xref: /titanic_52/usr/src/uts/common/fs/zfs/spa.c (revision 8654d0253136055bd4cc2423d87378e8a37f2eb5)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright 2007 Sun Microsystems, Inc.  All rights reserved.
24  * Use is subject to license terms.
25  */
26 
27 #pragma ident	"%Z%%M%	%I%	%E% SMI"
28 
29 /*
30  * This file contains all the routines used when modifying on-disk SPA state.
31  * This includes opening, importing, destroying, exporting a pool, and syncing a
32  * pool.
33  */
34 
35 #include <sys/zfs_context.h>
36 #include <sys/fm/fs/zfs.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zio.h>
39 #include <sys/zio_checksum.h>
40 #include <sys/zio_compress.h>
41 #include <sys/dmu.h>
42 #include <sys/dmu_tx.h>
43 #include <sys/zap.h>
44 #include <sys/zil.h>
45 #include <sys/vdev_impl.h>
46 #include <sys/metaslab.h>
47 #include <sys/uberblock_impl.h>
48 #include <sys/txg.h>
49 #include <sys/avl.h>
50 #include <sys/dmu_traverse.h>
51 #include <sys/dmu_objset.h>
52 #include <sys/unique.h>
53 #include <sys/dsl_pool.h>
54 #include <sys/dsl_dataset.h>
55 #include <sys/dsl_dir.h>
56 #include <sys/dsl_prop.h>
57 #include <sys/dsl_synctask.h>
58 #include <sys/fs/zfs.h>
59 #include <sys/callb.h>
60 #include <sys/systeminfo.h>
61 #include <sys/sunddi.h>
62 
63 int zio_taskq_threads = 8;
64 
65 /*
66  * ==========================================================================
67  * SPA state manipulation (open/create/destroy/import/export)
68  * ==========================================================================
69  */
70 
71 static int
72 spa_error_entry_compare(const void *a, const void *b)
73 {
74 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
75 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
76 	int ret;
77 
78 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
79 	    sizeof (zbookmark_t));
80 
81 	if (ret < 0)
82 		return (-1);
83 	else if (ret > 0)
84 		return (1);
85 	else
86 		return (0);
87 }
88 
89 /*
90  * Utility function which retrieves copies of the current logs and
91  * re-initializes them in the process.
92  */
93 void
94 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
95 {
96 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
97 
98 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
99 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
100 
101 	avl_create(&spa->spa_errlist_scrub,
102 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
103 	    offsetof(spa_error_entry_t, se_avl));
104 	avl_create(&spa->spa_errlist_last,
105 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
106 	    offsetof(spa_error_entry_t, se_avl));
107 }
108 
109 /*
110  * Activate an uninitialized pool.
111  */
112 static void
113 spa_activate(spa_t *spa)
114 {
115 	int t;
116 
117 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
118 
119 	spa->spa_state = POOL_STATE_ACTIVE;
120 
121 	spa->spa_normal_class = metaslab_class_create();
122 	spa->spa_log_class = metaslab_class_create();
123 
124 	for (t = 0; t < ZIO_TYPES; t++) {
125 		spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue",
126 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
127 		    TASKQ_PREPOPULATE);
128 		spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr",
129 		    zio_taskq_threads, maxclsyspri, 50, INT_MAX,
130 		    TASKQ_PREPOPULATE);
131 	}
132 
133 	rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL);
134 
135 	mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL);
136 	mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL);
137 	mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL);
138 	mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL);
139 	mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL);
140 	mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL);
141 	mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL);
142 	mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL);
143 	mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL);
144 
145 	list_create(&spa->spa_dirty_list, sizeof (vdev_t),
146 	    offsetof(vdev_t, vdev_dirty_node));
147 
148 	txg_list_create(&spa->spa_vdev_txg_list,
149 	    offsetof(struct vdev, vdev_txg_node));
150 
151 	avl_create(&spa->spa_errlist_scrub,
152 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
153 	    offsetof(spa_error_entry_t, se_avl));
154 	avl_create(&spa->spa_errlist_last,
155 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
156 	    offsetof(spa_error_entry_t, se_avl));
157 }
158 
159 /*
160  * Opposite of spa_activate().
161  */
162 static void
163 spa_deactivate(spa_t *spa)
164 {
165 	int t;
166 
167 	ASSERT(spa->spa_sync_on == B_FALSE);
168 	ASSERT(spa->spa_dsl_pool == NULL);
169 	ASSERT(spa->spa_root_vdev == NULL);
170 
171 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
172 
173 	txg_list_destroy(&spa->spa_vdev_txg_list);
174 
175 	list_destroy(&spa->spa_dirty_list);
176 
177 	rw_destroy(&spa->spa_traverse_lock);
178 
179 	for (t = 0; t < ZIO_TYPES; t++) {
180 		taskq_destroy(spa->spa_zio_issue_taskq[t]);
181 		taskq_destroy(spa->spa_zio_intr_taskq[t]);
182 		spa->spa_zio_issue_taskq[t] = NULL;
183 		spa->spa_zio_intr_taskq[t] = NULL;
184 	}
185 
186 	metaslab_class_destroy(spa->spa_normal_class);
187 	spa->spa_normal_class = NULL;
188 
189 	metaslab_class_destroy(spa->spa_log_class);
190 	spa->spa_log_class = NULL;
191 
192 	/*
193 	 * If this was part of an import or the open otherwise failed, we may
194 	 * still have errors left in the queues.  Empty them just in case.
195 	 */
196 	spa_errlog_drain(spa);
197 
198 	avl_destroy(&spa->spa_errlist_scrub);
199 	avl_destroy(&spa->spa_errlist_last);
200 
201 	spa->spa_state = POOL_STATE_UNINITIALIZED;
202 }
203 
204 /*
205  * Verify a pool configuration, and construct the vdev tree appropriately.  This
206  * will create all the necessary vdevs in the appropriate layout, with each vdev
207  * in the CLOSED state.  This will prep the pool before open/creation/import.
208  * All vdev validation is done by the vdev_alloc() routine.
209  */
210 static int
211 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
212     uint_t id, int atype)
213 {
214 	nvlist_t **child;
215 	uint_t c, children;
216 	int error;
217 
218 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
219 		return (error);
220 
221 	if ((*vdp)->vdev_ops->vdev_op_leaf)
222 		return (0);
223 
224 	if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
225 	    &child, &children) != 0) {
226 		vdev_free(*vdp);
227 		*vdp = NULL;
228 		return (EINVAL);
229 	}
230 
231 	for (c = 0; c < children; c++) {
232 		vdev_t *vd;
233 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
234 		    atype)) != 0) {
235 			vdev_free(*vdp);
236 			*vdp = NULL;
237 			return (error);
238 		}
239 	}
240 
241 	ASSERT(*vdp != NULL);
242 
243 	return (0);
244 }
245 
246 /*
247  * Opposite of spa_load().
248  */
249 static void
250 spa_unload(spa_t *spa)
251 {
252 	int i;
253 
254 	/*
255 	 * Stop async tasks.
256 	 */
257 	spa_async_suspend(spa);
258 
259 	/*
260 	 * Stop syncing.
261 	 */
262 	if (spa->spa_sync_on) {
263 		txg_sync_stop(spa->spa_dsl_pool);
264 		spa->spa_sync_on = B_FALSE;
265 	}
266 
267 	/*
268 	 * Wait for any outstanding prefetch I/O to complete.
269 	 */
270 	spa_config_enter(spa, RW_WRITER, FTAG);
271 	spa_config_exit(spa, FTAG);
272 
273 	/*
274 	 * Close the dsl pool.
275 	 */
276 	if (spa->spa_dsl_pool) {
277 		dsl_pool_close(spa->spa_dsl_pool);
278 		spa->spa_dsl_pool = NULL;
279 	}
280 
281 	/*
282 	 * Close all vdevs.
283 	 */
284 	if (spa->spa_root_vdev)
285 		vdev_free(spa->spa_root_vdev);
286 	ASSERT(spa->spa_root_vdev == NULL);
287 
288 	for (i = 0; i < spa->spa_nspares; i++)
289 		vdev_free(spa->spa_spares[i]);
290 	if (spa->spa_spares) {
291 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
292 		spa->spa_spares = NULL;
293 	}
294 	if (spa->spa_sparelist) {
295 		nvlist_free(spa->spa_sparelist);
296 		spa->spa_sparelist = NULL;
297 	}
298 
299 	spa->spa_async_suspended = 0;
300 }
301 
302 /*
303  * Load (or re-load) the current list of vdevs describing the active spares for
304  * this pool.  When this is called, we have some form of basic information in
305  * 'spa_sparelist'.  We parse this into vdevs, try to open them, and then
306  * re-generate a more complete list including status information.
307  */
308 static void
309 spa_load_spares(spa_t *spa)
310 {
311 	nvlist_t **spares;
312 	uint_t nspares;
313 	int i;
314 	vdev_t *vd, *tvd;
315 
316 	/*
317 	 * First, close and free any existing spare vdevs.
318 	 */
319 	for (i = 0; i < spa->spa_nspares; i++) {
320 		vd = spa->spa_spares[i];
321 
322 		/* Undo the call to spa_activate() below */
323 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL &&
324 		    tvd->vdev_isspare)
325 			spa_spare_remove(tvd);
326 		vdev_close(vd);
327 		vdev_free(vd);
328 	}
329 
330 	if (spa->spa_spares)
331 		kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *));
332 
333 	if (spa->spa_sparelist == NULL)
334 		nspares = 0;
335 	else
336 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
337 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
338 
339 	spa->spa_nspares = (int)nspares;
340 	spa->spa_spares = NULL;
341 
342 	if (nspares == 0)
343 		return;
344 
345 	/*
346 	 * Construct the array of vdevs, opening them to get status in the
347 	 * process.   For each spare, there is potentially two different vdev_t
348 	 * structures associated with it: one in the list of spares (used only
349 	 * for basic validation purposes) and one in the active vdev
350 	 * configuration (if it's spared in).  During this phase we open and
351 	 * validate each vdev on the spare list.  If the vdev also exists in the
352 	 * active configuration, then we also mark this vdev as an active spare.
353 	 */
354 	spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP);
355 	for (i = 0; i < spa->spa_nspares; i++) {
356 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
357 		    VDEV_ALLOC_SPARE) == 0);
358 		ASSERT(vd != NULL);
359 
360 		spa->spa_spares[i] = vd;
361 
362 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) {
363 			if (!tvd->vdev_isspare)
364 				spa_spare_add(tvd);
365 
366 			/*
367 			 * We only mark the spare active if we were successfully
368 			 * able to load the vdev.  Otherwise, importing a pool
369 			 * with a bad active spare would result in strange
370 			 * behavior, because multiple pool would think the spare
371 			 * is actively in use.
372 			 *
373 			 * There is a vulnerability here to an equally bizarre
374 			 * circumstance, where a dead active spare is later
375 			 * brought back to life (onlined or otherwise).  Given
376 			 * the rarity of this scenario, and the extra complexity
377 			 * it adds, we ignore the possibility.
378 			 */
379 			if (!vdev_is_dead(tvd))
380 				spa_spare_activate(tvd);
381 		}
382 
383 		if (vdev_open(vd) != 0)
384 			continue;
385 
386 		vd->vdev_top = vd;
387 		(void) vdev_validate_spare(vd);
388 	}
389 
390 	/*
391 	 * Recompute the stashed list of spares, with status information
392 	 * this time.
393 	 */
394 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
395 	    DATA_TYPE_NVLIST_ARRAY) == 0);
396 
397 	spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP);
398 	for (i = 0; i < spa->spa_nspares; i++)
399 		spares[i] = vdev_config_generate(spa, spa->spa_spares[i],
400 		    B_TRUE, B_TRUE);
401 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
402 	    spares, spa->spa_nspares) == 0);
403 	for (i = 0; i < spa->spa_nspares; i++)
404 		nvlist_free(spares[i]);
405 	kmem_free(spares, spa->spa_nspares * sizeof (void *));
406 }
407 
408 static int
409 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
410 {
411 	dmu_buf_t *db;
412 	char *packed = NULL;
413 	size_t nvsize = 0;
414 	int error;
415 	*value = NULL;
416 
417 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
418 	nvsize = *(uint64_t *)db->db_data;
419 	dmu_buf_rele(db, FTAG);
420 
421 	packed = kmem_alloc(nvsize, KM_SLEEP);
422 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed);
423 	if (error == 0)
424 		error = nvlist_unpack(packed, nvsize, value, 0);
425 	kmem_free(packed, nvsize);
426 
427 	return (error);
428 }
429 
430 /*
431  * Checks to see if the given vdev could not be opened, in which case we post a
432  * sysevent to notify the autoreplace code that the device has been removed.
433  */
434 static void
435 spa_check_removed(vdev_t *vd)
436 {
437 	int c;
438 
439 	for (c = 0; c < vd->vdev_children; c++)
440 		spa_check_removed(vd->vdev_child[c]);
441 
442 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
443 		zfs_post_autoreplace(vd->vdev_spa, vd);
444 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
445 	}
446 }
447 
448 /*
449  * Load an existing storage pool, using the pool's builtin spa_config as a
450  * source of configuration information.
451  */
452 static int
453 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig)
454 {
455 	int error = 0;
456 	nvlist_t *nvroot = NULL;
457 	vdev_t *rvd;
458 	uberblock_t *ub = &spa->spa_uberblock;
459 	uint64_t config_cache_txg = spa->spa_config_txg;
460 	uint64_t pool_guid;
461 	uint64_t version;
462 	zio_t *zio;
463 	uint64_t autoreplace = 0;
464 
465 	spa->spa_load_state = state;
466 
467 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) ||
468 	    nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
469 		error = EINVAL;
470 		goto out;
471 	}
472 
473 	/*
474 	 * Versioning wasn't explicitly added to the label until later, so if
475 	 * it's not present treat it as the initial version.
476 	 */
477 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0)
478 		version = ZFS_VERSION_INITIAL;
479 
480 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
481 	    &spa->spa_config_txg);
482 
483 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
484 	    spa_guid_exists(pool_guid, 0)) {
485 		error = EEXIST;
486 		goto out;
487 	}
488 
489 	spa->spa_load_guid = pool_guid;
490 
491 	/*
492 	 * Parse the configuration into a vdev tree.  We explicitly set the
493 	 * value that will be returned by spa_version() since parsing the
494 	 * configuration requires knowing the version number.
