xref: /titanic_52/usr/src/uts/common/fs/zfs/spa.c (revision 02b4e56ca3a4e4a4fe9e52fca9c2972101f0e57f)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 
22 /*
23  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24  */
25 
26 /*
27  * This file contains all the routines used when modifying on-disk SPA state.
28  * This includes opening, importing, destroying, exporting a pool, and syncing a
29  * pool.
30  */
31 
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa_impl.h>
35 #include <sys/zio.h>
36 #include <sys/zio_checksum.h>
37 #include <sys/dmu.h>
38 #include <sys/dmu_tx.h>
39 #include <sys/zap.h>
40 #include <sys/zil.h>
41 #include <sys/ddt.h>
42 #include <sys/vdev_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/metaslab_impl.h>
45 #include <sys/uberblock_impl.h>
46 #include <sys/txg.h>
47 #include <sys/avl.h>
48 #include <sys/dmu_traverse.h>
49 #include <sys/dmu_objset.h>
50 #include <sys/unique.h>
51 #include <sys/dsl_pool.h>
52 #include <sys/dsl_dataset.h>
53 #include <sys/dsl_dir.h>
54 #include <sys/dsl_prop.h>
55 #include <sys/dsl_synctask.h>
56 #include <sys/fs/zfs.h>
57 #include <sys/arc.h>
58 #include <sys/callb.h>
59 #include <sys/systeminfo.h>
60 #include <sys/spa_boot.h>
61 #include <sys/zfs_ioctl.h>
62 
63 #ifdef	_KERNEL
64 #include <sys/bootprops.h>
65 #include <sys/callb.h>
66 #include <sys/cpupart.h>
67 #include <sys/pool.h>
68 #include <sys/sysdc.h>
69 #include <sys/zone.h>
70 #endif	/* _KERNEL */
71 
72 #include "zfs_prop.h"
73 #include "zfs_comutil.h"
74 
75 typedef enum zti_modes {
76 	zti_mode_fixed,			/* value is # of threads (min 1) */
77 	zti_mode_online_percent,	/* value is % of online CPUs */
78 	zti_mode_batch,			/* cpu-intensive; value is ignored */
79 	zti_mode_null,			/* don't create a taskq */
80 	zti_nmodes
81 } zti_modes_t;
82 
83 #define	ZTI_FIX(n)	{ zti_mode_fixed, (n) }
84 #define	ZTI_PCT(n)	{ zti_mode_online_percent, (n) }
85 #define	ZTI_BATCH	{ zti_mode_batch, 0 }
86 #define	ZTI_NULL	{ zti_mode_null, 0 }
87 
88 #define	ZTI_ONE		ZTI_FIX(1)
89 
90 typedef struct zio_taskq_info {
91 	enum zti_modes zti_mode;
92 	uint_t zti_value;
93 } zio_taskq_info_t;
94 
95 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
96 	"issue", "issue_high", "intr", "intr_high"
97 };
98 
99 /*
100  * Define the taskq threads for the following I/O types:
101  * 	NULL, READ, WRITE, FREE, CLAIM, and IOCTL
102  */
103 const zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
104 	/* ISSUE	ISSUE_HIGH	INTR		INTR_HIGH */
105 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
106 	{ ZTI_FIX(8),	ZTI_NULL,	ZTI_BATCH,	ZTI_NULL },
107 	{ ZTI_BATCH,	ZTI_FIX(5),	ZTI_FIX(8),	ZTI_FIX(5) },
108 	{ ZTI_FIX(10),	ZTI_NULL,	ZTI_FIX(10),	ZTI_NULL },
109 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
110 	{ ZTI_ONE,	ZTI_NULL,	ZTI_ONE,	ZTI_NULL },
111 };
112 
113 static void spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx);
114 static boolean_t spa_has_active_shared_spare(spa_t *spa);
115 static int spa_load_impl(spa_t *spa, uint64_t, nvlist_t *config,
116     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
117     char **ereport);
118 
119 uint_t		zio_taskq_batch_pct = 100;	/* 1 thread per cpu in pset */
120 id_t		zio_taskq_psrset_bind = PS_NONE;
121 boolean_t	zio_taskq_sysdc = B_TRUE;	/* use SDC scheduling class */
122 uint_t		zio_taskq_basedc = 80;		/* base duty cycle */
123 
124 boolean_t	spa_create_process = B_TRUE;	/* no process ==> no sysdc */
125 
126 /*
127  * This (illegal) pool name is used when temporarily importing a spa_t in order
128  * to get the vdev stats associated with the imported devices.
129  */
130 #define	TRYIMPORT_NAME	"$import"
131 
132 /*
133  * ==========================================================================
134  * SPA properties routines
135  * ==========================================================================
136  */
137 
138 /*
139  * Add a (source=src, propname=propval) list to an nvlist.
140  */
141 static void
142 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, char *strval,
143     uint64_t intval, zprop_source_t src)
144 {
145 	const char *propname = zpool_prop_to_name(prop);
146 	nvlist_t *propval;
147 
148 	VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
149 	VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
150 
151 	if (strval != NULL)
152 		VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
153 	else
154 		VERIFY(nvlist_add_uint64(propval, ZPROP_VALUE, intval) == 0);
155 
156 	VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
157 	nvlist_free(propval);
158 }
159 
160 /*
161  * Get property values from the spa configuration.
162  */
163 static void
164 spa_prop_get_config(spa_t *spa, nvlist_t **nvp)
165 {
166 	uint64_t size;
167 	uint64_t alloc;
168 	uint64_t cap, version;
169 	zprop_source_t src = ZPROP_SRC_NONE;
170 	spa_config_dirent_t *dp;
171 
172 	ASSERT(MUTEX_HELD(&spa->spa_props_lock));
173 
174 	if (spa->spa_root_vdev != NULL) {
175 		alloc = metaslab_class_get_alloc(spa_normal_class(spa));
176 		size = metaslab_class_get_space(spa_normal_class(spa));
177 		spa_prop_add_list(*nvp, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
178 		spa_prop_add_list(*nvp, ZPOOL_PROP_SIZE, NULL, size, src);
179 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
180 		spa_prop_add_list(*nvp, ZPOOL_PROP_FREE, NULL,
181 		    size - alloc, src);
182 
183 		cap = (size == 0) ? 0 : (alloc * 100 / size);
184 		spa_prop_add_list(*nvp, ZPOOL_PROP_CAPACITY, NULL, cap, src);
185 
186 		spa_prop_add_list(*nvp, ZPOOL_PROP_DEDUPRATIO, NULL,
187 		    ddt_get_pool_dedup_ratio(spa), src);
188 
189 		spa_prop_add_list(*nvp, ZPOOL_PROP_HEALTH, NULL,
190 		    spa->spa_root_vdev->vdev_state, src);
191 
192 		version = spa_version(spa);
193 		if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION))
194 			src = ZPROP_SRC_DEFAULT;
195 		else
196 			src = ZPROP_SRC_LOCAL;
197 		spa_prop_add_list(*nvp, ZPOOL_PROP_VERSION, NULL, version, src);
198 	}
199 
200 	spa_prop_add_list(*nvp, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
201 
202 	if (spa->spa_root != NULL)
203 		spa_prop_add_list(*nvp, ZPOOL_PROP_ALTROOT, spa->spa_root,
204 		    0, ZPROP_SRC_LOCAL);
205 
206 	if ((dp = list_head(&spa->spa_config_list)) != NULL) {
207 		if (dp->scd_path == NULL) {
208 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
209 			    "none", 0, ZPROP_SRC_LOCAL);
210 		} else if (strcmp(dp->scd_path, spa_config_path) != 0) {
211 			spa_prop_add_list(*nvp, ZPOOL_PROP_CACHEFILE,
212 			    dp->scd_path, 0, ZPROP_SRC_LOCAL);
213 		}
214 	}
215 }
216 
217 /*
218  * Get zpool property values.
