation succeeded. Remove any remaining MOS metadata 4667 * associated with this vdev, and wait for these changes to sync. 4668 */ 4669 ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0); 4670 txg = spa_vdev_config_enter(spa); 4671 vd->vdev_removing = B_TRUE; 4672 vdev_dirty(vd, 0, NULL, txg); 4673 vdev_config_dirty(vd); 4674 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4675 4676 return (0); 4677 } 4678 4679 /* 4680 * Complete the removal by cleaning up the namespace. 4681 */ 4682 static void 4683 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 4684 { 4685 vdev_t *rvd = spa->spa_root_vdev; 4686 uint64_t id = vd->vdev_id; 4687 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 4688 4689 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 4690 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 4691 ASSERT(vd == vd->vdev_top); 4692 4693 /* 4694 * Only remove any devices which are empty. 4695 */ 4696 if (vd->vdev_stat.vs_alloc != 0) 4697 return; 4698 4699 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4700 4701 if (list_link_active(&vd->vdev_state_dirty_node)) 4702 vdev_state_clean(vd); 4703 if (list_link_active(&vd->vdev_config_dirty_node)) 4704 vdev_config_clean(vd); 4705 4706 vdev_free(vd); 4707 4708 if (last_vdev) { 4709 vdev_compact_children(rvd); 4710 } else { 4711 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 4712 vdev_add_child(rvd, vd); 4713 } 4714 vdev_config_dirty(rvd); 4715 4716 /* 4717 * Reassess the health of our root vdev. 4718 */ 4719 vdev_reopen(rvd); 4720 } 4721 4722 /* 4723 * Remove a device from the pool - 4724 * 4725 * Removing a device from the vdev namespace requires several steps 4726 * and can take a significant amount of time. As a result we use 4727 * the spa_vdev_config_[enter/exit] functions which allow us to 4728 * grab and release the spa_config_lock while still holding the namespace 4729 * lock. During each step the configuration is synced out. 4730 */ 4731 4732 /* 4733 * Remove a device from the pool. Currently, this supports removing only hot 4734 * spares, slogs, and level 2 ARC devices. 4735 */ 4736 int 4737 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 4738 { 4739 vdev_t *vd; 4740 metaslab_group_t *mg; 4741 nvlist_t **spares, **l2cache, *nv; 4742 uint64_t txg = 0; 4743 uint_t nspares, nl2cache; 4744 int error = 0; 4745 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 4746 4747 ASSERT(spa_writeable(spa)); 4748 4749 if (!locked) 4750 txg = spa_vdev_enter(spa); 4751 4752 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4753 4754 if (spa->spa_spares.sav_vdevs != NULL && 4755 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 4756 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 4757 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 4758 /* 4759 * Only remove the hot spare if it's not currently in use 4760 * in this pool. 4761 */ 4762 if (vd == NULL || unspare) { 4763 spa_vdev_remove_aux(spa->spa_spares.sav_config, 4764 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 4765 spa_load_spares(spa); 4766 spa->spa_spares.sav_sync = B_TRUE; 4767 } else { 4768 error = EBUSY; 4769 } 4770 } else if (spa->spa_l2cache.sav_vdevs != NULL && 4771 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 4772 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 4773 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 4774 /* 4775 * Cache devices can always be removed. 4776 */ 4777 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 4778 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 4779 spa_load_l2cache(spa); 4780 spa->spa_l2cache.sav_sync = B_TRUE; 4781 } else if (vd != NULL && vd->vdev_islog) { 4782 ASSERT(!locked); 4783 ASSERT(vd == vd->vdev_top); 4784 4785 /* 4786 * XXX - Once we have bp-rewrite this should 4787 * become the common case. 4788 */ 4789 4790 mg = vd->vdev_mg; 4791 4792 /* 4793 * Stop allocating from this vdev. 4794 */ 4795 metaslab_group_passivate(mg); 4796 4797 /* 4798 * Wait for the youngest allocations and frees to sync, 4799 * and then wait for the deferral of those frees to finish. 4800 */ 4801 spa_vdev_config_exit(spa, NULL, 4802 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 4803 4804 /* 4805 * Attempt to evacuate the vdev. 4806 */ 4807 error = spa_vdev_remove_evacuate(spa, vd); 4808 4809 txg = spa_vdev_config_enter(spa); 4810 4811 /* 4812 * If we couldn't evacuate the vdev, unwind. 4813 */ 4814 if (error) { 4815 metaslab_group_activate(mg); 4816 return (spa_vdev_exit(spa, NULL, txg, error)); 4817 } 4818 4819 /* 4820 * Clean up the vdev namespace. 4821 */ 4822 spa_vdev_remove_from_namespace(spa, vd); 4823 4824 } else if (vd != NULL) { 4825 /* 4826 * Normal vdevs cannot be removed (yet). 