495 	 */
496 	spa_config_enter(spa, RW_WRITER, FTAG);
497 	spa->spa_ubsync.ub_version = version;
498 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD);
499 	spa_config_exit(spa, FTAG);
500 
501 	if (error != 0)
502 		goto out;
503 
504 	ASSERT(spa->spa_root_vdev == rvd);
505 	ASSERT(spa_guid(spa) == pool_guid);
506 
507 	/*
508 	 * Try to open all vdevs, loading each label in the process.
509 	 */
510 	error = vdev_open(rvd);
511 	if (error != 0)
512 		goto out;
513 
514 	/*
515 	 * Validate the labels for all leaf vdevs.  We need to grab the config
516 	 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD
517 	 * flag.
518 	 */
519 	spa_config_enter(spa, RW_READER, FTAG);
520 	error = vdev_validate(rvd);
521 	spa_config_exit(spa, FTAG);
522 
523 	if (error != 0)
524 		goto out;
525 
526 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
527 		error = ENXIO;
528 		goto out;
529 	}
530 
531 	/*
532 	 * Find the best uberblock.
533 	 */
534 	bzero(ub, sizeof (uberblock_t));
535 
536 	zio = zio_root(spa, NULL, NULL,
537 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
538 	vdev_uberblock_load(zio, rvd, ub);
539 	error = zio_wait(zio);
540 
541 	/*
542 	 * If we weren't able to find a single valid uberblock, return failure.
543 	 */
544 	if (ub->ub_txg == 0) {
545 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
546 		    VDEV_AUX_CORRUPT_DATA);
547 		error = ENXIO;
548 		goto out;
549 	}
550 
551 	/*
552 	 * If the pool is newer than the code, we can't open it.
553 	 */
554 	if (ub->ub_version > ZFS_VERSION) {
555 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
556 		    VDEV_AUX_VERSION_NEWER);
557 		error = ENOTSUP;
558 		goto out;
559 	}
560 
561 	/*
562 	 * If the vdev guid sum doesn't match the uberblock, we have an
563 	 * incomplete configuration.
564 	 */
565 	if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) {
566 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
567 		    VDEV_AUX_BAD_GUID_SUM);
568 		error = ENXIO;
569 		goto out;
570 	}
571 
572 	/*
573 	 * Initialize internal SPA structures.
574 	 */
575 	spa->spa_state = POOL_STATE_ACTIVE;
576 	spa->spa_ubsync = spa->spa_uberblock;
577 	spa->spa_first_txg = spa_last_synced_txg(spa) + 1;
578 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
579 	if (error) {
580 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
581 		    VDEV_AUX_CORRUPT_DATA);
582 		goto out;
583 	}
584 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
585 
586 	if (zap_lookup(spa->spa_meta_objset,
587 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
588 	    sizeof (uint64_t), 1, &spa->spa_config_object) != 0) {
589 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
590 		    VDEV_AUX_CORRUPT_DATA);
591 		error = EIO;
592 		goto out;
593 	}
594 
595 	if (!mosconfig) {
596 		nvlist_t *newconfig;
597 		uint64_t hostid;
598 
599 		if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) {
600 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
601 			    VDEV_AUX_CORRUPT_DATA);
602 			error = EIO;
603 			goto out;
604 		}
605 
606 		if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID,
607 		    &hostid) == 0) {
608 			char *hostname;
609 			unsigned long myhostid = 0;
610 
611 			VERIFY(nvlist_lookup_string(newconfig,
612 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
613 
614 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
615 			if (hostid != 0 && myhostid != 0 &&
616 			    (unsigned long)hostid != myhostid) {
617 				cmn_err(CE_WARN, "pool '%s' could not be "
618 				    "loaded as it was last accessed by "
619 				    "another system (host: %s hostid: 0x%lx).  "
620 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
621 				    spa->spa_name, hostname,
622 				    (unsigned long)hostid);
623 				error = EBADF;
624 				goto out;
625 			}
626 		}
627 
628 		spa_config_set(spa, newconfig);
629 		spa_unload(spa);
630 		spa_deactivate(spa);
631 		spa_activate(spa);
632 
633 		return (spa_load(spa, newconfig, state, B_TRUE));
634 	}
635 
636 	if (zap_lookup(spa->spa_meta_objset,
637 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
638 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) {
639 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
640 		    VDEV_AUX_CORRUPT_DATA);
641 		error = EIO;
642 		goto out;
643 	}
644 
645 	/*
646 	 * Load the bit that tells us to use the new accounting function
647 	 * (raid-z deflation).  If we have an older pool, this will not
648 	 * be present.
649 	 */
650 	error = zap_lookup(spa->spa_meta_objset,
651 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
652 	    sizeof (uint64_t), 1, &spa->spa_deflate);
653 	if (error != 0 && error != ENOENT) {
654 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
655 		    VDEV_AUX_CORRUPT_DATA);
656 		error = EIO;
657 		goto out;
658 	}
659 
660 	/*
661 	 * Load the persistent error log.  If we have an older pool, this will
662 	 * not be present.
663 	 */
664 	error = zap_lookup(spa->spa_meta_objset,
665 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST,
666 	    sizeof (uint64_t), 1, &spa->spa_errlog_last);
667 	if (error != 0 && error != ENOENT) {
668 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
669 		    VDEV_AUX_CORRUPT_DATA);
670 		error = EIO;
671 		goto out;
672 	}
673 
674 	error = zap_lookup(spa->spa_meta_objset,
675 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB,
676 	    sizeof (uint64_t), 1, &spa->spa_errlog_scrub);
677 	if (error != 0 && error != ENOENT) {
678 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
679 		    VDEV_AUX_CORRUPT_DATA);
680 		error = EIO;
681 		goto out;
682 	}
683 
684 	/*
685 	 * Load the history object.  If we have an older pool, this
686 	 * will not be present.
687 	 */
688 	error = zap_lookup(spa->spa_meta_objset,
689 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY,
690 	    sizeof (uint64_t), 1, &spa->spa_history);
691 	if (error != 0 && error != ENOENT) {
692 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
693 		    VDEV_AUX_CORRUPT_DATA);
694 		error = EIO;
695 		goto out;
696 	}
697 
698 	/*
699 	 * Load any hot spares for this pool.
700 	 */
701 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
702 	    DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object);
703 	if (error != 0 && error != ENOENT) {
704 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
705 		    VDEV_AUX_CORRUPT_DATA);
706 		error = EIO;
707 		goto out;
708 	}
709 	if (error == 0) {
710 		ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES);
711 		if (load_nvlist(spa, spa->spa_spares_object,
712 		    &spa->spa_sparelist) != 0) {
713 			vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
714 			    VDEV_AUX_CORRUPT_DATA);
715 			error = EIO;
716 			goto out;
717 		}
718 
719 		spa_config_enter(spa, RW_WRITER, FTAG);
720 		spa_load_spares(spa);
721 		spa_config_exit(spa, FTAG);
722 	}
723 
724 	error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
725 	    DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object);
726 
727 	if (error && error != ENOENT) {
728 		vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN,
729 		    VDEV_AUX_CORRUPT_DATA);
730 		error = EIO;
731 		goto out;
732 	}
733 
734 	if (error == 0) {
735 		(void) zap_lookup(spa->spa_meta_objset,
736 		    spa->spa_pool_props_object,
737 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS),
738 		    sizeof (uint64_t), 1, &spa->spa_bootfs);
739 		(void) zap_lookup(spa->spa_meta_objset,
740 		    spa->spa_pool_props_object,
741 		    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE),
742 		    sizeof (uint64_t), 1, &autoreplace);
743 	}
744 
745 	/*
746 	 * If the 'autoreplace' property is set, then post a resource notifying
747 	 * the ZFS DE that it should not issue any faults for unopenable
748 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
749 	 * unopenable vdevs so that the normal autoreplace handler can take
750 	 * over.
751 	 */
752 	if (autoreplace)
753 		spa_check_removed(spa->spa_root_vdev);
754 
755 	/*
756 	 * Load the vdev state for all toplevel vdevs.
757 	 */
758 	vdev_load(rvd);
759 
760 	/*
761 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
762 	 */
763 	spa_config_enter(spa, RW_WRITER, FTAG);
764 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
765 	spa_config_exit(spa, FTAG);
766 
767 	/*
768 	 * Check the state of the root vdev.  If it can't be opened, it
769 	 * indicates one or more toplevel vdevs are faulted.
770 	 */
771 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
772 		error = ENXIO;
773 		goto out;
774 	}
775 
776 	if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) {
777 		dmu_tx_t *tx;
778 		int need_update = B_FALSE;
779 		int c;
780 
781 		/*
782 		 * Claim log blocks that haven't been committed yet.
783 		 * This must all happen in a single txg.
784 		 */
785 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
786 		    spa_first_txg(spa));
787 		(void) dmu_objset_find(spa->spa_name,
788 		    zil_claim, tx, DS_FIND_CHILDREN);
789 		dmu_tx_commit(tx);
790 
791 		spa->spa_sync_on = B_TRUE;
792 		txg_sync_start(spa->spa_dsl_pool);
793 
794 		/*
795 		 * Wait for all claims to sync.
796 		 */
797 		txg_wait_synced(spa->spa_dsl_pool, 0);
798 
799 		/*
800 		 * If the config cache is stale, or we have uninitialized
801 		 * metaslabs (see spa_vdev_add()), then update the config.
802 		 */
803 		if (config_cache_txg != spa->spa_config_txg ||
804 		    state == SPA_LOAD_IMPORT)
805 			need_update = B_TRUE;
806 
807 		for (c = 0; c < rvd->vdev_children; c++)
808 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
809 				need_update = B_TRUE;
810 
811 		/*
812 		 * Update the config cache asychronously in case we're the
813 		 * root pool, in which case the config cache isn't writable yet.
814 		 */
815 		if (need_update)
816 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
817 	}
818 
819 	error = 0;
820 out:
821 	if (error && error != EBADF)
822 		zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0);
823 	spa->spa_load_state = SPA_LOAD_NONE;
824 	spa->spa_ena = 0;
825 
826 	return (error);
827 }
828 
829 /*
830  * Pool Open/Import
831  *
832  * The import case is identical to an open except that the configuration is sent
833  * down from userland, instead of grabbed from the configuration cache.  For the
834  * case of an open, the pool configuration will exist in the
835  * POOL_STATE_UNINITIALIZED state.
836  *
837  * The stats information (gen/count/ustats) is used to gather vdev statistics at
838  * the same time open the pool, without having to keep around the spa_t in some
839  * ambiguous state.
840  */
841 static int
842 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config)
843 {
844 	spa_t *spa;
845 	int error;
846 	int loaded = B_FALSE;
847 	int locked = B_FALSE;
848 
849 	*spapp = NULL;
850 
851 	/*
852 	 * As disgusting as this is, we need to support recursive calls to this
853 	 * function because dsl_dir_open() is called during spa_load(), and ends
854 	 * up calling spa_open() again.  The real fix is to figure out how to
855 	 * avoid dsl_dir_open() calling this in the first place.
856 	 */
857 	if (mutex_owner(&spa_namespace_lock) != curthread) {
858 		mutex_enter(&spa_namespace_lock);
859 		locked = B_TRUE;
860 	}
861 
862 	if ((spa = spa_lookup(pool)) == NULL) {
863 		if (locked)
864 			mutex_exit(&spa_namespace_lock);
865 		return (ENOENT);
866 	}
867 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
868 
869 		spa_activate(spa);
870 
871 		error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE);
872 
873 		if (error == EBADF) {
874 			/*
875 			 * If vdev_validate() returns failure (indicated by
876 			 * EBADF), it indicates that one of the vdevs indicates
877 			 * that the pool has been exported or destroyed.  If
878 			 * this is the case, the config cache is out of sync and
879 			 * we should remove the pool from the namespace.
880 			 */
881 			zfs_post_ok(spa, NULL);
882 			spa_unload(spa);
883 			spa_deactivate(spa);
884 			spa_remove(spa);
885 			spa_config_sync();
886 			if (locked)
887 				mutex_exit(&spa_namespace_lock);
888 			return (ENOENT);
889 		}
890 
891 		if (error) {
892 			/*
893 			 * We can't open the pool, but we still have useful
894 			 * information: the state of each vdev after the
895 			 * attempted vdev_open().  Return this to the user.
896 			 */
897 			if (config != NULL && spa->spa_root_vdev != NULL) {
898 				spa_config_enter(spa, RW_READER, FTAG);
899 				*config = spa_config_generate(spa, NULL, -1ULL,
900 				    B_TRUE);
901 				spa_config_exit(spa, FTAG);
902 			}
903 			spa_unload(spa);
904 			spa_deactivate(spa);
905 			spa->spa_last_open_failed = B_TRUE;
906 			if (locked)
907 				mutex_exit(&spa_namespace_lock);
908 			*spapp = NULL;
909 			return (error);
910 		} else {
911 			zfs_post_ok(spa, NULL);
912 			spa->spa_last_open_failed = B_FALSE;
913 		}
914 
915 		loaded = B_TRUE;
916 	}
917 
918 	spa_open_ref(spa, tag);
919 
920 	/*
921 	 * If we just loaded the pool, resilver anything that's out of date.
922 	 */
923 	if (loaded && (spa_mode & FWRITE))
924 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
925 
926 	if (locked)
927 		mutex_exit(&spa_namespace_lock);
928 
929 	*spapp = spa;
930 
931 	if (config != NULL) {
932 		spa_config_enter(spa, RW_READER, FTAG);
933 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
934 		spa_config_exit(spa, FTAG);
935 	}
936 
937 	return (0);
938 }
939 
940 int
941 spa_open(const char *name, spa_t **spapp, void *tag)
942 {
943 	return (spa_open_common(name, spapp, tag, NULL));
944 }
945 
946 /*
947  * Lookup the given spa_t, incrementing the inject count in the process,
948  * preventing it from being exported or destroyed.
