1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 22 /* 23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 24 * Copyright (c) 2011, 2014 by Delphix. All rights reserved. 25 * Copyright (c) 2013, 2014, Nexenta Systems, Inc. All rights reserved. 26 */ 27 28 /* 29 * SPA: Storage Pool Allocator 30 * 31 * This file contains all the routines used when modifying on-disk SPA state. 32 * This includes opening, importing, destroying, exporting a pool, and syncing a 33 * pool. 34 */ 35 36 #include <sys/zfs_context.h> 37 #include <sys/fm/fs/zfs.h> 38 #include <sys/spa_impl.h> 39 #include <sys/zio.h> 40 #include <sys/zio_checksum.h> 41 #include <sys/dmu.h> 42 #include <sys/dmu_tx.h> 43 #include <sys/zap.h> 44 #include <sys/zil.h> 45 #include <sys/ddt.h> 46 #include <sys/vdev_impl.h> 47 #include <sys/metaslab.h> 48 #include <sys/metaslab_impl.h> 49 #include <sys/uberblock_impl.h> 50 #include <sys/txg.h> 51 #include <sys/avl.h> 52 #include <sys/dmu_traverse.h> 53 #include <sys/dmu_objset.h> 54 #include <sys/unique.h> 55 #include <sys/dsl_pool.h> 56 #include <sys/dsl_dataset.h> 57 #include <sys/dsl_dir.h> 58 #include <sys/dsl_prop.h> 59 #include <sys/dsl_synctask.h> 60 #include <sys/fs/zfs.h> 61 #include <sys/arc.h> 62 #include <sys/callb.h> 63 #include <sys/systeminfo.h> 64 #include <sys/spa_boot.h> 65 #include <sys/zfs_ioctl.h> 66 #include <sys/dsl_scan.h> 67 #include <sys/zfeature.h> 68 #include <sys/dsl_destroy.h> 69 70 #ifdef _KERNEL 71 #include <sys/bootprops.h> 72 #include <sys/callb.h> 73 #include <sys/cpupart.h> 74 #include <sys/pool.h> 75 #include <sys/sysdc.h> 76 #include <sys/zone.h> 77 #endif /* _KERNEL */ 78 79 #include "zfs_prop.h" 80 #include "zfs_comutil.h" 81 82 /* 83 * The interval, in seconds, at which failed configuration cache file writes 84 * should be retried. 85 */ 86 static int zfs_ccw_retry_interval = 300; 87 88 typedef enum zti_modes { 89 ZTI_MODE_FIXED, /* value is # of threads (min 1) */ 90 ZTI_MODE_BATCH, /* cpu-intensive; value is ignored */ 91 ZTI_MODE_NULL, /* don't create a taskq */ 92 ZTI_NMODES 93 } zti_modes_t; 94 95 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) } 96 #define ZTI_BATCH { ZTI_MODE_BATCH, 0, 1 } 97 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 } 98 99 #define ZTI_N(n) ZTI_P(n, 1) 100 #define ZTI_ONE ZTI_N(1) 101 102 typedef struct zio_taskq_info { 103 zti_modes_t zti_mode; 104 uint_t zti_value; 105 uint_t zti_count; 106 } zio_taskq_info_t; 107 108 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = { 109 "issue", "issue_high", "intr", "intr_high" 110 }; 111 112 /* 113 * This table defines the taskq settings for each ZFS I/O type. When 114 * initializing a pool, we use this table to create an appropriately sized 115 * taskq. Some operations are low volume and therefore have a small, static 116 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE 117 * macros. Other operations process a large amount of data; the ZTI_BATCH 118 * macro causes us to create a taskq oriented for throughput. Some operations 119 * are so high frequency and short-lived that the taskq itself can become a a 120 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an 121 * additional degree of parallelism specified by the number of threads per- 122 * taskq and the number of taskqs; when dispatching an event in this case, the 123 * particular taskq is chosen at random. 124 * 125 * The different taskq priorities are to handle the different contexts (issue 126 * and interrupt) and then to reserve threads for ZIO_PRIORITY_NOW I/Os that 127 * need to be handled with minimum delay. 128 */ 129 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = { 130 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */ 131 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */ 132 { ZTI_N(8), ZTI_NULL, ZTI_P(12, 8), ZTI_NULL }, /* READ */ 133 { ZTI_BATCH, ZTI_N(5), ZTI_N(8), ZTI_N(5) }, /* WRITE */ 134 { ZTI_P(12, 8), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */ 135 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */ 136 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* IOCTL */ 137 }; 138 139 static void spa_sync_version(void *arg, dmu_tx_t *tx); 140 static void spa_sync_props(void *arg, dmu_tx_t *tx); 141 static boolean_t spa_has_active_shared_spare(spa_t *spa); 142 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config, 143 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 144 char **ereport); 145 static void spa_vdev_resilver_done(spa_t *spa); 146 147 uint_t zio_taskq_batch_pct = 75; /* 1 thread per cpu in pset */ 148 id_t zio_taskq_psrset_bind = PS_NONE; 149 boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */ 150 uint_t zio_taskq_basedc = 80; /* base duty cycle */ 151 152 boolean_t spa_create_process = B_TRUE; /* no process ==> no sysdc */ 153 extern int zfs_sync_pass_deferred_free; 154 155 /* 156 * This (illegal) pool name is used when temporarily importing a spa_t in order 157 * to get the vdev stats associated with the imported devices. 158 */ 159 #define TRYIMPORT_NAME "$import" 160 161 /* 162 * ========================================================================== 163 * SPA properties routines 164 * ========================================================================== 165 */ 166 167 /* 168 * Add a (source=src, propname=propval) list to an nvlist. 169 */ 170 static void 171 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval, 172 uint64_t intval, zprop_source_t src) 173 { 174 const char *propname = zpool_prop_to_name(prop); 175 nvlist_t *propval; 176 177 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0); 178 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0); 179 180 if (strval != NULL) 181 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0); 182 else 183 VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0); 184 185 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0); 186 nvlist_free(propval); 187 } 188 189 /* 190 * Get property values from the spa configuration. 191 */ 192 static void 193 spa_prop_get_config(spa_t *spa, nvlist_t **nvp) 194 { 195 vdev_t *rvd = spa->spa_root_vdev; 196 dsl_pool_t *pool = spa->spa_dsl_pool; 197 uint64_t size, alloc, cap, version; 198 zprop_source_t src = ZPROP_SRC_NONE; 199 spa_config_dirent_t *dp; 200 metaslab_class_t *mc = spa_normal_class(spa); 201 202 ASSERT(MUTEX_HELD(&spa->spa_props_lock)); 203 204 if (rvd != NULL) { 205 alloc = metaslab_class_get_alloc(spa_normal_class(spa)); 206 size = metaslab_class_get_space(spa_normal_class(spa)); 207 spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src); 208 spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src); 209 spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src); 210 spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL, 211 size - alloc, src); 212 213 spa_prop_add_list(*nvp, ZPOOL_PROP_FRAGMENTATION, NULL, 214 metaslab_class_fragmentation(mc), src); 215 spa_prop_add_list(*nvp, ZPOOL_PROP_EXPANDSZ, NULL, 216 metaslab_class_expandable_space(mc), src); 217 spa_prop_add_list(*nvp, ZPOOL_PROP_READONLY, NULL, 218 (spa_mode(spa) == FREAD), src); 219 220 cap = (size == 0) ? 0 : (alloc * 100 / size); 221 spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src); 222 223 spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL, 224 ddt_get_pool_dedup_ratio(spa), src); 225 226 spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL, 227 rvd->vdev_state, src); 228 229 version = spa_version(spa); 230 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) 231 src = ZPROP_SRC_DEFAULT; 232 else 233 src = ZPROP_SRC_LOCAL; 234 spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src); 235 } 236 237 if (pool != NULL) { 238 /* 239 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS, 240 * when opening pools before this version freedir will be NULL. 241 */ 242 if (pool->dp_free_dir != NULL) { 243 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, NULL, 244 pool->dp_free_dir->dd_phys->dd_used_bytes, src); 245 } else { 246 spa_prop_add_list(*nvp, ZPOOL_PROP_FREEING, 247 NULL, 0, src); 248 } 249 250 if (pool->dp_leak_dir != NULL) { 251 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, NULL, 252 pool->dp_leak_dir->dd_phys->dd_used_bytes, src); 253 } else { 254 spa_prop_add_list(*nvp, ZPOOL_PROP_LEAKED, 255 NULL, 0, src); 256 } 257 } 258 259 spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src); 260 261 if (spa->spa_comment != NULL) { 262 spa_prop_add_list(*nvp, ZPOOL_PROP_COMMENT, spa->spa_comment, 263 0, ZPROP_SRC_LOCAL); 264 } 265 266 if (spa->spa_root != NULL) 267 spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root, 268 0, ZPROP_SRC_LOCAL); 269 270 if ((dp = list_head(&spa->spa_config_list)) != NULL) { 271 if (dp->scd_path == NULL) { 272 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 273 "none", 0, ZPROP_SRC_LOCAL); 274 } else if (strcmp(dp->scd_path, spa_config_path) != 0) { 275 spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE, 276 dp->scd_path, 0, ZPROP_SRC_LOCAL); 277 } 278 } 279 } 280 281 /* 282 * Get zpool property values. 283 */ 284 int 285 spa_prop_get(spa_t *spa, nvlist_t **nvp) 286 { 287 objset_t *mos = spa->spa_meta_objset; 288 zap_cursor_t zc; 289 zap_attribute_t za; 290 int err; 291 292 VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0); 293 294 mutex_enter(&spa->spa_props_lock); 295 296 /* 297 * Get properties from the spa config. 298 */ 299 spa_prop_get_config(spa, nvp); 300 301 /* If no pool property object, no more prop to get. */ 302 if (mos == NULL || spa->spa_pool_props_object == 0) { 303 mutex_exit(&spa->spa_props_lock); 304 return (0); 305 } 306 307 /* 308 * Get properties from the MOS pool property object. 309 */ 310 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object); 311 (err = zap_cursor_retrieve(&zc, &za)) == 0; 312 zap_cursor_advance(&zc)) { 313 uint64_t intval = 0; 314 char *strval = NULL; 315 zprop_source_t src = ZPROP_SRC_DEFAULT; 316 zpool_prop_t prop; 317 318 if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL) 319 continue; 320 321 switch (za.za_integer_length) { 322 case 8: 323 /* integer property */ 324 if (za.za_first_integer != 325 zpool_prop_default_numeric(prop)) 326 src = ZPROP_SRC_LOCAL; 327 328 if (prop == ZPOOL_PROP_BOOTFS) { 329 dsl_pool_t *dp; 330 dsl_dataset_t *ds = NULL; 331 332 dp = spa_get_dsl(spa); 333 dsl_pool_config_enter(dp, FTAG); 334 if (err = dsl_dataset_hold_obj(dp, 335 za.za_first_integer, FTAG, &ds)) { 336 dsl_pool_config_exit(dp, FTAG); 337 break; 338 } 339 340 strval = kmem_alloc( 341 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1, 342 KM_SLEEP); 343 dsl_dataset_name(ds, strval); 344 dsl_dataset_rele(ds, FTAG); 345 dsl_pool_config_exit(dp, FTAG); 346 } else { 347 strval = NULL; 348 intval = za.za_first_integer; 349 } 350 351 spa_prop_add_list(*nvp, prop, strval, intval, src); 352 353 if (strval != NULL) 354 kmem_free(strval, 355 MAXNAMELEN + strlen(MOS_DIR_NAME) + 1); 356 357 break; 358 359 case 1: 360 /* string property */ 361 strval = kmem_alloc(za.za_num_integers, KM_SLEEP); 362 err = zap_lookup(mos, spa->spa_pool_props_object, 363 za.za_name, 1, za.za_num_integers, strval); 364 if (err) { 365 kmem_free(strval, za.za_num_integers); 366 break; 367 } 368 spa_prop_add_list(*nvp, prop, strval, 0, src); 369 kmem_free(strval, za.za_num_integers); 370 break; 371 372 default: 373 break; 374 } 375 } 376 zap_cursor_fini(&zc); 377 mutex_exit(&spa->spa_props_lock); 378 out: 379 if (err && err != ENOENT) { 380 nvlist_free(*nvp); 381 *nvp = NULL; 382 return (err); 383 } 384 385 return (0); 386 } 387 388 /* 389 * Validate the given pool properties nvlist and modify the list 390 * for the property values to be set. 391 */ 392 static int 393 spa_prop_validate(spa_t *spa, nvlist_t *props) 394 { 395 nvpair_t *elem; 396 int error = 0, reset_bootfs = 0; 397 uint64_t objnum = 0; 398 boolean_t has_feature = B_FALSE; 399 400 elem = NULL; 401 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) { 402 uint64_t intval; 403 char *strval, *slash, *check, *fname; 404 const char *propname = nvpair_name(elem); 405 zpool_prop_t prop = zpool_name_to_prop(propname); 406 407 switch (prop) { 408 case ZPROP_INVAL: 409 if (!zpool_prop_feature(propname)) { 410 error = SET_ERROR(EINVAL); 411 break; 412 } 413 414 /* 415 * Sanitize the input. 416 */ 417 if (nvpair_type(elem) != DATA_TYPE_UINT64) { 418 error = SET_ERROR(EINVAL); 419 break; 420 } 421 422 if (nvpair_value_uint64(elem, &intval) != 0) { 423 error = SET_ERROR(EINVAL); 424 break; 425 } 426 427 if (intval != 0) { 428 error = SET_ERROR(EINVAL); 429 break; 430 } 431 432 fname = strchr(propname, '@') + 1; 433 if (zfeature_lookup_name(fname, NULL) != 0) { 434 error = SET_ERROR(EINVAL); 435 break; 436 } 437 438 has_feature = B_TRUE; 439 break; 440 441 case ZPOOL_PROP_VERSION: 442 error = nvpair_value_uint64(elem, &intval); 443 if (!error && 444 (intval < spa_version(spa) || 445 intval > SPA_VERSION_BEFORE_FEATURES || 446 has_feature)) 447 error = SET_ERROR(EINVAL); 448 break; 449 450 case ZPOOL_PROP_DELEGATION: 451 case ZPOOL_PROP_AUTOREPLACE: 452 case ZPOOL_PROP_LISTSNAPS: 453 case ZPOOL_PROP_AUTOEXPAND: 454 error = nvpair_value_uint64(elem, &intval); 455 if (!error && intval > 1) 456 error = SET_ERROR(EINVAL); 457 break; 458 459 case ZPOOL_PROP_BOOTFS: 460 /* 461 * If the pool version is less than SPA_VERSION_BOOTFS, 462 * or the pool is still being created (version == 0), 463 * the bootfs property cannot be set. 464 */ 465 if (spa_version(spa) < SPA_VERSION_BOOTFS) { 466 error = SET_ERROR(ENOTSUP); 467 break; 468 } 469 470 /* 471 * Make sure the vdev config is bootable 472 */ 473 if (!vdev_is_bootable(spa->spa_root_vdev)) { 474 error = SET_ERROR(ENOTSUP); 475 break; 476 } 477 478 reset_bootfs = 1; 479 480 error = nvpair_value_string(elem, &strval); 481 482 if (!error) { 483 objset_t *os; 484 uint64_t compress; 485 486 if (strval == NULL || strval[0] == '\0') { 487 objnum = zpool_prop_default_numeric( 488 ZPOOL_PROP_BOOTFS); 489 break; 490 } 491 492 if (error = dmu_objset_hold(strval, FTAG, &os)) 493 break; 494 495 /* Must be ZPL and not gzip compressed. */ 496 497 if (dmu_objset_type(os) != DMU_OST_ZFS) { 498 error = SET_ERROR(ENOTSUP); 499 } else if ((error = 500 dsl_prop_get_int_ds(dmu_objset_ds(os), 501 zfs_prop_to_name(ZFS_PROP_COMPRESSION), 502 &compress)) == 0 && 503 !BOOTFS_COMPRESS_VALID(compress)) { 504 error = SET_ERROR(ENOTSUP); 505 } else { 506 objnum = dmu_objset_id(os); 507 } 508 dmu_objset_rele(os, FTAG); 509 } 510 break; 511 512 case ZPOOL_PROP_FAILUREMODE: 513 error = nvpair_value_uint64(elem, &intval); 514 if (!error && (intval < ZIO_FAILURE_MODE_WAIT || 515 intval > ZIO_FAILURE_MODE_PANIC)) 516 error = SET_ERROR(EINVAL); 517 518 /* 519 * This is a special case which only occurs when 520 * the pool has completely failed. This allows 521 * the user to change the in-core failmode property 522 * without syncing it out to disk (I/Os might 523 * currently be blocked). We do this by returning 524 * EIO to the caller (spa_prop_set) to trick it 525 * into thinking we encountered a property validation 526 * error. 527 */ 528 if (!error && spa_suspended(spa)) { 529 spa->spa_failmode = intval; 530 error = SET_ERROR(EIO); 531 } 532 break; 533 534 case ZPOOL_PROP_CACHEFILE: 535 if ((error = nvpair_value_string(elem, &strval)) != 0) 536 break; 537 538 if (strval[0] == '\0') 539 break; 540 541 if (strcmp(strval, "none") == 0) 542 break; 543 544 if (strval[0] != '/') { 545 error = SET_ERROR(EINVAL); 546 break; 547 } 548 549 slash = strrchr(strval, '/'); 550 ASSERT(slash != NULL); 551 552 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 || 553 strcmp(slash, "/..") == 0) 554 error = SET_ERROR(EINVAL); 555 break; 556 557 case ZPOOL_PROP_COMMENT: 558 if ((error = nvpair_value_string(elem, &strval)) != 0) 559 break; 560 for (check = strval; *check != '\0'; check++) { 561 /* 562 * The kernel doesn't have an easy isprint() 563 * check. For this kernel check, we merely 564 * check ASCII apart from DEL. Fix this if 565 * there is an easy-to-use kernel isprint(). 566 */ 567 if (*check >= 0x7f) { 568 error = SET_ERROR(EINVAL); 569 break; 570 } 571 check++; 572 } 573 if (strlen(strval) > ZPROP_MAX_COMMENT) 574 error = E2BIG; 575 break; 576 577 case ZPOOL_PROP_DEDUPDITTO: 578 if (spa_version(spa) < SPA_VERSION_DEDUP) 579 error = SET_ERROR(ENOTSUP); 580 else 581 error = nvpair_value_uint64(elem, &intval); 582 if (error == 0 && 583 intval != 0 && intval < ZIO_DEDUPDITTO_MIN) 584 error = SET_ERROR(EINVAL); 585 break; 586 } 587 588 if (error) 589 break; 590 } 591 592 if (!error && reset_bootfs) { 593 error = nvlist_remove(props, 594 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING); 595 596 if (!error) { 597 error = nvlist_add_uint64(props, 598 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum); 599 } 600 } 601 602 return (error); 603 } 604 605 void 606 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync) 607 { 608 char *cachefile; 609 spa_config_dirent_t *dp; 610 611 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE), 612 &cachefile) != 0) 613 return; 614 615 dp = kmem_alloc(sizeof (spa_config_dirent_t), 616 KM_SLEEP); 617 618 if (cachefile[0] == '\0') 619 dp->scd_path = spa_strdup(spa_config_path); 620 else if (strcmp(cachefile, "none") == 0) 621 dp->scd_path = NULL; 622 else 623 dp->scd_path = spa_strdup(cachefile); 624 625 list_insert_head(&spa->spa_config_list, dp); 626 if (need_sync) 627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 628 } 629 630 int 631 spa_prop_set(spa_t *spa, nvlist_t *nvp) 632 { 633 int error; 634 nvpair_t *elem = NULL; 635 boolean_t need_sync = B_FALSE; 636 637 if ((error = spa_prop_validate(spa, nvp)) != 0) 638 return (error); 639 640 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) { 641 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem)); 642 643 if (prop == ZPOOL_PROP_CACHEFILE || 644 prop == ZPOOL_PROP_ALTROOT || 645 prop == ZPOOL_PROP_READONLY) 646 continue; 647 648 if (prop == ZPOOL_PROP_VERSION || prop == ZPROP_INVAL) { 649 uint64_t ver; 650 651 if (prop == ZPOOL_PROP_VERSION) { 652 VERIFY(nvpair_value_uint64(elem, &ver) == 0); 653 } else { 654 ASSERT(zpool_prop_feature(nvpair_name(elem))); 655 ver = SPA_VERSION_FEATURES; 656 need_sync = B_TRUE; 657 } 658 659 /* Save time if the version is already set. */ 660 if (ver == spa_version(spa)) 661 continue; 662 663 /* 664 * In addition to the pool directory object, we might 665 * create the pool properties object, the features for 666 * read object, the features for write object, or the 667 * feature descriptions object. 668 */ 669 error = dsl_sync_task(spa->spa_name, NULL, 670 spa_sync_version, &ver, 671 6, ZFS_SPACE_CHECK_RESERVED); 672 if (error) 673 return (error); 674 continue; 675 } 676 677 need_sync = B_TRUE; 678 break; 679 } 680 681 if (need_sync) { 682 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props, 683 nvp, 6, ZFS_SPACE_CHECK_RESERVED)); 684 } 685 686 return (0); 687 } 688 689 /* 690 * If the bootfs property value is dsobj, clear it. 691 */ 692 void 693 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx) 694 { 695 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) { 696 VERIFY(zap_remove(spa->spa_meta_objset, 697 spa->spa_pool_props_object, 698 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0); 699 spa->spa_bootfs = 0; 700 } 701 } 702 703 /*ARGSUSED*/ 704 static int 705 spa_change_guid_check(void *arg, dmu_tx_t *tx) 706 { 707 uint64_t *newguid = arg; 708 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 709 vdev_t *rvd = spa->spa_root_vdev; 710 uint64_t vdev_state; 711 712 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 713 vdev_state = rvd->vdev_state; 714 spa_config_exit(spa, SCL_STATE, FTAG); 715 716 if (vdev_state != VDEV_STATE_HEALTHY) 717 return (SET_ERROR(ENXIO)); 718 719 ASSERT3U(spa_guid(spa), !=, *newguid); 720 721 return (0); 722 } 723 724 static void 725 spa_change_guid_sync(void *arg, dmu_tx_t *tx) 726 { 727 uint64_t *newguid = arg; 728 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 729 uint64_t oldguid; 730 vdev_t *rvd = spa->spa_root_vdev; 731 732 oldguid = spa_guid(spa); 733 734 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 735 rvd->vdev_guid = *newguid; 736 rvd->vdev_guid_sum += (*newguid - oldguid); 737 vdev_config_dirty(rvd); 738 spa_config_exit(spa, SCL_STATE, FTAG); 739 740 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu", 741 oldguid, *newguid); 742 } 743 744 /* 745 * Change the GUID for the pool. This is done so that we can later 746 * re-import a pool built from a clone of our own vdevs. We will modify 747 * the root vdev's guid, our own pool guid, and then mark all of our 748 * vdevs dirty. Note that we must make sure that all our vdevs are 749 * online when we do this, or else any vdevs that weren't present 750 * would be orphaned from our pool. We are also going to issue a 751 * sysevent to update any watchers. 752 */ 753 int 754 spa_change_guid(spa_t *spa) 755 { 756 int error; 757 uint64_t guid; 758 759 mutex_enter(&spa->spa_vdev_top_lock); 760 mutex_enter(&spa_namespace_lock); 761 guid = spa_generate_guid(NULL); 762 763 error = dsl_sync_task(spa->spa_name, spa_change_guid_check, 764 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED); 765 766 if (error == 0) { 767 spa_config_sync(spa, B_FALSE, B_TRUE); 768 spa_event_notify(spa, NULL, ESC_ZFS_POOL_REGUID); 769 } 770 771 mutex_exit(&spa_namespace_lock); 772 mutex_exit(&spa->spa_vdev_top_lock); 773 774 return (error); 775 } 776 777 /* 778 * ========================================================================== 779 * SPA state manipulation (open/create/destroy/import/export) 780 * ========================================================================== 781 */ 782 783 static int 784 spa_error_entry_compare(const void *a, const void *b) 785 { 786 spa_error_entry_t *sa = (spa_error_entry_t *)a; 787 spa_error_entry_t *sb = (spa_error_entry_t *)b; 788 int ret; 789 790 ret = bcmp(&sa->se_bookmark, &sb->se_bookmark, 791 sizeof (zbookmark_phys_t)); 792 793 if (ret < 0) 794 return (-1); 795 else if (ret > 0) 796 return (1); 797 else 798 return (0); 799 } 800 801 /* 802 * Utility function which retrieves copies of the current logs and 803 * re-initializes them in the process. 804 */ 805 void 806 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub) 807 { 808 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock)); 809 810 bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t)); 811 bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t)); 812 813 avl_create(&spa->spa_errlist_scrub, 814 spa_error_entry_compare, sizeof (spa_error_entry_t), 815 offsetof(spa_error_entry_t, se_avl)); 816 avl_create(&spa->spa_errlist_last, 817 spa_error_entry_compare, sizeof (spa_error_entry_t), 818 offsetof(spa_error_entry_t, se_avl)); 819 } 820 821 static void 822 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 823 { 824 const zio_taskq_info_t *ztip = &zio_taskqs[t][q]; 825 enum zti_modes mode = ztip->zti_mode; 826 uint_t value = ztip->zti_value; 827 uint_t count = ztip->zti_count; 828 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 829 char name[32]; 830 uint_t flags = 0; 831 boolean_t batch = B_FALSE; 832 833 if (mode == ZTI_MODE_NULL) { 834 tqs->stqs_count = 0; 835 tqs->stqs_taskq = NULL; 836 return; 837 } 838 839 ASSERT3U(count, >, 0); 840 841 tqs->stqs_count = count; 842 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP); 843 844 switch (mode) { 845 case ZTI_MODE_FIXED: 846 ASSERT3U(value, >=, 1); 847 value = MAX(value, 1); 848 break; 849 850 case ZTI_MODE_BATCH: 851 batch = B_TRUE; 852 flags |= TASKQ_THREADS_CPU_PCT; 853 value = zio_taskq_batch_pct; 854 break; 855 856 default: 857 panic("unrecognized mode for %s_%s taskq (%u:%u) in " 858 "spa_activate()", 859 zio_type_name[t], zio_taskq_types[q], mode, value); 860 break; 861 } 862 863 for (uint_t i = 0; i < count; i++) { 864 taskq_t *tq; 865 866 if (count > 1) { 867 (void) snprintf(name, sizeof (name), "%s_%s_%u", 868 zio_type_name[t], zio_taskq_types[q], i); 869 } else { 870 (void) snprintf(name, sizeof (name), "%s_%s", 871 zio_type_name[t], zio_taskq_types[q]); 872 } 873 874 if (zio_taskq_sysdc && spa->spa_proc != &p0) { 875 if (batch) 876 flags |= TASKQ_DC_BATCH; 877 878 tq = taskq_create_sysdc(name, value, 50, INT_MAX, 879 spa->spa_proc, zio_taskq_basedc, flags); 880 } else { 881 pri_t pri = maxclsyspri; 882 /* 883 * The write issue taskq can be extremely CPU 884 * intensive. Run it at slightly lower priority 885 * than the other taskqs. 