4827 */ 4828 error = ENOTSUP; 4829 } else { 4830 /* 4831 * There is no vdev of any kind with the specified guid. 4832 */ 4833 error = ENOENT; 4834 } 4835 4836 if (!locked) 4837 return (spa_vdev_exit(spa, NULL, txg, error)); 4838 4839 return (error); 4840 } 4841 4842 /* 4843 * Find any device that's done replacing, or a vdev marked 'unspare' that's 4844 * current spared, so we can detach it. 4845 */ 4846 static vdev_t * 4847 spa_vdev_resilver_done_hunt(vdev_t *vd) 4848 { 4849 vdev_t *newvd, *oldvd; 4850 4851 for (int c = 0; c < vd->vdev_children; c++) { 4852 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 4853 if (oldvd != NULL) 4854 return (oldvd); 4855 } 4856 4857 /* 4858 * Check for a completed replacement. We always consider the first 4859 * vdev in the list to be the oldest vdev, and the last one to be 4860 * the newest (see spa_vdev_attach() for how that works). In 4861 * the case where the newest vdev is faulted, we will not automatically 4862 * remove it after a resilver completes. This is OK as it will require 4863 * user intervention to determine which disk the admin wishes to keep. 4864 */ 4865 if (vd->vdev_ops == &vdev_replacing_ops) { 4866 ASSERT(vd->vdev_children > 1); 4867 4868 newvd = vd->vdev_child[vd->vdev_children - 1]; 4869 oldvd = vd->vdev_child[0]; 4870 4871 if (vdev_dtl_empty(newvd, DTL_MISSING) && 4872 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4873 !vdev_dtl_required(oldvd)) 4874 return (oldvd); 4875 } 4876 4877 /* 4878 * Check for a completed resilver with the 'unspare' flag set. 4879 */ 4880 if (vd->vdev_ops == &vdev_spare_ops) { 4881 vdev_t *first = vd->vdev_child[0]; 4882 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 4883 4884 if (last->vdev_unspare) { 4885 oldvd = first; 4886 newvd = last; 4887 } else if (first->vdev_unspare) { 4888 oldvd = last; 4889 newvd = first; 4890 } else { 4891 oldvd = NULL; 4892 } 4893 4894 if (oldvd != NULL && 4895 vdev_dtl_empty(newvd, DTL_MISSING) && 4896 vdev_dtl_empty(newvd, DTL_OUTAGE) && 4897 !vdev_dtl_required(oldvd)) 4898 return (oldvd); 4899 4900 /* 4901 * If there are more than two spares attached to a disk, 4902 * and those spares are not required, then we want to 4903 * attempt to free them up now so that they can be used 4904 * by other pools. Once we're back down to a single 4905 * disk+spare, we stop removing them. 4906 */ 4907 if (vd->vdev_children > 2) { 4908 newvd = vd->vdev_child[1]; 4909 4910 if (newvd->vdev_isspare && last->vdev_isspare && 4911 vdev_dtl_empty(last, DTL_MISSING) && 4912 vdev_dtl_empty(last, DTL_OUTAGE) && 4913 !vdev_dtl_required(newvd)) 4914 return (newvd); 4915 } 4916 } 4917 4918 return (NULL); 4919 } 4920 4921 static void 4922 spa_vdev_resilver_done(spa_t *spa) 4923 { 4924 vdev_t *vd, *pvd, *ppvd; 4925 uint64_t guid, sguid, pguid, ppguid; 4926 4927 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4928 4929 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 4930 pvd = vd->vdev_parent; 4931 ppvd = pvd->vdev_parent; 4932 guid = vd->vdev_guid; 4933 pguid = pvd->vdev_guid; 4934 ppguid = ppvd->vdev_guid; 4935 sguid = 0; 4936 /* 4937 * If we have just finished replacing a hot spared device, then 4938 * we need to detach the parent's first child (the original hot 4939 * spare) as well. 4940 */ 4941 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 4942 ppvd->vdev_children == 2) { 4943 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 4944 sguid = ppvd->vdev_child[1]->vdev_guid; 4945 } 4946 spa_config_exit(spa, SCL_ALL, FTAG); 4947 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 4948 return; 4949 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 4950 return; 4951 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4952 } 4953 4954 spa_config_exit(spa, SCL_ALL, FTAG); 4955 } 4956 4957 /* 4958 * Update the stored path or FRU for this vdev. 4959 */ 4960 int 4961 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 4962 boolean_t ispath) 4963 { 4964 vdev_t *vd; 4965 boolean_t sync = B_FALSE; 4966 4967 ASSERT(spa_writeable(spa)); 4968 4969 spa_vdev_state_enter(spa, SCL_ALL); 4970 4971 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 4972 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 4973 4974 if (!vd->vdev_ops->vdev_op_leaf) 4975 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 4976 4977 if (ispath) { 4978 if (strcmp(value, vd->vdev_path) != 0) { 4979 spa_strfree(vd->vdev_path); 4980 vd->vdev_path = spa_strdup(value); 4981 sync = B_TRUE; 4982 } 4983 } else { 4984 if (vd->vdev_fru == NULL) { 4985 vd->vdev_fru = spa_strdup(value); 4986 sync = B_TRUE; 4987 } else if (strcmp(value, vd->vdev_fru) != 0) { 4988 spa_strfree(vd->vdev_fru); 4989 vd->vdev_fru = spa_strdup(value); 4990 sync = B_TRUE; 4991 } 4992 } 4993 4994 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 4995 } 4996 4997 int 4998 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 