949  */
950 spa_t *
951 spa_inject_addref(char *name)
952 {
953 	spa_t *spa;
954 
955 	mutex_enter(&spa_namespace_lock);
956 	if ((spa = spa_lookup(name)) == NULL) {
957 		mutex_exit(&spa_namespace_lock);
958 		return (NULL);
959 	}
960 	spa->spa_inject_ref++;
961 	mutex_exit(&spa_namespace_lock);
962 
963 	return (spa);
964 }
965 
966 void
967 spa_inject_delref(spa_t *spa)
968 {
969 	mutex_enter(&spa_namespace_lock);
970 	spa->spa_inject_ref--;
971 	mutex_exit(&spa_namespace_lock);
972 }
973 
974 static void
975 spa_add_spares(spa_t *spa, nvlist_t *config)
976 {
977 	nvlist_t **spares;
978 	uint_t i, nspares;
979 	nvlist_t *nvroot;
980 	uint64_t guid;
981 	vdev_stat_t *vs;
982 	uint_t vsc;
983 	uint64_t pool;
984 
985 	if (spa->spa_nspares == 0)
986 		return;
987 
988 	VERIFY(nvlist_lookup_nvlist(config,
989 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
990 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
991 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
992 	if (nspares != 0) {
993 		VERIFY(nvlist_add_nvlist_array(nvroot,
994 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
995 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
996 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
997 
998 		/*
999 		 * Go through and find any spares which have since been
1000 		 * repurposed as an active spare.  If this is the case, update
1001 		 * their status appropriately.
1002 		 */
1003 		for (i = 0; i < nspares; i++) {
1004 			VERIFY(nvlist_lookup_uint64(spares[i],
1005 			    ZPOOL_CONFIG_GUID, &guid) == 0);
1006 			if (spa_spare_exists(guid, &pool) && pool != 0ULL) {
1007 				VERIFY(nvlist_lookup_uint64_array(
1008 				    spares[i], ZPOOL_CONFIG_STATS,
1009 				    (uint64_t **)&vs, &vsc) == 0);
1010 				vs->vs_state = VDEV_STATE_CANT_OPEN;
1011 				vs->vs_aux = VDEV_AUX_SPARED;
1012 			}
1013 		}
1014 	}
1015 }
1016 
1017 int
1018 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
1019 {
1020 	int error;
1021 	spa_t *spa;
1022 
1023 	*config = NULL;
1024 	error = spa_open_common(name, &spa, FTAG, config);
1025 
1026 	if (spa && *config != NULL) {
1027 		VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT,
1028 		    spa_get_errlog_size(spa)) == 0);
1029 
1030 		spa_add_spares(spa, *config);
1031 	}
1032 
1033 	/*
1034 	 * We want to get the alternate root even for faulted pools, so we cheat
1035 	 * and call spa_lookup() directly.
1036 	 */
1037 	if (altroot) {
1038 		if (spa == NULL) {
1039 			mutex_enter(&spa_namespace_lock);
1040 			spa = spa_lookup(name);
1041 			if (spa)
1042 				spa_altroot(spa, altroot, buflen);
1043 			else
1044 				altroot[0] = '\0';
1045 			spa = NULL;
1046 			mutex_exit(&spa_namespace_lock);
1047 		} else {
1048 			spa_altroot(spa, altroot, buflen);
1049 		}
1050 	}
1051 
1052 	if (spa != NULL)
1053 		spa_close(spa, FTAG);
1054 
1055 	return (error);
1056 }
1057 
1058 /*
1059  * Validate that the 'spares' array is well formed.  We must have an array of
1060  * nvlists, each which describes a valid leaf vdev.  If this is an import (mode
1061  * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long
1062  * as they are well-formed.
1063  */
1064 static int
1065 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
1066 {
1067 	nvlist_t **spares;
1068 	uint_t i, nspares;
1069 	vdev_t *vd;
1070 	int error;
1071 
1072 	/*
1073 	 * It's acceptable to have no spares specified.
1074 	 */
1075 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1076 	    &spares, &nspares) != 0)
1077 		return (0);
1078 
1079 	if (nspares == 0)
1080 		return (EINVAL);
1081 
1082 	/*
1083 	 * Make sure the pool is formatted with a version that supports hot
1084 	 * spares.
1085 	 */
1086 	if (spa_version(spa) < ZFS_VERSION_SPARES)
1087 		return (ENOTSUP);
1088 
1089 	/*
1090 	 * Set the pending spare list so we correctly handle device in-use
1091 	 * checking.
1092 	 */
1093 	spa->spa_pending_spares = spares;
1094 	spa->spa_pending_nspares = nspares;
1095 
1096 	for (i = 0; i < nspares; i++) {
1097 		if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0,
1098 		    mode)) != 0)
1099 			goto out;
1100 
1101 		if (!vd->vdev_ops->vdev_op_leaf) {
1102 			vdev_free(vd);
1103 			error = EINVAL;
1104 			goto out;
1105 		}
1106 
1107 		vd->vdev_top = vd;
1108 
1109 		if ((error = vdev_open(vd)) == 0 &&
1110 		    (error = vdev_label_init(vd, crtxg,
1111 		    VDEV_LABEL_SPARE)) == 0) {
1112 			VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID,
1113 			    vd->vdev_guid) == 0);
1114 		}
1115 
1116 		vdev_free(vd);
1117 
1118 		if (error && mode != VDEV_ALLOC_SPARE)
1119 			goto out;
1120 		else
1121 			error = 0;
1122 	}
1123 
1124 out:
1125 	spa->spa_pending_spares = NULL;
1126 	spa->spa_pending_nspares = 0;
1127 	return (error);
1128 }
1129 
1130 /*
1131  * Pool Creation
1132  */
1133 int
1134 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot)
1135 {
1136 	spa_t *spa;
1137 	vdev_t *rvd;
1138 	dsl_pool_t *dp;
1139 	dmu_tx_t *tx;
1140 	int c, error = 0;
1141 	uint64_t txg = TXG_INITIAL;
1142 	nvlist_t **spares;
1143 	uint_t nspares;
1144 
1145 	/*
1146 	 * If this pool already exists, return failure.
1147 	 */
1148 	mutex_enter(&spa_namespace_lock);
1149 	if (spa_lookup(pool) != NULL) {
1150 		mutex_exit(&spa_namespace_lock);
1151 		return (EEXIST);
1152 	}
1153 
1154 	/*
1155 	 * Allocate a new spa_t structure.
1156 	 */
1157 	spa = spa_add(pool, altroot);
1158 	spa_activate(spa);
1159 
1160 	spa->spa_uberblock.ub_txg = txg - 1;
1161 	spa->spa_uberblock.ub_version = ZFS_VERSION;
1162 	spa->spa_ubsync = spa->spa_uberblock;
1163 
1164 	/*
1165 	 * Create the root vdev.
1166 	 */
1167 	spa_config_enter(spa, RW_WRITER, FTAG);
1168 
1169 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
1170 
1171 	ASSERT(error != 0 || rvd != NULL);
1172 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
1173 
1174 	if (error == 0 && rvd->vdev_children == 0)
1175 		error = EINVAL;
1176 
1177 	if (error == 0 &&
1178 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
1179 	    (error = spa_validate_spares(spa, nvroot, txg,
1180 	    VDEV_ALLOC_ADD)) == 0) {
1181 		for (c = 0; c < rvd->vdev_children; c++)
1182 			vdev_init(rvd->vdev_child[c], txg);
1183 		vdev_config_dirty(rvd);
1184 	}
1185 
1186 	spa_config_exit(spa, FTAG);
1187 
1188 	if (error != 0) {
1189 		spa_unload(spa);
1190 		spa_deactivate(spa);
1191 		spa_remove(spa);
1192 		mutex_exit(&spa_namespace_lock);
1193 		return (error);
1194 	}
1195 
1196 	/*
1197 	 * Get the list of spares, if specified.
1198 	 */
1199 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1200 	    &spares, &nspares) == 0) {
1201 		VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME,
1202 		    KM_SLEEP) == 0);
1203 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1204 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1205 		spa_config_enter(spa, RW_WRITER, FTAG);
1206 		spa_load_spares(spa);
1207 		spa_config_exit(spa, FTAG);
1208 		spa->spa_sync_spares = B_TRUE;
1209 	}
1210 
1211 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg);
1212 	spa->spa_meta_objset = dp->dp_meta_objset;
1213 
1214 	tx = dmu_tx_create_assigned(dp, txg);
1215 
1216 	/*
1217 	 * Create the pool config object.
1218 	 */
1219 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
1220 	    DMU_OT_PACKED_NVLIST, 1 << 14,
1221 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
1222 
1223 	if (zap_add(spa->spa_meta_objset,
1224 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
1225 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
1226 		cmn_err(CE_PANIC, "failed to add pool config");
1227 	}
1228 
1229 	/* Newly created pools are always deflated. */
1230 	spa->spa_deflate = TRUE;
1231 	if (zap_add(spa->spa_meta_objset,
1232 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
1233 	    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
1234 		cmn_err(CE_PANIC, "failed to add deflate");
1235 	}
1236 
1237 	/*
1238 	 * Create the deferred-free bplist object.  Turn off compression
1239 	 * because sync-to-convergence takes longer if the blocksize
1240 	 * keeps changing.
1241 	 */
1242 	spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset,
1243 	    1 << 14, tx);
1244 	dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj,
1245 	    ZIO_COMPRESS_OFF, tx);
1246 
1247 	if (zap_add(spa->spa_meta_objset,
1248 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
1249 	    sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) {
1250 		cmn_err(CE_PANIC, "failed to add bplist");
1251 	}
1252 
1253 	/*
1254 	 * Create the pool's history object.
1255 	 */
1256 	spa_history_create_obj(spa, tx);
1257 
1258 	dmu_tx_commit(tx);
1259 
1260 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
1261 	spa->spa_sync_on = B_TRUE;
1262 	txg_sync_start(spa->spa_dsl_pool);
1263 
1264 	/*
1265 	 * We explicitly wait for the first transaction to complete so that our
1266 	 * bean counters are appropriately updated.
1267 	 */
1268 	txg_wait_synced(spa->spa_dsl_pool, txg);
1269 
1270 	spa_config_sync();
1271 
1272 	mutex_exit(&spa_namespace_lock);
1273 
1274 	return (0);
1275 }
1276 
1277 /*
1278  * Import the given pool into the system.  We set up the necessary spa_t and
1279  * then call spa_load() to do the dirty work.
1280  */
1281 int
1282 spa_import(const char *pool, nvlist_t *config, const char *altroot)
1283 {
1284 	spa_t *spa;
1285 	int error;
1286 	nvlist_t *nvroot;
1287 	nvlist_t **spares;
1288 	uint_t nspares;
1289 
1290 	if (!(spa_mode & FWRITE))
1291 		return (EROFS);
1292 
1293 	/*
1294 	 * If a pool with this name exists, return failure.
1295 	 */
1296 	mutex_enter(&spa_namespace_lock);
1297 	if (spa_lookup(pool) != NULL) {
1298 		mutex_exit(&spa_namespace_lock);
1299 		return (EEXIST);
1300 	}
1301 
1302 	/*
1303 	 * Create and initialize the spa structure.
1304 	 */
1305 	spa = spa_add(pool, altroot);
1306 	spa_activate(spa);
1307 
1308 	/*
1309 	 * Pass off the heavy lifting to spa_load().
1310 	 * Pass TRUE for mosconfig because the user-supplied config
1311 	 * is actually the one to trust when doing an import.
1312 	 */
1313 	error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE);
1314 
1315 	spa_config_enter(spa, RW_WRITER, FTAG);
1316 	/*
1317 	 * Toss any existing sparelist, as it doesn't have any validity anymore,
1318 	 * and conflicts with spa_has_spare().
1319 	 */
1320 	if (spa->spa_sparelist) {
1321 		nvlist_free(spa->spa_sparelist);
1322 		spa->spa_sparelist = NULL;
1323 		spa_load_spares(spa);
1324 	}
1325 
1326 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
1327 	    &nvroot) == 0);
1328 	if (error == 0)
1329 		error = spa_validate_spares(spa, nvroot, -1ULL,
1330 		    VDEV_ALLOC_SPARE);
1331 	spa_config_exit(spa, FTAG);
1332 
1333 	if (error != 0) {
1334 		spa_unload(spa);
1335 		spa_deactivate(spa);
1336 		spa_remove(spa);
1337 		mutex_exit(&spa_namespace_lock);
1338 		return (error);
1339 	}
1340 
1341 	/*
1342 	 * Override any spares as specified by the user, as these may have
1343 	 * correct device names/devids, etc.
1344 	 */
1345 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1346 	    &spares, &nspares) == 0) {
1347 		if (spa->spa_sparelist)
1348 			VERIFY(nvlist_remove(spa->spa_sparelist,
1349 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1350 		else
1351 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1352 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1353 		VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1354 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1355 		spa_config_enter(spa, RW_WRITER, FTAG);
1356 		spa_load_spares(spa);
1357 		spa_config_exit(spa, FTAG);
1358 		spa->spa_sync_spares = B_TRUE;
1359 	}
1360 
1361 	/*
1362 	 * Update the config cache to include the newly-imported pool.
1363 	 */
1364 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1365 
1366 	/*
1367 	 * Resilver anything that's out of date.
1368 	 */
1369 	if (spa_mode & FWRITE)
1370 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1371 
1372 	mutex_exit(&spa_namespace_lock);
1373 
1374 	return (0);
1375 }
1376 
1377 /*
1378  * This (illegal) pool name is used when temporarily importing a spa_t in order
1379  * to get the vdev stats associated with the imported devices.
1380  */
1381 #define	TRYIMPORT_NAME	"$import"
1382 
1383 nvlist_t *
1384 spa_tryimport(nvlist_t *tryconfig)
1385 {
1386 	nvlist_t *config = NULL;
1387 	char *poolname;
1388 	spa_t *spa;
1389 	uint64_t state;
1390 
1391 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
1392 		return (NULL);
1393 
1394 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
1395 		return (NULL);
1396 
1397 	/*
1398 	 * Create and initialize the spa structure.
1399 	 */
1400 	mutex_enter(&spa_namespace_lock);
1401 	spa = spa_add(TRYIMPORT_NAME, NULL);
1402 	spa_activate(spa);
1403 
1404 	/*
1405 	 * Pass off the heavy lifting to spa_load().