219  */
220 int
221 spa_prop_get(spa_t *spa, nvlist_t **nvp)
222 {
223 	objset_t *mos = spa->spa_meta_objset;
224 	zap_cursor_t zc;
225 	zap_attribute_t za;
226 	int err;
227 
228 	VERIFY(nvlist_alloc(nvp, NV_UNIQUE_NAME, KM_SLEEP) == 0);
229 
230 	mutex_enter(&spa->spa_props_lock);
231 
232 	/*
233 	 * Get properties from the spa config.
234 	 */
235 	spa_prop_get_config(spa, nvp);
236 
237 	/* If no pool property object, no more prop to get. */
238 	if (mos == NULL || spa->spa_pool_props_object == 0) {
239 		mutex_exit(&spa->spa_props_lock);
240 		return (0);
241 	}
242 
243 	/*
244 	 * Get properties from the MOS pool property object.
245 	 */
246 	for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
247 	    (err = zap_cursor_retrieve(&zc, &za)) == 0;
248 	    zap_cursor_advance(&zc)) {
249 		uint64_t intval = 0;
250 		char *strval = NULL;
251 		zprop_source_t src = ZPROP_SRC_DEFAULT;
252 		zpool_prop_t prop;
253 
254 		if ((prop = zpool_name_to_prop(za.za_name)) == ZPROP_INVAL)
255 			continue;
256 
257 		switch (za.za_integer_length) {
258 		case 8:
259 			/* integer property */
260 			if (za.za_first_integer !=
261 			    zpool_prop_default_numeric(prop))
262 				src = ZPROP_SRC_LOCAL;
263 
264 			if (prop == ZPOOL_PROP_BOOTFS) {
265 				dsl_pool_t *dp;
266 				dsl_dataset_t *ds = NULL;
267 
268 				dp = spa_get_dsl(spa);
269 				rw_enter(&dp->dp_config_rwlock, RW_READER);
270 				if (err = dsl_dataset_hold_obj(dp,
271 				    za.za_first_integer, FTAG, &ds)) {
272 					rw_exit(&dp->dp_config_rwlock);
273 					break;
274 				}
275 
276 				strval = kmem_alloc(
277 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1,
278 				    KM_SLEEP);
279 				dsl_dataset_name(ds, strval);
280 				dsl_dataset_rele(ds, FTAG);
281 				rw_exit(&dp->dp_config_rwlock);
282 			} else {
283 				strval = NULL;
284 				intval = za.za_first_integer;
285 			}
286 
287 			spa_prop_add_list(*nvp, prop, strval, intval, src);
288 
289 			if (strval != NULL)
290 				kmem_free(strval,
291 				    MAXNAMELEN + strlen(MOS_DIR_NAME) + 1);
292 
293 			break;
294 
295 		case 1:
296 			/* string property */
297 			strval = kmem_alloc(za.za_num_integers, KM_SLEEP);
298 			err = zap_lookup(mos, spa->spa_pool_props_object,
299 			    za.za_name, 1, za.za_num_integers, strval);
300 			if (err) {
301 				kmem_free(strval, za.za_num_integers);
302 				break;
303 			}
304 			spa_prop_add_list(*nvp, prop, strval, 0, src);
305 			kmem_free(strval, za.za_num_integers);
306 			break;
307 
308 		default:
309 			break;
310 		}
311 	}
312 	zap_cursor_fini(&zc);
313 	mutex_exit(&spa->spa_props_lock);
314 out:
315 	if (err && err != ENOENT) {
316 		nvlist_free(*nvp);
317 		*nvp = NULL;
318 		return (err);
319 	}
320 
321 	return (0);
322 }
323 
324 /*
325  * Validate the given pool properties nvlist and modify the list
326  * for the property values to be set.
327  */
328 static int
329 spa_prop_validate(spa_t *spa, nvlist_t *props)
330 {
331 	nvpair_t *elem;
332 	int error = 0, reset_bootfs = 0;
333 	uint64_t objnum;
334 
335 	elem = NULL;
336 	while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
337 		zpool_prop_t prop;
338 		char *propname, *strval;
339 		uint64_t intval;
340 		objset_t *os;
341 		char *slash;
342 
343 		propname = nvpair_name(elem);
344 
345 		if ((prop = zpool_name_to_prop(propname)) == ZPROP_INVAL)
346 			return (EINVAL);
347 
348 		switch (prop) {
349 		case ZPOOL_PROP_VERSION:
350 			error = nvpair_value_uint64(elem, &intval);
351 			if (!error &&
352 			    (intval < spa_version(spa) || intval > SPA_VERSION))
353 				error = EINVAL;
354 			break;
355 
356 		case ZPOOL_PROP_DELEGATION:
357 		case ZPOOL_PROP_AUTOREPLACE:
358 		case ZPOOL_PROP_LISTSNAPS:
359 		case ZPOOL_PROP_AUTOEXPAND:
360 			error = nvpair_value_uint64(elem, &intval);
361 			if (!error && intval > 1)
362 				error = EINVAL;
363 			break;
364 
365 		case ZPOOL_PROP_BOOTFS:
366 			/*
367 			 * If the pool version is less than SPA_VERSION_BOOTFS,
368 			 * or the pool is still being created (version == 0),
369 			 * the bootfs property cannot be set.