886 */ 887 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) 888 pri--; 889 890 tq = taskq_create_proc(name, value, pri, 50, 891 INT_MAX, spa->spa_proc, flags); 892 } 893 894 tqs->stqs_taskq[i] = tq; 895 } 896 } 897 898 static void 899 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q) 900 { 901 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 902 903 if (tqs->stqs_taskq == NULL) { 904 ASSERT0(tqs->stqs_count); 905 return; 906 } 907 908 for (uint_t i = 0; i < tqs->stqs_count; i++) { 909 ASSERT3P(tqs->stqs_taskq[i], !=, NULL); 910 taskq_destroy(tqs->stqs_taskq[i]); 911 } 912 913 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *)); 914 tqs->stqs_taskq = NULL; 915 } 916 917 /* 918 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority. 919 * Note that a type may have multiple discrete taskqs to avoid lock contention 920 * on the taskq itself. In that case we choose which taskq at random by using 921 * the low bits of gethrtime(). 922 */ 923 void 924 spa_taskq_dispatch_ent(spa_t *spa, zio_type_t t, zio_taskq_type_t q, 925 task_func_t *func, void *arg, uint_t flags, taskq_ent_t *ent) 926 { 927 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q]; 928 taskq_t *tq; 929 930 ASSERT3P(tqs->stqs_taskq, !=, NULL); 931 ASSERT3U(tqs->stqs_count, !=, 0); 932 933 if (tqs->stqs_count == 1) { 934 tq = tqs->stqs_taskq[0]; 935 } else { 936 tq = tqs->stqs_taskq[gethrtime() % tqs->stqs_count]; 937 } 938 939 taskq_dispatch_ent(tq, func, arg, flags, ent); 940 } 941 942 static void 943 spa_create_zio_taskqs(spa_t *spa) 944 { 945 for (int t = 0; t < ZIO_TYPES; t++) { 946 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 947 spa_taskqs_init(spa, t, q); 948 } 949 } 950 } 951 952 #ifdef _KERNEL 953 static void 954 spa_thread(void *arg) 955 { 956 callb_cpr_t cprinfo; 957 958 spa_t *spa = arg; 959 user_t *pu = PTOU(curproc); 960 961 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr, 962 spa->spa_name); 963 964 ASSERT(curproc != &p0); 965 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs), 966 "zpool-%s", spa->spa_name); 967 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm)); 968 969 /* bind this thread to the requested psrset */ 970 if (zio_taskq_psrset_bind != PS_NONE) { 971 pool_lock(); 972 mutex_enter(&cpu_lock); 973 mutex_enter(&pidlock); 974 mutex_enter(&curproc->p_lock); 975 976 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind, 977 0, NULL, NULL) == 0) { 978 curthread->t_bind_pset = zio_taskq_psrset_bind; 979 } else { 980 cmn_err(CE_WARN, 981 "Couldn't bind process for zfs pool \"%s\" to " 982 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind); 983 } 984 985 mutex_exit(&curproc->p_lock); 986 mutex_exit(&pidlock); 987 mutex_exit(&cpu_lock); 988 pool_unlock(); 989 } 990 991 if (zio_taskq_sysdc) { 992 sysdc_thread_enter(curthread, 100, 0); 993 } 994 995 spa->spa_proc = curproc; 996 spa->spa_did = curthread->t_did; 997 998 spa_create_zio_taskqs(spa); 999 1000 mutex_enter(&spa->spa_proc_lock); 1001 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED); 1002 1003 spa->spa_proc_state = SPA_PROC_ACTIVE; 1004 cv_broadcast(&spa->spa_proc_cv); 1005 1006 CALLB_CPR_SAFE_BEGIN(&cprinfo); 1007 while (spa->spa_proc_state == SPA_PROC_ACTIVE) 1008 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1009 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock); 1010 1011 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE); 1012 spa->spa_proc_state = SPA_PROC_GONE; 1013 spa->spa_proc = &p0; 1014 cv_broadcast(&spa->spa_proc_cv); 1015 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */ 1016 1017 mutex_enter(&curproc->p_lock); 1018 lwp_exit(); 1019 } 1020 #endif 1021 1022 /* 1023 * Activate an uninitialized pool. 1024 */ 1025 static void 1026 spa_activate(spa_t *spa, int mode) 1027 { 1028 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED); 1029 1030 spa->spa_state = POOL_STATE_ACTIVE; 1031 spa->spa_mode = mode; 1032 1033 spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops); 1034 spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops); 1035 1036 /* Try to create a covering process */ 1037 mutex_enter(&spa->spa_proc_lock); 1038 ASSERT(spa->spa_proc_state == SPA_PROC_NONE); 1039 ASSERT(spa->spa_proc == &p0); 1040 spa->spa_did = 0; 1041 1042 /* Only create a process if we're going to be around a while. */ 1043 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) { 1044 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri, 1045 NULL, 0) == 0) { 1046 spa->spa_proc_state = SPA_PROC_CREATED; 1047 while (spa->spa_proc_state == SPA_PROC_CREATED) { 1048 cv_wait(&spa->spa_proc_cv, 1049 &spa->spa_proc_lock); 1050 } 1051 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1052 ASSERT(spa->spa_proc != &p0); 1053 ASSERT(spa->spa_did != 0); 1054 } else { 1055 #ifdef _KERNEL 1056 cmn_err(CE_WARN, 1057 "Couldn't create process for zfs pool \"%s\"\n", 1058 spa->spa_name); 1059 #endif 1060 } 1061 } 1062 mutex_exit(&spa->spa_proc_lock); 1063 1064 /* If we didn't create a process, we need to create our taskqs. */ 1065 if (spa->spa_proc == &p0) { 1066 spa_create_zio_taskqs(spa); 1067 } 1068 1069 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t), 1070 offsetof(vdev_t, vdev_config_dirty_node)); 1071 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t), 1072 offsetof(vdev_t, vdev_state_dirty_node)); 1073 1074 txg_list_create(&spa->spa_vdev_txg_list, 1075 offsetof(struct vdev, vdev_txg_node)); 1076 1077 avl_create(&spa->spa_errlist_scrub, 1078 spa_error_entry_compare, sizeof (spa_error_entry_t), 1079 offsetof(spa_error_entry_t, se_avl)); 1080 avl_create(&spa->spa_errlist_last, 1081 spa_error_entry_compare, sizeof (spa_error_entry_t), 1082 offsetof(spa_error_entry_t, se_avl)); 1083 } 1084 1085 /* 1086 * Opposite of spa_activate(). 1087 */ 1088 static void 1089 spa_deactivate(spa_t *spa) 1090 { 1091 ASSERT(spa->spa_sync_on == B_FALSE); 1092 ASSERT(spa->spa_dsl_pool == NULL); 1093 ASSERT(spa->spa_root_vdev == NULL); 1094 ASSERT(spa->spa_async_zio_root == NULL); 1095 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED); 1096 1097 txg_list_destroy(&spa->spa_vdev_txg_list); 1098 1099 list_destroy(&spa->spa_config_dirty_list); 1100 list_destroy(&spa->spa_state_dirty_list); 1101 1102 for (int t = 0; t < ZIO_TYPES; t++) { 1103 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) { 1104 spa_taskqs_fini(spa, t, q); 1105 } 1106 } 1107 1108 metaslab_class_destroy(spa->spa_normal_class); 1109 spa->spa_normal_class = NULL; 1110 1111 metaslab_class_destroy(spa->spa_log_class); 1112 spa->spa_log_class = NULL; 1113 1114 /* 1115 * If this was part of an import or the open otherwise failed, we may 1116 * still have errors left in the queues. Empty them just in case. 1117 */ 1118 spa_errlog_drain(spa); 1119 1120 avl_destroy(&spa->spa_errlist_scrub); 1121 avl_destroy(&spa->spa_errlist_last); 1122 1123 spa->spa_state = POOL_STATE_UNINITIALIZED; 1124 1125 mutex_enter(&spa->spa_proc_lock); 1126 if (spa->spa_proc_state != SPA_PROC_NONE) { 1127 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE); 1128 spa->spa_proc_state = SPA_PROC_DEACTIVATE; 1129 cv_broadcast(&spa->spa_proc_cv); 1130 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) { 1131 ASSERT(spa->spa_proc != &p0); 1132 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock); 1133 } 1134 ASSERT(spa->spa_proc_state == SPA_PROC_GONE); 1135 spa->spa_proc_state = SPA_PROC_NONE; 1136 } 1137 ASSERT(spa->spa_proc == &p0); 1138 mutex_exit(&spa->spa_proc_lock); 1139 1140 /* 1141 * We want to make sure spa_thread() has actually exited the ZFS 1142 * module, so that the module can't be unloaded out from underneath 1143 * it. 1144 */ 1145 if (spa->spa_did != 0) { 1146 thread_join(spa->spa_did); 1147 spa->spa_did = 0; 1148 } 1149 } 1150 1151 /* 1152 * Verify a pool configuration, and construct the vdev tree appropriately. This 1153 * will create all the necessary vdevs in the appropriate layout, with each vdev 1154 * in the CLOSED state. This will prep the pool before open/creation/import. 1155 * All vdev validation is done by the vdev_alloc() routine. 1156 */ 1157 static int 1158 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent, 1159 uint_t id, int atype) 1160 { 1161 nvlist_t **child; 1162 uint_t children; 1163 int error; 1164 1165 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0) 1166 return (error); 1167 1168 if ((*vdp)->vdev_ops->vdev_op_leaf) 1169 return (0); 1170 1171 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN, 1172 &child, &children); 1173 1174 if (error == ENOENT) 1175 return (0); 1176 1177 if (error) { 1178 vdev_free(*vdp); 1179 *vdp = NULL; 1180 return (SET_ERROR(EINVAL)); 1181 } 1182 1183 for (int c = 0; c < children; c++) { 1184 vdev_t *vd; 1185 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c, 1186 atype)) != 0) { 1187 vdev_free(*vdp); 1188 *vdp = NULL; 1189 return (error); 1190 } 1191 } 1192 1193 ASSERT(*vdp != NULL); 1194 1195 return (0); 1196 } 1197 1198 /* 1199 * Opposite of spa_load(). 1200 */ 1201 static void 1202 spa_unload(spa_t *spa) 1203 { 1204 int i; 1205 1206 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 1207 1208 /* 1209 * Stop async tasks. 1210 */ 1211 spa_async_suspend(spa); 1212 1213 /* 1214 * Stop syncing. 1215 */ 1216 if (spa->spa_sync_on) { 1217 txg_sync_stop(spa->spa_dsl_pool); 1218 spa->spa_sync_on = B_FALSE; 1219 } 1220 1221 /* 1222 * Wait for any outstanding async I/O to complete. 1223 */ 1224 if (spa->spa_async_zio_root != NULL) { 1225 (void) zio_wait(spa->spa_async_zio_root); 1226 spa->spa_async_zio_root = NULL; 1227 } 1228 1229 bpobj_close(&spa->spa_deferred_bpobj); 1230 1231 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1232 1233 /* 1234 * Close all vdevs. 1235 */ 1236 if (spa->spa_root_vdev) 1237 vdev_free(spa->spa_root_vdev); 1238 ASSERT(spa->spa_root_vdev == NULL); 1239 1240 /* 1241 * Close the dsl pool. 1242 */ 1243 if (spa->spa_dsl_pool) { 1244 dsl_pool_close(spa->spa_dsl_pool); 1245 spa->spa_dsl_pool = NULL; 1246 spa->spa_meta_objset = NULL; 1247 } 1248 1249 ddt_unload(spa); 1250 1251 1252 /* 1253 * Drop and purge level 2 cache 1254 */ 1255 spa_l2cache_drop(spa); 1256 1257 for (i = 0; i < spa->spa_spares.sav_count; i++) 1258 vdev_free(spa->spa_spares.sav_vdevs[i]); 1259 if (spa->spa_spares.sav_vdevs) { 1260 kmem_free(spa->spa_spares.sav_vdevs, 1261 spa->spa_spares.sav_count * sizeof (void *)); 1262 spa->spa_spares.sav_vdevs = NULL; 1263 } 1264 if (spa->spa_spares.sav_config) { 1265 nvlist_free(spa->spa_spares.sav_config); 1266 spa->spa_spares.sav_config = NULL; 1267 } 1268 spa->spa_spares.sav_count = 0; 1269 1270 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 1271 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]); 1272 vdev_free(spa->spa_l2cache.sav_vdevs[i]); 1273 } 1274 if (spa->spa_l2cache.sav_vdevs) { 1275 kmem_free(spa->spa_l2cache.sav_vdevs, 1276 spa->spa_l2cache.sav_count * sizeof (void *)); 1277 spa->spa_l2cache.sav_vdevs = NULL; 1278 } 1279 if (spa->spa_l2cache.sav_config) { 1280 nvlist_free(spa->spa_l2cache.sav_config); 1281 spa->spa_l2cache.sav_config = NULL; 1282 } 1283 spa->spa_l2cache.sav_count = 0; 1284 1285 spa->spa_async_suspended = 0; 1286 1287 if (spa->spa_comment != NULL) { 1288 spa_strfree(spa->spa_comment); 1289 spa->spa_comment = NULL; 1290 } 1291 1292 spa_config_exit(spa, SCL_ALL, FTAG); 1293 } 1294 1295 /* 1296 * Load (or re-load) the current list of vdevs describing the active spares for 1297 * this pool. When this is called, we have some form of basic information in 1298 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and 1299 * then re-generate a more complete list including status information. 1300 */ 1301 static void 1302 spa_load_spares(spa_t *spa) 1303 { 1304 nvlist_t **spares; 1305 uint_t nspares; 1306 int i; 1307 vdev_t *vd, *tvd; 1308 1309 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1310 1311 /* 1312 * First, close and free any existing spare vdevs. 1313 */ 1314 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1315 vd = spa->spa_spares.sav_vdevs[i]; 1316 1317 /* Undo the call to spa_activate() below */ 1318 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1319 B_FALSE)) != NULL && tvd->vdev_isspare) 1320 spa_spare_remove(tvd); 1321 vdev_close(vd); 1322 vdev_free(vd); 1323 } 1324 1325 if (spa->spa_spares.sav_vdevs) 1326 kmem_free(spa->spa_spares.sav_vdevs, 1327 spa->spa_spares.sav_count * sizeof (void *)); 1328 1329 if (spa->spa_spares.sav_config == NULL) 1330 nspares = 0; 1331 else 1332 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 1333 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 1334 1335 spa->spa_spares.sav_count = (int)nspares; 1336 spa->spa_spares.sav_vdevs = NULL; 1337 1338 if (nspares == 0) 1339 return; 1340 1341 /* 1342 * Construct the array of vdevs, opening them to get status in the 1343 * process. For each spare, there is potentially two different vdev_t 1344 * structures associated with it: one in the list of spares (used only 1345 * for basic validation purposes) and one in the active vdev 1346 * configuration (if it's spared in). During this phase we open and 1347 * validate each vdev on the spare list. If the vdev also exists in the 1348 * active configuration, then we also mark this vdev as an active spare. 1349 */ 1350 spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *), 1351 KM_SLEEP); 1352 for (i = 0; i < spa->spa_spares.sav_count; i++) { 1353 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0, 1354 VDEV_ALLOC_SPARE) == 0); 1355 ASSERT(vd != NULL); 1356 1357 spa->spa_spares.sav_vdevs[i] = vd; 1358 1359 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid, 1360 B_FALSE)) != NULL) { 1361 if (!tvd->vdev_isspare) 1362 spa_spare_add(tvd); 1363 1364 /* 1365 * We only mark the spare active if we were successfully 1366 * able to load the vdev. Otherwise, importing a pool 1367 * with a bad active spare would result in strange 1368 * behavior, because multiple pool would think the spare 1369 * is actively in use. 1370 * 1371 * There is a vulnerability here to an equally bizarre 1372 * circumstance, where a dead active spare is later 1373 * brought back to life (onlined or otherwise). Given 1374 * the rarity of this scenario, and the extra complexity 1375 * it adds, we ignore the possibility. 1376 */ 1377 if (!vdev_is_dead(tvd)) 1378 spa_spare_activate(tvd); 1379 } 1380 1381 vd->vdev_top = vd; 1382 vd->vdev_aux = &spa->spa_spares; 1383 1384 if (vdev_open(vd) != 0) 1385 continue; 1386 1387 if (vdev_validate_aux(vd) == 0) 1388 spa_spare_add(vd); 1389 } 1390 1391 /* 1392 * Recompute the stashed list of spares, with status information 1393 * this time. 1394 */ 1395 VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES, 1396 DATA_TYPE_NVLIST_ARRAY) == 0); 1397 1398 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *), 1399 KM_SLEEP); 1400 for (i = 0; i < spa->spa_spares.sav_count; i++) 1401 spares[i] = vdev_config_generate(spa, 1402 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE); 1403 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 1404 ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0); 1405 for (i = 0; i < spa->spa_spares.sav_count; i++) 1406 nvlist_free(spares[i]); 1407 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *)); 1408 } 1409 1410 /* 1411 * Load (or re-load) the current list of vdevs describing the active l2cache for 1412 * this pool. When this is called, we have some form of basic information in 1413 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and 1414 * then re-generate a more complete list including status information. 1415 * Devices which are already active have their details maintained, and are 1416 * not re-opened. 1417 */ 1418 static void 1419 spa_load_l2cache(spa_t *spa) 1420 { 1421 nvlist_t **l2cache; 1422 uint_t nl2cache; 1423 int i, j, oldnvdevs; 1424 uint64_t guid; 1425 vdev_t *vd, **oldvdevs, **newvdevs; 1426 spa_aux_vdev_t *sav = &spa->spa_l2cache; 1427 1428 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 1429 1430 if (sav->sav_config != NULL) { 1431 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, 1432 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 1433 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP); 1434 } else { 1435 nl2cache = 0; 1436 newvdevs = NULL; 1437 } 1438 1439 oldvdevs = sav->sav_vdevs; 1440 oldnvdevs = sav->sav_count; 1441 sav->sav_vdevs = NULL; 1442 sav->sav_count = 0; 1443 1444 /* 1445 * Process new nvlist of vdevs. 1446 */ 1447 for (i = 0; i < nl2cache; i++) { 1448 VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID, 1449 &guid) == 0); 1450 1451 newvdevs[i] = NULL; 1452 for (j = 0; j < oldnvdevs; j++) { 1453 vd = oldvdevs[j]; 1454 if (vd != NULL && guid == vd->vdev_guid) { 1455 /* 1456 * Retain previous vdev for add/remove ops. 1457 */ 1458 newvdevs[i] = vd; 1459 oldvdevs[j] = NULL; 1460 break; 1461 } 1462 } 1463 1464 if (newvdevs[i] == NULL) { 1465 /* 1466 * Create new vdev 1467 */ 1468 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0, 1469 VDEV_ALLOC_L2CACHE) == 0); 1470 ASSERT(vd != NULL); 1471 newvdevs[i] = vd; 1472 1473 /* 1474 * Commit this vdev as an l2cache device, 1475 * even if it fails to open. 1476 */ 1477 spa_l2cache_add(vd); 1478 1479 vd->vdev_top = vd; 1480 vd->vdev_aux = sav; 1481 1482 spa_l2cache_activate(vd); 1483 1484 if (vdev_open(vd) != 0) 1485 continue; 1486 1487 (void) vdev_validate_aux(vd); 1488 1489 if (!vdev_is_dead(vd)) 1490 l2arc_add_vdev(spa, vd); 1491 } 1492 } 1493 1494 /* 1495 * Purge vdevs that were dropped 1496 */ 1497 for (i = 0; i < oldnvdevs; i++) { 1498 uint64_t pool; 1499 1500 vd = oldvdevs[i]; 1501 if (vd != NULL) { 1502 ASSERT(vd->vdev_isl2cache); 1503 1504 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 1505 pool != 0ULL && l2arc_vdev_present(vd)) 1506 l2arc_remove_vdev(vd); 1507 vdev_clear_stats(vd); 1508 vdev_free(vd); 1509 } 1510 } 1511 1512 if (oldvdevs) 1513 kmem_free(oldvdevs, oldnvdevs * sizeof (void *)); 1514 1515 if (sav->sav_config == NULL) 1516 goto out; 1517 1518 sav->sav_vdevs = newvdevs; 1519 sav->sav_count = (int)nl2cache; 1520 1521 /* 1522 * Recompute the stashed list of l2cache devices, with status 1523 * information this time. 1524 */ 1525 VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE, 1526 DATA_TYPE_NVLIST_ARRAY) == 0); 1527 1528 l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 1529 for (i = 0; i < sav->sav_count; i++) 1530 l2cache[i] = vdev_config_generate(spa, 1531 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE); 1532 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 1533 ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0); 1534 out: 1535 for (i = 0; i < sav->sav_count; i++) 1536 nvlist_free(l2cache[i]); 1537 if (sav->sav_count) 1538 kmem_free(l2cache, sav->sav_count * sizeof (void *)); 1539 } 1540 1541 static int 1542 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value) 1543 { 1544 dmu_buf_t *db; 1545 char *packed = NULL; 1546 size_t nvsize = 0; 1547 int error; 1548 *value = NULL; 1549 1550 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 1551 nvsize = *(uint64_t *)db->db_data; 1552 dmu_buf_rele(db, FTAG); 1553 1554 packed = kmem_alloc(nvsize, KM_SLEEP); 1555 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed, 1556 DMU_READ_PREFETCH); 1557 if (error == 0) 1558 error = nvlist_unpack(packed, nvsize, value, 0); 1559 kmem_free(packed, nvsize); 1560 1561 return (error); 1562 } 1563 1564 /* 1565 * Checks to see if the given vdev could not be opened, in which case we post a 1566 * sysevent to notify the autoreplace code that the device has been removed. 1567 */ 1568 static void 1569 spa_check_removed(vdev_t *vd) 1570 { 1571 for (int c = 0; c < vd->vdev_children; c++) 1572 spa_check_removed(vd->vdev_child[c]); 1573 1574 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) && 1575 !vd->vdev_ishole) { 1576 zfs_post_autoreplace(vd->vdev_spa, vd); 1577 spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK); 1578 } 1579 } 1580 1581 /* 1582 * Validate the current config against the MOS config 1583 */ 1584 static boolean_t 1585 spa_config_valid(spa_t *spa, nvlist_t *config) 1586 { 1587 vdev_t *mrvd, *rvd = spa->spa_root_vdev; 1588 nvlist_t *nv; 1589 1590 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nv) == 0); 1591 1592 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1593 VERIFY(spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0); 1594 1595 ASSERT3U(rvd->vdev_children, ==, mrvd->vdev_children); 1596 1597 /* 1598 * If we're doing a normal import, then build up any additional 1599 * diagnostic information about missing devices in this config. 1600 * We'll pass this up to the user for further processing. 1601 */ 1602 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) { 1603 nvlist_t **child, *nv; 1604 uint64_t idx = 0; 1605 1606 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t **), 1607 KM_SLEEP); 1608 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 1609 1610 for (int c = 0; c < rvd->vdev_children; c++) { 1611 vdev_t *tvd = rvd->vdev_child[c]; 1612 vdev_t *mtvd = mrvd->vdev_child[c]; 1613 1614 if (tvd->vdev_ops == &vdev_missing_ops && 1615 mtvd->vdev_ops != &vdev_missing_ops && 1616 mtvd->vdev_islog) 1617 child[idx++] = vdev_config_generate(spa, mtvd, 1618 B_FALSE, 0); 1619 } 1620 1621 if (idx) { 1622 VERIFY(nvlist_add_nvlist_array(nv, 1623 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 1624 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 1625 ZPOOL_CONFIG_MISSING_DEVICES, nv) == 0); 1626 1627 for (int i = 0; i < idx; i++) 1628 nvlist_free(child[i]); 1629 } 1630 nvlist_free(nv); 1631 kmem_free(child, rvd->vdev_children * sizeof (char **)); 1632 } 1633 1634 /* 1635 * Compare the root vdev tree with the information we have 1636 * from the MOS config (mrvd). Check each top-level vdev 1637 * with the corresponding MOS config top-level (mtvd). 1638 */ 1639 for (int c = 0; c < rvd->vdev_children; c++) { 1640 vdev_t *tvd = rvd->vdev_child[c]; 1641 vdev_t *mtvd = mrvd->vdev_child[c]; 1642 1643 /* 1644 * Resolve any "missing" vdevs in the current configuration. 1645 * If we find that the MOS config has more accurate information 1646 * about the top-level vdev then use that vdev instead. 1647 */ 1648 if (tvd->vdev_ops == &vdev_missing_ops && 1649 mtvd->vdev_ops != &vdev_missing_ops) { 1650 1651 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) 1652 continue; 1653 1654 /* 1655 * Device specific actions. 1656 */ 1657 if (mtvd->vdev_islog) { 1658 spa_set_log_state(spa, SPA_LOG_CLEAR); 1659 } else { 1660 /* 1661 * XXX - once we have 'readonly' pool 1662 * support we should be able to handle 1663 * missing data devices by transitioning 1664 * the pool to readonly. 1665 */ 1666 continue; 1667 } 1668 1669 /* 1670 * Swap the missing vdev with the data we were 1671 * able to obtain from the MOS config. 1672 */ 1673 vdev_remove_child(rvd, tvd); 1674 vdev_remove_child(mrvd, mtvd); 1675 1676 vdev_add_child(rvd, mtvd); 1677 vdev_add_child(mrvd, tvd); 1678 1679 spa_config_exit(spa, SCL_ALL, FTAG); 1680 vdev_load(mtvd); 1681 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 1682 1683 vdev_reopen(rvd); 1684 } else if (mtvd->vdev_islog) { 1685 /* 1686 * Load the slog device's state from the MOS config 1687 * since it's possible that the label does not 1688 * contain the most up-to-date information. 1689 */ 1690 vdev_load_log_state(tvd, mtvd); 1691 vdev_reopen(tvd); 1692 } 1693 } 1694 vdev_free(mrvd); 1695 spa_config_exit(spa, SCL_ALL, FTAG); 1696 1697 /* 1698 * Ensure we were able to validate the config. 1699 */ 1700 return (rvd->vdev_guid_sum == spa->spa_uberblock.ub_guid_sum); 1701 } 1702 1703 /* 1704 * Check for missing log devices 1705 */ 1706 static boolean_t 1707 spa_check_logs(spa_t *spa) 1708 { 1709 boolean_t rv = B_FALSE; 1710 1711 switch (spa->spa_log_state) { 1712 case SPA_LOG_MISSING: 1713 /* need to recheck in case slog has been restored */ 1714 case SPA_LOG_UNKNOWN: 1715 rv = (dmu_objset_find(spa->spa_name, zil_check_log_chain, 1716 NULL, DS_FIND_CHILDREN) != 0); 1717 if (rv) 1718 spa_set_log_state(spa, SPA_LOG_MISSING); 1719 break; 1720 } 1721 return (rv); 1722 } 1723 1724 static boolean_t 1725 spa_passivate_log(spa_t *spa) 1726 { 1727 vdev_t *rvd = spa->spa_root_vdev; 1728 boolean_t slog_found = B_FALSE; 1729 1730 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1731 1732 if (!spa_has_slogs(spa)) 1733 return (B_FALSE); 1734 1735 for (int c = 0; c < rvd->vdev_children; c++) { 1736 vdev_t *tvd = rvd->vdev_child[c]; 1737 metaslab_group_t *mg = tvd->vdev_mg; 1738 1739 if (tvd->vdev_islog) { 1740 metaslab_group_passivate(mg); 1741 slog_found = B_TRUE; 1742 } 1743 } 1744 1745 return (slog_found); 1746 } 1747 1748 static void 1749 spa_activate_log(spa_t *spa) 1750 { 1751 vdev_t *rvd = spa->spa_root_vdev; 1752 1753 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER)); 1754 1755 for (int c = 0; c < rvd->vdev_children; c++) { 1756 vdev_t *tvd = rvd->vdev_child[c]; 1757 metaslab_group_t *mg = tvd->vdev_mg; 1758 1759 if (tvd->vdev_islog) 1760 metaslab_group_activate(mg); 1761 } 1762 } 1763 1764 int 1765 spa_offline_log(spa_t *spa) 1766 { 1767 int error; 1768 1769 error = dmu_objset_find(spa_name(spa), zil_vdev_offline, 1770 NULL, DS_FIND_CHILDREN); 1771 if (error == 0) { 1772 /* 1773 * We successfully offlined the log device, sync out the 1774 * current txg so that the "stubby" block can be removed 1775 * by zil_sync(). 