4999 { 5000 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5001 } 5002 5003 int 5004 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5005 { 5006 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5007 } 5008 5009 /* 5010 * ========================================================================== 5011 * SPA Scanning 5012 * ========================================================================== 5013 */ 5014 5015 int 5016 spa_scan_stop(spa_t *spa) 5017 { 5018 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5019 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5020 return (EBUSY); 5021 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5022 } 5023 5024 int 5025 spa_scan(spa_t *spa, pool_scan_func_t func) 5026 { 5027 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5028 5029 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5030 return (ENOTSUP); 5031 5032 /* 5033 * If a resilver was requested, but there is no DTL on a 5034 * writeable leaf device, we have nothing to do. 5035 */ 5036 if (func == POOL_SCAN_RESILVER && 5037 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5038 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5039 return (0); 5040 } 5041 5042 return (dsl_scan(spa->spa_dsl_pool, func)); 5043 } 5044 5045 /* 5046 * ========================================================================== 5047 * SPA async task processing 5048 * ========================================================================== 5049 */ 5050 5051 static void 5052 spa_async_remove(spa_t *spa, vdev_t *vd) 5053 { 5054 if (vd->vdev_remove_wanted) { 5055 vd->vdev_remove_wanted = B_FALSE; 5056 vd->vdev_delayed_close = B_FALSE; 5057 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5058 5059 /* 5060 * We want to clear the stats, but we don't want to do a full 5061 * vdev_clear() as that will cause us to throw away 5062 * degraded/faulted state as well as attempt to reopen the 5063 * device, all of which is a waste. 5064 */ 5065 vd->vdev_stat.vs_read_errors = 0; 5066 vd->vdev_stat.vs_write_errors = 0; 5067 vd->vdev_stat.vs_checksum_errors = 0; 5068 5069 vdev_state_dirty(vd->vdev_top); 5070 } 5071 5072 for (int c = 0; c < vd->vdev_children; c++) 5073 spa_async_remove(spa, vd->vdev_child[c]); 5074 } 5075 5076 static void 5077 spa_async_probe(spa_t *spa, vdev_t *vd) 5078 { 5079 if (vd->vdev_probe_wanted) { 5080 vd->vdev_probe_wanted = B_FALSE; 5081 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5082 } 5083 5084 for (int c = 0; c < vd->vdev_children; c++) 5085 spa_async_probe(spa, vd->vdev_child[c]); 5086 } 5087 5088 static void 5089 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5090 { 5091 sysevent_id_t eid; 5092 nvlist_t *attr; 5093 char *physpath; 5094 5095 if (!spa->spa_autoexpand) 5096 return; 5097 5098 for (int c = 0; c < vd->vdev_children; c++) { 5099 vdev_t *cvd = vd->vdev_child[c]; 5100 spa_async_autoexpand(spa, cvd); 5101 } 5102 5103 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5104 return; 5105 5106 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5107 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5108 5109 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5110 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5111 5112 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5113 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5114 5115 nvlist_free(attr); 5116 kmem_free(physpath, MAXPATHLEN); 5117 } 5118 5119 static void 5120 spa_async_thread(spa_t *spa) 5121 { 5122 int tasks; 5123 5124 ASSERT(spa->spa_sync_on); 5125 5126 mutex_enter(&spa->spa_async_lock); 5127 tasks = spa->spa_async_tasks; 5128 spa->spa_async_tasks = 0; 5129 mutex_exit(&spa->spa_async_lock); 5130 5131 /* 5132 * See if the config needs to be updated. 5133 */ 5134 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5135 uint64_t old_space, new_space; 5136 5137 mutex_enter(&spa_namespace_lock); 5138 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5139 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5140 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5141 mutex_exit(&spa_namespace_lock); 5142 5143 /* 5144 * If the pool grew as a result of the config update, 5145 * then log an internal history event. 5146 */ 5147 if (new_space != old_space) { 5148 spa_history_log_internal(LOG_POOL_VDEV_ONLINE, 5149 spa, NULL, 5150 "pool '%s' size: %llu(+%llu)", 5151 spa_name(spa), new_space, new_space - old_space); 5152 } 5153 } 5154 5155 /* 5156 * See if any devices need to be marked REMOVED. 