1406 	 * Pass TRUE for mosconfig because the user-supplied config
1407 	 * is actually the one to trust when doing an import.
1408 	 */
1409 	(void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE);
1410 
1411 	/*
1412 	 * If 'tryconfig' was at least parsable, return the current config.
1413 	 */
1414 	if (spa->spa_root_vdev != NULL) {
1415 		spa_config_enter(spa, RW_READER, FTAG);
1416 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
1417 		spa_config_exit(spa, FTAG);
1418 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
1419 		    poolname) == 0);
1420 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
1421 		    state) == 0);
1422 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
1423 		    spa->spa_uberblock.ub_timestamp) == 0);
1424 
1425 		/*
1426 		 * Add the list of hot spares.
1427 		 */
1428 		spa_add_spares(spa, config);
1429 	}
1430 
1431 	spa_unload(spa);
1432 	spa_deactivate(spa);
1433 	spa_remove(spa);
1434 	mutex_exit(&spa_namespace_lock);
1435 
1436 	return (config);
1437 }
1438 
1439 /*
1440  * Pool export/destroy
1441  *
1442  * The act of destroying or exporting a pool is very simple.  We make sure there
1443  * is no more pending I/O and any references to the pool are gone.  Then, we
1444  * update the pool state and sync all the labels to disk, removing the
1445  * configuration from the cache afterwards.
1446  */
1447 static int
1448 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig)
1449 {
1450 	spa_t *spa;
1451 
1452 	if (oldconfig)
1453 		*oldconfig = NULL;
1454 
1455 	if (!(spa_mode & FWRITE))
1456 		return (EROFS);
1457 
1458 	mutex_enter(&spa_namespace_lock);
1459 	if ((spa = spa_lookup(pool)) == NULL) {
1460 		mutex_exit(&spa_namespace_lock);
1461 		return (ENOENT);
1462 	}
1463 
1464 	/*
1465 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
1466 	 * reacquire the namespace lock, and see if we can export.
1467 	 */
1468 	spa_open_ref(spa, FTAG);
1469 	mutex_exit(&spa_namespace_lock);
1470 	spa_async_suspend(spa);
1471 	mutex_enter(&spa_namespace_lock);
1472 	spa_close(spa, FTAG);
1473 
1474 	/*
1475 	 * The pool will be in core if it's openable,
1476 	 * in which case we can modify its state.
1477 	 */
1478 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
1479 		/*
1480 		 * Objsets may be open only because they're dirty, so we
1481 		 * have to force it to sync before checking spa_refcnt.
1482 		 */
1483 		spa_scrub_suspend(spa);
1484 		txg_wait_synced(spa->spa_dsl_pool, 0);
1485 
1486 		/*
1487 		 * A pool cannot be exported or destroyed if there are active
1488 		 * references.  If we are resetting a pool, allow references by
1489 		 * fault injection handlers.
1490 		 */
1491 		if (!spa_refcount_zero(spa) ||
1492 		    (spa->spa_inject_ref != 0 &&
1493 		    new_state != POOL_STATE_UNINITIALIZED)) {
1494 			spa_scrub_resume(spa);
1495 			spa_async_resume(spa);
1496 			mutex_exit(&spa_namespace_lock);
1497 			return (EBUSY);
1498 		}
1499 
1500 		spa_scrub_resume(spa);
1501 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
1502 
1503 		/*
1504 		 * We want this to be reflected on every label,
1505 		 * so mark them all dirty.  spa_unload() will do the
1506 		 * final sync that pushes these changes out.
1507 		 */
1508 		if (new_state != POOL_STATE_UNINITIALIZED) {
1509 			spa_config_enter(spa, RW_WRITER, FTAG);
1510 			spa->spa_state = new_state;
1511 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
1512 			vdev_config_dirty(spa->spa_root_vdev);
1513 			spa_config_exit(spa, FTAG);
1514 		}
1515 	}
1516 
1517 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
1518 
1519 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
1520 		spa_unload(spa);
1521 		spa_deactivate(spa);
1522 	}
1523 
1524 	if (oldconfig && spa->spa_config)
1525 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
1526 
1527 	if (new_state != POOL_STATE_UNINITIALIZED) {
1528 		spa_remove(spa);
1529 		spa_config_sync();
1530 	}
1531 	mutex_exit(&spa_namespace_lock);
1532 
1533 	return (0);
1534 }
1535 
1536 /*
1537  * Destroy a storage pool.
1538  */
1539 int
1540 spa_destroy(char *pool)
1541 {
1542 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL));
1543 }
1544 
1545 /*
1546  * Export a storage pool.
1547  */
1548 int
1549 spa_export(char *pool, nvlist_t **oldconfig)
1550 {
1551 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig));
1552 }
1553 
1554 /*
1555  * Similar to spa_export(), this unloads the spa_t without actually removing it
1556  * from the namespace in any way.
1557  */
1558 int
1559 spa_reset(char *pool)
1560 {
1561 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL));
1562 }
1563 
1564 
1565 /*
1566  * ==========================================================================
1567  * Device manipulation
1568  * ==========================================================================
1569  */
1570 
1571 /*
1572  * Add a device to a storage pool.
1573  */
1574 int
1575 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
1576 {
1577 	uint64_t txg;
1578 	int c, error;
1579 	vdev_t *rvd = spa->spa_root_vdev;
1580 	vdev_t *vd, *tvd;
1581 	nvlist_t **spares;
1582 	uint_t i, nspares;
1583 
1584 	txg = spa_vdev_enter(spa);
1585 
1586 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
1587 	    VDEV_ALLOC_ADD)) != 0)
1588 		return (spa_vdev_exit(spa, NULL, txg, error));
1589 
1590 	spa->spa_pending_vdev = vd;
1591 
1592 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
1593 	    &spares, &nspares) != 0)
1594 		nspares = 0;
1595 
1596 	if (vd->vdev_children == 0 && nspares == 0) {
1597 		spa->spa_pending_vdev = NULL;
1598 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
1599 	}
1600 
1601 	if (vd->vdev_children != 0) {
1602 		if ((error = vdev_create(vd, txg, B_FALSE)) != 0) {
1603 			spa->spa_pending_vdev = NULL;
1604 			return (spa_vdev_exit(spa, vd, txg, error));
1605 		}
1606 	}
1607 
1608 	/*
1609 	 * We must validate the spares after checking the children.  Otherwise,
1610 	 * vdev_inuse() will blindly overwrite the spare.
1611 	 */
1612 	if ((error = spa_validate_spares(spa, nvroot, txg,
1613 	    VDEV_ALLOC_ADD)) != 0) {
1614 		spa->spa_pending_vdev = NULL;
1615 		return (spa_vdev_exit(spa, vd, txg, error));
1616 	}
1617 
1618 	spa->spa_pending_vdev = NULL;
1619 
1620 	/*
1621 	 * Transfer each new top-level vdev from vd to rvd.
1622 	 */
1623 	for (c = 0; c < vd->vdev_children; c++) {
1624 		tvd = vd->vdev_child[c];
1625 		vdev_remove_child(vd, tvd);
1626 		tvd->vdev_id = rvd->vdev_children;
1627 		vdev_add_child(rvd, tvd);
1628 		vdev_config_dirty(tvd);
1629 	}
1630 
1631 	if (nspares != 0) {
1632 		if (spa->spa_sparelist != NULL) {
1633 			nvlist_t **oldspares;
1634 			uint_t oldnspares;
1635 			nvlist_t **newspares;
1636 
1637 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
1638 			    ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0);
1639 
1640 			newspares = kmem_alloc(sizeof (void *) *
1641 			    (nspares + oldnspares), KM_SLEEP);
1642 			for (i = 0; i < oldnspares; i++)
1643 				VERIFY(nvlist_dup(oldspares[i],
1644 				    &newspares[i], KM_SLEEP) == 0);
1645 			for (i = 0; i < nspares; i++)
1646 				VERIFY(nvlist_dup(spares[i],
1647 				    &newspares[i + oldnspares],
1648 				    KM_SLEEP) == 0);
1649 
1650 			VERIFY(nvlist_remove(spa->spa_sparelist,
1651 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
1652 
1653 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1654 			    ZPOOL_CONFIG_SPARES, newspares,
1655 			    nspares + oldnspares) == 0);
1656 			for (i = 0; i < oldnspares + nspares; i++)
1657 				nvlist_free(newspares[i]);
1658 			kmem_free(newspares, (oldnspares + nspares) *
1659 			    sizeof (void *));
1660 		} else {
1661 			VERIFY(nvlist_alloc(&spa->spa_sparelist,
1662 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
1663 			VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist,
1664 			    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
1665 		}
1666 
1667 		spa_load_spares(spa);
1668 		spa->spa_sync_spares = B_TRUE;
1669 	}
1670 
1671 	/*
1672 	 * We have to be careful when adding new vdevs to an existing pool.
1673 	 * If other threads start allocating from these vdevs before we
1674 	 * sync the config cache, and we lose power, then upon reboot we may
1675 	 * fail to open the pool because there are DVAs that the config cache
1676 	 * can't translate.  Therefore, we first add the vdevs without
1677 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
1678 	 * and then let spa_config_update() initialize the new metaslabs.
1679 	 *
1680 	 * spa_load() checks for added-but-not-initialized vdevs, so that
1681 	 * if we lose power at any point in this sequence, the remaining
1682 	 * steps will be completed the next time we load the pool.
1683 	 */
1684 	(void) spa_vdev_exit(spa, vd, txg, 0);
1685 
1686 	mutex_enter(&spa_namespace_lock);
1687 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
1688 	mutex_exit(&spa_namespace_lock);
1689 
1690 	return (0);
1691 }
1692 
1693 /*
1694  * Attach a device to a mirror.  The arguments are the path to any device
1695  * in the mirror, and the nvroot for the new device.  If the path specifies
1696  * a device that is not mirrored, we automatically insert the mirror vdev.
1697  *
1698  * If 'replacing' is specified, the new device is intended to replace the
1699  * existing device; in this case the two devices are made into their own
1700  * mirror using the 'replacing' vdev, which is functionally identical to
1701  * the mirror vdev (it actually reuses all the same ops) but has a few
1702  * extra rules: you can't attach to it after it's been created, and upon
1703  * completion of resilvering, the first disk (the one being replaced)
1704  * is automatically detached.
1705  */
1706 int
1707 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
1708 {
1709 	uint64_t txg, open_txg;
1710 	int error;
1711 	vdev_t *rvd = spa->spa_root_vdev;
1712 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
1713 	vdev_ops_t *pvops;
1714 	int is_log;
1715 
1716 	txg = spa_vdev_enter(spa);
1717 
1718 	oldvd = vdev_lookup_by_guid(rvd, guid);
1719 
1720 	if (oldvd == NULL)
1721 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1722 
1723 	if (!oldvd->vdev_ops->vdev_op_leaf)
1724 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1725 
1726 	pvd = oldvd->vdev_parent;
1727 
1728 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
1729 	    VDEV_ALLOC_ADD)) != 0)
1730 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
1731 
1732 	if (newrootvd->vdev_children != 1)
1733 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1734 
1735 	newvd = newrootvd->vdev_child[0];
1736 
1737 	if (!newvd->vdev_ops->vdev_op_leaf)
1738 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
1739 
1740 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
1741 		return (spa_vdev_exit(spa, newrootvd, txg, error));
1742 
1743 	/*
1744 	 * Spares can't replace logs
1745 	 */
1746 	is_log = oldvd->vdev_islog;
1747 	if (is_log && newvd->vdev_isspare)
1748 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1749 
1750 	if (!replacing) {
1751 		/*
1752 		 * For attach, the only allowable parent is a mirror or the root
1753 		 * vdev.
1754 		 */
1755 		if (pvd->vdev_ops != &vdev_mirror_ops &&
1756 		    pvd->vdev_ops != &vdev_root_ops)
1757 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1758 
1759 		pvops = &vdev_mirror_ops;
1760 	} else {
1761 		/*
1762 		 * Active hot spares can only be replaced by inactive hot
1763 		 * spares.
1764 		 */
1765 		if (pvd->vdev_ops == &vdev_spare_ops &&
1766 		    pvd->vdev_child[1] == oldvd &&
1767 		    !spa_has_spare(spa, newvd->vdev_guid))
1768 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1769 
1770 		/*
1771 		 * If the source is a hot spare, and the parent isn't already a
1772 		 * spare, then we want to create a new hot spare.  Otherwise, we
1773 		 * want to create a replacing vdev.  The user is not allowed to
1774 		 * attach to a spared vdev child unless the 'isspare' state is
1775 		 * the same (spare replaces spare, non-spare replaces
1776 		 * non-spare).
1777 		 */
1778 		if (pvd->vdev_ops == &vdev_replacing_ops)
1779 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1780 		else if (pvd->vdev_ops == &vdev_spare_ops &&
1781 		    newvd->vdev_isspare != oldvd->vdev_isspare)
1782 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
1783 		else if (pvd->vdev_ops != &vdev_spare_ops &&
1784 		    newvd->vdev_isspare)
1785 			pvops = &vdev_spare_ops;
1786 		else
1787 			pvops = &vdev_replacing_ops;
1788 	}
1789 
1790 	/*
1791 	 * Compare the new device size with the replaceable/attachable
1792 	 * device size.
1793 	 */
1794 	if (newvd->vdev_psize < vdev_get_rsize(oldvd))
1795 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
1796 
1797 	/*
1798 	 * The new device cannot have a higher alignment requirement
1799 	 * than the top-level vdev.
1800 	 */
1801 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
1802 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
1803 
1804 	/*
1805 	 * If this is an in-place replacement, update oldvd's path and devid
1806 	 * to make it distinguishable from newvd, and unopenable from now on.
1807 	 */
1808 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
1809 		spa_strfree(oldvd->vdev_path);
1810 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
1811 		    KM_SLEEP);
1812 		(void) sprintf(oldvd->vdev_path, "%s/%s",
1813 		    newvd->vdev_path, "old");
1814 		if (oldvd->vdev_devid != NULL) {
1815 			spa_strfree(oldvd->vdev_devid);
1816 			oldvd->vdev_devid = NULL;
1817 		}
1818 	}
1819 
1820 	/*
1821 	 * If the parent is not a mirror, or if we're replacing, insert the new
1822 	 * mirror/replacing/spare vdev above oldvd.