370 			 */
371 			if (spa_version(spa) < SPA_VERSION_BOOTFS) {
372 				error = ENOTSUP;
373 				break;
374 			}
375 
376 			/*
377 			 * Make sure the vdev config is bootable
378 			 */
379 			if (!vdev_is_bootable(spa->spa_root_vdev)) {
380 				error = ENOTSUP;
381 				break;
382 			}
383 
384 			reset_bootfs = 1;
385 
386 			error = nvpair_value_string(elem, &strval);
387 
388 			if (!error) {
389 				uint64_t compress;
390 
391 				if (strval == NULL || strval[0] == '\0') {
392 					objnum = zpool_prop_default_numeric(
393 					    ZPOOL_PROP_BOOTFS);
394 					break;
395 				}
396 
397 				if (error = dmu_objset_hold(strval, FTAG, &os))
398 					break;
399 
400 				/* Must be ZPL and not gzip compressed. */
401 
402 				if (dmu_objset_type(os) != DMU_OST_ZFS) {
403 					error = ENOTSUP;
404 				} else if ((error = dsl_prop_get_integer(strval,
405 				    zfs_prop_to_name(ZFS_PROP_COMPRESSION),
406 				    &compress, NULL)) == 0 &&
407 				    !BOOTFS_COMPRESS_VALID(compress)) {
408 					error = ENOTSUP;
409 				} else {
410 					objnum = dmu_objset_id(os);
411 				}
412 				dmu_objset_rele(os, FTAG);
413 			}
414 			break;
415 
416 		case ZPOOL_PROP_FAILUREMODE:
417 			error = nvpair_value_uint64(elem, &intval);
418 			if (!error && (intval < ZIO_FAILURE_MODE_WAIT ||
419 			    intval > ZIO_FAILURE_MODE_PANIC))
420 				error = EINVAL;
421 
422 			/*
423 			 * This is a special case which only occurs when
424 			 * the pool has completely failed. This allows
425 			 * the user to change the in-core failmode property
426 			 * without syncing it out to disk (I/Os might
427 			 * currently be blocked). We do this by returning
428 			 * EIO to the caller (spa_prop_set) to trick it
429 			 * into thinking we encountered a property validation
430 			 * error.
431 			 */
432 			if (!error && spa_suspended(spa)) {
433 				spa->spa_failmode = intval;
434 				error = EIO;
435 			}
436 			break;
437 
438 		case ZPOOL_PROP_CACHEFILE:
439 			if ((error = nvpair_value_string(elem, &strval)) != 0)
440 				break;
441 
442 			if (strval[0] == '\0')
443 				break;
444 
445 			if (strcmp(strval, "none") == 0)
446 				break;
447 
448 			if (strval[0] != '/') {
449 				error = EINVAL;
450 				break;
451 			}
452 
453 			slash = strrchr(strval, '/');
454 			ASSERT(slash != NULL);
455 
456 			if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
457 			    strcmp(slash, "/..") == 0)
458 				error = EINVAL;
459 			break;
460 
461 		case ZPOOL_PROP_DEDUPDITTO:
462 			if (spa_version(spa) < SPA_VERSION_DEDUP)
463 				error = ENOTSUP;
464 			else
465 				error = nvpair_value_uint64(elem, &intval);
466 			if (error == 0 &&
467 			    intval != 0 && intval < ZIO_DEDUPDITTO_MIN)
468 				error = EINVAL;
469 			break;
470 		}
471 
472 		if (error)
473 			break;
474 	}
475 
476 	if (!error && reset_bootfs) {
477 		error = nvlist_remove(props,
478 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
479 
480 		if (!error) {
481 			error = nvlist_add_uint64(props,
482 			    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
483 		}
484 	}
485 
486 	return (error);
487 }
488 
489 void
490 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
491 {
492 	char *cachefile;
493 	spa_config_dirent_t *dp;
494 
495 	if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
496 	    &cachefile) != 0)
497 		return;
498 
499 	dp = kmem_alloc(sizeof (spa_config_dirent_t),
500 	    KM_SLEEP);
501 
502 	if (cachefile[0] == '\0')
503 		dp->scd_path = spa_strdup(spa_config_path);
504 	else if (strcmp(cachefile, "none") == 0)
505 		dp->scd_path = NULL;
506 	else
507 		dp->scd_path = spa_strdup(cachefile);
508 
509 	list_insert_head(&spa->spa_config_list, dp);
510 	if (need_sync)
511 		spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
512 }
513 
514 int
515 spa_prop_set(spa_t *spa, nvlist_t *nvp)
516 {
517 	int error;
518 	nvpair_t *elem;
519 	boolean_t need_sync = B_FALSE;
520 	zpool_prop_t prop;
521 
522 	if ((error = spa_prop_validate(spa, nvp)) != 0)
523 		return (error);
524 
525 	elem = NULL;
526 	while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
527 		if ((prop = zpool_name_to_prop(
528 		    nvpair_name(elem))) == ZPROP_INVAL)
529 			return (EINVAL);
530 
531 		if (prop == ZPOOL_PROP_CACHEFILE || prop == ZPOOL_PROP_ALTROOT)
532 			continue;
533 
534 		need_sync = B_TRUE;
535 		break;
536 	}
537 
538 	if (need_sync)
539 		return (dsl_sync_task_do(spa_get_dsl(spa), NULL, spa_sync_props,
540 		    spa, nvp, 3));
541 	else
542 		return (0);
543 }
544 
545 /*
546  * If the bootfs property value is dsobj, clear it.
547  */
548 void
549 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
550 {
551 	if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
552 		VERIFY(zap_remove(spa->spa_meta_objset,
553 		    spa->spa_pool_props_object,
554 		    zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
555 		spa->spa_bootfs = 0;
556 	}
557 }
558 
559 /*
560  * ==========================================================================
561  * SPA state manipulation (open/create/destroy/import/export)
562  * ==========================================================================
563  */
564 
565 static int
566 spa_error_entry_compare(const void *a, const void *b)
567 {
568 	spa_error_entry_t *sa = (spa_error_entry_t *)a;
569 	spa_error_entry_t *sb = (spa_error_entry_t *)b;
570 	int ret;
571 
572 	ret = bcmp(&sa->se_bookmark, &sb->se_bookmark,
573 	    sizeof (zbookmark_t));
574 
575 	if (ret < 0)
576 		return (-1);
577 	else if (ret > 0)
578 		return (1);
579 	else
580 		return (0);
581 }
582 
583 /*
584  * Utility function which retrieves copies of the current logs and
585  * re-initializes them in the process.