5157 */ 5158 if (tasks & SPA_ASYNC_REMOVE) { 5159 spa_vdev_state_enter(spa, SCL_NONE); 5160 spa_async_remove(spa, spa->spa_root_vdev); 5161 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5162 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5163 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5164 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5165 (void) spa_vdev_state_exit(spa, NULL, 0); 5166 } 5167 5168 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5169 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5170 spa_async_autoexpand(spa, spa->spa_root_vdev); 5171 spa_config_exit(spa, SCL_CONFIG, FTAG); 5172 } 5173 5174 /* 5175 * See if any devices need to be probed. 5176 */ 5177 if (tasks & SPA_ASYNC_PROBE) { 5178 spa_vdev_state_enter(spa, SCL_NONE); 5179 spa_async_probe(spa, spa->spa_root_vdev); 5180 (void) spa_vdev_state_exit(spa, NULL, 0); 5181 } 5182 5183 /* 5184 * If any devices are done replacing, detach them. 5185 */ 5186 if (tasks & SPA_ASYNC_RESILVER_DONE) 5187 spa_vdev_resilver_done(spa); 5188 5189 /* 5190 * Kick off a resilver. 5191 */ 5192 if (tasks & SPA_ASYNC_RESILVER) 5193 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5194 5195 /* 5196 * Let the world know that we're done. 5197 */ 5198 mutex_enter(&spa->spa_async_lock); 5199 spa->spa_async_thread = NULL; 5200 cv_broadcast(&spa->spa_async_cv); 5201 mutex_exit(&spa->spa_async_lock); 5202 thread_exit(); 5203 } 5204 5205 void 5206 spa_async_suspend(spa_t *spa) 5207 { 5208 mutex_enter(&spa->spa_async_lock); 5209 spa->spa_async_suspended++; 5210 while (spa->spa_async_thread != NULL) 5211 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5212 mutex_exit(&spa->spa_async_lock); 5213 } 5214 5215 void 5216 spa_async_resume(spa_t *spa) 5217 { 5218 mutex_enter(&spa->spa_async_lock); 5219 ASSERT(spa->spa_async_suspended != 0); 5220 spa->spa_async_suspended--; 5221 mutex_exit(&spa->spa_async_lock); 5222 } 5223 5224 static void 5225 spa_async_dispatch(spa_t *spa) 5226 { 5227 mutex_enter(&spa->spa_async_lock); 5228 if (spa->spa_async_tasks && !spa->spa_async_suspended && 5229 spa->spa_async_thread == NULL && 5230 rootdir != NULL && !vn_is_readonly(rootdir)) 5231 spa->spa_async_thread = thread_create(NULL, 0, 5232 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5233 mutex_exit(&spa->spa_async_lock); 5234 } 5235 5236 void 5237 spa_async_request(spa_t *spa, int task) 5238 { 5239 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5240 mutex_enter(&spa->spa_async_lock); 5241 spa->spa_async_tasks |= task; 5242 mutex_exit(&spa->spa_async_lock); 5243 } 5244 5245 /* 5246 * ========================================================================== 5247 * SPA syncing routines 5248 * ========================================================================== 5249 */ 5250 5251 static int 5252 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5253 { 5254 bpobj_t *bpo = arg; 5255 bpobj_enqueue(bpo, bp, tx); 5256 return (0); 5257 } 5258 5259 static int 5260 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5261 { 5262 zio_t *zio = arg; 5263 5264 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5265 zio->io_flags)); 5266 return (0); 5267 } 5268 5269 static void 5270 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5271 { 5272 char *packed = NULL; 5273 size_t bufsize; 5274 size_t nvsize = 0; 5275 dmu_buf_t *db; 5276 5277 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5278 5279 /* 5280 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5281 * information. This avoids the dbuf_will_dirty() path and 5282 * saves us a pre-read to get data we don't actually care about. 5283 */ 5284 bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE); 5285 packed = kmem_alloc(bufsize, KM_SLEEP); 5286 5287 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5288 KM_SLEEP) == 0); 5289 bzero(packed + nvsize, bufsize - nvsize); 5290 5291 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5292 5293 kmem_free(packed, bufsize); 5294 5295 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5296 dmu_buf_will_dirty(db, tx); 5297 *(uint64_t *)db->db_data = nvsize; 5298 dmu_buf_rele(db, FTAG); 5299 } 5300 5301 static void 5302 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5303 const char *config, const char *entry) 5304 { 5305 nvlist_t *nvroot; 5306 nvlist_t **list; 5307 int i; 5308 5309 if (!sav->sav_sync) 5310 return; 5311 5312 /* 5313 * Update the MOS nvlist describing the list of available devices. 5314 * spa_validate_aux() will have already made sure this nvlist is 5315 * valid and the vdevs are labeled appropriately. 