1823 	 */
1824 	if (pvd->vdev_ops != pvops)
1825 		pvd = vdev_add_parent(oldvd, pvops);
1826 
1827 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
1828 	ASSERT(pvd->vdev_ops == pvops);
1829 	ASSERT(oldvd->vdev_parent == pvd);
1830 
1831 	/*
1832 	 * Extract the new device from its root and add it to pvd.
1833 	 */
1834 	vdev_remove_child(newrootvd, newvd);
1835 	newvd->vdev_id = pvd->vdev_children;
1836 	vdev_add_child(pvd, newvd);
1837 
1838 	/*
1839 	 * If newvd is smaller than oldvd, but larger than its rsize,
1840 	 * the addition of newvd may have decreased our parent's asize.
1841 	 */
1842 	pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize);
1843 
1844 	tvd = newvd->vdev_top;
1845 	ASSERT(pvd->vdev_top == tvd);
1846 	ASSERT(tvd->vdev_parent == rvd);
1847 
1848 	vdev_config_dirty(tvd);
1849 
1850 	/*
1851 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
1852 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
1853 	 */
1854 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
1855 
1856 	mutex_enter(&newvd->vdev_dtl_lock);
1857 	space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL,
1858 	    open_txg - TXG_INITIAL + 1);
1859 	mutex_exit(&newvd->vdev_dtl_lock);
1860 
1861 	if (newvd->vdev_isspare)
1862 		spa_spare_activate(newvd);
1863 
1864 	/*
1865 	 * Mark newvd's DTL dirty in this txg.
1866 	 */
1867 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
1868 
1869 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
1870 
1871 	/*
1872 	 * Kick off a resilver to update newvd.  We need to grab the namespace
1873 	 * lock because spa_scrub() needs to post a sysevent with the pool name.
1874 	 */
1875 	mutex_enter(&spa_namespace_lock);
1876 	VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
1877 	mutex_exit(&spa_namespace_lock);
1878 
1879 	return (0);
1880 }
1881 
1882 /*
1883  * Detach a device from a mirror or replacing vdev.
1884  * If 'replace_done' is specified, only detach if the parent
1885  * is a replacing vdev.
1886  */
1887 int
1888 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done)
1889 {
1890 	uint64_t txg;
1891 	int c, t, error;
1892 	vdev_t *rvd = spa->spa_root_vdev;
1893 	vdev_t *vd, *pvd, *cvd, *tvd;
1894 	boolean_t unspare = B_FALSE;
1895 	uint64_t unspare_guid;
1896 
1897 	txg = spa_vdev_enter(spa);
1898 
1899 	vd = vdev_lookup_by_guid(rvd, guid);
1900 
1901 	if (vd == NULL)
1902 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
1903 
1904 	if (!vd->vdev_ops->vdev_op_leaf)
1905 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1906 
1907 	pvd = vd->vdev_parent;
1908 
1909 	/*
1910 	 * If replace_done is specified, only remove this device if it's
1911 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
1912 	 * disk can be removed.
1913 	 */
1914 	if (replace_done) {
1915 		if (pvd->vdev_ops == &vdev_replacing_ops) {
1916 			if (vd->vdev_id != 0)
1917 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1918 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
1919 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1920 		}
1921 	}
1922 
1923 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
1924 	    spa_version(spa) >= ZFS_VERSION_SPARES);
1925 
1926 	/*
1927 	 * Only mirror, replacing, and spare vdevs support detach.
1928 	 */
1929 	if (pvd->vdev_ops != &vdev_replacing_ops &&
1930 	    pvd->vdev_ops != &vdev_mirror_ops &&
1931 	    pvd->vdev_ops != &vdev_spare_ops)
1932 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
1933 
1934 	/*
1935 	 * If there's only one replica, you can't detach it.
1936 	 */
1937 	if (pvd->vdev_children <= 1)
1938 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1939 
1940 	/*
1941 	 * If all siblings have non-empty DTLs, this device may have the only
1942 	 * valid copy of the data, which means we cannot safely detach it.
1943 	 *
1944 	 * XXX -- as in the vdev_offline() case, we really want a more
1945 	 * precise DTL check.
1946 	 */
1947 	for (c = 0; c < pvd->vdev_children; c++) {
1948 		uint64_t dirty;
1949 
1950 		cvd = pvd->vdev_child[c];
1951 		if (cvd == vd)
1952 			continue;
1953 		if (vdev_is_dead(cvd))
1954 			continue;
1955 		mutex_enter(&cvd->vdev_dtl_lock);
1956 		dirty = cvd->vdev_dtl_map.sm_space |
1957 		    cvd->vdev_dtl_scrub.sm_space;
1958 		mutex_exit(&cvd->vdev_dtl_lock);
1959 		if (!dirty)
1960 			break;
1961 	}
1962 
1963 	/*
1964 	 * If we are a replacing or spare vdev, then we can always detach the
1965 	 * latter child, as that is how one cancels the operation.
1966 	 */
1967 	if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) &&
1968 	    c == pvd->vdev_children)
1969 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
1970 
1971 	/*
1972 	 * If we are detaching the original disk from a spare, then it implies
1973 	 * that the spare should become a real disk, and be removed from the
1974 	 * active spare list for the pool.
1975 	 */
1976 	if (pvd->vdev_ops == &vdev_spare_ops &&
1977 	    vd->vdev_id == 0)
1978 		unspare = B_TRUE;
1979 
1980 	/*
1981 	 * Erase the disk labels so the disk can be used for other things.
1982 	 * This must be done after all other error cases are handled,
1983 	 * but before we disembowel vd (so we can still do I/O to it).
1984 	 * But if we can't do it, don't treat the error as fatal --
1985 	 * it may be that the unwritability of the disk is the reason
1986 	 * it's being detached!
1987 	 */
1988 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
1989 
1990 	/*
1991 	 * Remove vd from its parent and compact the parent's children.
1992 	 */
1993 	vdev_remove_child(pvd, vd);
1994 	vdev_compact_children(pvd);
1995 
1996 	/*
1997 	 * Remember one of the remaining children so we can get tvd below.
1998 	 */
1999 	cvd = pvd->vdev_child[0];
2000 
2001 	/*
2002 	 * If we need to remove the remaining child from the list of hot spares,
2003 	 * do it now, marking the vdev as no longer a spare in the process.  We
2004 	 * must do this before vdev_remove_parent(), because that can change the
2005 	 * GUID if it creates a new toplevel GUID.
2006 	 */
2007 	if (unspare) {
2008 		ASSERT(cvd->vdev_isspare);
2009 		spa_spare_remove(cvd);
2010 		unspare_guid = cvd->vdev_guid;
2011 	}
2012 
2013 	/*
2014 	 * If the parent mirror/replacing vdev only has one child,
2015 	 * the parent is no longer needed.  Remove it from the tree.
2016 	 */
2017 	if (pvd->vdev_children == 1)
2018 		vdev_remove_parent(cvd);
2019 
2020 	/*
2021 	 * We don't set tvd until now because the parent we just removed
2022 	 * may have been the previous top-level vdev.
2023 	 */
2024 	tvd = cvd->vdev_top;
2025 	ASSERT(tvd->vdev_parent == rvd);
2026 
2027 	/*
2028 	 * Reevaluate the parent vdev state.
2029 	 */
2030 	vdev_propagate_state(cvd);
2031 
2032 	/*
2033 	 * If the device we just detached was smaller than the others, it may be
2034 	 * possible to add metaslabs (i.e. grow the pool).  vdev_metaslab_init()
2035 	 * can't fail because the existing metaslabs are already in core, so
2036 	 * there's nothing to read from disk.
2037 	 */
2038 	VERIFY(vdev_metaslab_init(tvd, txg) == 0);
2039 
2040 	vdev_config_dirty(tvd);
2041 
2042 	/*
2043 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
2044 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
2045 	 * But first make sure we're not on any *other* txg's DTL list, to
2046 	 * prevent vd from being accessed after it's freed.
2047 	 */
2048 	for (t = 0; t < TXG_SIZE; t++)
2049 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
2050 	vd->vdev_detached = B_TRUE;
2051 	vdev_dirty(tvd, VDD_DTL, vd, txg);
2052 
2053 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
2054 
2055 	error = spa_vdev_exit(spa, vd, txg, 0);
2056 
2057 	/*
2058 	 * If this was the removal of the original device in a hot spare vdev,
2059 	 * then we want to go through and remove the device from the hot spare
2060 	 * list of every other pool.
2061 	 */
2062 	if (unspare) {
2063 		spa = NULL;
2064 		mutex_enter(&spa_namespace_lock);
2065 		while ((spa = spa_next(spa)) != NULL) {
2066 			if (spa->spa_state != POOL_STATE_ACTIVE)
2067 				continue;
2068 
2069 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
2070 		}
2071 		mutex_exit(&spa_namespace_lock);
2072 	}
2073 
2074 	return (error);
2075 }
2076 
2077 /*
2078  * Remove a device from the pool.  Currently, this supports removing only hot
2079  * spares.
2080  */
2081 int
2082 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
2083 {
2084 	vdev_t *vd;
2085 	nvlist_t **spares, *nv, **newspares;
2086 	uint_t i, j, nspares;
2087 	int ret = 0;
2088 
2089 	spa_config_enter(spa, RW_WRITER, FTAG);
2090 
2091 	vd = spa_lookup_by_guid(spa, guid);
2092 
2093 	nv = NULL;
2094 	if (spa->spa_spares != NULL &&
2095 	    nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2096 	    &spares, &nspares) == 0) {
2097 		for (i = 0; i < nspares; i++) {
2098 			uint64_t theguid;
2099 
2100 			VERIFY(nvlist_lookup_uint64(spares[i],
2101 			    ZPOOL_CONFIG_GUID, &theguid) == 0);
2102 			if (theguid == guid) {
2103 				nv = spares[i];
2104 				break;
2105 			}
2106 		}
2107 	}
2108 
2109 	/*
2110 	 * We only support removing a hot spare, and only if it's not currently
2111 	 * in use in this pool.
2112 	 */
2113 	if (nv == NULL && vd == NULL) {
2114 		ret = ENOENT;
2115 		goto out;
2116 	}
2117 
2118 	if (nv == NULL && vd != NULL) {
2119 		ret = ENOTSUP;
2120 		goto out;
2121 	}
2122 
2123 	if (!unspare && nv != NULL && vd != NULL) {
2124 		ret = EBUSY;
2125 		goto out;
2126 	}
2127 
2128 	if (nspares == 1) {
2129 		newspares = NULL;
2130 	} else {
2131 		newspares = kmem_alloc((nspares - 1) * sizeof (void *),
2132 		    KM_SLEEP);
2133 		for (i = 0, j = 0; i < nspares; i++) {
2134 			if (spares[i] != nv)
2135 				VERIFY(nvlist_dup(spares[i],
2136 				    &newspares[j++], KM_SLEEP) == 0);
2137 		}
2138 	}
2139 
2140 	VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2141 	    DATA_TYPE_NVLIST_ARRAY) == 0);
2142 	VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES,
2143 	    newspares, nspares - 1) == 0);
2144 	for (i = 0; i < nspares - 1; i++)
2145 		nvlist_free(newspares[i]);
2146 	kmem_free(newspares, (nspares - 1) * sizeof (void *));
2147 	spa_load_spares(spa);
2148 	spa->spa_sync_spares = B_TRUE;
2149 
2150 out:
2151 	spa_config_exit(spa, FTAG);
2152 
2153 	return (ret);
2154 }
2155 
2156 /*
2157  * Find any device that's done replacing, or a vdev marked 'unspare' that's
2158  * current spared, so we can detach it.
2159  */
2160 static vdev_t *
2161 spa_vdev_resilver_done_hunt(vdev_t *vd)
2162 {
2163 	vdev_t *newvd, *oldvd;
2164 	int c;
2165 
2166 	for (c = 0; c < vd->vdev_children; c++) {
2167 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
2168 		if (oldvd != NULL)
2169 			return (oldvd);
2170 	}
2171 
2172 	/*
2173 	 * Check for a completed replacement.
2174 	 */
2175 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
2176 		oldvd = vd->vdev_child[0];
2177 		newvd = vd->vdev_child[1];
2178 
2179 		mutex_enter(&newvd->vdev_dtl_lock);
2180 		if (newvd->vdev_dtl_map.sm_space == 0 &&
2181 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2182 			mutex_exit(&newvd->vdev_dtl_lock);
2183 			return (oldvd);
2184 		}
2185 		mutex_exit(&newvd->vdev_dtl_lock);
2186 	}
2187 
2188 	/*
2189 	 * Check for a completed resilver with the 'unspare' flag set.
2190 	 */
2191 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
2192 		newvd = vd->vdev_child[0];
2193 		oldvd = vd->vdev_child[1];
2194 
2195 		mutex_enter(&newvd->vdev_dtl_lock);
2196 		if (newvd->vdev_unspare &&
2197 		    newvd->vdev_dtl_map.sm_space == 0 &&
2198 		    newvd->vdev_dtl_scrub.sm_space == 0) {
2199 			newvd->vdev_unspare = 0;
2200 			mutex_exit(&newvd->vdev_dtl_lock);
2201 			return (oldvd);
2202 		}
2203 		mutex_exit(&newvd->vdev_dtl_lock);
2204 	}
2205 
2206 	return (NULL);
2207 }
2208 
2209 static void
2210 spa_vdev_resilver_done(spa_t *spa)
2211 {
2212 	vdev_t *vd;
2213 	vdev_t *pvd;
2214 	uint64_t guid;
2215 	uint64_t pguid = 0;
2216 
2217 	spa_config_enter(spa, RW_READER, FTAG);
2218 
2219 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
2220 		guid = vd->vdev_guid;
2221 		/*
2222 		 * If we have just finished replacing a hot spared device, then
2223 		 * we need to detach the parent's first child (the original hot
2224 		 * spare) as well.