586  */
587 void
588 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
589 {
590 	ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
591 
592 	bcopy(&spa->spa_errlist_last, last, sizeof (avl_tree_t));
593 	bcopy(&spa->spa_errlist_scrub, scrub, sizeof (avl_tree_t));
594 
595 	avl_create(&spa->spa_errlist_scrub,
596 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
597 	    offsetof(spa_error_entry_t, se_avl));
598 	avl_create(&spa->spa_errlist_last,
599 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
600 	    offsetof(spa_error_entry_t, se_avl));
601 }
602 
603 static taskq_t *
604 spa_taskq_create(spa_t *spa, const char *name, enum zti_modes mode,
605     uint_t value)
606 {
607 	uint_t flags = TASKQ_PREPOPULATE;
608 	boolean_t batch = B_FALSE;
609 
610 	switch (mode) {
611 	case zti_mode_null:
612 		return (NULL);		/* no taskq needed */
613 
614 	case zti_mode_fixed:
615 		ASSERT3U(value, >=, 1);
616 		value = MAX(value, 1);
617 		break;
618 
619 	case zti_mode_batch:
620 		batch = B_TRUE;
621 		flags |= TASKQ_THREADS_CPU_PCT;
622 		value = zio_taskq_batch_pct;
623 		break;
624 
625 	case zti_mode_online_percent:
626 		flags |= TASKQ_THREADS_CPU_PCT;
627 		break;
628 
629 	default:
630 		panic("unrecognized mode for %s taskq (%u:%u) in "
631 		    "spa_activate()",
632 		    name, mode, value);
633 		break;
634 	}
635 
636 	if (zio_taskq_sysdc && spa->spa_proc != &p0) {
637 		if (batch)
638 			flags |= TASKQ_DC_BATCH;
639 
640 		return (taskq_create_sysdc(name, value, 50, INT_MAX,
641 		    spa->spa_proc, zio_taskq_basedc, flags));
642 	}
643 	return (taskq_create_proc(name, value, maxclsyspri, 50, INT_MAX,
644 	    spa->spa_proc, flags));
645 }
646 
647 static void
648 spa_create_zio_taskqs(spa_t *spa)
649 {
650 	for (int t = 0; t < ZIO_TYPES; t++) {
651 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
652 			const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
653 			enum zti_modes mode = ztip->zti_mode;
654 			uint_t value = ztip->zti_value;
655 			char name[32];
656 
657 			(void) snprintf(name, sizeof (name),
658 			    "%s_%s", zio_type_name[t], zio_taskq_types[q]);
659 
660 			spa->spa_zio_taskq[t][q] =
661 			    spa_taskq_create(spa, name, mode, value);
662 		}
663 	}
664 }
665 
666 #ifdef _KERNEL
667 static void
668 spa_thread(void *arg)
669 {
670 	callb_cpr_t cprinfo;
671 
672 	spa_t *spa = arg;
673 	user_t *pu = PTOU(curproc);
674 
675 	CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
676 	    spa->spa_name);
677 
678 	ASSERT(curproc != &p0);
679 	(void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
680 	    "zpool-%s", spa->spa_name);
681 	(void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
682 
683 	/* bind this thread to the requested psrset */
684 	if (zio_taskq_psrset_bind != PS_NONE) {
685 		pool_lock();
686 		mutex_enter(&cpu_lock);
687 		mutex_enter(&pidlock);
688 		mutex_enter(&curproc->p_lock);
689 
690 		if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
691 		    0, NULL, NULL) == 0)  {
692 			curthread->t_bind_pset = zio_taskq_psrset_bind;
693 		} else {
694 			cmn_err(CE_WARN,
695 			    "Couldn't bind process for zfs pool \"%s\" to "
696 			    "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
697 		}
698 
699 		mutex_exit(&curproc->p_lock);
700 		mutex_exit(&pidlock);
701 		mutex_exit(&cpu_lock);
702 		pool_unlock();
703 	}
704 
705 	if (zio_taskq_sysdc) {
706 		sysdc_thread_enter(curthread, 100, 0);
707 	}
708 
709 	spa->spa_proc = curproc;
710 	spa->spa_did = curthread->t_did;
711 
712 	spa_create_zio_taskqs(spa);
713 
714 	mutex_enter(&spa->spa_proc_lock);
715 	ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
716 
717 	spa->spa_proc_state = SPA_PROC_ACTIVE;
718 	cv_broadcast(&spa->spa_proc_cv);
719 
720 	CALLB_CPR_SAFE_BEGIN(&cprinfo);
721 	while (spa->spa_proc_state == SPA_PROC_ACTIVE)
722 		cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
723 	CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
724 
725 	ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
726 	spa->spa_proc_state = SPA_PROC_GONE;
727 	spa->spa_proc = &p0;
728 	cv_broadcast(&spa->spa_proc_cv);
729 	CALLB_CPR_EXIT(&cprinfo);	/* drops spa_proc_lock */
730 
731 	mutex_enter(&curproc->p_lock);
732 	lwp_exit();
733 }
734 #endif
735 
736 /*
737  * Activate an uninitialized pool.
738  */
739 static void
740 spa_activate(spa_t *spa, int mode)
741 {
742 	ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
743 
744 	spa->spa_state = POOL_STATE_ACTIVE;
745 	spa->spa_mode = mode;
746 
747 	spa->spa_normal_class = metaslab_class_create(spa, zfs_metaslab_ops);
748 	spa->spa_log_class = metaslab_class_create(spa, zfs_metaslab_ops);
749 
750 	/* Try to create a covering process */
751 	mutex_enter(&spa->spa_proc_lock);
752 	ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
753 	ASSERT(spa->spa_proc == &p0);
754 	spa->spa_did = 0;
755 
756 	/* Only create a process if we're going to be around a while. */
757 	if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
758 		if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
759 		    NULL, 0) == 0) {
760 			spa->spa_proc_state = SPA_PROC_CREATED;
761 			while (spa->spa_proc_state == SPA_PROC_CREATED) {
762 				cv_wait(&spa->spa_proc_cv,
763 				    &spa->spa_proc_lock);
764 			}
765 			ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
766 			ASSERT(spa->spa_proc != &p0);
767 			ASSERT(spa->spa_did != 0);
768 		} else {
769 #ifdef _KERNEL
770 			cmn_err(CE_WARN,
771 			    "Couldn't create process for zfs pool \"%s\"\n",
772 			    spa->spa_name);
773 #endif
774 		}
775 	}
776 	mutex_exit(&spa->spa_proc_lock);
777 
778 	/* If we didn't create a process, we need to create our taskqs. */
779 	if (spa->spa_proc == &p0) {
780 		spa_create_zio_taskqs(spa);
781 	}
782 
783 	list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
784 	    offsetof(vdev_t, vdev_config_dirty_node));
785 	list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
786 	    offsetof(vdev_t, vdev_state_dirty_node));
787 
788 	txg_list_create(&spa->spa_vdev_txg_list,
789 	    offsetof(struct vdev, vdev_txg_node));
790 
791 	avl_create(&spa->spa_errlist_scrub,
792 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
793 	    offsetof(spa_error_entry_t, se_avl));
794 	avl_create(&spa->spa_errlist_last,
795 	    spa_error_entry_compare, sizeof (spa_error_entry_t),
796 	    offsetof(spa_error_entry_t, se_avl));
797 }
798 
799 /*
800  * Opposite of spa_activate().
