1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright 2007 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 /* 30 * This file contains all the routines used when modifying on-disk SPA state. 31 * This includes opening, importing, destroying, exporting a pool, and syncing a 32 * pool. 33 */ 34 35 #include <sys/zfs_context.h> 36 #include <sys/fm/fs/zfs.h> 37 #include <sys/spa_impl.h> 38 #include <sys/zio.h> 39 #include <sys/zio_checksum.h> 40 #include <sys/zio_compress.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/vdev_impl.h> 46 #include <sys/metaslab.h> 47 #include <sys/uberblock_impl.h> 48 #include <sys/txg.h> 49 #include <sys/avl.h> 50 #include <sys/dmu_traverse.h> 51 #include <sys/dmu_objset.h> 52 #include <sys/unique.h> 53 #include <sys/dsl_pool.h> 54 #include <sys/dsl_dataset.h> 55 #include <sys/dsl_dir.h> 56 #include <sys/dsl_prop.h> 57 #include <sys/dsl_synctask.h> 58 #include <sys/fs/zfs.h> 59 #include <sys/callb.h> 60 #include <sys/systeminfo.h> 61 #include <sys/sunddi.h> 62 63 int zio_taskq_threads = 8; 64 65 /* 66 * ========================================================================== 67 * SPA state manipulation (open/create/destroy/import/export) 68 * ========================================================================== 69 */ 70 71 static int 72 spa_error_entry_compare(const void *a, const void *b) 73 { 74 spa_error_entry_t *sa = (spa_error_entry_t *)a; 75 spa_error_entry_t *sb = (spa_error_entry_t *)b; 76 int ret; 77 78 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 79 sizeof (zbookmark_t)); 80 81 if (ret < 0) 82 return (-1); 83 else if (ret > 0) 84 return (1); 85 else 86 return (0); 87 } 88 89 /* 90 * Utility function which retrieves copies of the current logs and 91 * re-initializes them in the process. 92 */ 93 void 94 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 95 { 96 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 97 98 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 99 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 100 101 avl_create(&spa->spa_errlist_scrub, 102 spa_error_entry_compare, sizeof (spa_error_entry_t), 103 offsetof(spa_error_entry_t, se_avl)); 104 avl_create(&spa->spa_errlist_last, 105 spa_error_entry_compare, sizeof (spa_error_entry_t), 106 offsetof(spa_error_entry_t, se_avl)); 107 } 108 109 /* 110 * Activate an uninitialized pool. 111 */ 112 static void 113 spa_activate(spa_t *spa) 114 { 115 int t; 116 117 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 118 119 spa->spa_state = POOL_STATE_ACTIVE; 120 121 spa->spa_normal_class = metaslab_class_create(); 122 spa->spa_log_class = metaslab_class_create(); 123 124 for (t = 0; t < ZIO_TYPES; t++) { 125 spa->spa_zio_issue_taskq[t] = taskq_create("spa_zio_issue", 126 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 127 TASKQ_PREPOPULATE); 128 spa->spa_zio_intr_taskq[t] = taskq_create("spa_zio_intr", 129 zio_taskq_threads, maxclsyspri, 50, INT_MAX, 130 TASKQ_PREPOPULATE); 131 } 132 133 rw_init(&spa->spa_traverse_lock, NULL, RW_DEFAULT, NULL); 134 135 mutex_init(&spa->spa_async_lock, NULL, MUTEX_DEFAULT, NULL); 136 mutex_init(&spa->spa_config_cache_lock, NULL, MUTEX_DEFAULT, NULL); 137 mutex_init(&spa->spa_scrub_lock, NULL, MUTEX_DEFAULT, NULL); 138 mutex_init(&spa->spa_errlog_lock, NULL, MUTEX_DEFAULT, NULL); 139 mutex_init(&spa->spa_errlist_lock, NULL, MUTEX_DEFAULT, NULL); 140 mutex_init(&spa->spa_config_lock.scl_lock, NULL, MUTEX_DEFAULT, NULL); 141 mutex_init(&spa->spa_sync_bplist.bpl_lock, NULL, MUTEX_DEFAULT, NULL); 142 mutex_init(&spa->spa_history_lock, NULL, MUTEX_DEFAULT, NULL); 143 mutex_init(&spa->spa_props_lock, NULL, MUTEX_DEFAULT, NULL); 144 145 list_create(&spa->spa_dirty_list, sizeof (vdev_t), 146 offsetof(vdev_t, vdev_dirty_node)); 147 148 txg_list_create(&spa->spa_vdev_txg_list, 149 offsetof(struct vdev, vdev_txg_node)); 150 151 avl_create(&spa->spa_errlist_scrub, 152 spa_error_entry_compare, sizeof (spa_error_entry_t), 153 offsetof(spa_error_entry_t, se_avl)); 154 avl_create(&spa->spa_errlist_last, 155 spa_error_entry_compare, sizeof (spa_error_entry_t), 156 offsetof(spa_error_entry_t, se_avl)); 157 } 158 159 /* 160 * Opposite of spa_activate(). 161 */ 162 static void 163 spa_deactivate(spa_t *spa) 164 { 165 int t; 166 167 ASSERT(spa->spa_sync_on == B_FALSE); 168 ASSERT(spa->spa_dsl_pool == NULL); 169 ASSERT(spa->spa_root_vdev == NULL); 170 171 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 172 173 txg_list_destroy(&spa->spa_vdev_txg_list); 174 175 list_destroy(&spa->spa_dirty_list); 176 177 rw_destroy(&spa->spa_traverse_lock); 178 179 for (t = 0; t < ZIO_TYPES; t++) { 180 taskq_destroy(spa->spa_zio_issue_taskq[t]); 181 taskq_destroy(spa->spa_zio_intr_taskq[t]); 182 spa->spa_zio_issue_taskq[t] = NULL; 183 spa->spa_zio_intr_taskq[t] = NULL; 184 } 185 186 metaslab_class_destroy(spa->spa_normal_class); 187 spa->spa_normal_class = NULL; 188 189 metaslab_class_destroy(spa->spa_log_class); 190 spa->spa_log_class = NULL; 191 192 /* 193 * If this was part of an import or the open otherwise failed, we may 194 * still have errors left in the queues. Empty them just in case. 195 */ 196 spa_errlog_drain(spa); 197 198 avl_destroy(&spa->spa_errlist_scrub); 199 avl_destroy(&spa->spa_errlist_last); 200 201 spa->spa_state = POOL_STATE_UNINITIALIZED; 202 } 203 204 /* 205 * Verify a pool configuration, and construct the vdev tree appropriately. This 206 * will create all the necessary vdevs in the appropriate layout, with each vdev 207 * in the CLOSED state. This will prep the pool before open/creation/import. 208 * All vdev validation is done by the vdev_alloc() routine. 209 */ 210 static int 211 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 212 uint_t id, int atype) 213 { 214 nvlist_t **child; 215 uint_t c, children; 216 int error; 217 218 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 219 return (error); 220 221 if ((*vdp)->vdev_ops->vdev_op_leaf) 222 return (0); 223 224 if (nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 225 &child, &children) != 0) { 226 vdev_free(*vdp); 227 *vdp = NULL; 228 return (EINVAL); 229 } 230 231 for (c = 0; c < children; c++) { 232 vdev_t *vd; 233 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 234 atype)) != 0) { 235 vdev_free(*vdp); 236 *vdp = NULL; 237 return (error); 238 } 239 } 240 241 ASSERT(*vdp != NULL); 242 243 return (0); 244 } 245 246 /* 247 * Opposite of spa_load(). 248 */ 249 static void 250 spa_unload(spa_t *spa) 251 { 252 int i; 253 254 /* 255 * Stop async tasks. 256 */ 257 spa_async_suspend(spa); 258 259 /* 260 * Stop syncing. 261 */ 262 if (spa->spa_sync_on) { 263 txg_sync_stop(spa->spa_dsl_pool); 264 spa->spa_sync_on = B_FALSE; 265 } 266 267 /* 268 * Wait for any outstanding prefetch I/O to complete. 269 */ 270 spa_config_enter(spa, RW_WRITER, FTAG); 271 spa_config_exit(spa, FTAG); 272 273 /* 274 * Close the dsl pool. 275 */ 276 if (spa->spa_dsl_pool) { 277 dsl_pool_close(spa->spa_dsl_pool); 278 spa->spa_dsl_pool = NULL; 279 } 280 281 /* 282 * Close all vdevs. 283 */ 284 if (spa->spa_root_vdev) 285 vdev_free(spa->spa_root_vdev); 286 ASSERT(spa->spa_root_vdev == NULL); 287 288 for (i = 0; i < spa->spa_nspares; i++) 289 vdev_free(spa->spa_spares[i]); 290 if (spa->spa_spares) { 291 kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *)); 292 spa->spa_spares = NULL; 293 } 294 if (spa->spa_sparelist) { 295 nvlist_free(spa->spa_sparelist); 296 spa->spa_sparelist = NULL; 297 } 298 299 spa->spa_async_suspended = 0; 300 } 301 302 /* 303 * Load (or re-load) the current list of vdevs describing the active spares for 304 * this pool. When this is called, we have some form of basic information in 305 * 'spa_sparelist'. We parse this into vdevs, try to open them, and then 306 * re-generate a more complete list including status information. 307 */ 308 static void 309 spa_load_spares(spa_t *spa) 310 { 311 nvlist_t **spares; 312 uint_t nspares; 313 int i; 314 vdev_t *vd, *tvd; 315 316 /* 317 * First, close and free any existing spare vdevs. 318 */ 319 for (i = 0; i < spa->spa_nspares; i++) { 320 vd = spa->spa_spares[i]; 321 322 /* Undo the call to spa_activate() below */ 323 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL && 324 tvd->vdev_isspare) 325 spa_spare_remove(tvd); 326 vdev_close(vd); 327 vdev_free(vd); 328 } 329 330 if (spa->spa_spares) 331 kmem_free(spa->spa_spares, spa->spa_nspares * sizeof (void *)); 332 333 if (spa->spa_sparelist == NULL) 334 nspares = 0; 335 else 336 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 337 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 338 339 spa->spa_nspares = (int)nspares; 340 spa->spa_spares = NULL; 341 342 if (nspares == 0) 343 return; 344 345 /* 346 * Construct the array of vdevs, opening them to get status in the 347 * process. For each spare, there is potentially two different vdev_t 348 * structures associated with it: one in the list of spares (used only 349 * for basic validation purposes) and one in the active vdev 350 * configuration (if it's spared in). During this phase we open and 351 * validate each vdev on the spare list. If the vdev also exists in the 352 * active configuration, then we also mark this vdev as an active spare. 353 */ 354 spa->spa_spares = kmem_alloc(nspares * sizeof (void *), KM_SLEEP); 355 for (i = 0; i < spa->spa_nspares; i++) { 356 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 357 VDEV_ALLOC_SPARE) == 0); 358 ASSERT(vd != NULL); 359 360 spa->spa_spares[i] = vd; 361 362 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid)) != NULL) { 363 if (!tvd->vdev_isspare) 364 spa_spare_add(tvd); 365 366 /* 367 * We only mark the spare active if we were successfully 368 * able to load the vdev. Otherwise, importing a pool 369 * with a bad active spare would result in strange 370 * behavior, because multiple pool would think the spare 371 * is actively in use. 372 * 373 * There is a vulnerability here to an equally bizarre 374 * circumstance, where a dead active spare is later 375 * brought back to life (onlined or otherwise). Given 376 * the rarity of this scenario, and the extra complexity 377 * it adds, we ignore the possibility. 378 */ 379 if (!vdev_is_dead(tvd)) 380 spa_spare_activate(tvd); 381 } 382 383 if (vdev_open(vd) != 0) 384 continue; 385 386 vd->vdev_top = vd; 387 (void) vdev_validate_spare(vd); 388 } 389 390 /* 391 * Recompute the stashed list of spares, with status information 392 * this time. 393 */ 394 VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 395 DATA_TYPE_NVLIST_ARRAY) == 0); 396 397 spares = kmem_alloc(spa->spa_nspares * sizeof (void *), KM_SLEEP); 398 for (i = 0; i < spa->spa_nspares; i++) 399 spares[i] = vdev_config_generate(spa, spa->spa_spares[i], 400 B_TRUE, B_TRUE); 401 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 402 spares, spa->spa_nspares) == 0); 403 for (i = 0; i < spa->spa_nspares; i++) 404 nvlist_free(spares[i]); 405 kmem_free(spares, spa->spa_nspares * sizeof (void *)); 406 } 407 408 static int 409 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 410 { 411 dmu_buf_t *db; 412 char *packed = NULL; 413 size_t nvsize = 0; 414 int error; 415 *value = NULL; 416 417 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 418 nvsize = *(uint64_t *)db->db_data; 419 dmu_buf_rele(db, FTAG); 420 421 packed = kmem_alloc(nvsize, KM_SLEEP); 422 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed); 423 if (error == 0) 424 error = nvlist_unpack(packed, nvsize, value, 0); 425 kmem_free(packed, nvsize); 426 427 return (error); 428 } 429 430 /* 431 * Checks to see if the given vdev could not be opened, in which case we post a 432 * sysevent to notify the autoreplace code that the device has been removed. 433 */ 434 static void 435 spa_check_removed(vdev_t *vd) 436 { 437 int c; 438 439 for (c = 0; c < vd->vdev_children; c++) 440 spa_check_removed(vd->vdev_child[c]); 441 442 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) { 443 zfs_post_autoreplace(vd->vdev_spa, vd); 444 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 445 } 446 } 447 448 /* 449 * Load an existing storage pool, using the pool's builtin spa_config as a 450 * source of configuration information. 