1776 */ 1777 txg_wait_synced(spa->spa_dsl_pool, 0); 1778 } 1779 return (error); 1780 } 1781 1782 static void 1783 spa_aux_check_removed(spa_aux_vdev_t *sav) 1784 { 1785 for (int i = 0; i < sav->sav_count; i++) 1786 spa_check_removed(sav->sav_vdevs[i]); 1787 } 1788 1789 void 1790 spa_claim_notify(zio_t *zio) 1791 { 1792 spa_t *spa = zio->io_spa; 1793 1794 if (zio->io_error) 1795 return; 1796 1797 mutex_enter(&spa->spa_props_lock); /* any mutex will do */ 1798 if (spa->spa_claim_max_txg < zio->io_bp->blk_birth) 1799 spa->spa_claim_max_txg = zio->io_bp->blk_birth; 1800 mutex_exit(&spa->spa_props_lock); 1801 } 1802 1803 typedef struct spa_load_error { 1804 uint64_t sle_meta_count; 1805 uint64_t sle_data_count; 1806 } spa_load_error_t; 1807 1808 static void 1809 spa_load_verify_done(zio_t *zio) 1810 { 1811 blkptr_t *bp = zio->io_bp; 1812 spa_load_error_t *sle = zio->io_private; 1813 dmu_object_type_t type = BP_GET_TYPE(bp); 1814 int error = zio->io_error; 1815 spa_t *spa = zio->io_spa; 1816 1817 if (error) { 1818 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) && 1819 type != DMU_OT_INTENT_LOG) 1820 atomic_add_64(&sle->sle_meta_count, 1); 1821 else 1822 atomic_add_64(&sle->sle_data_count, 1); 1823 } 1824 zio_data_buf_free(zio->io_data, zio->io_size); 1825 1826 mutex_enter(&spa->spa_scrub_lock); 1827 spa->spa_scrub_inflight--; 1828 cv_broadcast(&spa->spa_scrub_io_cv); 1829 mutex_exit(&spa->spa_scrub_lock); 1830 } 1831 1832 /* 1833 * Maximum number of concurrent scrub i/os to create while verifying 1834 * a pool while importing it. 1835 */ 1836 int spa_load_verify_maxinflight = 10000; 1837 boolean_t spa_load_verify_metadata = B_TRUE; 1838 boolean_t spa_load_verify_data = B_TRUE; 1839 1840 /*ARGSUSED*/ 1841 static int 1842 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp, 1843 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg) 1844 { 1845 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) 1846 return (0); 1847 /* 1848 * Note: normally this routine will not be called if 1849 * spa_load_verify_metadata is not set. However, it may be useful 1850 * to manually set the flag after the traversal has begun. 1851 */ 1852 if (!spa_load_verify_metadata) 1853 return (0); 1854 if (BP_GET_BUFC_TYPE(bp) == ARC_BUFC_DATA && !spa_load_verify_data) 1855 return (0); 1856 1857 zio_t *rio = arg; 1858 size_t size = BP_GET_PSIZE(bp); 1859 void *data = zio_data_buf_alloc(size); 1860 1861 mutex_enter(&spa->spa_scrub_lock); 1862 while (spa->spa_scrub_inflight >= spa_load_verify_maxinflight) 1863 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock); 1864 spa->spa_scrub_inflight++; 1865 mutex_exit(&spa->spa_scrub_lock); 1866 1867 zio_nowait(zio_read(rio, spa, bp, data, size, 1868 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB, 1869 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL | 1870 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb)); 1871 return (0); 1872 } 1873 1874 static int 1875 spa_load_verify(spa_t *spa) 1876 { 1877 zio_t *rio; 1878 spa_load_error_t sle = { 0 }; 1879 zpool_rewind_policy_t policy; 1880 boolean_t verify_ok = B_FALSE; 1881 int error = 0; 1882 1883 zpool_get_rewind_policy(spa->spa_config, &policy); 1884 1885 if (policy.zrp_request & ZPOOL_NEVER_REWIND) 1886 return (0); 1887 1888 rio = zio_root(spa, NULL, &sle, 1889 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE); 1890 1891 if (spa_load_verify_metadata) { 1892 error = traverse_pool(spa, spa->spa_verify_min_txg, 1893 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA, 1894 spa_load_verify_cb, rio); 1895 } 1896 1897 (void) zio_wait(rio); 1898 1899 spa->spa_load_meta_errors = sle.sle_meta_count; 1900 spa->spa_load_data_errors = sle.sle_data_count; 1901 1902 if (!error && sle.sle_meta_count <= policy.zrp_maxmeta && 1903 sle.sle_data_count <= policy.zrp_maxdata) { 1904 int64_t loss = 0; 1905 1906 verify_ok = B_TRUE; 1907 spa->spa_load_txg = spa->spa_uberblock.ub_txg; 1908 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp; 1909 1910 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts; 1911 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1912 ZPOOL_CONFIG_LOAD_TIME, spa->spa_load_txg_ts) == 0); 1913 VERIFY(nvlist_add_int64(spa->spa_load_info, 1914 ZPOOL_CONFIG_REWIND_TIME, loss) == 0); 1915 VERIFY(nvlist_add_uint64(spa->spa_load_info, 1916 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count) == 0); 1917 } else { 1918 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg; 1919 } 1920 1921 if (error) { 1922 if (error != ENXIO && error != EIO) 1923 error = SET_ERROR(EIO); 1924 return (error); 1925 } 1926 1927 return (verify_ok ? 0 : EIO); 1928 } 1929 1930 /* 1931 * Find a value in the pool props object. 1932 */ 1933 static void 1934 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val) 1935 { 1936 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object, 1937 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val); 1938 } 1939 1940 /* 1941 * Find a value in the pool directory object. 1942 */ 1943 static int 1944 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val) 1945 { 1946 return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT, 1947 name, sizeof (uint64_t), 1, val)); 1948 } 1949 1950 static int 1951 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err) 1952 { 1953 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux); 1954 return (err); 1955 } 1956 1957 /* 1958 * Fix up config after a partly-completed split. This is done with the 1959 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off 1960 * pool have that entry in their config, but only the splitting one contains 1961 * a list of all the guids of the vdevs that are being split off. 1962 * 1963 * This function determines what to do with that list: either rejoin 1964 * all the disks to the pool, or complete the splitting process. To attempt 1965 * the rejoin, each disk that is offlined is marked online again, and 1966 * we do a reopen() call. If the vdev label for every disk that was 1967 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL) 1968 * then we call vdev_split() on each disk, and complete the split. 1969 * 1970 * Otherwise we leave the config alone, with all the vdevs in place in 1971 * the original pool. 1972 */ 1973 static void 1974 spa_try_repair(spa_t *spa, nvlist_t *config) 1975 { 1976 uint_t extracted; 1977 uint64_t *glist; 1978 uint_t i, gcount; 1979 nvlist_t *nvl; 1980 vdev_t **vd; 1981 boolean_t attempt_reopen; 1982 1983 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0) 1984 return; 1985 1986 /* check that the config is complete */ 1987 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 1988 &glist, &gcount) != 0) 1989 return; 1990 1991 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP); 1992 1993 /* attempt to online all the vdevs & validate */ 1994 attempt_reopen = B_TRUE; 1995 for (i = 0; i < gcount; i++) { 1996 if (glist[i] == 0) /* vdev is hole */ 1997 continue; 1998 1999 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE); 2000 if (vd[i] == NULL) { 2001 /* 2002 * Don't bother attempting to reopen the disks; 2003 * just do the split. 2004 */ 2005 attempt_reopen = B_FALSE; 2006 } else { 2007 /* attempt to re-online it */ 2008 vd[i]->vdev_offline = B_FALSE; 2009 } 2010 } 2011 2012 if (attempt_reopen) { 2013 vdev_reopen(spa->spa_root_vdev); 2014 2015 /* check each device to see what state it's in */ 2016 for (extracted = 0, i = 0; i < gcount; i++) { 2017 if (vd[i] != NULL && 2018 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL) 2019 break; 2020 ++extracted; 2021 } 2022 } 2023 2024 /* 2025 * If every disk has been moved to the new pool, or if we never 2026 * even attempted to look at them, then we split them off for 2027 * good. 2028 */ 2029 if (!attempt_reopen || gcount == extracted) { 2030 for (i = 0; i < gcount; i++) 2031 if (vd[i] != NULL) 2032 vdev_split(vd[i]); 2033 vdev_reopen(spa->spa_root_vdev); 2034 } 2035 2036 kmem_free(vd, gcount * sizeof (vdev_t *)); 2037 } 2038 2039 static int 2040 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type, 2041 boolean_t mosconfig) 2042 { 2043 nvlist_t *config = spa->spa_config; 2044 char *ereport = FM_EREPORT_ZFS_POOL; 2045 char *comment; 2046 int error; 2047 uint64_t pool_guid; 2048 nvlist_t *nvl; 2049 2050 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) 2051 return (SET_ERROR(EINVAL)); 2052 2053 ASSERT(spa->spa_comment == NULL); 2054 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0) 2055 spa->spa_comment = spa_strdup(comment); 2056 2057 /* 2058 * Versioning wasn't explicitly added to the label until later, so if 2059 * it's not present treat it as the initial version. 2060 */ 2061 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION, 2062 &spa->spa_ubsync.ub_version) != 0) 2063 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL; 2064 2065 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, 2066 &spa->spa_config_txg); 2067 2068 if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) && 2069 spa_guid_exists(pool_guid, 0)) { 2070 error = SET_ERROR(EEXIST); 2071 } else { 2072 spa->spa_config_guid = pool_guid; 2073 2074 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, 2075 &nvl) == 0) { 2076 VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting, 2077 KM_SLEEP) == 0); 2078 } 2079 2080 nvlist_free(spa->spa_load_info); 2081 spa->spa_load_info = fnvlist_alloc(); 2082 2083 gethrestime(&spa->spa_loaded_ts); 2084 error = spa_load_impl(spa, pool_guid, config, state, type, 2085 mosconfig, &ereport); 2086 } 2087 2088 spa->spa_minref = refcount_count(&spa->spa_refcount); 2089 if (error) { 2090 if (error != EEXIST) { 2091 spa->spa_loaded_ts.tv_sec = 0; 2092 spa->spa_loaded_ts.tv_nsec = 0; 2093 } 2094 if (error != EBADF) { 2095 zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0); 2096 } 2097 } 2098 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE; 2099 spa->spa_ena = 0; 2100 2101 return (error); 2102 } 2103 2104 /* 2105 * Load an existing storage pool, using the pool's builtin spa_config as a 2106 * source of configuration information. 2107 */ 2108 static int 2109 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config, 2110 spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig, 2111 char **ereport) 2112 { 2113 int error = 0; 2114 nvlist_t *nvroot = NULL; 2115 nvlist_t *label; 2116 vdev_t *rvd; 2117 uberblock_t *ub = &spa->spa_uberblock; 2118 uint64_t children, config_cache_txg = spa->spa_config_txg; 2119 int orig_mode = spa->spa_mode; 2120 int parse; 2121 uint64_t obj; 2122 boolean_t missing_feat_write = B_FALSE; 2123 2124 /* 2125 * If this is an untrusted config, access the pool in read-only mode. 2126 * This prevents things like resilvering recently removed devices. 2127 */ 2128 if (!mosconfig) 2129 spa->spa_mode = FREAD; 2130 2131 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 2132 2133 spa->spa_load_state = state; 2134 2135 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot)) 2136 return (SET_ERROR(EINVAL)); 2137 2138 parse = (type == SPA_IMPORT_EXISTING ? 2139 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT); 2140 2141 /* 2142 * Create "The Godfather" zio to hold all async IOs 2143 */ 2144 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 2145 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 2146 2147 /* 2148 * Parse the configuration into a vdev tree. We explicitly set the 2149 * value that will be returned by spa_version() since parsing the 2150 * configuration requires knowing the version number. 2151 */ 2152 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2153 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse); 2154 spa_config_exit(spa, SCL_ALL, FTAG); 2155 2156 if (error != 0) 2157 return (error); 2158 2159 ASSERT(spa->spa_root_vdev == rvd); 2160 2161 if (type != SPA_IMPORT_ASSEMBLE) { 2162 ASSERT(spa_guid(spa) == pool_guid); 2163 } 2164 2165 /* 2166 * Try to open all vdevs, loading each label in the process. 2167 */ 2168 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2169 error = vdev_open(rvd); 2170 spa_config_exit(spa, SCL_ALL, FTAG); 2171 if (error != 0) 2172 return (error); 2173 2174 /* 2175 * We need to validate the vdev labels against the configuration that 2176 * we have in hand, which is dependent on the setting of mosconfig. If 2177 * mosconfig is true then we're validating the vdev labels based on 2178 * that config. Otherwise, we're validating against the cached config 2179 * (zpool.cache) that was read when we loaded the zfs module, and then 2180 * later we will recursively call spa_load() and validate against 2181 * the vdev config. 2182 * 2183 * If we're assembling a new pool that's been split off from an 2184 * existing pool, the labels haven't yet been updated so we skip 2185 * validation for now. 2186 */ 2187 if (type != SPA_IMPORT_ASSEMBLE) { 2188 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2189 error = vdev_validate(rvd, mosconfig); 2190 spa_config_exit(spa, SCL_ALL, FTAG); 2191 2192 if (error != 0) 2193 return (error); 2194 2195 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2196 return (SET_ERROR(ENXIO)); 2197 } 2198 2199 /* 2200 * Find the best uberblock. 2201 */ 2202 vdev_uberblock_load(rvd, ub, &label); 2203 2204 /* 2205 * If we weren't able to find a single valid uberblock, return failure. 2206 */ 2207 if (ub->ub_txg == 0) { 2208 nvlist_free(label); 2209 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO)); 2210 } 2211 2212 /* 2213 * If the pool has an unsupported version we can't open it. 2214 */ 2215 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) { 2216 nvlist_free(label); 2217 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP)); 2218 } 2219 2220 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2221 nvlist_t *features; 2222 2223 /* 2224 * If we weren't able to find what's necessary for reading the 2225 * MOS in the label, return failure. 2226 */ 2227 if (label == NULL || nvlist_lookup_nvlist(label, 2228 ZPOOL_CONFIG_FEATURES_FOR_READ, &features) != 0) { 2229 nvlist_free(label); 2230 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2231 ENXIO)); 2232 } 2233 2234 /* 2235 * Update our in-core representation with the definitive values 2236 * from the label. 2237 */ 2238 nvlist_free(spa->spa_label_features); 2239 VERIFY(nvlist_dup(features, &spa->spa_label_features, 0) == 0); 2240 } 2241 2242 nvlist_free(label); 2243 2244 /* 2245 * Look through entries in the label nvlist's features_for_read. If 2246 * there is a feature listed there which we don't understand then we 2247 * cannot open a pool. 2248 */ 2249 if (ub->ub_version >= SPA_VERSION_FEATURES) { 2250 nvlist_t *unsup_feat; 2251 2252 VERIFY(nvlist_alloc(&unsup_feat, NV_UNIQUE_NAME, KM_SLEEP) == 2253 0); 2254 2255 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features, 2256 NULL); nvp != NULL; 2257 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) { 2258 if (!zfeature_is_supported(nvpair_name(nvp))) { 2259 VERIFY(nvlist_add_string(unsup_feat, 2260 nvpair_name(nvp), "") == 0); 2261 } 2262 } 2263 2264 if (!nvlist_empty(unsup_feat)) { 2265 VERIFY(nvlist_add_nvlist(spa->spa_load_info, 2266 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat) == 0); 2267 nvlist_free(unsup_feat); 2268 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2269 ENOTSUP)); 2270 } 2271 2272 nvlist_free(unsup_feat); 2273 } 2274 2275 /* 2276 * If the vdev guid sum doesn't match the uberblock, we have an 2277 * incomplete configuration. We first check to see if the pool 2278 * is aware of the complete config (i.e ZPOOL_CONFIG_VDEV_CHILDREN). 2279 * If it is, defer the vdev_guid_sum check till later so we 2280 * can handle missing vdevs. 2281 */ 2282 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 2283 &children) != 0 && mosconfig && type != SPA_IMPORT_ASSEMBLE && 2284 rvd->vdev_guid_sum != ub->ub_guid_sum) 2285 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO)); 2286 2287 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) { 2288 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2289 spa_try_repair(spa, config); 2290 spa_config_exit(spa, SCL_ALL, FTAG); 2291 nvlist_free(spa->spa_config_splitting); 2292 spa->spa_config_splitting = NULL; 2293 } 2294 2295 /* 2296 * Initialize internal SPA structures. 2297 */ 2298 spa->spa_state = POOL_STATE_ACTIVE; 2299 spa->spa_ubsync = spa->spa_uberblock; 2300 spa->spa_verify_min_txg = spa->spa_extreme_rewind ? 2301 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1; 2302 spa->spa_first_txg = spa->spa_last_ubsync_txg ? 2303 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1; 2304 spa->spa_claim_max_txg = spa->spa_first_txg; 2305 spa->spa_prev_software_version = ub->ub_software_version; 2306 2307 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool); 2308 if (error) 2309 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2310 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset; 2311 2312 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0) 2313 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2314 2315 if (spa_version(spa) >= SPA_VERSION_FEATURES) { 2316 boolean_t missing_feat_read = B_FALSE; 2317 nvlist_t *unsup_feat, *enabled_feat; 2318 2319 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ, 2320 &spa->spa_feat_for_read_obj) != 0) { 2321 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2322 } 2323 2324 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE, 2325 &spa->spa_feat_for_write_obj) != 0) { 2326 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2327 } 2328 2329 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS, 2330 &spa->spa_feat_desc_obj) != 0) { 2331 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2332 } 2333 2334 enabled_feat = fnvlist_alloc(); 2335 unsup_feat = fnvlist_alloc(); 2336 2337 if (!spa_features_check(spa, B_FALSE, 2338 unsup_feat, enabled_feat)) 2339 missing_feat_read = B_TRUE; 2340 2341 if (spa_writeable(spa) || state == SPA_LOAD_TRYIMPORT) { 2342 if (!spa_features_check(spa, B_TRUE, 2343 unsup_feat, enabled_feat)) { 2344 missing_feat_write = B_TRUE; 2345 } 2346 } 2347 2348 fnvlist_add_nvlist(spa->spa_load_info, 2349 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat); 2350 2351 if (!nvlist_empty(unsup_feat)) { 2352 fnvlist_add_nvlist(spa->spa_load_info, 2353 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat); 2354 } 2355 2356 fnvlist_free(enabled_feat); 2357 fnvlist_free(unsup_feat); 2358 2359 if (!missing_feat_read) { 2360 fnvlist_add_boolean(spa->spa_load_info, 2361 ZPOOL_CONFIG_CAN_RDONLY); 2362 } 2363 2364 /* 2365 * If the state is SPA_LOAD_TRYIMPORT, our objective is 2366 * twofold: to determine whether the pool is available for 2367 * import in read-write mode and (if it is not) whether the 2368 * pool is available for import in read-only mode. If the pool 2369 * is available for import in read-write mode, it is displayed 2370 * as available in userland; if it is not available for import 2371 * in read-only mode, it is displayed as unavailable in 2372 * userland. If the pool is available for import in read-only 2373 * mode but not read-write mode, it is displayed as unavailable 2374 * in userland with a special note that the pool is actually 2375 * available for open in read-only mode. 2376 * 2377 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are 2378 * missing a feature for write, we must first determine whether 2379 * the pool can be opened read-only before returning to 2380 * userland in order to know whether to display the 2381 * abovementioned note. 2382 */ 2383 if (missing_feat_read || (missing_feat_write && 2384 spa_writeable(spa))) { 2385 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, 2386 ENOTSUP)); 2387 } 2388 2389 /* 2390 * Load refcounts for ZFS features from disk into an in-memory 2391 * cache during SPA initialization. 2392 */ 2393 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) { 2394 uint64_t refcount; 2395 2396 error = feature_get_refcount_from_disk(spa, 2397 &spa_feature_table[i], &refcount); 2398 if (error == 0) { 2399 spa->spa_feat_refcount_cache[i] = refcount; 2400 } else if (error == ENOTSUP) { 2401 spa->spa_feat_refcount_cache[i] = 2402 SPA_FEATURE_DISABLED; 2403 } else { 2404 return (spa_vdev_err(rvd, 2405 VDEV_AUX_CORRUPT_DATA, EIO)); 2406 } 2407 } 2408 } 2409 2410 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) { 2411 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG, 2412 &spa->spa_feat_enabled_txg_obj) != 0) 2413 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2414 } 2415 2416 spa->spa_is_initializing = B_TRUE; 2417 error = dsl_pool_open(spa->spa_dsl_pool); 2418 spa->spa_is_initializing = B_FALSE; 2419 if (error != 0) 2420 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2421 2422 if (!mosconfig) { 2423 uint64_t hostid; 2424 nvlist_t *policy = NULL, *nvconfig; 2425 2426 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2427 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2428 2429 if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig, 2430 ZPOOL_CONFIG_HOSTID, &hostid) == 0) { 2431 char *hostname; 2432 unsigned long myhostid = 0; 2433 2434 VERIFY(nvlist_lookup_string(nvconfig, 2435 ZPOOL_CONFIG_HOSTNAME, &hostname) == 0); 2436 2437 #ifdef _KERNEL 2438 myhostid = zone_get_hostid(NULL); 2439 #else /* _KERNEL */ 2440 /* 2441 * We're emulating the system's hostid in userland, so 2442 * we can't use zone_get_hostid(). 2443 */ 2444 (void) ddi_strtoul(hw_serial, NULL, 10, &myhostid); 2445 #endif /* _KERNEL */ 2446 if (hostid != 0 && myhostid != 0 && 2447 hostid != myhostid) { 2448 nvlist_free(nvconfig); 2449 cmn_err(CE_WARN, "pool '%s' could not be " 2450 "loaded as it was last accessed by " 2451 "another system (host: %s hostid: 0x%lx). " 2452 "See: http://illumos.org/msg/ZFS-8000-EY", 2453 spa_name(spa), hostname, 2454 (unsigned long)hostid); 2455 return (SET_ERROR(EBADF)); 2456 } 2457 } 2458 if (nvlist_lookup_nvlist(spa->spa_config, 2459 ZPOOL_REWIND_POLICY, &policy) == 0) 2460 VERIFY(nvlist_add_nvlist(nvconfig, 2461 ZPOOL_REWIND_POLICY, policy) == 0); 2462 2463 spa_config_set(spa, nvconfig); 2464 spa_unload(spa); 2465 spa_deactivate(spa); 2466 spa_activate(spa, orig_mode); 2467 2468 return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE)); 2469 } 2470 2471 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0) 2472 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2473 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj); 2474 if (error != 0) 2475 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2476 2477 /* 2478 * Load the bit that tells us to use the new accounting function 2479 * (raid-z deflation). If we have an older pool, this will not 2480 * be present. 2481 */ 2482 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate); 2483 if (error != 0 && error != ENOENT) 2484 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2485 2486 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION, 2487 &spa->spa_creation_version); 2488 if (error != 0 && error != ENOENT) 2489 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2490 2491 /* 2492 * Load the persistent error log. If we have an older pool, this will 2493 * not be present. 2494 */ 2495 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last); 2496 if (error != 0 && error != ENOENT) 2497 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2498 2499 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB, 2500 &spa->spa_errlog_scrub); 2501 if (error != 0 && error != ENOENT) 2502 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2503 2504 /* 2505 * Load the history object. If we have an older pool, this 2506 * will not be present. 2507 */ 2508 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history); 2509 if (error != 0 && error != ENOENT) 2510 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2511 2512 /* 2513 * If we're assembling the pool from the split-off vdevs of 2514 * an existing pool, we don't want to attach the spares & cache 2515 * devices. 