5316 */ 5317 if (sav->sav_object == 0) { 5318 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5319 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5320 sizeof (uint64_t), tx); 5321 VERIFY(zap_update(spa->spa_meta_objset, 5322 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5323 &sav->sav_object, tx) == 0); 5324 } 5325 5326 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5327 if (sav->sav_count == 0) { 5328 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5329 } else { 5330 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5331 for (i = 0; i < sav->sav_count; i++) 5332 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5333 B_FALSE, VDEV_CONFIG_L2CACHE); 5334 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5335 sav->sav_count) == 0); 5336 for (i = 0; i < sav->sav_count; i++) 5337 nvlist_free(list[i]); 5338 kmem_free(list, sav->sav_count * sizeof (void *)); 5339 } 5340 5341 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5342 nvlist_free(nvroot); 5343 5344 sav->sav_sync = B_FALSE; 5345 } 5346 5347 static void 5348 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5349 { 5350 nvlist_t *config; 5351 5352 if (list_is_empty(&spa->spa_config_dirty_list)) 5353 return; 5354 5355 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5356 5357 config = spa_config_generate(spa, spa->spa_root_vdev, 5358 dmu_tx_get_txg(tx), B_FALSE); 5359 5360 spa_config_exit(spa, SCL_STATE, FTAG); 5361 5362 if (spa->spa_config_syncing) 5363 nvlist_free(spa->spa_config_syncing); 5364 spa->spa_config_syncing = config; 5365 5366 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5367 } 5368 5369 /* 5370 * Set zpool properties. 5371 */ 5372 static void 5373 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 5374 { 5375 spa_t *spa = arg1; 5376 objset_t *mos = spa->spa_meta_objset; 5377 nvlist_t *nvp = arg2; 5378 nvpair_t *elem; 5379 uint64_t intval; 5380 char *strval; 5381 zpool_prop_t prop; 5382 const char *propname; 5383 zprop_type_t proptype; 5384 5385 mutex_enter(&spa->spa_props_lock); 5386 5387 elem = NULL; 5388 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5389 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5390 case ZPOOL_PROP_VERSION: 5391 /* 5392 * Only set version for non-zpool-creation cases 5393 * (set/import). spa_create() needs special care 5394 * for version setting. 5395 */ 5396 if (tx->tx_txg != TXG_INITIAL) { 5397 VERIFY(nvpair_value_uint64(elem, 5398 &intval) == 0); 5399 ASSERT(intval <= SPA_VERSION); 5400 ASSERT(intval >= spa_version(spa)); 5401 spa->spa_uberblock.ub_version = intval; 5402 vdev_config_dirty(spa->spa_root_vdev); 5403 } 5404 break; 5405 5406 case ZPOOL_PROP_ALTROOT: 5407 /* 5408 * 'altroot' is a non-persistent property. It should 5409 * have been set temporarily at creation or import time. 5410 */ 5411 ASSERT(spa->spa_root != NULL); 5412 break; 5413 5414 case ZPOOL_PROP_READONLY: 5415 case ZPOOL_PROP_CACHEFILE: 5416 /* 5417 * 'readonly' and 'cachefile' are also non-persisitent 5418 * properties. 5419 */ 5420 break; 5421 case ZPOOL_PROP_COMMENT: 5422 VERIFY(nvpair_value_string(elem, &strval) == 0); 5423 if (spa->spa_comment != NULL) 5424 spa_strfree(spa->spa_comment); 5425 spa->spa_comment = spa_strdup(strval); 5426 /* 5427 * We need to dirty the configuration on all the vdevs 5428 * so that their labels get updated. It's unnecessary 5429 * to do this for pool creation since the vdev's 5430 * configuratoin has already been dirtied. 5431 */ 5432 if (tx->tx_txg != TXG_INITIAL) 5433 vdev_config_dirty(spa->spa_root_vdev); 5434 break; 5435 default: 5436 /* 5437 * Set pool property values in the poolprops mos object. 5438 */ 5439 if (spa->spa_pool_props_object == 0) { 5440 VERIFY((spa->spa_pool_props_object = 5441 zap_create(mos, DMU_OT_POOL_PROPS, 5442 DMU_OT_NONE, 0, tx)) > 0); 5443 5444 VERIFY(zap_update(mos, 5445 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 5446 8, 1, &spa->spa_pool_props_object, tx) 5447 == 0); 5448 } 5449 5450 /* normalize the property name */ 5451 propname = zpool_prop_to_name(prop); 5452 proptype = zpool_prop_get_type(prop); 5453 5454 if (nvpair_type(elem) == DATA_TYPE_STRING) { 5455 ASSERT(proptype == PROP_TYPE_STRING); 5456 VERIFY(nvpair_value_string(elem, &strval) == 0); 5457 VERIFY(zap_update(mos, 5458 spa->spa_pool_props_object, propname, 5459 1, strlen(strval) + 1, strval, tx) == 0); 5460 5461 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 5462 VERIFY(nvpair_value_uint64(elem, &intval) == 0); 5463 5464 if (proptype == PROP_TYPE_INDEX) { 5465 const char *unused; 5466 VERIFY(zpool_prop_index_to_string( 5467 prop, intval, &unused) == 0); 5468 } 5469 VERIFY(zap_update(mos, 5470 spa->spa_pool_props_object, propname, 5471 8, 1, &intval, tx) == 0); 5472 } else { 5473 ASSERT(0); /* not allowed */ 5474 } 5475 5476 switch (prop) { 5477 case ZPOOL_PROP_DELEGATION: 5478 spa->spa_delegation = intval; 5479 break; 5480 case ZPOOL_PROP_BOOTFS: 5481 spa->spa_bootfs = intval; 5482 break; 5483 case ZPOOL_PROP_FAILUREMODE: 5484 spa->spa_failmode = intval; 5485 break; 5486 case ZPOOL_PROP_AUTOEXPAND: 5487 spa->spa_autoexpand = intval; 5488 if (tx->tx_txg != TXG_INITIAL) 5489 spa_async_request(spa, 5490 SPA_ASYNC_AUTOEXPAND); 5491 break; 5492 case ZPOOL_PROP_DEDUPDITTO: 5493 spa->spa_dedup_ditto = intval; 5494 break; 5495 default: 5496 break; 5497 } 5498 } 5499 5500 /* log internal history if this is not a zpool create */ 5501 if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY && 5502 tx->tx_txg != TXG_INITIAL) { 5503 spa_history_log_internal(LOG_POOL_PROPSET, 5504 spa, tx, "%s %lld %s", 5505 nvpair_name(elem), intval, spa_name(spa)); 5506 } 5507 } 5508 5509 mutex_exit(&spa->spa_props_lock); 5510 } 5511 5512 /* 5513 * Perform one-time upgrade on-disk changes. spa_version() does not 5514 * reflect the new version this txg, so there must be no changes this 5515 * txg to anything that the upgrade code depends on after it executes. 