451 */ 452 static int 453 spa_load(spa_t *spa, nvlist_t *config, spa_load_state_t state, int mosconfig) 454 { 455 int error = 0; 456 nvlist_t *nvroot = NULL; 457 vdev_t *rvd; 458 uberblock_t *ub = &spa->spa_uberblock; 459 uint64_t config_cache_txg = spa->spa_config_txg; 460 uint64_t pool_guid; 461 uint64_t version; 462 zio_t *zio; 463 uint64_t autoreplace = 0; 464 465 spa->spa_load_state = state; 466 467 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot) || 468 nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) { 469 error = EINVAL; 470 goto out; 471 } 472 473 /* 474 * Versioning wasn't explicitly added to the label until later, so if 475 * it's not present treat it as the initial version. 476 */ 477 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, &version) != 0) 478 version = ZFS_VERSION_INITIAL; 479 480 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 481 &spa->spa_config_txg); 482 483 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 484 spa_guid_exists(pool_guid, 0)) { 485 error = EEXIST; 486 goto out; 487 } 488 489 spa->spa_load_guid = pool_guid; 490 491 /* 492 * Parse the configuration into a vdev tree. We explicitly set the 493 * value that will be returned by spa_version() since parsing the 494 * configuration requires knowing the version number. 495 */ 496 spa_config_enter(spa, RW_WRITER, FTAG); 497 spa->spa_ubsync.ub_version = version; 498 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_LOAD); 499 spa_config_exit(spa, FTAG); 500 501 if (error != 0) 502 goto out; 503 504 ASSERT(spa->spa_root_vdev == rvd); 505 ASSERT(spa_guid(spa) == pool_guid); 506 507 /* 508 * Try to open all vdevs, loading each label in the process. 509 */ 510 error = vdev_open(rvd); 511 if (error != 0) 512 goto out; 513 514 /* 515 * Validate the labels for all leaf vdevs. We need to grab the config 516 * lock because all label I/O is done with the ZIO_FLAG_CONFIG_HELD 517 * flag. 518 */ 519 spa_config_enter(spa, RW_READER, FTAG); 520 error = vdev_validate(rvd); 521 spa_config_exit(spa, FTAG); 522 523 if (error != 0) 524 goto out; 525 526 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 527 error = ENXIO; 528 goto out; 529 } 530 531 /* 532 * Find the best uberblock. 533 */ 534 bzero(ub, sizeof (uberblock_t)); 535 536 zio = zio_root(spa, NULL, NULL, 537 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 538 vdev_uberblock_load(zio, rvd, ub); 539 error = zio_wait(zio); 540 541 /* 542 * If we weren't able to find a single valid uberblock, return failure. 543 */ 544 if (ub->ub_txg == 0) { 545 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 546 VDEV_AUX_CORRUPT_DATA); 547 error = ENXIO; 548 goto out; 549 } 550 551 /* 552 * If the pool is newer than the code, we can't open it. 553 */ 554 if (ub->ub_version > ZFS_VERSION) { 555 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 556 VDEV_AUX_VERSION_NEWER); 557 error = ENOTSUP; 558 goto out; 559 } 560 561 /* 562 * If the vdev guid sum doesn't match the uberblock, we have an 563 * incomplete configuration. 564 */ 565 if (rvd->vdev_guid_sum != ub->ub_guid_sum && mosconfig) { 566 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 567 VDEV_AUX_BAD_GUID_SUM); 568 error = ENXIO; 569 goto out; 570 } 571 572 /* 573 * Initialize internal SPA structures. 574 */ 575 spa->spa_state = POOL_STATE_ACTIVE; 576 spa->spa_ubsync = spa->spa_uberblock; 577 spa->spa_first_txg = spa_last_synced_txg(spa) + 1; 578 error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 579 if (error) { 580 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 581 VDEV_AUX_CORRUPT_DATA); 582 goto out; 583 } 584 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 585 586 if (zap_lookup(spa->spa_meta_objset, 587 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 588 sizeof (uint64_t), 1, &spa->spa_config_object) != 0) { 589 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 590 VDEV_AUX_CORRUPT_DATA); 591 error = EIO; 592 goto out; 593 } 594 595 if (!mosconfig) { 596 nvlist_t *newconfig; 597 uint64_t hostid; 598 599 if (load_nvlist(spa, spa->spa_config_object, &newconfig) != 0) { 600 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 601 VDEV_AUX_CORRUPT_DATA); 602 error = EIO; 603 goto out; 604 } 605 606 if (nvlist_lookup_uint64(newconfig, ZPOOL_CONFIG_HOSTID, 607 &hostid) == 0) { 608 char *hostname; 609 unsigned long myhostid = 0; 610 611 VERIFY(nvlist_lookup_string(newconfig, 612 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 613 614 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 615 if (hostid != 0 && myhostid != 0 && 616 (unsigned long)hostid != myhostid) { 617 cmn_err(CE_WARN, "pool '%s' could not be " 618 "loaded as it was last accessed by " 619 "another system (host: %s hostid: 0x%lx). " 620 "See: http://www.sun.com/msg/ZFS-8000-EY", 621 spa->spa_name, hostname, 622 (unsigned long)hostid); 623 error = EBADF; 624 goto out; 625 } 626 } 627 628 spa_config_set(spa, newconfig); 629 spa_unload(spa); 630 spa_deactivate(spa); 631 spa_activate(spa); 632 633 return (spa_load(spa, newconfig, state, B_TRUE)); 634 } 635 636 if (zap_lookup(spa->spa_meta_objset, 637 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 638 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj) != 0) { 639 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 640 VDEV_AUX_CORRUPT_DATA); 641 error = EIO; 642 goto out; 643 } 644 645 /* 646 * Load the bit that tells us to use the new accounting function 647 * (raid-z deflation). If we have an older pool, this will not 648 * be present. 649 */ 650 error = zap_lookup(spa->spa_meta_objset, 651 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 652 sizeof (uint64_t), 1, &spa->spa_deflate); 653 if (error != 0 && error != ENOENT) { 654 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 655 VDEV_AUX_CORRUPT_DATA); 656 error = EIO; 657 goto out; 658 } 659 660 /* 661 * Load the persistent error log. If we have an older pool, this will 662 * not be present. 663 */ 664 error = zap_lookup(spa->spa_meta_objset, 665 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_LAST, 666 sizeof (uint64_t), 1, &spa->spa_errlog_last); 667 if (error != 0 && error != ENOENT) { 668 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 669 VDEV_AUX_CORRUPT_DATA); 670 error = EIO; 671 goto out; 672 } 673 674 error = zap_lookup(spa->spa_meta_objset, 675 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ERRLOG_SCRUB, 676 sizeof (uint64_t), 1, &spa->spa_errlog_scrub); 677 if (error != 0 && error != ENOENT) { 678 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 679 VDEV_AUX_CORRUPT_DATA); 680 error = EIO; 681 goto out; 682 } 683 684 /* 685 * Load the history object. If we have an older pool, this 686 * will not be present. 687 */ 688 error = zap_lookup(spa->spa_meta_objset, 689 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_HISTORY, 690 sizeof (uint64_t), 1, &spa->spa_history); 691 if (error != 0 && error != ENOENT) { 692 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 693 VDEV_AUX_CORRUPT_DATA); 694 error = EIO; 695 goto out; 696 } 697 698 /* 699 * Load any hot spares for this pool. 700 */ 701 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 702 DMU_POOL_SPARES, sizeof (uint64_t), 1, &spa->spa_spares_object); 703 if (error != 0 && error != ENOENT) { 704 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 705 VDEV_AUX_CORRUPT_DATA); 706 error = EIO; 707 goto out; 708 } 709 if (error == 0) { 710 ASSERT(spa_version(spa) >= ZFS_VERSION_SPARES); 711 if (load_nvlist(spa, spa->spa_spares_object, 712 &spa->spa_sparelist) != 0) { 713 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 714 VDEV_AUX_CORRUPT_DATA); 715 error = EIO; 716 goto out; 717 } 718 719 spa_config_enter(spa, RW_WRITER, FTAG); 720 spa_load_spares(spa); 721 spa_config_exit(spa, FTAG); 722 } 723 724 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 725 DMU_POOL_PROPS, sizeof (uint64_t), 1, &spa->spa_pool_props_object); 726 727 if (error && error != ENOENT) { 728 vdev_set_state(rvd, B_TRUE, VDEV_STATE_CANT_OPEN, 729 VDEV_AUX_CORRUPT_DATA); 730 error = EIO; 731 goto out; 732 } 733 734 if (error == 0) { 735 (void) zap_lookup(spa->spa_meta_objset, 736 spa->spa_pool_props_object, 737 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 738 sizeof (uint64_t), 1, &spa->spa_bootfs); 739 (void) zap_lookup(spa->spa_meta_objset, 740 spa->spa_pool_props_object, 741 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 742 sizeof (uint64_t), 1, &autoreplace); 743 } 744 745 /* 746 * If the 'autoreplace' property is set, then post a resource notifying 747 * the ZFS DE that it should not issue any faults for unopenable 748 * devices. We also iterate over the vdevs, and post a sysevent for any 749 * unopenable vdevs so that the normal autoreplace handler can take 750 * over. 751 */ 752 if (autoreplace) 753 spa_check_removed(spa->spa_root_vdev); 754 755 /* 756 * Load the vdev state for all toplevel vdevs. 757 */ 758 vdev_load(rvd); 759 760 /* 761 * Propagate the leaf DTLs we just loaded all the way up the tree. 762 */ 763 spa_config_enter(spa, RW_WRITER, FTAG); 764 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 765 spa_config_exit(spa, FTAG); 766 767 /* 768 * Check the state of the root vdev. If it can't be opened, it 769 * indicates one or more toplevel vdevs are faulted. 770 */ 771 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) { 772 error = ENXIO; 773 goto out; 774 } 775 776 if ((spa_mode & FWRITE) && state != SPA_LOAD_TRYIMPORT) { 777 dmu_tx_t *tx; 778 int need_update = B_FALSE; 779 int c; 780 781 /* 782 * Claim log blocks that haven't been committed yet. 783 * This must all happen in a single txg. 784 */ 785 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 786 spa_first_txg(spa)); 787 (void) dmu_objset_find(spa->spa_name, 788 zil_claim, tx, DS_FIND_CHILDREN); 789 dmu_tx_commit(tx); 790 791 spa->spa_sync_on = B_TRUE; 792 txg_sync_start(spa->spa_dsl_pool); 793 794 /* 795 * Wait for all claims to sync. 796 */ 797 txg_wait_synced(spa->spa_dsl_pool, 0); 798 799 /* 800 * If the config cache is stale, or we have uninitialized 801 * metaslabs (see spa_vdev_add()), then update the config. 802 */ 803 if (config_cache_txg != spa->spa_config_txg || 804 state == SPA_LOAD_IMPORT) 805 need_update = B_TRUE; 806 807 for (c = 0; c < rvd->vdev_children; c++) 808 if (rvd->vdev_child[c]->vdev_ms_array == 0) 809 need_update = B_TRUE; 810 811 /* 812 * Update the config cache asychronously in case we're the 813 * root pool, in which case the config cache isn't writable yet. 814 */ 815 if (need_update) 816 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 817 } 818 819 error = 0; 820 out: 821 if (error && error != EBADF) 822 zfs_ereport_post(FM_EREPORT_ZFS_POOL, spa, NULL, NULL, 0, 0); 823 spa->spa_load_state = SPA_LOAD_NONE; 824 spa->spa_ena = 0; 825 826 return (error); 827 } 828 829 /* 830 * Pool Open/Import 831 * 832 * The import case is identical to an open except that the configuration is sent 833 * down from userland, instead of grabbed from the configuration cache. For the 834 * case of an open, the pool configuration will exist in the 835 * POOL_STATE_UNINITIALIZED state. 836 * 837 * The stats information (gen/count/ustats) is used to gather vdev statistics at 838 * the same time open the pool, without having to keep around the spa_t in some 839 * ambiguous state. 840 */ 841 static int 842 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t **config) 843 { 844 spa_t *spa; 845 int error; 846 int loaded = B_FALSE; 847 int locked = B_FALSE; 848 849 *spapp = NULL; 850 851 /* 852 * As disgusting as this is, we need to support recursive calls to this 853 * function because dsl_dir_open() is called during spa_load(), and ends 854 * up calling spa_open() again. The real fix is to figure out how to 855 * avoid dsl_dir_open() calling this in the first place. 856 */ 857 if (mutex_owner(&spa_namespace_lock) != curthread) { 858 mutex_enter(&spa_namespace_lock); 859 locked = B_TRUE; 860 } 861 862 if ((spa = spa_lookup(pool)) == NULL) { 863 if (locked) 864 mutex_exit(&spa_namespace_lock); 865 return (ENOENT); 866 } 867 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 868 869 spa_activate(spa); 870 871 error = spa_load(spa, spa->spa_config, SPA_LOAD_OPEN, B_FALSE); 872 873 if (error == EBADF) { 874 /* 875 * If vdev_validate() returns failure (indicated by 876 * EBADF), it indicates that one of the vdevs indicates 877 * that the pool has been exported or destroyed. If 878 * this is the case, the config cache is out of sync and 879 * we should remove the pool from the namespace. 