xref: /titanic_52/usr/src/uts/common/fs/zfs/spa.c (revision 188eaed9d5f14c73dfba1cd0dabaa430bdfd4a9a)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * This file contains all the routines used when modifying on-disk SPA state.
28  * This includes opening, importing, destroying, exporting a pool, and syncing a
29  * pool.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/ddt.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/metaslab_impl.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/spa_boot.h>
61 #include <sys/zfs_ioctl.h>
62 #include <sys/dsl_scan.h>
63 
64 #ifdef	_KERNEL
65 #include <sys/bootprops.h>
66 #include <sys/callb.h>
67 #include <sys/cpupart.h>
68 #include <sys/pool.h>
69 #include <sys/sysdc.h>
70 #include <sys/zone.h>
71 #endif	/* _KERNEL */
72 
73 #include "zfs_prop.h"
74 #include "zfs_comutil.h"
75 
76 typedef enum zti_modes {
77 	zti_mode_fixed,			/* value is # of threads (min 1) */
78 	zti_mode_online_percent,	/* value is % of online CPUs */
79 	zti_mode_batch,			/* cpu-intensive; value is ignored */
80 	zti_mode_null,			/* don't create a taskq */
81 	zti_nmodes
82 } zti_modes_t;
83 
84 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
85 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
86 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
87 #define	ZTI_NULL	{ zti_mode_null, 0 }
88 
89 #define	ZTI_ONE		ZTI_FIX(1)
90 
91 typedef struct zio_taskq_info {
92 	enum zti_modes zti_mode;
93 	uint_t zti_value;
94 } zio_taskq_info_t;
95 
96 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
97 	"issue", "issue_high", "intr", "intr_high"
98 };
99 
100 /*
101  * Define the taskq threads for the following I/O types:
102  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
103  */
104 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
105 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
106 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
107 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
108 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
109 	{ ZTI_FIX(100),	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
112 };
113 
114 static dsl_syncfunc_t spa_sync_props;
115 static boolean_t spa_has_active_shared_spare(spa_t *spa);
116 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
117     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
118     char **ereport);
119 
120 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
121 id_t		zio_taskq_psrset_bind = PS_NONE;
122 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
123 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
124 
125 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
126 
127 /*
128  * This (illegal) pool name is used when temporarily importing a spa_t in order
129  * to get the vdev stats associated with the imported devices.
130  */
131 #define	TRYIMPORT_NAME	"$import"
132 
133 /*
134  * ==========================================================================
135  * SPA properties routines
136  * ==========================================================================
137  */
138 
139 /*
140  * Add a (source=src, propname=propval) list to an nvlist.
141  */
142 static void
143 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
144     uint64_t intval, zprop_source_t src)
145 {
146 	const char *propname = zpool_prop_to_name(prop);
147 	nvlist_t *propval;
148 
149 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
150 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
151 
152 	if (strval != NULL)
153 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
154 	else
155 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
156 
157 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
158 	nvlist_free(propval);
159 }
160 
161 /*
162  * Get property values from the spa configuration.
163  */
164 static void
165 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
166 {
167 	uint64_t size;
168 	uint64_t alloc;
169 	uint64_t cap, version;
170 	zprop_source_t src = ZPROP_SRC_NONE;
171 	spa_config_dirent_t *dp;
172 
173 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
174 
175 	if (spa->spa_root_vdev != NULL) {
176 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
177 		size = metaslab_class_get_space(spa_normal_class(spa));
178 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
180 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
181 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
182 		    size - alloc, src);
183 
184 		cap = (size == 0) ? 0 : (alloc * 100 / size);
185 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
186 
187 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
188 		    ddt_get_pool_dedup_ratio(spa), src);
189 
190 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
191 		    spa->spa_root_vdev->vdev_state, src);
192 
193 		version = spa_version(spa);
194 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
195 			src = ZPROP_SRC_DEFAULT;
196 		else
197 			src = ZPROP_SRC_LOCAL;
198 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
199 	}
200 
201 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
202 
203 	if (spa->spa_root != NULL)
204 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
205 		    0, ZPROP_SRC_LOCAL);
206 
207 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
208 		if (dp->scd_path == NULL) {
209 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
210 			    "none", 0, ZPROP_SRC_LOCAL);
211 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
212 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
213 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
214 		}
215 	}
216 }
217 
218 /*
219  * Get zpool property values.
220  */
221 int
222 spa_prop_get(spa_t *spa, nvlist_t **nvp)
223 {
224 	objset_t *mos = spa->spa_meta_objset;
225 	zap_cursor_t zc;
226 	zap_attribute_t za;
227 	int err;
228 
229 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
230 
231 	mutex_enter(&spa->spa_props_lock);
232 
233 	/*
234 	 * Get properties from the spa config.
235 	 */
236 	spa_prop_get_config(spa, nvp);
237 
238 	/* If no pool property object, no more prop to get. */
239 	if (mos == NULL || spa->spa_pool_props_object == 0) {
240 		mutex_exit(&spa->spa_props_lock);
241 		return (0);
242 	}
243 
244 	/*
245 	 * Get properties from the MOS pool property object.
246 	 */
247 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
248 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
249 	    zap_cursor_advance(&zc)) {
250 		uint64_t intval = 0;
251 		char *strval = NULL;
252 		zprop_source_t src = ZPROP_SRC_DEFAULT;
253 		zpool_prop_t prop;
254 
255 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
256 			continue;
257 
258 		switch (za.za_integer_length) {
259 		case 8:
260 			/* integer property */
261 			if (za.za_first_integer !=
262 			    zpool_prop_default_numeric(prop))
263 				src = ZPROP_SRC_LOCAL;
264 
265 			if (prop == ZPOOL_PROP_BOOTFS) {
266 				dsl_pool_t *dp;
267 				dsl_dataset_t *ds = NULL;
268 
269 				dp = spa_get_dsl(spa);
270 				rw_enter(&dp->dp_config_rwlock, RW_READER);
271 				if (err = dsl_dataset_hold_obj(dp,
272 				    za.za_first_integer, FTAG, &ds)) {
273 					rw_exit(&dp->dp_config_rwlock);
274 					break;
275 				}
276 
277 				strval = kmem_alloc(
278 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
279 				    KM_SLEEP);
280 				dsl_dataset_name(ds, strval);
281 				dsl_dataset_rele(ds, FTAG);
282 				rw_exit(&dp->dp_config_rwlock);
283 			} else {
284 				strval = NULL;
285 				intval = za.za_first_integer;
286 			}
287 
288 			spa_prop_add_list(*nvp, prop, strval, intval, src);
289 
290 			if (strval != NULL)
291 				kmem_free(strval,
292 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
293 
294 			break;
295 
296 		case 1:
297 			/* string property */
298 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
299 			err = zap_lookup(mos, spa->spa_pool_props_object,
300 			    za.za_name, 1, za.za_num_integers, strval);
301 			if (err) {
302 				kmem_free(strval, za.za_num_integers);
303 				break;
304 			}
305 			spa_prop_add_list(*nvp, prop, strval, 0, src);
306 			kmem_free(strval, za.za_num_integers);
307 			break;
308 
309 		default:
310 			break;
311 		}
312 	}
313 	zap_cursor_fini(&zc);
314 	mutex_exit(&spa->spa_props_lock);
315 out:
316 	if (err && err != ENOENT) {
317 		nvlist_free(*nvp);
318 		*nvp = NULL;
319 		return (err);
320 	}
321 
322 	return (0);
323 }
324 
325 /*
326  * Validate the given pool properties nvlist and modify the list
327  * for the property values to be set.
328  */
329 static int
330 spa_prop_validate(spa_t *spa, nvlist_t *props)
331 {
332 	nvpair_t *elem;
333 	int error = 0, reset_bootfs = 0;
334 	uint64_t objnum;
335 
336 	elem = NULL;
337 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
338 		zpool_prop_t prop;
339 		char *propname, *strval;
340 		uint64_t intval;
341 		objset_t *os;
342 		char *slash;
343 
344 		propname = nvpair_name(elem);
345 
346 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
347 			return (EINVAL);
348 
349 		switch (prop) {
350 		case ZPOOL_PROP_VERSION:
351 			error = nvpair_value_uint64(elem, &intval);
352 			if (!error &&
353 			    (intval < spa_version(spa) || intval > SPA_VERSION))
354 				error = EINVAL;
355 			break;
356 
357 		case ZPOOL_PROP_DELEGATION:
358 		case ZPOOL_PROP_AUTOREPLACE:
359 		case ZPOOL_PROP_LISTSNAPS:
360 		case ZPOOL_PROP_AUTOEXPAND:
361 			error = nvpair_value_uint64(elem, &intval);
362 			if (!error && intval > 1)
363 				error = EINVAL;
364 			break;
365 
366 		case ZPOOL_PROP_BOOTFS:
367 			/*
368 			 * If the pool version is less than SPA_VERSION_BOOTFS,
369 			 * or the pool is still being created (version == 0),
370 			 * the bootfs property cannot be set.
371 			 */
372 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
373 				error = ENOTSUP;
374 				break;
375 			}
376 
377 			/*
378 			 * Make sure the vdev config is bootable
379 			 */
380 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
381 				error = ENOTSUP;
382 				break;
383 			}
384 
385 			reset_bootfs = 1;
386 
387 			error = nvpair_value_string(elem, &strval);
388 
389 			if (!error) {
390 				uint64_t compress;
391 
392 				if (strval == NULL || strval[0] == '\0') {
393 					objnum = zpool_prop_default_numeric(
394 					    ZPOOL_PROP_BOOTFS);
395 					break;
396 				}
397 
398 				if (error = dmu_objset_hold(strval, FTAG, &os))
399 					break;
400 
401 				/* Must be ZPL and not gzip compressed. */
402 
403 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
404 					error = ENOTSUP;
405 				} else if ((error = dsl_prop_get_integer(strval,
406 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
407 				    &compress, NULL)) == 0 &&
408 				    !BOOTFS_COMPRESS_VALID(compress)) {
409 					error = ENOTSUP;
410 				} else {
411 					objnum = dmu_objset_id(os);
412 				}
413 				dmu_objset_rele(os, FTAG);
414 			}
415 			break;
416 
417 		case ZPOOL_PROP_FAILUREMODE:
418 			error = nvpair_value_uint64(elem, &intval);
419 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
420 			    intval > ZIO_FAILURE_MODE_PANIC))
421 				error = EINVAL;
422 
423 			/*
424 			 * This is a special case which only occurs when
425 			 * the pool has completely failed. This allows
426 			 * the user to change the in-core failmode property
427 			 * without syncing it out to disk (I/Os might
428 			 * currently be blocked). We do this by returning
429 			 * EIO to the caller (spa_prop_set) to trick it
430 			 * into thinking we encountered a property validation
431 			 * error.
432 			 */
433 			if (!error && spa_suspended(spa)) {
434 				spa->spa_failmode = intval;
435 				error = EIO;
436 			}
437 			break;
438 
439 		case ZPOOL_PROP_CACHEFILE:
440 			if ((error = nvpair_value_string(elem, &strval)) != 0)
441 				break;
442 
443 			if (strval[0] == '\0')
444 				break;
445 
446 			if (strcmp(strval, "none") == 0)
447 				break;
448 
449 			if (strval[0] != '/') {
450 				error = EINVAL;
451 				break;
452 			}
453 
454 			slash = strrchr(strval, '/');
455 			ASSERT(slash != NULL);
456 
457 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
458 			    strcmp(slash, "/..") == 0)
459 				error = EINVAL;
460 			break;
461 
462 		case ZPOOL_PROP_DEDUPDITTO:
463 			if (spa_version(spa) < SPA_VERSION_DEDUP)
464 				error = ENOTSUP;
465 			else
466 				error = nvpair_value_uint64(elem, &intval);
467 			if (error == 0 &&
468 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
469 				error = EINVAL;
470 			break;
471 		}
472 
473 		if (error)
474 			break;
475 	}
476 
477 	if (!error && reset_bootfs) {
478 		error = nvlist_remove(props,
479 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
480 
481 		if (!error) {
482 			error = nvlist_add_uint64(props,
483 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
484 		}
485 	}
486 
487 	return (error);
488 }
489 
490 void
491 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
492 {
493 	char *cachefile;
494 	spa_config_dirent_t *dp;
495 
496 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
497 	    &cachefile) != 0)
498 		return;
499 
500 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
501 	    KM_SLEEP);
502 
503 	if (cachefile[0] == '\0')
504 		dp->scd_path = spa_strdup(spa_config_path);
505 	else if (strcmp(cachefile, "none") == 0)
506 		dp->scd_path = NULL;
507 	else
508 		dp->scd_path = spa_strdup(cachefile);
509 
510 	list_insert_head(&spa->spa_config_list, dp);
511 	if (need_sync)
512 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
513 }
514 
515 int
516 spa_prop_set(spa_t *spa, nvlist_t *nvp)
517 {
518 	int error;
519 	nvpair_t *elem;
520 	boolean_t need_sync = B_FALSE;
521 	zpool_prop_t prop;
522 
523 	if ((error = spa_prop_validate(spa, nvp)) != 0)
524 		return (error);
525 
526 	elem = NULL;
527 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
528 		if ((prop = zpool_name_to_prop(
529 		    nvpair_name(elem))) == ZPROP_INVAL)
530 			return (EINVAL);
531 
532 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
533 			continue;
534 
535 		need_sync = B_TRUE;
536 		break;
537 	}
538 
539 	if (need_sync)
540 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
541 		    spa, nvp, 3));
542 	else
543 		return (0);
544 }
545 
546 /*
547  * If the bootfs property value is dsobj, clear it.
548  */
549 void
550 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
551 {
552 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
553 		VERIFY(zap_remove(spa->spa_meta_objset,
554 		    spa->spa_pool_props_object,
555 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
556 		spa->spa_bootfs = 0;
557 	}
558 }
559 
560 /*
561  * ==========================================================================
562  * SPA state manipulation (open/create/destroy/import/export)
563  * ==========================================================================
564  */
565 
566 static int
567 spa_error_entry_compare(const void *a, const void *b)
568 {
569 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
570 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
571 	int ret;
572 
573 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
574 	    sizeof (zbookmark_t));
575 
576 	if (ret < 0)
577 		return (-1);
578 	else if (ret > 0)
579 		return (1);
580 	else
581 		return (0);
582 }
583 
584 /*
585  * Utility function which retrieves copies of the current logs and
586  * re-initializes them in the process.
587  */
588 void
589 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
590 {
591 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
592 
593 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
594 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
595 
596 	avl_create(&spa->spa_errlist_scrub,
597 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
598 	    offsetof(spa_error_entry_t, se_avl));
599 	avl_create(&spa->spa_errlist_last,
600 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
601 	    offsetof(spa_error_entry_t, se_avl));
602 }
603 
604 static taskq_t *
605 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
606     uint_t value)
607 {
608 	uint_t flags = TASKQ_PREPOPULATE;
609 	boolean_t batch = B_FALSE;
610 
611 	switch (mode) {
612 	case zti_mode_null:
613 		return (NULL);		/* no taskq needed */
614 
615 	case zti_mode_fixed:
616 		ASSERT3U(value, >=, 1);
617 		value = MAX(value, 1);
618 		break;
619 
620 	case zti_mode_batch:
621 		batch = B_TRUE;
622 		flags |= TASKQ_THREADS_CPU_PCT;
623 		value = zio_taskq_batch_pct;
624 		break;
625 
626 	case zti_mode_online_percent:
627 		flags |= TASKQ_THREADS_CPU_PCT;
628 		break;
629 
630 	default:
631 		panic("unrecognized mode for %s taskq (%u:%u) in "
632 		    "spa_activate()",
633 		    name, mode, value);
634 		break;
635 	}
636 
637 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
638 		if (batch)
639 			flags |= TASKQ_DC_BATCH;
640 
641 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
642 		    spa->spa_proc, zio_taskq_basedc, flags));
643 	}
644 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
645 	    spa->spa_proc, flags));
646 }
647 
648 static void
649 spa_create_zio_taskqs(spa_t *spa)
650 {
651 	for (int t = 0; t < ZIO_TYPES; t++) {
652 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
653 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
654 			enum zti_modes mode = ztip->zti_mode;
655 			uint_t value = ztip->zti_value;
656 			char name[32];
657 
658 			(void) snprintf(name, sizeof (name),
659 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
660 
661 			spa->spa_zio_taskq[t][q] =
662 			    spa_taskq_create(spa, name, mode, value);
663 		}
664 	}
665 }
666 
667 #ifdef _KERNEL
668 static void
669 spa_thread(void *arg)
670 {
671 	callb_cpr_t cprinfo;
672 
673 	spa_t *spa = arg;
674 	user_t *pu = PTOU(curproc);
675 
676 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
677 	    spa->spa_name);
678 
679 	ASSERT(curproc != &p0);
680 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
681 	    "zpool-%s", spa->spa_name);
682 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
683 
684 	/* bind this thread to the requested psrset */
685 	if (zio_taskq_psrset_bind != PS_NONE) {
686 		pool_lock();
687 		mutex_enter(&cpu_lock);
688 		mutex_enter(&pidlock);
689 		mutex_enter(&curproc->p_lock);
690 
691 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
692 		    0, NULL, NULL) == 0)  {
693 			curthread->t_bind_pset = zio_taskq_psrset_bind;
694 		} else {
695 			cmn_err(CE_WARN,
696 			    "Couldn't bind process for zfs pool \"%s\" to "
697 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
698 		}
699 
700 		mutex_exit(&curproc->p_lock);
701 		mutex_exit(&pidlock);
702 		mutex_exit(&cpu_lock);
703 		pool_unlock();
704 	}
705 
706 	if (zio_taskq_sysdc) {
707 		sysdc_thread_enter(curthread, 100, 0);
708 	}
709 
710 	spa->spa_proc = curproc;
711 	spa->spa_did = curthread->t_did;
712 
713 	spa_create_zio_taskqs(spa);
714 
715 	mutex_enter(&spa->spa_proc_lock);
716 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
717 
718 	spa->spa_proc_state = SPA_PROC_ACTIVE;
719 	cv_broadcast(&spa->spa_proc_cv);
720 
721 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
722 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
723 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
724 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
725 
726 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
727 	spa->spa_proc_state = SPA_PROC_GONE;
728 	spa->spa_proc = &p0;
729 	cv_broadcast(&spa->spa_proc_cv);
730 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
731 
732 	mutex_enter(&curproc->p_lock);
733 	lwp_exit();
734 }
735 #endif
736 
737 /*
738  * Activate an uninitialized pool.
739  */
740 static void
741 spa_activate(spa_t *spa, int mode)
742 {
743 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
744 
745 	spa->spa_state = POOL_STATE_ACTIVE;
746 	spa->spa_mode = mode;
747 
748 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
749 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
750 
751 	/* Try to create a covering process */
752 	mutex_enter(&spa->spa_proc_lock);
753 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
754 	ASSERT(spa->spa_proc == &p0);
755 	spa->spa_did = 0;
756 
757 	/* Only create a process if we're going to be around a while. */
758 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
759 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
760 		    NULL, 0) == 0) {
761 			spa->spa_proc_state = SPA_PROC_CREATED;
762 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
763 				cv_wait(&spa->spa_proc_cv,
764 				    &spa->spa_proc_lock);
765 			}
766 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
767 			ASSERT(spa->spa_proc != &p0);
768 			ASSERT(spa->spa_did != 0);
769 		} else {
770 #ifdef _KERNEL
771 			cmn_err(CE_WARN,
772 			    "Couldn't create process for zfs pool \"%s\"\n",
773 			    spa->spa_name);
774 #endif
775 		}
776 	}
777 	mutex_exit(&spa->spa_proc_lock);
778 
779 	/* If we didn't create a process, we need to create our taskqs. */
780 	if (spa->spa_proc == &p0) {
781 		spa_create_zio_taskqs(spa);
782 	}
783 
784 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
785 	    offsetof(vdev_t, vdev_config_dirty_node));
786 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
787 	    offsetof(vdev_t, vdev_state_dirty_node));
788 
789 	txg_list_create(&spa->spa_vdev_txg_list,
790 	    offsetof(struct vdev, vdev_txg_node));
791 
792 	avl_create(&spa->spa_errlist_scrub,
793 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
794 	    offsetof(spa_error_entry_t, se_avl));
795 	avl_create(&spa->spa_errlist_last,
796 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
797 	    offsetof(spa_error_entry_t, se_avl));
798 }
799 
800 /*
801  * Opposite of spa_activate().