2225 		 */
2226 		pvd = vd->vdev_parent;
2227 		if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
2228 		    pvd->vdev_id == 0) {
2229 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
2230 			ASSERT(pvd->vdev_parent->vdev_children == 2);
2231 			pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid;
2232 		}
2233 		spa_config_exit(spa, FTAG);
2234 		if (spa_vdev_detach(spa, guid, B_TRUE) != 0)
2235 			return;
2236 		if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0)
2237 			return;
2238 		spa_config_enter(spa, RW_READER, FTAG);
2239 	}
2240 
2241 	spa_config_exit(spa, FTAG);
2242 }
2243 
2244 /*
2245  * Update the stored path for this vdev.  Dirty the vdev configuration, relying
2246  * on spa_vdev_enter/exit() to synchronize the labels and cache.
2247  */
2248 int
2249 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
2250 {
2251 	vdev_t *rvd, *vd;
2252 	uint64_t txg;
2253 
2254 	rvd = spa->spa_root_vdev;
2255 
2256 	txg = spa_vdev_enter(spa);
2257 
2258 	if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
2259 		/*
2260 		 * Determine if this is a reference to a hot spare.  In that
2261 		 * case, update the path as stored in the spare list.
2262 		 */
2263 		nvlist_t **spares;
2264 		uint_t i, nspares;
2265 		if (spa->spa_sparelist != NULL) {
2266 			VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist,
2267 			    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2268 			for (i = 0; i < nspares; i++) {
2269 				uint64_t theguid;
2270 				VERIFY(nvlist_lookup_uint64(spares[i],
2271 				    ZPOOL_CONFIG_GUID, &theguid) == 0);
2272 				if (theguid == guid)
2273 					break;
2274 			}
2275 
2276 			if (i == nspares)
2277 				return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2278 
2279 			VERIFY(nvlist_add_string(spares[i],
2280 			    ZPOOL_CONFIG_PATH, newpath) == 0);
2281 			spa_load_spares(spa);
2282 			spa->spa_sync_spares = B_TRUE;
2283 			return (spa_vdev_exit(spa, NULL, txg, 0));
2284 		} else {
2285 			return (spa_vdev_exit(spa, NULL, txg, ENOENT));
2286 		}
2287 	}
2288 
2289 	if (!vd->vdev_ops->vdev_op_leaf)
2290 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
2291 
2292 	spa_strfree(vd->vdev_path);
2293 	vd->vdev_path = spa_strdup(newpath);
2294 
2295 	vdev_config_dirty(vd->vdev_top);
2296 
2297 	return (spa_vdev_exit(spa, NULL, txg, 0));
2298 }
2299 
2300 /*
2301  * ==========================================================================
2302  * SPA Scrubbing
2303  * ==========================================================================
2304  */
2305 
2306 static void
2307 spa_scrub_io_done(zio_t *zio)
2308 {
2309 	spa_t *spa = zio->io_spa;
2310 
2311 	arc_data_buf_free(zio->io_data, zio->io_size);
2312 
2313 	mutex_enter(&spa->spa_scrub_lock);
2314 	if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
2315 		vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev;
2316 		spa->spa_scrub_errors++;
2317 		mutex_enter(&vd->vdev_stat_lock);
2318 		vd->vdev_stat.vs_scrub_errors++;
2319 		mutex_exit(&vd->vdev_stat_lock);
2320 	}
2321 
2322 	if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight)
2323 		cv_broadcast(&spa->spa_scrub_io_cv);
2324 
2325 	ASSERT(spa->spa_scrub_inflight >= 0);
2326 
2327 	mutex_exit(&spa->spa_scrub_lock);
2328 }
2329 
2330 static void
2331 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags,
2332     zbookmark_t *zb)
2333 {
2334 	size_t size = BP_GET_LSIZE(bp);
2335 	void *data;
2336 
2337 	mutex_enter(&spa->spa_scrub_lock);
2338 	/*
2339 	 * Do not give too much work to vdev(s).
2340 	 */
2341 	while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) {
2342 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2343 	}
2344 	spa->spa_scrub_inflight++;
2345 	mutex_exit(&spa->spa_scrub_lock);
2346 
2347 	data = arc_data_buf_alloc(size);
2348 
2349 	if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET)
2350 		flags |= ZIO_FLAG_SPECULATIVE;	/* intent log block */
2351 
2352 	flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL;
2353 
2354 	zio_nowait(zio_read(NULL, spa, bp, data, size,
2355 	    spa_scrub_io_done, NULL, priority, flags, zb));
2356 }
2357 
2358 /* ARGSUSED */
2359 static int
2360 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a)
2361 {
2362 	blkptr_t *bp = &bc->bc_blkptr;
2363 	vdev_t *vd = spa->spa_root_vdev;
2364 	dva_t *dva = bp->blk_dva;
2365 	int needs_resilver = B_FALSE;
2366 	int d;
2367 
2368 	if (bc->bc_errno) {
2369 		/*
2370 		 * We can't scrub this block, but we can continue to scrub
2371 		 * the rest of the pool.  Note the error and move along.
2372 		 */
2373 		mutex_enter(&spa->spa_scrub_lock);
2374 		spa->spa_scrub_errors++;
2375 		mutex_exit(&spa->spa_scrub_lock);
2376 
2377 		mutex_enter(&vd->vdev_stat_lock);
2378 		vd->vdev_stat.vs_scrub_errors++;
2379 		mutex_exit(&vd->vdev_stat_lock);
2380 
2381 		return (ERESTART);
2382 	}
2383 
2384 	ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg);
2385 
2386 	for (d = 0; d < BP_GET_NDVAS(bp); d++) {
2387 		vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d]));
2388 
2389 		ASSERT(vd != NULL);
2390 
2391 		/*
2392 		 * Keep track of how much data we've examined so that
2393 		 * zpool(1M) status can make useful progress reports.
2394 		 */
2395 		mutex_enter(&vd->vdev_stat_lock);
2396 		vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]);
2397 		mutex_exit(&vd->vdev_stat_lock);
2398 
2399 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) {
2400 			if (DVA_GET_GANG(&dva[d])) {
2401 				/*
2402 				 * Gang members may be spread across multiple
2403 				 * vdevs, so the best we can do is look at the
2404 				 * pool-wide DTL.
2405 				 * XXX -- it would be better to change our
2406 				 * allocation policy to ensure that this can't
2407 				 * happen.
2408 				 */
2409 				vd = spa->spa_root_vdev;
2410 			}
2411 			if (vdev_dtl_contains(&vd->vdev_dtl_map,
2412 			    bp->blk_birth, 1))
2413 				needs_resilver = B_TRUE;
2414 		}
2415 	}
2416 
2417 	if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING)
2418 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB,
2419 		    ZIO_FLAG_SCRUB, &bc->bc_bookmark);
2420 	else if (needs_resilver)
2421 		spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER,
2422 		    ZIO_FLAG_RESILVER, &bc->bc_bookmark);
2423 
2424 	return (0);
2425 }
2426 
2427 static void
2428 spa_scrub_thread(spa_t *spa)
2429 {
2430 	callb_cpr_t cprinfo;
2431 	traverse_handle_t *th = spa->spa_scrub_th;
2432 	vdev_t *rvd = spa->spa_root_vdev;
2433 	pool_scrub_type_t scrub_type = spa->spa_scrub_type;
2434 	int error = 0;
2435 	boolean_t complete;
2436 
2437 	CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG);
2438 
2439 	/*
2440 	 * If we're restarting due to a snapshot create/delete,
2441 	 * wait for that to complete.
2442 	 */
2443 	txg_wait_synced(spa_get_dsl(spa), 0);
2444 
2445 	dprintf("start %s mintxg=%llu maxtxg=%llu\n",
2446 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2447 	    spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg);
2448 
2449 	spa_config_enter(spa, RW_WRITER, FTAG);
2450 	vdev_reopen(rvd);		/* purge all vdev caches */
2451 	vdev_config_dirty(rvd);		/* rewrite all disk labels */
2452 	vdev_scrub_stat_update(rvd, scrub_type, B_FALSE);
2453 	spa_config_exit(spa, FTAG);
2454 
2455 	mutex_enter(&spa->spa_scrub_lock);
2456 	spa->spa_scrub_errors = 0;
2457 	spa->spa_scrub_active = 1;
2458 	ASSERT(spa->spa_scrub_inflight == 0);
2459 
2460 	while (!spa->spa_scrub_stop) {
2461 		CALLB_CPR_SAFE_BEGIN(&cprinfo);
2462 		while (spa->spa_scrub_suspended) {
2463 			spa->spa_scrub_active = 0;
2464 			cv_broadcast(&spa->spa_scrub_cv);
2465 			cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2466 			spa->spa_scrub_active = 1;
2467 		}
2468 		CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock);
2469 
2470 		if (spa->spa_scrub_restart_txg != 0)
2471 			break;
2472 
2473 		mutex_exit(&spa->spa_scrub_lock);
2474 		error = traverse_more(th);
2475 		mutex_enter(&spa->spa_scrub_lock);
2476 		if (error != EAGAIN)
2477 			break;
2478 	}
2479 
2480 	while (spa->spa_scrub_inflight)
2481 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2482 
2483 	spa->spa_scrub_active = 0;
2484 	cv_broadcast(&spa->spa_scrub_cv);
2485 
2486 	mutex_exit(&spa->spa_scrub_lock);
2487 
2488 	spa_config_enter(spa, RW_WRITER, FTAG);
2489 
2490 	mutex_enter(&spa->spa_scrub_lock);
2491 
2492 	/*
2493 	 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock
2494 	 * AND the spa config lock to synchronize with any config changes
2495 	 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit().
2496 	 */
2497 	if (spa->spa_scrub_restart_txg != 0)
2498 		error = ERESTART;
2499 
2500 	if (spa->spa_scrub_stop)
2501 		error = EINTR;
2502 
2503 	/*
2504 	 * Even if there were uncorrectable errors, we consider the scrub
2505 	 * completed.  The downside is that if there is a transient error during
2506 	 * a resilver, we won't resilver the data properly to the target.  But
2507 	 * if the damage is permanent (more likely) we will resilver forever,
2508 	 * which isn't really acceptable.  Since there is enough information for
2509 	 * the user to know what has failed and why, this seems like a more
2510 	 * tractable approach.
2511 	 */
2512 	complete = (error == 0);
2513 
2514 	dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n",
2515 	    scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub",
2516 	    spa->spa_scrub_maxtxg, complete ? "done" : "FAILED",
2517 	    error, spa->spa_scrub_errors, spa->spa_scrub_stop);
2518 
2519 	mutex_exit(&spa->spa_scrub_lock);
2520 
2521 	/*
2522 	 * If the scrub/resilver completed, update all DTLs to reflect this.
2523 	 * Whether it succeeded or not, vacate all temporary scrub DTLs.
2524 	 */
2525 	vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1,
2526 	    complete ? spa->spa_scrub_maxtxg : 0, B_TRUE);
2527 	vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete);
2528 	spa_errlog_rotate(spa);
2529 
2530 	if (scrub_type == POOL_SCRUB_RESILVER && complete)
2531 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH);
2532 
2533 	spa_config_exit(spa, FTAG);
2534 
2535 	mutex_enter(&spa->spa_scrub_lock);
2536 
2537 	/*
2538 	 * We may have finished replacing a device.
2539 	 * Let the async thread assess this and handle the detach.
2540 	 */
2541 	spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2542 
2543 	/*
2544 	 * If we were told to restart, our final act is to start a new scrub.
2545 	 */
2546 	if (error == ERESTART)
2547 		spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ?
2548 		    SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB);
2549 
2550 	spa->spa_scrub_type = POOL_SCRUB_NONE;
2551 	spa->spa_scrub_active = 0;
2552 	spa->spa_scrub_thread = NULL;
2553 	cv_broadcast(&spa->spa_scrub_cv);
2554 	CALLB_CPR_EXIT(&cprinfo);	/* drops &spa->spa_scrub_lock */
2555 	thread_exit();
2556 }
2557 
2558 void
2559 spa_scrub_suspend(spa_t *spa)
2560 {
2561 	mutex_enter(&spa->spa_scrub_lock);
2562 	spa->spa_scrub_suspended++;
2563 	while (spa->spa_scrub_active) {
2564 		cv_broadcast(&spa->spa_scrub_cv);
2565 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2566 	}
2567 	while (spa->spa_scrub_inflight)
2568 		cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2569 	mutex_exit(&spa->spa_scrub_lock);
2570 }
2571 
2572 void
2573 spa_scrub_resume(spa_t *spa)
2574 {
2575 	mutex_enter(&spa->spa_scrub_lock);
2576 	ASSERT(spa->spa_scrub_suspended != 0);
2577 	if (--spa->spa_scrub_suspended == 0)
2578 		cv_broadcast(&spa->spa_scrub_cv);
2579 	mutex_exit(&spa->spa_scrub_lock);
2580 }
2581 
2582 void
2583 spa_scrub_restart(spa_t *spa, uint64_t txg)
2584 {
2585 	/*
2586 	 * Something happened (e.g. snapshot create/delete) that means
2587 	 * we must restart any in-progress scrubs.  The itinerary will
2588 	 * fix this properly.
2589 	 */
2590 	mutex_enter(&spa->spa_scrub_lock);
2591 	spa->spa_scrub_restart_txg = txg;
2592 	mutex_exit(&spa->spa_scrub_lock);
2593 }
2594 
2595 int
2596 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force)
2597 {
2598 	space_seg_t *ss;
2599 	uint64_t mintxg, maxtxg;
2600 	vdev_t *rvd = spa->spa_root_vdev;
2601 
2602 	if ((uint_t)type >= POOL_SCRUB_TYPES)
2603 		return (ENOTSUP);
2604 
2605 	mutex_enter(&spa->spa_scrub_lock);
2606 
2607 	/*
2608 	 * If there's a scrub or resilver already in progress, stop it.
2609 	 */
2610 	while (spa->spa_scrub_thread != NULL) {
2611 		/*
2612 		 * Don't stop a resilver unless forced.
2613 		 */
2614 		if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) {
2615 			mutex_exit(&spa->spa_scrub_lock);
2616 			return (EBUSY);
2617 		}
2618 		spa->spa_scrub_stop = 1;
2619 		cv_broadcast(&spa->spa_scrub_cv);
2620 		cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock);
2621 	}
2622 
2623 	/*
2624 	 * Terminate the previous traverse.