880 */ 881 zfs_post_ok(spa, NULL); 882 spa_unload(spa); 883 spa_deactivate(spa); 884 spa_remove(spa); 885 spa_config_sync(); 886 if (locked) 887 mutex_exit(&spa_namespace_lock); 888 return (ENOENT); 889 } 890 891 if (error) { 892 /* 893 * We can't open the pool, but we still have useful 894 * information: the state of each vdev after the 895 * attempted vdev_open(). Return this to the user. 896 */ 897 if (config != NULL && spa->spa_root_vdev != NULL) { 898 spa_config_enter(spa, RW_READER, FTAG); 899 *config = spa_config_generate(spa, NULL, -1ULL, 900 B_TRUE); 901 spa_config_exit(spa, FTAG); 902 } 903 spa_unload(spa); 904 spa_deactivate(spa); 905 spa->spa_last_open_failed = B_TRUE; 906 if (locked) 907 mutex_exit(&spa_namespace_lock); 908 *spapp = NULL; 909 return (error); 910 } else { 911 zfs_post_ok(spa, NULL); 912 spa->spa_last_open_failed = B_FALSE; 913 } 914 915 loaded = B_TRUE; 916 } 917 918 spa_open_ref(spa, tag); 919 920 /* 921 * If we just loaded the pool, resilver anything that's out of date. 922 */ 923 if (loaded && (spa_mode & FWRITE)) 924 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 925 926 if (locked) 927 mutex_exit(&spa_namespace_lock); 928 929 *spapp = spa; 930 931 if (config != NULL) { 932 spa_config_enter(spa, RW_READER, FTAG); 933 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 934 spa_config_exit(spa, FTAG); 935 } 936 937 return (0); 938 } 939 940 int 941 spa_open(const char *name, spa_t **spapp, void *tag) 942 { 943 return (spa_open_common(name, spapp, tag, NULL)); 944 } 945 946 /* 947 * Lookup the given spa_t, incrementing the inject count in the process, 948 * preventing it from being exported or destroyed. 949 */ 950 spa_t * 951 spa_inject_addref(char *name) 952 { 953 spa_t *spa; 954 955 mutex_enter(&spa_namespace_lock); 956 if ((spa = spa_lookup(name)) == NULL) { 957 mutex_exit(&spa_namespace_lock); 958 return (NULL); 959 } 960 spa->spa_inject_ref++; 961 mutex_exit(&spa_namespace_lock); 962 963 return (spa); 964 } 965 966 void 967 spa_inject_delref(spa_t *spa) 968 { 969 mutex_enter(&spa_namespace_lock); 970 spa->spa_inject_ref--; 971 mutex_exit(&spa_namespace_lock); 972 } 973 974 static void 975 spa_add_spares(spa_t *spa, nvlist_t *config) 976 { 977 nvlist_t **spares; 978 uint_t i, nspares; 979 nvlist_t *nvroot; 980 uint64_t guid; 981 vdev_stat_t *vs; 982 uint_t vsc; 983 uint64_t pool; 984 985 if (spa->spa_nspares == 0) 986 return; 987 988 VERIFY(nvlist_lookup_nvlist(config, 989 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 990 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 991 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 992 if (nspares != 0) { 993 VERIFY(nvlist_add_nvlist_array(nvroot, 994 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 995 VERIFY(nvlist_lookup_nvlist_array(nvroot, 996 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 997 998 /* 999 * Go through and find any spares which have since been 1000 * repurposed as an active spare. If this is the case, update 1001 * their status appropriately. 1002 */ 1003 for (i = 0; i < nspares; i++) { 1004 VERIFY(nvlist_lookup_uint64(spares[i], 1005 ZPOOL_CONFIG_GUID, &guid) == 0); 1006 if (spa_spare_exists(guid, &pool) && pool != 0ULL) { 1007 VERIFY(nvlist_lookup_uint64_array( 1008 spares[i], ZPOOL_CONFIG_STATS, 1009 (uint64_t **)&vs, &vsc) == 0); 1010 vs->vs_state = VDEV_STATE_CANT_OPEN; 1011 vs->vs_aux = VDEV_AUX_SPARED; 1012 } 1013 } 1014 } 1015 } 1016 1017 int 1018 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen) 1019 { 1020 int error; 1021 spa_t *spa; 1022 1023 *config = NULL; 1024 error = spa_open_common(name, &spa, FTAG, config); 1025 1026 if (spa && *config != NULL) { 1027 VERIFY(nvlist_add_uint64(*config, ZPOOL_CONFIG_ERRCOUNT, 1028 spa_get_errlog_size(spa)) == 0); 1029 1030 spa_add_spares(spa, *config); 1031 } 1032 1033 /* 1034 * We want to get the alternate root even for faulted pools, so we cheat 1035 * and call spa_lookup() directly. 1036 */ 1037 if (altroot) { 1038 if (spa == NULL) { 1039 mutex_enter(&spa_namespace_lock); 1040 spa = spa_lookup(name); 1041 if (spa) 1042 spa_altroot(spa, altroot, buflen); 1043 else 1044 altroot[0] = '\0'; 1045 spa = NULL; 1046 mutex_exit(&spa_namespace_lock); 1047 } else { 1048 spa_altroot(spa, altroot, buflen); 1049 } 1050 } 1051 1052 if (spa != NULL) 1053 spa_close(spa, FTAG); 1054 1055 return (error); 1056 } 1057 1058 /* 1059 * Validate that the 'spares' array is well formed. We must have an array of 1060 * nvlists, each which describes a valid leaf vdev. If this is an import (mode 1061 * is VDEV_ALLOC_SPARE), then we allow corrupted spares to be specified, as long 1062 * as they are well-formed. 1063 */ 1064 static int 1065 spa_validate_spares(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 1066 { 1067 nvlist_t **spares; 1068 uint_t i, nspares; 1069 vdev_t *vd; 1070 int error; 1071 1072 /* 1073 * It's acceptable to have no spares specified. 1074 */ 1075 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1076 &spares, &nspares) != 0) 1077 return (0); 1078 1079 if (nspares == 0) 1080 return (EINVAL); 1081 1082 /* 1083 * Make sure the pool is formatted with a version that supports hot 1084 * spares. 1085 */ 1086 if (spa_version(spa) < ZFS_VERSION_SPARES) 1087 return (ENOTSUP); 1088 1089 /* 1090 * Set the pending spare list so we correctly handle device in-use 1091 * checking. 1092 */ 1093 spa->spa_pending_spares = spares; 1094 spa->spa_pending_nspares = nspares; 1095 1096 for (i = 0; i < nspares; i++) { 1097 if ((error = spa_config_parse(spa, &vd, spares[i], NULL, 0, 1098 mode)) != 0) 1099 goto out; 1100 1101 if (!vd->vdev_ops->vdev_op_leaf) { 1102 vdev_free(vd); 1103 error = EINVAL; 1104 goto out; 1105 } 1106 1107 vd->vdev_top = vd; 1108 1109 if ((error = vdev_open(vd)) == 0 && 1110 (error = vdev_label_init(vd, crtxg, 1111 VDEV_LABEL_SPARE)) == 0) { 1112 VERIFY(nvlist_add_uint64(spares[i], ZPOOL_CONFIG_GUID, 1113 vd->vdev_guid) == 0); 1114 } 1115 1116 vdev_free(vd); 1117 1118 if (error && mode != VDEV_ALLOC_SPARE) 1119 goto out; 1120 else 1121 error = 0; 1122 } 1123 1124 out: 1125 spa->spa_pending_spares = NULL; 1126 spa->spa_pending_nspares = 0; 1127 return (error); 1128 } 1129 1130 /* 1131 * Pool Creation 1132 */ 1133 int 1134 spa_create(const char *pool, nvlist_t *nvroot, const char *altroot) 1135 { 1136 spa_t *spa; 1137 vdev_t *rvd; 1138 dsl_pool_t *dp; 1139 dmu_tx_t *tx; 1140 int c, error = 0; 1141 uint64_t txg = TXG_INITIAL; 1142 nvlist_t **spares; 1143 uint_t nspares; 1144 1145 /* 1146 * If this pool already exists, return failure. 1147 */ 1148 mutex_enter(&spa_namespace_lock); 1149 if (spa_lookup(pool) != NULL) { 1150 mutex_exit(&spa_namespace_lock); 1151 return (EEXIST); 1152 } 1153 1154 /* 1155 * Allocate a new spa_t structure. 1156 */ 1157 spa = spa_add(pool, altroot); 1158 spa_activate(spa); 1159 1160 spa->spa_uberblock.ub_txg = txg - 1; 1161 spa->spa_uberblock.ub_version = ZFS_VERSION; 1162 spa->spa_ubsync = spa->spa_uberblock; 1163 1164 /* 1165 * Create the root vdev. 1166 */ 1167 spa_config_enter(spa, RW_WRITER, FTAG); 1168 1169 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 1170 1171 ASSERT(error != 0 || rvd != NULL); 1172 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 1173 1174 if (error == 0 && rvd->vdev_children == 0) 1175 error = EINVAL; 1176 1177 if (error == 0 && 1178 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 1179 (error = spa_validate_spares(spa, nvroot, txg, 1180 VDEV_ALLOC_ADD)) == 0) { 1181 for (c = 0; c < rvd->vdev_children; c++) 1182 vdev_init(rvd->vdev_child[c], txg); 1183 vdev_config_dirty(rvd); 1184 } 1185 1186 spa_config_exit(spa, FTAG); 1187 1188 if (error != 0) { 1189 spa_unload(spa); 1190 spa_deactivate(spa); 1191 spa_remove(spa); 1192 mutex_exit(&spa_namespace_lock); 1193 return (error); 1194 } 1195 1196 /* 1197 * Get the list of spares, if specified. 1198 */ 1199 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1200 &spares, &nspares) == 0) { 1201 VERIFY(nvlist_alloc(&spa->spa_sparelist, NV_UNIQUE_NAME, 1202 KM_SLEEP) == 0); 1203 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1204 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1205 spa_config_enter(spa, RW_WRITER, FTAG); 1206 spa_load_spares(spa); 1207 spa_config_exit(spa, FTAG); 1208 spa->spa_sync_spares = B_TRUE; 1209 } 1210 1211 spa->spa_dsl_pool = dp = dsl_pool_create(spa, txg); 1212 spa->spa_meta_objset = dp->dp_meta_objset; 1213 1214 tx = dmu_tx_create_assigned(dp, txg); 1215 1216 /* 1217 * Create the pool config object. 1218 */ 1219 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 1220 DMU_OT_PACKED_NVLIST, 1 << 14, 1221 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 1222 1223 if (zap_add(spa->spa_meta_objset, 1224 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 1225 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 1226 cmn_err(CE_PANIC, "failed to add pool config"); 1227 } 1228 1229 /* Newly created pools are always deflated. */ 1230 spa->spa_deflate = TRUE; 1231 if (zap_add(spa->spa_meta_objset, 1232 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 1233 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 1234 cmn_err(CE_PANIC, "failed to add deflate"); 1235 } 1236 1237 /* 1238 * Create the deferred-free bplist object. Turn off compression 1239 * because sync-to-convergence takes longer if the blocksize 1240 * keeps changing. 1241 */ 1242 spa->spa_sync_bplist_obj = bplist_create(spa->spa_meta_objset, 1243 1 << 14, tx); 1244 dmu_object_set_compress(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 1245 ZIO_COMPRESS_OFF, tx); 1246 1247 if (zap_add(spa->spa_meta_objset, 1248 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST, 1249 sizeof (uint64_t), 1, &spa->spa_sync_bplist_obj, tx) != 0) { 1250 cmn_err(CE_PANIC, "failed to add bplist"); 1251 } 1252 1253 /* 1254 * Create the pool's history object. 1255 */ 1256 spa_history_create_obj(spa, tx); 1257 1258 dmu_tx_commit(tx); 1259 1260 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 1261 spa->spa_sync_on = B_TRUE; 1262 txg_sync_start(spa->spa_dsl_pool); 1263 1264 /* 1265 * We explicitly wait for the first transaction to complete so that our 1266 * bean counters are appropriately updated. 1267 */ 1268 txg_wait_synced(spa->spa_dsl_pool, txg); 1269 1270 spa_config_sync(); 1271 1272 mutex_exit(&spa_namespace_lock); 1273 1274 return (0); 1275 } 1276 1277 /* 1278 * Import the given pool into the system. We set up the necessary spa_t and 1279 * then call spa_load() to do the dirty work. 1280 */ 1281 int 1282 spa_import(const char *pool, nvlist_t *config, const char *altroot) 1283 { 1284 spa_t *spa; 1285 int error; 1286 nvlist_t *nvroot; 1287 nvlist_t **spares; 1288 uint_t nspares; 1289 1290 if (!(spa_mode & FWRITE)) 1291 return (EROFS); 1292 1293 /* 1294 * If a pool with this name exists, return failure. 1295 */ 1296 mutex_enter(&spa_namespace_lock); 1297 if (spa_lookup(pool) != NULL) { 1298 mutex_exit(&spa_namespace_lock); 1299 return (EEXIST); 1300 } 1301 1302 /* 1303 * Create and initialize the spa structure. 1304 */ 1305 spa = spa_add(pool, altroot); 1306 spa_activate(spa); 1307 1308 /* 1309 * Pass off the heavy lifting to spa_load(). 1310 * Pass TRUE for mosconfig because the user-supplied config 1311 * is actually the one to trust when doing an import. 1312 */ 1313 error = spa_load(spa, config, SPA_LOAD_IMPORT, B_TRUE); 1314 1315 spa_config_enter(spa, RW_WRITER, FTAG); 1316 /* 1317 * Toss any existing sparelist, as it doesn't have any validity anymore, 1318 * and conflicts with spa_has_spare(). 