5516 * Therefore this must be called after dsl_pool_sync() does the sync 5517 * tasks. 5518 */ 5519 static void 5520 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 5521 { 5522 dsl_pool_t *dp = spa->spa_dsl_pool; 5523 5524 ASSERT(spa->spa_sync_pass == 1); 5525 5526 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 5527 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 5528 dsl_pool_create_origin(dp, tx); 5529 5530 /* Keeping the origin open increases spa_minref */ 5531 spa->spa_minref += 3; 5532 } 5533 5534 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 5535 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 5536 dsl_pool_upgrade_clones(dp, tx); 5537 } 5538 5539 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 5540 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 5541 dsl_pool_upgrade_dir_clones(dp, tx); 5542 5543 /* Keeping the freedir open increases spa_minref */ 5544 spa->spa_minref += 3; 5545 } 5546 } 5547 5548 /* 5549 * Sync the specified transaction group. New blocks may be dirtied as 5550 * part of the process, so we iterate until it converges. 5551 */ 5552 void 5553 spa_sync(spa_t *spa, uint64_t txg) 5554 { 5555 dsl_pool_t *dp = spa->spa_dsl_pool; 5556 objset_t *mos = spa->spa_meta_objset; 5557 bpobj_t *defer_bpo = &spa->spa_deferred_bpobj; 5558 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 5559 vdev_t *rvd = spa->spa_root_vdev; 5560 vdev_t *vd; 5561 dmu_tx_t *tx; 5562 int error; 5563 5564 VERIFY(spa_writeable(spa)); 5565 5566 /* 5567 * Lock out configuration changes. 5568 */ 5569 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5570 5571 spa->spa_syncing_txg = txg; 5572 spa->spa_sync_pass = 0; 5573 5574 /* 5575 * If there are any pending vdev state changes, convert them 5576 * into config changes that go out with this transaction group. 5577 */ 5578 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5579 while (list_head(&spa->spa_state_dirty_list) != NULL) { 5580 /* 5581 * We need the write lock here because, for aux vdevs, 5582 * calling vdev_config_dirty() modifies sav_config. 5583 * This is ugly and will become unnecessary when we 5584 * eliminate the aux vdev wart by integrating all vdevs 5585 * into the root vdev tree. 5586 */ 5587 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5588 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 5589 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 5590 vdev_state_clean(vd); 5591 vdev_config_dirty(vd); 5592 } 5593 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 5594 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 5595 } 5596 spa_config_exit(spa, SCL_STATE, FTAG); 5597 5598 tx = dmu_tx_create_assigned(dp, txg); 5599 5600 /* 5601 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 5602 * set spa_deflate if we have no raid-z vdevs. 5603 */ 5604 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 5605 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 5606 int i; 5607 5608 for (i = 0; i < rvd->vdev_children; i++) { 5609 vd = rvd->vdev_child[i]; 5610 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 5611 break; 5612 } 5613 if (i == rvd->vdev_children) { 5614 spa->spa_deflate = TRUE; 5615 VERIFY(0 == zap_add(spa->spa_meta_objset, 5616 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 5617 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 5618 } 5619 } 5620 5621 /* 5622 * If anything has changed in this txg, or if someone is waiting 5623 * for this txg to sync (eg, spa_vdev_remove()), push the 5624 * deferred frees from the previous txg. If not, leave them 5625 * alone so that we don't generate work on an otherwise idle 5626 * system. 5627 */ 5628 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 5629 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 5630 !txg_list_empty(&dp->dp_sync_tasks, txg) || 5631 ((dsl_scan_active(dp->dp_scan) || 5632 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 5633 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5634 VERIFY3U(bpobj_iterate(defer_bpo, 5635 spa_free_sync_cb, zio, tx), ==, 0); 5636 VERIFY3U(zio_wait(zio), ==, 0); 5637 } 5638 5639 /* 5640 * Iterate to convergence. 