801  */
802 static void
803 spa_deactivate(spa_t *spa)
804 {
805 	ASSERT(spa->spa_sync_on == B_FALSE);
806 	ASSERT(spa->spa_dsl_pool == NULL);
807 	ASSERT(spa->spa_root_vdev == NULL);
808 	ASSERT(spa->spa_async_zio_root == NULL);
809 	ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
810 
811 	txg_list_destroy(&spa->spa_vdev_txg_list);
812 
813 	list_destroy(&spa->spa_config_dirty_list);
814 	list_destroy(&spa->spa_state_dirty_list);
815 
816 	for (int t = 0; t < ZIO_TYPES; t++) {
817 		for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
818 			if (spa->spa_zio_taskq[t][q] != NULL)
819 				taskq_destroy(spa->spa_zio_taskq[t][q]);
820 			spa->spa_zio_taskq[t][q] = NULL;
821 		}
822 	}
823 
824 	metaslab_class_destroy(spa->spa_normal_class);
825 	spa->spa_normal_class = NULL;
826 
827 	metaslab_class_destroy(spa->spa_log_class);
828 	spa->spa_log_class = NULL;
829 
830 	/*
831 	 * If this was part of an import or the open otherwise failed, we may
832 	 * still have errors left in the queues.  Empty them just in case.
833 	 */
834 	spa_errlog_drain(spa);
835 
836 	avl_destroy(&spa->spa_errlist_scrub);
837 	avl_destroy(&spa->spa_errlist_last);
838 
839 	spa->spa_state = POOL_STATE_UNINITIALIZED;
840 
841 	mutex_enter(&spa->spa_proc_lock);
842 	if (spa->spa_proc_state != SPA_PROC_NONE) {
843 		ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
844 		spa->spa_proc_state = SPA_PROC_DEACTIVATE;
845 		cv_broadcast(&spa->spa_proc_cv);
846 		while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
847 			ASSERT(spa->spa_proc != &p0);
848 			cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
849 		}
850 		ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
851 		spa->spa_proc_state = SPA_PROC_NONE;
852 	}
853 	ASSERT(spa->spa_proc == &p0);
854 	mutex_exit(&spa->spa_proc_lock);
855 
856 	/*
857 	 * We want to make sure spa_thread() has actually exited the ZFS
858 	 * module, so that the module can't be unloaded out from underneath
859 	 * it.
860 	 */
861 	if (spa->spa_did != 0) {
862 		thread_join(spa->spa_did);
863 		spa->spa_did = 0;
864 	}
865 }
866 
867 /*
868  * Verify a pool configuration, and construct the vdev tree appropriately.  This
869  * will create all the necessary vdevs in the appropriate layout, with each vdev
870  * in the CLOSED state.  This will prep the pool before open/creation/import.
871  * All vdev validation is done by the vdev_alloc() routine.
872  */
873 static int
874 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
875     uint_t id, int atype)
876 {
877 	nvlist_t **child;
878 	uint_t children;
879 	int error;
880 
881 	if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
882 		return (error);
883 
884 	if ((*vdp)->vdev_ops->vdev_op_leaf)
885 		return (0);
886 
887 	error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
888 	    &child, &children);
889 
890 	if (error == ENOENT)
891 		return (0);
892 
893 	if (error) {
894 		vdev_free(*vdp);
895 		*vdp = NULL;
896 		return (EINVAL);
897 	}
898 
899 	for (int c = 0; c < children; c++) {
900 		vdev_t *vd;
901 		if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
902 		    atype)) != 0) {
903 			vdev_free(*vdp);
904 			*vdp = NULL;
905 			return (error);
906 		}
907 	}
908 
909 	ASSERT(*vdp != NULL);
910 
911 	return (0);
912 }
913 
914 /*
915  * Opposite of spa_load().
916  */
917 static void
918 spa_unload(spa_t *spa)
919 {
920 	int i;
921 
922 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
923 
924 	/*
925 	 * Stop async tasks.
926 	 */
927 	spa_async_suspend(spa);
928 
929 	/*
930 	 * Stop syncing.
931 	 */
932 	if (spa->spa_sync_on) {
933 		txg_sync_stop(spa->spa_dsl_pool);
934 		spa->spa_sync_on = B_FALSE;
935 	}
936 
937 	/*
938 	 * Wait for any outstanding async I/O to complete.
939 	 */
940 	if (spa->spa_async_zio_root != NULL) {
941 		(void) zio_wait(spa->spa_async_zio_root);
942 		spa->spa_async_zio_root = NULL;
943 	}
944 
945 	/*
946 	 * Close the dsl pool.
947 	 */
948 	if (spa->spa_dsl_pool) {
949 		dsl_pool_close(spa->spa_dsl_pool);
950 		spa->spa_dsl_pool = NULL;
951 		spa->spa_meta_objset = NULL;
952 	}
953 
954 	ddt_unload(spa);
955 
956 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
957 
958 	/*
959 	 * Drop and purge level 2 cache
960 	 */
961 	spa_l2cache_drop(spa);
962 
963 	/*
964 	 * Close all vdevs.
965 	 */
966 	if (spa->spa_root_vdev)
967 		vdev_free(spa->spa_root_vdev);
968 	ASSERT(spa->spa_root_vdev == NULL);
969 
970 	for (i = 0; i < spa->spa_spares.sav_count; i++)
971 		vdev_free(spa->spa_spares.sav_vdevs[i]);
972 	if (spa->spa_spares.sav_vdevs) {
973 		kmem_free(spa->spa_spares.sav_vdevs,
974 		    spa->spa_spares.sav_count * sizeof (void *));
975 		spa->spa_spares.sav_vdevs = NULL;
976 	}
977 	if (spa->spa_spares.sav_config) {
978 		nvlist_free(spa->spa_spares.sav_config);
979 		spa->spa_spares.sav_config = NULL;
980 	}
981 	spa->spa_spares.sav_count = 0;
982 
983 	for (i = 0; i < spa->spa_l2cache.sav_count; i++)
984 		vdev_free(spa->spa_l2cache.sav_vdevs[i]);
985 	if (spa->spa_l2cache.sav_vdevs) {
986 		kmem_free(spa->spa_l2cache.sav_vdevs,
987 		    spa->spa_l2cache.sav_count * sizeof (void *));
988 		spa->spa_l2cache.sav_vdevs = NULL;
989 	}
990 	if (spa->spa_l2cache.sav_config) {
991 		nvlist_free(spa->spa_l2cache.sav_config);
992 		spa->spa_l2cache.sav_config = NULL;
993 	}
994 	spa->spa_l2cache.sav_count = 0;
995 
996 	spa->spa_async_suspended = 0;
997 
998 	spa_config_exit(spa, SCL_ALL, FTAG);
999 }
1000 
1001 /*
1002  * Load (or re-load) the current list of vdevs describing the active spares for
1003  * this pool.  When this is called, we have some form of basic information in
1004  * 'spa_spares.sav_config'.  We parse this into vdevs, try to open them, and
1005  * then re-generate a more complete list including status information.