1319 */ 1320 if (spa->spa_sparelist) { 1321 nvlist_free(spa->spa_sparelist); 1322 spa->spa_sparelist = NULL; 1323 spa_load_spares(spa); 1324 } 1325 1326 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 1327 &nvroot) == 0); 1328 if (error == 0) 1329 error = spa_validate_spares(spa, nvroot, -1ULL, 1330 VDEV_ALLOC_SPARE); 1331 spa_config_exit(spa, FTAG); 1332 1333 if (error != 0) { 1334 spa_unload(spa); 1335 spa_deactivate(spa); 1336 spa_remove(spa); 1337 mutex_exit(&spa_namespace_lock); 1338 return (error); 1339 } 1340 1341 /* 1342 * Override any spares as specified by the user, as these may have 1343 * correct device names/devids, etc. 1344 */ 1345 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1346 &spares, &nspares) == 0) { 1347 if (spa->spa_sparelist) 1348 VERIFY(nvlist_remove(spa->spa_sparelist, 1349 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 1350 else 1351 VERIFY(nvlist_alloc(&spa->spa_sparelist, 1352 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1353 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1354 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1355 spa_config_enter(spa, RW_WRITER, FTAG); 1356 spa_load_spares(spa); 1357 spa_config_exit(spa, FTAG); 1358 spa->spa_sync_spares = B_TRUE; 1359 } 1360 1361 /* 1362 * Update the config cache to include the newly-imported pool. 1363 */ 1364 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 1365 1366 /* 1367 * Resilver anything that's out of date. 1368 */ 1369 if (spa_mode & FWRITE) 1370 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1371 1372 mutex_exit(&spa_namespace_lock); 1373 1374 return (0); 1375 } 1376 1377 /* 1378 * This (illegal) pool name is used when temporarily importing a spa_t in order 1379 * to get the vdev stats associated with the imported devices. 1380 */ 1381 #define TRYIMPORT_NAME "$import" 1382 1383 nvlist_t * 1384 spa_tryimport(nvlist_t *tryconfig) 1385 { 1386 nvlist_t *config = NULL; 1387 char *poolname; 1388 spa_t *spa; 1389 uint64_t state; 1390 1391 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 1392 return (NULL); 1393 1394 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 1395 return (NULL); 1396 1397 /* 1398 * Create and initialize the spa structure. 1399 */ 1400 mutex_enter(&spa_namespace_lock); 1401 spa = spa_add(TRYIMPORT_NAME, NULL); 1402 spa_activate(spa); 1403 1404 /* 1405 * Pass off the heavy lifting to spa_load(). 1406 * Pass TRUE for mosconfig because the user-supplied config 1407 * is actually the one to trust when doing an import. 1408 */ 1409 (void) spa_load(spa, tryconfig, SPA_LOAD_TRYIMPORT, B_TRUE); 1410 1411 /* 1412 * If 'tryconfig' was at least parsable, return the current config. 1413 */ 1414 if (spa->spa_root_vdev != NULL) { 1415 spa_config_enter(spa, RW_READER, FTAG); 1416 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 1417 spa_config_exit(spa, FTAG); 1418 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 1419 poolname) == 0); 1420 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 1421 state) == 0); 1422 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 1423 spa->spa_uberblock.ub_timestamp) == 0); 1424 1425 /* 1426 * Add the list of hot spares. 1427 */ 1428 spa_add_spares(spa, config); 1429 } 1430 1431 spa_unload(spa); 1432 spa_deactivate(spa); 1433 spa_remove(spa); 1434 mutex_exit(&spa_namespace_lock); 1435 1436 return (config); 1437 } 1438 1439 /* 1440 * Pool export/destroy 1441 * 1442 * The act of destroying or exporting a pool is very simple. We make sure there 1443 * is no more pending I/O and any references to the pool are gone. Then, we 1444 * update the pool state and sync all the labels to disk, removing the 1445 * configuration from the cache afterwards. 1446 */ 1447 static int 1448 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig) 1449 { 1450 spa_t *spa; 1451 1452 if (oldconfig) 1453 *oldconfig = NULL; 1454 1455 if (!(spa_mode & FWRITE)) 1456 return (EROFS); 1457 1458 mutex_enter(&spa_namespace_lock); 1459 if ((spa = spa_lookup(pool)) == NULL) { 1460 mutex_exit(&spa_namespace_lock); 1461 return (ENOENT); 1462 } 1463 1464 /* 1465 * Put a hold on the pool, drop the namespace lock, stop async tasks, 1466 * reacquire the namespace lock, and see if we can export. 1467 */ 1468 spa_open_ref(spa, FTAG); 1469 mutex_exit(&spa_namespace_lock); 1470 spa_async_suspend(spa); 1471 mutex_enter(&spa_namespace_lock); 1472 spa_close(spa, FTAG); 1473 1474 /* 1475 * The pool will be in core if it's openable, 1476 * in which case we can modify its state. 1477 */ 1478 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 1479 /* 1480 * Objsets may be open only because they're dirty, so we 1481 * have to force it to sync before checking spa_refcnt. 1482 */ 1483 spa_scrub_suspend(spa); 1484 txg_wait_synced(spa->spa_dsl_pool, 0); 1485 1486 /* 1487 * A pool cannot be exported or destroyed if there are active 1488 * references. If we are resetting a pool, allow references by 1489 * fault injection handlers. 1490 */ 1491 if (!spa_refcount_zero(spa) || 1492 (spa->spa_inject_ref != 0 && 1493 new_state != POOL_STATE_UNINITIALIZED)) { 1494 spa_scrub_resume(spa); 1495 spa_async_resume(spa); 1496 mutex_exit(&spa_namespace_lock); 1497 return (EBUSY); 1498 } 1499 1500 spa_scrub_resume(spa); 1501 VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); 1502 1503 /* 1504 * We want this to be reflected on every label, 1505 * so mark them all dirty. spa_unload() will do the 1506 * final sync that pushes these changes out. 1507 */ 1508 if (new_state != POOL_STATE_UNINITIALIZED) { 1509 spa_config_enter(spa, RW_WRITER, FTAG); 1510 spa->spa_state = new_state; 1511 spa->spa_final_txg = spa_last_synced_txg(spa) + 1; 1512 vdev_config_dirty(spa->spa_root_vdev); 1513 spa_config_exit(spa, FTAG); 1514 } 1515 } 1516 1517 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 1518 1519 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 1520 spa_unload(spa); 1521 spa_deactivate(spa); 1522 } 1523 1524 if (oldconfig && spa->spa_config) 1525 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 1526 1527 if (new_state != POOL_STATE_UNINITIALIZED) { 1528 spa_remove(spa); 1529 spa_config_sync(); 1530 } 1531 mutex_exit(&spa_namespace_lock); 1532 1533 return (0); 1534 } 1535 1536 /* 1537 * Destroy a storage pool. 1538 */ 1539 int 1540 spa_destroy(char *pool) 1541 { 1542 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL)); 1543 } 1544 1545 /* 1546 * Export a storage pool. 1547 */ 1548 int 1549 spa_export(char *pool, nvlist_t **oldconfig) 1550 { 1551 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig)); 1552 } 1553 1554 /* 1555 * Similar to spa_export(), this unloads the spa_t without actually removing it 1556 * from the namespace in any way. 1557 */ 1558 int 1559 spa_reset(char *pool) 1560 { 1561 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL)); 1562 } 1563 1564 1565 /* 1566 * ========================================================================== 1567 * Device manipulation 1568 * ========================================================================== 1569 */ 1570 1571 /* 1572 * Add a device to a storage pool. 1573 */ 1574 int 1575 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 1576 { 1577 uint64_t txg; 1578 int c, error; 1579 vdev_t *rvd = spa->spa_root_vdev; 1580 vdev_t *vd, *tvd; 1581 nvlist_t **spares; 1582 uint_t i, nspares; 1583 1584 txg = spa_vdev_enter(spa); 1585 1586 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 1587 VDEV_ALLOC_ADD)) != 0) 1588 return (spa_vdev_exit(spa, NULL, txg, error)); 1589 1590 spa->spa_pending_vdev = vd; 1591 1592 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 1593 &spares, &nspares) != 0) 1594 nspares = 0; 1595 1596 if (vd->vdev_children == 0 && nspares == 0) { 1597 spa->spa_pending_vdev = NULL; 1598 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 1599 } 1600 1601 if (vd->vdev_children != 0) { 1602 if ((error = vdev_create(vd, txg, B_FALSE)) != 0) { 1603 spa->spa_pending_vdev = NULL; 1604 return (spa_vdev_exit(spa, vd, txg, error)); 1605 } 1606 } 1607 1608 /* 1609 * We must validate the spares after checking the children. Otherwise, 1610 * vdev_inuse() will blindly overwrite the spare. 1611 */ 1612 if ((error = spa_validate_spares(spa, nvroot, txg, 1613 VDEV_ALLOC_ADD)) != 0) { 1614 spa->spa_pending_vdev = NULL; 1615 return (spa_vdev_exit(spa, vd, txg, error)); 1616 } 1617 1618 spa->spa_pending_vdev = NULL; 1619 1620 /* 1621 * Transfer each new top-level vdev from vd to rvd. 1622 */ 1623 for (c = 0; c < vd->vdev_children; c++) { 1624 tvd = vd->vdev_child[c]; 1625 vdev_remove_child(vd, tvd); 1626 tvd->vdev_id = rvd->vdev_children; 1627 vdev_add_child(rvd, tvd); 1628 vdev_config_dirty(tvd); 1629 } 1630 1631 if (nspares != 0) { 1632 if (spa->spa_sparelist != NULL) { 1633 nvlist_t **oldspares; 1634 uint_t oldnspares; 1635 nvlist_t **newspares; 1636 1637 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 1638 ZPOOL_CONFIG_SPARES, &oldspares, &oldnspares) == 0); 1639 1640 newspares = kmem_alloc(sizeof (void *) * 1641 (nspares + oldnspares), KM_SLEEP); 1642 for (i = 0; i < oldnspares; i++) 1643 VERIFY(nvlist_dup(oldspares[i], 1644 &newspares[i], KM_SLEEP) == 0); 1645 for (i = 0; i < nspares; i++) 1646 VERIFY(nvlist_dup(spares[i], 1647 &newspares[i + oldnspares], 1648 KM_SLEEP) == 0); 1649 1650 VERIFY(nvlist_remove(spa->spa_sparelist, 1651 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 1652 1653 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1654 ZPOOL_CONFIG_SPARES, newspares, 1655 nspares + oldnspares) == 0); 1656 for (i = 0; i < oldnspares + nspares; i++) 1657 nvlist_free(newspares[i]); 1658 kmem_free(newspares, (oldnspares + nspares) * 1659 sizeof (void *)); 1660 } else { 1661 VERIFY(nvlist_alloc(&spa->spa_sparelist, 1662 NV_UNIQUE_NAME, KM_SLEEP) == 0); 1663 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, 1664 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 1665 } 1666 1667 spa_load_spares(spa); 1668 spa->spa_sync_spares = B_TRUE; 1669 } 1670 1671 /* 1672 * We have to be careful when adding new vdevs to an existing pool. 1673 * If other threads start allocating from these vdevs before we 1674 * sync the config cache, and we lose power, then upon reboot we may 1675 * fail to open the pool because there are DVAs that the config cache 1676 * can't translate. Therefore, we first add the vdevs without 1677 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 1678 * and then let spa_config_update() initialize the new metaslabs. 1679 * 1680 * spa_load() checks for added-but-not-initialized vdevs, so that 1681 * if we lose power at any point in this sequence, the remaining 1682 * steps will be completed the next time we load the pool. 1683 */ 1684 (void) spa_vdev_exit(spa, vd, txg, 0); 1685 1686 mutex_enter(&spa_namespace_lock); 1687 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 1688 mutex_exit(&spa_namespace_lock); 1689 1690 return (0); 1691 } 1692 1693 /* 1694 * Attach a device to a mirror. The arguments are the path to any device 1695 * in the mirror, and the nvroot for the new device. If the path specifies 1696 * a device that is not mirrored, we automatically insert the mirror vdev. 1697 * 1698 * If 'replacing' is specified, the new device is intended to replace the 1699 * existing device; in this case the two devices are made into their own 1700 * mirror using the 'replacing' vdev, which is functionally identical to 1701 * the mirror vdev (it actually reuses all the same ops) but has a few 1702 * extra rules: you can't attach to it after it's been created, and upon 1703 * completion of resilvering, the first disk (the one being replaced) 1704 * is automatically detached. 1705 */ 1706 int 1707 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 1708 { 1709 uint64_t txg, open_txg; 1710 int error; 1711 vdev_t *rvd = spa->spa_root_vdev; 1712 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 1713 vdev_ops_t *pvops; 1714 int is_log; 1715 1716 txg = spa_vdev_enter(spa); 1717 1718 oldvd = vdev_lookup_by_guid(rvd, guid); 1719 1720 if (oldvd == NULL) 1721 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1722 1723 if (!oldvd->vdev_ops->vdev_op_leaf) 1724 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1725 1726 pvd = oldvd->vdev_parent; 1727 1728 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 1729 VDEV_ALLOC_ADD)) != 0) 1730 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 1731 1732 if (newrootvd->vdev_children != 1) 1733 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 1734 1735 newvd = newrootvd->vdev_child[0]; 1736 1737 if (!newvd->vdev_ops->vdev_op_leaf) 1738 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 1739 1740 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 1741 return (spa_vdev_exit(spa, newrootvd, txg, error)); 1742 1743 /* 1744 * Spares can't replace logs 1745 */ 1746 is_log = oldvd->vdev_islog; 1747 if (is_log && newvd->vdev_isspare) 1748 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1749 1750 if (!replacing) { 1751 /* 1752 * For attach, the only allowable parent is a mirror or the root 1753 * vdev. 1754 */ 1755 if (pvd->vdev_ops != &vdev_mirror_ops && 1756 pvd->vdev_ops != &vdev_root_ops) 1757 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1758 1759 pvops = &vdev_mirror_ops; 1760 } else { 1761 /* 1762 * Active hot spares can only be replaced by inactive hot 1763 * spares. 