802  */
803 static void
804 spa_deactivate(spa_t *spa)
805 {
806 	ASSERT(spa->spa_sync_on == B_FALSE);
807 	ASSERT(spa->spa_dsl_pool == NULL);
808 	ASSERT(spa->spa_root_vdev == NULL);
809 	ASSERT(spa->spa_async_zio_root == NULL);
810 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
811 
812 	txg_list_destroy(&spa->spa_vdev_txg_list);
813 
814 	list_destroy(&spa->spa_config_dirty_list);
815 	list_destroy(&spa->spa_state_dirty_list);
816 
817 	for (int t = 0; t < ZIO_TYPES; t++) {
818 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
819 			if (spa->spa_zio_taskq[t][q] != NULL)
820 				taskq_destroy(spa->spa_zio_taskq[t][q]);
821 			spa->spa_zio_taskq[t][q] = NULL;
822 		}
823 	}
824 
825 	metaslab_class_destroy(spa->spa_normal_class);
826 	spa->spa_normal_class = NULL;
827 
828 	metaslab_class_destroy(spa->spa_log_class);
829 	spa->spa_log_class = NULL;
830 
831 	/*
832 	 * If this was part of an import or the open otherwise failed, we may
833 	 * still have errors left in the queues.  Empty them just in case.
834 	 */
835 	spa_errlog_drain(spa);
836 
837 	avl_destroy(&spa->spa_errlist_scrub);
838 	avl_destroy(&spa->spa_errlist_last);
839 
840 	spa->spa_state = POOL_STATE_UNINITIALIZED;
841 
842 	mutex_enter(&spa->spa_proc_lock);
843 	if (spa->spa_proc_state != SPA_PROC_NONE) {
844 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
845 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
846 		cv_broadcast(&spa->spa_proc_cv);
847 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
848 			ASSERT(spa->spa_proc != &p0);
849 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
850 		}
851 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
852 		spa->spa_proc_state = SPA_PROC_NONE;
853 	}
854 	ASSERT(spa->spa_proc == &p0);
855 	mutex_exit(&spa->spa_proc_lock);
856 
857 	/*
858 	 * We want to make sure spa_thread() has actually exited the ZFS
859 	 * module, so that the module can't be unloaded out from underneath
860 	 * it.
861 	 */
862 	if (spa->spa_did != 0) {
863 		thread_join(spa->spa_did);
864 		spa->spa_did = 0;
865 	}
866 }
867 
868 /*
869  * Verify a pool configuration, and construct the vdev tree appropriately.  This
870  * will create all the necessary vdevs in the appropriate layout, with each vdev
871  * in the CLOSED state.  This will prep the pool before open/creation/import.
872  * All vdev validation is done by the vdev_alloc() routine.
873  */
874 static int
875 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
876     uint_t id, int atype)
877 {
878 	nvlist_t **child;
879 	uint_t children;
880 	int error;
881 
882 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
883 		return (error);
884 
885 	if ((*vdp)->vdev_ops->vdev_op_leaf)
886 		return (0);
887 
888 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
889 	    &child, &children);
890 
891 	if (error == ENOENT)
892 		return (0);
893 
894 	if (error) {
895 		vdev_free(*vdp);
896 		*vdp = NULL;
897 		return (EINVAL);
898 	}
899 
900 	for (int c = 0; c < children; c++) {
901 		vdev_t *vd;
902 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
903 		    atype)) != 0) {
904 			vdev_free(*vdp);
905 			*vdp = NULL;
906 			return (error);
907 		}
908 	}
909 
910 	ASSERT(*vdp != NULL);
911 
912 	return (0);
913 }
914 
915 /*
916  * Opposite of spa_load().
917  */
918 static void
919 spa_unload(spa_t *spa)
920 {
921 	int i;
922 
923 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
924 
925 	/*
926 	 * Stop async tasks.
927 	 */
928 	spa_async_suspend(spa);
929 
930 	/*
931 	 * Stop syncing.
932 	 */
933 	if (spa->spa_sync_on) {
934 		txg_sync_stop(spa->spa_dsl_pool);
935 		spa->spa_sync_on = B_FALSE;
936 	}
937 
938 	/*
939 	 * Wait for any outstanding async I/O to complete.
940 	 */
941 	if (spa->spa_async_zio_root != NULL) {
942 		(void) zio_wait(spa->spa_async_zio_root);
943 		spa->spa_async_zio_root = NULL;
944 	}
945 
946 	bpobj_close(&spa->spa_deferred_bpobj);
947 
948 	/*
949 	 * Close the dsl pool.
950 	 */
951 	if (spa->spa_dsl_pool) {
952 		dsl_pool_close(spa->spa_dsl_pool);
953 		spa->spa_dsl_pool = NULL;
954 		spa->spa_meta_objset = NULL;
955 	}
956 
957 	ddt_unload(spa);
958 
959 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
960 
961 	/*
962 	 * Drop and purge level 2 cache
963 	 */
964 	spa_l2cache_drop(spa);
965 
966 	/*
967 	 * Close all vdevs.
968 	 */
969 	if (spa->spa_root_vdev)
970 		vdev_free(spa->spa_root_vdev);
971 	ASSERT(spa->spa_root_vdev == NULL);
972 
973 	for (i = 0; i < spa->spa_spares.sav_count; i++)
974 		vdev_free(spa->spa_spares.sav_vdevs[i]);
975 	if (spa->spa_spares.sav_vdevs) {
976 		kmem_free(spa->spa_spares.sav_vdevs,
977 		    spa->spa_spares.sav_count * sizeof (void *));
978 		spa->spa_spares.sav_vdevs = NULL;
979 	}
980 	if (spa->spa_spares.sav_config) {
981 		nvlist_free(spa->spa_spares.sav_config);
982 		spa->spa_spares.sav_config = NULL;
983 	}
984 	spa->spa_spares.sav_count = 0;
985 
986 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
987 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
988 	if (spa->spa_l2cache.sav_vdevs) {
989 		kmem_free(spa->spa_l2cache.sav_vdevs,
990 		    spa->spa_l2cache.sav_count * sizeof (void *));
991 		spa->spa_l2cache.sav_vdevs = NULL;
992 	}
993 	if (spa->spa_l2cache.sav_config) {
994 		nvlist_free(spa->spa_l2cache.sav_config);
995 		spa->spa_l2cache.sav_config = NULL;
996 	}
997 	spa->spa_l2cache.sav_count = 0;
998 
999 	spa->spa_async_suspended = 0;
1000 
1001 	spa_config_exit(spa, SCL_ALL, FTAG);
1002 }
1003 
1004 /*
1005  * Load (or re-load) the current list of vdevs describing the active spares for
1006  * this pool.  When this is called, we have some form of basic information in
1007  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1008  * then re-generate a more complete list including status information.
1009  */
1010 static void
1011 spa_load_spares(spa_t *spa)
1012 {
1013 	nvlist_t **spares;
1014 	uint_t nspares;
1015 	int i;
1016 	vdev_t *vd, *tvd;
1017 
1018 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1019 
1020 	/*
1021 	 * First, close and free any existing spare vdevs.
1022 	 */
1023 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1024 		vd = spa->spa_spares.sav_vdevs[i];
1025 
1026 		/* Undo the call to spa_activate() below */
1027 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1028 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1029 			spa_spare_remove(tvd);
1030 		vdev_close(vd);
1031 		vdev_free(vd);
1032 	}
1033 
1034 	if (spa->spa_spares.sav_vdevs)
1035 		kmem_free(spa->spa_spares.sav_vdevs,
1036 		    spa->spa_spares.sav_count * sizeof (void *));
1037 
1038 	if (spa->spa_spares.sav_config == NULL)
1039 		nspares = 0;
1040 	else
1041 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1042 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1043 
1044 	spa->spa_spares.sav_count = (int)nspares;
1045 	spa->spa_spares.sav_vdevs = NULL;
1046 
1047 	if (nspares == 0)
1048 		return;
1049 
1050 	/*
1051 	 * Construct the array of vdevs, opening them to get status in the
1052 	 * process.   For each spare, there is potentially two different vdev_t
1053 	 * structures associated with it: one in the list of spares (used only
1054 	 * for basic validation purposes) and one in the active vdev
1055 	 * configuration (if it's spared in).  During this phase we open and
1056 	 * validate each vdev on the spare list.  If the vdev also exists in the
1057 	 * active configuration, then we also mark this vdev as an active spare.
1058 	 */
1059 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1060 	    KM_SLEEP);
1061 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1062 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1063 		    VDEV_ALLOC_SPARE) == 0);
1064 		ASSERT(vd != NULL);
1065 
1066 		spa->spa_spares.sav_vdevs[i] = vd;
1067 
1068 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1069 		    B_FALSE)) != NULL) {
1070 			if (!tvd->vdev_isspare)
1071 				spa_spare_add(tvd);
1072 
1073 			/*
1074 			 * We only mark the spare active if we were successfully
1075 			 * able to load the vdev.  Otherwise, importing a pool
1076 			 * with a bad active spare would result in strange
1077 			 * behavior, because multiple pool would think the spare
1078 			 * is actively in use.
1079 			 *
1080 			 * There is a vulnerability here to an equally bizarre
1081 			 * circumstance, where a dead active spare is later
1082 			 * brought back to life (onlined or otherwise).  Given
1083 			 * the rarity of this scenario, and the extra complexity
1084 			 * it adds, we ignore the possibility.
1085 			 */
1086 			if (!vdev_is_dead(tvd))
1087 				spa_spare_activate(tvd);
1088 		}
1089 
1090 		vd->vdev_top = vd;
1091 		vd->vdev_aux = &spa->spa_spares;
1092 
1093 		if (vdev_open(vd) != 0)
1094 			continue;
1095 
1096 		if (vdev_validate_aux(vd) == 0)
1097 			spa_spare_add(vd);
1098 	}
1099 
1100 	/*
1101 	 * Recompute the stashed list of spares, with status information
1102 	 * this time.
1103 	 */
1104 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1105 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1106 
1107 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1108 	    KM_SLEEP);
1109 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1110 		spares[i] = vdev_config_generate(spa,
1111 		    spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
1112 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1113 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1114 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1115 		nvlist_free(spares[i]);
1116 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1117 }
1118 
1119 /*
1120  * Load (or re-load) the current list of vdevs describing the active l2cache for
1121  * this pool.  When this is called, we have some form of basic information in
1122  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1123  * then re-generate a more complete list including status information.
1124  * Devices which are already active have their details maintained, and are
1125  * not re-opened.
1126  */
1127 static void
1128 spa_load_l2cache(spa_t *spa)
1129 {
1130 	nvlist_t **l2cache;
1131 	uint_t nl2cache;
1132 	int i, j, oldnvdevs;
1133 	uint64_t guid;
1134 	vdev_t *vd, **oldvdevs, **newvdevs;
1135 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1136 
1137 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1138 
1139 	if (sav->sav_config != NULL) {
1140 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1141 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1142 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1143 	} else {
1144 		nl2cache = 0;
1145 	}
1146 
1147 	oldvdevs = sav->sav_vdevs;
1148 	oldnvdevs = sav->sav_count;
1149 	sav->sav_vdevs = NULL;
1150 	sav->sav_count = 0;
1151 
1152 	/*
1153 	 * Process new nvlist of vdevs.
1154 	 */
1155 	for (i = 0; i < nl2cache; i++) {
1156 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1157 		    &guid) == 0);
1158 
1159 		newvdevs[i] = NULL;
1160 		for (j = 0; j < oldnvdevs; j++) {
1161 			vd = oldvdevs[j];
1162 			if (vd != NULL && guid == vd->vdev_guid) {
1163 				/*
1164 				 * Retain previous vdev for add/remove ops.
1165 				 */
1166 				newvdevs[i] = vd;
1167 				oldvdevs[j] = NULL;
1168 				break;
1169 			}
1170 		}
1171 
1172 		if (newvdevs[i] == NULL) {
1173 			/*
1174 			 * Create new vdev
1175 			 */
1176 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1177 			    VDEV_ALLOC_L2CACHE) == 0);
1178 			ASSERT(vd != NULL);
1179 			newvdevs[i] = vd;
1180 
1181 			/*
1182 			 * Commit this vdev as an l2cache device,
1183 			 * even if it fails to open.
1184 			 */
1185 			spa_l2cache_add(vd);
1186 
1187 			vd->vdev_top = vd;
1188 			vd->vdev_aux = sav;
1189 
1190 			spa_l2cache_activate(vd);
1191 
1192 			if (vdev_open(vd) != 0)
1193 				continue;
1194 
1195 			(void) vdev_validate_aux(vd);
1196 
1197 			if (!vdev_is_dead(vd))
1198 				l2arc_add_vdev(spa, vd);
1199 		}
1200 	}
1201 
1202 	/*
1203 	 * Purge vdevs that were dropped
1204 	 */
1205 	for (i = 0; i < oldnvdevs; i++) {
1206 		uint64_t pool;
1207 
1208 		vd = oldvdevs[i];
1209 		if (vd != NULL) {
1210 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1211 			    pool != 0ULL && l2arc_vdev_present(vd))
1212 				l2arc_remove_vdev(vd);
1213 			(void) vdev_close(vd);
1214 			spa_l2cache_remove(vd);
1215 		}
1216 	}
1217 
1218 	if (oldvdevs)
1219 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1220 
1221 	if (sav->sav_config == NULL)
1222 		goto out;
1223 
1224 	sav->sav_vdevs = newvdevs;
1225 	sav->sav_count = (int)nl2cache;
1226 
1227 	/*
1228 	 * Recompute the stashed list of l2cache devices, with status
1229 	 * information this time.
1230 	 */
1231 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1232 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1233 
1234 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1235 	for (i = 0; i < sav->sav_count; i++)
1236 		l2cache[i] = vdev_config_generate(spa,
1237 		    sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
1238 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1239 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1240 out:
1241 	for (i = 0; i < sav->sav_count; i++)
1242 		nvlist_free(l2cache[i]);
1243 	if (sav->sav_count)
1244 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1245 }
1246 
1247 static int
1248 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1249 {
1250 	dmu_buf_t *db;
1251 	char *packed = NULL;
1252 	size_t nvsize = 0;
1253 	int error;
1254 	*value = NULL;
1255 
1256 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1257 	nvsize = *(uint64_t *)db->db_data;
1258 	dmu_buf_rele(db, FTAG);
1259 
1260 	packed = kmem_alloc(nvsize, KM_SLEEP);
1261 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1262 	    DMU_READ_PREFETCH);
1263 	if (error == 0)
1264 		error = nvlist_unpack(packed, nvsize, value, 0);
1265 	kmem_free(packed, nvsize);
1266 
1267 	return (error);
1268 }
1269 
1270 /*
1271  * Checks to see if the given vdev could not be opened, in which case we post a
1272  * sysevent to notify the autoreplace code that the device has been removed.
1273  */
1274 static void
1275 spa_check_removed(vdev_t *vd)
1276 {
1277 	for (int c = 0; c < vd->vdev_children; c++)
1278 		spa_check_removed(vd->vdev_child[c]);
1279 
1280 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1281 		zfs_post_autoreplace(vd->vdev_spa, vd);
1282 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1283 	}
1284 }
1285 
1286 /*
1287  * Load the slog device state from the config object since it's possible
1288  * that the label does not contain the most up-to-date information.
1289  */
1290 void
1291 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1292 {
1293 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1294 
1295 	/*
1296 	 * Load the original root vdev tree from the passed config.
1297 	 */
1298 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1299 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1300 
1301 	for (int c = 0; c < rvd->vdev_children; c++) {
1302 		vdev_t *cvd = rvd->vdev_child[c];
1303 		if (cvd->vdev_islog)
1304 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1305 	}
1306 	vdev_free(ovd);
1307 	spa_config_exit(spa, SCL_ALL, FTAG);
1308 }
1309 
1310 /*
1311  * Check for missing log devices
1312  */
1313 int
1314 spa_check_logs(spa_t *spa)
1315 {
1316 	switch (spa->spa_log_state) {
1317 	case SPA_LOG_MISSING:
1318 		/* need to recheck in case slog has been restored */
1319 	case SPA_LOG_UNKNOWN:
1320 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1321 		    DS_FIND_CHILDREN)) {
1322 			spa_set_log_state(spa, SPA_LOG_MISSING);
1323 			return (1);
1324 		}
1325 		break;
1326 	}
1327 	return (0);
1328 }
1329 
1330 static boolean_t
1331 spa_passivate_log(spa_t *spa)
1332 {
1333 	vdev_t *rvd = spa->spa_root_vdev;
1334 	boolean_t slog_found = B_FALSE;
1335 
1336 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1337 
1338 	if (!spa_has_slogs(spa))
1339 		return (B_FALSE);
1340 
1341 	for (int c = 0; c < rvd->vdev_children; c++) {
1342 		vdev_t *tvd = rvd->vdev_child[c];
1343 		metaslab_group_t *mg = tvd->vdev_mg;
1344 
1345 		if (tvd->vdev_islog) {
1346 			metaslab_group_passivate(mg);
1347 			slog_found = B_TRUE;
1348 		}
1349 	}
1350 
1351 	return (slog_found);
1352 }
1353 
1354 static void
1355 spa_activate_log(spa_t *spa)
1356 {
1357 	vdev_t *rvd = spa->spa_root_vdev;
1358 
1359 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1360 
1361 	for (int c = 0; c < rvd->vdev_children; c++) {
1362 		vdev_t *tvd = rvd->vdev_child[c];
1363 		metaslab_group_t *mg = tvd->vdev_mg;
1364 
1365 		if (tvd->vdev_islog)
1366 			metaslab_group_activate(mg);
1367 	}
1368 }
1369 
1370 int
1371 spa_offline_log(spa_t *spa)
1372 {
1373 	int error = 0;
1374 
1375 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1376 	    NULL, DS_FIND_CHILDREN)) == 0) {
1377 
1378 		/*
1379 		 * We successfully offlined the log device, sync out the
1380 		 * current txg so that the "stubby" block can be removed
1381 		 * by zil_sync().
1382 		 */
1383 		txg_wait_synced(spa->spa_dsl_pool, 0);
1384 	}
1385 	return (error);
1386 }
1387 
1388 static void
1389 spa_aux_check_removed(spa_aux_vdev_t *sav)
1390 {
1391 	for (int i = 0; i < sav->sav_count; i++)
1392 		spa_check_removed(sav->sav_vdevs[i]);
1393 }
1394 
1395 void
1396 spa_claim_notify(zio_t *zio)
1397 {
1398 	spa_t *spa = zio->io_spa;
1399 
1400 	if (zio->io_error)
1401 		return;
1402 
1403 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1404 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1405 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1406 	mutex_exit(&spa->spa_props_lock);
1407 }
1408 
1409 typedef struct spa_load_error {
1410 	uint64_t	sle_meta_count;
1411 	uint64_t	sle_data_count;
1412 } spa_load_error_t;
1413 
1414 static void
1415 spa_load_verify_done(zio_t *zio)
1416 {
1417 	blkptr_t *bp = zio->io_bp;
1418 	spa_load_error_t *sle = zio->io_private;
1419 	dmu_object_type_t type = BP_GET_TYPE(bp);
1420 	int error = zio->io_error;
1421 
1422 	if (error) {
1423 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1424 		    type != DMU_OT_INTENT_LOG)
1425 			atomic_add_64(&sle->sle_meta_count, 1);
1426 		else
1427 			atomic_add_64(&sle->sle_data_count, 1);
1428 	}
1429 	zio_data_buf_free(zio->io_data, zio->io_size);
1430 }
1431 
1432 /*ARGSUSED*/
1433 static int
1434 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1435     arc_buf_t *pbuf, const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1436 {
1437 	if (bp != NULL) {
1438 		zio_t *rio = arg;
1439 		size_t size = BP_GET_PSIZE(bp);
1440 		void *data = zio_data_buf_alloc(size);
1441 
1442 		zio_nowait(zio_read(rio, spa, bp, data, size,
1443 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1444 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1445 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1446 	}
1447 	return (0);
1448 }
1449 
1450 static int
1451 spa_load_verify(spa_t *spa)
1452 {
1453 	zio_t *rio;
1454 	spa_load_error_t sle = { 0 };
1455 	zpool_rewind_policy_t policy;
1456 	boolean_t verify_ok = B_FALSE;
1457 	int error;
1458 
1459 	zpool_get_rewind_policy(spa->spa_config, &policy);
1460 
1461 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1462 		return (0);
1463 
1464 	rio = zio_root(spa, NULL, &sle,
1465 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1466 
1467 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1468 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1469 
1470 	(void) zio_wait(rio);
1471 
1472 	spa->spa_load_meta_errors = sle.sle_meta_count;
1473 	spa->spa_load_data_errors = sle.sle_data_count;
1474 
1475 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1476 	    sle.sle_data_count <= policy.zrp_maxdata) {
1477 		verify_ok = B_TRUE;
1478 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1479 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1480 	} else {
1481 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1482 	}
1483 
1484 	if (error) {
1485 		if (error != ENXIO && error != EIO)
1486 			error = EIO;
1487 		return (error);
1488 	}
1489 
1490 	return (verify_ok ? 0 : EIO);
1491 }
1492 
1493 /*
1494  * Find a value in the pool props object.
1495  */
1496 static void
1497 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1498 {
1499 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1500 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1501 }
1502 
1503 /*
1504  * Find a value in the pool directory object.