2516 */ 2517 2518 /* 2519 * Load any hot spares for this pool. 2520 */ 2521 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object); 2522 if (error != 0 && error != ENOENT) 2523 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2524 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2525 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES); 2526 if (load_nvlist(spa, spa->spa_spares.sav_object, 2527 &spa->spa_spares.sav_config) != 0) 2528 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2529 2530 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2531 spa_load_spares(spa); 2532 spa_config_exit(spa, SCL_ALL, FTAG); 2533 } else if (error == 0) { 2534 spa->spa_spares.sav_sync = B_TRUE; 2535 } 2536 2537 /* 2538 * Load any level 2 ARC devices for this pool. 2539 */ 2540 error = spa_dir_prop(spa, DMU_POOL_L2CACHE, 2541 &spa->spa_l2cache.sav_object); 2542 if (error != 0 && error != ENOENT) 2543 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2544 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) { 2545 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE); 2546 if (load_nvlist(spa, spa->spa_l2cache.sav_object, 2547 &spa->spa_l2cache.sav_config) != 0) 2548 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2549 2550 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2551 spa_load_l2cache(spa); 2552 spa_config_exit(spa, SCL_ALL, FTAG); 2553 } else if (error == 0) { 2554 spa->spa_l2cache.sav_sync = B_TRUE; 2555 } 2556 2557 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 2558 2559 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object); 2560 if (error && error != ENOENT) 2561 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2562 2563 if (error == 0) { 2564 uint64_t autoreplace; 2565 2566 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs); 2567 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace); 2568 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation); 2569 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode); 2570 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand); 2571 spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO, 2572 &spa->spa_dedup_ditto); 2573 2574 spa->spa_autoreplace = (autoreplace != 0); 2575 } 2576 2577 /* 2578 * If the 'autoreplace' property is set, then post a resource notifying 2579 * the ZFS DE that it should not issue any faults for unopenable 2580 * devices. We also iterate over the vdevs, and post a sysevent for any 2581 * unopenable vdevs so that the normal autoreplace handler can take 2582 * over. 2583 */ 2584 if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) { 2585 spa_check_removed(spa->spa_root_vdev); 2586 /* 2587 * For the import case, this is done in spa_import(), because 2588 * at this point we're using the spare definitions from 2589 * the MOS config, not necessarily from the userland config. 2590 */ 2591 if (state != SPA_LOAD_IMPORT) { 2592 spa_aux_check_removed(&spa->spa_spares); 2593 spa_aux_check_removed(&spa->spa_l2cache); 2594 } 2595 } 2596 2597 /* 2598 * Load the vdev state for all toplevel vdevs. 2599 */ 2600 vdev_load(rvd); 2601 2602 /* 2603 * Propagate the leaf DTLs we just loaded all the way up the tree. 2604 */ 2605 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 2606 vdev_dtl_reassess(rvd, 0, 0, B_FALSE); 2607 spa_config_exit(spa, SCL_ALL, FTAG); 2608 2609 /* 2610 * Load the DDTs (dedup tables). 2611 */ 2612 error = ddt_load(spa); 2613 if (error != 0) 2614 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2615 2616 spa_update_dspace(spa); 2617 2618 /* 2619 * Validate the config, using the MOS config to fill in any 2620 * information which might be missing. If we fail to validate 2621 * the config then declare the pool unfit for use. If we're 2622 * assembling a pool from a split, the log is not transferred 2623 * over. 2624 */ 2625 if (type != SPA_IMPORT_ASSEMBLE) { 2626 nvlist_t *nvconfig; 2627 2628 if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0) 2629 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO)); 2630 2631 if (!spa_config_valid(spa, nvconfig)) { 2632 nvlist_free(nvconfig); 2633 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, 2634 ENXIO)); 2635 } 2636 nvlist_free(nvconfig); 2637 2638 /* 2639 * Now that we've validated the config, check the state of the 2640 * root vdev. If it can't be opened, it indicates one or 2641 * more toplevel vdevs are faulted. 2642 */ 2643 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) 2644 return (SET_ERROR(ENXIO)); 2645 2646 if (spa_check_logs(spa)) { 2647 *ereport = FM_EREPORT_ZFS_LOG_REPLAY; 2648 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO)); 2649 } 2650 } 2651 2652 if (missing_feat_write) { 2653 ASSERT(state == SPA_LOAD_TRYIMPORT); 2654 2655 /* 2656 * At this point, we know that we can open the pool in 2657 * read-only mode but not read-write mode. We now have enough 2658 * information and can return to userland. 2659 */ 2660 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT, ENOTSUP)); 2661 } 2662 2663 /* 2664 * We've successfully opened the pool, verify that we're ready 2665 * to start pushing transactions. 2666 */ 2667 if (state != SPA_LOAD_TRYIMPORT) { 2668 if (error = spa_load_verify(spa)) 2669 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, 2670 error)); 2671 } 2672 2673 if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER || 2674 spa->spa_load_max_txg == UINT64_MAX)) { 2675 dmu_tx_t *tx; 2676 int need_update = B_FALSE; 2677 2678 ASSERT(state != SPA_LOAD_TRYIMPORT); 2679 2680 /* 2681 * Claim log blocks that haven't been committed yet. 2682 * This must all happen in a single txg. 2683 * Note: spa_claim_max_txg is updated by spa_claim_notify(), 2684 * invoked from zil_claim_log_block()'s i/o done callback. 2685 * Price of rollback is that we abandon the log. 2686 */ 2687 spa->spa_claiming = B_TRUE; 2688 2689 tx = dmu_tx_create_assigned(spa_get_dsl(spa), 2690 spa_first_txg(spa)); 2691 (void) dmu_objset_find(spa_name(spa), 2692 zil_claim, tx, DS_FIND_CHILDREN); 2693 dmu_tx_commit(tx); 2694 2695 spa->spa_claiming = B_FALSE; 2696 2697 spa_set_log_state(spa, SPA_LOG_GOOD); 2698 spa->spa_sync_on = B_TRUE; 2699 txg_sync_start(spa->spa_dsl_pool); 2700 2701 /* 2702 * Wait for all claims to sync. We sync up to the highest 2703 * claimed log block birth time so that claimed log blocks 2704 * don't appear to be from the future. spa_claim_max_txg 2705 * will have been set for us by either zil_check_log_chain() 2706 * (invoked from spa_check_logs()) or zil_claim() above. 2707 */ 2708 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg); 2709 2710 /* 2711 * If the config cache is stale, or we have uninitialized 2712 * metaslabs (see spa_vdev_add()), then update the config. 2713 * 2714 * If this is a verbatim import, trust the current 2715 * in-core spa_config and update the disk labels. 2716 */ 2717 if (config_cache_txg != spa->spa_config_txg || 2718 state == SPA_LOAD_IMPORT || 2719 state == SPA_LOAD_RECOVER || 2720 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM)) 2721 need_update = B_TRUE; 2722 2723 for (int c = 0; c < rvd->vdev_children; c++) 2724 if (rvd->vdev_child[c]->vdev_ms_array == 0) 2725 need_update = B_TRUE; 2726 2727 /* 2728 * Update the config cache asychronously in case we're the 2729 * root pool, in which case the config cache isn't writable yet. 2730 */ 2731 if (need_update) 2732 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE); 2733 2734 /* 2735 * Check all DTLs to see if anything needs resilvering. 2736 */ 2737 if (!dsl_scan_resilvering(spa->spa_dsl_pool) && 2738 vdev_resilver_needed(rvd, NULL, NULL)) 2739 spa_async_request(spa, SPA_ASYNC_RESILVER); 2740 2741 /* 2742 * Log the fact that we booted up (so that we can detect if 2743 * we rebooted in the middle of an operation). 2744 */ 2745 spa_history_log_version(spa, "open"); 2746 2747 /* 2748 * Delete any inconsistent datasets. 2749 */ 2750 (void) dmu_objset_find(spa_name(spa), 2751 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN); 2752 2753 /* 2754 * Clean up any stale temporary dataset userrefs. 2755 */ 2756 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool); 2757 } 2758 2759 return (0); 2760 } 2761 2762 static int 2763 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig) 2764 { 2765 int mode = spa->spa_mode; 2766 2767 spa_unload(spa); 2768 spa_deactivate(spa); 2769 2770 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1; 2771 2772 spa_activate(spa, mode); 2773 spa_async_suspend(spa); 2774 2775 return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig)); 2776 } 2777 2778 /* 2779 * If spa_load() fails this function will try loading prior txg's. If 2780 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool 2781 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this 2782 * function will not rewind the pool and will return the same error as 2783 * spa_load(). 2784 */ 2785 static int 2786 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig, 2787 uint64_t max_request, int rewind_flags) 2788 { 2789 nvlist_t *loadinfo = NULL; 2790 nvlist_t *config = NULL; 2791 int load_error, rewind_error; 2792 uint64_t safe_rewind_txg; 2793 uint64_t min_txg; 2794 2795 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) { 2796 spa->spa_load_max_txg = spa->spa_load_txg; 2797 spa_set_log_state(spa, SPA_LOG_CLEAR); 2798 } else { 2799 spa->spa_load_max_txg = max_request; 2800 if (max_request != UINT64_MAX) 2801 spa->spa_extreme_rewind = B_TRUE; 2802 } 2803 2804 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING, 2805 mosconfig); 2806 if (load_error == 0) 2807 return (0); 2808 2809 if (spa->spa_root_vdev != NULL) 2810 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2811 2812 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg; 2813 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp; 2814 2815 if (rewind_flags & ZPOOL_NEVER_REWIND) { 2816 nvlist_free(config); 2817 return (load_error); 2818 } 2819 2820 if (state == SPA_LOAD_RECOVER) { 2821 /* Price of rolling back is discarding txgs, including log */ 2822 spa_set_log_state(spa, SPA_LOG_CLEAR); 2823 } else { 2824 /* 2825 * If we aren't rolling back save the load info from our first 2826 * import attempt so that we can restore it after attempting 2827 * to rewind. 2828 */ 2829 loadinfo = spa->spa_load_info; 2830 spa->spa_load_info = fnvlist_alloc(); 2831 } 2832 2833 spa->spa_load_max_txg = spa->spa_last_ubsync_txg; 2834 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE; 2835 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ? 2836 TXG_INITIAL : safe_rewind_txg; 2837 2838 /* 2839 * Continue as long as we're finding errors, we're still within 2840 * the acceptable rewind range, and we're still finding uberblocks 2841 */ 2842 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg && 2843 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) { 2844 if (spa->spa_load_max_txg < safe_rewind_txg) 2845 spa->spa_extreme_rewind = B_TRUE; 2846 rewind_error = spa_load_retry(spa, state, mosconfig); 2847 } 2848 2849 spa->spa_extreme_rewind = B_FALSE; 2850 spa->spa_load_max_txg = UINT64_MAX; 2851 2852 if (config && (rewind_error || state != SPA_LOAD_RECOVER)) 2853 spa_config_set(spa, config); 2854 2855 if (state == SPA_LOAD_RECOVER) { 2856 ASSERT3P(loadinfo, ==, NULL); 2857 return (rewind_error); 2858 } else { 2859 /* Store the rewind info as part of the initial load info */ 2860 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO, 2861 spa->spa_load_info); 2862 2863 /* Restore the initial load info */ 2864 fnvlist_free(spa->spa_load_info); 2865 spa->spa_load_info = loadinfo; 2866 2867 return (load_error); 2868 } 2869 } 2870 2871 /* 2872 * Pool Open/Import 2873 * 2874 * The import case is identical to an open except that the configuration is sent 2875 * down from userland, instead of grabbed from the configuration cache. For the 2876 * case of an open, the pool configuration will exist in the 2877 * POOL_STATE_UNINITIALIZED state. 2878 * 2879 * The stats information (gen/count/ustats) is used to gather vdev statistics at 2880 * the same time open the pool, without having to keep around the spa_t in some 2881 * ambiguous state. 2882 */ 2883 static int 2884 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy, 2885 nvlist_t **config) 2886 { 2887 spa_t *spa; 2888 spa_load_state_t state = SPA_LOAD_OPEN; 2889 int error; 2890 int locked = B_FALSE; 2891 2892 *spapp = NULL; 2893 2894 /* 2895 * As disgusting as this is, we need to support recursive calls to this 2896 * function because dsl_dir_open() is called during spa_load(), and ends 2897 * up calling spa_open() again. The real fix is to figure out how to 2898 * avoid dsl_dir_open() calling this in the first place. 2899 */ 2900 if (mutex_owner(&spa_namespace_lock) != curthread) { 2901 mutex_enter(&spa_namespace_lock); 2902 locked = B_TRUE; 2903 } 2904 2905 if ((spa = spa_lookup(pool)) == NULL) { 2906 if (locked) 2907 mutex_exit(&spa_namespace_lock); 2908 return (SET_ERROR(ENOENT)); 2909 } 2910 2911 if (spa->spa_state == POOL_STATE_UNINITIALIZED) { 2912 zpool_rewind_policy_t policy; 2913 2914 zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config, 2915 &policy); 2916 if (policy.zrp_request & ZPOOL_DO_REWIND) 2917 state = SPA_LOAD_RECOVER; 2918 2919 spa_activate(spa, spa_mode_global); 2920 2921 if (state != SPA_LOAD_RECOVER) 2922 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 2923 2924 error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg, 2925 policy.zrp_request); 2926 2927 if (error == EBADF) { 2928 /* 2929 * If vdev_validate() returns failure (indicated by 2930 * EBADF), it indicates that one of the vdevs indicates 2931 * that the pool has been exported or destroyed. If 2932 * this is the case, the config cache is out of sync and 2933 * we should remove the pool from the namespace. 2934 */ 2935 spa_unload(spa); 2936 spa_deactivate(spa); 2937 spa_config_sync(spa, B_TRUE, B_TRUE); 2938 spa_remove(spa); 2939 if (locked) 2940 mutex_exit(&spa_namespace_lock); 2941 return (SET_ERROR(ENOENT)); 2942 } 2943 2944 if (error) { 2945 /* 2946 * We can't open the pool, but we still have useful 2947 * information: the state of each vdev after the 2948 * attempted vdev_open(). Return this to the user. 2949 */ 2950 if (config != NULL && spa->spa_config) { 2951 VERIFY(nvlist_dup(spa->spa_config, config, 2952 KM_SLEEP) == 0); 2953 VERIFY(nvlist_add_nvlist(*config, 2954 ZPOOL_CONFIG_LOAD_INFO, 2955 spa->spa_load_info) == 0); 2956 } 2957 spa_unload(spa); 2958 spa_deactivate(spa); 2959 spa->spa_last_open_failed = error; 2960 if (locked) 2961 mutex_exit(&spa_namespace_lock); 2962 *spapp = NULL; 2963 return (error); 2964 } 2965 } 2966 2967 spa_open_ref(spa, tag); 2968 2969 if (config != NULL) 2970 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 2971 2972 /* 2973 * If we've recovered the pool, pass back any information we 2974 * gathered while doing the load. 2975 */ 2976 if (state == SPA_LOAD_RECOVER) { 2977 VERIFY(nvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO, 2978 spa->spa_load_info) == 0); 2979 } 2980 2981 if (locked) { 2982 spa->spa_last_open_failed = 0; 2983 spa->spa_last_ubsync_txg = 0; 2984 spa->spa_load_txg = 0; 2985 mutex_exit(&spa_namespace_lock); 2986 } 2987 2988 *spapp = spa; 2989 2990 return (0); 2991 } 2992 2993 int 2994 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy, 2995 nvlist_t **config) 2996 { 2997 return (spa_open_common(name, spapp, tag, policy, config)); 2998 } 2999 3000 int 3001 spa_open(const char *name, spa_t **spapp, void *tag) 3002 { 3003 return (spa_open_common(name, spapp, tag, NULL, NULL)); 3004 } 3005 3006 /* 3007 * Lookup the given spa_t, incrementing the inject count in the process, 3008 * preventing it from being exported or destroyed. 3009 */ 3010 spa_t * 3011 spa_inject_addref(char *name) 3012 { 3013 spa_t *spa; 3014 3015 mutex_enter(&spa_namespace_lock); 3016 if ((spa = spa_lookup(name)) == NULL) { 3017 mutex_exit(&spa_namespace_lock); 3018 return (NULL); 3019 } 3020 spa->spa_inject_ref++; 3021 mutex_exit(&spa_namespace_lock); 3022 3023 return (spa); 3024 } 3025 3026 void 3027 spa_inject_delref(spa_t *spa) 3028 { 3029 mutex_enter(&spa_namespace_lock); 3030 spa->spa_inject_ref--; 3031 mutex_exit(&spa_namespace_lock); 3032 } 3033 3034 /* 3035 * Add spares device information to the nvlist. 3036 */ 3037 static void 3038 spa_add_spares(spa_t *spa, nvlist_t *config) 3039 { 3040 nvlist_t **spares; 3041 uint_t i, nspares; 3042 nvlist_t *nvroot; 3043 uint64_t guid; 3044 vdev_stat_t *vs; 3045 uint_t vsc; 3046 uint64_t pool; 3047 3048 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3049 3050 if (spa->spa_spares.sav_count == 0) 3051 return; 3052 3053 VERIFY(nvlist_lookup_nvlist(config, 3054 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3055 VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 3056 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3057 if (nspares != 0) { 3058 VERIFY(nvlist_add_nvlist_array(nvroot, 3059 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3060 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3061 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0); 3062 3063 /* 3064 * Go through and find any spares which have since been 3065 * repurposed as an active spare. If this is the case, update 3066 * their status appropriately. 3067 */ 3068 for (i = 0; i < nspares; i++) { 3069 VERIFY(nvlist_lookup_uint64(spares[i], 3070 ZPOOL_CONFIG_GUID, &guid) == 0); 3071 if (spa_spare_exists(guid, &pool, NULL) && 3072 pool != 0ULL) { 3073 VERIFY(nvlist_lookup_uint64_array( 3074 spares[i], ZPOOL_CONFIG_VDEV_STATS, 3075 (uint64_t **)&vs, &vsc) == 0); 3076 vs->vs_state = VDEV_STATE_CANT_OPEN; 3077 vs->vs_aux = VDEV_AUX_SPARED; 3078 } 3079 } 3080 } 3081 } 3082 3083 /* 3084 * Add l2cache device information to the nvlist, including vdev stats. 3085 */ 3086 static void 3087 spa_add_l2cache(spa_t *spa, nvlist_t *config) 3088 { 3089 nvlist_t **l2cache; 3090 uint_t i, j, nl2cache; 3091 nvlist_t *nvroot; 3092 uint64_t guid; 3093 vdev_t *vd; 3094 vdev_stat_t *vs; 3095 uint_t vsc; 3096 3097 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3098 3099 if (spa->spa_l2cache.sav_count == 0) 3100 return; 3101 3102 VERIFY(nvlist_lookup_nvlist(config, 3103 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0); 3104 VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 3105 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3106 if (nl2cache != 0) { 3107 VERIFY(nvlist_add_nvlist_array(nvroot, 3108 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3109 VERIFY(nvlist_lookup_nvlist_array(nvroot, 3110 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0); 3111 3112 /* 3113 * Update level 2 cache device stats. 3114 */ 3115 3116 for (i = 0; i < nl2cache; i++) { 3117 VERIFY(nvlist_lookup_uint64(l2cache[i], 3118 ZPOOL_CONFIG_GUID, &guid) == 0); 3119 3120 vd = NULL; 3121 for (j = 0; j < spa->spa_l2cache.sav_count; j++) { 3122 if (guid == 3123 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) { 3124 vd = spa->spa_l2cache.sav_vdevs[j]; 3125 break; 3126 } 3127 } 3128 ASSERT(vd != NULL); 3129 3130 VERIFY(nvlist_lookup_uint64_array(l2cache[i], 3131 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc) 3132 == 0); 3133 vdev_get_stats(vd, vs); 3134 } 3135 } 3136 } 3137 3138 static void 3139 spa_add_feature_stats(spa_t *spa, nvlist_t *config) 3140 { 3141 nvlist_t *features; 3142 zap_cursor_t zc; 3143 zap_attribute_t za; 3144 3145 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER)); 3146 VERIFY(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3147 3148 if (spa->spa_feat_for_read_obj != 0) { 3149 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3150 spa->spa_feat_for_read_obj); 3151 zap_cursor_retrieve(&zc, &za) == 0; 3152 zap_cursor_advance(&zc)) { 3153 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3154 za.za_num_integers == 1); 3155 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3156 za.za_first_integer)); 3157 } 3158 zap_cursor_fini(&zc); 3159 } 3160 3161 if (spa->spa_feat_for_write_obj != 0) { 3162 for (zap_cursor_init(&zc, spa->spa_meta_objset, 3163 spa->spa_feat_for_write_obj); 3164 zap_cursor_retrieve(&zc, &za) == 0; 3165 zap_cursor_advance(&zc)) { 3166 ASSERT(za.za_integer_length == sizeof (uint64_t) && 3167 za.za_num_integers == 1); 3168 VERIFY3U(0, ==, nvlist_add_uint64(features, za.za_name, 3169 za.za_first_integer)); 3170 } 3171 zap_cursor_fini(&zc); 3172 } 3173 3174 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS, 3175 features) == 0); 3176 nvlist_free(features); 3177 } 3178 3179 int 3180 spa_get_stats(const char *name, nvlist_t **config, 3181 char *altroot, size_t buflen) 3182 { 3183 int error; 3184 spa_t *spa; 3185 3186 *config = NULL; 3187 error = spa_open_common(name, &spa, FTAG, NULL, config); 3188 3189 if (spa != NULL) { 3190 /* 3191 * This still leaves a window of inconsistency where the spares 3192 * or l2cache devices could change and the config would be 3193 * self-inconsistent. 3194 */ 3195 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 3196 3197 if (*config != NULL) { 3198 uint64_t loadtimes[2]; 3199 3200 loadtimes[0] = spa->spa_loaded_ts.tv_sec; 3201 loadtimes[1] = spa->spa_loaded_ts.tv_nsec; 3202 VERIFY(nvlist_add_uint64_array(*config, 3203 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2) == 0); 3204 3205 VERIFY(nvlist_add_uint64(*config, 3206 ZPOOL_CONFIG_ERRCOUNT, 3207 spa_get_errlog_size(spa)) == 0); 3208 3209 if (spa_suspended(spa)) 3210 VERIFY(nvlist_add_uint64(*config, 3211 ZPOOL_CONFIG_SUSPENDED, 3212 spa->spa_failmode) == 0); 3213 3214 spa_add_spares(spa, *config); 3215 spa_add_l2cache(spa, *config); 3216 spa_add_feature_stats(spa, *config); 3217 } 3218 } 3219 3220 /* 3221 * We want to get the alternate root even for faulted pools, so we cheat 3222 * and call spa_lookup() directly. 3223 */ 3224 if (altroot) { 3225 if (spa == NULL) { 3226 mutex_enter(&spa_namespace_lock); 3227 spa = spa_lookup(name); 3228 if (spa) 3229 spa_altroot(spa, altroot, buflen); 3230 else 3231 altroot[0] = '\0'; 3232 spa = NULL; 3233 mutex_exit(&spa_namespace_lock); 3234 } else { 3235 spa_altroot(spa, altroot, buflen); 3236 } 3237 } 3238 3239 if (spa != NULL) { 3240 spa_config_exit(spa, SCL_CONFIG, FTAG); 3241 spa_close(spa, FTAG); 3242 } 3243 3244 return (error); 3245 } 3246 3247 /* 3248 * Validate that the auxiliary device array is well formed. We must have an 3249 * array of nvlists, each which describes a valid leaf vdev. If this is an 3250 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be 3251 * specified, as long as they are well-formed. 3252 */ 3253 static int 3254 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode, 3255 spa_aux_vdev_t *sav, const char *config, uint64_t version, 3256 vdev_labeltype_t label) 3257 { 3258 nvlist_t **dev; 3259 uint_t i, ndev; 3260 vdev_t *vd; 3261 int error; 3262 3263 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3264 3265 /* 3266 * It's acceptable to have no devs specified. 3267 */ 3268 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0) 3269 return (0); 3270 3271 if (ndev == 0) 3272 return (SET_ERROR(EINVAL)); 3273 3274 /* 3275 * Make sure the pool is formatted with a version that supports this 3276 * device type. 3277 */ 3278 if (spa_version(spa) < version) 3279 return (SET_ERROR(ENOTSUP)); 3280 3281 /* 3282 * Set the pending device list so we correctly handle device in-use 3283 * checking. 