1764 */ 1765 if (pvd->vdev_ops == &vdev_spare_ops && 1766 pvd->vdev_child[1] == oldvd && 1767 !spa_has_spare(spa, newvd->vdev_guid)) 1768 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1769 1770 /* 1771 * If the source is a hot spare, and the parent isn't already a 1772 * spare, then we want to create a new hot spare. Otherwise, we 1773 * want to create a replacing vdev. The user is not allowed to 1774 * attach to a spared vdev child unless the 'isspare' state is 1775 * the same (spare replaces spare, non-spare replaces 1776 * non-spare). 1777 */ 1778 if (pvd->vdev_ops == &vdev_replacing_ops) 1779 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1780 else if (pvd->vdev_ops == &vdev_spare_ops && 1781 newvd->vdev_isspare != oldvd->vdev_isspare) 1782 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 1783 else if (pvd->vdev_ops != &vdev_spare_ops && 1784 newvd->vdev_isspare) 1785 pvops = &vdev_spare_ops; 1786 else 1787 pvops = &vdev_replacing_ops; 1788 } 1789 1790 /* 1791 * Compare the new device size with the replaceable/attachable 1792 * device size. 1793 */ 1794 if (newvd->vdev_psize < vdev_get_rsize(oldvd)) 1795 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 1796 1797 /* 1798 * The new device cannot have a higher alignment requirement 1799 * than the top-level vdev. 1800 */ 1801 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 1802 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 1803 1804 /* 1805 * If this is an in-place replacement, update oldvd's path and devid 1806 * to make it distinguishable from newvd, and unopenable from now on. 1807 */ 1808 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 1809 spa_strfree(oldvd->vdev_path); 1810 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 1811 KM_SLEEP); 1812 (void) sprintf(oldvd->vdev_path, "%s/%s", 1813 newvd->vdev_path, "old"); 1814 if (oldvd->vdev_devid != NULL) { 1815 spa_strfree(oldvd->vdev_devid); 1816 oldvd->vdev_devid = NULL; 1817 } 1818 } 1819 1820 /* 1821 * If the parent is not a mirror, or if we're replacing, insert the new 1822 * mirror/replacing/spare vdev above oldvd. 1823 */ 1824 if (pvd->vdev_ops != pvops) 1825 pvd = vdev_add_parent(oldvd, pvops); 1826 1827 ASSERT(pvd->vdev_top->vdev_parent == rvd); 1828 ASSERT(pvd->vdev_ops == pvops); 1829 ASSERT(oldvd->vdev_parent == pvd); 1830 1831 /* 1832 * Extract the new device from its root and add it to pvd. 1833 */ 1834 vdev_remove_child(newrootvd, newvd); 1835 newvd->vdev_id = pvd->vdev_children; 1836 vdev_add_child(pvd, newvd); 1837 1838 /* 1839 * If newvd is smaller than oldvd, but larger than its rsize, 1840 * the addition of newvd may have decreased our parent's asize. 1841 */ 1842 pvd->vdev_asize = MIN(pvd->vdev_asize, newvd->vdev_asize); 1843 1844 tvd = newvd->vdev_top; 1845 ASSERT(pvd->vdev_top == tvd); 1846 ASSERT(tvd->vdev_parent == rvd); 1847 1848 vdev_config_dirty(tvd); 1849 1850 /* 1851 * Set newvd's DTL to [TXG_INITIAL, open_txg]. It will propagate 1852 * upward when spa_vdev_exit() calls vdev_dtl_reassess(). 1853 */ 1854 open_txg = txg + TXG_CONCURRENT_STATES - 1; 1855 1856 mutex_enter(&newvd->vdev_dtl_lock); 1857 space_map_add(&newvd->vdev_dtl_map, TXG_INITIAL, 1858 open_txg - TXG_INITIAL + 1); 1859 mutex_exit(&newvd->vdev_dtl_lock); 1860 1861 if (newvd->vdev_isspare) 1862 spa_spare_activate(newvd); 1863 1864 /* 1865 * Mark newvd's DTL dirty in this txg. 1866 */ 1867 vdev_dirty(tvd, VDD_DTL, newvd, txg); 1868 1869 (void) spa_vdev_exit(spa, newrootvd, open_txg, 0); 1870 1871 /* 1872 * Kick off a resilver to update newvd. We need to grab the namespace 1873 * lock because spa_scrub() needs to post a sysevent with the pool name. 1874 */ 1875 mutex_enter(&spa_namespace_lock); 1876 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 1877 mutex_exit(&spa_namespace_lock); 1878 1879 return (0); 1880 } 1881 1882 /* 1883 * Detach a device from a mirror or replacing vdev. 1884 * If 'replace_done' is specified, only detach if the parent 1885 * is a replacing vdev. 1886 */ 1887 int 1888 spa_vdev_detach(spa_t *spa, uint64_t guid, int replace_done) 1889 { 1890 uint64_t txg; 1891 int c, t, error; 1892 vdev_t *rvd = spa->spa_root_vdev; 1893 vdev_t *vd, *pvd, *cvd, *tvd; 1894 boolean_t unspare = B_FALSE; 1895 uint64_t unspare_guid; 1896 1897 txg = spa_vdev_enter(spa); 1898 1899 vd = vdev_lookup_by_guid(rvd, guid); 1900 1901 if (vd == NULL) 1902 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 1903 1904 if (!vd->vdev_ops->vdev_op_leaf) 1905 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1906 1907 pvd = vd->vdev_parent; 1908 1909 /* 1910 * If replace_done is specified, only remove this device if it's 1911 * the first child of a replacing vdev. For the 'spare' vdev, either 1912 * disk can be removed. 1913 */ 1914 if (replace_done) { 1915 if (pvd->vdev_ops == &vdev_replacing_ops) { 1916 if (vd->vdev_id != 0) 1917 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1918 } else if (pvd->vdev_ops != &vdev_spare_ops) { 1919 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1920 } 1921 } 1922 1923 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 1924 spa_version(spa) >= ZFS_VERSION_SPARES); 1925 1926 /* 1927 * Only mirror, replacing, and spare vdevs support detach. 1928 */ 1929 if (pvd->vdev_ops != &vdev_replacing_ops && 1930 pvd->vdev_ops != &vdev_mirror_ops && 1931 pvd->vdev_ops != &vdev_spare_ops) 1932 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 1933 1934 /* 1935 * If there's only one replica, you can't detach it. 1936 */ 1937 if (pvd->vdev_children <= 1) 1938 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1939 1940 /* 1941 * If all siblings have non-empty DTLs, this device may have the only 1942 * valid copy of the data, which means we cannot safely detach it. 1943 * 1944 * XXX -- as in the vdev_offline() case, we really want a more 1945 * precise DTL check. 1946 */ 1947 for (c = 0; c < pvd->vdev_children; c++) { 1948 uint64_t dirty; 1949 1950 cvd = pvd->vdev_child[c]; 1951 if (cvd == vd) 1952 continue; 1953 if (vdev_is_dead(cvd)) 1954 continue; 1955 mutex_enter(&cvd->vdev_dtl_lock); 1956 dirty = cvd->vdev_dtl_map.sm_space | 1957 cvd->vdev_dtl_scrub.sm_space; 1958 mutex_exit(&cvd->vdev_dtl_lock); 1959 if (!dirty) 1960 break; 1961 } 1962 1963 /* 1964 * If we are a replacing or spare vdev, then we can always detach the 1965 * latter child, as that is how one cancels the operation. 1966 */ 1967 if ((pvd->vdev_ops == &vdev_mirror_ops || vd->vdev_id != 1) && 1968 c == pvd->vdev_children) 1969 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 1970 1971 /* 1972 * If we are detaching the original disk from a spare, then it implies 1973 * that the spare should become a real disk, and be removed from the 1974 * active spare list for the pool. 1975 */ 1976 if (pvd->vdev_ops == &vdev_spare_ops && 1977 vd->vdev_id == 0) 1978 unspare = B_TRUE; 1979 1980 /* 1981 * Erase the disk labels so the disk can be used for other things. 1982 * This must be done after all other error cases are handled, 1983 * but before we disembowel vd (so we can still do I/O to it). 1984 * But if we can't do it, don't treat the error as fatal -- 1985 * it may be that the unwritability of the disk is the reason 1986 * it's being detached! 1987 */ 1988 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 1989 1990 /* 1991 * Remove vd from its parent and compact the parent's children. 1992 */ 1993 vdev_remove_child(pvd, vd); 1994 vdev_compact_children(pvd); 1995 1996 /* 1997 * Remember one of the remaining children so we can get tvd below. 1998 */ 1999 cvd = pvd->vdev_child[0]; 2000 2001 /* 2002 * If we need to remove the remaining child from the list of hot spares, 2003 * do it now, marking the vdev as no longer a spare in the process. We 2004 * must do this before vdev_remove_parent(), because that can change the 2005 * GUID if it creates a new toplevel GUID. 2006 */ 2007 if (unspare) { 2008 ASSERT(cvd->vdev_isspare); 2009 spa_spare_remove(cvd); 2010 unspare_guid = cvd->vdev_guid; 2011 } 2012 2013 /* 2014 * If the parent mirror/replacing vdev only has one child, 2015 * the parent is no longer needed. Remove it from the tree. 2016 */ 2017 if (pvd->vdev_children == 1) 2018 vdev_remove_parent(cvd); 2019 2020 /* 2021 * We don't set tvd until now because the parent we just removed 2022 * may have been the previous top-level vdev. 2023 */ 2024 tvd = cvd->vdev_top; 2025 ASSERT(tvd->vdev_parent == rvd); 2026 2027 /* 2028 * Reevaluate the parent vdev state. 2029 */ 2030 vdev_propagate_state(cvd); 2031 2032 /* 2033 * If the device we just detached was smaller than the others, it may be 2034 * possible to add metaslabs (i.e. grow the pool). vdev_metaslab_init() 2035 * can't fail because the existing metaslabs are already in core, so 2036 * there's nothing to read from disk. 2037 */ 2038 VERIFY(vdev_metaslab_init(tvd, txg) == 0); 2039 2040 vdev_config_dirty(tvd); 2041 2042 /* 2043 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 2044 * vd->vdev_detached is set and free vd's DTL object in syncing context. 2045 * But first make sure we're not on any *other* txg's DTL list, to 2046 * prevent vd from being accessed after it's freed. 2047 */ 2048 for (t = 0; t < TXG_SIZE; t++) 2049 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 2050 vd->vdev_detached = B_TRUE; 2051 vdev_dirty(tvd, VDD_DTL, vd, txg); 2052 2053 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 2054 2055 error = spa_vdev_exit(spa, vd, txg, 0); 2056 2057 /* 2058 * If this was the removal of the original device in a hot spare vdev, 2059 * then we want to go through and remove the device from the hot spare 2060 * list of every other pool. 2061 */ 2062 if (unspare) { 2063 spa = NULL; 2064 mutex_enter(&spa_namespace_lock); 2065 while ((spa = spa_next(spa)) != NULL) { 2066 if (spa->spa_state != POOL_STATE_ACTIVE) 2067 continue; 2068 2069 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 2070 } 2071 mutex_exit(&spa_namespace_lock); 2072 } 2073 2074 return (error); 2075 } 2076 2077 /* 2078 * Remove a device from the pool. Currently, this supports removing only hot 2079 * spares. 2080 */ 2081 int 2082 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 2083 { 2084 vdev_t *vd; 2085 nvlist_t **spares, *nv, **newspares; 2086 uint_t i, j, nspares; 2087 int ret = 0; 2088 2089 spa_config_enter(spa, RW_WRITER, FTAG); 2090 2091 vd = spa_lookup_by_guid(spa, guid); 2092 2093 nv = NULL; 2094 if (spa->spa_spares != NULL && 2095 nvlist_lookup_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 2096 &spares, &nspares) == 0) { 2097 for (i = 0; i < nspares; i++) { 2098 uint64_t theguid; 2099 2100 VERIFY(nvlist_lookup_uint64(spares[i], 2101 ZPOOL_CONFIG_GUID, &theguid) == 0); 2102 if (theguid == guid) { 2103 nv = spares[i]; 2104 break; 2105 } 2106 } 2107 } 2108 2109 /* 2110 * We only support removing a hot spare, and only if it's not currently 2111 * in use in this pool. 2112 */ 2113 if (nv == NULL && vd == NULL) { 2114 ret = ENOENT; 2115 goto out; 2116 } 2117 2118 if (nv == NULL && vd != NULL) { 2119 ret = ENOTSUP; 2120 goto out; 2121 } 2122 2123 if (!unspare && nv != NULL && vd != NULL) { 2124 ret = EBUSY; 2125 goto out; 2126 } 2127 2128 if (nspares == 1) { 2129 newspares = NULL; 2130 } else { 2131 newspares = kmem_alloc((nspares - 1) * sizeof (void *), 2132 KM_SLEEP); 2133 for (i = 0, j = 0; i < nspares; i++) { 2134 if (spares[i] != nv) 2135 VERIFY(nvlist_dup(spares[i], 2136 &newspares[j++], KM_SLEEP) == 0); 2137 } 2138 } 2139 2140 VERIFY(nvlist_remove(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 2141 DATA_TYPE_NVLIST_ARRAY) == 0); 2142 VERIFY(nvlist_add_nvlist_array(spa->spa_sparelist, ZPOOL_CONFIG_SPARES, 2143 newspares, nspares - 1) == 0); 2144 for (i = 0; i < nspares - 1; i++) 2145 nvlist_free(newspares[i]); 2146 kmem_free(newspares, (nspares - 1) * sizeof (void *)); 2147 spa_load_spares(spa); 2148 spa->spa_sync_spares = B_TRUE; 2149 2150 out: 2151 spa_config_exit(spa, FTAG); 2152 2153 return (ret); 2154 } 2155 2156 /* 2157 * Find any device that's done replacing, or a vdev marked 'unspare' that's 2158 * current spared, so we can detach it. 2159 */ 2160 static vdev_t * 2161 spa_vdev_resilver_done_hunt(vdev_t *vd) 2162 { 2163 vdev_t *newvd, *oldvd; 2164 int c; 2165 2166 for (c = 0; c < vd->vdev_children; c++) { 2167 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 2168 if (oldvd != NULL) 2169 return (oldvd); 2170 } 2171 2172 /* 2173 * Check for a completed replacement. 