1505  */
1506 static int
1507 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1508 {
1509 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1510 	    name, sizeof (uint64_t), 1, val));
1511 }
1512 
1513 static int
1514 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1515 {
1516 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1517 	return (err);
1518 }
1519 
1520 /*
1521  * Fix up config after a partly-completed split.  This is done with the
1522  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1523  * pool have that entry in their config, but only the splitting one contains
1524  * a list of all the guids of the vdevs that are being split off.
1525  *
1526  * This function determines what to do with that list: either rejoin
1527  * all the disks to the pool, or complete the splitting process.  To attempt
1528  * the rejoin, each disk that is offlined is marked online again, and
1529  * we do a reopen() call.  If the vdev label for every disk that was
1530  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1531  * then we call vdev_split() on each disk, and complete the split.
1532  *
1533  * Otherwise we leave the config alone, with all the vdevs in place in
1534  * the original pool.
1535  */
1536 static void
1537 spa_try_repair(spa_t *spa, nvlist_t *config)
1538 {
1539 	uint_t extracted;
1540 	uint64_t *glist;
1541 	uint_t i, gcount;
1542 	nvlist_t *nvl;
1543 	vdev_t **vd;
1544 	boolean_t attempt_reopen;
1545 
1546 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1547 		return;
1548 
1549 	/* check that the config is complete */
1550 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1551 	    &glist, &gcount) != 0)
1552 		return;
1553 
1554 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1555 
1556 	/* attempt to online all the vdevs & validate */
1557 	attempt_reopen = B_TRUE;
1558 	for (i = 0; i < gcount; i++) {
1559 		if (glist[i] == 0)	/* vdev is hole */
1560 			continue;
1561 
1562 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1563 		if (vd[i] == NULL) {
1564 			/*
1565 			 * Don't bother attempting to reopen the disks;
1566 			 * just do the split.
1567 			 */
1568 			attempt_reopen = B_FALSE;
1569 		} else {
1570 			/* attempt to re-online it */
1571 			vd[i]->vdev_offline = B_FALSE;
1572 		}
1573 	}
1574 
1575 	if (attempt_reopen) {
1576 		vdev_reopen(spa->spa_root_vdev);
1577 
1578 		/* check each device to see what state it's in */
1579 		for (extracted = 0, i = 0; i < gcount; i++) {
1580 			if (vd[i] != NULL &&
1581 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1582 				break;
1583 			++extracted;
1584 		}
1585 	}
1586 
1587 	/*
1588 	 * If every disk has been moved to the new pool, or if we never
1589 	 * even attempted to look at them, then we split them off for
1590 	 * good.
1591 	 */
1592 	if (!attempt_reopen || gcount == extracted) {
1593 		for (i = 0; i < gcount; i++)
1594 			if (vd[i] != NULL)
1595 				vdev_split(vd[i]);
1596 		vdev_reopen(spa->spa_root_vdev);
1597 	}
1598 
1599 	kmem_free(vd, gcount * sizeof (vdev_t *));
1600 }
1601 
1602 static int
1603 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1604     boolean_t mosconfig)
1605 {
1606 	nvlist_t *config = spa->spa_config;
1607 	char *ereport = FM_EREPORT_ZFS_POOL;
1608 	int error;
1609 	uint64_t pool_guid;
1610 	nvlist_t *nvl;
1611 
1612 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1613 		return (EINVAL);
1614 
1615 	/*
1616 	 * Versioning wasn't explicitly added to the label until later, so if
1617 	 * it's not present treat it as the initial version.
1618 	 */
1619 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1620 	    &spa->spa_ubsync.ub_version) != 0)
1621 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1622 
1623 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1624 	    &spa->spa_config_txg);
1625 
1626 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1627 	    spa_guid_exists(pool_guid, 0)) {
1628 		error = EEXIST;
1629 	} else {
1630 		spa->spa_load_guid = pool_guid;
1631 
1632 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1633 		    &nvl) == 0) {
1634 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1635 			    KM_SLEEP) == 0);
1636 		}
1637 
1638 		error = spa_load_impl(spa, pool_guid, config, state, type,
1639 		    mosconfig, &ereport);
1640 	}
1641 
1642 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1643 	if (error && error != EBADF)
1644 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1645 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1646 	spa->spa_ena = 0;
1647 
1648 	return (error);
1649 }
1650 
1651 /*
1652  * Load an existing storage pool, using the pool's builtin spa_config as a
1653  * source of configuration information.
1654  */
1655 static int
1656 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1657     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1658     char **ereport)
1659 {
1660 	int error = 0;
1661 	nvlist_t *nvroot = NULL;
1662 	vdev_t *rvd;
1663 	uberblock_t *ub = &spa->spa_uberblock;
1664 	uint64_t config_cache_txg = spa->spa_config_txg;
1665 	int orig_mode = spa->spa_mode;
1666 	int parse;
1667 	uint64_t obj;
1668 
1669 	/*
1670 	 * If this is an untrusted config, access the pool in read-only mode.
1671 	 * This prevents things like resilvering recently removed devices.
1672 	 */
1673 	if (!mosconfig)
1674 		spa->spa_mode = FREAD;
1675 
1676 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1677 
1678 	spa->spa_load_state = state;
1679 
1680 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1681 		return (EINVAL);
1682 
1683 	parse = (type == SPA_IMPORT_EXISTING ?
1684 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1685 
1686 	/*
1687 	 * Create "The Godfather" zio to hold all async IOs
1688 	 */
1689 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1690 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1691 
1692 	/*
1693 	 * Parse the configuration into a vdev tree.  We explicitly set the
1694 	 * value that will be returned by spa_version() since parsing the
1695 	 * configuration requires knowing the version number.
1696 	 */
1697 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1698 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1699 	spa_config_exit(spa, SCL_ALL, FTAG);
1700 
1701 	if (error != 0)
1702 		return (error);
1703 
1704 	ASSERT(spa->spa_root_vdev == rvd);
1705 
1706 	if (type != SPA_IMPORT_ASSEMBLE) {
1707 		ASSERT(spa_guid(spa) == pool_guid);
1708 	}
1709 
1710 	/*
1711 	 * Try to open all vdevs, loading each label in the process.
1712 	 */
1713 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1714 	error = vdev_open(rvd);
1715 	spa_config_exit(spa, SCL_ALL, FTAG);
1716 	if (error != 0)
1717 		return (error);
1718 
1719 	/*
1720 	 * We need to validate the vdev labels against the configuration that
1721 	 * we have in hand, which is dependent on the setting of mosconfig. If
1722 	 * mosconfig is true then we're validating the vdev labels based on
1723 	 * that config.  Otherwise, we're validating against the cached config
1724 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1725 	 * later we will recursively call spa_load() and validate against
1726 	 * the vdev config.
1727 	 *
1728 	 * If we're assembling a new pool that's been split off from an
1729 	 * existing pool, the labels haven't yet been updated so we skip
1730 	 * validation for now.
1731 	 */
1732 	if (type != SPA_IMPORT_ASSEMBLE) {
1733 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1734 		error = vdev_validate(rvd);
1735 		spa_config_exit(spa, SCL_ALL, FTAG);
1736 
1737 		if (error != 0)
1738 			return (error);
1739 
1740 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1741 			return (ENXIO);
1742 	}
1743 
1744 	/*
1745 	 * Find the best uberblock.
1746 	 */
1747 	vdev_uberblock_load(NULL, rvd, ub);
1748 
1749 	/*
1750 	 * If we weren't able to find a single valid uberblock, return failure.
1751 	 */
1752 	if (ub->ub_txg == 0)
1753 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1754 
1755 	/*
1756 	 * If the pool is newer than the code, we can't open it.
1757 	 */
1758 	if (ub->ub_version > SPA_VERSION)
1759 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1760 
1761 	/*
1762 	 * If the vdev guid sum doesn't match the uberblock, we have an
1763 	 * incomplete configuration.
1764 	 */
1765 	if (mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1766 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1767 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1768 
1769 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1770 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1771 		spa_try_repair(spa, config);
1772 		spa_config_exit(spa, SCL_ALL, FTAG);
1773 		nvlist_free(spa->spa_config_splitting);
1774 		spa->spa_config_splitting = NULL;
1775 	}
1776 
1777 	/*
1778 	 * Initialize internal SPA structures.
1779 	 */
1780 	spa->spa_state = POOL_STATE_ACTIVE;
1781 	spa->spa_ubsync = spa->spa_uberblock;
1782 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1783 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1784 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1785 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1786 	spa->spa_claim_max_txg = spa->spa_first_txg;
1787 	spa->spa_prev_software_version = ub->ub_software_version;
1788 
1789 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1790 	if (error)
1791 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1792 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1793 
1794 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1795 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1796 
1797 	if (!mosconfig) {
1798 		uint64_t hostid;
1799 		nvlist_t *policy = NULL, *nvconfig;
1800 
1801 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1802 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1803 
1804 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1805 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1806 			char *hostname;
1807 			unsigned long myhostid = 0;
1808 
1809 			VERIFY(nvlist_lookup_string(nvconfig,
1810 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1811 
1812 #ifdef	_KERNEL
1813 			myhostid = zone_get_hostid(NULL);
1814 #else	/* _KERNEL */
1815 			/*
1816 			 * We're emulating the system's hostid in userland, so
1817 			 * we can't use zone_get_hostid().
1818 			 */
1819 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1820 #endif	/* _KERNEL */
1821 			if (hostid != 0 && myhostid != 0 &&
1822 			    hostid != myhostid) {
1823 				nvlist_free(nvconfig);
1824 				cmn_err(CE_WARN, "pool '%s' could not be "
1825 				    "loaded as it was last accessed by "
1826 				    "another system (host: %s hostid: 0x%lx). "
1827 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1828 				    spa_name(spa), hostname,
1829 				    (unsigned long)hostid);
1830 				return (EBADF);
1831 			}
1832 		}
1833 		if (nvlist_lookup_nvlist(spa->spa_config,
1834 		    ZPOOL_REWIND_POLICY, &policy) == 0)
1835 			VERIFY(nvlist_add_nvlist(nvconfig,
1836 			    ZPOOL_REWIND_POLICY, policy) == 0);
1837 
1838 		spa_config_set(spa, nvconfig);
1839 		spa_unload(spa);
1840 		spa_deactivate(spa);
1841 		spa_activate(spa, orig_mode);
1842 
1843 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1844 	}
1845 
1846 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj) != 0)
1847 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1848 	error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
1849 	if (error != 0)
1850 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1851 
1852 	/*
1853 	 * Load the bit that tells us to use the new accounting function
1854 	 * (raid-z deflation).  If we have an older pool, this will not
1855 	 * be present.
1856 	 */
1857 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1858 	if (error != 0 && error != ENOENT)
1859 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1860 
1861 	error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
1862 	    &spa->spa_creation_version);
1863 	if (error != 0 && error != ENOENT)
1864 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1865 
1866 	/*
1867 	 * Load the persistent error log.  If we have an older pool, this will
1868 	 * not be present.
1869 	 */
1870 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1871 	if (error != 0 && error != ENOENT)
1872 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1873 
1874 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
1875 	    &spa->spa_errlog_scrub);
1876 	if (error != 0 && error != ENOENT)
1877 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1878 
1879 	/*
1880 	 * Load the history object.  If we have an older pool, this
1881 	 * will not be present.
1882 	 */
1883 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
1884 	if (error != 0 && error != ENOENT)
1885 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1886 
1887 	/*
1888 	 * If we're assembling the pool from the split-off vdevs of
1889 	 * an existing pool, we don't want to attach the spares & cache
1890 	 * devices.
1891 	 */
1892 
1893 	/*
1894 	 * Load any hot spares for this pool.
1895 	 */
1896 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
1897 	if (error != 0 && error != ENOENT)
1898 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1899 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1900 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1901 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1902 		    &spa->spa_spares.sav_config) != 0)
1903 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1904 
1905 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1906 		spa_load_spares(spa);
1907 		spa_config_exit(spa, SCL_ALL, FTAG);
1908 	} else if (error == 0) {
1909 		spa->spa_spares.sav_sync = B_TRUE;
1910 	}
1911 
1912 	/*
1913 	 * Load any level 2 ARC devices for this pool.
1914 	 */
1915 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
1916 	    &spa->spa_l2cache.sav_object);
1917 	if (error != 0 && error != ENOENT)
1918 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1919 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1920 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1921 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1922 		    &spa->spa_l2cache.sav_config) != 0)
1923 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1924 
1925 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1926 		spa_load_l2cache(spa);
1927 		spa_config_exit(spa, SCL_ALL, FTAG);
1928 	} else if (error == 0) {
1929 		spa->spa_l2cache.sav_sync = B_TRUE;
1930 	}
1931 
1932 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1933 
1934 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
1935 	if (error && error != ENOENT)
1936 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1937 
1938 	if (error == 0) {
1939 		uint64_t autoreplace;
1940 
1941 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
1942 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
1943 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
1944 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
1945 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
1946 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
1947 		    &spa->spa_dedup_ditto);
1948 
1949 		spa->spa_autoreplace = (autoreplace != 0);
1950 	}
1951 
1952 	/*
1953 	 * If the 'autoreplace' property is set, then post a resource notifying
1954 	 * the ZFS DE that it should not issue any faults for unopenable
1955 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1956 	 * unopenable vdevs so that the normal autoreplace handler can take
1957 	 * over.
1958 	 */
1959 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1960 		spa_check_removed(spa->spa_root_vdev);
1961 		/*
1962 		 * For the import case, this is done in spa_import(), because
1963 		 * at this point we're using the spare definitions from
1964 		 * the MOS config, not necessarily from the userland config.
1965 		 */
1966 		if (state != SPA_LOAD_IMPORT) {
1967 			spa_aux_check_removed(&spa->spa_spares);
1968 			spa_aux_check_removed(&spa->spa_l2cache);
1969 		}
1970 	}
1971 
1972 	/*
1973 	 * Load the vdev state for all toplevel vdevs.
1974 	 */
1975 	vdev_load(rvd);
1976 
1977 	/*
1978 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1979 	 */
1980 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1981 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1982 	spa_config_exit(spa, SCL_ALL, FTAG);
1983 
1984 	/*
1985 	 * Check the state of the root vdev.  If it can't be opened, it
1986 	 * indicates one or more toplevel vdevs are faulted.
1987 	 */
1988 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1989 		return (ENXIO);
1990 
1991 	/*
1992 	 * Load the DDTs (dedup tables).
1993 	 */
1994 	error = ddt_load(spa);
1995 	if (error != 0)
1996 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1997 
1998 	spa_update_dspace(spa);
1999 
2000 	if (state != SPA_LOAD_TRYIMPORT) {
2001 		error = spa_load_verify(spa);
2002 		if (error)
2003 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
2004 			    error));
2005 	}
2006 
2007 	/*
2008 	 * Load the intent log state and check log integrity.  If we're
2009 	 * assembling a pool from a split, the log is not transferred over.
2010 	 */
2011 	if (type != SPA_IMPORT_ASSEMBLE) {
2012 		nvlist_t *nvconfig;
2013 
2014 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2015 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2016 
2017 		VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
2018 		    &nvroot) == 0);
2019 		spa_load_log_state(spa, nvroot);
2020 		nvlist_free(nvconfig);
2021 
2022 		if (spa_check_logs(spa)) {
2023 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2024 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2025 		}
2026 	}
2027 
2028 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2029 	    spa->spa_load_max_txg == UINT64_MAX)) {
2030 		dmu_tx_t *tx;
2031 		int need_update = B_FALSE;
2032 
2033 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2034 
2035 		/*
2036 		 * Claim log blocks that haven't been committed yet.
2037 		 * This must all happen in a single txg.
2038 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2039 		 * invoked from zil_claim_log_block()'s i/o done callback.
2040 		 * Price of rollback is that we abandon the log.
2041 		 */
2042 		spa->spa_claiming = B_TRUE;
2043 
2044 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2045 		    spa_first_txg(spa));
2046 		(void) dmu_objset_find(spa_name(spa),
2047 		    zil_claim, tx, DS_FIND_CHILDREN);
2048 		dmu_tx_commit(tx);
2049 
2050 		spa->spa_claiming = B_FALSE;
2051 
2052 		spa_set_log_state(spa, SPA_LOG_GOOD);
2053 		spa->spa_sync_on = B_TRUE;
2054 		txg_sync_start(spa->spa_dsl_pool);
2055 
2056 		/*
2057 		 * Wait for all claims to sync.  We sync up to the highest
2058 		 * claimed log block birth time so that claimed log blocks
2059 		 * don't appear to be from the future.  spa_claim_max_txg
2060 		 * will have been set for us by either zil_check_log_chain()
2061 		 * (invoked from spa_check_logs()) or zil_claim() above.
2062 		 */
2063 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2064 
2065 		/*
2066 		 * If the config cache is stale, or we have uninitialized
2067 		 * metaslabs (see spa_vdev_add()), then update the config.
2068 		 *
2069 		 * If spa_load_verbatim is true, trust the current
2070 		 * in-core spa_config and update the disk labels.
2071 		 */
2072 		if (config_cache_txg != spa->spa_config_txg ||
2073 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
2074 		    state == SPA_LOAD_RECOVER)
2075 			need_update = B_TRUE;
2076 
2077 		for (int c = 0; c < rvd->vdev_children; c++)
2078 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2079 				need_update = B_TRUE;
2080 
2081 		/*
2082 		 * Update the config cache asychronously in case we're the
2083 		 * root pool, in which case the config cache isn't writable yet.
2084 		 */
2085 		if (need_update)
2086 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2087 
2088 		/*
2089 		 * Check all DTLs to see if anything needs resilvering.
2090 		 */
2091 		if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
2092 		    vdev_resilver_needed(rvd, NULL, NULL))
2093 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2094 
2095 		/*
2096 		 * Delete any inconsistent datasets.
2097 		 */
2098 		(void) dmu_objset_find(spa_name(spa),
2099 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2100 
2101 		/*
2102 		 * Clean up any stale temporary dataset userrefs.
2103 		 */
2104 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2105 	}
2106 
2107 	return (0);
2108 }
2109 
2110 static int
2111 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2112 {
2113 	spa_unload(spa);
2114 	spa_deactivate(spa);
2115 
2116 	spa->spa_load_max_txg--;
2117 
2118 	spa_activate(spa, spa_mode_global);
2119 	spa_async_suspend(spa);
2120 
2121 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2122 }
2123 
2124 static int
2125 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2126     uint64_t max_request, int rewind_flags)
2127 {
2128 	nvlist_t *config = NULL;
2129 	int load_error, rewind_error;
2130 	uint64_t safe_rewind_txg;
2131 	uint64_t min_txg;
2132 
2133 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2134 		spa->spa_load_max_txg = spa->spa_load_txg;
2135 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2136 	} else {
2137 		spa->spa_load_max_txg = max_request;
2138 	}
2139 
2140 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2141 	    mosconfig);
2142 	if (load_error == 0)
2143 		return (0);
2144 
2145 	if (spa->spa_root_vdev != NULL)
2146 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2147 
2148 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2149 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2150 
2151 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2152 		nvlist_free(config);
2153 		return (load_error);
2154 	}
2155 
2156 	/* Price of rolling back is discarding txgs, including log */
2157 	if (state == SPA_LOAD_RECOVER)
2158 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2159 
2160 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2161 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2162 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2163 	    TXG_INITIAL : safe_rewind_txg;
2164 
2165 	/*
2166 	 * Continue as long as we're finding errors, we're still within
2167 	 * the acceptable rewind range, and we're still finding uberblocks
2168 	 */
2169 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2170 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2171 		if (spa->spa_load_max_txg < safe_rewind_txg)
2172 			spa->spa_extreme_rewind = B_TRUE;
2173 		rewind_error = spa_load_retry(spa, state, mosconfig);
2174 	}
2175 
2176 	if (config)
2177 		spa_rewind_data_to_nvlist(spa, config);
2178 
2179 	spa->spa_extreme_rewind = B_FALSE;
2180 	spa->spa_load_max_txg = UINT64_MAX;
2181 
2182 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2183 		spa_config_set(spa, config);
2184 
2185 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2186 }
2187 
2188 /*
2189  * Pool Open/Import
2190  *
2191  * The import case is identical to an open except that the configuration is sent
2192  * down from userland, instead of grabbed from the configuration cache.  For the
2193  * case of an open, the pool configuration will exist in the
2194  * POOL_STATE_UNINITIALIZED state.
2195  *
2196  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2197  * the same time open the pool, without having to keep around the spa_t in some
2198  * ambiguous state.
2199  */
2200 static int
2201 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2202     nvlist_t **config)
2203 {
2204 	spa_t *spa;
2205 	int error;
2206 	int locked = B_FALSE;
2207 
2208 	*spapp = NULL;
2209 
2210 	/*
2211 	 * As disgusting as this is, we need to support recursive calls to this
2212 	 * function because dsl_dir_open() is called during spa_load(), and ends
2213 	 * up calling spa_open() again.  The real fix is to figure out how to
2214 	 * avoid dsl_dir_open() calling this in the first place.