2625 	 */
2626 	if (spa->spa_scrub_th != NULL) {
2627 		traverse_fini(spa->spa_scrub_th);
2628 		spa->spa_scrub_th = NULL;
2629 	}
2630 
2631 	if (rvd == NULL) {
2632 		ASSERT(spa->spa_scrub_stop == 0);
2633 		ASSERT(spa->spa_scrub_type == type);
2634 		ASSERT(spa->spa_scrub_restart_txg == 0);
2635 		mutex_exit(&spa->spa_scrub_lock);
2636 		return (0);
2637 	}
2638 
2639 	mintxg = TXG_INITIAL - 1;
2640 	maxtxg = spa_last_synced_txg(spa) + 1;
2641 
2642 	mutex_enter(&rvd->vdev_dtl_lock);
2643 
2644 	if (rvd->vdev_dtl_map.sm_space == 0) {
2645 		/*
2646 		 * The pool-wide DTL is empty.
2647 		 * If this is a resilver, there's nothing to do except
2648 		 * check whether any in-progress replacements have completed.
2649 		 */
2650 		if (type == POOL_SCRUB_RESILVER) {
2651 			type = POOL_SCRUB_NONE;
2652 			spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
2653 		}
2654 	} else {
2655 		/*
2656 		 * The pool-wide DTL is non-empty.
2657 		 * If this is a normal scrub, upgrade to a resilver instead.
2658 		 */
2659 		if (type == POOL_SCRUB_EVERYTHING)
2660 			type = POOL_SCRUB_RESILVER;
2661 	}
2662 
2663 	if (type == POOL_SCRUB_RESILVER) {
2664 		/*
2665 		 * Determine the resilvering boundaries.
2666 		 *
2667 		 * Note: (mintxg, maxtxg) is an open interval,
2668 		 * i.e. mintxg and maxtxg themselves are not included.
2669 		 *
2670 		 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1
2671 		 * so we don't claim to resilver a txg that's still changing.
2672 		 */
2673 		ss = avl_first(&rvd->vdev_dtl_map.sm_root);
2674 		mintxg = ss->ss_start - 1;
2675 		ss = avl_last(&rvd->vdev_dtl_map.sm_root);
2676 		maxtxg = MIN(ss->ss_end, maxtxg);
2677 
2678 		spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START);
2679 	}
2680 
2681 	mutex_exit(&rvd->vdev_dtl_lock);
2682 
2683 	spa->spa_scrub_stop = 0;
2684 	spa->spa_scrub_type = type;
2685 	spa->spa_scrub_restart_txg = 0;
2686 
2687 	if (type != POOL_SCRUB_NONE) {
2688 		spa->spa_scrub_mintxg = mintxg;
2689 		spa->spa_scrub_maxtxg = maxtxg;
2690 		spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL,
2691 		    ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL,
2692 		    ZIO_FLAG_CANFAIL);
2693 		traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg);
2694 		spa->spa_scrub_thread = thread_create(NULL, 0,
2695 		    spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri);
2696 	}
2697 
2698 	mutex_exit(&spa->spa_scrub_lock);
2699 
2700 	return (0);
2701 }
2702 
2703 /*
2704  * ==========================================================================
2705  * SPA async task processing
2706  * ==========================================================================
2707  */
2708 
2709 static void
2710 spa_async_remove(spa_t *spa, vdev_t *vd)
2711 {
2712 	vdev_t *tvd;
2713 	int c;
2714 
2715 	for (c = 0; c < vd->vdev_children; c++) {
2716 		tvd = vd->vdev_child[c];
2717 		if (tvd->vdev_remove_wanted) {
2718 			tvd->vdev_remove_wanted = 0;
2719 			vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED,
2720 			    VDEV_AUX_NONE);
2721 			vdev_clear(spa, tvd);
2722 			vdev_config_dirty(tvd->vdev_top);
2723 		}
2724 		spa_async_remove(spa, tvd);
2725 	}
2726 }
2727 
2728 static void
2729 spa_async_thread(spa_t *spa)
2730 {
2731 	int tasks;
2732 	uint64_t txg;
2733 
2734 	ASSERT(spa->spa_sync_on);
2735 
2736 	mutex_enter(&spa->spa_async_lock);
2737 	tasks = spa->spa_async_tasks;
2738 	spa->spa_async_tasks = 0;
2739 	mutex_exit(&spa->spa_async_lock);
2740 
2741 	/*
2742 	 * See if the config needs to be updated.
2743 	 */
2744 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
2745 		mutex_enter(&spa_namespace_lock);
2746 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
2747 		mutex_exit(&spa_namespace_lock);
2748 	}
2749 
2750 	/*
2751 	 * See if any devices need to be marked REMOVED.
2752 	 */
2753 	if (tasks & SPA_ASYNC_REMOVE) {
2754 		txg = spa_vdev_enter(spa);
2755 		spa_async_remove(spa, spa->spa_root_vdev);
2756 		(void) spa_vdev_exit(spa, NULL, txg, 0);
2757 	}
2758 
2759 	/*
2760 	 * If any devices are done replacing, detach them.
2761 	 */
2762 	if (tasks & SPA_ASYNC_RESILVER_DONE)
2763 		spa_vdev_resilver_done(spa);
2764 
2765 	/*
2766 	 * Kick off a scrub.  When starting a RESILVER scrub (or an EVERYTHING
2767 	 * scrub which can become a resilver), we need to hold
2768 	 * spa_namespace_lock() because the sysevent we post via
2769 	 * spa_event_notify() needs to get the name of the pool.
2770 	 */
2771 	if (tasks & SPA_ASYNC_SCRUB) {
2772 		mutex_enter(&spa_namespace_lock);
2773 		VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0);
2774 		mutex_exit(&spa_namespace_lock);
2775 	}
2776 
2777 	/*
2778 	 * Kick off a resilver.
2779 	 */
2780 	if (tasks & SPA_ASYNC_RESILVER) {
2781 		mutex_enter(&spa_namespace_lock);
2782 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0);
2783 		mutex_exit(&spa_namespace_lock);
2784 	}
2785 
2786 	/*
2787 	 * Let the world know that we're done.
2788 	 */
2789 	mutex_enter(&spa->spa_async_lock);
2790 	spa->spa_async_thread = NULL;
2791 	cv_broadcast(&spa->spa_async_cv);
2792 	mutex_exit(&spa->spa_async_lock);
2793 	thread_exit();
2794 }
2795 
2796 void
2797 spa_async_suspend(spa_t *spa)
2798 {
2799 	mutex_enter(&spa->spa_async_lock);
2800 	spa->spa_async_suspended++;
2801 	while (spa->spa_async_thread != NULL)
2802 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
2803 	mutex_exit(&spa->spa_async_lock);
2804 }
2805 
2806 void
2807 spa_async_resume(spa_t *spa)
2808 {
2809 	mutex_enter(&spa->spa_async_lock);
2810 	ASSERT(spa->spa_async_suspended != 0);
2811 	spa->spa_async_suspended--;
2812 	mutex_exit(&spa->spa_async_lock);
2813 }
2814 
2815 static void
2816 spa_async_dispatch(spa_t *spa)
2817 {
2818 	mutex_enter(&spa->spa_async_lock);
2819 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
2820 	    spa->spa_async_thread == NULL &&
2821 	    rootdir != NULL && !vn_is_readonly(rootdir))
2822 		spa->spa_async_thread = thread_create(NULL, 0,
2823 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
2824 	mutex_exit(&spa->spa_async_lock);
2825 }
2826 
2827 void
2828 spa_async_request(spa_t *spa, int task)
2829 {
2830 	mutex_enter(&spa->spa_async_lock);
2831 	spa->spa_async_tasks |= task;
2832 	mutex_exit(&spa->spa_async_lock);
2833 }
2834 
2835 /*
2836  * ==========================================================================
2837  * SPA syncing routines
2838  * ==========================================================================
2839  */
2840 
2841 static void
2842 spa_sync_deferred_frees(spa_t *spa, uint64_t txg)
2843 {
2844 	bplist_t *bpl = &spa->spa_sync_bplist;
2845 	dmu_tx_t *tx;
2846 	blkptr_t blk;
2847 	uint64_t itor = 0;
2848 	zio_t *zio;
2849 	int error;
2850 	uint8_t c = 1;
2851 
2852 	zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD);
2853 
2854 	while (bplist_iterate(bpl, &itor, &blk) == 0)
2855 		zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL));
2856 
2857 	error = zio_wait(zio);
2858 	ASSERT3U(error, ==, 0);
2859 
2860 	tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
2861 	bplist_vacate(bpl, tx);
2862 
2863 	/*
2864 	 * Pre-dirty the first block so we sync to convergence faster.
2865 	 * (Usually only the first block is needed.)
2866 	 */
2867 	dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx);
2868 	dmu_tx_commit(tx);
2869 }
2870 
2871 static void
2872 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
2873 {
2874 	char *packed = NULL;
2875 	size_t nvsize = 0;
2876 	dmu_buf_t *db;
2877 
2878 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
2879 
2880 	packed = kmem_alloc(nvsize, KM_SLEEP);
2881 
2882 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
2883 	    KM_SLEEP) == 0);
2884 
2885 	dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx);
2886 
2887 	kmem_free(packed, nvsize);
2888 
2889 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
2890 	dmu_buf_will_dirty(db, tx);
2891 	*(uint64_t *)db->db_data = nvsize;
2892 	dmu_buf_rele(db, FTAG);
2893 }
2894 
2895 static void
2896 spa_sync_spares(spa_t *spa, dmu_tx_t *tx)
2897 {
2898 	nvlist_t *nvroot;
2899 	nvlist_t **spares;
2900 	int i;
2901 
2902 	if (!spa->spa_sync_spares)
2903 		return;
2904 
2905 	/*
2906 	 * Update the MOS nvlist describing the list of available spares.
2907 	 * spa_validate_spares() will have already made sure this nvlist is
2908 	 * valid and the vdevs are labeled appropriately.
2909 	 */
2910 	if (spa->spa_spares_object == 0) {
2911 		spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset,
2912 		    DMU_OT_PACKED_NVLIST, 1 << 14,
2913 		    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2914 		VERIFY(zap_update(spa->spa_meta_objset,
2915 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES,
2916 		    sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0);
2917 	}
2918 
2919 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2920 	if (spa->spa_nspares == 0) {
2921 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2922 		    NULL, 0) == 0);
2923 	} else {
2924 		spares = kmem_alloc(spa->spa_nspares * sizeof (void *),
2925 		    KM_SLEEP);
2926 		for (i = 0; i < spa->spa_nspares; i++)
2927 			spares[i] = vdev_config_generate(spa,
2928 			    spa->spa_spares[i], B_FALSE, B_TRUE);
2929 		VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2930 		    spares, spa->spa_nspares) == 0);
2931 		for (i = 0; i < spa->spa_nspares; i++)
2932 			nvlist_free(spares[i]);
2933 		kmem_free(spares, spa->spa_nspares * sizeof (void *));
2934 	}
2935 
2936 	spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx);
2937 	nvlist_free(nvroot);
2938 
2939 	spa->spa_sync_spares = B_FALSE;
2940 }
2941 
2942 static void
2943 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
2944 {
2945 	nvlist_t *config;
2946 
2947 	if (list_is_empty(&spa->spa_dirty_list))
2948 		return;
2949 
2950 	config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE);
2951 
2952 	if (spa->spa_config_syncing)
2953 		nvlist_free(spa->spa_config_syncing);
2954 	spa->spa_config_syncing = config;
2955 
2956 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
2957 }
2958 
2959 static void
2960 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
2961 {
2962 	spa_t *spa = arg1;
2963 	nvlist_t *nvp = arg2;
2964 	nvpair_t *nvpair;
2965 	objset_t *mos = spa->spa_meta_objset;
2966 	uint64_t zapobj;
2967 	uint64_t intval;
2968 
2969 	mutex_enter(&spa->spa_props_lock);
2970 	if (spa->spa_pool_props_object == 0) {
2971 		zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx);
2972 		VERIFY(zapobj > 0);
2973 
2974 		spa->spa_pool_props_object = zapobj;
2975 
2976 		VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT,
2977 		    DMU_POOL_PROPS, 8, 1,
2978 		    &spa->spa_pool_props_object, tx) == 0);
2979 	}
2980 	mutex_exit(&spa->spa_props_lock);
2981 
2982 	nvpair = NULL;
2983 	while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) {
2984 		switch (zpool_name_to_prop(nvpair_name(nvpair))) {
2985 		case ZPOOL_PROP_BOOTFS:
2986 			VERIFY(nvlist_lookup_uint64(nvp,
2987 			    nvpair_name(nvpair), &spa->spa_bootfs) == 0);
2988 			VERIFY(zap_update(mos,
2989 			    spa->spa_pool_props_object,
2990 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 8, 1,
2991 			    &spa->spa_bootfs, tx) == 0);
2992 			break;
2993 
2994 		case ZPOOL_PROP_AUTOREPLACE:
2995 			VERIFY(nvlist_lookup_uint64(nvp,
2996 			    nvpair_name(nvpair), &intval) == 0);
2997 			VERIFY(zap_update(mos,
2998 			    spa->spa_pool_props_object,
2999 			    zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 8, 1,
3000 			    &intval, tx) == 0);
3001 			break;
3002 		}
3003 	}
3004 }
3005 
3006 /*
3007  * Sync the specified transaction group.  New blocks may be dirtied as
3008  * part of the process, so we iterate until it converges.
3009  */
3010 void
3011 spa_sync(spa_t *spa, uint64_t txg)
3012 {
3013 	dsl_pool_t *dp = spa->spa_dsl_pool;
3014 	objset_t *mos = spa->spa_meta_objset;
3015 	bplist_t *bpl = &spa->spa_sync_bplist;
3016 	vdev_t *rvd = spa->spa_root_vdev;
3017 	vdev_t *vd;
3018 	dmu_tx_t *tx;
3019 	int dirty_vdevs;
3020 
3021 	/*
3022 	 * Lock out configuration changes.