2174 */ 2175 if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) { 2176 oldvd = vd->vdev_child[0]; 2177 newvd = vd->vdev_child[1]; 2178 2179 mutex_enter(&newvd->vdev_dtl_lock); 2180 if (newvd->vdev_dtl_map.sm_space == 0 && 2181 newvd->vdev_dtl_scrub.sm_space == 0) { 2182 mutex_exit(&newvd->vdev_dtl_lock); 2183 return (oldvd); 2184 } 2185 mutex_exit(&newvd->vdev_dtl_lock); 2186 } 2187 2188 /* 2189 * Check for a completed resilver with the 'unspare' flag set. 2190 */ 2191 if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) { 2192 newvd = vd->vdev_child[0]; 2193 oldvd = vd->vdev_child[1]; 2194 2195 mutex_enter(&newvd->vdev_dtl_lock); 2196 if (newvd->vdev_unspare && 2197 newvd->vdev_dtl_map.sm_space == 0 && 2198 newvd->vdev_dtl_scrub.sm_space == 0) { 2199 newvd->vdev_unspare = 0; 2200 mutex_exit(&newvd->vdev_dtl_lock); 2201 return (oldvd); 2202 } 2203 mutex_exit(&newvd->vdev_dtl_lock); 2204 } 2205 2206 return (NULL); 2207 } 2208 2209 static void 2210 spa_vdev_resilver_done(spa_t *spa) 2211 { 2212 vdev_t *vd; 2213 vdev_t *pvd; 2214 uint64_t guid; 2215 uint64_t pguid = 0; 2216 2217 spa_config_enter(spa, RW_READER, FTAG); 2218 2219 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 2220 guid = vd->vdev_guid; 2221 /* 2222 * If we have just finished replacing a hot spared device, then 2223 * we need to detach the parent's first child (the original hot 2224 * spare) as well. 2225 */ 2226 pvd = vd->vdev_parent; 2227 if (pvd->vdev_parent->vdev_ops == &vdev_spare_ops && 2228 pvd->vdev_id == 0) { 2229 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 2230 ASSERT(pvd->vdev_parent->vdev_children == 2); 2231 pguid = pvd->vdev_parent->vdev_child[1]->vdev_guid; 2232 } 2233 spa_config_exit(spa, FTAG); 2234 if (spa_vdev_detach(spa, guid, B_TRUE) != 0) 2235 return; 2236 if (pguid != 0 && spa_vdev_detach(spa, pguid, B_TRUE) != 0) 2237 return; 2238 spa_config_enter(spa, RW_READER, FTAG); 2239 } 2240 2241 spa_config_exit(spa, FTAG); 2242 } 2243 2244 /* 2245 * Update the stored path for this vdev. Dirty the vdev configuration, relying 2246 * on spa_vdev_enter/exit() to synchronize the labels and cache. 2247 */ 2248 int 2249 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 2250 { 2251 vdev_t *rvd, *vd; 2252 uint64_t txg; 2253 2254 rvd = spa->spa_root_vdev; 2255 2256 txg = spa_vdev_enter(spa); 2257 2258 if ((vd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 2259 /* 2260 * Determine if this is a reference to a hot spare. In that 2261 * case, update the path as stored in the spare list. 2262 */ 2263 nvlist_t **spares; 2264 uint_t i, nspares; 2265 if (spa->spa_sparelist != NULL) { 2266 VERIFY(nvlist_lookup_nvlist_array(spa->spa_sparelist, 2267 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 2268 for (i = 0; i < nspares; i++) { 2269 uint64_t theguid; 2270 VERIFY(nvlist_lookup_uint64(spares[i], 2271 ZPOOL_CONFIG_GUID, &theguid) == 0); 2272 if (theguid == guid) 2273 break; 2274 } 2275 2276 if (i == nspares) 2277 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 2278 2279 VERIFY(nvlist_add_string(spares[i], 2280 ZPOOL_CONFIG_PATH, newpath) == 0); 2281 spa_load_spares(spa); 2282 spa->spa_sync_spares = B_TRUE; 2283 return (spa_vdev_exit(spa, NULL, txg, 0)); 2284 } else { 2285 return (spa_vdev_exit(spa, NULL, txg, ENOENT)); 2286 } 2287 } 2288 2289 if (!vd->vdev_ops->vdev_op_leaf) 2290 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 2291 2292 spa_strfree(vd->vdev_path); 2293 vd->vdev_path = spa_strdup(newpath); 2294 2295 vdev_config_dirty(vd->vdev_top); 2296 2297 return (spa_vdev_exit(spa, NULL, txg, 0)); 2298 } 2299 2300 /* 2301 * ========================================================================== 2302 * SPA Scrubbing 2303 * ========================================================================== 2304 */ 2305 2306 static void 2307 spa_scrub_io_done(zio_t *zio) 2308 { 2309 spa_t *spa = zio->io_spa; 2310 2311 arc_data_buf_free(zio->io_data, zio->io_size); 2312 2313 mutex_enter(&spa->spa_scrub_lock); 2314 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) { 2315 vdev_t *vd = zio->io_vd ? zio->io_vd : spa->spa_root_vdev; 2316 spa->spa_scrub_errors++; 2317 mutex_enter(&vd->vdev_stat_lock); 2318 vd->vdev_stat.vs_scrub_errors++; 2319 mutex_exit(&vd->vdev_stat_lock); 2320 } 2321 2322 if (--spa->spa_scrub_inflight < spa->spa_scrub_maxinflight) 2323 cv_broadcast(&spa->spa_scrub_io_cv); 2324 2325 ASSERT(spa->spa_scrub_inflight >= 0); 2326 2327 mutex_exit(&spa->spa_scrub_lock); 2328 } 2329 2330 static void 2331 spa_scrub_io_start(spa_t *spa, blkptr_t *bp, int priority, int flags, 2332 zbookmark_t *zb) 2333 { 2334 size_t size = BP_GET_LSIZE(bp); 2335 void *data; 2336 2337 mutex_enter(&spa->spa_scrub_lock); 2338 /* 2339 * Do not give too much work to vdev(s). 2340 */ 2341 while (spa->spa_scrub_inflight >= spa->spa_scrub_maxinflight) { 2342 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2343 } 2344 spa->spa_scrub_inflight++; 2345 mutex_exit(&spa->spa_scrub_lock); 2346 2347 data = arc_data_buf_alloc(size); 2348 2349 if (zb->zb_level == -1 && BP_GET_TYPE(bp) != DMU_OT_OBJSET) 2350 flags |= ZIO_FLAG_SPECULATIVE; /* intent log block */ 2351 2352 flags |= ZIO_FLAG_SCRUB_THREAD | ZIO_FLAG_CANFAIL; 2353 2354 zio_nowait(zio_read(NULL, spa, bp, data, size, 2355 spa_scrub_io_done, NULL, priority, flags, zb)); 2356 } 2357 2358 /* ARGSUSED */ 2359 static int 2360 spa_scrub_cb(traverse_blk_cache_t *bc, spa_t *spa, void *a) 2361 { 2362 blkptr_t *bp = &bc->bc_blkptr; 2363 vdev_t *vd = spa->spa_root_vdev; 2364 dva_t *dva = bp->blk_dva; 2365 int needs_resilver = B_FALSE; 2366 int d; 2367 2368 if (bc->bc_errno) { 2369 /* 2370 * We can't scrub this block, but we can continue to scrub 2371 * the rest of the pool. Note the error and move along. 2372 */ 2373 mutex_enter(&spa->spa_scrub_lock); 2374 spa->spa_scrub_errors++; 2375 mutex_exit(&spa->spa_scrub_lock); 2376 2377 mutex_enter(&vd->vdev_stat_lock); 2378 vd->vdev_stat.vs_scrub_errors++; 2379 mutex_exit(&vd->vdev_stat_lock); 2380 2381 return (ERESTART); 2382 } 2383 2384 ASSERT(bp->blk_birth < spa->spa_scrub_maxtxg); 2385 2386 for (d = 0; d < BP_GET_NDVAS(bp); d++) { 2387 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d])); 2388 2389 ASSERT(vd != NULL); 2390 2391 /* 2392 * Keep track of how much data we've examined so that 2393 * zpool(1M) status can make useful progress reports. 2394 */ 2395 mutex_enter(&vd->vdev_stat_lock); 2396 vd->vdev_stat.vs_scrub_examined += DVA_GET_ASIZE(&dva[d]); 2397 mutex_exit(&vd->vdev_stat_lock); 2398 2399 if (spa->spa_scrub_type == POOL_SCRUB_RESILVER) { 2400 if (DVA_GET_GANG(&dva[d])) { 2401 /* 2402 * Gang members may be spread across multiple 2403 * vdevs, so the best we can do is look at the 2404 * pool-wide DTL. 2405 * XXX -- it would be better to change our 2406 * allocation policy to ensure that this can't 2407 * happen. 2408 */ 2409 vd = spa->spa_root_vdev; 2410 } 2411 if (vdev_dtl_contains(&vd->vdev_dtl_map, 2412 bp->blk_birth, 1)) 2413 needs_resilver = B_TRUE; 2414 } 2415 } 2416 2417 if (spa->spa_scrub_type == POOL_SCRUB_EVERYTHING) 2418 spa_scrub_io_start(spa, bp, ZIO_PRIORITY_SCRUB, 2419 ZIO_FLAG_SCRUB, &bc->bc_bookmark); 2420 else if (needs_resilver) 2421 spa_scrub_io_start(spa, bp, ZIO_PRIORITY_RESILVER, 2422 ZIO_FLAG_RESILVER, &bc->bc_bookmark); 2423 2424 return (0); 2425 } 2426 2427 static void 2428 spa_scrub_thread(spa_t *spa) 2429 { 2430 callb_cpr_t cprinfo; 2431 traverse_handle_t *th = spa->spa_scrub_th; 2432 vdev_t *rvd = spa->spa_root_vdev; 2433 pool_scrub_type_t scrub_type = spa->spa_scrub_type; 2434 int error = 0; 2435 boolean_t complete; 2436 2437 CALLB_CPR_INIT(&cprinfo, &spa->spa_scrub_lock, callb_generic_cpr, FTAG); 2438 2439 /* 2440 * If we're restarting due to a snapshot create/delete, 2441 * wait for that to complete. 2442 */ 2443 txg_wait_synced(spa_get_dsl(spa), 0); 2444 2445 dprintf("start %s mintxg=%llu maxtxg=%llu\n", 2446 scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", 2447 spa->spa_scrub_mintxg, spa->spa_scrub_maxtxg); 2448 2449 spa_config_enter(spa, RW_WRITER, FTAG); 2450 vdev_reopen(rvd); /* purge all vdev caches */ 2451 vdev_config_dirty(rvd); /* rewrite all disk labels */ 2452 vdev_scrub_stat_update(rvd, scrub_type, B_FALSE); 2453 spa_config_exit(spa, FTAG); 2454 2455 mutex_enter(&spa->spa_scrub_lock); 2456 spa->spa_scrub_errors = 0; 2457 spa->spa_scrub_active = 1; 2458 ASSERT(spa->spa_scrub_inflight == 0); 2459 2460 while (!spa->spa_scrub_stop) { 2461 CALLB_CPR_SAFE_BEGIN(&cprinfo); 2462 while (spa->spa_scrub_suspended) { 2463 spa->spa_scrub_active = 0; 2464 cv_broadcast(&spa->spa_scrub_cv); 2465 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 2466 spa->spa_scrub_active = 1; 2467 } 2468 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_scrub_lock); 2469 2470 if (spa->spa_scrub_restart_txg != 0) 2471 break; 2472 2473 mutex_exit(&spa->spa_scrub_lock); 2474 error = traverse_more(th); 2475 mutex_enter(&spa->spa_scrub_lock); 2476 if (error != EAGAIN) 2477 break; 2478 } 2479 2480 while (spa->spa_scrub_inflight) 2481 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2482 2483 spa->spa_scrub_active = 0; 2484 cv_broadcast(&spa->spa_scrub_cv); 2485 2486 mutex_exit(&spa->spa_scrub_lock); 2487 2488 spa_config_enter(spa, RW_WRITER, FTAG); 2489 2490 mutex_enter(&spa->spa_scrub_lock); 2491 2492 /* 2493 * Note: we check spa_scrub_restart_txg under both spa_scrub_lock 2494 * AND the spa config lock to synchronize with any config changes 2495 * that revise the DTLs under spa_vdev_enter() / spa_vdev_exit(). 2496 */ 2497 if (spa->spa_scrub_restart_txg != 0) 2498 error = ERESTART; 2499 2500 if (spa->spa_scrub_stop) 2501 error = EINTR; 2502 2503 /* 2504 * Even if there were uncorrectable errors, we consider the scrub 2505 * completed. The downside is that if there is a transient error during 2506 * a resilver, we won't resilver the data properly to the target. But 2507 * if the damage is permanent (more likely) we will resilver forever, 2508 * which isn't really acceptable. Since there is enough information for 2509 * the user to know what has failed and why, this seems like a more 2510 * tractable approach. 2511 */ 2512 complete = (error == 0); 2513 2514 dprintf("end %s to maxtxg=%llu %s, traverse=%d, %llu errors, stop=%u\n", 2515 scrub_type == POOL_SCRUB_RESILVER ? "resilver" : "scrub", 2516 spa->spa_scrub_maxtxg, complete ? "done" : "FAILED", 2517 error, spa->spa_scrub_errors, spa->spa_scrub_stop); 2518 2519 mutex_exit(&spa->spa_scrub_lock); 2520 2521 /* 2522 * If the scrub/resilver completed, update all DTLs to reflect this. 2523 * Whether it succeeded or not, vacate all temporary scrub DTLs. 2524 */ 2525 vdev_dtl_reassess(rvd, spa_last_synced_txg(spa) + 1, 2526 complete ? spa->spa_scrub_maxtxg : 0, B_TRUE); 2527 vdev_scrub_stat_update(rvd, POOL_SCRUB_NONE, complete); 2528 spa_errlog_rotate(spa); 2529 2530 if (scrub_type == POOL_SCRUB_RESILVER && complete) 2531 spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_FINISH); 2532 2533 spa_config_exit(spa, FTAG); 2534 2535 mutex_enter(&spa->spa_scrub_lock); 2536 2537 /* 2538 * We may have finished replacing a device. 2539 * Let the async thread assess this and handle the detach. 2540 */ 2541 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 2542 2543 /* 2544 * If we were told to restart, our final act is to start a new scrub. 2545 */ 2546 if (error == ERESTART) 2547 spa_async_request(spa, scrub_type == POOL_SCRUB_RESILVER ? 2548 SPA_ASYNC_RESILVER : SPA_ASYNC_SCRUB); 2549 2550 spa->spa_scrub_type = POOL_SCRUB_NONE; 2551 spa->spa_scrub_active = 0; 2552 spa->spa_scrub_thread = NULL; 2553 cv_broadcast(&spa->spa_scrub_cv); 2554 CALLB_CPR_EXIT(&cprinfo); /* drops &spa->spa_scrub_lock */ 2555 thread_exit(); 2556 } 2557 2558 void 2559 spa_scrub_suspend(spa_t *spa) 2560 { 2561 mutex_enter(&spa->spa_scrub_lock); 2562 spa->spa_scrub_suspended++; 2563 while (spa->spa_scrub_active) { 2564 cv_broadcast(&spa->spa_scrub_cv); 2565 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 2566 } 2567 while (spa->spa_scrub_inflight) 2568 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 2569 mutex_exit(&spa->spa_scrub_lock); 2570 } 2571 2572 void 2573 spa_scrub_resume(spa_t *spa) 2574 { 2575 mutex_enter(&spa->spa_scrub_lock); 2576 ASSERT(spa->spa_scrub_suspended != 0); 2577 if (--spa->spa_scrub_suspended == 0) 2578 cv_broadcast(&spa->spa_scrub_cv); 2579 mutex_exit(&spa->spa_scrub_lock); 2580 } 2581 2582 void 2583 spa_scrub_restart(spa_t *spa, uint64_t txg) 2584 { 2585 /* 2586 * Something happened (e.g. snapshot create/delete) that means 2587 * we must restart any in-progress scrubs. The itinerary will 2588 * fix this properly. 