2215 	 */
2216 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2217 		mutex_enter(&spa_namespace_lock);
2218 		locked = B_TRUE;
2219 	}
2220 
2221 	if ((spa = spa_lookup(pool)) == NULL) {
2222 		if (locked)
2223 			mutex_exit(&spa_namespace_lock);
2224 		return (ENOENT);
2225 	}
2226 
2227 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2228 		spa_load_state_t state = SPA_LOAD_OPEN;
2229 		zpool_rewind_policy_t policy;
2230 
2231 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2232 		    &policy);
2233 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2234 			state = SPA_LOAD_RECOVER;
2235 
2236 		spa_activate(spa, spa_mode_global);
2237 
2238 		if (state != SPA_LOAD_RECOVER)
2239 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2240 
2241 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2242 		    policy.zrp_request);
2243 
2244 		if (error == EBADF) {
2245 			/*
2246 			 * If vdev_validate() returns failure (indicated by
2247 			 * EBADF), it indicates that one of the vdevs indicates
2248 			 * that the pool has been exported or destroyed.  If
2249 			 * this is the case, the config cache is out of sync and
2250 			 * we should remove the pool from the namespace.
2251 			 */
2252 			spa_unload(spa);
2253 			spa_deactivate(spa);
2254 			spa_config_sync(spa, B_TRUE, B_TRUE);
2255 			spa_remove(spa);
2256 			if (locked)
2257 				mutex_exit(&spa_namespace_lock);
2258 			return (ENOENT);
2259 		}
2260 
2261 		if (error) {
2262 			/*
2263 			 * We can't open the pool, but we still have useful
2264 			 * information: the state of each vdev after the
2265 			 * attempted vdev_open().  Return this to the user.
2266 			 */
2267 			if (config != NULL && spa->spa_config)
2268 				VERIFY(nvlist_dup(spa->spa_config, config,
2269 				    KM_SLEEP) == 0);
2270 			spa_unload(spa);
2271 			spa_deactivate(spa);
2272 			spa->spa_last_open_failed = error;
2273 			if (locked)
2274 				mutex_exit(&spa_namespace_lock);
2275 			*spapp = NULL;
2276 			return (error);
2277 		}
2278 
2279 	}
2280 
2281 	spa_open_ref(spa, tag);
2282 
2283 
2284 	if (config != NULL)
2285 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2286 
2287 	if (locked) {
2288 		spa->spa_last_open_failed = 0;
2289 		spa->spa_last_ubsync_txg = 0;
2290 		spa->spa_load_txg = 0;
2291 		mutex_exit(&spa_namespace_lock);
2292 	}
2293 
2294 	*spapp = spa;
2295 
2296 	return (0);
2297 }
2298 
2299 int
2300 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2301     nvlist_t **config)
2302 {
2303 	return (spa_open_common(name, spapp, tag, policy, config));
2304 }
2305 
2306 int
2307 spa_open(const char *name, spa_t **spapp, void *tag)
2308 {
2309 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2310 }
2311 
2312 /*
2313  * Lookup the given spa_t, incrementing the inject count in the process,
2314  * preventing it from being exported or destroyed.
2315  */
2316 spa_t *
2317 spa_inject_addref(char *name)
2318 {
2319 	spa_t *spa;
2320 
2321 	mutex_enter(&spa_namespace_lock);
2322 	if ((spa = spa_lookup(name)) == NULL) {
2323 		mutex_exit(&spa_namespace_lock);
2324 		return (NULL);
2325 	}
2326 	spa->spa_inject_ref++;
2327 	mutex_exit(&spa_namespace_lock);
2328 
2329 	return (spa);
2330 }
2331 
2332 void
2333 spa_inject_delref(spa_t *spa)
2334 {
2335 	mutex_enter(&spa_namespace_lock);
2336 	spa->spa_inject_ref--;
2337 	mutex_exit(&spa_namespace_lock);
2338 }
2339 
2340 /*
2341  * Add spares device information to the nvlist.
2342  */
2343 static void
2344 spa_add_spares(spa_t *spa, nvlist_t *config)
2345 {
2346 	nvlist_t **spares;
2347 	uint_t i, nspares;
2348 	nvlist_t *nvroot;
2349 	uint64_t guid;
2350 	vdev_stat_t *vs;
2351 	uint_t vsc;
2352 	uint64_t pool;
2353 
2354 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2355 
2356 	if (spa->spa_spares.sav_count == 0)
2357 		return;
2358 
2359 	VERIFY(nvlist_lookup_nvlist(config,
2360 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2361 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2362 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2363 	if (nspares != 0) {
2364 		VERIFY(nvlist_add_nvlist_array(nvroot,
2365 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2366 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2367 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2368 
2369 		/*
2370 		 * Go through and find any spares which have since been
2371 		 * repurposed as an active spare.  If this is the case, update
2372 		 * their status appropriately.
2373 		 */
2374 		for (i = 0; i < nspares; i++) {
2375 			VERIFY(nvlist_lookup_uint64(spares[i],
2376 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2377 			if (spa_spare_exists(guid, &pool, NULL) &&
2378 			    pool != 0ULL) {
2379 				VERIFY(nvlist_lookup_uint64_array(
2380 				    spares[i], ZPOOL_CONFIG_VDEV_STATS,
2381 				    (uint64_t **)&vs, &vsc) == 0);
2382 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2383 				vs->vs_aux = VDEV_AUX_SPARED;
2384 			}
2385 		}
2386 	}
2387 }
2388 
2389 /*
2390  * Add l2cache device information to the nvlist, including vdev stats.
2391  */
2392 static void
2393 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2394 {
2395 	nvlist_t **l2cache;
2396 	uint_t i, j, nl2cache;
2397 	nvlist_t *nvroot;
2398 	uint64_t guid;
2399 	vdev_t *vd;
2400 	vdev_stat_t *vs;
2401 	uint_t vsc;
2402 
2403 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2404 
2405 	if (spa->spa_l2cache.sav_count == 0)
2406 		return;
2407 
2408 	VERIFY(nvlist_lookup_nvlist(config,
2409 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2410 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2411 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2412 	if (nl2cache != 0) {
2413 		VERIFY(nvlist_add_nvlist_array(nvroot,
2414 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2415 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2416 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2417 
2418 		/*
2419 		 * Update level 2 cache device stats.
2420 		 */
2421 
2422 		for (i = 0; i < nl2cache; i++) {
2423 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2424 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2425 
2426 			vd = NULL;
2427 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2428 				if (guid ==
2429 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2430 					vd = spa->spa_l2cache.sav_vdevs[j];
2431 					break;
2432 				}
2433 			}
2434 			ASSERT(vd != NULL);
2435 
2436 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2437 			    ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc)
2438 			    == 0);
2439 			vdev_get_stats(vd, vs);
2440 		}
2441 	}
2442 }
2443 
2444 int
2445 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2446 {
2447 	int error;
2448 	spa_t *spa;
2449 
2450 	*config = NULL;
2451 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2452 
2453 	if (spa != NULL) {
2454 		/*
2455 		 * This still leaves a window of inconsistency where the spares
2456 		 * or l2cache devices could change and the config would be
2457 		 * self-inconsistent.
2458 		 */
2459 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2460 
2461 		if (*config != NULL) {
2462 			VERIFY(nvlist_add_uint64(*config,
2463 			    ZPOOL_CONFIG_ERRCOUNT,
2464 			    spa_get_errlog_size(spa)) == 0);
2465 
2466 			if (spa_suspended(spa))
2467 				VERIFY(nvlist_add_uint64(*config,
2468 				    ZPOOL_CONFIG_SUSPENDED,
2469 				    spa->spa_failmode) == 0);
2470 
2471 			spa_add_spares(spa, *config);
2472 			spa_add_l2cache(spa, *config);
2473 		}
2474 	}
2475 
2476 	/*
2477 	 * We want to get the alternate root even for faulted pools, so we cheat
2478 	 * and call spa_lookup() directly.
2479 	 */
2480 	if (altroot) {
2481 		if (spa == NULL) {
2482 			mutex_enter(&spa_namespace_lock);
2483 			spa = spa_lookup(name);
2484 			if (spa)
2485 				spa_altroot(spa, altroot, buflen);
2486 			else
2487 				altroot[0] = '\0';
2488 			spa = NULL;
2489 			mutex_exit(&spa_namespace_lock);
2490 		} else {
2491 			spa_altroot(spa, altroot, buflen);
2492 		}
2493 	}
2494 
2495 	if (spa != NULL) {
2496 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2497 		spa_close(spa, FTAG);
2498 	}
2499 
2500 	return (error);
2501 }
2502 
2503 /*
2504  * Validate that the auxiliary device array is well formed.  We must have an
2505  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2506  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2507  * specified, as long as they are well-formed.
2508  */
2509 static int
2510 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2511     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2512     vdev_labeltype_t label)
2513 {
2514 	nvlist_t **dev;
2515 	uint_t i, ndev;
2516 	vdev_t *vd;
2517 	int error;
2518 
2519 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2520 
2521 	/*
2522 	 * It's acceptable to have no devs specified.
2523 	 */
2524 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2525 		return (0);
2526 
2527 	if (ndev == 0)
2528 		return (EINVAL);
2529 
2530 	/*
2531 	 * Make sure the pool is formatted with a version that supports this
2532 	 * device type.
2533 	 */
2534 	if (spa_version(spa) < version)
2535 		return (ENOTSUP);
2536 
2537 	/*
2538 	 * Set the pending device list so we correctly handle device in-use
2539 	 * checking.
2540 	 */
2541 	sav->sav_pending = dev;
2542 	sav->sav_npending = ndev;
2543 
2544 	for (i = 0; i < ndev; i++) {
2545 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2546 		    mode)) != 0)
2547 			goto out;
2548 
2549 		if (!vd->vdev_ops->vdev_op_leaf) {
2550 			vdev_free(vd);
2551 			error = EINVAL;
2552 			goto out;
2553 		}
2554 
2555 		/*
2556 		 * The L2ARC currently only supports disk devices in
2557 		 * kernel context.  For user-level testing, we allow it.
2558 		 */
2559 #ifdef _KERNEL
2560 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2561 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2562 			error = ENOTBLK;
2563 			goto out;
2564 		}
2565 #endif
2566 		vd->vdev_top = vd;
2567 
2568 		if ((error = vdev_open(vd)) == 0 &&
2569 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2570 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2571 			    vd->vdev_guid) == 0);
2572 		}
2573 
2574 		vdev_free(vd);
2575 
2576 		if (error &&
2577 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2578 			goto out;
2579 		else
2580 			error = 0;
2581 	}
2582 
2583 out:
2584 	sav->sav_pending = NULL;
2585 	sav->sav_npending = 0;
2586 	return (error);
2587 }
2588 
2589 static int
2590 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2591 {
2592 	int error;
2593 
2594 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2595 
2596 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2597 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2598 	    VDEV_LABEL_SPARE)) != 0) {
2599 		return (error);
2600 	}
2601 
2602 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2603 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2604 	    VDEV_LABEL_L2CACHE));
2605 }
2606 
2607 static void
2608 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2609     const char *config)
2610 {
2611 	int i;
2612 
2613 	if (sav->sav_config != NULL) {
2614 		nvlist_t **olddevs;
2615 		uint_t oldndevs;
2616 		nvlist_t **newdevs;
2617 
2618 		/*
2619 		 * Generate new dev list by concatentating with the
2620 		 * current dev list.
2621 		 */
2622 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2623 		    &olddevs, &oldndevs) == 0);
2624 
2625 		newdevs = kmem_alloc(sizeof (void *) *
2626 		    (ndevs + oldndevs), KM_SLEEP);
2627 		for (i = 0; i < oldndevs; i++)
2628 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2629 			    KM_SLEEP) == 0);
2630 		for (i = 0; i < ndevs; i++)
2631 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2632 			    KM_SLEEP) == 0);
2633 
2634 		VERIFY(nvlist_remove(sav->sav_config, config,
2635 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2636 
2637 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2638 		    config, newdevs, ndevs + oldndevs) == 0);
2639 		for (i = 0; i < oldndevs + ndevs; i++)
2640 			nvlist_free(newdevs[i]);
2641 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2642 	} else {
2643 		/*
2644 		 * Generate a new dev list.
2645 		 */
2646 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2647 		    KM_SLEEP) == 0);
2648 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2649 		    devs, ndevs) == 0);
2650 	}
2651 }
2652 
2653 /*
2654  * Stop and drop level 2 ARC devices
2655  */
2656 void
2657 spa_l2cache_drop(spa_t *spa)
2658 {
2659 	vdev_t *vd;
2660 	int i;
2661 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2662 
2663 	for (i = 0; i < sav->sav_count; i++) {
2664 		uint64_t pool;
2665 
2666 		vd = sav->sav_vdevs[i];
2667 		ASSERT(vd != NULL);
2668 
2669 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2670 		    pool != 0ULL && l2arc_vdev_present(vd))
2671 			l2arc_remove_vdev(vd);
2672 		if (vd->vdev_isl2cache)
2673 			spa_l2cache_remove(vd);
2674 		vdev_clear_stats(vd);
2675 		(void) vdev_close(vd);
2676 	}
2677 }
2678 
2679 /*
2680  * Pool Creation
2681  */
2682 int
2683 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2684     const char *history_str, nvlist_t *zplprops)
2685 {
2686 	spa_t *spa;
2687 	char *altroot = NULL;
2688 	vdev_t *rvd;
2689 	dsl_pool_t *dp;
2690 	dmu_tx_t *tx;
2691 	int error = 0;
2692 	uint64_t txg = TXG_INITIAL;
2693 	nvlist_t **spares, **l2cache;
2694 	uint_t nspares, nl2cache;
2695 	uint64_t version, obj;
2696 
2697 	/*
2698 	 * If this pool already exists, return failure.
2699 	 */
2700 	mutex_enter(&spa_namespace_lock);
2701 	if (spa_lookup(pool) != NULL) {
2702 		mutex_exit(&spa_namespace_lock);
2703 		return (EEXIST);
2704 	}
2705 
2706 	/*
2707 	 * Allocate a new spa_t structure.
2708 	 */
2709 	(void) nvlist_lookup_string(props,
2710 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2711 	spa = spa_add(pool, NULL, altroot);
2712 	spa_activate(spa, spa_mode_global);
2713 
2714 	if (props && (error = spa_prop_validate(spa, props))) {
2715 		spa_deactivate(spa);
2716 		spa_remove(spa);
2717 		mutex_exit(&spa_namespace_lock);
2718 		return (error);
2719 	}
2720 
2721 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2722 	    &version) != 0)
2723 		version = SPA_VERSION;
2724 	ASSERT(version <= SPA_VERSION);
2725 
2726 	spa->spa_first_txg = txg;
2727 	spa->spa_uberblock.ub_txg = txg - 1;
2728 	spa->spa_uberblock.ub_version = version;
2729 	spa->spa_ubsync = spa->spa_uberblock;
2730 
2731 	/*
2732 	 * Create "The Godfather" zio to hold all async IOs
2733 	 */
2734 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2735 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2736 
2737 	/*
2738 	 * Create the root vdev.
2739 	 */
2740 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2741 
2742 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2743 
2744 	ASSERT(error != 0 || rvd != NULL);
2745 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2746 
2747 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2748 		error = EINVAL;
2749 
2750 	if (error == 0 &&
2751 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2752 	    (error = spa_validate_aux(spa, nvroot, txg,
2753 	    VDEV_ALLOC_ADD)) == 0) {
2754 		for (int c = 0; c < rvd->vdev_children; c++) {
2755 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2756 			vdev_expand(rvd->vdev_child[c], txg);
2757 		}
2758 	}
2759 
2760 	spa_config_exit(spa, SCL_ALL, FTAG);
2761 
2762 	if (error != 0) {
2763 		spa_unload(spa);
2764 		spa_deactivate(spa);
2765 		spa_remove(spa);
2766 		mutex_exit(&spa_namespace_lock);
2767 		return (error);
2768 	}
2769 
2770 	/*
2771 	 * Get the list of spares, if specified.
2772 	 */
2773 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2774 	    &spares, &nspares) == 0) {
2775 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2776 		    KM_SLEEP) == 0);
2777 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2778 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2779 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2780 		spa_load_spares(spa);
2781 		spa_config_exit(spa, SCL_ALL, FTAG);
2782 		spa->spa_spares.sav_sync = B_TRUE;
2783 	}
2784 
2785 	/*
2786 	 * Get the list of level 2 cache devices, if specified.
2787 	 */
2788 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2789 	    &l2cache, &nl2cache) == 0) {
2790 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2791 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2792 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2793 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2794 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2795 		spa_load_l2cache(spa);
2796 		spa_config_exit(spa, SCL_ALL, FTAG);
2797 		spa->spa_l2cache.sav_sync = B_TRUE;
2798 	}
2799 
2800 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2801 	spa->spa_meta_objset = dp->dp_meta_objset;
2802 
2803 	/*
2804 	 * Create DDTs (dedup tables).
2805 	 */
2806 	ddt_create(spa);
2807 
2808 	spa_update_dspace(spa);
2809 
2810 	tx = dmu_tx_create_assigned(dp, txg);
2811 
2812 	/*
2813 	 * Create the pool config object.
2814 	 */
2815 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2816 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2817 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2818 
2819 	if (zap_add(spa->spa_meta_objset,
2820 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2821 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2822 		cmn_err(CE_PANIC, "failed to add pool config");
2823 	}
2824 
2825 	if (zap_add(spa->spa_meta_objset,
2826 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
2827 	    sizeof (uint64_t), 1, &version, tx) != 0) {
2828 		cmn_err(CE_PANIC, "failed to add pool version");
2829 	}
2830 
2831 	/* Newly created pools with the right version are always deflated. */
2832 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2833 		spa->spa_deflate = TRUE;
2834 		if (zap_add(spa->spa_meta_objset,
2835 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2836 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2837 			cmn_err(CE_PANIC, "failed to add deflate");
2838 		}
2839 	}
2840 
2841 	/*
2842 	 * Create the deferred-free bpobj.  Turn off compression
2843 	 * because sync-to-convergence takes longer if the blocksize
2844 	 * keeps changing.
2845 	 */
2846 	obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
2847 	dmu_object_set_compress(spa->spa_meta_objset, obj,
2848 	    ZIO_COMPRESS_OFF, tx);
2849 	if (zap_add(spa->spa_meta_objset,
2850 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
2851 	    sizeof (uint64_t), 1, &obj, tx) != 0) {
2852 		cmn_err(CE_PANIC, "failed to add bpobj");
2853 	}
2854 	VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
2855 	    spa->spa_meta_objset, obj));
2856 
2857 	/*
2858 	 * Create the pool's history object.
2859 	 */
2860 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2861 		spa_history_create_obj(spa, tx);
2862 
2863 	/*
2864 	 * Set pool properties.
2865 	 */
2866 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2867 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2868 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2869 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2870 
2871 	if (props != NULL) {
2872 		spa_configfile_set(spa, props, B_FALSE);
2873 		spa_sync_props(spa, props, tx);
2874 	}
2875 
2876 	dmu_tx_commit(tx);
2877 
2878 	spa->spa_sync_on = B_TRUE;
2879 	txg_sync_start(spa->spa_dsl_pool);
2880 
2881 	/*
2882 	 * We explicitly wait for the first transaction to complete so that our
2883 	 * bean counters are appropriately updated.
2884 	 */
2885 	txg_wait_synced(spa->spa_dsl_pool, txg);
2886 
2887 	spa_config_sync(spa, B_FALSE, B_TRUE);
2888 
2889 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2890 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2891 	spa_history_log_version(spa, LOG_POOL_CREATE);
2892 
2893 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2894 
2895 	mutex_exit(&spa_namespace_lock);
2896 
2897 	return (0);
2898 }
2899 
2900 #ifdef _KERNEL
2901 /*
2902  * Get the root pool information from the root disk, then import the root pool
2903  * during the system boot up time.
2904  */
2905 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2906 
2907 static nvlist_t *
2908 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2909 {
2910 	nvlist_t *config;
2911 	nvlist_t *nvtop, *nvroot;
2912 	uint64_t pgid;
2913 
2914 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2915 		return (NULL);
2916 
2917 	/*
2918 	 * Add this top-level vdev to the child array.
2919 	 */
2920 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2921 	    &nvtop) == 0);
2922 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2923 	    &pgid) == 0);
2924 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2925 
2926 	/*
2927 	 * Put this pool's top-level vdevs into a root vdev.
2928 	 */
2929 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2930 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2931 	    VDEV_TYPE_ROOT) == 0);
2932 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2933 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2934 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2935 	    &nvtop, 1) == 0);
2936 
2937 	/*
2938 	 * Replace the existing vdev_tree with the new root vdev in
2939 	 * this pool's configuration (remove the old, add the new).
2940 	 */
2941 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2942 	nvlist_free(nvroot);
2943 	return (config);
2944 }
2945 
2946 /*
2947  * Walk the vdev tree and see if we can find a device with "better"
2948  * configuration. A configuration is "better" if the label on that
2949  * device has a more recent txg.