3284 */ 3285 sav->sav_pending = dev; 3286 sav->sav_npending = ndev; 3287 3288 for (i = 0; i < ndev; i++) { 3289 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0, 3290 mode)) != 0) 3291 goto out; 3292 3293 if (!vd->vdev_ops->vdev_op_leaf) { 3294 vdev_free(vd); 3295 error = SET_ERROR(EINVAL); 3296 goto out; 3297 } 3298 3299 /* 3300 * The L2ARC currently only supports disk devices in 3301 * kernel context. For user-level testing, we allow it. 3302 */ 3303 #ifdef _KERNEL 3304 if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) && 3305 strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) { 3306 error = SET_ERROR(ENOTBLK); 3307 vdev_free(vd); 3308 goto out; 3309 } 3310 #endif 3311 vd->vdev_top = vd; 3312 3313 if ((error = vdev_open(vd)) == 0 && 3314 (error = vdev_label_init(vd, crtxg, label)) == 0) { 3315 VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID, 3316 vd->vdev_guid) == 0); 3317 } 3318 3319 vdev_free(vd); 3320 3321 if (error && 3322 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE)) 3323 goto out; 3324 else 3325 error = 0; 3326 } 3327 3328 out: 3329 sav->sav_pending = NULL; 3330 sav->sav_npending = 0; 3331 return (error); 3332 } 3333 3334 static int 3335 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode) 3336 { 3337 int error; 3338 3339 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 3340 3341 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3342 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES, 3343 VDEV_LABEL_SPARE)) != 0) { 3344 return (error); 3345 } 3346 3347 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode, 3348 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE, 3349 VDEV_LABEL_L2CACHE)); 3350 } 3351 3352 static void 3353 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs, 3354 const char *config) 3355 { 3356 int i; 3357 3358 if (sav->sav_config != NULL) { 3359 nvlist_t **olddevs; 3360 uint_t oldndevs; 3361 nvlist_t **newdevs; 3362 3363 /* 3364 * Generate new dev list by concatentating with the 3365 * current dev list. 3366 */ 3367 VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config, 3368 &olddevs, &oldndevs) == 0); 3369 3370 newdevs = kmem_alloc(sizeof (void *) * 3371 (ndevs + oldndevs), KM_SLEEP); 3372 for (i = 0; i < oldndevs; i++) 3373 VERIFY(nvlist_dup(olddevs[i], &newdevs[i], 3374 KM_SLEEP) == 0); 3375 for (i = 0; i < ndevs; i++) 3376 VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs], 3377 KM_SLEEP) == 0); 3378 3379 VERIFY(nvlist_remove(sav->sav_config, config, 3380 DATA_TYPE_NVLIST_ARRAY) == 0); 3381 3382 VERIFY(nvlist_add_nvlist_array(sav->sav_config, 3383 config, newdevs, ndevs + oldndevs) == 0); 3384 for (i = 0; i < oldndevs + ndevs; i++) 3385 nvlist_free(newdevs[i]); 3386 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *)); 3387 } else { 3388 /* 3389 * Generate a new dev list. 3390 */ 3391 VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME, 3392 KM_SLEEP) == 0); 3393 VERIFY(nvlist_add_nvlist_array(sav->sav_config, config, 3394 devs, ndevs) == 0); 3395 } 3396 } 3397 3398 /* 3399 * Stop and drop level 2 ARC devices 3400 */ 3401 void 3402 spa_l2cache_drop(spa_t *spa) 3403 { 3404 vdev_t *vd; 3405 int i; 3406 spa_aux_vdev_t *sav = &spa->spa_l2cache; 3407 3408 for (i = 0; i < sav->sav_count; i++) { 3409 uint64_t pool; 3410 3411 vd = sav->sav_vdevs[i]; 3412 ASSERT(vd != NULL); 3413 3414 if (spa_l2cache_exists(vd->vdev_guid, &pool) && 3415 pool != 0ULL && l2arc_vdev_present(vd)) 3416 l2arc_remove_vdev(vd); 3417 } 3418 } 3419 3420 /* 3421 * Pool Creation 3422 */ 3423 int 3424 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props, 3425 nvlist_t *zplprops) 3426 { 3427 spa_t *spa; 3428 char *altroot = NULL; 3429 vdev_t *rvd; 3430 dsl_pool_t *dp; 3431 dmu_tx_t *tx; 3432 int error = 0; 3433 uint64_t txg = TXG_INITIAL; 3434 nvlist_t **spares, **l2cache; 3435 uint_t nspares, nl2cache; 3436 uint64_t version, obj; 3437 boolean_t has_features; 3438 3439 /* 3440 * If this pool already exists, return failure. 3441 */ 3442 mutex_enter(&spa_namespace_lock); 3443 if (spa_lookup(pool) != NULL) { 3444 mutex_exit(&spa_namespace_lock); 3445 return (SET_ERROR(EEXIST)); 3446 } 3447 3448 /* 3449 * Allocate a new spa_t structure. 3450 */ 3451 (void) nvlist_lookup_string(props, 3452 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3453 spa = spa_add(pool, NULL, altroot); 3454 spa_activate(spa, spa_mode_global); 3455 3456 if (props && (error = spa_prop_validate(spa, props))) { 3457 spa_deactivate(spa); 3458 spa_remove(spa); 3459 mutex_exit(&spa_namespace_lock); 3460 return (error); 3461 } 3462 3463 has_features = B_FALSE; 3464 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL); 3465 elem != NULL; elem = nvlist_next_nvpair(props, elem)) { 3466 if (zpool_prop_feature(nvpair_name(elem))) 3467 has_features = B_TRUE; 3468 } 3469 3470 if (has_features || nvlist_lookup_uint64(props, 3471 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) { 3472 version = SPA_VERSION; 3473 } 3474 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 3475 3476 spa->spa_first_txg = txg; 3477 spa->spa_uberblock.ub_txg = txg - 1; 3478 spa->spa_uberblock.ub_version = version; 3479 spa->spa_ubsync = spa->spa_uberblock; 3480 3481 /* 3482 * Create "The Godfather" zio to hold all async IOs 3483 */ 3484 spa->spa_async_zio_root = zio_root(spa, NULL, NULL, 3485 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER); 3486 3487 /* 3488 * Create the root vdev. 3489 */ 3490 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3491 3492 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD); 3493 3494 ASSERT(error != 0 || rvd != NULL); 3495 ASSERT(error != 0 || spa->spa_root_vdev == rvd); 3496 3497 if (error == 0 && !zfs_allocatable_devs(nvroot)) 3498 error = SET_ERROR(EINVAL); 3499 3500 if (error == 0 && 3501 (error = vdev_create(rvd, txg, B_FALSE)) == 0 && 3502 (error = spa_validate_aux(spa, nvroot, txg, 3503 VDEV_ALLOC_ADD)) == 0) { 3504 for (int c = 0; c < rvd->vdev_children; c++) { 3505 vdev_metaslab_set_size(rvd->vdev_child[c]); 3506 vdev_expand(rvd->vdev_child[c], txg); 3507 } 3508 } 3509 3510 spa_config_exit(spa, SCL_ALL, FTAG); 3511 3512 if (error != 0) { 3513 spa_unload(spa); 3514 spa_deactivate(spa); 3515 spa_remove(spa); 3516 mutex_exit(&spa_namespace_lock); 3517 return (error); 3518 } 3519 3520 /* 3521 * Get the list of spares, if specified. 3522 */ 3523 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3524 &spares, &nspares) == 0) { 3525 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME, 3526 KM_SLEEP) == 0); 3527 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3528 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3529 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3530 spa_load_spares(spa); 3531 spa_config_exit(spa, SCL_ALL, FTAG); 3532 spa->spa_spares.sav_sync = B_TRUE; 3533 } 3534 3535 /* 3536 * Get the list of level 2 cache devices, if specified. 3537 */ 3538 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3539 &l2cache, &nl2cache) == 0) { 3540 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 3541 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3542 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 3543 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 3544 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3545 spa_load_l2cache(spa); 3546 spa_config_exit(spa, SCL_ALL, FTAG); 3547 spa->spa_l2cache.sav_sync = B_TRUE; 3548 } 3549 3550 spa->spa_is_initializing = B_TRUE; 3551 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg); 3552 spa->spa_meta_objset = dp->dp_meta_objset; 3553 spa->spa_is_initializing = B_FALSE; 3554 3555 /* 3556 * Create DDTs (dedup tables). 3557 */ 3558 ddt_create(spa); 3559 3560 spa_update_dspace(spa); 3561 3562 tx = dmu_tx_create_assigned(dp, txg); 3563 3564 /* 3565 * Create the pool config object. 3566 */ 3567 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset, 3568 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE, 3569 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx); 3570 3571 if (zap_add(spa->spa_meta_objset, 3572 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG, 3573 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) { 3574 cmn_err(CE_PANIC, "failed to add pool config"); 3575 } 3576 3577 if (spa_version(spa) >= SPA_VERSION_FEATURES) 3578 spa_feature_create_zap_objects(spa, tx); 3579 3580 if (zap_add(spa->spa_meta_objset, 3581 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION, 3582 sizeof (uint64_t), 1, &version, tx) != 0) { 3583 cmn_err(CE_PANIC, "failed to add pool version"); 3584 } 3585 3586 /* Newly created pools with the right version are always deflated. */ 3587 if (version >= SPA_VERSION_RAIDZ_DEFLATE) { 3588 spa->spa_deflate = TRUE; 3589 if (zap_add(spa->spa_meta_objset, 3590 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 3591 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) { 3592 cmn_err(CE_PANIC, "failed to add deflate"); 3593 } 3594 } 3595 3596 /* 3597 * Create the deferred-free bpobj. Turn off compression 3598 * because sync-to-convergence takes longer if the blocksize 3599 * keeps changing. 3600 */ 3601 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx); 3602 dmu_object_set_compress(spa->spa_meta_objset, obj, 3603 ZIO_COMPRESS_OFF, tx); 3604 if (zap_add(spa->spa_meta_objset, 3605 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ, 3606 sizeof (uint64_t), 1, &obj, tx) != 0) { 3607 cmn_err(CE_PANIC, "failed to add bpobj"); 3608 } 3609 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj, 3610 spa->spa_meta_objset, obj)); 3611 3612 /* 3613 * Create the pool's history object. 3614 */ 3615 if (version >= SPA_VERSION_ZPOOL_HISTORY) 3616 spa_history_create_obj(spa, tx); 3617 3618 /* 3619 * Set pool properties. 3620 */ 3621 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS); 3622 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION); 3623 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE); 3624 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND); 3625 3626 if (props != NULL) { 3627 spa_configfile_set(spa, props, B_FALSE); 3628 spa_sync_props(props, tx); 3629 } 3630 3631 dmu_tx_commit(tx); 3632 3633 spa->spa_sync_on = B_TRUE; 3634 txg_sync_start(spa->spa_dsl_pool); 3635 3636 /* 3637 * We explicitly wait for the first transaction to complete so that our 3638 * bean counters are appropriately updated. 3639 */ 3640 txg_wait_synced(spa->spa_dsl_pool, txg); 3641 3642 spa_config_sync(spa, B_FALSE, B_TRUE); 3643 3644 spa_history_log_version(spa, "create"); 3645 3646 spa->spa_minref = refcount_count(&spa->spa_refcount); 3647 3648 mutex_exit(&spa_namespace_lock); 3649 3650 return (0); 3651 } 3652 3653 #ifdef _KERNEL 3654 /* 3655 * Get the root pool information from the root disk, then import the root pool 3656 * during the system boot up time. 3657 */ 3658 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **); 3659 3660 static nvlist_t * 3661 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid) 3662 { 3663 nvlist_t *config; 3664 nvlist_t *nvtop, *nvroot; 3665 uint64_t pgid; 3666 3667 if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0) 3668 return (NULL); 3669 3670 /* 3671 * Add this top-level vdev to the child array. 3672 */ 3673 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3674 &nvtop) == 0); 3675 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, 3676 &pgid) == 0); 3677 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0); 3678 3679 /* 3680 * Put this pool's top-level vdevs into a root vdev. 3681 */ 3682 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 3683 VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, 3684 VDEV_TYPE_ROOT) == 0); 3685 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0); 3686 VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0); 3687 VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN, 3688 &nvtop, 1) == 0); 3689 3690 /* 3691 * Replace the existing vdev_tree with the new root vdev in 3692 * this pool's configuration (remove the old, add the new). 3693 */ 3694 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0); 3695 nvlist_free(nvroot); 3696 return (config); 3697 } 3698 3699 /* 3700 * Walk the vdev tree and see if we can find a device with "better" 3701 * configuration. A configuration is "better" if the label on that 3702 * device has a more recent txg. 3703 */ 3704 static void 3705 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg) 3706 { 3707 for (int c = 0; c < vd->vdev_children; c++) 3708 spa_alt_rootvdev(vd->vdev_child[c], avd, txg); 3709 3710 if (vd->vdev_ops->vdev_op_leaf) { 3711 nvlist_t *label; 3712 uint64_t label_txg; 3713 3714 if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid, 3715 &label) != 0) 3716 return; 3717 3718 VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 3719 &label_txg) == 0); 3720 3721 /* 3722 * Do we have a better boot device? 3723 */ 3724 if (label_txg > *txg) { 3725 *txg = label_txg; 3726 *avd = vd; 3727 } 3728 nvlist_free(label); 3729 } 3730 } 3731 3732 /* 3733 * Import a root pool. 3734 * 3735 * For x86. devpath_list will consist of devid and/or physpath name of 3736 * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a"). 3737 * The GRUB "findroot" command will return the vdev we should boot. 3738 * 3739 * For Sparc, devpath_list consists the physpath name of the booting device 3740 * no matter the rootpool is a single device pool or a mirrored pool. 3741 * e.g. 3742 * "/pci@1f,0/ide@d/disk@0,0:a" 3743 */ 3744 int 3745 spa_import_rootpool(char *devpath, char *devid) 3746 { 3747 spa_t *spa; 3748 vdev_t *rvd, *bvd, *avd = NULL; 3749 nvlist_t *config, *nvtop; 3750 uint64_t guid, txg; 3751 char *pname; 3752 int error; 3753 3754 /* 3755 * Read the label from the boot device and generate a configuration. 3756 */ 3757 config = spa_generate_rootconf(devpath, devid, &guid); 3758 #if defined(_OBP) && defined(_KERNEL) 3759 if (config == NULL) { 3760 if (strstr(devpath, "/iscsi/ssd") != NULL) { 3761 /* iscsi boot */ 3762 get_iscsi_bootpath_phy(devpath); 3763 config = spa_generate_rootconf(devpath, devid, &guid); 3764 } 3765 } 3766 #endif 3767 if (config == NULL) { 3768 cmn_err(CE_NOTE, "Cannot read the pool label from '%s'", 3769 devpath); 3770 return (SET_ERROR(EIO)); 3771 } 3772 3773 VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME, 3774 &pname) == 0); 3775 VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0); 3776 3777 mutex_enter(&spa_namespace_lock); 3778 if ((spa = spa_lookup(pname)) != NULL) { 3779 /* 3780 * Remove the existing root pool from the namespace so that we 3781 * can replace it with the correct config we just read in. 3782 */ 3783 spa_remove(spa); 3784 } 3785 3786 spa = spa_add(pname, config, NULL); 3787 spa->spa_is_root = B_TRUE; 3788 spa->spa_import_flags = ZFS_IMPORT_VERBATIM; 3789 3790 /* 3791 * Build up a vdev tree based on the boot device's label config. 3792 */ 3793 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3794 &nvtop) == 0); 3795 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3796 error = spa_config_parse(spa, &rvd, nvtop, NULL, 0, 3797 VDEV_ALLOC_ROOTPOOL); 3798 spa_config_exit(spa, SCL_ALL, FTAG); 3799 if (error) { 3800 mutex_exit(&spa_namespace_lock); 3801 nvlist_free(config); 3802 cmn_err(CE_NOTE, "Can not parse the config for pool '%s'", 3803 pname); 3804 return (error); 3805 } 3806 3807 /* 3808 * Get the boot vdev. 3809 */ 3810 if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) { 3811 cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu", 3812 (u_longlong_t)guid); 3813 error = SET_ERROR(ENOENT); 3814 goto out; 3815 } 3816 3817 /* 3818 * Determine if there is a better boot device. 3819 */ 3820 avd = bvd; 3821 spa_alt_rootvdev(rvd, &avd, &txg); 3822 if (avd != bvd) { 3823 cmn_err(CE_NOTE, "The boot device is 'degraded'. Please " 3824 "try booting from '%s'", avd->vdev_path); 3825 error = SET_ERROR(EINVAL); 3826 goto out; 3827 } 3828 3829 /* 3830 * If the boot device is part of a spare vdev then ensure that 3831 * we're booting off the active spare. 3832 */ 3833 if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops && 3834 !bvd->vdev_isspare) { 3835 cmn_err(CE_NOTE, "The boot device is currently spared. Please " 3836 "try booting from '%s'", 3837 bvd->vdev_parent-> 3838 vdev_child[bvd->vdev_parent->vdev_children - 1]->vdev_path); 3839 error = SET_ERROR(EINVAL); 3840 goto out; 3841 } 3842 3843 error = 0; 3844 out: 3845 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3846 vdev_free(rvd); 3847 spa_config_exit(spa, SCL_ALL, FTAG); 3848 mutex_exit(&spa_namespace_lock); 3849 3850 nvlist_free(config); 3851 return (error); 3852 } 3853 3854 #endif 3855 3856 /* 3857 * Import a non-root pool into the system. 3858 */ 3859 int 3860 spa_import(const char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags) 3861 { 3862 spa_t *spa; 3863 char *altroot = NULL; 3864 spa_load_state_t state = SPA_LOAD_IMPORT; 3865 zpool_rewind_policy_t policy; 3866 uint64_t mode = spa_mode_global; 3867 uint64_t readonly = B_FALSE; 3868 int error; 3869 nvlist_t *nvroot; 3870 nvlist_t **spares, **l2cache; 3871 uint_t nspares, nl2cache; 3872 3873 /* 3874 * If a pool with this name exists, return failure. 3875 */ 3876 mutex_enter(&spa_namespace_lock); 3877 if (spa_lookup(pool) != NULL) { 3878 mutex_exit(&spa_namespace_lock); 3879 return (SET_ERROR(EEXIST)); 3880 } 3881 3882 /* 3883 * Create and initialize the spa structure. 3884 */ 3885 (void) nvlist_lookup_string(props, 3886 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 3887 (void) nvlist_lookup_uint64(props, 3888 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly); 3889 if (readonly) 3890 mode = FREAD; 3891 spa = spa_add(pool, config, altroot); 3892 spa->spa_import_flags = flags; 3893 3894 /* 3895 * Verbatim import - Take a pool and insert it into the namespace 3896 * as if it had been loaded at boot. 3897 */ 3898 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) { 3899 if (props != NULL) 3900 spa_configfile_set(spa, props, B_FALSE); 3901 3902 spa_config_sync(spa, B_FALSE, B_TRUE); 3903 3904 mutex_exit(&spa_namespace_lock); 3905 return (0); 3906 } 3907 3908 spa_activate(spa, mode); 3909 3910 /* 3911 * Don't start async tasks until we know everything is healthy. 3912 */ 3913 spa_async_suspend(spa); 3914 3915 zpool_get_rewind_policy(config, &policy); 3916 if (policy.zrp_request & ZPOOL_DO_REWIND) 3917 state = SPA_LOAD_RECOVER; 3918 3919 /* 3920 * Pass off the heavy lifting to spa_load(). Pass TRUE for mosconfig 3921 * because the user-supplied config is actually the one to trust when 3922 * doing an import. 3923 */ 3924 if (state != SPA_LOAD_RECOVER) 3925 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0; 3926 3927 error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg, 3928 policy.zrp_request); 3929 3930 /* 3931 * Propagate anything learned while loading the pool and pass it 3932 * back to caller (i.e. rewind info, missing devices, etc). 3933 */ 3934 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 3935 spa->spa_load_info) == 0); 3936 3937 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3938 /* 3939 * Toss any existing sparelist, as it doesn't have any validity 3940 * anymore, and conflicts with spa_has_spare(). 3941 */ 3942 if (spa->spa_spares.sav_config) { 3943 nvlist_free(spa->spa_spares.sav_config); 3944 spa->spa_spares.sav_config = NULL; 3945 spa_load_spares(spa); 3946 } 3947 if (spa->spa_l2cache.sav_config) { 3948 nvlist_free(spa->spa_l2cache.sav_config); 3949 spa->spa_l2cache.sav_config = NULL; 3950 spa_load_l2cache(spa); 3951 } 3952 3953 VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, 3954 &nvroot) == 0); 3955 if (error == 0) 3956 error = spa_validate_aux(spa, nvroot, -1ULL, 3957 VDEV_ALLOC_SPARE); 3958 if (error == 0) 3959 error = spa_validate_aux(spa, nvroot, -1ULL, 3960 VDEV_ALLOC_L2CACHE); 3961 spa_config_exit(spa, SCL_ALL, FTAG); 3962 3963 if (props != NULL) 3964 spa_configfile_set(spa, props, B_FALSE); 3965 3966 if (error != 0 || (props && spa_writeable(spa) && 3967 (error = spa_prop_set(spa, props)))) { 3968 spa_unload(spa); 3969 spa_deactivate(spa); 3970 spa_remove(spa); 3971 mutex_exit(&spa_namespace_lock); 3972 return (error); 3973 } 3974 3975 spa_async_resume(spa); 3976 3977 /* 3978 * Override any spares and level 2 cache devices as specified by 3979 * the user, as these may have correct device names/devids, etc. 3980 */ 3981 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, 3982 &spares, &nspares) == 0) { 3983 if (spa->spa_spares.sav_config) 3984 VERIFY(nvlist_remove(spa->spa_spares.sav_config, 3985 ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0); 3986 else 3987 VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, 3988 NV_UNIQUE_NAME, KM_SLEEP) == 0); 3989 VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config, 3990 ZPOOL_CONFIG_SPARES, spares, nspares) == 0); 3991 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 3992 spa_load_spares(spa); 3993 spa_config_exit(spa, SCL_ALL, FTAG); 3994 spa->spa_spares.sav_sync = B_TRUE; 3995 } 3996 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, 3997 &l2cache, &nl2cache) == 0) { 3998 if (spa->spa_l2cache.sav_config) 3999 VERIFY(nvlist_remove(spa->spa_l2cache.sav_config, 4000 ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0); 4001 else 4002 VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config, 4003 NV_UNIQUE_NAME, KM_SLEEP) == 0); 4004 VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config, 4005 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0); 4006 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4007 spa_load_l2cache(spa); 4008 spa_config_exit(spa, SCL_ALL, FTAG); 4009 spa->spa_l2cache.sav_sync = B_TRUE; 4010 } 4011 4012 /* 4013 * Check for any removed devices. 4014 */ 4015 if (spa->spa_autoreplace) { 4016 spa_aux_check_removed(&spa->spa_spares); 4017 spa_aux_check_removed(&spa->spa_l2cache); 4018 } 4019 4020 if (spa_writeable(spa)) { 4021 /* 4022 * Update the config cache to include the newly-imported pool. 4023 */ 4024 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4025 } 4026 4027 /* 4028 * It's possible that the pool was expanded while it was exported. 4029 * We kick off an async task to handle this for us. 4030 */ 4031 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND); 4032 4033 mutex_exit(&spa_namespace_lock); 4034 spa_history_log_version(spa, "import"); 4035 4036 return (0); 4037 } 4038 4039 nvlist_t * 4040 spa_tryimport(nvlist_t *tryconfig) 4041 { 4042 nvlist_t *config = NULL; 4043 char *poolname; 4044 spa_t *spa; 4045 uint64_t state; 4046 int error; 4047 4048 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname)) 4049 return (NULL); 4050 4051 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state)) 4052 return (NULL); 4053 4054 /* 4055 * Create and initialize the spa structure. 4056 */ 4057 mutex_enter(&spa_namespace_lock); 4058 spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL); 4059 spa_activate(spa, FREAD); 4060 4061 /* 4062 * Pass off the heavy lifting to spa_load(). 4063 * Pass TRUE for mosconfig because the user-supplied config 4064 * is actually the one to trust when doing an import. 4065 */ 4066 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE); 4067 4068 /* 4069 * If 'tryconfig' was at least parsable, return the current config. 4070 */ 4071 if (spa->spa_root_vdev != NULL) { 4072 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE); 4073 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, 4074 poolname) == 0); 4075 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4076 state) == 0); 4077 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP, 4078 spa->spa_uberblock.ub_timestamp) == 0); 4079 VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, 4080 spa->spa_load_info) == 0); 4081 4082 /* 4083 * If the bootfs property exists on this pool then we 4084 * copy it out so that external consumers can tell which 4085 * pools are bootable. 4086 */ 4087 if ((!error || error == EEXIST) && spa->spa_bootfs) { 4088 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4089 4090 /* 4091 * We have to play games with the name since the 4092 * pool was opened as TRYIMPORT_NAME. 4093 */ 4094 if (dsl_dsobj_to_dsname(spa_name(spa), 4095 spa->spa_bootfs, tmpname) == 0) { 4096 char *cp; 4097 char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP); 4098 4099 cp = strchr(tmpname, '/'); 4100 if (cp == NULL) { 4101 (void) strlcpy(dsname, tmpname, 4102 MAXPATHLEN); 4103 } else { 4104 (void) snprintf(dsname, MAXPATHLEN, 4105 "%s/%s", poolname, ++cp); 4106 } 4107 VERIFY(nvlist_add_string(config, 4108 ZPOOL_CONFIG_BOOTFS, dsname) == 0); 4109 kmem_free(dsname, MAXPATHLEN); 4110 } 4111 kmem_free(tmpname, MAXPATHLEN); 4112 } 4113 4114 /* 4115 * Add the list of hot spares and level 2 cache devices. 4116 */ 4117 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 4118 spa_add_spares(spa, config); 4119 spa_add_l2cache(spa, config); 4120 spa_config_exit(spa, SCL_CONFIG, FTAG); 4121 } 4122 4123 spa_unload(spa); 4124 spa_deactivate(spa); 4125 spa_remove(spa); 4126 mutex_exit(&spa_namespace_lock); 4127 4128 return (config); 4129 } 4130 4131 /* 4132 * Pool export/destroy 4133 * 4134 * The act of destroying or exporting a pool is very simple. We make sure there 4135 * is no more pending I/O and any references to the pool are gone. Then, we 4136 * update the pool state and sync all the labels to disk, removing the 4137 * configuration from the cache afterwards. If the 'hardforce' flag is set, then 4138 * we don't sync the labels or remove the configuration cache. 4139 */ 4140 static int 4141 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig, 4142 boolean_t force, boolean_t hardforce) 4143 { 4144 spa_t *spa; 4145 4146 if (oldconfig) 4147 *oldconfig = NULL; 4148 4149 if (!(spa_mode_global & FWRITE)) 4150 return (SET_ERROR(EROFS)); 4151 4152 mutex_enter(&spa_namespace_lock); 4153 if ((spa = spa_lookup(pool)) == NULL) { 4154 mutex_exit(&spa_namespace_lock); 4155 return (SET_ERROR(ENOENT)); 4156 } 4157 4158 /* 4159 * Put a hold on the pool, drop the namespace lock, stop async tasks, 4160 * reacquire the namespace lock, and see if we can export. 