2589 */ 2590 mutex_enter(&spa->spa_scrub_lock); 2591 spa->spa_scrub_restart_txg = txg; 2592 mutex_exit(&spa->spa_scrub_lock); 2593 } 2594 2595 int 2596 spa_scrub(spa_t *spa, pool_scrub_type_t type, boolean_t force) 2597 { 2598 space_seg_t *ss; 2599 uint64_t mintxg, maxtxg; 2600 vdev_t *rvd = spa->spa_root_vdev; 2601 2602 if ((uint_t)type >= POOL_SCRUB_TYPES) 2603 return (ENOTSUP); 2604 2605 mutex_enter(&spa->spa_scrub_lock); 2606 2607 /* 2608 * If there's a scrub or resilver already in progress, stop it. 2609 */ 2610 while (spa->spa_scrub_thread != NULL) { 2611 /* 2612 * Don't stop a resilver unless forced. 2613 */ 2614 if (spa->spa_scrub_type == POOL_SCRUB_RESILVER && !force) { 2615 mutex_exit(&spa->spa_scrub_lock); 2616 return (EBUSY); 2617 } 2618 spa->spa_scrub_stop = 1; 2619 cv_broadcast(&spa->spa_scrub_cv); 2620 cv_wait(&spa->spa_scrub_cv, &spa->spa_scrub_lock); 2621 } 2622 2623 /* 2624 * Terminate the previous traverse. 2625 */ 2626 if (spa->spa_scrub_th != NULL) { 2627 traverse_fini(spa->spa_scrub_th); 2628 spa->spa_scrub_th = NULL; 2629 } 2630 2631 if (rvd == NULL) { 2632 ASSERT(spa->spa_scrub_stop == 0); 2633 ASSERT(spa->spa_scrub_type == type); 2634 ASSERT(spa->spa_scrub_restart_txg == 0); 2635 mutex_exit(&spa->spa_scrub_lock); 2636 return (0); 2637 } 2638 2639 mintxg = TXG_INITIAL - 1; 2640 maxtxg = spa_last_synced_txg(spa) + 1; 2641 2642 mutex_enter(&rvd->vdev_dtl_lock); 2643 2644 if (rvd->vdev_dtl_map.sm_space == 0) { 2645 /* 2646 * The pool-wide DTL is empty. 2647 * If this is a resilver, there's nothing to do except 2648 * check whether any in-progress replacements have completed. 2649 */ 2650 if (type == POOL_SCRUB_RESILVER) { 2651 type = POOL_SCRUB_NONE; 2652 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 2653 } 2654 } else { 2655 /* 2656 * The pool-wide DTL is non-empty. 2657 * If this is a normal scrub, upgrade to a resilver instead. 2658 */ 2659 if (type == POOL_SCRUB_EVERYTHING) 2660 type = POOL_SCRUB_RESILVER; 2661 } 2662 2663 if (type == POOL_SCRUB_RESILVER) { 2664 /* 2665 * Determine the resilvering boundaries. 2666 * 2667 * Note: (mintxg, maxtxg) is an open interval, 2668 * i.e. mintxg and maxtxg themselves are not included. 2669 * 2670 * Note: for maxtxg, we MIN with spa_last_synced_txg(spa) + 1 2671 * so we don't claim to resilver a txg that's still changing. 2672 */ 2673 ss = avl_first(&rvd->vdev_dtl_map.sm_root); 2674 mintxg = ss->ss_start - 1; 2675 ss = avl_last(&rvd->vdev_dtl_map.sm_root); 2676 maxtxg = MIN(ss->ss_end, maxtxg); 2677 2678 spa_event_notify(spa, NULL, ESC_ZFS_RESILVER_START); 2679 } 2680 2681 mutex_exit(&rvd->vdev_dtl_lock); 2682 2683 spa->spa_scrub_stop = 0; 2684 spa->spa_scrub_type = type; 2685 spa->spa_scrub_restart_txg = 0; 2686 2687 if (type != POOL_SCRUB_NONE) { 2688 spa->spa_scrub_mintxg = mintxg; 2689 spa->spa_scrub_maxtxg = maxtxg; 2690 spa->spa_scrub_th = traverse_init(spa, spa_scrub_cb, NULL, 2691 ADVANCE_PRE | ADVANCE_PRUNE | ADVANCE_ZIL, 2692 ZIO_FLAG_CANFAIL); 2693 traverse_add_pool(spa->spa_scrub_th, mintxg, maxtxg); 2694 spa->spa_scrub_thread = thread_create(NULL, 0, 2695 spa_scrub_thread, spa, 0, &p0, TS_RUN, minclsyspri); 2696 } 2697 2698 mutex_exit(&spa->spa_scrub_lock); 2699 2700 return (0); 2701 } 2702 2703 /* 2704 * ========================================================================== 2705 * SPA async task processing 2706 * ========================================================================== 2707 */ 2708 2709 static void 2710 spa_async_remove(spa_t *spa, vdev_t *vd) 2711 { 2712 vdev_t *tvd; 2713 int c; 2714 2715 for (c = 0; c < vd->vdev_children; c++) { 2716 tvd = vd->vdev_child[c]; 2717 if (tvd->vdev_remove_wanted) { 2718 tvd->vdev_remove_wanted = 0; 2719 vdev_set_state(tvd, B_FALSE, VDEV_STATE_REMOVED, 2720 VDEV_AUX_NONE); 2721 vdev_clear(spa, tvd); 2722 vdev_config_dirty(tvd->vdev_top); 2723 } 2724 spa_async_remove(spa, tvd); 2725 } 2726 } 2727 2728 static void 2729 spa_async_thread(spa_t *spa) 2730 { 2731 int tasks; 2732 uint64_t txg; 2733 2734 ASSERT(spa->spa_sync_on); 2735 2736 mutex_enter(&spa->spa_async_lock); 2737 tasks = spa->spa_async_tasks; 2738 spa->spa_async_tasks = 0; 2739 mutex_exit(&spa->spa_async_lock); 2740 2741 /* 2742 * See if the config needs to be updated. 2743 */ 2744 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 2745 mutex_enter(&spa_namespace_lock); 2746 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 2747 mutex_exit(&spa_namespace_lock); 2748 } 2749 2750 /* 2751 * See if any devices need to be marked REMOVED. 2752 */ 2753 if (tasks & SPA_ASYNC_REMOVE) { 2754 txg = spa_vdev_enter(spa); 2755 spa_async_remove(spa, spa->spa_root_vdev); 2756 (void) spa_vdev_exit(spa, NULL, txg, 0); 2757 } 2758 2759 /* 2760 * If any devices are done replacing, detach them. 2761 */ 2762 if (tasks & SPA_ASYNC_RESILVER_DONE) 2763 spa_vdev_resilver_done(spa); 2764 2765 /* 2766 * Kick off a scrub. When starting a RESILVER scrub (or an EVERYTHING 2767 * scrub which can become a resilver), we need to hold 2768 * spa_namespace_lock() because the sysevent we post via 2769 * spa_event_notify() needs to get the name of the pool. 2770 */ 2771 if (tasks & SPA_ASYNC_SCRUB) { 2772 mutex_enter(&spa_namespace_lock); 2773 VERIFY(spa_scrub(spa, POOL_SCRUB_EVERYTHING, B_TRUE) == 0); 2774 mutex_exit(&spa_namespace_lock); 2775 } 2776 2777 /* 2778 * Kick off a resilver. 2779 */ 2780 if (tasks & SPA_ASYNC_RESILVER) { 2781 mutex_enter(&spa_namespace_lock); 2782 VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER, B_TRUE) == 0); 2783 mutex_exit(&spa_namespace_lock); 2784 } 2785 2786 /* 2787 * Let the world know that we're done. 2788 */ 2789 mutex_enter(&spa->spa_async_lock); 2790 spa->spa_async_thread = NULL; 2791 cv_broadcast(&spa->spa_async_cv); 2792 mutex_exit(&spa->spa_async_lock); 2793 thread_exit(); 2794 } 2795 2796 void 2797 spa_async_suspend(spa_t *spa) 2798 { 2799 mutex_enter(&spa->spa_async_lock); 2800 spa->spa_async_suspended++; 2801 while (spa->spa_async_thread != NULL) 2802 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 2803 mutex_exit(&spa->spa_async_lock); 2804 } 2805 2806 void 2807 spa_async_resume(spa_t *spa) 2808 { 2809 mutex_enter(&spa->spa_async_lock); 2810 ASSERT(spa->spa_async_suspended != 0); 2811 spa->spa_async_suspended--; 2812 mutex_exit(&spa->spa_async_lock); 2813 } 2814 2815 static void 2816 spa_async_dispatch(spa_t *spa) 2817 { 2818 mutex_enter(&spa->spa_async_lock); 2819 if (spa->spa_async_tasks && !spa->spa_async_suspended && 2820 spa->spa_async_thread == NULL && 2821 rootdir != NULL && !vn_is_readonly(rootdir)) 2822 spa->spa_async_thread = thread_create(NULL, 0, 2823 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 2824 mutex_exit(&spa->spa_async_lock); 2825 } 2826 2827 void 2828 spa_async_request(spa_t *spa, int task) 2829 { 2830 mutex_enter(&spa->spa_async_lock); 2831 spa->spa_async_tasks |= task; 2832 mutex_exit(&spa->spa_async_lock); 2833 } 2834 2835 /* 2836 * ========================================================================== 2837 * SPA syncing routines 2838 * ========================================================================== 2839 */ 2840 2841 static void 2842 spa_sync_deferred_frees(spa_t *spa, uint64_t txg) 2843 { 2844 bplist_t *bpl = &spa->spa_sync_bplist; 2845 dmu_tx_t *tx; 2846 blkptr_t blk; 2847 uint64_t itor = 0; 2848 zio_t *zio; 2849 int error; 2850 uint8_t c = 1; 2851 2852 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CONFIG_HELD); 2853 2854 while (bplist_iterate(bpl, &itor, &blk) == 0) 2855 zio_nowait(zio_free(zio, spa, txg, &blk, NULL, NULL)); 2856 2857 error = zio_wait(zio); 2858 ASSERT3U(error, ==, 0); 2859 2860 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg); 2861 bplist_vacate(bpl, tx); 2862 2863 /* 2864 * Pre-dirty the first block so we sync to convergence faster. 2865 * (Usually only the first block is needed.) 2866 */ 2867 dmu_write(spa->spa_meta_objset, spa->spa_sync_bplist_obj, 0, 1, &c, tx); 2868 dmu_tx_commit(tx); 2869 } 2870 2871 static void 2872 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 2873 { 2874 char *packed = NULL; 2875 size_t nvsize = 0; 2876 dmu_buf_t *db; 2877 2878 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 2879 2880 packed = kmem_alloc(nvsize, KM_SLEEP); 2881 2882 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 2883 KM_SLEEP) == 0); 2884 2885 dmu_write(spa->spa_meta_objset, obj, 0, nvsize, packed, tx); 2886 2887 kmem_free(packed, nvsize); 2888 2889 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 2890 dmu_buf_will_dirty(db, tx); 2891 *(uint64_t *)db->db_data = nvsize; 2892 dmu_buf_rele(db, FTAG); 2893 } 2894 2895 static void 2896 spa_sync_spares(spa_t *spa, dmu_tx_t *tx) 2897 { 2898 nvlist_t *nvroot; 2899 nvlist_t **spares; 2900 int i; 2901 2902 if (!spa->spa_sync_spares) 2903 return; 2904 2905 /* 2906 * Update the MOS nvlist describing the list of available spares. 2907 * spa_validate_spares() will have already made sure this nvlist is 2908 * valid and the vdevs are labeled appropriately. 2909 */ 2910 if (spa->spa_spares_object == 0) { 2911 spa->spa_spares_object = dmu_object_alloc(spa->spa_meta_objset, 2912 DMU_OT_PACKED_NVLIST, 1 << 14, 2913 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 2914 VERIFY(zap_update(spa->spa_meta_objset, 2915 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SPARES, 2916 sizeof (uint64_t), 1, &spa->spa_spares_object, tx) == 0); 2917 } 2918 2919 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 2920 if (spa->spa_nspares == 0) { 2921 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2922 NULL, 0) == 0); 2923 } else { 2924 spares = kmem_alloc(spa->spa_nspares * sizeof (void *), 2925 KM_SLEEP); 2926 for (i = 0; i < spa->spa_nspares; i++) 2927 spares[i] = vdev_config_generate(spa, 2928 spa->spa_spares[i], B_FALSE, B_TRUE); 2929 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 2930 spares, spa->spa_nspares) == 0); 2931 for (i = 0; i < spa->spa_nspares; i++) 2932 nvlist_free(spares[i]); 2933 kmem_free(spares, spa->spa_nspares * sizeof (void *)); 2934 } 2935 2936 spa_sync_nvlist(spa, spa->spa_spares_object, nvroot, tx); 2937 nvlist_free(nvroot); 2938 2939 spa->spa_sync_spares = B_FALSE; 2940 } 2941 2942 static void 2943 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 2944 { 2945 nvlist_t *config; 2946 2947 if (list_is_empty(&spa->spa_dirty_list)) 2948 return; 2949 2950 config = spa_config_generate(spa, NULL, dmu_tx_get_txg(tx), B_FALSE); 2951 2952 if (spa->spa_config_syncing) 2953 nvlist_free(spa->spa_config_syncing); 2954 spa->spa_config_syncing = config; 2955 2956 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 2957 } 2958 2959 static void 2960 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx) 2961 { 2962 spa_t *spa = arg1; 2963 nvlist_t *nvp = arg2; 2964 nvpair_t *nvpair; 2965 objset_t *mos = spa->spa_meta_objset; 2966 uint64_t zapobj; 2967 uint64_t intval; 2968 2969 mutex_enter(&spa->spa_props_lock); 2970 if (spa->spa_pool_props_object == 0) { 2971 zapobj = zap_create(mos, DMU_OT_POOL_PROPS, DMU_OT_NONE, 0, tx); 2972 VERIFY(zapobj > 0); 2973 2974 spa->spa_pool_props_object = zapobj; 2975 2976 VERIFY(zap_update(mos, DMU_POOL_DIRECTORY_OBJECT, 2977 DMU_POOL_PROPS, 8, 1, 2978 &spa->spa_pool_props_object, tx) == 0); 2979 } 2980 mutex_exit(&spa->spa_props_lock); 2981 2982 nvpair = NULL; 2983 while ((nvpair = nvlist_next_nvpair(nvp, nvpair))) { 2984 switch (zpool_name_to_prop(nvpair_name(nvpair))) { 2985 case ZPOOL_PROP_BOOTFS: 2986 VERIFY(nvlist_lookup_uint64(nvp, 2987 nvpair_name(nvpair), &spa->spa_bootfs) == 0); 2988 VERIFY(zap_update(mos, 2989 spa->spa_pool_props_object, 2990 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), 8, 1, 2991 &spa->spa_bootfs, tx) == 0); 2992 break; 2993 2994 case ZPOOL_PROP_AUTOREPLACE: 2995 VERIFY(nvlist_lookup_uint64(nvp, 2996 nvpair_name(nvpair), &intval) == 0); 2997 VERIFY(zap_update(mos, 2998 spa->spa_pool_props_object, 2999 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE), 8, 1, 3000 &intval, tx) == 0); 3001 break; 3002 } 3003 } 3004 } 3005 3006 /* 3007 * Sync the specified transaction group. New blocks may be dirtied as 3008 * part of the process, so we iterate until it converges. 