2950  */
2951 static void
2952 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2953 {
2954 	for (int c = 0; c < vd->vdev_children; c++)
2955 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2956 
2957 	if (vd->vdev_ops->vdev_op_leaf) {
2958 		nvlist_t *label;
2959 		uint64_t label_txg;
2960 
2961 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2962 		    &label) != 0)
2963 			return;
2964 
2965 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2966 		    &label_txg) == 0);
2967 
2968 		/*
2969 		 * Do we have a better boot device?
2970 		 */
2971 		if (label_txg > *txg) {
2972 			*txg = label_txg;
2973 			*avd = vd;
2974 		}
2975 		nvlist_free(label);
2976 	}
2977 }
2978 
2979 /*
2980  * Import a root pool.
2981  *
2982  * For x86. devpath_list will consist of devid and/or physpath name of
2983  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2984  * The GRUB "findroot" command will return the vdev we should boot.
2985  *
2986  * For Sparc, devpath_list consists the physpath name of the booting device
2987  * no matter the rootpool is a single device pool or a mirrored pool.
2988  * e.g.
2989  *	"/pci@1f,0/ide@d/disk@0,0:a"
2990  */
2991 int
2992 spa_import_rootpool(char *devpath, char *devid)
2993 {
2994 	spa_t *spa;
2995 	vdev_t *rvd, *bvd, *avd = NULL;
2996 	nvlist_t *config, *nvtop;
2997 	uint64_t guid, txg;
2998 	char *pname;
2999 	int error;
3000 
3001 	/*
3002 	 * Read the label from the boot device and generate a configuration.
3003 	 */
3004 	config = spa_generate_rootconf(devpath, devid, &guid);
3005 #if defined(_OBP) && defined(_KERNEL)
3006 	if (config == NULL) {
3007 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
3008 			/* iscsi boot */
3009 			get_iscsi_bootpath_phy(devpath);
3010 			config = spa_generate_rootconf(devpath, devid, &guid);
3011 		}
3012 	}
3013 #endif
3014 	if (config == NULL) {
3015 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3016 		    devpath);
3017 		return (EIO);
3018 	}
3019 
3020 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3021 	    &pname) == 0);
3022 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3023 
3024 	mutex_enter(&spa_namespace_lock);
3025 	if ((spa = spa_lookup(pname)) != NULL) {
3026 		/*
3027 		 * Remove the existing root pool from the namespace so that we
3028 		 * can replace it with the correct config we just read in.
3029 		 */
3030 		spa_remove(spa);
3031 	}
3032 
3033 	spa = spa_add(pname, config, NULL);
3034 	spa->spa_is_root = B_TRUE;
3035 	spa->spa_load_verbatim = B_TRUE;
3036 
3037 	/*
3038 	 * Build up a vdev tree based on the boot device's label config.
3039 	 */
3040 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3041 	    &nvtop) == 0);
3042 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3043 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3044 	    VDEV_ALLOC_ROOTPOOL);
3045 	spa_config_exit(spa, SCL_ALL, FTAG);
3046 	if (error) {
3047 		mutex_exit(&spa_namespace_lock);
3048 		nvlist_free(config);
3049 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3050 		    pname);
3051 		return (error);
3052 	}
3053 
3054 	/*
3055 	 * Get the boot vdev.
3056 	 */
3057 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3058 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3059 		    (u_longlong_t)guid);
3060 		error = ENOENT;
3061 		goto out;
3062 	}
3063 
3064 	/*
3065 	 * Determine if there is a better boot device.
3066 	 */
3067 	avd = bvd;
3068 	spa_alt_rootvdev(rvd, &avd, &txg);
3069 	if (avd != bvd) {
3070 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3071 		    "try booting from '%s'", avd->vdev_path);
3072 		error = EINVAL;
3073 		goto out;
3074 	}
3075 
3076 	/*
3077 	 * If the boot device is part of a spare vdev then ensure that
3078 	 * we're booting off the active spare.
3079 	 */
3080 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3081 	    !bvd->vdev_isspare) {
3082 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3083 		    "try booting from '%s'",
3084 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
3085 		error = EINVAL;
3086 		goto out;
3087 	}
3088 
3089 	error = 0;
3090 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3091 out:
3092 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3093 	vdev_free(rvd);
3094 	spa_config_exit(spa, SCL_ALL, FTAG);
3095 	mutex_exit(&spa_namespace_lock);
3096 
3097 	nvlist_free(config);
3098 	return (error);
3099 }
3100 
3101 #endif
3102 
3103 /*
3104  * Take a pool and insert it into the namespace as if it had been loaded at
3105  * boot.
3106  */
3107 int
3108 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
3109 {
3110 	spa_t *spa;
3111 	char *altroot = NULL;
3112 
3113 	mutex_enter(&spa_namespace_lock);
3114 	if (spa_lookup(pool) != NULL) {
3115 		mutex_exit(&spa_namespace_lock);
3116 		return (EEXIST);
3117 	}
3118 
3119 	(void) nvlist_lookup_string(props,
3120 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3121 	spa = spa_add(pool, config, altroot);
3122 
3123 	spa->spa_load_verbatim = B_TRUE;
3124 
3125 	if (props != NULL)
3126 		spa_configfile_set(spa, props, B_FALSE);
3127 
3128 	spa_config_sync(spa, B_FALSE, B_TRUE);
3129 
3130 	mutex_exit(&spa_namespace_lock);
3131 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3132 
3133 	return (0);
3134 }
3135 
3136 /*
3137  * Import a non-root pool into the system.
3138  */
3139 int
3140 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
3141 {
3142 	spa_t *spa;
3143 	char *altroot = NULL;
3144 	spa_load_state_t state = SPA_LOAD_IMPORT;
3145 	zpool_rewind_policy_t policy;
3146 	int error;
3147 	nvlist_t *nvroot;
3148 	nvlist_t **spares, **l2cache;
3149 	uint_t nspares, nl2cache;
3150 
3151 	/*
3152 	 * If a pool with this name exists, return failure.
3153 	 */
3154 	mutex_enter(&spa_namespace_lock);
3155 	if (spa_lookup(pool) != NULL) {
3156 		mutex_exit(&spa_namespace_lock);
3157 		return (EEXIST);
3158 	}
3159 
3160 	zpool_get_rewind_policy(config, &policy);
3161 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3162 		state = SPA_LOAD_RECOVER;
3163 
3164 	/*
3165 	 * Create and initialize the spa structure.
3166 	 */
3167 	(void) nvlist_lookup_string(props,
3168 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3169 	spa = spa_add(pool, config, altroot);
3170 	spa_activate(spa, spa_mode_global);
3171 
3172 	/*
3173 	 * Don't start async tasks until we know everything is healthy.
3174 	 */
3175 	spa_async_suspend(spa);
3176 
3177 	/*
3178 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3179 	 * because the user-supplied config is actually the one to trust when
3180 	 * doing an import.
3181 	 */
3182 	if (state != SPA_LOAD_RECOVER)
3183 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3184 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3185 	    policy.zrp_request);
3186 
3187 	/*
3188 	 * Propagate anything learned about failing or best txgs
3189 	 * back to caller
3190 	 */
3191 	spa_rewind_data_to_nvlist(spa, config);
3192 
3193 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3194 	/*
3195 	 * Toss any existing sparelist, as it doesn't have any validity
3196 	 * anymore, and conflicts with spa_has_spare().
3197 	 */
3198 	if (spa->spa_spares.sav_config) {
3199 		nvlist_free(spa->spa_spares.sav_config);
3200 		spa->spa_spares.sav_config = NULL;
3201 		spa_load_spares(spa);
3202 	}
3203 	if (spa->spa_l2cache.sav_config) {
3204 		nvlist_free(spa->spa_l2cache.sav_config);
3205 		spa->spa_l2cache.sav_config = NULL;
3206 		spa_load_l2cache(spa);
3207 	}
3208 
3209 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3210 	    &nvroot) == 0);
3211 	if (error == 0)
3212 		error = spa_validate_aux(spa, nvroot, -1ULL,
3213 		    VDEV_ALLOC_SPARE);
3214 	if (error == 0)
3215 		error = spa_validate_aux(spa, nvroot, -1ULL,
3216 		    VDEV_ALLOC_L2CACHE);
3217 	spa_config_exit(spa, SCL_ALL, FTAG);
3218 
3219 	if (props != NULL)
3220 		spa_configfile_set(spa, props, B_FALSE);
3221 
3222 	if (error != 0 || (props && spa_writeable(spa) &&
3223 	    (error = spa_prop_set(spa, props)))) {
3224 		spa_unload(spa);
3225 		spa_deactivate(spa);
3226 		spa_remove(spa);
3227 		mutex_exit(&spa_namespace_lock);
3228 		return (error);
3229 	}
3230 
3231 	spa_async_resume(spa);
3232 
3233 	/*
3234 	 * Override any spares and level 2 cache devices as specified by
3235 	 * the user, as these may have correct device names/devids, etc.
3236 	 */
3237 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3238 	    &spares, &nspares) == 0) {
3239 		if (spa->spa_spares.sav_config)
3240 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3241 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3242 		else
3243 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3244 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3245 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3246 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3247 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3248 		spa_load_spares(spa);
3249 		spa_config_exit(spa, SCL_ALL, FTAG);
3250 		spa->spa_spares.sav_sync = B_TRUE;
3251 	}
3252 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3253 	    &l2cache, &nl2cache) == 0) {
3254 		if (spa->spa_l2cache.sav_config)
3255 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3256 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3257 		else
3258 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3259 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3260 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3261 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3262 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3263 		spa_load_l2cache(spa);
3264 		spa_config_exit(spa, SCL_ALL, FTAG);
3265 		spa->spa_l2cache.sav_sync = B_TRUE;
3266 	}
3267 
3268 	/*
3269 	 * Check for any removed devices.
3270 	 */
3271 	if (spa->spa_autoreplace) {
3272 		spa_aux_check_removed(&spa->spa_spares);
3273 		spa_aux_check_removed(&spa->spa_l2cache);
3274 	}
3275 
3276 	if (spa_writeable(spa)) {
3277 		/*
3278 		 * Update the config cache to include the newly-imported pool.
3279 		 */
3280 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3281 	}
3282 
3283 	/*
3284 	 * It's possible that the pool was expanded while it was exported.
3285 	 * We kick off an async task to handle this for us.
3286 	 */
3287 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3288 
3289 	mutex_exit(&spa_namespace_lock);
3290 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3291 
3292 	return (0);
3293 }
3294 
3295 nvlist_t *
3296 spa_tryimport(nvlist_t *tryconfig)
3297 {
3298 	nvlist_t *config = NULL;
3299 	char *poolname;
3300 	spa_t *spa;
3301 	uint64_t state;
3302 	int error;
3303 
3304 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3305 		return (NULL);
3306 
3307 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3308 		return (NULL);
3309 
3310 	/*
3311 	 * Create and initialize the spa structure.
3312 	 */
3313 	mutex_enter(&spa_namespace_lock);
3314 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3315 	spa_activate(spa, FREAD);
3316 
3317 	/*
3318 	 * Pass off the heavy lifting to spa_load().
3319 	 * Pass TRUE for mosconfig because the user-supplied config
3320 	 * is actually the one to trust when doing an import.
3321 	 */
3322 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3323 
3324 	/*
3325 	 * If 'tryconfig' was at least parsable, return the current config.
3326 	 */
3327 	if (spa->spa_root_vdev != NULL) {
3328 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3329 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3330 		    poolname) == 0);
3331 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3332 		    state) == 0);
3333 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3334 		    spa->spa_uberblock.ub_timestamp) == 0);
3335 
3336 		/*
3337 		 * If the bootfs property exists on this pool then we
3338 		 * copy it out so that external consumers can tell which
3339 		 * pools are bootable.
3340 		 */
3341 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3342 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3343 
3344 			/*
3345 			 * We have to play games with the name since the
3346 			 * pool was opened as TRYIMPORT_NAME.
3347 			 */
3348 			if (dsl_dsobj_to_dsname(spa_name(spa),
3349 			    spa->spa_bootfs, tmpname) == 0) {
3350 				char *cp;
3351 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3352 
3353 				cp = strchr(tmpname, '/');
3354 				if (cp == NULL) {
3355 					(void) strlcpy(dsname, tmpname,
3356 					    MAXPATHLEN);
3357 				} else {
3358 					(void) snprintf(dsname, MAXPATHLEN,
3359 					    "%s/%s", poolname, ++cp);
3360 				}
3361 				VERIFY(nvlist_add_string(config,
3362 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3363 				kmem_free(dsname, MAXPATHLEN);
3364 			}
3365 			kmem_free(tmpname, MAXPATHLEN);
3366 		}
3367 
3368 		/*
3369 		 * Add the list of hot spares and level 2 cache devices.
3370 		 */
3371 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3372 		spa_add_spares(spa, config);
3373 		spa_add_l2cache(spa, config);
3374 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3375 	}
3376 
3377 	spa_unload(spa);
3378 	spa_deactivate(spa);
3379 	spa_remove(spa);
3380 	mutex_exit(&spa_namespace_lock);
3381 
3382 	return (config);
3383 }
3384 
3385 /*
3386  * Pool export/destroy
3387  *
3388  * The act of destroying or exporting a pool is very simple.  We make sure there
3389  * is no more pending I/O and any references to the pool are gone.  Then, we
3390  * update the pool state and sync all the labels to disk, removing the
3391  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3392  * we don't sync the labels or remove the configuration cache.
3393  */
3394 static int
3395 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3396     boolean_t force, boolean_t hardforce)
3397 {
3398 	spa_t *spa;
3399 
3400 	if (oldconfig)
3401 		*oldconfig = NULL;
3402 
3403 	if (!(spa_mode_global & FWRITE))
3404 		return (EROFS);
3405 
3406 	mutex_enter(&spa_namespace_lock);
3407 	if ((spa = spa_lookup(pool)) == NULL) {
3408 		mutex_exit(&spa_namespace_lock);
3409 		return (ENOENT);
3410 	}
3411 
3412 	/*
3413 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3414 	 * reacquire the namespace lock, and see if we can export.
3415 	 */
3416 	spa_open_ref(spa, FTAG);
3417 	mutex_exit(&spa_namespace_lock);
3418 	spa_async_suspend(spa);
3419 	mutex_enter(&spa_namespace_lock);
3420 	spa_close(spa, FTAG);
3421 
3422 	/*
3423 	 * The pool will be in core if it's openable,
3424 	 * in which case we can modify its state.
3425 	 */
3426 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3427 		/*
3428 		 * Objsets may be open only because they're dirty, so we
3429 		 * have to force it to sync before checking spa_refcnt.
3430 		 */
3431 		txg_wait_synced(spa->spa_dsl_pool, 0);
3432 
3433 		/*
3434 		 * A pool cannot be exported or destroyed if there are active
3435 		 * references.  If we are resetting a pool, allow references by
3436 		 * fault injection handlers.
3437 		 */
3438 		if (!spa_refcount_zero(spa) ||
3439 		    (spa->spa_inject_ref != 0 &&
3440 		    new_state != POOL_STATE_UNINITIALIZED)) {
3441 			spa_async_resume(spa);
3442 			mutex_exit(&spa_namespace_lock);
3443 			return (EBUSY);
3444 		}
3445 
3446 		/*
3447 		 * A pool cannot be exported if it has an active shared spare.
3448 		 * This is to prevent other pools stealing the active spare
3449 		 * from an exported pool. At user's own will, such pool can
3450 		 * be forcedly exported.
3451 		 */
3452 		if (!force && new_state == POOL_STATE_EXPORTED &&
3453 		    spa_has_active_shared_spare(spa)) {
3454 			spa_async_resume(spa);
3455 			mutex_exit(&spa_namespace_lock);
3456 			return (EXDEV);
3457 		}
3458 
3459 		/*
3460 		 * We want this to be reflected on every label,
3461 		 * so mark them all dirty.  spa_unload() will do the
3462 		 * final sync that pushes these changes out.
3463 		 */
3464 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3465 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3466 			spa->spa_state = new_state;
3467 			spa->spa_final_txg = spa_last_synced_txg(spa) +
3468 			    TXG_DEFER_SIZE + 1;
3469 			vdev_config_dirty(spa->spa_root_vdev);
3470 			spa_config_exit(spa, SCL_ALL, FTAG);
3471 		}
3472 	}
3473 
3474 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3475 
3476 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3477 		spa_unload(spa);
3478 		spa_deactivate(spa);
3479 	}
3480 
3481 	if (oldconfig && spa->spa_config)
3482 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3483 
3484 	if (new_state != POOL_STATE_UNINITIALIZED) {
3485 		if (!hardforce)
3486 			spa_config_sync(spa, B_TRUE, B_TRUE);
3487 		spa_remove(spa);
3488 	}
3489 	mutex_exit(&spa_namespace_lock);
3490 
3491 	return (0);
3492 }
3493 
3494 /*
3495  * Destroy a storage pool.
3496  */
3497 int
3498 spa_destroy(char *pool)
3499 {
3500 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3501 	    B_FALSE, B_FALSE));
3502 }
3503 
3504 /*
3505  * Export a storage pool.
3506  */
3507 int
3508 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3509     boolean_t hardforce)
3510 {
3511 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3512 	    force, hardforce));
3513 }
3514 
3515 /*
3516  * Similar to spa_export(), this unloads the spa_t without actually removing it
3517  * from the namespace in any way.
3518  */
3519 int
3520 spa_reset(char *pool)
3521 {
3522 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3523 	    B_FALSE, B_FALSE));
3524 }
3525 
3526 /*
3527  * ==========================================================================
3528  * Device manipulation
3529  * ==========================================================================
3530  */
3531 
3532 /*
3533  * Add a device to a storage pool.
3534  */
3535 int
3536 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3537 {
3538 	uint64_t txg, id;
3539 	int error;
3540 	vdev_t *rvd = spa->spa_root_vdev;
3541 	vdev_t *vd, *tvd;
3542 	nvlist_t **spares, **l2cache;
3543 	uint_t nspares, nl2cache;
3544 
3545 	txg = spa_vdev_enter(spa);
3546 
3547 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3548 	    VDEV_ALLOC_ADD)) != 0)
3549 		return (spa_vdev_exit(spa, NULL, txg, error));
3550 
3551 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3552 
3553 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3554 	    &nspares) != 0)
3555 		nspares = 0;
3556 
3557 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3558 	    &nl2cache) != 0)
3559 		nl2cache = 0;
3560 
3561 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3562 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3563 
3564 	if (vd->vdev_children != 0 &&
3565 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3566 		return (spa_vdev_exit(spa, vd, txg, error));
3567 
3568 	/*
3569 	 * We must validate the spares and l2cache devices after checking the
3570 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3571 	 */
3572 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3573 		return (spa_vdev_exit(spa, vd, txg, error));
3574 
3575 	/*
3576 	 * Transfer each new top-level vdev from vd to rvd.
3577 	 */
3578 	for (int c = 0; c < vd->vdev_children; c++) {
3579 
3580 		/*
3581 		 * Set the vdev id to the first hole, if one exists.
3582 		 */
3583 		for (id = 0; id < rvd->vdev_children; id++) {
3584 			if (rvd->vdev_child[id]->vdev_ishole) {
3585 				vdev_free(rvd->vdev_child[id]);
3586 				break;
3587 			}
3588 		}
3589 		tvd = vd->vdev_child[c];
3590 		vdev_remove_child(vd, tvd);
3591 		tvd->vdev_id = id;
3592 		vdev_add_child(rvd, tvd);
3593 		vdev_config_dirty(tvd);
3594 	}
3595 
3596 	if (nspares != 0) {
3597 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3598 		    ZPOOL_CONFIG_SPARES);
3599 		spa_load_spares(spa);
3600 		spa->spa_spares.sav_sync = B_TRUE;
3601 	}
3602 
3603 	if (nl2cache != 0) {
3604 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3605 		    ZPOOL_CONFIG_L2CACHE);
3606 		spa_load_l2cache(spa);
3607 		spa->spa_l2cache.sav_sync = B_TRUE;
3608 	}
3609 
3610 	/*
3611 	 * We have to be careful when adding new vdevs to an existing pool.
3612 	 * If other threads start allocating from these vdevs before we
3613 	 * sync the config cache, and we lose power, then upon reboot we may
3614 	 * fail to open the pool because there are DVAs that the config cache
3615 	 * can't translate.  Therefore, we first add the vdevs without
3616 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3617 	 * and then let spa_config_update() initialize the new metaslabs.
3618 	 *
3619 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3620 	 * if we lose power at any point in this sequence, the remaining
3621 	 * steps will be completed the next time we load the pool.
3622 	 */
3623 	(void) spa_vdev_exit(spa, vd, txg, 0);
3624 
3625 	mutex_enter(&spa_namespace_lock);
3626 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3627 	mutex_exit(&spa_namespace_lock);
3628 
3629 	return (0);
3630 }
3631 
3632 /*
3633  * Attach a device to a mirror.  The arguments are the path to any device
3634  * in the mirror, and the nvroot for the new device.  If the path specifies
3635  * a device that is not mirrored, we automatically insert the mirror vdev.