4161 */ 4162 spa_open_ref(spa, FTAG); 4163 mutex_exit(&spa_namespace_lock); 4164 spa_async_suspend(spa); 4165 mutex_enter(&spa_namespace_lock); 4166 spa_close(spa, FTAG); 4167 4168 /* 4169 * The pool will be in core if it's openable, 4170 * in which case we can modify its state. 4171 */ 4172 if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) { 4173 /* 4174 * Objsets may be open only because they're dirty, so we 4175 * have to force it to sync before checking spa_refcnt. 4176 */ 4177 txg_wait_synced(spa->spa_dsl_pool, 0); 4178 4179 /* 4180 * A pool cannot be exported or destroyed if there are active 4181 * references. If we are resetting a pool, allow references by 4182 * fault injection handlers. 4183 */ 4184 if (!spa_refcount_zero(spa) || 4185 (spa->spa_inject_ref != 0 && 4186 new_state != POOL_STATE_UNINITIALIZED)) { 4187 spa_async_resume(spa); 4188 mutex_exit(&spa_namespace_lock); 4189 return (SET_ERROR(EBUSY)); 4190 } 4191 4192 /* 4193 * A pool cannot be exported if it has an active shared spare. 4194 * This is to prevent other pools stealing the active spare 4195 * from an exported pool. At user's own will, such pool can 4196 * be forcedly exported. 4197 */ 4198 if (!force && new_state == POOL_STATE_EXPORTED && 4199 spa_has_active_shared_spare(spa)) { 4200 spa_async_resume(spa); 4201 mutex_exit(&spa_namespace_lock); 4202 return (SET_ERROR(EXDEV)); 4203 } 4204 4205 /* 4206 * We want this to be reflected on every label, 4207 * so mark them all dirty. spa_unload() will do the 4208 * final sync that pushes these changes out. 4209 */ 4210 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) { 4211 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 4212 spa->spa_state = new_state; 4213 spa->spa_final_txg = spa_last_synced_txg(spa) + 4214 TXG_DEFER_SIZE + 1; 4215 vdev_config_dirty(spa->spa_root_vdev); 4216 spa_config_exit(spa, SCL_ALL, FTAG); 4217 } 4218 } 4219 4220 spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY); 4221 4222 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 4223 spa_unload(spa); 4224 spa_deactivate(spa); 4225 } 4226 4227 if (oldconfig && spa->spa_config) 4228 VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0); 4229 4230 if (new_state != POOL_STATE_UNINITIALIZED) { 4231 if (!hardforce) 4232 spa_config_sync(spa, B_TRUE, B_TRUE); 4233 spa_remove(spa); 4234 } 4235 mutex_exit(&spa_namespace_lock); 4236 4237 return (0); 4238 } 4239 4240 /* 4241 * Destroy a storage pool. 4242 */ 4243 int 4244 spa_destroy(char *pool) 4245 { 4246 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL, 4247 B_FALSE, B_FALSE)); 4248 } 4249 4250 /* 4251 * Export a storage pool. 4252 */ 4253 int 4254 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force, 4255 boolean_t hardforce) 4256 { 4257 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig, 4258 force, hardforce)); 4259 } 4260 4261 /* 4262 * Similar to spa_export(), this unloads the spa_t without actually removing it 4263 * from the namespace in any way. 4264 */ 4265 int 4266 spa_reset(char *pool) 4267 { 4268 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL, 4269 B_FALSE, B_FALSE)); 4270 } 4271 4272 /* 4273 * ========================================================================== 4274 * Device manipulation 4275 * ========================================================================== 4276 */ 4277 4278 /* 4279 * Add a device to a storage pool. 4280 */ 4281 int 4282 spa_vdev_add(spa_t *spa, nvlist_t *nvroot) 4283 { 4284 uint64_t txg, id; 4285 int error; 4286 vdev_t *rvd = spa->spa_root_vdev; 4287 vdev_t *vd, *tvd; 4288 nvlist_t **spares, **l2cache; 4289 uint_t nspares, nl2cache; 4290 4291 ASSERT(spa_writeable(spa)); 4292 4293 txg = spa_vdev_enter(spa); 4294 4295 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0, 4296 VDEV_ALLOC_ADD)) != 0) 4297 return (spa_vdev_exit(spa, NULL, txg, error)); 4298 4299 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */ 4300 4301 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares, 4302 &nspares) != 0) 4303 nspares = 0; 4304 4305 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache, 4306 &nl2cache) != 0) 4307 nl2cache = 0; 4308 4309 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0) 4310 return (spa_vdev_exit(spa, vd, txg, EINVAL)); 4311 4312 if (vd->vdev_children != 0 && 4313 (error = vdev_create(vd, txg, B_FALSE)) != 0) 4314 return (spa_vdev_exit(spa, vd, txg, error)); 4315 4316 /* 4317 * We must validate the spares and l2cache devices after checking the 4318 * children. Otherwise, vdev_inuse() will blindly overwrite the spare. 4319 */ 4320 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0) 4321 return (spa_vdev_exit(spa, vd, txg, error)); 4322 4323 /* 4324 * Transfer each new top-level vdev from vd to rvd. 4325 */ 4326 for (int c = 0; c < vd->vdev_children; c++) { 4327 4328 /* 4329 * Set the vdev id to the first hole, if one exists. 4330 */ 4331 for (id = 0; id < rvd->vdev_children; id++) { 4332 if (rvd->vdev_child[id]->vdev_ishole) { 4333 vdev_free(rvd->vdev_child[id]); 4334 break; 4335 } 4336 } 4337 tvd = vd->vdev_child[c]; 4338 vdev_remove_child(vd, tvd); 4339 tvd->vdev_id = id; 4340 vdev_add_child(rvd, tvd); 4341 vdev_config_dirty(tvd); 4342 } 4343 4344 if (nspares != 0) { 4345 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares, 4346 ZPOOL_CONFIG_SPARES); 4347 spa_load_spares(spa); 4348 spa->spa_spares.sav_sync = B_TRUE; 4349 } 4350 4351 if (nl2cache != 0) { 4352 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache, 4353 ZPOOL_CONFIG_L2CACHE); 4354 spa_load_l2cache(spa); 4355 spa->spa_l2cache.sav_sync = B_TRUE; 4356 } 4357 4358 /* 4359 * We have to be careful when adding new vdevs to an existing pool. 4360 * If other threads start allocating from these vdevs before we 4361 * sync the config cache, and we lose power, then upon reboot we may 4362 * fail to open the pool because there are DVAs that the config cache 4363 * can't translate. Therefore, we first add the vdevs without 4364 * initializing metaslabs; sync the config cache (via spa_vdev_exit()); 4365 * and then let spa_config_update() initialize the new metaslabs. 4366 * 4367 * spa_load() checks for added-but-not-initialized vdevs, so that 4368 * if we lose power at any point in this sequence, the remaining 4369 * steps will be completed the next time we load the pool. 4370 */ 4371 (void) spa_vdev_exit(spa, vd, txg, 0); 4372 4373 mutex_enter(&spa_namespace_lock); 4374 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 4375 mutex_exit(&spa_namespace_lock); 4376 4377 return (0); 4378 } 4379 4380 /* 4381 * Attach a device to a mirror. The arguments are the path to any device 4382 * in the mirror, and the nvroot for the new device. If the path specifies 4383 * a device that is not mirrored, we automatically insert the mirror vdev. 4384 * 4385 * If 'replacing' is specified, the new device is intended to replace the 4386 * existing device; in this case the two devices are made into their own 4387 * mirror using the 'replacing' vdev, which is functionally identical to 4388 * the mirror vdev (it actually reuses all the same ops) but has a few 4389 * extra rules: you can't attach to it after it's been created, and upon 4390 * completion of resilvering, the first disk (the one being replaced) 4391 * is automatically detached. 4392 */ 4393 int 4394 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing) 4395 { 4396 uint64_t txg, dtl_max_txg; 4397 vdev_t *rvd = spa->spa_root_vdev; 4398 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd; 4399 vdev_ops_t *pvops; 4400 char *oldvdpath, *newvdpath; 4401 int newvd_isspare; 4402 int error; 4403 4404 ASSERT(spa_writeable(spa)); 4405 4406 txg = spa_vdev_enter(spa); 4407 4408 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE); 4409 4410 if (oldvd == NULL) 4411 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4412 4413 if (!oldvd->vdev_ops->vdev_op_leaf) 4414 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4415 4416 pvd = oldvd->vdev_parent; 4417 4418 if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0, 4419 VDEV_ALLOC_ATTACH)) != 0) 4420 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4421 4422 if (newrootvd->vdev_children != 1) 4423 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4424 4425 newvd = newrootvd->vdev_child[0]; 4426 4427 if (!newvd->vdev_ops->vdev_op_leaf) 4428 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL)); 4429 4430 if ((error = vdev_create(newrootvd, txg, replacing)) != 0) 4431 return (spa_vdev_exit(spa, newrootvd, txg, error)); 4432 4433 /* 4434 * Spares can't replace logs 4435 */ 4436 if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare) 4437 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4438 4439 if (!replacing) { 4440 /* 4441 * For attach, the only allowable parent is a mirror or the root 4442 * vdev. 4443 */ 4444 if (pvd->vdev_ops != &vdev_mirror_ops && 4445 pvd->vdev_ops != &vdev_root_ops) 4446 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4447 4448 pvops = &vdev_mirror_ops; 4449 } else { 4450 /* 4451 * Active hot spares can only be replaced by inactive hot 4452 * spares. 4453 */ 4454 if (pvd->vdev_ops == &vdev_spare_ops && 4455 oldvd->vdev_isspare && 4456 !spa_has_spare(spa, newvd->vdev_guid)) 4457 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4458 4459 /* 4460 * If the source is a hot spare, and the parent isn't already a 4461 * spare, then we want to create a new hot spare. Otherwise, we 4462 * want to create a replacing vdev. The user is not allowed to 4463 * attach to a spared vdev child unless the 'isspare' state is 4464 * the same (spare replaces spare, non-spare replaces 4465 * non-spare). 4466 */ 4467 if (pvd->vdev_ops == &vdev_replacing_ops && 4468 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) { 4469 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4470 } else if (pvd->vdev_ops == &vdev_spare_ops && 4471 newvd->vdev_isspare != oldvd->vdev_isspare) { 4472 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP)); 4473 } 4474 4475 if (newvd->vdev_isspare) 4476 pvops = &vdev_spare_ops; 4477 else 4478 pvops = &vdev_replacing_ops; 4479 } 4480 4481 /* 4482 * Make sure the new device is big enough. 4483 */ 4484 if (newvd->vdev_asize < vdev_get_min_asize(oldvd)) 4485 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW)); 4486 4487 /* 4488 * The new device cannot have a higher alignment requirement 4489 * than the top-level vdev. 4490 */ 4491 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) 4492 return (spa_vdev_exit(spa, newrootvd, txg, EDOM)); 4493 4494 /* 4495 * If this is an in-place replacement, update oldvd's path and devid 4496 * to make it distinguishable from newvd, and unopenable from now on. 4497 */ 4498 if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) { 4499 spa_strfree(oldvd->vdev_path); 4500 oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5, 4501 KM_SLEEP); 4502 (void) sprintf(oldvd->vdev_path, "%s/%s", 4503 newvd->vdev_path, "old"); 4504 if (oldvd->vdev_devid != NULL) { 4505 spa_strfree(oldvd->vdev_devid); 4506 oldvd->vdev_devid = NULL; 4507 } 4508 } 4509 4510 /* mark the device being resilvered */ 4511 newvd->vdev_resilver_txg = txg; 4512 4513 /* 4514 * If the parent is not a mirror, or if we're replacing, insert the new 4515 * mirror/replacing/spare vdev above oldvd. 4516 */ 4517 if (pvd->vdev_ops != pvops) 4518 pvd = vdev_add_parent(oldvd, pvops); 4519 4520 ASSERT(pvd->vdev_top->vdev_parent == rvd); 4521 ASSERT(pvd->vdev_ops == pvops); 4522 ASSERT(oldvd->vdev_parent == pvd); 4523 4524 /* 4525 * Extract the new device from its root and add it to pvd. 4526 */ 4527 vdev_remove_child(newrootvd, newvd); 4528 newvd->vdev_id = pvd->vdev_children; 4529 newvd->vdev_crtxg = oldvd->vdev_crtxg; 4530 vdev_add_child(pvd, newvd); 4531 4532 tvd = newvd->vdev_top; 4533 ASSERT(pvd->vdev_top == tvd); 4534 ASSERT(tvd->vdev_parent == rvd); 4535 4536 vdev_config_dirty(tvd); 4537 4538 /* 4539 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account 4540 * for any dmu_sync-ed blocks. It will propagate upward when 4541 * spa_vdev_exit() calls vdev_dtl_reassess(). 4542 */ 4543 dtl_max_txg = txg + TXG_CONCURRENT_STATES; 4544 4545 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL, 4546 dtl_max_txg - TXG_INITIAL); 4547 4548 if (newvd->vdev_isspare) { 4549 spa_spare_activate(newvd); 4550 spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE); 4551 } 4552 4553 oldvdpath = spa_strdup(oldvd->vdev_path); 4554 newvdpath = spa_strdup(newvd->vdev_path); 4555 newvd_isspare = newvd->vdev_isspare; 4556 4557 /* 4558 * Mark newvd's DTL dirty in this txg. 4559 */ 4560 vdev_dirty(tvd, VDD_DTL, newvd, txg); 4561 4562 /* 4563 * Schedule the resilver to restart in the future. We do this to 4564 * ensure that dmu_sync-ed blocks have been stitched into the 4565 * respective datasets. 4566 */ 4567 dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg); 4568 4569 /* 4570 * Commit the config 4571 */ 4572 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0); 4573 4574 spa_history_log_internal(spa, "vdev attach", NULL, 4575 "%s vdev=%s %s vdev=%s", 4576 replacing && newvd_isspare ? "spare in" : 4577 replacing ? "replace" : "attach", newvdpath, 4578 replacing ? "for" : "to", oldvdpath); 4579 4580 spa_strfree(oldvdpath); 4581 spa_strfree(newvdpath); 4582 4583 if (spa->spa_bootfs) 4584 spa_event_notify(spa, newvd, ESC_ZFS_BOOTFS_VDEV_ATTACH); 4585 4586 return (0); 4587 } 4588 4589 /* 4590 * Detach a device from a mirror or replacing vdev. 4591 * 4592 * If 'replace_done' is specified, only detach if the parent 4593 * is a replacing vdev. 4594 */ 4595 int 4596 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done) 4597 { 4598 uint64_t txg; 4599 int error; 4600 vdev_t *rvd = spa->spa_root_vdev; 4601 vdev_t *vd, *pvd, *cvd, *tvd; 4602 boolean_t unspare = B_FALSE; 4603 uint64_t unspare_guid = 0; 4604 char *vdpath; 4605 4606 ASSERT(spa_writeable(spa)); 4607 4608 txg = spa_vdev_enter(spa); 4609 4610 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 4611 4612 if (vd == NULL) 4613 return (spa_vdev_exit(spa, NULL, txg, ENODEV)); 4614 4615 if (!vd->vdev_ops->vdev_op_leaf) 4616 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4617 4618 pvd = vd->vdev_parent; 4619 4620 /* 4621 * If the parent/child relationship is not as expected, don't do it. 4622 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing 4623 * vdev that's replacing B with C. The user's intent in replacing 4624 * is to go from M(A,B) to M(A,C). If the user decides to cancel 4625 * the replace by detaching C, the expected behavior is to end up 4626 * M(A,B). But suppose that right after deciding to detach C, 4627 * the replacement of B completes. We would have M(A,C), and then 4628 * ask to detach C, which would leave us with just A -- not what 4629 * the user wanted. To prevent this, we make sure that the 4630 * parent/child relationship hasn't changed -- in this example, 4631 * that C's parent is still the replacing vdev R. 4632 */ 4633 if (pvd->vdev_guid != pguid && pguid != 0) 4634 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4635 4636 /* 4637 * Only 'replacing' or 'spare' vdevs can be replaced. 4638 */ 4639 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops && 4640 pvd->vdev_ops != &vdev_spare_ops) 4641 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4642 4643 ASSERT(pvd->vdev_ops != &vdev_spare_ops || 4644 spa_version(spa) >= SPA_VERSION_SPARES); 4645 4646 /* 4647 * Only mirror, replacing, and spare vdevs support detach. 4648 */ 4649 if (pvd->vdev_ops != &vdev_replacing_ops && 4650 pvd->vdev_ops != &vdev_mirror_ops && 4651 pvd->vdev_ops != &vdev_spare_ops) 4652 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP)); 4653 4654 /* 4655 * If this device has the only valid copy of some data, 4656 * we cannot safely detach it. 4657 */ 4658 if (vdev_dtl_required(vd)) 4659 return (spa_vdev_exit(spa, NULL, txg, EBUSY)); 4660 4661 ASSERT(pvd->vdev_children >= 2); 4662 4663 /* 4664 * If we are detaching the second disk from a replacing vdev, then 4665 * check to see if we changed the original vdev's path to have "/old" 4666 * at the end in spa_vdev_attach(). If so, undo that change now. 4667 */ 4668 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 && 4669 vd->vdev_path != NULL) { 4670 size_t len = strlen(vd->vdev_path); 4671 4672 for (int c = 0; c < pvd->vdev_children; c++) { 4673 cvd = pvd->vdev_child[c]; 4674 4675 if (cvd == vd || cvd->vdev_path == NULL) 4676 continue; 4677 4678 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 && 4679 strcmp(cvd->vdev_path + len, "/old") == 0) { 4680 spa_strfree(cvd->vdev_path); 4681 cvd->vdev_path = spa_strdup(vd->vdev_path); 4682 break; 4683 } 4684 } 4685 } 4686 4687 /* 4688 * If we are detaching the original disk from a spare, then it implies 4689 * that the spare should become a real disk, and be removed from the 4690 * active spare list for the pool. 4691 */ 4692 if (pvd->vdev_ops == &vdev_spare_ops && 4693 vd->vdev_id == 0 && 4694 pvd->vdev_child[pvd->vdev_children - 1]->vdev_isspare) 4695 unspare = B_TRUE; 4696 4697 /* 4698 * Erase the disk labels so the disk can be used for other things. 4699 * This must be done after all other error cases are handled, 4700 * but before we disembowel vd (so we can still do I/O to it). 4701 * But if we can't do it, don't treat the error as fatal -- 4702 * it may be that the unwritability of the disk is the reason 4703 * it's being detached! 4704 */ 4705 error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 4706 4707 /* 4708 * Remove vd from its parent and compact the parent's children. 4709 */ 4710 vdev_remove_child(pvd, vd); 4711 vdev_compact_children(pvd); 4712 4713 /* 4714 * Remember one of the remaining children so we can get tvd below. 4715 */ 4716 cvd = pvd->vdev_child[pvd->vdev_children - 1]; 4717 4718 /* 4719 * If we need to remove the remaining child from the list of hot spares, 4720 * do it now, marking the vdev as no longer a spare in the process. 4721 * We must do this before vdev_remove_parent(), because that can 4722 * change the GUID if it creates a new toplevel GUID. For a similar 4723 * reason, we must remove the spare now, in the same txg as the detach; 4724 * otherwise someone could attach a new sibling, change the GUID, and 4725 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail. 4726 */ 4727 if (unspare) { 4728 ASSERT(cvd->vdev_isspare); 4729 spa_spare_remove(cvd); 4730 unspare_guid = cvd->vdev_guid; 4731 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE); 4732 cvd->vdev_unspare = B_TRUE; 4733 } 4734 4735 /* 4736 * If the parent mirror/replacing vdev only has one child, 4737 * the parent is no longer needed. Remove it from the tree. 4738 */ 4739 if (pvd->vdev_children == 1) { 4740 if (pvd->vdev_ops == &vdev_spare_ops) 4741 cvd->vdev_unspare = B_FALSE; 4742 vdev_remove_parent(cvd); 4743 } 4744 4745 4746 /* 4747 * We don't set tvd until now because the parent we just removed 4748 * may have been the previous top-level vdev. 4749 */ 4750 tvd = cvd->vdev_top; 4751 ASSERT(tvd->vdev_parent == rvd); 4752 4753 /* 4754 * Reevaluate the parent vdev state. 4755 */ 4756 vdev_propagate_state(cvd); 4757 4758 /* 4759 * If the 'autoexpand' property is set on the pool then automatically 4760 * try to expand the size of the pool. For example if the device we 4761 * just detached was smaller than the others, it may be possible to 4762 * add metaslabs (i.e. grow the pool). We need to reopen the vdev 4763 * first so that we can obtain the updated sizes of the leaf vdevs. 4764 */ 4765 if (spa->spa_autoexpand) { 4766 vdev_reopen(tvd); 4767 vdev_expand(tvd, txg); 4768 } 4769 4770 vdev_config_dirty(tvd); 4771 4772 /* 4773 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that 4774 * vd->vdev_detached is set and free vd's DTL object in syncing context. 4775 * But first make sure we're not on any *other* txg's DTL list, to 4776 * prevent vd from being accessed after it's freed. 4777 */ 4778 vdpath = spa_strdup(vd->vdev_path); 4779 for (int t = 0; t < TXG_SIZE; t++) 4780 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t); 4781 vd->vdev_detached = B_TRUE; 4782 vdev_dirty(tvd, VDD_DTL, vd, txg); 4783 4784 spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE); 4785 4786 /* hang on to the spa before we release the lock */ 4787 spa_open_ref(spa, FTAG); 4788 4789 error = spa_vdev_exit(spa, vd, txg, 0); 4790 4791 spa_history_log_internal(spa, "detach", NULL, 4792 "vdev=%s", vdpath); 4793 spa_strfree(vdpath); 4794 4795 /* 4796 * If this was the removal of the original device in a hot spare vdev, 4797 * then we want to go through and remove the device from the hot spare 4798 * list of every other pool. 4799 */ 4800 if (unspare) { 4801 spa_t *altspa = NULL; 4802 4803 mutex_enter(&spa_namespace_lock); 4804 while ((altspa = spa_next(altspa)) != NULL) { 4805 if (altspa->spa_state != POOL_STATE_ACTIVE || 4806 altspa == spa) 4807 continue; 4808 4809 spa_open_ref(altspa, FTAG); 4810 mutex_exit(&spa_namespace_lock); 4811 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE); 4812 mutex_enter(&spa_namespace_lock); 4813 spa_close(altspa, FTAG); 4814 } 4815 mutex_exit(&spa_namespace_lock); 4816 4817 /* search the rest of the vdevs for spares to remove */ 4818 spa_vdev_resilver_done(spa); 4819 } 4820 4821 /* all done with the spa; OK to release */ 4822 mutex_enter(&spa_namespace_lock); 4823 spa_close(spa, FTAG); 4824 mutex_exit(&spa_namespace_lock); 4825 4826 return (error); 4827 } 4828 4829 /* 4830 * Split a set of devices from their mirrors, and create a new pool from them. 4831 */ 4832 int 4833 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config, 4834 nvlist_t *props, boolean_t exp) 4835 { 4836 int error = 0; 4837 uint64_t txg, *glist; 4838 spa_t *newspa; 4839 uint_t c, children, lastlog; 4840 nvlist_t **child, *nvl, *tmp; 4841 dmu_tx_t *tx; 4842 char *altroot = NULL; 4843 vdev_t *rvd, **vml = NULL; /* vdev modify list */ 4844 boolean_t activate_slog; 4845 4846 ASSERT(spa_writeable(spa)); 4847 4848 txg = spa_vdev_enter(spa); 4849 4850 /* clear the log and flush everything up to now */ 4851 activate_slog = spa_passivate_log(spa); 4852 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 4853 error = spa_offline_log(spa); 4854 txg = spa_vdev_config_enter(spa); 4855 4856 if (activate_slog) 4857 spa_activate_log(spa); 4858 4859 if (error != 0) 4860 return (spa_vdev_exit(spa, NULL, txg, error)); 4861 4862 /* check new spa name before going any further */ 4863 if (spa_lookup(newname) != NULL) 4864 return (spa_vdev_exit(spa, NULL, txg, EEXIST)); 4865 4866 /* 4867 * scan through all the children to ensure they're all mirrors 4868 */ 4869 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 || 4870 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child, 4871 &children) != 0) 4872 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4873 4874 /* first, check to ensure we've got the right child count */ 4875 rvd = spa->spa_root_vdev; 4876 lastlog = 0; 4877 for (c = 0; c < rvd->vdev_children; c++) { 4878 vdev_t *vd = rvd->vdev_child[c]; 4879 4880 /* don't count the holes & logs as children */ 4881 if (vd->vdev_islog || vd->vdev_ishole) { 4882 if (lastlog == 0) 4883 lastlog = c; 4884 continue; 4885 } 4886 4887 lastlog = 0; 4888 } 4889 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children)) 4890 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4891 4892 /* next, ensure no spare or cache devices are part of the split */ 4893 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 || 4894 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0) 4895 return (spa_vdev_exit(spa, NULL, txg, EINVAL)); 4896 4897 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP); 4898 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP); 4899 4900 /* then, loop over each vdev and validate it */ 4901 for (c = 0; c < children; c++) { 4902 uint64_t is_hole = 0; 4903 4904 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE, 4905 &is_hole); 4906 4907 if (is_hole != 0) { 4908 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole || 4909 spa->spa_root_vdev->vdev_child[c]->vdev_islog) { 4910 continue; 4911 } else { 4912 error = SET_ERROR(EINVAL); 4913 break; 4914 } 4915 } 4916 4917 /* which disk is going to be split? */ 4918 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID, 4919 &glist[c]) != 0) { 4920 error = SET_ERROR(EINVAL); 4921 break; 4922 } 4923 4924 /* look it up in the spa */ 4925 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE); 4926 if (vml[c] == NULL) { 4927 error = SET_ERROR(ENODEV); 4928 break; 4929 } 4930 4931 /* make sure there's nothing stopping the split */ 4932 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops || 4933 vml[c]->vdev_islog || 4934 vml[c]->vdev_ishole || 4935 vml[c]->vdev_isspare || 4936 vml[c]->vdev_isl2cache || 4937 !vdev_writeable(vml[c]) || 4938 vml[c]->vdev_children != 0 || 4939 vml[c]->vdev_state != VDEV_STATE_HEALTHY || 4940 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) { 4941 error = SET_ERROR(EINVAL); 4942 break; 4943 } 4944 4945 if (vdev_dtl_required(vml[c])) { 4946 error = SET_ERROR(EBUSY); 4947 break; 4948 } 4949 4950 /* we need certain info from the top level */ 4951 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY, 4952 vml[c]->vdev_top->vdev_ms_array) == 0); 4953 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT, 4954 vml[c]->vdev_top->vdev_ms_shift) == 0); 4955 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE, 4956 vml[c]->vdev_top->vdev_asize) == 0); 4957 VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT, 4958 vml[c]->vdev_top->vdev_ashift) == 0); 4959 } 4960 4961 if (error != 0) { 4962 kmem_free(vml, children * sizeof (vdev_t *)); 4963 kmem_free(glist, children * sizeof (uint64_t)); 4964 return (spa_vdev_exit(spa, NULL, txg, error)); 4965 } 4966 4967 /* stop writers from using the disks */ 4968 for (c = 0; c < children; c++) { 4969 if (vml[c] != NULL) 4970 vml[c]->vdev_offline = B_TRUE; 4971 } 4972 vdev_reopen(spa->spa_root_vdev); 4973 4974 /* 4975 * Temporarily record the splitting vdevs in the spa config. This 4976 * will disappear once the config is regenerated. 