1006  */
1007 static void
1008 spa_load_spares(spa_t *spa)
1009 {
1010 	nvlist_t **spares;
1011 	uint_t nspares;
1012 	int i;
1013 	vdev_t *vd, *tvd;
1014 
1015 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1016 
1017 	/*
1018 	 * First, close and free any existing spare vdevs.
1019 	 */
1020 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1021 		vd = spa->spa_spares.sav_vdevs[i];
1022 
1023 		/* Undo the call to spa_activate() below */
1024 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1025 		    B_FALSE)) != NULL && tvd->vdev_isspare)
1026 			spa_spare_remove(tvd);
1027 		vdev_close(vd);
1028 		vdev_free(vd);
1029 	}
1030 
1031 	if (spa->spa_spares.sav_vdevs)
1032 		kmem_free(spa->spa_spares.sav_vdevs,
1033 		    spa->spa_spares.sav_count * sizeof (void *));
1034 
1035 	if (spa->spa_spares.sav_config == NULL)
1036 		nspares = 0;
1037 	else
1038 		VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
1039 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
1040 
1041 	spa->spa_spares.sav_count = (int)nspares;
1042 	spa->spa_spares.sav_vdevs = NULL;
1043 
1044 	if (nspares == 0)
1045 		return;
1046 
1047 	/*
1048 	 * Construct the array of vdevs, opening them to get status in the
1049 	 * process.   For each spare, there is potentially two different vdev_t
1050 	 * structures associated with it: one in the list of spares (used only
1051 	 * for basic validation purposes) and one in the active vdev
1052 	 * configuration (if it's spared in).  During this phase we open and
1053 	 * validate each vdev on the spare list.  If the vdev also exists in the
1054 	 * active configuration, then we also mark this vdev as an active spare.
1055 	 */
1056 	spa->spa_spares.sav_vdevs = kmem_alloc(nspares * sizeof (void *),
1057 	    KM_SLEEP);
1058 	for (i = 0; i < spa->spa_spares.sav_count; i++) {
1059 		VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
1060 		    VDEV_ALLOC_SPARE) == 0);
1061 		ASSERT(vd != NULL);
1062 
1063 		spa->spa_spares.sav_vdevs[i] = vd;
1064 
1065 		if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
1066 		    B_FALSE)) != NULL) {
1067 			if (!tvd->vdev_isspare)
1068 				spa_spare_add(tvd);
1069 
1070 			/*
1071 			 * We only mark the spare active if we were successfully
1072 			 * able to load the vdev.  Otherwise, importing a pool
1073 			 * with a bad active spare would result in strange
1074 			 * behavior, because multiple pool would think the spare
1075 			 * is actively in use.
1076 			 *
1077 			 * There is a vulnerability here to an equally bizarre
1078 			 * circumstance, where a dead active spare is later
1079 			 * brought back to life (onlined or otherwise).  Given
1080 			 * the rarity of this scenario, and the extra complexity
1081 			 * it adds, we ignore the possibility.
1082 			 */
1083 			if (!vdev_is_dead(tvd))
1084 				spa_spare_activate(tvd);
1085 		}
1086 
1087 		vd->vdev_top = vd;
1088 		vd->vdev_aux = &spa->spa_spares;
1089 
1090 		if (vdev_open(vd) != 0)
1091 			continue;
1092 
1093 		if (vdev_validate_aux(vd) == 0)
1094 			spa_spare_add(vd);
1095 	}
1096 
1097 	/*
1098 	 * Recompute the stashed list of spares, with status information
1099 	 * this time.
1100 	 */
1101 	VERIFY(nvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES,
1102 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1103 
1104 	spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
1105 	    KM_SLEEP);
1106 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1107 		spares[i] = vdev_config_generate(spa,
1108 		    spa->spa_spares.sav_vdevs[i], B_TRUE, B_TRUE, B_FALSE);
1109 	VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
1110 	    ZPOOL_CONFIG_SPARES, spares, spa->spa_spares.sav_count) == 0);
1111 	for (i = 0; i < spa->spa_spares.sav_count; i++)
1112 		nvlist_free(spares[i]);
1113 	kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
1114 }
1115 
1116 /*
1117  * Load (or re-load) the current list of vdevs describing the active l2cache for
1118  * this pool.  When this is called, we have some form of basic information in
1119  * 'spa_l2cache.sav_config'.  We parse this into vdevs, try to open them, and
1120  * then re-generate a more complete list including status information.
1121  * Devices which are already active have their details maintained, and are
1122  * not re-opened.
1123  */
1124 static void
1125 spa_load_l2cache(spa_t *spa)
1126 {
1127 	nvlist_t **l2cache;
1128 	uint_t nl2cache;
1129 	int i, j, oldnvdevs;
1130 	uint64_t guid;
1131 	vdev_t *vd, **oldvdevs, **newvdevs;
1132 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
1133 
1134 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
1135 
1136 	if (sav->sav_config != NULL) {
1137 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config,
1138 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
1139 		newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
1140 	} else {
1141 		nl2cache = 0;
1142 	}
1143 
1144 	oldvdevs = sav->sav_vdevs;
1145 	oldnvdevs = sav->sav_count;
1146 	sav->sav_vdevs = NULL;
1147 	sav->sav_count = 0;
1148 
1149 	/*
1150 	 * Process new nvlist of vdevs.
1151 	 */
1152 	for (i = 0; i < nl2cache; i++) {
1153 		VERIFY(nvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID,
1154 		    &guid) == 0);
1155 
1156 		newvdevs[i] = NULL;
1157 		for (j = 0; j < oldnvdevs; j++) {
1158 			vd = oldvdevs[j];
1159 			if (vd != NULL && guid == vd->vdev_guid) {
1160 				/*
1161 				 * Retain previous vdev for add/remove ops.