3636  *
3637  * If 'replacing' is specified, the new device is intended to replace the
3638  * existing device; in this case the two devices are made into their own
3639  * mirror using the 'replacing' vdev, which is functionally identical to
3640  * the mirror vdev (it actually reuses all the same ops) but has a few
3641  * extra rules: you can't attach to it after it's been created, and upon
3642  * completion of resilvering, the first disk (the one being replaced)
3643  * is automatically detached.
3644  */
3645 int
3646 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3647 {
3648 	uint64_t txg, dtl_max_txg;
3649 	vdev_t *rvd = spa->spa_root_vdev;
3650 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3651 	vdev_ops_t *pvops;
3652 	char *oldvdpath, *newvdpath;
3653 	int newvd_isspare;
3654 	int error;
3655 
3656 	txg = spa_vdev_enter(spa);
3657 
3658 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3659 
3660 	if (oldvd == NULL)
3661 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3662 
3663 	if (!oldvd->vdev_ops->vdev_op_leaf)
3664 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3665 
3666 	pvd = oldvd->vdev_parent;
3667 
3668 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3669 	    VDEV_ALLOC_ADD)) != 0)
3670 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3671 
3672 	if (newrootvd->vdev_children != 1)
3673 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3674 
3675 	newvd = newrootvd->vdev_child[0];
3676 
3677 	if (!newvd->vdev_ops->vdev_op_leaf)
3678 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3679 
3680 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3681 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3682 
3683 	/*
3684 	 * Spares can't replace logs
3685 	 */
3686 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3687 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3688 
3689 	if (!replacing) {
3690 		/*
3691 		 * For attach, the only allowable parent is a mirror or the root
3692 		 * vdev.
3693 		 */
3694 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3695 		    pvd->vdev_ops != &vdev_root_ops)
3696 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3697 
3698 		pvops = &vdev_mirror_ops;
3699 	} else {
3700 		/*
3701 		 * Active hot spares can only be replaced by inactive hot
3702 		 * spares.
3703 		 */
3704 		if (pvd->vdev_ops == &vdev_spare_ops &&
3705 		    pvd->vdev_child[1] == oldvd &&
3706 		    !spa_has_spare(spa, newvd->vdev_guid))
3707 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3708 
3709 		/*
3710 		 * If the source is a hot spare, and the parent isn't already a
3711 		 * spare, then we want to create a new hot spare.  Otherwise, we
3712 		 * want to create a replacing vdev.  The user is not allowed to
3713 		 * attach to a spared vdev child unless the 'isspare' state is
3714 		 * the same (spare replaces spare, non-spare replaces
3715 		 * non-spare).
3716 		 */
3717 		if (pvd->vdev_ops == &vdev_replacing_ops)
3718 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3719 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3720 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3721 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3722 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3723 		    newvd->vdev_isspare)
3724 			pvops = &vdev_spare_ops;
3725 		else
3726 			pvops = &vdev_replacing_ops;
3727 	}
3728 
3729 	/*
3730 	 * Make sure the new device is big enough.
3731 	 */
3732 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3733 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3734 
3735 	/*
3736 	 * The new device cannot have a higher alignment requirement
3737 	 * than the top-level vdev.
3738 	 */
3739 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3740 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3741 
3742 	/*
3743 	 * If this is an in-place replacement, update oldvd's path and devid
3744 	 * to make it distinguishable from newvd, and unopenable from now on.
3745 	 */
3746 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3747 		spa_strfree(oldvd->vdev_path);
3748 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3749 		    KM_SLEEP);
3750 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3751 		    newvd->vdev_path, "old");
3752 		if (oldvd->vdev_devid != NULL) {
3753 			spa_strfree(oldvd->vdev_devid);
3754 			oldvd->vdev_devid = NULL;
3755 		}
3756 	}
3757 
3758 	/*
3759 	 * If the parent is not a mirror, or if we're replacing, insert the new
3760 	 * mirror/replacing/spare vdev above oldvd.
3761 	 */
3762 	if (pvd->vdev_ops != pvops)
3763 		pvd = vdev_add_parent(oldvd, pvops);
3764 
3765 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3766 	ASSERT(pvd->vdev_ops == pvops);
3767 	ASSERT(oldvd->vdev_parent == pvd);
3768 
3769 	/*
3770 	 * Extract the new device from its root and add it to pvd.
3771 	 */
3772 	vdev_remove_child(newrootvd, newvd);
3773 	newvd->vdev_id = pvd->vdev_children;
3774 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3775 	vdev_add_child(pvd, newvd);
3776 
3777 	tvd = newvd->vdev_top;
3778 	ASSERT(pvd->vdev_top == tvd);
3779 	ASSERT(tvd->vdev_parent == rvd);
3780 
3781 	vdev_config_dirty(tvd);
3782 
3783 	/*
3784 	 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
3785 	 * for any dmu_sync-ed blocks.  It will propagate upward when
3786 	 * spa_vdev_exit() calls vdev_dtl_reassess().
3787 	 */
3788 	dtl_max_txg = txg + TXG_CONCURRENT_STATES;
3789 
3790 	vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
3791 	    dtl_max_txg - TXG_INITIAL);
3792 
3793 	if (newvd->vdev_isspare) {
3794 		spa_spare_activate(newvd);
3795 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3796 	}
3797 
3798 	oldvdpath = spa_strdup(oldvd->vdev_path);
3799 	newvdpath = spa_strdup(newvd->vdev_path);
3800 	newvd_isspare = newvd->vdev_isspare;
3801 
3802 	/*
3803 	 * Mark newvd's DTL dirty in this txg.
3804 	 */
3805 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3806 
3807 	/*
3808 	 * Restart the resilver
3809 	 */
3810 	dsl_resilver_restart(spa->spa_dsl_pool, dtl_max_txg);
3811 
3812 	/*
3813 	 * Commit the config
3814 	 */
3815 	(void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
3816 
3817 	spa_history_log_internal(LOG_POOL_VDEV_ATTACH, spa, NULL,
3818 	    "%s vdev=%s %s vdev=%s",
3819 	    replacing && newvd_isspare ? "spare in" :
3820 	    replacing ? "replace" : "attach", newvdpath,
3821 	    replacing ? "for" : "to", oldvdpath);
3822 
3823 	spa_strfree(oldvdpath);
3824 	spa_strfree(newvdpath);
3825 
3826 	return (0);
3827 }
3828 
3829 /*
3830  * Detach a device from a mirror or replacing vdev.
3831  * If 'replace_done' is specified, only detach if the parent
3832  * is a replacing vdev.
3833  */
3834 int
3835 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3836 {
3837 	uint64_t txg;
3838 	int error;
3839 	vdev_t *rvd = spa->spa_root_vdev;
3840 	vdev_t *vd, *pvd, *cvd, *tvd;
3841 	boolean_t unspare = B_FALSE;
3842 	uint64_t unspare_guid;
3843 	size_t len;
3844 	char *vdpath;
3845 
3846 	txg = spa_vdev_enter(spa);
3847 
3848 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3849 
3850 	if (vd == NULL)
3851 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3852 
3853 	if (!vd->vdev_ops->vdev_op_leaf)
3854 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3855 
3856 	pvd = vd->vdev_parent;
3857 
3858 	/*
3859 	 * If the parent/child relationship is not as expected, don't do it.
3860 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3861 	 * vdev that's replacing B with C.  The user's intent in replacing
3862 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3863 	 * the replace by detaching C, the expected behavior is to end up
3864 	 * M(A,B).  But suppose that right after deciding to detach C,
3865 	 * the replacement of B completes.  We would have M(A,C), and then
3866 	 * ask to detach C, which would leave us with just A -- not what
3867 	 * the user wanted.  To prevent this, we make sure that the
3868 	 * parent/child relationship hasn't changed -- in this example,
3869 	 * that C's parent is still the replacing vdev R.
3870 	 */
3871 	if (pvd->vdev_guid != pguid && pguid != 0)
3872 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3873 
3874 	/*
3875 	 * If replace_done is specified, only remove this device if it's
3876 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3877 	 * disk can be removed.
3878 	 */
3879 	if (replace_done) {
3880 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3881 			if (vd->vdev_id != 0)
3882 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3883 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3884 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3885 		}
3886 	}
3887 
3888 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3889 	    spa_version(spa) >= SPA_VERSION_SPARES);
3890 
3891 	/*
3892 	 * Only mirror, replacing, and spare vdevs support detach.
3893 	 */
3894 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3895 	    pvd->vdev_ops != &vdev_mirror_ops &&
3896 	    pvd->vdev_ops != &vdev_spare_ops)
3897 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3898 
3899 	/*
3900 	 * If this device has the only valid copy of some data,
3901 	 * we cannot safely detach it.
3902 	 */
3903 	if (vdev_dtl_required(vd))
3904 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3905 
3906 	ASSERT(pvd->vdev_children >= 2);
3907 
3908 	/*
3909 	 * If we are detaching the second disk from a replacing vdev, then
3910 	 * check to see if we changed the original vdev's path to have "/old"
3911 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3912 	 */
3913 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3914 	    pvd->vdev_child[0]->vdev_path != NULL &&
3915 	    pvd->vdev_child[1]->vdev_path != NULL) {
3916 		ASSERT(pvd->vdev_child[1] == vd);
3917 		cvd = pvd->vdev_child[0];
3918 		len = strlen(vd->vdev_path);
3919 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3920 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3921 			spa_strfree(cvd->vdev_path);
3922 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3923 		}
3924 	}
3925 
3926 	/*
3927 	 * If we are detaching the original disk from a spare, then it implies
3928 	 * that the spare should become a real disk, and be removed from the
3929 	 * active spare list for the pool.
3930 	 */
3931 	if (pvd->vdev_ops == &vdev_spare_ops &&
3932 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3933 		unspare = B_TRUE;
3934 
3935 	/*
3936 	 * Erase the disk labels so the disk can be used for other things.
3937 	 * This must be done after all other error cases are handled,
3938 	 * but before we disembowel vd (so we can still do I/O to it).
3939 	 * But if we can't do it, don't treat the error as fatal --
3940 	 * it may be that the unwritability of the disk is the reason
3941 	 * it's being detached!
3942 	 */
3943 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3944 
3945 	/*
3946 	 * Remove vd from its parent and compact the parent's children.
3947 	 */
3948 	vdev_remove_child(pvd, vd);
3949 	vdev_compact_children(pvd);
3950 
3951 	/*
3952 	 * Remember one of the remaining children so we can get tvd below.
3953 	 */
3954 	cvd = pvd->vdev_child[0];
3955 
3956 	/*
3957 	 * If we need to remove the remaining child from the list of hot spares,
3958 	 * do it now, marking the vdev as no longer a spare in the process.
3959 	 * We must do this before vdev_remove_parent(), because that can
3960 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3961 	 * reason, we must remove the spare now, in the same txg as the detach;
3962 	 * otherwise someone could attach a new sibling, change the GUID, and
3963 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3964 	 */
3965 	if (unspare) {
3966 		ASSERT(cvd->vdev_isspare);
3967 		spa_spare_remove(cvd);
3968 		unspare_guid = cvd->vdev_guid;
3969 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3970 	}
3971 
3972 	/*
3973 	 * If the parent mirror/replacing vdev only has one child,
3974 	 * the parent is no longer needed.  Remove it from the tree.
3975 	 */
3976 	if (pvd->vdev_children == 1)
3977 		vdev_remove_parent(cvd);
3978 
3979 	/*
3980 	 * We don't set tvd until now because the parent we just removed
3981 	 * may have been the previous top-level vdev.
3982 	 */
3983 	tvd = cvd->vdev_top;
3984 	ASSERT(tvd->vdev_parent == rvd);
3985 
3986 	/*
3987 	 * Reevaluate the parent vdev state.
3988 	 */
3989 	vdev_propagate_state(cvd);
3990 
3991 	/*
3992 	 * If the 'autoexpand' property is set on the pool then automatically
3993 	 * try to expand the size of the pool. For example if the device we
3994 	 * just detached was smaller than the others, it may be possible to
3995 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3996 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3997 	 */
3998 	if (spa->spa_autoexpand) {
3999 		vdev_reopen(tvd);
4000 		vdev_expand(tvd, txg);
4001 	}
4002 
4003 	vdev_config_dirty(tvd);
4004 
4005 	/*
4006 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
4007 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
4008 	 * But first make sure we're not on any *other* txg's DTL list, to
4009 	 * prevent vd from being accessed after it's freed.
4010 	 */
4011 	vdpath = spa_strdup(vd->vdev_path);
4012 	for (int t = 0; t < TXG_SIZE; t++)
4013 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4014 	vd->vdev_detached = B_TRUE;
4015 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4016 
4017 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4018 
4019 	error = spa_vdev_exit(spa, vd, txg, 0);
4020 
4021 	spa_history_log_internal(LOG_POOL_VDEV_DETACH, spa, NULL,
4022 	    "vdev=%s", vdpath);
4023 	spa_strfree(vdpath);
4024 
4025 	/*
4026 	 * If this was the removal of the original device in a hot spare vdev,
4027 	 * then we want to go through and remove the device from the hot spare
4028 	 * list of every other pool.
4029 	 */
4030 	if (unspare) {
4031 		spa_t *myspa = spa;
4032 		spa = NULL;
4033 		mutex_enter(&spa_namespace_lock);
4034 		while ((spa = spa_next(spa)) != NULL) {
4035 			if (spa->spa_state != POOL_STATE_ACTIVE)
4036 				continue;
4037 			if (spa == myspa)
4038 				continue;
4039 			spa_open_ref(spa, FTAG);
4040 			mutex_exit(&spa_namespace_lock);
4041 			(void) spa_vdev_remove(spa, unspare_guid,
4042 			    B_TRUE);
4043 			mutex_enter(&spa_namespace_lock);
4044 			spa_close(spa, FTAG);
4045 		}
4046 		mutex_exit(&spa_namespace_lock);
4047 	}
4048 
4049 	return (error);
4050 }
4051 
4052 /*
4053  * Split a set of devices from their mirrors, and create a new pool from them.
4054  */
4055 int
4056 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4057     nvlist_t *props, boolean_t exp)
4058 {
4059 	int error = 0;
4060 	uint64_t txg, *glist;
4061 	spa_t *newspa;
4062 	uint_t c, children, lastlog;
4063 	nvlist_t **child, *nvl, *tmp;
4064 	dmu_tx_t *tx;
4065 	char *altroot = NULL;
4066 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4067 	boolean_t activate_slog;
4068 
4069 	if (!spa_writeable(spa))
4070 		return (EROFS);
4071 
4072 	txg = spa_vdev_enter(spa);
4073 
4074 	/* clear the log and flush everything up to now */
4075 	activate_slog = spa_passivate_log(spa);
4076 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4077 	error = spa_offline_log(spa);
4078 	txg = spa_vdev_config_enter(spa);
4079 
4080 	if (activate_slog)
4081 		spa_activate_log(spa);
4082 
4083 	if (error != 0)
4084 		return (spa_vdev_exit(spa, NULL, txg, error));
4085 
4086 	/* check new spa name before going any further */
4087 	if (spa_lookup(newname) != NULL)
4088 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4089 
4090 	/*
4091 	 * scan through all the children to ensure they're all mirrors
4092 	 */
4093 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4094 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4095 	    &children) != 0)
4096 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4097 
4098 	/* first, check to ensure we've got the right child count */
4099 	rvd = spa->spa_root_vdev;
4100 	lastlog = 0;
4101 	for (c = 0; c < rvd->vdev_children; c++) {
4102 		vdev_t *vd = rvd->vdev_child[c];
4103 
4104 		/* don't count the holes & logs as children */
4105 		if (vd->vdev_islog || vd->vdev_ishole) {
4106 			if (lastlog == 0)
4107 				lastlog = c;
4108 			continue;
4109 		}
4110 
4111 		lastlog = 0;
4112 	}
4113 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4114 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4115 
4116 	/* next, ensure no spare or cache devices are part of the split */
4117 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4118 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4119 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4120 
4121 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4122 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4123 
4124 	/* then, loop over each vdev and validate it */
4125 	for (c = 0; c < children; c++) {
4126 		uint64_t is_hole = 0;
4127 
4128 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4129 		    &is_hole);
4130 
4131 		if (is_hole != 0) {
4132 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4133 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4134 				continue;
4135 			} else {
4136 				error = EINVAL;
4137 				break;
4138 			}
4139 		}
4140 
4141 		/* which disk is going to be split? */
4142 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4143 		    &glist[c]) != 0) {
4144 			error = EINVAL;
4145 			break;
4146 		}
4147 
4148 		/* look it up in the spa */
4149 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4150 		if (vml[c] == NULL) {
4151 			error = ENODEV;
4152 			break;
4153 		}
4154 
4155 		/* make sure there's nothing stopping the split */
4156 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4157 		    vml[c]->vdev_islog ||
4158 		    vml[c]->vdev_ishole ||
4159 		    vml[c]->vdev_isspare ||
4160 		    vml[c]->vdev_isl2cache ||
4161 		    !vdev_writeable(vml[c]) ||
4162 		    vml[c]->vdev_children != 0 ||
4163 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4164 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4165 			error = EINVAL;
4166 			break;
4167 		}
4168 
4169 		if (vdev_dtl_required(vml[c])) {
4170 			error = EBUSY;
4171 			break;
4172 		}
4173 
4174 		/* we need certain info from the top level */
4175 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4176 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4177 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4178 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4179 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4180 		    vml[c]->vdev_top->vdev_asize) == 0);
4181 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4182 		    vml[c]->vdev_top->vdev_ashift) == 0);
4183 	}
4184 
4185 	if (error != 0) {
4186 		kmem_free(vml, children * sizeof (vdev_t *));
4187 		kmem_free(glist, children * sizeof (uint64_t));
4188 		return (spa_vdev_exit(spa, NULL, txg, error));
4189 	}
4190 
4191 	/* stop writers from using the disks */
4192 	for (c = 0; c < children; c++) {
4193 		if (vml[c] != NULL)
4194 			vml[c]->vdev_offline = B_TRUE;
4195 	}
4196 	vdev_reopen(spa->spa_root_vdev);
4197 
4198 	/*
4199 	 * Temporarily record the splitting vdevs in the spa config.  This
4200 	 * will disappear once the config is regenerated.