3023 	 */
3024 	spa_config_enter(spa, RW_READER, FTAG);
3025 
3026 	spa->spa_syncing_txg = txg;
3027 	spa->spa_sync_pass = 0;
3028 
3029 	VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj));
3030 
3031 	tx = dmu_tx_create_assigned(dp, txg);
3032 
3033 	/*
3034 	 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg,
3035 	 * set spa_deflate if we have no raid-z vdevs.
3036 	 */
3037 	if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE &&
3038 	    spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) {
3039 		int i;
3040 
3041 		for (i = 0; i < rvd->vdev_children; i++) {
3042 			vd = rvd->vdev_child[i];
3043 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
3044 				break;
3045 		}
3046 		if (i == rvd->vdev_children) {
3047 			spa->spa_deflate = TRUE;
3048 			VERIFY(0 == zap_add(spa->spa_meta_objset,
3049 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
3050 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
3051 		}
3052 	}
3053 
3054 	/*
3055 	 * If anything has changed in this txg, push the deferred frees
3056 	 * from the previous txg.  If not, leave them alone so that we
3057 	 * don't generate work on an otherwise idle system.
3058 	 */
3059 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
3060 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
3061 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
3062 		spa_sync_deferred_frees(spa, txg);
3063 
3064 	/*
3065 	 * Iterate to convergence.
3066 	 */
3067 	do {
3068 		spa->spa_sync_pass++;
3069 
3070 		spa_sync_config_object(spa, tx);
3071 		spa_sync_spares(spa, tx);
3072 		spa_errlog_sync(spa, txg);
3073 		dsl_pool_sync(dp, txg);
3074 
3075 		dirty_vdevs = 0;
3076 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) {
3077 			vdev_sync(vd, txg);
3078 			dirty_vdevs++;
3079 		}
3080 
3081 		bplist_sync(bpl, tx);
3082 	} while (dirty_vdevs);
3083 
3084 	bplist_close(bpl);
3085 
3086 	dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass);
3087 
3088 	/*
3089 	 * Rewrite the vdev configuration (which includes the uberblock)
3090 	 * to commit the transaction group.
3091 	 *
3092 	 * If there are any dirty vdevs, sync the uberblock to all vdevs.
3093 	 * Otherwise, pick a random top-level vdev that's known to be
3094 	 * visible in the config cache (see spa_vdev_add() for details).
3095 	 * If the write fails, try the next vdev until we're tried them all.
3096 	 */
3097 	if (!list_is_empty(&spa->spa_dirty_list)) {
3098 		VERIFY(vdev_config_sync(rvd, txg) == 0);
3099 	} else {
3100 		int children = rvd->vdev_children;
3101 		int c0 = spa_get_random(children);
3102 		int c;
3103 
3104 		for (c = 0; c < children; c++) {
3105 			vd = rvd->vdev_child[(c0 + c) % children];
3106 			if (vd->vdev_ms_array == 0)
3107 				continue;
3108 			if (vdev_config_sync(vd, txg) == 0)
3109 				break;
3110 		}
3111 		if (c == children)
3112 			VERIFY(vdev_config_sync(rvd, txg) == 0);
3113 	}
3114 
3115 	dmu_tx_commit(tx);
3116 
3117 	/*
3118 	 * Clear the dirty config list.
3119 	 */
3120 	while ((vd = list_head(&spa->spa_dirty_list)) != NULL)
3121 		vdev_config_clean(vd);
3122 
3123 	/*
3124 	 * Now that the new config has synced transactionally,
3125 	 * let it become visible to the config cache.
3126 	 */
3127 	if (spa->spa_config_syncing != NULL) {
3128 		spa_config_set(spa, spa->spa_config_syncing);
3129 		spa->spa_config_txg = txg;
3130 		spa->spa_config_syncing = NULL;
3131 	}
3132 
3133 	/*
3134 	 * Make a stable copy of the fully synced uberblock.
3135 	 * We use this as the root for pool traversals.
3136 	 */
3137 	spa->spa_traverse_wanted = 1;	/* tells traverse_more() to stop */
3138 
3139 	spa_scrub_suspend(spa);		/* stop scrubbing and finish I/Os */
3140 
3141 	rw_enter(&spa->spa_traverse_lock, RW_WRITER);
3142 	spa->spa_traverse_wanted = 0;
3143 	spa->spa_ubsync = spa->spa_uberblock;
3144 	rw_exit(&spa->spa_traverse_lock);
3145 
3146 	spa_scrub_resume(spa);		/* resume scrub with new ubsync */
3147 
3148 	/*
3149 	 * Clean up the ZIL records for the synced txg.
3150 	 */
3151 	dsl_pool_zil_clean(dp);
3152 
3153 	/*
3154 	 * Update usable space statistics.
3155 	 */
3156 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
3157 		vdev_sync_done(vd, txg);
3158 
3159 	/*
3160 	 * It had better be the case that we didn't dirty anything
3161 	 * since vdev_config_sync().
3162 	 */
3163 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
3164 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
3165 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
3166 	ASSERT(bpl->bpl_queue == NULL);
3167 
3168 	spa_config_exit(spa, FTAG);
3169 
3170 	/*
3171 	 * If any async tasks have been requested, kick them off.
3172 	 */
3173 	spa_async_dispatch(spa);
3174 }
3175 
3176 /*
3177  * Sync all pools.  We don't want to hold the namespace lock across these
3178  * operations, so we take a reference on the spa_t and drop the lock during the
3179  * sync.
3180  */
3181 void
3182 spa_sync_allpools(void)
3183 {
3184 	spa_t *spa = NULL;
3185 	mutex_enter(&spa_namespace_lock);
3186 	while ((spa = spa_next(spa)) != NULL) {
3187 		if (spa_state(spa) != POOL_STATE_ACTIVE)
3188 			continue;
3189 		spa_open_ref(spa, FTAG);
3190 		mutex_exit(&spa_namespace_lock);
3191 		txg_wait_synced(spa_get_dsl(spa), 0);
3192 		mutex_enter(&spa_namespace_lock);
3193 		spa_close(spa, FTAG);
3194 	}
3195 	mutex_exit(&spa_namespace_lock);
3196 }
3197 
3198 /*
3199  * ==========================================================================
3200  * Miscellaneous routines
3201  * ==========================================================================
3202  */
3203 
3204 /*
3205  * Remove all pools in the system.
3206  */
3207 void
3208 spa_evict_all(void)
3209 {
3210 	spa_t *spa;
3211 
3212 	/*
3213 	 * Remove all cached state.  All pools should be closed now,
3214 	 * so every spa in the AVL tree should be unreferenced.
3215 	 */
3216 	mutex_enter(&spa_namespace_lock);
3217 	while ((spa = spa_next(NULL)) != NULL) {
3218 		/*
3219 		 * Stop async tasks.  The async thread may need to detach
3220 		 * a device that's been replaced, which requires grabbing
3221 		 * spa_namespace_lock, so we must drop it here.
3222 		 */
3223 		spa_open_ref(spa, FTAG);
3224 		mutex_exit(&spa_namespace_lock);
3225 		spa_async_suspend(spa);
3226 		VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0);
3227 		mutex_enter(&spa_namespace_lock);
3228 		spa_close(spa, FTAG);
3229 
3230 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3231 			spa_unload(spa);
3232 			spa_deactivate(spa);
3233 		}
3234 		spa_remove(spa);
3235 	}
3236 	mutex_exit(&spa_namespace_lock);
3237 }
3238 
3239 vdev_t *
3240 spa_lookup_by_guid(spa_t *spa, uint64_t guid)
3241 {
3242 	return (vdev_lookup_by_guid(spa->spa_root_vdev, guid));
3243 }
3244 
3245 void
3246 spa_upgrade(spa_t *spa)
3247 {
3248 	spa_config_enter(spa, RW_WRITER, FTAG);
3249 
3250 	/*
3251 	 * This should only be called for a non-faulted pool, and since a
3252 	 * future version would result in an unopenable pool, this shouldn't be
3253 	 * possible.
3254 	 */
3255 	ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION);
3256 
3257 	spa->spa_uberblock.ub_version = ZFS_VERSION;
3258 	vdev_config_dirty(spa->spa_root_vdev);
3259 
3260 	spa_config_exit(spa, FTAG);
3261 
3262 	txg_wait_synced(spa_get_dsl(spa), 0);
3263 }
3264 
3265 boolean_t
3266 spa_has_spare(spa_t *spa, uint64_t guid)
3267 {
3268 	int i;
3269 	uint64_t spareguid;
3270 
3271 	for (i = 0; i < spa->spa_nspares; i++)
3272 		if (spa->spa_spares[i]->vdev_guid == guid)
3273 			return (B_TRUE);
3274 
3275 	for (i = 0; i < spa->spa_pending_nspares; i++) {
3276 		if (nvlist_lookup_uint64(spa->spa_pending_spares[i],
3277 		    ZPOOL_CONFIG_GUID, &spareguid) == 0 &&
3278 		    spareguid == guid)
3279 			return (B_TRUE);
3280 	}
3281 
3282 	return (B_FALSE);
3283 }
3284 
3285 int
3286 spa_set_props(spa_t *spa, nvlist_t *nvp)
3287 {
3288 	return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
3289 	    spa, nvp, 3));
3290 }
3291 
3292 int
3293 spa_get_props(spa_t *spa, nvlist_t **nvp)
3294 {
3295 	zap_cursor_t zc;
3296 	zap_attribute_t za;
3297 	objset_t *mos = spa->spa_meta_objset;
3298 	zfs_source_t src;
3299 	zpool_prop_t prop;
3300 	nvlist_t *propval;
3301 	uint64_t value;
3302 	int err;
3303 
3304 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3305 
3306 	mutex_enter(&spa->spa_props_lock);
3307 	/* If no props object, then just return empty nvlist */
3308 	if (spa->spa_pool_props_object == 0) {
3309 		mutex_exit(&spa->spa_props_lock);
3310 		return (0);
3311 	}
3312 
3313 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
3314 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
3315 	    zap_cursor_advance(&zc)) {
3316 
3317 		if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL)
3318 			continue;
3319 
3320 		VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
3321 		switch (za.za_integer_length) {
3322 		case 8:
3323 			if (zpool_prop_default_numeric(prop) ==
3324 			    za.za_first_integer)
3325 				src = ZFS_SRC_DEFAULT;
3326 			else
3327 				src = ZFS_SRC_LOCAL;
3328 			value = za.za_first_integer;
3329 
3330 			if (prop == ZPOOL_PROP_BOOTFS) {
3331 				dsl_pool_t *dp;
3332 				dsl_dataset_t *ds = NULL;
3333 				char strval[MAXPATHLEN];
3334 
3335 				dp = spa_get_dsl(spa);
3336 				rw_enter(&dp->dp_config_rwlock, RW_READER);
3337 				if ((err = dsl_dataset_open_obj(dp,
3338 				    za.za_first_integer, NULL, DS_MODE_NONE,
3339 				    FTAG, &ds)) != 0) {
3340 					rw_exit(&dp->dp_config_rwlock);
3341 					break;
3342 				}
3343 				dsl_dataset_name(ds, strval);
3344 				dsl_dataset_close(ds, DS_MODE_NONE, FTAG);
3345 				rw_exit(&dp->dp_config_rwlock);
3346 
3347 				VERIFY(nvlist_add_uint64(propval,
3348 				    ZFS_PROP_SOURCE, src) == 0);
3349 				VERIFY(nvlist_add_string(propval,
3350 				    ZFS_PROP_VALUE, strval) == 0);
3351 			} else {
3352 				VERIFY(nvlist_add_uint64(propval,
3353 				    ZFS_PROP_SOURCE, src) == 0);
3354 				VERIFY(nvlist_add_uint64(propval,
3355 				    ZFS_PROP_VALUE, value) == 0);
3356 			}
3357 			VERIFY(nvlist_add_nvlist(*nvp, za.za_name,
3358 			    propval) == 0);
3359 			break;
3360 		}
3361 		nvlist_free(propval);
3362 	}
3363 	zap_cursor_fini(&zc);
3364 	mutex_exit(&spa->spa_props_lock);
3365 	if (err && err != ENOENT) {
3366 		nvlist_free(*nvp);
3367 		return (err);
3368 	}
3369 
3370 	return (0);
3371 }
3372 
3373 /*
3374  * If the bootfs property value is dsobj, clear it.
3375  */
3376 void
3377 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
3378 {
3379 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
3380 		VERIFY(zap_remove(spa->spa_meta_objset,
3381 		    spa->spa_pool_props_object,
3382 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
3383 		spa->spa_bootfs = 0;
3384 	}
3385 }
3386 
3387 /*
3388  * Post a sysevent corresponding to the given event.  The 'name' must be one of
3389  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
3390  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
3391  * in the userland libzpool, as we don't want consumers to misinterpret ztest
3392  * or zdb as real changes.
3393  */
3394 void
3395 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
3396 {
3397 #ifdef _KERNEL
3398 	sysevent_t		*ev;
3399 	sysevent_attr_list_t	*attr = NULL;
3400 	sysevent_value_t	value;
3401 	sysevent_id_t		eid;
3402 
3403 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
3404 	    SE_SLEEP);
3405 
3406 	value.value_type = SE_DATA_TYPE_STRING;
3407 	value.value.sv_string = spa_name(spa);
3408 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
3409 		goto done;
3410 
3411 	value.value_type = SE_DATA_TYPE_UINT64;
3412 	value.value.sv_uint64 = spa_guid(spa);
3413 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
3414 		goto done;
3415 
3416 	if (vd) {
3417 		value.value_type = SE_DATA_TYPE_UINT64;
3418 		value.value.sv_uint64 = vd->vdev_guid;
3419 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
3420 		    SE_SLEEP) != 0)
3421 			goto done;
3422 
3423 		if (vd->vdev_path) {
3424 			value.value_type = SE_DATA_TYPE_STRING;
3425 			value.value.sv_string = vd->vdev_path;
3426 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
3427 			    &value, SE_SLEEP) != 0)
3428 				goto done;
3429 		}
3430 	}
3431 
3432 	(void) log_sysevent(ev, SE_SLEEP, &eid);
3433 
3434 done:
3435 	if (attr)
3436 		sysevent_free_attr(attr);
3437 	sysevent_free(ev);
3438 #endif
3439 }
3440