5641 */ 5642 do { 5643 int pass = ++spa->spa_sync_pass; 5644 5645 spa_sync_config_object(spa, tx); 5646 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 5647 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 5648 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 5649 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 5650 spa_errlog_sync(spa, txg); 5651 dsl_pool_sync(dp, txg); 5652 5653 if (pass <= SYNC_PASS_DEFERRED_FREE) { 5654 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5655 bplist_iterate(free_bpl, spa_free_sync_cb, 5656 zio, tx); 5657 VERIFY(zio_wait(zio) == 0); 5658 } else { 5659 bplist_iterate(free_bpl, bpobj_enqueue_cb, 5660 defer_bpo, tx); 5661 } 5662 5663 ddt_sync(spa, txg); 5664 dsl_scan_sync(dp, tx); 5665 5666 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 5667 vdev_sync(vd, txg); 5668 5669 if (pass == 1) 5670 spa_sync_upgrades(spa, tx); 5671 5672 } while (dmu_objset_is_dirty(mos, txg)); 5673 5674 /* 5675 * Rewrite the vdev configuration (which includes the uberblock) 5676 * to commit the transaction group. 5677 * 5678 * If there are no dirty vdevs, we sync the uberblock to a few 5679 * random top-level vdevs that are known to be visible in the 5680 * config cache (see spa_vdev_add() for a complete description). 5681 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 5682 */ 5683 for (;;) { 5684 /* 5685 * We hold SCL_STATE to prevent vdev open/close/etc. 5686 * while we're attempting to write the vdev labels. 5687 */ 5688 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5689 5690 if (list_is_empty(&spa->spa_config_dirty_list)) { 5691 vdev_t *svd[SPA_DVAS_PER_BP]; 5692 int svdcount = 0; 5693 int children = rvd->vdev_children; 5694 int c0 = spa_get_random(children); 5695 5696 for (int c = 0; c < children; c++) { 5697 vd = rvd->vdev_child[(c0 + c) % children]; 5698 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 5699 continue; 5700 svd[svdcount++] = vd; 5701 if (svdcount == SPA_DVAS_PER_BP) 5702 break; 5703 } 5704 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 5705 if (error != 0) 5706 error = vdev_config_sync(svd, svdcount, txg, 5707 B_TRUE); 5708 } else { 5709 error = vdev_config_sync(rvd->vdev_child, 5710 rvd->vdev_children, txg, B_FALSE); 5711 if (error != 0) 5712 error = vdev_config_sync(rvd->vdev_child, 5713 rvd->vdev_children, txg, B_TRUE); 5714 } 5715 5716 spa_config_exit(spa, SCL_STATE, FTAG); 5717 5718 if (error == 0) 5719 break; 5720 zio_suspend(spa, NULL); 5721 zio_resume_wait(spa); 5722 } 5723 dmu_tx_commit(tx); 5724 5725 /* 5726 * Clear the dirty config list. 5727 */ 5728 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 5729 vdev_config_clean(vd); 5730 5731 /* 5732 * Now that the new config has synced transactionally, 5733 * let it become visible to the config cache. 5734 */ 5735 if (spa->spa_config_syncing != NULL) { 5736 spa_config_set(spa, spa->spa_config_syncing); 5737 spa->spa_config_txg = txg; 5738 spa->spa_config_syncing = NULL; 5739 } 5740 5741 spa->spa_ubsync = spa->spa_uberblock; 5742 5743 dsl_pool_sync_done(dp, txg); 5744 5745 /* 5746 * Update usable space statistics. 5747 */ 5748 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 5749 vdev_sync_done(vd, txg); 5750 5751 spa_update_dspace(spa); 5752 5753 /* 5754 * It had better be the case that we didn't dirty anything 5755 * since vdev_config_sync(). 5756 */ 5757 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 5758 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 5759 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 5760 5761 spa->spa_sync_pass = 0; 5762 5763 spa_config_exit(spa, SCL_CONFIG, FTAG); 5764 5765 spa_handle_ignored_writes(spa); 5766 5767 /* 5768 * If any async tasks have been requested, kick them off. 5769 */ 5770 spa_async_dispatch(spa); 5771 } 5772 5773 /* 5774 * Sync all pools. We don't want to hold the namespace lock across these 5775 * operations, so we take a reference on the spa_t and drop the lock during the 5776 * sync. 5777 */ 5778 void 5779 spa_sync_allpools(void) 5780 { 5781 spa_t *spa = NULL; 5782 mutex_enter(&spa_namespace_lock); 5783 while ((spa = spa_next(spa)) != NULL) { 5784 if (spa_state(spa) != POOL_STATE_ACTIVE || 5785 !spa_writeable(spa) || spa_suspended(spa)) 5786 continue; 5787 spa_open_ref(spa, FTAG); 5788 mutex_exit(&spa_namespace_lock); 5789 txg_wait_synced(spa_get_dsl(spa), 0); 5790 mutex_enter(&spa_namespace_lock); 5791 spa_close(spa, FTAG); 5792 } 5793 mutex_exit(&spa_namespace_lock); 5794 } 5795 5796 /* 5797 * ========================================================================== 5798 * Miscellaneous routines 5799 * ========================================================================== 5800 */ 5801 5802 /* 5803 * Remove all pools in the system. 