4201 	 */
4202 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4203 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4204 	    glist, children) == 0);
4205 	kmem_free(glist, children * sizeof (uint64_t));
4206 
4207 	mutex_enter(&spa->spa_props_lock);
4208 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4209 	    nvl) == 0);
4210 	mutex_exit(&spa->spa_props_lock);
4211 	spa->spa_config_splitting = nvl;
4212 	vdev_config_dirty(spa->spa_root_vdev);
4213 
4214 	/* configure and create the new pool */
4215 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4216 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4217 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4218 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4219 	    spa_version(spa)) == 0);
4220 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4221 	    spa->spa_config_txg) == 0);
4222 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4223 	    spa_generate_guid(NULL)) == 0);
4224 	(void) nvlist_lookup_string(props,
4225 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4226 
4227 	/* add the new pool to the namespace */
4228 	newspa = spa_add(newname, config, altroot);
4229 	newspa->spa_config_txg = spa->spa_config_txg;
4230 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4231 
4232 	/* release the spa config lock, retaining the namespace lock */
4233 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4234 
4235 	if (zio_injection_enabled)
4236 		zio_handle_panic_injection(spa, FTAG, 1);
4237 
4238 	spa_activate(newspa, spa_mode_global);
4239 	spa_async_suspend(newspa);
4240 
4241 	/* create the new pool from the disks of the original pool */
4242 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4243 	if (error)
4244 		goto out;
4245 
4246 	/* if that worked, generate a real config for the new pool */
4247 	if (newspa->spa_root_vdev != NULL) {
4248 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4249 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4250 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4251 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4252 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4253 		    B_TRUE));
4254 	}
4255 
4256 	/* set the props */
4257 	if (props != NULL) {
4258 		spa_configfile_set(newspa, props, B_FALSE);
4259 		error = spa_prop_set(newspa, props);
4260 		if (error)
4261 			goto out;
4262 	}
4263 
4264 	/* flush everything */
4265 	txg = spa_vdev_config_enter(newspa);
4266 	vdev_config_dirty(newspa->spa_root_vdev);
4267 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4268 
4269 	if (zio_injection_enabled)
4270 		zio_handle_panic_injection(spa, FTAG, 2);
4271 
4272 	spa_async_resume(newspa);
4273 
4274 	/* finally, update the original pool's config */
4275 	txg = spa_vdev_config_enter(spa);
4276 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4277 	error = dmu_tx_assign(tx, TXG_WAIT);
4278 	if (error != 0)
4279 		dmu_tx_abort(tx);
4280 	for (c = 0; c < children; c++) {
4281 		if (vml[c] != NULL) {
4282 			vdev_split(vml[c]);
4283 			if (error == 0)
4284 				spa_history_log_internal(LOG_POOL_VDEV_DETACH,
4285 				    spa, tx, "vdev=%s",
4286 				    vml[c]->vdev_path);
4287 			vdev_free(vml[c]);
4288 		}
4289 	}
4290 	vdev_config_dirty(spa->spa_root_vdev);
4291 	spa->spa_config_splitting = NULL;
4292 	nvlist_free(nvl);
4293 	if (error == 0)
4294 		dmu_tx_commit(tx);
4295 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4296 
4297 	if (zio_injection_enabled)
4298 		zio_handle_panic_injection(spa, FTAG, 3);
4299 
4300 	/* split is complete; log a history record */
4301 	spa_history_log_internal(LOG_POOL_SPLIT, newspa, NULL,
4302 	    "split new pool %s from pool %s", newname, spa_name(spa));
4303 
4304 	kmem_free(vml, children * sizeof (vdev_t *));
4305 
4306 	/* if we're not going to mount the filesystems in userland, export */
4307 	if (exp)
4308 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4309 		    B_FALSE, B_FALSE);
4310 
4311 	return (error);
4312 
4313 out:
4314 	spa_unload(newspa);
4315 	spa_deactivate(newspa);
4316 	spa_remove(newspa);
4317 
4318 	txg = spa_vdev_config_enter(spa);
4319 
4320 	/* re-online all offlined disks */
4321 	for (c = 0; c < children; c++) {
4322 		if (vml[c] != NULL)
4323 			vml[c]->vdev_offline = B_FALSE;
4324 	}
4325 	vdev_reopen(spa->spa_root_vdev);
4326 
4327 	nvlist_free(spa->spa_config_splitting);
4328 	spa->spa_config_splitting = NULL;
4329 	(void) spa_vdev_exit(spa, NULL, txg, error);
4330 
4331 	kmem_free(vml, children * sizeof (vdev_t *));
4332 	return (error);
4333 }
4334 
4335 static nvlist_t *
4336 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4337 {
4338 	for (int i = 0; i < count; i++) {
4339 		uint64_t guid;
4340 
4341 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4342 		    &guid) == 0);
4343 
4344 		if (guid == target_guid)
4345 			return (nvpp[i]);
4346 	}
4347 
4348 	return (NULL);
4349 }
4350 
4351 static void
4352 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4353 	nvlist_t *dev_to_remove)
4354 {
4355 	nvlist_t **newdev = NULL;
4356 
4357 	if (count > 1)
4358 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4359 
4360 	for (int i = 0, j = 0; i < count; i++) {
4361 		if (dev[i] == dev_to_remove)
4362 			continue;
4363 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4364 	}
4365 
4366 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4367 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4368 
4369 	for (int i = 0; i < count - 1; i++)
4370 		nvlist_free(newdev[i]);
4371 
4372 	if (count > 1)
4373 		kmem_free(newdev, (count - 1) * sizeof (void *));
4374 }
4375 
4376 /*
4377  * Evacuate the device.
4378  */
4379 static int
4380 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4381 {
4382 	uint64_t txg;
4383 	int error = 0;
4384 
4385 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4386 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4387 	ASSERT(vd == vd->vdev_top);
4388 
4389 	/*
4390 	 * Evacuate the device.  We don't hold the config lock as writer
4391 	 * since we need to do I/O but we do keep the
4392 	 * spa_namespace_lock held.  Once this completes the device
4393 	 * should no longer have any blocks allocated on it.
4394 	 */
4395 	if (vd->vdev_islog) {
4396 		if (vd->vdev_stat.vs_alloc != 0)
4397 			error = spa_offline_log(spa);
4398 	} else {
4399 		error = ENOTSUP;
4400 	}
4401 
4402 	if (error)
4403 		return (error);
4404 
4405 	/*
4406 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4407 	 * associated with this vdev, and wait for these changes to sync.
4408 	 */
4409 	ASSERT3U(vd->vdev_stat.vs_alloc, ==, 0);
4410 	txg = spa_vdev_config_enter(spa);
4411 	vd->vdev_removing = B_TRUE;
4412 	vdev_dirty(vd, 0, NULL, txg);
4413 	vdev_config_dirty(vd);
4414 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4415 
4416 	return (0);
4417 }
4418 
4419 /*
4420  * Complete the removal by cleaning up the namespace.
4421  */
4422 static void
4423 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4424 {
4425 	vdev_t *rvd = spa->spa_root_vdev;
4426 	uint64_t id = vd->vdev_id;
4427 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4428 
4429 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4430 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4431 	ASSERT(vd == vd->vdev_top);
4432 
4433 	/*
4434 	 * Only remove any devices which are empty.
4435 	 */
4436 	if (vd->vdev_stat.vs_alloc != 0)
4437 		return;
4438 
4439 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4440 
4441 	if (list_link_active(&vd->vdev_state_dirty_node))
4442 		vdev_state_clean(vd);
4443 	if (list_link_active(&vd->vdev_config_dirty_node))
4444 		vdev_config_clean(vd);
4445 
4446 	vdev_free(vd);
4447 
4448 	if (last_vdev) {
4449 		vdev_compact_children(rvd);
4450 	} else {
4451 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4452 		vdev_add_child(rvd, vd);
4453 	}
4454 	vdev_config_dirty(rvd);
4455 
4456 	/*
4457 	 * Reassess the health of our root vdev.
4458 	 */
4459 	vdev_reopen(rvd);
4460 }
4461 
4462 /*
4463  * Remove a device from the pool -
4464  *
4465  * Removing a device from the vdev namespace requires several steps
4466  * and can take a significant amount of time.  As a result we use
4467  * the spa_vdev_config_[enter/exit] functions which allow us to
4468  * grab and release the spa_config_lock while still holding the namespace
4469  * lock.  During each step the configuration is synced out.
4470  */
4471 
4472 /*
4473  * Remove a device from the pool.  Currently, this supports removing only hot
4474  * spares, slogs, and level 2 ARC devices.
4475  */
4476 int
4477 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4478 {
4479 	vdev_t *vd;
4480 	metaslab_group_t *mg;
4481 	nvlist_t **spares, **l2cache, *nv;
4482 	uint64_t txg = 0;
4483 	uint_t nspares, nl2cache;
4484 	int error = 0;
4485 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4486 
4487 	if (!locked)
4488 		txg = spa_vdev_enter(spa);
4489 
4490 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4491 
4492 	if (spa->spa_spares.sav_vdevs != NULL &&
4493 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4494 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4495 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4496 		/*
4497 		 * Only remove the hot spare if it's not currently in use
4498 		 * in this pool.
4499 		 */
4500 		if (vd == NULL || unspare) {
4501 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4502 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4503 			spa_load_spares(spa);
4504 			spa->spa_spares.sav_sync = B_TRUE;
4505 		} else {
4506 			error = EBUSY;
4507 		}
4508 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4509 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4510 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4511 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4512 		/*
4513 		 * Cache devices can always be removed.
4514 		 */
4515 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4516 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4517 		spa_load_l2cache(spa);
4518 		spa->spa_l2cache.sav_sync = B_TRUE;
4519 	} else if (vd != NULL && vd->vdev_islog) {
4520 		ASSERT(!locked);
4521 		ASSERT(vd == vd->vdev_top);
4522 
4523 		/*
4524 		 * XXX - Once we have bp-rewrite this should
4525 		 * become the common case.
4526 		 */
4527 
4528 		mg = vd->vdev_mg;
4529 
4530 		/*
4531 		 * Stop allocating from this vdev.
4532 		 */
4533 		metaslab_group_passivate(mg);
4534 
4535 		/*
4536 		 * Wait for the youngest allocations and frees to sync,
4537 		 * and then wait for the deferral of those frees to finish.
4538 		 */
4539 		spa_vdev_config_exit(spa, NULL,
4540 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4541 
4542 		/*
4543 		 * Attempt to evacuate the vdev.
4544 		 */
4545 		error = spa_vdev_remove_evacuate(spa, vd);
4546 
4547 		txg = spa_vdev_config_enter(spa);
4548 
4549 		/*
4550 		 * If we couldn't evacuate the vdev, unwind.
4551 		 */
4552 		if (error) {
4553 			metaslab_group_activate(mg);
4554 			return (spa_vdev_exit(spa, NULL, txg, error));
4555 		}
4556 
4557 		/*
4558 		 * Clean up the vdev namespace.
4559 		 */
4560 		spa_vdev_remove_from_namespace(spa, vd);
4561 
4562 	} else if (vd != NULL) {
4563 		/*
4564 		 * Normal vdevs cannot be removed (yet).
4565 		 */
4566 		error = ENOTSUP;
4567 	} else {
4568 		/*
4569 		 * There is no vdev of any kind with the specified guid.
4570 		 */
4571 		error = ENOENT;
4572 	}
4573 
4574 	if (!locked)
4575 		return (spa_vdev_exit(spa, NULL, txg, error));
4576 
4577 	return (error);
4578 }
4579 
4580 /*
4581  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4582  * current spared, so we can detach it.
4583  */
4584 static vdev_t *
4585 spa_vdev_resilver_done_hunt(vdev_t *vd)
4586 {
4587 	vdev_t *newvd, *oldvd;
4588 
4589 	for (int c = 0; c < vd->vdev_children; c++) {
4590 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4591 		if (oldvd != NULL)
4592 			return (oldvd);
4593 	}
4594 
4595 	/*
4596 	 * Check for a completed replacement.
4597 	 */
4598 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4599 		oldvd = vd->vdev_child[0];
4600 		newvd = vd->vdev_child[1];
4601 
4602 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4603 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4604 		    !vdev_dtl_required(oldvd))
4605 			return (oldvd);
4606 	}
4607 
4608 	/*
4609 	 * Check for a completed resilver with the 'unspare' flag set.
4610 	 */
4611 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4612 		newvd = vd->vdev_child[0];
4613 		oldvd = vd->vdev_child[1];
4614 
4615 		if (newvd->vdev_unspare &&
4616 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4617 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4618 		    !vdev_dtl_required(oldvd)) {
4619 			newvd->vdev_unspare = 0;
4620 			return (oldvd);
4621 		}
4622 	}
4623 
4624 	return (NULL);
4625 }
4626 
4627 static void
4628 spa_vdev_resilver_done(spa_t *spa)
4629 {
4630 	vdev_t *vd, *pvd, *ppvd;
4631 	uint64_t guid, sguid, pguid, ppguid;
4632 
4633 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4634 
4635 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4636 		pvd = vd->vdev_parent;
4637 		ppvd = pvd->vdev_parent;
4638 		guid = vd->vdev_guid;
4639 		pguid = pvd->vdev_guid;
4640 		ppguid = ppvd->vdev_guid;
4641 		sguid = 0;
4642 		/*
4643 		 * If we have just finished replacing a hot spared device, then
4644 		 * we need to detach the parent's first child (the original hot
4645 		 * spare) as well.
4646 		 */
4647 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4648 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4649 			ASSERT(ppvd->vdev_children == 2);
4650 			sguid = ppvd->vdev_child[1]->vdev_guid;
4651 		}
4652 		spa_config_exit(spa, SCL_ALL, FTAG);
4653 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4654 			return;
4655 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4656 			return;
4657 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4658 	}
4659 
4660 	spa_config_exit(spa, SCL_ALL, FTAG);
4661 }
4662 
4663 /*
4664  * Update the stored path or FRU for this vdev.
4665  */
4666 int
4667 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4668     boolean_t ispath)
4669 {
4670 	vdev_t *vd;
4671 	boolean_t sync = B_FALSE;
4672 
4673 	spa_vdev_state_enter(spa, SCL_ALL);
4674 
4675 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4676 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4677 
4678 	if (!vd->vdev_ops->vdev_op_leaf)
4679 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4680 
4681 	if (ispath) {
4682 		if (strcmp(value, vd->vdev_path) != 0) {
4683 			spa_strfree(vd->vdev_path);
4684 			vd->vdev_path = spa_strdup(value);
4685 			sync = B_TRUE;
4686 		}
4687 	} else {
4688 		if (vd->vdev_fru == NULL) {
4689 			vd->vdev_fru = spa_strdup(value);
4690 			sync = B_TRUE;
4691 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4692 			spa_strfree(vd->vdev_fru);
4693 			vd->vdev_fru = spa_strdup(value);
4694 			sync = B_TRUE;
4695 		}
4696 	}
4697 
4698 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4699 }
4700 
4701 int
4702 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4703 {
4704 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4705 }
4706 
4707 int
4708 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4709 {
4710 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4711 }
4712 
4713 /*
4714  * ==========================================================================
4715  * SPA Scanning
4716  * ==========================================================================
4717  */
4718 
4719 int
4720 spa_scan_stop(spa_t *spa)
4721 {
4722 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4723 	if (dsl_scan_resilvering(spa->spa_dsl_pool))
4724 		return (EBUSY);
4725 	return (dsl_scan_cancel(spa->spa_dsl_pool));
4726 }
4727 
4728 int
4729 spa_scan(spa_t *spa, pool_scan_func_t func)
4730 {
4731 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4732 
4733 	if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
4734 		return (ENOTSUP);
4735 
4736 	/*
4737 	 * If a resilver was requested, but there is no DTL on a
4738 	 * writeable leaf device, we have nothing to do.
4739 	 */
4740 	if (func == POOL_SCAN_RESILVER &&
4741 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4742 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4743 		return (0);
4744 	}
4745 
4746 	return (dsl_scan(spa->spa_dsl_pool, func));
4747 }
4748 
4749 /*
4750  * ==========================================================================
4751  * SPA async task processing
4752  * ==========================================================================
4753  */
4754 
4755 static void
4756 spa_async_remove(spa_t *spa, vdev_t *vd)
4757 {
4758 	if (vd->vdev_remove_wanted) {
4759 		vd->vdev_remove_wanted = B_FALSE;
4760 		vd->vdev_delayed_close = B_FALSE;
4761 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4762 
4763 		/*
4764 		 * We want to clear the stats, but we don't want to do a full
4765 		 * vdev_clear() as that will cause us to throw away
4766 		 * degraded/faulted state as well as attempt to reopen the
4767 		 * device, all of which is a waste.
4768 		 */
4769 		vd->vdev_stat.vs_read_errors = 0;
4770 		vd->vdev_stat.vs_write_errors = 0;
4771 		vd->vdev_stat.vs_checksum_errors = 0;
4772 
4773 		vdev_state_dirty(vd->vdev_top);
4774 	}
4775 
4776 	for (int c = 0; c < vd->vdev_children; c++)
4777 		spa_async_remove(spa, vd->vdev_child[c]);
4778 }
4779 
4780 static void
4781 spa_async_probe(spa_t *spa, vdev_t *vd)
4782 {
4783 	if (vd->vdev_probe_wanted) {
4784 		vd->vdev_probe_wanted = B_FALSE;
4785 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4786 	}
4787 
4788 	for (int c = 0; c < vd->vdev_children; c++)
4789 		spa_async_probe(spa, vd->vdev_child[c]);
4790 }
4791 
4792 static void
4793 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4794 {
4795 	sysevent_id_t eid;
4796 	nvlist_t *attr;
4797 	char *physpath;
4798 
4799 	if (!spa->spa_autoexpand)
4800 		return;
4801 
4802 	for (int c = 0; c < vd->vdev_children; c++) {
4803 		vdev_t *cvd = vd->vdev_child[c];
4804 		spa_async_autoexpand(spa, cvd);
4805 	}
4806 
4807 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4808 		return;
4809 
4810 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4811 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4812 
4813 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4814 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4815 
4816 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4817 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4818 
4819 	nvlist_free(attr);
4820 	kmem_free(physpath, MAXPATHLEN);
4821 }
4822 
4823 static void
4824 spa_async_thread(spa_t *spa)
4825 {
4826 	int tasks;
4827 
4828 	ASSERT(spa->spa_sync_on);
4829 
4830 	mutex_enter(&spa->spa_async_lock);
4831 	tasks = spa->spa_async_tasks;
4832 	spa->spa_async_tasks = 0;
4833 	mutex_exit(&spa->spa_async_lock);
4834 
4835 	/*
4836 	 * See if the config needs to be updated.
4837 	 */
4838 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4839 		uint64_t old_space, new_space;
4840 
4841 		mutex_enter(&spa_namespace_lock);
4842 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4843 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4844 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4845 		mutex_exit(&spa_namespace_lock);
4846 
4847 		/*
4848 		 * If the pool grew as a result of the config update,
4849 		 * then log an internal history event.
4850 		 */
4851 		if (new_space != old_space) {
4852 			spa_history_log_internal(LOG_POOL_VDEV_ONLINE,
4853 			    spa, NULL,
4854 			    "pool '%s' size: %llu(+%llu)",
4855 			    spa_name(spa), new_space, new_space - old_space);
4856 		}
4857 	}
4858 
4859 	/*
4860 	 * See if any devices need to be marked REMOVED.
4861 	 */
4862 	if (tasks & SPA_ASYNC_REMOVE) {
4863 		spa_vdev_state_enter(spa, SCL_NONE);
4864 		spa_async_remove(spa, spa->spa_root_vdev);
4865 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4866 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4867 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4868 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4869 		(void) spa_vdev_state_exit(spa, NULL, 0);
4870 	}
4871 
4872 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4873 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4874 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4875 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4876 	}
4877 
4878 	/*
4879 	 * See if any devices need to be probed.
4880 	 */
4881 	if (tasks & SPA_ASYNC_PROBE) {
4882 		spa_vdev_state_enter(spa, SCL_NONE);
4883 		spa_async_probe(spa, spa->spa_root_vdev);
4884 		(void) spa_vdev_state_exit(spa, NULL, 0);
4885 	}
4886 
4887 	/*
4888 	 * If any devices are done replacing, detach them.
4889 	 */
4890 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4891 		spa_vdev_resilver_done(spa);
4892 
4893 	/*
4894 	 * Kick off a resilver.
4895 	 */
4896 	if (tasks & SPA_ASYNC_RESILVER)
4897 		dsl_resilver_restart(spa->spa_dsl_pool, 0);
4898 
4899 	/*
4900 	 * Let the world know that we're done.
4901 	 */
4902 	mutex_enter(&spa->spa_async_lock);
4903 	spa->spa_async_thread = NULL;
4904 	cv_broadcast(&spa->spa_async_cv);
4905 	mutex_exit(&spa->spa_async_lock);
4906 	thread_exit();
4907 }
4908 
4909 void
4910 spa_async_suspend(spa_t *spa)
4911 {
4912 	mutex_enter(&spa->spa_async_lock);
4913 	spa->spa_async_suspended++;
4914 	while (spa->spa_async_thread != NULL)
4915 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4916 	mutex_exit(&spa->spa_async_lock);
4917 }
4918 
4919 void
4920 spa_async_resume(spa_t *spa)
4921 {
4922 	mutex_enter(&spa->spa_async_lock);
4923 	ASSERT(spa->spa_async_suspended != 0);
4924 	spa->spa_async_suspended--;
4925 	mutex_exit(&spa->spa_async_lock);
4926 }
4927 
4928 static void
4929 spa_async_dispatch(spa_t *spa)
4930 {
4931 	mutex_enter(&spa->spa_async_lock);
4932 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4933 	    spa->spa_async_thread == NULL &&
4934 	    rootdir != NULL && !vn_is_readonly(rootdir))
4935 		spa->spa_async_thread = thread_create(NULL, 0,
4936 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4937 	mutex_exit(&spa->spa_async_lock);
4938 }
4939 
4940 void
4941 spa_async_request(spa_t *spa, int task)
4942 {
4943 	zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
4944 	mutex_enter(&spa->spa_async_lock);
4945 	spa->spa_async_tasks |= task;
4946 	mutex_exit(&spa->spa_async_lock);
4947 }
4948 
4949 /*
4950  * ==========================================================================
4951  * SPA syncing routines
4952  * ==========================================================================
4953  */
4954 
4955 static int
4956 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4957 {
4958 	bpobj_t *bpo = arg;
4959 	bpobj_enqueue(bpo, bp, tx);
4960 	return (0);
4961 }
4962 
4963 static int
4964 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4965 {
4966 	zio_t *zio = arg;
4967 
4968 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4969 	    zio->io_flags));
4970 	return (0);
4971 }
4972 
4973 static void
4974 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4975 {
4976 	char *packed = NULL;
4977 	size_t bufsize;
4978 	size_t nvsize = 0;
4979 	dmu_buf_t *db;
4980 
4981 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4982 
4983 	/*
4984 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4985 	 * information.  This avoids the dbuf_will_dirty() path and
4986 	 * saves us a pre-read to get data we don't actually care about.
4987 	 */
4988 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4989 	packed = kmem_alloc(bufsize, KM_SLEEP);
4990 
4991 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4992 	    KM_SLEEP) == 0);
4993 	bzero(packed + nvsize, bufsize - nvsize);
4994 
4995 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4996 
4997 	kmem_free(packed, bufsize);
4998 
4999 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
5000 	dmu_buf_will_dirty(db, tx);
5001 	*(uint64_t *)db->db_data = nvsize;
5002 	dmu_buf_rele(db, FTAG);
5003 }
5004 
5005 static void
5006 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
5007     const char *config, const char *entry)
5008 {
5009 	nvlist_t *nvroot;
5010 	nvlist_t **list;
5011 	int i;
5012 
5013 	if (!sav->sav_sync)
5014 		return;
5015 
5016 	/*
5017 	 * Update the MOS nvlist describing the list of available devices.