1162 				 */
1163 				newvdevs[i] = vd;
1164 				oldvdevs[j] = NULL;
1165 				break;
1166 			}
1167 		}
1168 
1169 		if (newvdevs[i] == NULL) {
1170 			/*
1171 			 * Create new vdev
1172 			 */
1173 			VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
1174 			    VDEV_ALLOC_L2CACHE) == 0);
1175 			ASSERT(vd != NULL);
1176 			newvdevs[i] = vd;
1177 
1178 			/*
1179 			 * Commit this vdev as an l2cache device,
1180 			 * even if it fails to open.
1181 			 */
1182 			spa_l2cache_add(vd);
1183 
1184 			vd->vdev_top = vd;
1185 			vd->vdev_aux = sav;
1186 
1187 			spa_l2cache_activate(vd);
1188 
1189 			if (vdev_open(vd) != 0)
1190 				continue;
1191 
1192 			(void) vdev_validate_aux(vd);
1193 
1194 			if (!vdev_is_dead(vd))
1195 				l2arc_add_vdev(spa, vd);
1196 		}
1197 	}
1198 
1199 	/*
1200 	 * Purge vdevs that were dropped
1201 	 */
1202 	for (i = 0; i < oldnvdevs; i++) {
1203 		uint64_t pool;
1204 
1205 		vd = oldvdevs[i];
1206 		if (vd != NULL) {
1207 			if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
1208 			    pool != 0ULL && l2arc_vdev_present(vd))
1209 				l2arc_remove_vdev(vd);
1210 			(void) vdev_close(vd);
1211 			spa_l2cache_remove(vd);
1212 		}
1213 	}
1214 
1215 	if (oldvdevs)
1216 		kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
1217 
1218 	if (sav->sav_config == NULL)
1219 		goto out;
1220 
1221 	sav->sav_vdevs = newvdevs;
1222 	sav->sav_count = (int)nl2cache;
1223 
1224 	/*
1225 	 * Recompute the stashed list of l2cache devices, with status
1226 	 * information this time.
1227 	 */
1228 	VERIFY(nvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
1229 	    DATA_TYPE_NVLIST_ARRAY) == 0);
1230 
1231 	l2cache = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
1232 	for (i = 0; i < sav->sav_count; i++)
1233 		l2cache[i] = vdev_config_generate(spa,
1234 		    sav->sav_vdevs[i], B_TRUE, B_FALSE, B_TRUE);
1235 	VERIFY(nvlist_add_nvlist_array(sav->sav_config,
1236 	    ZPOOL_CONFIG_L2CACHE, l2cache, sav->sav_count) == 0);
1237 out:
1238 	for (i = 0; i < sav->sav_count; i++)
1239 		nvlist_free(l2cache[i]);
1240 	if (sav->sav_count)
1241 		kmem_free(l2cache, sav->sav_count * sizeof (void *));
1242 }
1243 
1244 static int
1245 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
1246 {
1247 	dmu_buf_t *db;
1248 	char *packed = NULL;
1249 	size_t nvsize = 0;
1250 	int error;
1251 	*value = NULL;
1252 
1253 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
1254 	nvsize = *(uint64_t *)db->db_data;
1255 	dmu_buf_rele(db, FTAG);
1256 
1257 	packed = kmem_alloc(nvsize, KM_SLEEP);
1258 	error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
1259 	    DMU_READ_PREFETCH);
1260 	if (error == 0)
1261 		error = nvlist_unpack(packed, nvsize, value, 0);
1262 	kmem_free(packed, nvsize);
1263 
1264 	return (error);
1265 }
1266 
1267 /*
1268  * Checks to see if the given vdev could not be opened, in which case we post a
1269  * sysevent to notify the autoreplace code that the device has been removed.
1270  */
1271 static void
1272 spa_check_removed(vdev_t *vd)
1273 {
1274 	for (int c = 0; c < vd->vdev_children; c++)
1275 		spa_check_removed(vd->vdev_child[c]);
1276 
1277 	if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd)) {
1278 		zfs_post_autoreplace(vd->vdev_spa, vd);
1279 		spa_event_notify(vd->vdev_spa, vd, ESC_ZFS_VDEV_CHECK);
1280 	}
1281 }
1282 
1283 /*
1284  * Load the slog device state from the config object since it's possible
1285  * that the label does not contain the most up-to-date information.
1286  */
1287 void
1288 spa_load_log_state(spa_t *spa, nvlist_t *nv)
1289 {
1290 	vdev_t *ovd, *rvd = spa->spa_root_vdev;
1291 
1292 	/*
1293 	 * Load the original root vdev tree from the passed config.
1294 	 */
1295 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1296 	VERIFY(spa_config_parse(spa, &ovd, nv, NULL, 0, VDEV_ALLOC_LOAD) == 0);
1297 
1298 	for (int c = 0; c < rvd->vdev_children; c++) {
1299 		vdev_t *cvd = rvd->vdev_child[c];
1300 		if (cvd->vdev_islog)
1301 			vdev_load_log_state(cvd, ovd->vdev_child[c]);
1302 	}
1303 	vdev_free(ovd);
1304 	spa_config_exit(spa, SCL_ALL, FTAG);
1305 }
1306 
1307 /*
1308  * Check for missing log devices
1309  */
1310 int
1311 spa_check_logs(spa_t *spa)
1312 {
1313 	switch (spa->spa_log_state) {
1314 	case SPA_LOG_MISSING:
1315 		/* need to recheck in case slog has been restored */
1316 	case SPA_LOG_UNKNOWN:
1317 		if (dmu_objset_find(spa->spa_name, zil_check_log_chain, NULL,
1318 		    DS_FIND_CHILDREN)) {
1319 			spa_set_log_state(spa, SPA_LOG_MISSING);
1320 			return (1);
1321 		}
1322 		break;
1323 	}
1324 	return (0);
1325 }
1326 
1327 static boolean_t
1328 spa_passivate_log(spa_t *spa)
1329 {
1330 	vdev_t *rvd = spa->spa_root_vdev;
1331 	boolean_t slog_found = B_FALSE;
1332 
1333 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1334 
1335 	if (!spa_has_slogs(spa))
1336 		return (B_FALSE);
1337 
1338 	for (int c = 0; c < rvd->vdev_children; c++) {
1339 		vdev_t *tvd = rvd->vdev_child[c];
1340 		metaslab_group_t *mg = tvd->vdev_mg;
1341 
1342 		if (tvd->vdev_islog) {
1343 			metaslab_group_passivate(mg);
1344 			slog_found = B_TRUE;
1345 		}
1346 	}
1347 
1348 	return (slog_found);
1349 }
1350 
1351 static void
1352 spa_activate_log(spa_t *spa)
1353 {
1354 	vdev_t *rvd = spa->spa_root_vdev;
1355 
1356 	ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
1357 
1358 	for (int c = 0; c < rvd->vdev_children; c++) {
1359 		vdev_t *tvd = rvd->vdev_child[c];
1360 		metaslab_group_t *mg = tvd->vdev_mg;
1361 
1362 		if (tvd->vdev_islog)
1363 			metaslab_group_activate(mg);
1364 	}
1365 }
1366 
1367 int
1368 spa_offline_log(spa_t *spa)
1369 {
1370 	int error = 0;
1371 
1372 	if ((error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
1373 	    NULL, DS_FIND_CHILDREN)) == 0) {
1374 
1375 		/*
1376 		 * We successfully offlined the log device, sync out the
1377 		 * current txg so that the "stubby" block can be removed
1378 		 * by zil_sync().