4977 */ 4978 VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0); 4979 VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, 4980 glist, children) == 0); 4981 kmem_free(glist, children * sizeof (uint64_t)); 4982 4983 mutex_enter(&spa->spa_props_lock); 4984 VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, 4985 nvl) == 0); 4986 mutex_exit(&spa->spa_props_lock); 4987 spa->spa_config_splitting = nvl; 4988 vdev_config_dirty(spa->spa_root_vdev); 4989 4990 /* configure and create the new pool */ 4991 VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0); 4992 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, 4993 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0); 4994 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 4995 spa_version(spa)) == 0); 4996 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, 4997 spa->spa_config_txg) == 0); 4998 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID, 4999 spa_generate_guid(NULL)) == 0); 5000 (void) nvlist_lookup_string(props, 5001 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot); 5002 5003 /* add the new pool to the namespace */ 5004 newspa = spa_add(newname, config, altroot); 5005 newspa->spa_config_txg = spa->spa_config_txg; 5006 spa_set_log_state(newspa, SPA_LOG_CLEAR); 5007 5008 /* release the spa config lock, retaining the namespace lock */ 5009 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5010 5011 if (zio_injection_enabled) 5012 zio_handle_panic_injection(spa, FTAG, 1); 5013 5014 spa_activate(newspa, spa_mode_global); 5015 spa_async_suspend(newspa); 5016 5017 /* create the new pool from the disks of the original pool */ 5018 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE); 5019 if (error) 5020 goto out; 5021 5022 /* if that worked, generate a real config for the new pool */ 5023 if (newspa->spa_root_vdev != NULL) { 5024 VERIFY(nvlist_alloc(&newspa->spa_config_splitting, 5025 NV_UNIQUE_NAME, KM_SLEEP) == 0); 5026 VERIFY(nvlist_add_uint64(newspa->spa_config_splitting, 5027 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0); 5028 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL, 5029 B_TRUE)); 5030 } 5031 5032 /* set the props */ 5033 if (props != NULL) { 5034 spa_configfile_set(newspa, props, B_FALSE); 5035 error = spa_prop_set(newspa, props); 5036 if (error) 5037 goto out; 5038 } 5039 5040 /* flush everything */ 5041 txg = spa_vdev_config_enter(newspa); 5042 vdev_config_dirty(newspa->spa_root_vdev); 5043 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG); 5044 5045 if (zio_injection_enabled) 5046 zio_handle_panic_injection(spa, FTAG, 2); 5047 5048 spa_async_resume(newspa); 5049 5050 /* finally, update the original pool's config */ 5051 txg = spa_vdev_config_enter(spa); 5052 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir); 5053 error = dmu_tx_assign(tx, TXG_WAIT); 5054 if (error != 0) 5055 dmu_tx_abort(tx); 5056 for (c = 0; c < children; c++) { 5057 if (vml[c] != NULL) { 5058 vdev_split(vml[c]); 5059 if (error == 0) 5060 spa_history_log_internal(spa, "detach", tx, 5061 "vdev=%s", vml[c]->vdev_path); 5062 vdev_free(vml[c]); 5063 } 5064 } 5065 vdev_config_dirty(spa->spa_root_vdev); 5066 spa->spa_config_splitting = NULL; 5067 nvlist_free(nvl); 5068 if (error == 0) 5069 dmu_tx_commit(tx); 5070 (void) spa_vdev_exit(spa, NULL, txg, 0); 5071 5072 if (zio_injection_enabled) 5073 zio_handle_panic_injection(spa, FTAG, 3); 5074 5075 /* split is complete; log a history record */ 5076 spa_history_log_internal(newspa, "split", NULL, 5077 "from pool %s", spa_name(spa)); 5078 5079 kmem_free(vml, children * sizeof (vdev_t *)); 5080 5081 /* if we're not going to mount the filesystems in userland, export */ 5082 if (exp) 5083 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL, 5084 B_FALSE, B_FALSE); 5085 5086 return (error); 5087 5088 out: 5089 spa_unload(newspa); 5090 spa_deactivate(newspa); 5091 spa_remove(newspa); 5092 5093 txg = spa_vdev_config_enter(spa); 5094 5095 /* re-online all offlined disks */ 5096 for (c = 0; c < children; c++) { 5097 if (vml[c] != NULL) 5098 vml[c]->vdev_offline = B_FALSE; 5099 } 5100 vdev_reopen(spa->spa_root_vdev); 5101 5102 nvlist_free(spa->spa_config_splitting); 5103 spa->spa_config_splitting = NULL; 5104 (void) spa_vdev_exit(spa, NULL, txg, error); 5105 5106 kmem_free(vml, children * sizeof (vdev_t *)); 5107 return (error); 5108 } 5109 5110 static nvlist_t * 5111 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid) 5112 { 5113 for (int i = 0; i < count; i++) { 5114 uint64_t guid; 5115 5116 VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID, 5117 &guid) == 0); 5118 5119 if (guid == target_guid) 5120 return (nvpp[i]); 5121 } 5122 5123 return (NULL); 5124 } 5125 5126 static void 5127 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count, 5128 nvlist_t *dev_to_remove) 5129 { 5130 nvlist_t **newdev = NULL; 5131 5132 if (count > 1) 5133 newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP); 5134 5135 for (int i = 0, j = 0; i < count; i++) { 5136 if (dev[i] == dev_to_remove) 5137 continue; 5138 VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0); 5139 } 5140 5141 VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0); 5142 VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0); 5143 5144 for (int i = 0; i < count - 1; i++) 5145 nvlist_free(newdev[i]); 5146 5147 if (count > 1) 5148 kmem_free(newdev, (count - 1) * sizeof (void *)); 5149 } 5150 5151 /* 5152 * Evacuate the device. 5153 */ 5154 static int 5155 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd) 5156 { 5157 uint64_t txg; 5158 int error = 0; 5159 5160 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5161 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5162 ASSERT(vd == vd->vdev_top); 5163 5164 /* 5165 * Evacuate the device. We don't hold the config lock as writer 5166 * since we need to do I/O but we do keep the 5167 * spa_namespace_lock held. Once this completes the device 5168 * should no longer have any blocks allocated on it. 5169 */ 5170 if (vd->vdev_islog) { 5171 if (vd->vdev_stat.vs_alloc != 0) 5172 error = spa_offline_log(spa); 5173 } else { 5174 error = SET_ERROR(ENOTSUP); 5175 } 5176 5177 if (error) 5178 return (error); 5179 5180 /* 5181 * The evacuation succeeded. Remove any remaining MOS metadata 5182 * associated with this vdev, and wait for these changes to sync. 5183 */ 5184 ASSERT0(vd->vdev_stat.vs_alloc); 5185 txg = spa_vdev_config_enter(spa); 5186 vd->vdev_removing = B_TRUE; 5187 vdev_dirty_leaves(vd, VDD_DTL, txg); 5188 vdev_config_dirty(vd); 5189 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG); 5190 5191 return (0); 5192 } 5193 5194 /* 5195 * Complete the removal by cleaning up the namespace. 5196 */ 5197 static void 5198 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd) 5199 { 5200 vdev_t *rvd = spa->spa_root_vdev; 5201 uint64_t id = vd->vdev_id; 5202 boolean_t last_vdev = (id == (rvd->vdev_children - 1)); 5203 5204 ASSERT(MUTEX_HELD(&spa_namespace_lock)); 5205 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 5206 ASSERT(vd == vd->vdev_top); 5207 5208 /* 5209 * Only remove any devices which are empty. 5210 */ 5211 if (vd->vdev_stat.vs_alloc != 0) 5212 return; 5213 5214 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE); 5215 5216 if (list_link_active(&vd->vdev_state_dirty_node)) 5217 vdev_state_clean(vd); 5218 if (list_link_active(&vd->vdev_config_dirty_node)) 5219 vdev_config_clean(vd); 5220 5221 vdev_free(vd); 5222 5223 if (last_vdev) { 5224 vdev_compact_children(rvd); 5225 } else { 5226 vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops); 5227 vdev_add_child(rvd, vd); 5228 } 5229 vdev_config_dirty(rvd); 5230 5231 /* 5232 * Reassess the health of our root vdev. 5233 */ 5234 vdev_reopen(rvd); 5235 } 5236 5237 /* 5238 * Remove a device from the pool - 5239 * 5240 * Removing a device from the vdev namespace requires several steps 5241 * and can take a significant amount of time. As a result we use 5242 * the spa_vdev_config_[enter/exit] functions which allow us to 5243 * grab and release the spa_config_lock while still holding the namespace 5244 * lock. During each step the configuration is synced out. 5245 * 5246 * Currently, this supports removing only hot spares, slogs, and level 2 ARC 5247 * devices. 5248 */ 5249 int 5250 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare) 5251 { 5252 vdev_t *vd; 5253 metaslab_group_t *mg; 5254 nvlist_t **spares, **l2cache, *nv; 5255 uint64_t txg = 0; 5256 uint_t nspares, nl2cache; 5257 int error = 0; 5258 boolean_t locked = MUTEX_HELD(&spa_namespace_lock); 5259 5260 ASSERT(spa_writeable(spa)); 5261 5262 if (!locked) 5263 txg = spa_vdev_enter(spa); 5264 5265 vd = spa_lookup_by_guid(spa, guid, B_FALSE); 5266 5267 if (spa->spa_spares.sav_vdevs != NULL && 5268 nvlist_lookup_nvlist_array(spa->spa_spares.sav_config, 5269 ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 && 5270 (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) { 5271 /* 5272 * Only remove the hot spare if it's not currently in use 5273 * in this pool. 5274 */ 5275 if (vd == NULL || unspare) { 5276 spa_vdev_remove_aux(spa->spa_spares.sav_config, 5277 ZPOOL_CONFIG_SPARES, spares, nspares, nv); 5278 spa_load_spares(spa); 5279 spa->spa_spares.sav_sync = B_TRUE; 5280 } else { 5281 error = SET_ERROR(EBUSY); 5282 } 5283 } else if (spa->spa_l2cache.sav_vdevs != NULL && 5284 nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config, 5285 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 && 5286 (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) { 5287 /* 5288 * Cache devices can always be removed. 5289 */ 5290 spa_vdev_remove_aux(spa->spa_l2cache.sav_config, 5291 ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv); 5292 spa_load_l2cache(spa); 5293 spa->spa_l2cache.sav_sync = B_TRUE; 5294 } else if (vd != NULL && vd->vdev_islog) { 5295 ASSERT(!locked); 5296 ASSERT(vd == vd->vdev_top); 5297 5298 mg = vd->vdev_mg; 5299 5300 /* 5301 * Stop allocating from this vdev. 5302 */ 5303 metaslab_group_passivate(mg); 5304 5305 /* 5306 * Wait for the youngest allocations and frees to sync, 5307 * and then wait for the deferral of those frees to finish. 5308 */ 5309 spa_vdev_config_exit(spa, NULL, 5310 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG); 5311 5312 /* 5313 * Attempt to evacuate the vdev. 5314 */ 5315 error = spa_vdev_remove_evacuate(spa, vd); 5316 5317 txg = spa_vdev_config_enter(spa); 5318 5319 /* 5320 * If we couldn't evacuate the vdev, unwind. 5321 */ 5322 if (error) { 5323 metaslab_group_activate(mg); 5324 return (spa_vdev_exit(spa, NULL, txg, error)); 5325 } 5326 5327 /* 5328 * Clean up the vdev namespace. 5329 */ 5330 spa_vdev_remove_from_namespace(spa, vd); 5331 5332 } else if (vd != NULL) { 5333 /* 5334 * Normal vdevs cannot be removed (yet). 5335 */ 5336 error = SET_ERROR(ENOTSUP); 5337 } else { 5338 /* 5339 * There is no vdev of any kind with the specified guid. 5340 */ 5341 error = SET_ERROR(ENOENT); 5342 } 5343 5344 if (!locked) 5345 return (spa_vdev_exit(spa, NULL, txg, error)); 5346 5347 return (error); 5348 } 5349 5350 /* 5351 * Find any device that's done replacing, or a vdev marked 'unspare' that's 5352 * currently spared, so we can detach it. 5353 */ 5354 static vdev_t * 5355 spa_vdev_resilver_done_hunt(vdev_t *vd) 5356 { 5357 vdev_t *newvd, *oldvd; 5358 5359 for (int c = 0; c < vd->vdev_children; c++) { 5360 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]); 5361 if (oldvd != NULL) 5362 return (oldvd); 5363 } 5364 5365 /* 5366 * Check for a completed replacement. We always consider the first 5367 * vdev in the list to be the oldest vdev, and the last one to be 5368 * the newest (see spa_vdev_attach() for how that works). In 5369 * the case where the newest vdev is faulted, we will not automatically 5370 * remove it after a resilver completes. This is OK as it will require 5371 * user intervention to determine which disk the admin wishes to keep. 5372 */ 5373 if (vd->vdev_ops == &vdev_replacing_ops) { 5374 ASSERT(vd->vdev_children > 1); 5375 5376 newvd = vd->vdev_child[vd->vdev_children - 1]; 5377 oldvd = vd->vdev_child[0]; 5378 5379 if (vdev_dtl_empty(newvd, DTL_MISSING) && 5380 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5381 !vdev_dtl_required(oldvd)) 5382 return (oldvd); 5383 } 5384 5385 /* 5386 * Check for a completed resilver with the 'unspare' flag set. 5387 */ 5388 if (vd->vdev_ops == &vdev_spare_ops) { 5389 vdev_t *first = vd->vdev_child[0]; 5390 vdev_t *last = vd->vdev_child[vd->vdev_children - 1]; 5391 5392 if (last->vdev_unspare) { 5393 oldvd = first; 5394 newvd = last; 5395 } else if (first->vdev_unspare) { 5396 oldvd = last; 5397 newvd = first; 5398 } else { 5399 oldvd = NULL; 5400 } 5401 5402 if (oldvd != NULL && 5403 vdev_dtl_empty(newvd, DTL_MISSING) && 5404 vdev_dtl_empty(newvd, DTL_OUTAGE) && 5405 !vdev_dtl_required(oldvd)) 5406 return (oldvd); 5407 5408 /* 5409 * If there are more than two spares attached to a disk, 5410 * and those spares are not required, then we want to 5411 * attempt to free them up now so that they can be used 5412 * by other pools. Once we're back down to a single 5413 * disk+spare, we stop removing them. 5414 */ 5415 if (vd->vdev_children > 2) { 5416 newvd = vd->vdev_child[1]; 5417 5418 if (newvd->vdev_isspare && last->vdev_isspare && 5419 vdev_dtl_empty(last, DTL_MISSING) && 5420 vdev_dtl_empty(last, DTL_OUTAGE) && 5421 !vdev_dtl_required(newvd)) 5422 return (newvd); 5423 } 5424 } 5425 5426 return (NULL); 5427 } 5428 5429 static void 5430 spa_vdev_resilver_done(spa_t *spa) 5431 { 5432 vdev_t *vd, *pvd, *ppvd; 5433 uint64_t guid, sguid, pguid, ppguid; 5434 5435 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5436 5437 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) { 5438 pvd = vd->vdev_parent; 5439 ppvd = pvd->vdev_parent; 5440 guid = vd->vdev_guid; 5441 pguid = pvd->vdev_guid; 5442 ppguid = ppvd->vdev_guid; 5443 sguid = 0; 5444 /* 5445 * If we have just finished replacing a hot spared device, then 5446 * we need to detach the parent's first child (the original hot 5447 * spare) as well. 5448 */ 5449 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 && 5450 ppvd->vdev_children == 2) { 5451 ASSERT(pvd->vdev_ops == &vdev_replacing_ops); 5452 sguid = ppvd->vdev_child[1]->vdev_guid; 5453 } 5454 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd)); 5455 5456 spa_config_exit(spa, SCL_ALL, FTAG); 5457 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0) 5458 return; 5459 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0) 5460 return; 5461 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 5462 } 5463 5464 spa_config_exit(spa, SCL_ALL, FTAG); 5465 } 5466 5467 /* 5468 * Update the stored path or FRU for this vdev. 5469 */ 5470 int 5471 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value, 5472 boolean_t ispath) 5473 { 5474 vdev_t *vd; 5475 boolean_t sync = B_FALSE; 5476 5477 ASSERT(spa_writeable(spa)); 5478 5479 spa_vdev_state_enter(spa, SCL_ALL); 5480 5481 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL) 5482 return (spa_vdev_state_exit(spa, NULL, ENOENT)); 5483 5484 if (!vd->vdev_ops->vdev_op_leaf) 5485 return (spa_vdev_state_exit(spa, NULL, ENOTSUP)); 5486 5487 if (ispath) { 5488 if (strcmp(value, vd->vdev_path) != 0) { 5489 spa_strfree(vd->vdev_path); 5490 vd->vdev_path = spa_strdup(value); 5491 sync = B_TRUE; 5492 } 5493 } else { 5494 if (vd->vdev_fru == NULL) { 5495 vd->vdev_fru = spa_strdup(value); 5496 sync = B_TRUE; 5497 } else if (strcmp(value, vd->vdev_fru) != 0) { 5498 spa_strfree(vd->vdev_fru); 5499 vd->vdev_fru = spa_strdup(value); 5500 sync = B_TRUE; 5501 } 5502 } 5503 5504 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0)); 5505 } 5506 5507 int 5508 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath) 5509 { 5510 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE)); 5511 } 5512 5513 int 5514 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru) 5515 { 5516 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE)); 5517 } 5518 5519 /* 5520 * ========================================================================== 5521 * SPA Scanning 5522 * ========================================================================== 5523 */ 5524 5525 int 5526 spa_scan_stop(spa_t *spa) 5527 { 5528 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5529 if (dsl_scan_resilvering(spa->spa_dsl_pool)) 5530 return (SET_ERROR(EBUSY)); 5531 return (dsl_scan_cancel(spa->spa_dsl_pool)); 5532 } 5533 5534 int 5535 spa_scan(spa_t *spa, pool_scan_func_t func) 5536 { 5537 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0); 5538 5539 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE) 5540 return (SET_ERROR(ENOTSUP)); 5541 5542 /* 5543 * If a resilver was requested, but there is no DTL on a 5544 * writeable leaf device, we have nothing to do. 5545 */ 5546 if (func == POOL_SCAN_RESILVER && 5547 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) { 5548 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE); 5549 return (0); 5550 } 5551 5552 return (dsl_scan(spa->spa_dsl_pool, func)); 5553 } 5554 5555 /* 5556 * ========================================================================== 5557 * SPA async task processing 5558 * ========================================================================== 5559 */ 5560 5561 static void 5562 spa_async_remove(spa_t *spa, vdev_t *vd) 5563 { 5564 if (vd->vdev_remove_wanted) { 5565 vd->vdev_remove_wanted = B_FALSE; 5566 vd->vdev_delayed_close = B_FALSE; 5567 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE); 5568 5569 /* 5570 * We want to clear the stats, but we don't want to do a full 5571 * vdev_clear() as that will cause us to throw away 5572 * degraded/faulted state as well as attempt to reopen the 5573 * device, all of which is a waste. 5574 */ 5575 vd->vdev_stat.vs_read_errors = 0; 5576 vd->vdev_stat.vs_write_errors = 0; 5577 vd->vdev_stat.vs_checksum_errors = 0; 5578 5579 vdev_state_dirty(vd->vdev_top); 5580 } 5581 5582 for (int c = 0; c < vd->vdev_children; c++) 5583 spa_async_remove(spa, vd->vdev_child[c]); 5584 } 5585 5586 static void 5587 spa_async_probe(spa_t *spa, vdev_t *vd) 5588 { 5589 if (vd->vdev_probe_wanted) { 5590 vd->vdev_probe_wanted = B_FALSE; 5591 vdev_reopen(vd); /* vdev_open() does the actual probe */ 5592 } 5593 5594 for (int c = 0; c < vd->vdev_children; c++) 5595 spa_async_probe(spa, vd->vdev_child[c]); 5596 } 5597 5598 static void 5599 spa_async_autoexpand(spa_t *spa, vdev_t *vd) 5600 { 5601 sysevent_id_t eid; 5602 nvlist_t *attr; 5603 char *physpath; 5604 5605 if (!spa->spa_autoexpand) 5606 return; 5607 5608 for (int c = 0; c < vd->vdev_children; c++) { 5609 vdev_t *cvd = vd->vdev_child[c]; 5610 spa_async_autoexpand(spa, cvd); 5611 } 5612 5613 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL) 5614 return; 5615 5616 physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP); 5617 (void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath); 5618 5619 VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5620 VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0); 5621 5622 (void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS, 5623 ESC_DEV_DLE, attr, &eid, DDI_SLEEP); 5624 5625 nvlist_free(attr); 5626 kmem_free(physpath, MAXPATHLEN); 5627 } 5628 5629 static void 5630 spa_async_thread(spa_t *spa) 5631 { 5632 int tasks; 5633 5634 ASSERT(spa->spa_sync_on); 5635 5636 mutex_enter(&spa->spa_async_lock); 5637 tasks = spa->spa_async_tasks; 5638 spa->spa_async_tasks = 0; 5639 mutex_exit(&spa->spa_async_lock); 5640 5641 /* 5642 * See if the config needs to be updated. 5643 */ 5644 if (tasks & SPA_ASYNC_CONFIG_UPDATE) { 5645 uint64_t old_space, new_space; 5646 5647 mutex_enter(&spa_namespace_lock); 5648 old_space = metaslab_class_get_space(spa_normal_class(spa)); 5649 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL); 5650 new_space = metaslab_class_get_space(spa_normal_class(spa)); 5651 mutex_exit(&spa_namespace_lock); 5652 5653 /* 5654 * If the pool grew as a result of the config update, 5655 * then log an internal history event. 5656 */ 5657 if (new_space != old_space) { 5658 spa_history_log_internal(spa, "vdev online", NULL, 5659 "pool '%s' size: %llu(+%llu)", 5660 spa_name(spa), new_space, new_space - old_space); 5661 } 5662 } 5663 5664 /* 5665 * See if any devices need to be marked REMOVED. 5666 */ 5667 if (tasks & SPA_ASYNC_REMOVE) { 5668 spa_vdev_state_enter(spa, SCL_NONE); 5669 spa_async_remove(spa, spa->spa_root_vdev); 5670 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) 5671 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]); 5672 for (int i = 0; i < spa->spa_spares.sav_count; i++) 5673 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]); 5674 (void) spa_vdev_state_exit(spa, NULL, 0); 5675 } 5676 5677 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) { 5678 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 5679 spa_async_autoexpand(spa, spa->spa_root_vdev); 5680 spa_config_exit(spa, SCL_CONFIG, FTAG); 5681 } 5682 5683 /* 5684 * See if any devices need to be probed. 5685 */ 5686 if (tasks & SPA_ASYNC_PROBE) { 5687 spa_vdev_state_enter(spa, SCL_NONE); 5688 spa_async_probe(spa, spa->spa_root_vdev); 5689 (void) spa_vdev_state_exit(spa, NULL, 0); 5690 } 5691 5692 /* 5693 * If any devices are done replacing, detach them. 5694 */ 5695 if (tasks & SPA_ASYNC_RESILVER_DONE) 5696 spa_vdev_resilver_done(spa); 5697 5698 /* 5699 * Kick off a resilver. 5700 */ 5701 if (tasks & SPA_ASYNC_RESILVER) 5702 dsl_resilver_restart(spa->spa_dsl_pool, 0); 5703 5704 /* 5705 * Let the world know that we're done. 5706 */ 5707 mutex_enter(&spa->spa_async_lock); 5708 spa->spa_async_thread = NULL; 5709 cv_broadcast(&spa->spa_async_cv); 5710 mutex_exit(&spa->spa_async_lock); 5711 thread_exit(); 5712 } 5713 5714 void 5715 spa_async_suspend(spa_t *spa) 5716 { 5717 mutex_enter(&spa->spa_async_lock); 5718 spa->spa_async_suspended++; 5719 while (spa->spa_async_thread != NULL) 5720 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock); 5721 mutex_exit(&spa->spa_async_lock); 5722 } 5723 5724 void 5725 spa_async_resume(spa_t *spa) 5726 { 5727 mutex_enter(&spa->spa_async_lock); 5728 ASSERT(spa->spa_async_suspended != 0); 5729 spa->spa_async_suspended--; 5730 mutex_exit(&spa->spa_async_lock); 5731 } 5732 5733 static boolean_t 5734 spa_async_tasks_pending(spa_t *spa) 5735 { 5736 uint_t non_config_tasks; 5737 uint_t config_task; 5738 boolean_t config_task_suspended; 5739 5740 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE; 5741 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE; 5742 if (spa->spa_ccw_fail_time == 0) { 5743 config_task_suspended = B_FALSE; 5744 } else { 5745 config_task_suspended = 5746 (gethrtime() - spa->spa_ccw_fail_time) < 5747 (zfs_ccw_retry_interval * NANOSEC); 5748 } 5749 5750 return (non_config_tasks || (config_task && !config_task_suspended)); 5751 } 5752 5753 static void 5754 spa_async_dispatch(spa_t *spa) 5755 { 5756 mutex_enter(&spa->spa_async_lock); 5757 if (spa_async_tasks_pending(spa) && 5758 !spa->spa_async_suspended && 5759 spa->spa_async_thread == NULL && 5760 rootdir != NULL) 5761 spa->spa_async_thread = thread_create(NULL, 0, 5762 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri); 5763 mutex_exit(&spa->spa_async_lock); 5764 } 5765 5766 void 5767 spa_async_request(spa_t *spa, int task) 5768 { 5769 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task); 5770 mutex_enter(&spa->spa_async_lock); 5771 spa->spa_async_tasks |= task; 5772 mutex_exit(&spa->spa_async_lock); 5773 } 5774 5775 /* 5776 * ========================================================================== 5777 * SPA syncing routines 5778 * ========================================================================== 5779 */ 5780 5781 static int 5782 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5783 { 5784 bpobj_t *bpo = arg; 5785 bpobj_enqueue(bpo, bp, tx); 5786 return (0); 5787 } 5788 5789 static int 5790 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx) 5791 { 5792 zio_t *zio = arg; 5793 5794 zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp, 5795 zio->io_flags)); 5796 return (0); 5797 } 5798 5799 /* 5800 * Note: this simple function is not inlined to make it easier to dtrace the 5801 * amount of time spent syncing frees. 