3009 */ 3010 void 3011 spa_sync(spa_t *spa, uint64_t txg) 3012 { 3013 dsl_pool_t *dp = spa->spa_dsl_pool; 3014 objset_t *mos = spa->spa_meta_objset; 3015 bplist_t *bpl = &spa->spa_sync_bplist; 3016 vdev_t *rvd = spa->spa_root_vdev; 3017 vdev_t *vd; 3018 dmu_tx_t *tx; 3019 int dirty_vdevs; 3020 3021 /* 3022 * Lock out configuration changes. 3023 */ 3024 spa_config_enter(spa, RW_READER, FTAG); 3025 3026 spa->spa_syncing_txg = txg; 3027 spa->spa_sync_pass = 0; 3028 3029 VERIFY(0 == bplist_open(bpl, mos, spa->spa_sync_bplist_obj)); 3030 3031 tx = dmu_tx_create_assigned(dp, txg); 3032 3033 /* 3034 * If we are upgrading to ZFS_VERSION_RAIDZ_DEFLATE this txg, 3035 * set spa_deflate if we have no raid-z vdevs. 3036 */ 3037 if (spa->spa_ubsync.ub_version < ZFS_VERSION_RAIDZ_DEFLATE && 3038 spa->spa_uberblock.ub_version >= ZFS_VERSION_RAIDZ_DEFLATE) { 3039 int i; 3040 3041 for (i = 0; i < rvd->vdev_children; i++) { 3042 vd = rvd->vdev_child[i]; 3043 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 3044 break; 3045 } 3046 if (i == rvd->vdev_children) { 3047 spa->spa_deflate = TRUE; 3048 VERIFY(0 == zap_add(spa->spa_meta_objset, 3049 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3050 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 3051 } 3052 } 3053 3054 /* 3055 * If anything has changed in this txg, push the deferred frees 3056 * from the previous txg. If not, leave them alone so that we 3057 * don't generate work on an otherwise idle system. 3058 */ 3059 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 3060 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 3061 !txg_list_empty(&dp->dp_sync_tasks, txg)) 3062 spa_sync_deferred_frees(spa, txg); 3063 3064 /* 3065 * Iterate to convergence. 3066 */ 3067 do { 3068 spa->spa_sync_pass++; 3069 3070 spa_sync_config_object(spa, tx); 3071 spa_sync_spares(spa, tx); 3072 spa_errlog_sync(spa, txg); 3073 dsl_pool_sync(dp, txg); 3074 3075 dirty_vdevs = 0; 3076 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) { 3077 vdev_sync(vd, txg); 3078 dirty_vdevs++; 3079 } 3080 3081 bplist_sync(bpl, tx); 3082 } while (dirty_vdevs); 3083 3084 bplist_close(bpl); 3085 3086 dprintf("txg %llu passes %d\n", txg, spa->spa_sync_pass); 3087 3088 /* 3089 * Rewrite the vdev configuration (which includes the uberblock) 3090 * to commit the transaction group. 3091 * 3092 * If there are any dirty vdevs, sync the uberblock to all vdevs. 3093 * Otherwise, pick a random top-level vdev that's known to be 3094 * visible in the config cache (see spa_vdev_add() for details). 3095 * If the write fails, try the next vdev until we're tried them all. 3096 */ 3097 if (!list_is_empty(&spa->spa_dirty_list)) { 3098 VERIFY(vdev_config_sync(rvd, txg) == 0); 3099 } else { 3100 int children = rvd->vdev_children; 3101 int c0 = spa_get_random(children); 3102 int c; 3103 3104 for (c = 0; c < children; c++) { 3105 vd = rvd->vdev_child[(c0 + c) % children]; 3106 if (vd->vdev_ms_array == 0) 3107 continue; 3108 if (vdev_config_sync(vd, txg) == 0) 3109 break; 3110 } 3111 if (c == children) 3112 VERIFY(vdev_config_sync(rvd, txg) == 0); 3113 } 3114 3115 dmu_tx_commit(tx); 3116 3117 /* 3118 * Clear the dirty config list. 3119 */ 3120 while ((vd = list_head(&spa->spa_dirty_list)) != NULL) 3121 vdev_config_clean(vd); 3122 3123 /* 3124 * Now that the new config has synced transactionally, 3125 * let it become visible to the config cache. 3126 */ 3127 if (spa->spa_config_syncing != NULL) { 3128 spa_config_set(spa, spa->spa_config_syncing); 3129 spa->spa_config_txg = txg; 3130 spa->spa_config_syncing = NULL; 3131 } 3132 3133 /* 3134 * Make a stable copy of the fully synced uberblock. 3135 * We use this as the root for pool traversals. 3136 */ 3137 spa->spa_traverse_wanted = 1; /* tells traverse_more() to stop */ 3138 3139 spa_scrub_suspend(spa); /* stop scrubbing and finish I/Os */ 3140 3141 rw_enter(&spa->spa_traverse_lock, RW_WRITER); 3142 spa->spa_traverse_wanted = 0; 3143 spa->spa_ubsync = spa->spa_uberblock; 3144 rw_exit(&spa->spa_traverse_lock); 3145 3146 spa_scrub_resume(spa); /* resume scrub with new ubsync */ 3147 3148 /* 3149 * Clean up the ZIL records for the synced txg. 3150 */ 3151 dsl_pool_zil_clean(dp); 3152 3153 /* 3154 * Update usable space statistics. 3155 */ 3156 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 3157 vdev_sync_done(vd, txg); 3158 3159 /* 3160 * It had better be the case that we didn't dirty anything 3161 * since vdev_config_sync(). 3162 */ 3163 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 3164 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 3165 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 3166 ASSERT(bpl->bpl_queue == NULL); 3167 3168 spa_config_exit(spa, FTAG); 3169 3170 /* 3171 * If any async tasks have been requested, kick them off. 3172 */ 3173 spa_async_dispatch(spa); 3174 } 3175 3176 /* 3177 * Sync all pools. We don't want to hold the namespace lock across these 3178 * operations, so we take a reference on the spa_t and drop the lock during the 3179 * sync. 3180 */ 3181 void 3182 spa_sync_allpools(void) 3183 { 3184 spa_t *spa = NULL; 3185 mutex_enter(&spa_namespace_lock); 3186 while ((spa = spa_next(spa)) != NULL) { 3187 if (spa_state(spa) != POOL_STATE_ACTIVE) 3188 continue; 3189 spa_open_ref(spa, FTAG); 3190 mutex_exit(&spa_namespace_lock); 3191 txg_wait_synced(spa_get_dsl(spa), 0); 3192 mutex_enter(&spa_namespace_lock); 3193 spa_close(spa, FTAG); 3194 } 3195 mutex_exit(&spa_namespace_lock); 3196 } 3197 3198 /* 3199 * ========================================================================== 3200 * Miscellaneous routines 3201 * ========================================================================== 3202 */ 3203 3204 /* 3205 * Remove all pools in the system. 3206 */ 3207 void 3208 spa_evict_all(void) 3209 { 3210 spa_t *spa; 3211 3212 /* 3213 * Remove all cached state. All pools should be closed now, 3214 * so every spa in the AVL tree should be unreferenced. 3215 */ 3216 mutex_enter(&spa_namespace_lock); 3217 while ((spa = spa_next(NULL)) != NULL) { 3218 /* 3219 * Stop async tasks. The async thread may need to detach 3220 * a device that's been replaced, which requires grabbing 3221 * spa_namespace_lock, so we must drop it here. 3222 */ 3223 spa_open_ref(spa, FTAG); 3224 mutex_exit(&spa_namespace_lock); 3225 spa_async_suspend(spa); 3226 VERIFY(spa_scrub(spa, POOL_SCRUB_NONE, B_TRUE) == 0); 3227 mutex_enter(&spa_namespace_lock); 3228 spa_close(spa, FTAG); 3229 3230 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 3231 spa_unload(spa); 3232 spa_deactivate(spa); 3233 } 3234 spa_remove(spa); 3235 } 3236 mutex_exit(&spa_namespace_lock); 3237 } 3238 3239 vdev_t * 3240 spa_lookup_by_guid(spa_t *spa, uint64_t guid) 3241 { 3242 return (vdev_lookup_by_guid(spa->spa_root_vdev, guid)); 3243 } 3244 3245 void 3246 spa_upgrade(spa_t *spa) 3247 { 3248 spa_config_enter(spa, RW_WRITER, FTAG); 3249 3250 /* 3251 * This should only be called for a non-faulted pool, and since a 3252 * future version would result in an unopenable pool, this shouldn't be 3253 * possible. 3254 */ 3255 ASSERT(spa->spa_uberblock.ub_version <= ZFS_VERSION); 3256 3257 spa->spa_uberblock.ub_version = ZFS_VERSION; 3258 vdev_config_dirty(spa->spa_root_vdev); 3259 3260 spa_config_exit(spa, FTAG); 3261 3262 txg_wait_synced(spa_get_dsl(spa), 0); 3263 } 3264 3265 boolean_t 3266 spa_has_spare(spa_t *spa, uint64_t guid) 3267 { 3268 int i; 3269 uint64_t spareguid; 3270 3271 for (i = 0; i < spa->spa_nspares; i++) 3272 if (spa->spa_spares[i]->vdev_guid == guid) 3273 return (B_TRUE); 3274 3275 for (i = 0; i < spa->spa_pending_nspares; i++) { 3276 if (nvlist_lookup_uint64(spa->spa_pending_spares[i], 3277 ZPOOL_CONFIG_GUID, &spareguid) == 0 && 3278 spareguid == guid) 3279 return (B_TRUE); 3280 } 3281 3282 return (B_FALSE); 3283 } 3284 3285 int 3286 spa_set_props(spa_t *spa, nvlist_t *nvp) 3287 { 3288 return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props, 3289 spa, nvp, 3)); 3290 } 3291 3292 int 3293 spa_get_props(spa_t *spa, nvlist_t **nvp) 3294 { 3295 zap_cursor_t zc; 3296 zap_attribute_t za; 3297 objset_t *mos = spa->spa_meta_objset; 3298 zfs_source_t src; 3299 zpool_prop_t prop; 3300 nvlist_t *propval; 3301 uint64_t value; 3302 int err; 3303 3304 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3305 3306 mutex_enter(&spa->spa_props_lock); 3307 /* If no props object, then just return empty nvlist */ 3308 if (spa->spa_pool_props_object == 0) { 3309 mutex_exit(&spa->spa_props_lock); 3310 return (0); 3311 } 3312 3313 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 3314 (err = zap_cursor_retrieve(&zc, &za)) == 0; 3315 zap_cursor_advance(&zc)) { 3316 3317 if ((prop = zpool_name_to_prop(za.za_name)) == ZFS_PROP_INVAL) 3318 continue; 3319 3320 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3321 switch (za.za_integer_length) { 3322 case 8: 3323 if (zpool_prop_default_numeric(prop) == 3324 za.za_first_integer) 3325 src = ZFS_SRC_DEFAULT; 3326 else 3327 src = ZFS_SRC_LOCAL; 3328 value = za.za_first_integer; 3329 3330 if (prop == ZPOOL_PROP_BOOTFS) { 3331 dsl_pool_t *dp; 3332 dsl_dataset_t *ds = NULL; 3333 char strval[MAXPATHLEN]; 3334 3335 dp = spa_get_dsl(spa); 3336 rw_enter(&dp->dp_config_rwlock, RW_READER); 3337 if ((err = dsl_dataset_open_obj(dp, 3338 za.za_first_integer, NULL, DS_MODE_NONE, 3339 FTAG, &ds)) != 0) { 3340 rw_exit(&dp->dp_config_rwlock); 3341 break; 3342 } 3343 dsl_dataset_name(ds, strval); 3344 dsl_dataset_close(ds, DS_MODE_NONE, FTAG); 3345 rw_exit(&dp->dp_config_rwlock); 3346 3347 VERIFY(nvlist_add_uint64(propval, 3348 ZFS_PROP_SOURCE, src) == 0); 3349 VERIFY(nvlist_add_string(propval, 3350 ZFS_PROP_VALUE, strval) == 0); 3351 } else { 3352 VERIFY(nvlist_add_uint64(propval, 3353 ZFS_PROP_SOURCE, src) == 0); 3354 VERIFY(nvlist_add_uint64(propval, 3355 ZFS_PROP_VALUE, value) == 0); 3356 } 3357 VERIFY(nvlist_add_nvlist(*nvp, za.za_name, 3358 propval) == 0); 3359 break; 3360 } 3361 nvlist_free(propval); 3362 } 3363 zap_cursor_fini(&zc); 3364 mutex_exit(&spa->spa_props_lock); 3365 if (err && err != ENOENT) { 3366 nvlist_free(*nvp); 3367 return (err); 3368 } 3369 3370 return (0); 3371 } 3372 3373 /* 3374 * If the bootfs property value is dsobj, clear it. 3375 */ 3376 void 3377 spa_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 3378 { 3379 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 3380 VERIFY(zap_remove(spa->spa_meta_objset, 3381 spa->spa_pool_props_object, 3382 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 3383 spa->spa_bootfs = 0; 3384 } 3385 } 3386 3387 /* 3388 * Post a sysevent corresponding to the given event. The 'name' must be one of 3389 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 3390 * filled in from the spa and (optionally) the vdev. This doesn't do anything 3391 * in the userland libzpool, as we don't want consumers to misinterpret ztest 3392 * or zdb as real changes. 3393 */ 3394 void 3395 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 3396 { 3397 #ifdef _KERNEL 3398 sysevent_t *ev; 3399 sysevent_attr_list_t *attr = NULL; 3400 sysevent_value_t value; 3401 sysevent_id_t eid; 3402 3403 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 3404 SE_SLEEP); 3405 3406 value.value_type = SE_DATA_TYPE_STRING; 3407 value.value.sv_string = spa_name(spa); 3408 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 3409 goto done; 3410 3411 value.value_type = SE_DATA_TYPE_UINT64; 3412 value.value.sv_uint64 = spa_guid(spa); 3413 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 3414 goto done; 3415 3416 if (vd) { 3417 value.value_type = SE_DATA_TYPE_UINT64; 3418 value.value.sv_uint64 = vd->vdev_guid; 3419 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 3420 SE_SLEEP) != 0) 3421 goto done; 3422 3423 if (vd->vdev_path) { 3424 value.value_type = SE_DATA_TYPE_STRING; 3425 value.value.sv_string = vd->vdev_path; 3426 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 3427 &value, SE_SLEEP) != 0) 3428 goto done; 3429 } 3430 } 3431 3432 (void) log_sysevent(ev, SE_SLEEP, &eid); 3433 3434 done: 3435 if (attr) 3436 sysevent_free_attr(attr); 3437 sysevent_free(ev); 3438 #endif 3439 } 3440