5018 	 * spa_validate_aux() will have already made sure this nvlist is
5019 	 * valid and the vdevs are labeled appropriately.
5020 	 */
5021 	if (sav->sav_object == 0) {
5022 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5023 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5024 		    sizeof (uint64_t), tx);
5025 		VERIFY(zap_update(spa->spa_meta_objset,
5026 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5027 		    &sav->sav_object, tx) == 0);
5028 	}
5029 
5030 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5031 	if (sav->sav_count == 0) {
5032 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5033 	} else {
5034 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5035 		for (i = 0; i < sav->sav_count; i++)
5036 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5037 			    B_FALSE, VDEV_CONFIG_L2CACHE);
5038 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5039 		    sav->sav_count) == 0);
5040 		for (i = 0; i < sav->sav_count; i++)
5041 			nvlist_free(list[i]);
5042 		kmem_free(list, sav->sav_count * sizeof (void *));
5043 	}
5044 
5045 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5046 	nvlist_free(nvroot);
5047 
5048 	sav->sav_sync = B_FALSE;
5049 }
5050 
5051 static void
5052 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5053 {
5054 	nvlist_t *config;
5055 
5056 	if (list_is_empty(&spa->spa_config_dirty_list))
5057 		return;
5058 
5059 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5060 
5061 	config = spa_config_generate(spa, spa->spa_root_vdev,
5062 	    dmu_tx_get_txg(tx), B_FALSE);
5063 
5064 	spa_config_exit(spa, SCL_STATE, FTAG);
5065 
5066 	if (spa->spa_config_syncing)
5067 		nvlist_free(spa->spa_config_syncing);
5068 	spa->spa_config_syncing = config;
5069 
5070 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5071 }
5072 
5073 /*
5074  * Set zpool properties.
5075  */
5076 static void
5077 spa_sync_props(void *arg1, void *arg2, dmu_tx_t *tx)
5078 {
5079 	spa_t *spa = arg1;
5080 	objset_t *mos = spa->spa_meta_objset;
5081 	nvlist_t *nvp = arg2;
5082 	nvpair_t *elem;
5083 	uint64_t intval;
5084 	char *strval;
5085 	zpool_prop_t prop;
5086 	const char *propname;
5087 	zprop_type_t proptype;
5088 
5089 	mutex_enter(&spa->spa_props_lock);
5090 
5091 	elem = NULL;
5092 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5093 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5094 		case ZPOOL_PROP_VERSION:
5095 			/*
5096 			 * Only set version for non-zpool-creation cases
5097 			 * (set/import). spa_create() needs special care
5098 			 * for version setting.
5099 			 */
5100 			if (tx->tx_txg != TXG_INITIAL) {
5101 				VERIFY(nvpair_value_uint64(elem,
5102 				    &intval) == 0);
5103 				ASSERT(intval <= SPA_VERSION);
5104 				ASSERT(intval >= spa_version(spa));
5105 				spa->spa_uberblock.ub_version = intval;
5106 				vdev_config_dirty(spa->spa_root_vdev);
5107 			}
5108 			break;
5109 
5110 		case ZPOOL_PROP_ALTROOT:
5111 			/*
5112 			 * 'altroot' is a non-persistent property. It should
5113 			 * have been set temporarily at creation or import time.
5114 			 */
5115 			ASSERT(spa->spa_root != NULL);
5116 			break;
5117 
5118 		case ZPOOL_PROP_CACHEFILE:
5119 			/*
5120 			 * 'cachefile' is also a non-persisitent property.
5121 			 */
5122 			break;
5123 		default:
5124 			/*
5125 			 * Set pool property values in the poolprops mos object.
5126 			 */
5127 			if (spa->spa_pool_props_object == 0) {
5128 				VERIFY((spa->spa_pool_props_object =
5129 				    zap_create(mos, DMU_OT_POOL_PROPS,
5130 				    DMU_OT_NONE, 0, tx)) > 0);
5131 
5132 				VERIFY(zap_update(mos,
5133 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5134 				    8, 1, &spa->spa_pool_props_object, tx)
5135 				    == 0);
5136 			}
5137 
5138 			/* normalize the property name */
5139 			propname = zpool_prop_to_name(prop);
5140 			proptype = zpool_prop_get_type(prop);
5141 
5142 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5143 				ASSERT(proptype == PROP_TYPE_STRING);
5144 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5145 				VERIFY(zap_update(mos,
5146 				    spa->spa_pool_props_object, propname,
5147 				    1, strlen(strval) + 1, strval, tx) == 0);
5148 
5149 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5150 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5151 
5152 				if (proptype == PROP_TYPE_INDEX) {
5153 					const char *unused;
5154 					VERIFY(zpool_prop_index_to_string(
5155 					    prop, intval, &unused) == 0);
5156 				}
5157 				VERIFY(zap_update(mos,
5158 				    spa->spa_pool_props_object, propname,
5159 				    8, 1, &intval, tx) == 0);
5160 			} else {
5161 				ASSERT(0); /* not allowed */
5162 			}
5163 
5164 			switch (prop) {
5165 			case ZPOOL_PROP_DELEGATION:
5166 				spa->spa_delegation = intval;
5167 				break;
5168 			case ZPOOL_PROP_BOOTFS:
5169 				spa->spa_bootfs = intval;
5170 				break;
5171 			case ZPOOL_PROP_FAILUREMODE:
5172 				spa->spa_failmode = intval;
5173 				break;
5174 			case ZPOOL_PROP_AUTOEXPAND:
5175 				spa->spa_autoexpand = intval;
5176 				if (tx->tx_txg != TXG_INITIAL)
5177 					spa_async_request(spa,
5178 					    SPA_ASYNC_AUTOEXPAND);
5179 				break;
5180 			case ZPOOL_PROP_DEDUPDITTO:
5181 				spa->spa_dedup_ditto = intval;
5182 				break;
5183 			default:
5184 				break;
5185 			}
5186 		}
5187 
5188 		/* log internal history if this is not a zpool create */
5189 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5190 		    tx->tx_txg != TXG_INITIAL) {
5191 			spa_history_log_internal(LOG_POOL_PROPSET,
5192 			    spa, tx, "%s %lld %s",
5193 			    nvpair_name(elem), intval, spa_name(spa));
5194 		}
5195 	}
5196 
5197 	mutex_exit(&spa->spa_props_lock);
5198 }
5199 
5200 /*
5201  * Perform one-time upgrade on-disk changes.  spa_version() does not
5202  * reflect the new version this txg, so there must be no changes this
5203  * txg to anything that the upgrade code depends on after it executes.
5204  * Therefore this must be called after dsl_pool_sync() does the sync
5205  * tasks.
5206  */
5207 static void
5208 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
5209 {
5210 	dsl_pool_t *dp = spa->spa_dsl_pool;
5211 
5212 	ASSERT(spa->spa_sync_pass == 1);
5213 
5214 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5215 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5216 		dsl_pool_create_origin(dp, tx);
5217 
5218 		/* Keeping the origin open increases spa_minref */
5219 		spa->spa_minref += 3;
5220 	}
5221 
5222 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5223 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5224 		dsl_pool_upgrade_clones(dp, tx);
5225 	}
5226 
5227 	if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
5228 	    spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
5229 		dsl_pool_upgrade_dir_clones(dp, tx);
5230 
5231 		/* Keeping the freedir open increases spa_minref */
5232 		spa->spa_minref += 3;
5233 	}
5234 }
5235 
5236 /*
5237  * Sync the specified transaction group.  New blocks may be dirtied as
5238  * part of the process, so we iterate until it converges.
5239  */
5240 void
5241 spa_sync(spa_t *spa, uint64_t txg)
5242 {
5243 	dsl_pool_t *dp = spa->spa_dsl_pool;
5244 	objset_t *mos = spa->spa_meta_objset;
5245 	bpobj_t *defer_bpo = &spa->spa_deferred_bpobj;
5246 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5247 	vdev_t *rvd = spa->spa_root_vdev;
5248 	vdev_t *vd;
5249 	dmu_tx_t *tx;
5250 	int error;
5251 
5252 	/*
5253 	 * Lock out configuration changes.
5254 	 */
5255 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5256 
5257 	spa->spa_syncing_txg = txg;
5258 	spa->spa_sync_pass = 0;
5259 
5260 	/*
5261 	 * If there are any pending vdev state changes, convert them
5262 	 * into config changes that go out with this transaction group.
5263 	 */
5264 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5265 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5266 		/*
5267 		 * We need the write lock here because, for aux vdevs,
5268 		 * calling vdev_config_dirty() modifies sav_config.
5269 		 * This is ugly and will become unnecessary when we
5270 		 * eliminate the aux vdev wart by integrating all vdevs
5271 		 * into the root vdev tree.
5272 		 */
5273 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5274 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5275 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5276 			vdev_state_clean(vd);
5277 			vdev_config_dirty(vd);
5278 		}
5279 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5280 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5281 	}
5282 	spa_config_exit(spa, SCL_STATE, FTAG);
5283 
5284 	tx = dmu_tx_create_assigned(dp, txg);
5285 
5286 	/*
5287 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5288 	 * set spa_deflate if we have no raid-z vdevs.
5289 	 */
5290 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5291 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5292 		int i;
5293 
5294 		for (i = 0; i < rvd->vdev_children; i++) {
5295 			vd = rvd->vdev_child[i];
5296 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5297 				break;
5298 		}
5299 		if (i == rvd->vdev_children) {
5300 			spa->spa_deflate = TRUE;
5301 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5302 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5303 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5304 		}
5305 	}
5306 
5307 	/*
5308 	 * If anything has changed in this txg, or if someone is waiting
5309 	 * for this txg to sync (eg, spa_vdev_remove()), push the
5310 	 * deferred frees from the previous txg.  If not, leave them
5311 	 * alone so that we don't generate work on an otherwise idle
5312 	 * system.
5313 	 */
5314 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5315 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5316 	    !txg_list_empty(&dp->dp_sync_tasks, txg) ||
5317 	    ((dsl_scan_active(dp->dp_scan) ||
5318 	    txg_sync_waiting(dp)) && !spa_shutting_down(spa))) {
5319 		zio_t *zio = zio_root(spa, NULL, NULL, 0);
5320 		VERIFY3U(bpobj_iterate(defer_bpo,
5321 		    spa_free_sync_cb, zio, tx), ==, 0);
5322 		VERIFY3U(zio_wait(zio), ==, 0);
5323 	}
5324 
5325 	/*
5326 	 * Iterate to convergence.
5327 	 */
5328 	do {
5329 		int pass = ++spa->spa_sync_pass;
5330 
5331 		spa_sync_config_object(spa, tx);
5332 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5333 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5334 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5335 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5336 		spa_errlog_sync(spa, txg);
5337 		dsl_pool_sync(dp, txg);
5338 
5339 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5340 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5341 			bplist_iterate(free_bpl, spa_free_sync_cb,
5342 			    zio, tx);
5343 			VERIFY(zio_wait(zio) == 0);
5344 		} else {
5345 			bplist_iterate(free_bpl, bpobj_enqueue_cb,
5346 			    defer_bpo, tx);
5347 		}
5348 
5349 		ddt_sync(spa, txg);
5350 		dsl_scan_sync(dp, tx);
5351 
5352 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5353 			vdev_sync(vd, txg);
5354 
5355 		if (pass == 1)
5356 			spa_sync_upgrades(spa, tx);
5357 
5358 	} while (dmu_objset_is_dirty(mos, txg));
5359 
5360 	/*
5361 	 * Rewrite the vdev configuration (which includes the uberblock)
5362 	 * to commit the transaction group.
5363 	 *
5364 	 * If there are no dirty vdevs, we sync the uberblock to a few
5365 	 * random top-level vdevs that are known to be visible in the
5366 	 * config cache (see spa_vdev_add() for a complete description).
5367 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5368 	 */
5369 	for (;;) {
5370 		/*
5371 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5372 		 * while we're attempting to write the vdev labels.
5373 		 */
5374 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5375 
5376 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5377 			vdev_t *svd[SPA_DVAS_PER_BP];
5378 			int svdcount = 0;
5379 			int children = rvd->vdev_children;
5380 			int c0 = spa_get_random(children);
5381 
5382 			for (int c = 0; c < children; c++) {
5383 				vd = rvd->vdev_child[(c0 + c) % children];
5384 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5385 					continue;
5386 				svd[svdcount++] = vd;
5387 				if (svdcount == SPA_DVAS_PER_BP)
5388 					break;
5389 			}
5390 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5391 			if (error != 0)
5392 				error = vdev_config_sync(svd, svdcount, txg,
5393 				    B_TRUE);
5394 		} else {
5395 			error = vdev_config_sync(rvd->vdev_child,
5396 			    rvd->vdev_children, txg, B_FALSE);
5397 			if (error != 0)
5398 				error = vdev_config_sync(rvd->vdev_child,
5399 				    rvd->vdev_children, txg, B_TRUE);
5400 		}
5401 
5402 		spa_config_exit(spa, SCL_STATE, FTAG);
5403 
5404 		if (error == 0)
5405 			break;
5406 		zio_suspend(spa, NULL);
5407 		zio_resume_wait(spa);
5408 	}
5409 	dmu_tx_commit(tx);
5410 
5411 	/*
5412 	 * Clear the dirty config list.
5413 	 */
5414 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5415 		vdev_config_clean(vd);
5416 
5417 	/*
5418 	 * Now that the new config has synced transactionally,
5419 	 * let it become visible to the config cache.
5420 	 */
5421 	if (spa->spa_config_syncing != NULL) {
5422 		spa_config_set(spa, spa->spa_config_syncing);
5423 		spa->spa_config_txg = txg;
5424 		spa->spa_config_syncing = NULL;
5425 	}
5426 
5427 	spa->spa_ubsync = spa->spa_uberblock;
5428 
5429 	dsl_pool_sync_done(dp, txg);
5430 
5431 	/*
5432 	 * Update usable space statistics.
5433 	 */
5434 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5435 		vdev_sync_done(vd, txg);
5436 
5437 	spa_update_dspace(spa);
5438 
5439 	/*
5440 	 * It had better be the case that we didn't dirty anything
5441 	 * since vdev_config_sync().
5442 	 */
5443 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5444 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5445 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5446 
5447 	spa->spa_sync_pass = 0;
5448 
5449 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5450 
5451 	spa_handle_ignored_writes(spa);
5452 
5453 	/*
5454 	 * If any async tasks have been requested, kick them off.
5455 	 */
5456 	spa_async_dispatch(spa);
5457 }
5458 
5459 /*
5460  * Sync all pools.  We don't want to hold the namespace lock across these
5461  * operations, so we take a reference on the spa_t and drop the lock during the
5462  * sync.
5463  */
5464 void
5465 spa_sync_allpools(void)
5466 {
5467 	spa_t *spa = NULL;
5468 	mutex_enter(&spa_namespace_lock);
5469 	while ((spa = spa_next(spa)) != NULL) {
5470 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
5471 			continue;
5472 		spa_open_ref(spa, FTAG);
5473 		mutex_exit(&spa_namespace_lock);
5474 		txg_wait_synced(spa_get_dsl(spa), 0);
5475 		mutex_enter(&spa_namespace_lock);
5476 		spa_close(spa, FTAG);
5477 	}
5478 	mutex_exit(&spa_namespace_lock);
5479 }
5480 
5481 /*
5482  * ==========================================================================
5483  * Miscellaneous routines
5484  * ==========================================================================
5485  */
5486 
5487 /*
5488  * Remove all pools in the system.
5489  */
5490 void
5491 spa_evict_all(void)
5492 {
5493 	spa_t *spa;
5494 
5495 	/*
5496 	 * Remove all cached state.  All pools should be closed now,
5497 	 * so every spa in the AVL tree should be unreferenced.
5498 	 */
5499 	mutex_enter(&spa_namespace_lock);
5500 	while ((spa = spa_next(NULL)) != NULL) {
5501 		/*
5502 		 * Stop async tasks.  The async thread may need to detach
5503 		 * a device that's been replaced, which requires grabbing
5504 		 * spa_namespace_lock, so we must drop it here.
5505 		 */
5506 		spa_open_ref(spa, FTAG);
5507 		mutex_exit(&spa_namespace_lock);
5508 		spa_async_suspend(spa);
5509 		mutex_enter(&spa_namespace_lock);
5510 		spa_close(spa, FTAG);
5511 
5512 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5513 			spa_unload(spa);
5514 			spa_deactivate(spa);
5515 		}
5516 		spa_remove(spa);
5517 	}
5518 	mutex_exit(&spa_namespace_lock);
5519 }
5520 
5521 vdev_t *
5522 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5523 {
5524 	vdev_t *vd;
5525 	int i;
5526 
5527 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5528 		return (vd);
5529 
5530 	if (aux) {
5531 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5532 			vd = spa->spa_l2cache.sav_vdevs[i];
5533 			if (vd->vdev_guid == guid)
5534 				return (vd);
5535 		}
5536 
5537 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5538 			vd = spa->spa_spares.sav_vdevs[i];
5539 			if (vd->vdev_guid == guid)
5540 				return (vd);
5541 		}
5542 	}
5543 
5544 	return (NULL);
5545 }
5546 
5547 void
5548 spa_upgrade(spa_t *spa, uint64_t version)
5549 {
5550 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5551 
5552 	/*
5553 	 * This should only be called for a non-faulted pool, and since a
5554 	 * future version would result in an unopenable pool, this shouldn't be
5555 	 * possible.
5556 	 */
5557 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5558 	ASSERT(version >= spa->spa_uberblock.ub_version);
5559 
5560 	spa->spa_uberblock.ub_version = version;
5561 	vdev_config_dirty(spa->spa_root_vdev);
5562 
5563 	spa_config_exit(spa, SCL_ALL, FTAG);
5564 
5565 	txg_wait_synced(spa_get_dsl(spa), 0);
5566 }
5567 
5568 boolean_t
5569 spa_has_spare(spa_t *spa, uint64_t guid)
5570 {
5571 	int i;
5572 	uint64_t spareguid;
5573 	spa_aux_vdev_t *sav = &spa->spa_spares;
5574 
5575 	for (i = 0; i < sav->sav_count; i++)
5576 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5577 			return (B_TRUE);
5578 
5579 	for (i = 0; i < sav->sav_npending; i++) {
5580 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5581 		    &spareguid) == 0 && spareguid == guid)
5582 			return (B_TRUE);
5583 	}
5584 
5585 	return (B_FALSE);
5586 }
5587 
5588 /*
5589  * Check if a pool has an active shared spare device.
5590  * Note: reference count of an active spare is 2, as a spare and as a replace
5591  */
5592 static boolean_t
5593 spa_has_active_shared_spare(spa_t *spa)
5594 {
5595 	int i, refcnt;
5596 	uint64_t pool;
5597 	spa_aux_vdev_t *sav = &spa->spa_spares;
5598 
5599 	for (i = 0; i < sav->sav_count; i++) {
5600 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5601 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5602 		    refcnt > 2)
5603 			return (B_TRUE);
5604 	}
5605 
5606 	return (B_FALSE);
5607 }
5608 
5609 /*
5610  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5611  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5612  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5613  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5614  * or zdb as real changes.
5615  */
5616 void
5617 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5618 {
5619 #ifdef _KERNEL
5620 	sysevent_t		*ev;
5621 	sysevent_attr_list_t	*attr = NULL;
5622 	sysevent_value_t	value;
5623 	sysevent_id_t		eid;
5624 
5625 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5626 	    SE_SLEEP);
5627 
5628 	value.value_type = SE_DATA_TYPE_STRING;
5629 	value.value.sv_string = spa_name(spa);
5630 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5631 		goto done;
5632 
5633 	value.value_type = SE_DATA_TYPE_UINT64;
5634 	value.value.sv_uint64 = spa_guid(spa);
5635 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5636 		goto done;
5637 
5638 	if (vd) {
5639 		value.value_type = SE_DATA_TYPE_UINT64;
5640 		value.value.sv_uint64 = vd->vdev_guid;
5641 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5642 		    SE_SLEEP) != 0)
5643 			goto done;
5644 
5645 		if (vd->vdev_path) {
5646 			value.value_type = SE_DATA_TYPE_STRING;
5647 			value.value.sv_string = vd->vdev_path;
5648 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5649 			    &value, SE_SLEEP) != 0)
5650 				goto done;
5651 		}
5652 	}
5653 
5654 	if (sysevent_attach_attributes(ev, attr) != 0)
5655 		goto done;
5656 	attr = NULL;
5657 
5658 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5659 
5660 done:
5661 	if (attr)
5662 		sysevent_free_attr(attr);
5663 	sysevent_free(ev);
5664 #endif
5665 }
5666