5802 */ 5803 static void 5804 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx) 5805 { 5806 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5807 bplist_iterate(bpl, spa_free_sync_cb, zio, tx); 5808 VERIFY(zio_wait(zio) == 0); 5809 } 5810 5811 /* 5812 * Note: this simple function is not inlined to make it easier to dtrace the 5813 * amount of time spent syncing deferred frees. 5814 */ 5815 static void 5816 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx) 5817 { 5818 zio_t *zio = zio_root(spa, NULL, NULL, 0); 5819 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj, 5820 spa_free_sync_cb, zio, tx), ==, 0); 5821 VERIFY0(zio_wait(zio)); 5822 } 5823 5824 5825 static void 5826 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx) 5827 { 5828 char *packed = NULL; 5829 size_t bufsize; 5830 size_t nvsize = 0; 5831 dmu_buf_t *db; 5832 5833 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0); 5834 5835 /* 5836 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration 5837 * information. This avoids the dmu_buf_will_dirty() path and 5838 * saves us a pre-read to get data we don't actually care about. 5839 */ 5840 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE); 5841 packed = kmem_alloc(bufsize, KM_SLEEP); 5842 5843 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR, 5844 KM_SLEEP) == 0); 5845 bzero(packed + nvsize, bufsize - nvsize); 5846 5847 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx); 5848 5849 kmem_free(packed, bufsize); 5850 5851 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db)); 5852 dmu_buf_will_dirty(db, tx); 5853 *(uint64_t *)db->db_data = nvsize; 5854 dmu_buf_rele(db, FTAG); 5855 } 5856 5857 static void 5858 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx, 5859 const char *config, const char *entry) 5860 { 5861 nvlist_t *nvroot; 5862 nvlist_t **list; 5863 int i; 5864 5865 if (!sav->sav_sync) 5866 return; 5867 5868 /* 5869 * Update the MOS nvlist describing the list of available devices. 5870 * spa_validate_aux() will have already made sure this nvlist is 5871 * valid and the vdevs are labeled appropriately. 5872 */ 5873 if (sav->sav_object == 0) { 5874 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset, 5875 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE, 5876 sizeof (uint64_t), tx); 5877 VERIFY(zap_update(spa->spa_meta_objset, 5878 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1, 5879 &sav->sav_object, tx) == 0); 5880 } 5881 5882 VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0); 5883 if (sav->sav_count == 0) { 5884 VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0); 5885 } else { 5886 list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP); 5887 for (i = 0; i < sav->sav_count; i++) 5888 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i], 5889 B_FALSE, VDEV_CONFIG_L2CACHE); 5890 VERIFY(nvlist_add_nvlist_array(nvroot, config, list, 5891 sav->sav_count) == 0); 5892 for (i = 0; i < sav->sav_count; i++) 5893 nvlist_free(list[i]); 5894 kmem_free(list, sav->sav_count * sizeof (void *)); 5895 } 5896 5897 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx); 5898 nvlist_free(nvroot); 5899 5900 sav->sav_sync = B_FALSE; 5901 } 5902 5903 static void 5904 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx) 5905 { 5906 nvlist_t *config; 5907 5908 if (list_is_empty(&spa->spa_config_dirty_list)) 5909 return; 5910 5911 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 5912 5913 config = spa_config_generate(spa, spa->spa_root_vdev, 5914 dmu_tx_get_txg(tx), B_FALSE); 5915 5916 /* 5917 * If we're upgrading the spa version then make sure that 5918 * the config object gets updated with the correct version. 5919 */ 5920 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version) 5921 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, 5922 spa->spa_uberblock.ub_version); 5923 5924 spa_config_exit(spa, SCL_STATE, FTAG); 5925 5926 if (spa->spa_config_syncing) 5927 nvlist_free(spa->spa_config_syncing); 5928 spa->spa_config_syncing = config; 5929 5930 spa_sync_nvlist(spa, spa->spa_config_object, config, tx); 5931 } 5932 5933 static void 5934 spa_sync_version(void *arg, dmu_tx_t *tx) 5935 { 5936 uint64_t *versionp = arg; 5937 uint64_t version = *versionp; 5938 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5939 5940 /* 5941 * Setting the version is special cased when first creating the pool. 5942 */ 5943 ASSERT(tx->tx_txg != TXG_INITIAL); 5944 5945 ASSERT(SPA_VERSION_IS_SUPPORTED(version)); 5946 ASSERT(version >= spa_version(spa)); 5947 5948 spa->spa_uberblock.ub_version = version; 5949 vdev_config_dirty(spa->spa_root_vdev); 5950 spa_history_log_internal(spa, "set", tx, "version=%lld", version); 5951 } 5952 5953 /* 5954 * Set zpool properties. 5955 */ 5956 static void 5957 spa_sync_props(void *arg, dmu_tx_t *tx) 5958 { 5959 nvlist_t *nvp = arg; 5960 spa_t *spa = dmu_tx_pool(tx)->dp_spa; 5961 objset_t *mos = spa->spa_meta_objset; 5962 nvpair_t *elem = NULL; 5963 5964 mutex_enter(&spa->spa_props_lock); 5965 5966 while ((elem = nvlist_next_nvpair(nvp, elem))) { 5967 uint64_t intval; 5968 char *strval, *fname; 5969 zpool_prop_t prop; 5970 const char *propname; 5971 zprop_type_t proptype; 5972 spa_feature_t fid; 5973 5974 switch (prop = zpool_name_to_prop(nvpair_name(elem))) { 5975 case ZPROP_INVAL: 5976 /* 5977 * We checked this earlier in spa_prop_validate(). 5978 */ 5979 ASSERT(zpool_prop_feature(nvpair_name(elem))); 5980 5981 fname = strchr(nvpair_name(elem), '@') + 1; 5982 VERIFY0(zfeature_lookup_name(fname, &fid)); 5983 5984 spa_feature_enable(spa, fid, tx); 5985 spa_history_log_internal(spa, "set", tx, 5986 "%s=enabled", nvpair_name(elem)); 5987 break; 5988 5989 case ZPOOL_PROP_VERSION: 5990 intval = fnvpair_value_uint64(elem); 5991 /* 5992 * The version is synced seperatly before other 5993 * properties and should be correct by now. 5994 */ 5995 ASSERT3U(spa_version(spa), >=, intval); 5996 break; 5997 5998 case ZPOOL_PROP_ALTROOT: 5999 /* 6000 * 'altroot' is a non-persistent property. It should 6001 * have been set temporarily at creation or import time. 6002 */ 6003 ASSERT(spa->spa_root != NULL); 6004 break; 6005 6006 case ZPOOL_PROP_READONLY: 6007 case ZPOOL_PROP_CACHEFILE: 6008 /* 6009 * 'readonly' and 'cachefile' are also non-persisitent 6010 * properties. 6011 */ 6012 break; 6013 case ZPOOL_PROP_COMMENT: 6014 strval = fnvpair_value_string(elem); 6015 if (spa->spa_comment != NULL) 6016 spa_strfree(spa->spa_comment); 6017 spa->spa_comment = spa_strdup(strval); 6018 /* 6019 * We need to dirty the configuration on all the vdevs 6020 * so that their labels get updated. It's unnecessary 6021 * to do this for pool creation since the vdev's 6022 * configuratoin has already been dirtied. 6023 */ 6024 if (tx->tx_txg != TXG_INITIAL) 6025 vdev_config_dirty(spa->spa_root_vdev); 6026 spa_history_log_internal(spa, "set", tx, 6027 "%s=%s", nvpair_name(elem), strval); 6028 break; 6029 default: 6030 /* 6031 * Set pool property values in the poolprops mos object. 6032 */ 6033 if (spa->spa_pool_props_object == 0) { 6034 spa->spa_pool_props_object = 6035 zap_create_link(mos, DMU_OT_POOL_PROPS, 6036 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS, 6037 tx); 6038 } 6039 6040 /* normalize the property name */ 6041 propname = zpool_prop_to_name(prop); 6042 proptype = zpool_prop_get_type(prop); 6043 6044 if (nvpair_type(elem) == DATA_TYPE_STRING) { 6045 ASSERT(proptype == PROP_TYPE_STRING); 6046 strval = fnvpair_value_string(elem); 6047 VERIFY0(zap_update(mos, 6048 spa->spa_pool_props_object, propname, 6049 1, strlen(strval) + 1, strval, tx)); 6050 spa_history_log_internal(spa, "set", tx, 6051 "%s=%s", nvpair_name(elem), strval); 6052 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) { 6053 intval = fnvpair_value_uint64(elem); 6054 6055 if (proptype == PROP_TYPE_INDEX) { 6056 const char *unused; 6057 VERIFY0(zpool_prop_index_to_string( 6058 prop, intval, &unused)); 6059 } 6060 VERIFY0(zap_update(mos, 6061 spa->spa_pool_props_object, propname, 6062 8, 1, &intval, tx)); 6063 spa_history_log_internal(spa, "set", tx, 6064 "%s=%lld", nvpair_name(elem), intval); 6065 } else { 6066 ASSERT(0); /* not allowed */ 6067 } 6068 6069 switch (prop) { 6070 case ZPOOL_PROP_DELEGATION: 6071 spa->spa_delegation = intval; 6072 break; 6073 case ZPOOL_PROP_BOOTFS: 6074 spa->spa_bootfs = intval; 6075 break; 6076 case ZPOOL_PROP_FAILUREMODE: 6077 spa->spa_failmode = intval; 6078 break; 6079 case ZPOOL_PROP_AUTOEXPAND: 6080 spa->spa_autoexpand = intval; 6081 if (tx->tx_txg != TXG_INITIAL) 6082 spa_async_request(spa, 6083 SPA_ASYNC_AUTOEXPAND); 6084 break; 6085 case ZPOOL_PROP_DEDUPDITTO: 6086 spa->spa_dedup_ditto = intval; 6087 break; 6088 default: 6089 break; 6090 } 6091 } 6092 6093 } 6094 6095 mutex_exit(&spa->spa_props_lock); 6096 } 6097 6098 /* 6099 * Perform one-time upgrade on-disk changes. spa_version() does not 6100 * reflect the new version this txg, so there must be no changes this 6101 * txg to anything that the upgrade code depends on after it executes. 6102 * Therefore this must be called after dsl_pool_sync() does the sync 6103 * tasks. 6104 */ 6105 static void 6106 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx) 6107 { 6108 dsl_pool_t *dp = spa->spa_dsl_pool; 6109 6110 ASSERT(spa->spa_sync_pass == 1); 6111 6112 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG); 6113 6114 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN && 6115 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) { 6116 dsl_pool_create_origin(dp, tx); 6117 6118 /* Keeping the origin open increases spa_minref */ 6119 spa->spa_minref += 3; 6120 } 6121 6122 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES && 6123 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) { 6124 dsl_pool_upgrade_clones(dp, tx); 6125 } 6126 6127 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES && 6128 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) { 6129 dsl_pool_upgrade_dir_clones(dp, tx); 6130 6131 /* Keeping the freedir open increases spa_minref */ 6132 spa->spa_minref += 3; 6133 } 6134 6135 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES && 6136 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6137 spa_feature_create_zap_objects(spa, tx); 6138 } 6139 6140 /* 6141 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable 6142 * when possibility to use lz4 compression for metadata was added 6143 * Old pools that have this feature enabled must be upgraded to have 6144 * this feature active 6145 */ 6146 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) { 6147 boolean_t lz4_en = spa_feature_is_enabled(spa, 6148 SPA_FEATURE_LZ4_COMPRESS); 6149 boolean_t lz4_ac = spa_feature_is_active(spa, 6150 SPA_FEATURE_LZ4_COMPRESS); 6151 6152 if (lz4_en && !lz4_ac) 6153 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx); 6154 } 6155 rrw_exit(&dp->dp_config_rwlock, FTAG); 6156 } 6157 6158 /* 6159 * Sync the specified transaction group. New blocks may be dirtied as 6160 * part of the process, so we iterate until it converges. 6161 */ 6162 void 6163 spa_sync(spa_t *spa, uint64_t txg) 6164 { 6165 dsl_pool_t *dp = spa->spa_dsl_pool; 6166 objset_t *mos = spa->spa_meta_objset; 6167 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK]; 6168 vdev_t *rvd = spa->spa_root_vdev; 6169 vdev_t *vd; 6170 dmu_tx_t *tx; 6171 int error; 6172 6173 VERIFY(spa_writeable(spa)); 6174 6175 /* 6176 * Lock out configuration changes. 6177 */ 6178 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER); 6179 6180 spa->spa_syncing_txg = txg; 6181 spa->spa_sync_pass = 0; 6182 6183 /* 6184 * If there are any pending vdev state changes, convert them 6185 * into config changes that go out with this transaction group. 6186 */ 6187 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6188 while (list_head(&spa->spa_state_dirty_list) != NULL) { 6189 /* 6190 * We need the write lock here because, for aux vdevs, 6191 * calling vdev_config_dirty() modifies sav_config. 6192 * This is ugly and will become unnecessary when we 6193 * eliminate the aux vdev wart by integrating all vdevs 6194 * into the root vdev tree. 6195 */ 6196 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6197 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER); 6198 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) { 6199 vdev_state_clean(vd); 6200 vdev_config_dirty(vd); 6201 } 6202 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG); 6203 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER); 6204 } 6205 spa_config_exit(spa, SCL_STATE, FTAG); 6206 6207 tx = dmu_tx_create_assigned(dp, txg); 6208 6209 spa->spa_sync_starttime = gethrtime(); 6210 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, 6211 spa->spa_sync_starttime + spa->spa_deadman_synctime)); 6212 6213 /* 6214 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg, 6215 * set spa_deflate if we have no raid-z vdevs. 6216 */ 6217 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE && 6218 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) { 6219 int i; 6220 6221 for (i = 0; i < rvd->vdev_children; i++) { 6222 vd = rvd->vdev_child[i]; 6223 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE) 6224 break; 6225 } 6226 if (i == rvd->vdev_children) { 6227 spa->spa_deflate = TRUE; 6228 VERIFY(0 == zap_add(spa->spa_meta_objset, 6229 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE, 6230 sizeof (uint64_t), 1, &spa->spa_deflate, tx)); 6231 } 6232 } 6233 6234 /* 6235 * If anything has changed in this txg, or if someone is waiting 6236 * for this txg to sync (eg, spa_vdev_remove()), push the 6237 * deferred frees from the previous txg. If not, leave them 6238 * alone so that we don't generate work on an otherwise idle 6239 * system. 6240 */ 6241 if (!txg_list_empty(&dp->dp_dirty_datasets, txg) || 6242 !txg_list_empty(&dp->dp_dirty_dirs, txg) || 6243 !txg_list_empty(&dp->dp_sync_tasks, txg) || 6244 ((dsl_scan_active(dp->dp_scan) || 6245 txg_sync_waiting(dp)) && !spa_shutting_down(spa))) { 6246 spa_sync_deferred_frees(spa, tx); 6247 } 6248 6249 /* 6250 * Iterate to convergence. 6251 */ 6252 do { 6253 int pass = ++spa->spa_sync_pass; 6254 6255 spa_sync_config_object(spa, tx); 6256 spa_sync_aux_dev(spa, &spa->spa_spares, tx, 6257 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES); 6258 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx, 6259 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE); 6260 spa_errlog_sync(spa, txg); 6261 dsl_pool_sync(dp, txg); 6262 6263 if (pass < zfs_sync_pass_deferred_free) { 6264 spa_sync_frees(spa, free_bpl, tx); 6265 } else { 6266 bplist_iterate(free_bpl, bpobj_enqueue_cb, 6267 &spa->spa_deferred_bpobj, tx); 6268 } 6269 6270 ddt_sync(spa, txg); 6271 dsl_scan_sync(dp, tx); 6272 6273 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg)) 6274 vdev_sync(vd, txg); 6275 6276 if (pass == 1) 6277 spa_sync_upgrades(spa, tx); 6278 6279 } while (dmu_objset_is_dirty(mos, txg)); 6280 6281 /* 6282 * Rewrite the vdev configuration (which includes the uberblock) 6283 * to commit the transaction group. 6284 * 6285 * If there are no dirty vdevs, we sync the uberblock to a few 6286 * random top-level vdevs that are known to be visible in the 6287 * config cache (see spa_vdev_add() for a complete description). 6288 * If there *are* dirty vdevs, sync the uberblock to all vdevs. 6289 */ 6290 for (;;) { 6291 /* 6292 * We hold SCL_STATE to prevent vdev open/close/etc. 6293 * while we're attempting to write the vdev labels. 6294 */ 6295 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER); 6296 6297 if (list_is_empty(&spa->spa_config_dirty_list)) { 6298 vdev_t *svd[SPA_DVAS_PER_BP]; 6299 int svdcount = 0; 6300 int children = rvd->vdev_children; 6301 int c0 = spa_get_random(children); 6302 6303 for (int c = 0; c < children; c++) { 6304 vd = rvd->vdev_child[(c0 + c) % children]; 6305 if (vd->vdev_ms_array == 0 || vd->vdev_islog) 6306 continue; 6307 svd[svdcount++] = vd; 6308 if (svdcount == SPA_DVAS_PER_BP) 6309 break; 6310 } 6311 error = vdev_config_sync(svd, svdcount, txg, B_FALSE); 6312 if (error != 0) 6313 error = vdev_config_sync(svd, svdcount, txg, 6314 B_TRUE); 6315 } else { 6316 error = vdev_config_sync(rvd->vdev_child, 6317 rvd->vdev_children, txg, B_FALSE); 6318 if (error != 0) 6319 error = vdev_config_sync(rvd->vdev_child, 6320 rvd->vdev_children, txg, B_TRUE); 6321 } 6322 6323 if (error == 0) 6324 spa->spa_last_synced_guid = rvd->vdev_guid; 6325 6326 spa_config_exit(spa, SCL_STATE, FTAG); 6327 6328 if (error == 0) 6329 break; 6330 zio_suspend(spa, NULL); 6331 zio_resume_wait(spa); 6332 } 6333 dmu_tx_commit(tx); 6334 6335 VERIFY(cyclic_reprogram(spa->spa_deadman_cycid, CY_INFINITY)); 6336 6337 /* 6338 * Clear the dirty config list. 6339 */ 6340 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL) 6341 vdev_config_clean(vd); 6342 6343 /* 6344 * Now that the new config has synced transactionally, 6345 * let it become visible to the config cache. 6346 */ 6347 if (spa->spa_config_syncing != NULL) { 6348 spa_config_set(spa, spa->spa_config_syncing); 6349 spa->spa_config_txg = txg; 6350 spa->spa_config_syncing = NULL; 6351 } 6352 6353 spa->spa_ubsync = spa->spa_uberblock; 6354 6355 dsl_pool_sync_done(dp, txg); 6356 6357 /* 6358 * Update usable space statistics. 6359 */ 6360 while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg))) 6361 vdev_sync_done(vd, txg); 6362 6363 spa_update_dspace(spa); 6364 6365 /* 6366 * It had better be the case that we didn't dirty anything 6367 * since vdev_config_sync(). 6368 */ 6369 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg)); 6370 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg)); 6371 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg)); 6372 6373 spa->spa_sync_pass = 0; 6374 6375 spa_config_exit(spa, SCL_CONFIG, FTAG); 6376 6377 spa_handle_ignored_writes(spa); 6378 6379 /* 6380 * If any async tasks have been requested, kick them off. 6381 */ 6382 spa_async_dispatch(spa); 6383 } 6384 6385 /* 6386 * Sync all pools. We don't want to hold the namespace lock across these 6387 * operations, so we take a reference on the spa_t and drop the lock during the 6388 * sync. 6389 */ 6390 void 6391 spa_sync_allpools(void) 6392 { 6393 spa_t *spa = NULL; 6394 mutex_enter(&spa_namespace_lock); 6395 while ((spa = spa_next(spa)) != NULL) { 6396 if (spa_state(spa) != POOL_STATE_ACTIVE || 6397 !spa_writeable(spa) || spa_suspended(spa)) 6398 continue; 6399 spa_open_ref(spa, FTAG); 6400 mutex_exit(&spa_namespace_lock); 6401 txg_wait_synced(spa_get_dsl(spa), 0); 6402 mutex_enter(&spa_namespace_lock); 6403 spa_close(spa, FTAG); 6404 } 6405 mutex_exit(&spa_namespace_lock); 6406 } 6407 6408 /* 6409 * ========================================================================== 6410 * Miscellaneous routines 6411 * ========================================================================== 6412 */ 6413 6414 /* 6415 * Remove all pools in the system. 6416 */ 6417 void 6418 spa_evict_all(void) 6419 { 6420 spa_t *spa; 6421 6422 /* 6423 * Remove all cached state. All pools should be closed now, 6424 * so every spa in the AVL tree should be unreferenced. 6425 */ 6426 mutex_enter(&spa_namespace_lock); 6427 while ((spa = spa_next(NULL)) != NULL) { 6428 /* 6429 * Stop async tasks. The async thread may need to detach 6430 * a device that's been replaced, which requires grabbing 6431 * spa_namespace_lock, so we must drop it here. 6432 */ 6433 spa_open_ref(spa, FTAG); 6434 mutex_exit(&spa_namespace_lock); 6435 spa_async_suspend(spa); 6436 mutex_enter(&spa_namespace_lock); 6437 spa_close(spa, FTAG); 6438 6439 if (spa->spa_state != POOL_STATE_UNINITIALIZED) { 6440 spa_unload(spa); 6441 spa_deactivate(spa); 6442 } 6443 spa_remove(spa); 6444 } 6445 mutex_exit(&spa_namespace_lock); 6446 } 6447 6448 vdev_t * 6449 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux) 6450 { 6451 vdev_t *vd; 6452 int i; 6453 6454 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL) 6455 return (vd); 6456 6457 if (aux) { 6458 for (i = 0; i < spa->spa_l2cache.sav_count; i++) { 6459 vd = spa->spa_l2cache.sav_vdevs[i]; 6460 if (vd->vdev_guid == guid) 6461 return (vd); 6462 } 6463 6464 for (i = 0; i < spa->spa_spares.sav_count; i++) { 6465 vd = spa->spa_spares.sav_vdevs[i]; 6466 if (vd->vdev_guid == guid) 6467 return (vd); 6468 } 6469 } 6470 6471 return (NULL); 6472 } 6473 6474 void 6475 spa_upgrade(spa_t *spa, uint64_t version) 6476 { 6477 ASSERT(spa_writeable(spa)); 6478 6479 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 6480 6481 /* 6482 * This should only be called for a non-faulted pool, and since a 6483 * future version would result in an unopenable pool, this shouldn't be 6484 * possible. 6485 */ 6486 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version)); 6487 ASSERT3U(version, >=, spa->spa_uberblock.ub_version); 6488 6489 spa->spa_uberblock.ub_version = version; 6490 vdev_config_dirty(spa->spa_root_vdev); 6491 6492 spa_config_exit(spa, SCL_ALL, FTAG); 6493 6494 txg_wait_synced(spa_get_dsl(spa), 0); 6495 } 6496 6497 boolean_t 6498 spa_has_spare(spa_t *spa, uint64_t guid) 6499 { 6500 int i; 6501 uint64_t spareguid; 6502 spa_aux_vdev_t *sav = &spa->spa_spares; 6503 6504 for (i = 0; i < sav->sav_count; i++) 6505 if (sav->sav_vdevs[i]->vdev_guid == guid) 6506 return (B_TRUE); 6507 6508 for (i = 0; i < sav->sav_npending; i++) { 6509 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID, 6510 &spareguid) == 0 && spareguid == guid) 6511 return (B_TRUE); 6512 } 6513 6514 return (B_FALSE); 6515 } 6516 6517 /* 6518 * Check if a pool has an active shared spare device. 6519 * Note: reference count of an active spare is 2, as a spare and as a replace 6520 */ 6521 static boolean_t 6522 spa_has_active_shared_spare(spa_t *spa) 6523 { 6524 int i, refcnt; 6525 uint64_t pool; 6526 spa_aux_vdev_t *sav = &spa->spa_spares; 6527 6528 for (i = 0; i < sav->sav_count; i++) { 6529 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool, 6530 &refcnt) && pool != 0ULL && pool == spa_guid(spa) && 6531 refcnt > 2) 6532 return (B_TRUE); 6533 } 6534 6535 return (B_FALSE); 6536 } 6537 6538 /* 6539 * Post a sysevent corresponding to the given event. The 'name' must be one of 6540 * the event definitions in sys/sysevent/eventdefs.h. The payload will be 6541 * filled in from the spa and (optionally) the vdev. This doesn't do anything 6542 * in the userland libzpool, as we don't want consumers to misinterpret ztest 6543 * or zdb as real changes. 6544 */ 6545 void 6546 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name) 6547 { 6548 #ifdef _KERNEL 6549 sysevent_t *ev; 6550 sysevent_attr_list_t *attr = NULL; 6551 sysevent_value_t value; 6552 sysevent_id_t eid; 6553 6554 ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs", 6555 SE_SLEEP); 6556 6557 value.value_type = SE_DATA_TYPE_STRING; 6558 value.value.sv_string = spa_name(spa); 6559 if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0) 6560 goto done; 6561 6562 value.value_type = SE_DATA_TYPE_UINT64; 6563 value.value.sv_uint64 = spa_guid(spa); 6564 if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0) 6565 goto done; 6566 6567 if (vd) { 6568 value.value_type = SE_DATA_TYPE_UINT64; 6569 value.value.sv_uint64 = vd->vdev_guid; 6570 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value, 6571 SE_SLEEP) != 0) 6572 goto done; 6573 6574 if (vd->vdev_path) { 6575 value.value_type = SE_DATA_TYPE_STRING; 6576 value.value.sv_string = vd->vdev_path; 6577 if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH, 6578 &value, SE_SLEEP) != 0) 6579 goto done; 6580 } 6581 } 6582 6583 if (sysevent_attach_attributes(ev, attr) != 0) 6584 goto done; 6585 attr = NULL; 6586 6587 (void) log_sysevent(ev, SE_SLEEP, &eid); 6588 6589 done: 6590 if (attr) 6591 sysevent_free_attr(attr); 6592 sysevent_free(ev); 6593 #endif 6594 } 6595