5804 */ 5805 void 5806 spa_evict_all(void) 5807 { 5808 spa_t *spa; 5809 5810 /* 5811 * Remove all cached state. All pools should be closed now, 5812 * so every spa in the AVL tree should be unreferenced. 5813 */ 5814 mutex_enter(&spa_namespace_lock); 5815 while ((spa = spa_next(NULL)) != NULL) { 5816 /* 5817 * Stop async tasks. The async thread may need to detach 5818 * a device that's been replaced, which requires grabbing 5819 * spa_namespace_lock, so we must drop it here. 5820 */ 5821 spa_open_ref(spa, FTAG); 5822 mutex_exit(&spa_namespace_lock); 5823 spa_async_suspend(spa); 5824 mutex_enter(&spa_namespace_lock); 5825 spa_close(spa, FTAG); 5826 5827 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 5828 spa_unload(spa); 5829 spa_deactivate(spa); 5830 } 5831 spa_remove(spa); 5832 } 5833 mutex_exit(&spa_namespace_lock); 5834 } 5835 5836 vdev_t * 5837 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 5838 { 5839 vdev_t *vd; 5840 int i; 5841 5842 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 5843 return (vd); 5844 5845 if (aux) { 5846 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 5847 vd = spa->spa_l2cache.sav_vdevs[i]; 5848 if (vd->vdev_guid == guid) 5849 return (vd); 5850 } 5851 5852 for (i = 0; i < spa->spa_spares.sav_count; i++) { 5853 vd = spa->spa_spares.sav_vdevs[i]; 5854 if (vd->vdev_guid == guid) 5855 return (vd); 5856 } 5857 } 5858 5859 return (NULL); 5860 } 5861 5862 void 5863 spa_upgrade(spa_t *spa, uint64_t version) 5864 { 5865 ASSERT(spa_writeable(spa)); 5866 5867 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5868 5869 /* 5870 * This should only be called for a non-faulted pool, and since a 5871 * future version would result in an unopenable pool, this shouldn't be 5872 * possible. 5873 */ 5874 ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION); 5875 ASSERT(version >= spa->spa_uberblock.ub_version); 5876 5877 spa->spa_uberblock.ub_version = version; 5878 vdev_config_dirty(spa->spa_root_vdev); 5879 5880 spa_config_exit(spa, SCL_ALL, FTAG); 5881 5882 txg_wait_synced(spa_get_dsl(spa), 0); 5883 } 5884 5885 boolean_t 5886 spa_has_spare(spa_t *spa, uint64_t guid) 5887 { 5888 int i; 5889 uint64_t spareguid; 5890 spa_aux_vdev_t *sav = &spa->spa_spares; 5891 5892 for (i = 0; i < sav->sav_count; i++) 5893 if (sav->sav_vdevs[i]->vdev_guid == guid) 5894 return (B_TRUE); 5895 5896 for (i = 0; i < sav->sav_npending; i++) { 5897 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 5898 &spareguid) == 0 && spareguid == guid) 5899 return (B_TRUE); 5900 } 5901 5902 return (B_FALSE); 5903 } 5904 5905 /* 5906 * Check if a pool has an active shared spare device. 5907 * Note: reference count of an active spare is 2, as a spare and as a replace 5908 */ 5909 static boolean_t 5910 spa_has_active_shared_spare(spa_t *spa) 5911 { 5912 int i, refcnt; 5913 uint64_t pool; 5914 spa_aux_vdev_t *sav = &spa->spa_spares; 5915 5916 for (i = 0; i < sav->sav_count; i++) { 5917 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 5918 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 5919 refcnt > 2) 5920 return (B_TRUE); 5921 } 5922 5923 return (B_FALSE); 5924 } 5925 5926 /* 5927 * Post a sysevent corresponding to the given event. The 'name' must be one of 5928 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 5929 * filled in from the spa and (optionally) the vdev. This doesn't do anything 5930 * in the userland libzpool, as we don't want consumers to misinterpret ztest 5931 * or zdb as real changes. 5932 */ 5933 void 5934 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 5935 { 5936 #ifdef _KERNEL 5937 sysevent_t *ev; 5938 sysevent_attr_list_t *attr = NULL; 5939 sysevent_value_t value; 5940 sysevent_id_t eid; 5941 5942 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 5943 SE_SLEEP); 5944 5945 value.value_type = SE_DATA_TYPE_STRING; 5946 value.value.sv_string = spa_name(spa); 5947 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 5948 goto done; 5949 5950 value.value_type = SE_DATA_TYPE_UINT64; 5951 value.value.sv_uint64 = spa_guid(spa); 5952 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 5953 goto done; 5954 5955 if (vd) { 5956 value.value_type = SE_DATA_TYPE_UINT64; 5957 value.value.sv_uint64 = vd->vdev_guid; 5958 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 5959 SE_SLEEP) != 0) 5960 goto done; 5961 5962 if (vd->vdev_path) { 5963 value.value_type = SE_DATA_TYPE_STRING; 5964 value.value.sv_string = vd->vdev_path; 5965 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 5966 &value, SE_SLEEP) != 0) 5967 goto done; 5968 } 5969 } 5970 5971 if (sysevent_attach_attributes(ev, attr) != 0) 5972 goto done; 5973 attr = NULL; 5974 5975 (void) log_sysevent(ev, SE_SLEEP, &eid); 5976 5977 done: 5978 if (attr) 5979 sysevent_free_attr(attr); 5980 sysevent_free(ev); 5981 #endif 5982 } 5983