1379 		 */
1380 		txg_wait_synced(spa->spa_dsl_pool, 0);
1381 	}
1382 	return (error);
1383 }
1384 
1385 static void
1386 spa_aux_check_removed(spa_aux_vdev_t *sav)
1387 {
1388 	for (int i = 0; i < sav->sav_count; i++)
1389 		spa_check_removed(sav->sav_vdevs[i]);
1390 }
1391 
1392 void
1393 spa_claim_notify(zio_t *zio)
1394 {
1395 	spa_t *spa = zio->io_spa;
1396 
1397 	if (zio->io_error)
1398 		return;
1399 
1400 	mutex_enter(&spa->spa_props_lock);	/* any mutex will do */
1401 	if (spa->spa_claim_max_txg < zio->io_bp->blk_birth)
1402 		spa->spa_claim_max_txg = zio->io_bp->blk_birth;
1403 	mutex_exit(&spa->spa_props_lock);
1404 }
1405 
1406 typedef struct spa_load_error {
1407 	uint64_t	sle_meta_count;
1408 	uint64_t	sle_data_count;
1409 } spa_load_error_t;
1410 
1411 static void
1412 spa_load_verify_done(zio_t *zio)
1413 {
1414 	blkptr_t *bp = zio->io_bp;
1415 	spa_load_error_t *sle = zio->io_private;
1416 	dmu_object_type_t type = BP_GET_TYPE(bp);
1417 	int error = zio->io_error;
1418 
1419 	if (error) {
1420 		if ((BP_GET_LEVEL(bp) != 0 || dmu_ot[type].ot_metadata) &&
1421 		    type != DMU_OT_INTENT_LOG)
1422 			atomic_add_64(&sle->sle_meta_count, 1);
1423 		else
1424 			atomic_add_64(&sle->sle_data_count, 1);
1425 	}
1426 	zio_data_buf_free(zio->io_data, zio->io_size);
1427 }
1428 
1429 /*ARGSUSED*/
1430 static int
1431 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1432     const zbookmark_t *zb, const dnode_phys_t *dnp, void *arg)
1433 {
1434 	if (bp != NULL) {
1435 		zio_t *rio = arg;
1436 		size_t size = BP_GET_PSIZE(bp);
1437 		void *data = zio_data_buf_alloc(size);
1438 
1439 		zio_nowait(zio_read(rio, spa, bp, data, size,
1440 		    spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
1441 		    ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
1442 		    ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
1443 	}
1444 	return (0);
1445 }
1446 
1447 static int
1448 spa_load_verify(spa_t *spa)
1449 {
1450 	zio_t *rio;
1451 	spa_load_error_t sle = { 0 };
1452 	zpool_rewind_policy_t policy;
1453 	boolean_t verify_ok = B_FALSE;
1454 	int error;
1455 
1456 	zpool_get_rewind_policy(spa->spa_config, &policy);
1457 
1458 	if (policy.zrp_request & ZPOOL_NEVER_REWIND)
1459 		return (0);
1460 
1461 	rio = zio_root(spa, NULL, &sle,
1462 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
1463 
1464 	error = traverse_pool(spa, spa->spa_verify_min_txg,
1465 	    TRAVERSE_PRE | TRAVERSE_PREFETCH, spa_load_verify_cb, rio);
1466 
1467 	(void) zio_wait(rio);
1468 
1469 	spa->spa_load_meta_errors = sle.sle_meta_count;
1470 	spa->spa_load_data_errors = sle.sle_data_count;
1471 
1472 	if (!error && sle.sle_meta_count <= policy.zrp_maxmeta &&
1473 	    sle.sle_data_count <= policy.zrp_maxdata) {
1474 		verify_ok = B_TRUE;
1475 		spa->spa_load_txg = spa->spa_uberblock.ub_txg;
1476 		spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
1477 	} else {
1478 		spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
1479 	}
1480 
1481 	if (error) {
1482 		if (error != ENXIO && error != EIO)
1483 			error = EIO;
1484 		return (error);
1485 	}
1486 
1487 	return (verify_ok ? 0 : EIO);
1488 }
1489 
1490 /*
1491  * Find a value in the pool props object.
1492  */
1493 static void
1494 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
1495 {
1496 	(void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
1497 	    zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
1498 }
1499 
1500 /*
1501  * Find a value in the pool directory object.
1502  */
1503 static int
1504 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val)
1505 {
1506 	return (zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
1507 	    name, sizeof (uint64_t), 1, val));
1508 }
1509 
1510 static int
1511 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
1512 {
1513 	vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
1514 	return (err);
1515 }
1516 
1517 /*
1518  * Fix up config after a partly-completed split.  This is done with the
1519  * ZPOOL_CONFIG_SPLIT nvlist.  Both the splitting pool and the split-off
1520  * pool have that entry in their config, but only the splitting one contains
1521  * a list of all the guids of the vdevs that are being split off.
1522  *
1523  * This function determines what to do with that list: either rejoin
1524  * all the disks to the pool, or complete the splitting process.  To attempt
1525  * the rejoin, each disk that is offlined is marked online again, and
1526  * we do a reopen() call.  If the vdev label for every disk that was
1527  * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
1528  * then we call vdev_split() on each disk, and complete the split.
1529  *
1530  * Otherwise we leave the config alone, with all the vdevs in place in
1531  * the original pool.
1532  */
1533 static void
1534 spa_try_repair(spa_t *spa, nvlist_t *config)
1535 {
1536 	uint_t extracted;
1537 	uint64_t *glist;
1538 	uint_t i, gcount;
1539 	nvlist_t *nvl;
1540 	vdev_t **vd;
1541 	boolean_t attempt_reopen;
1542 
1543 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
1544 		return;
1545 
1546 	/* check that the config is complete */
1547 	if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
1548 	    &glist, &gcount) != 0)
1549 		return;
1550 
1551 	vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
1552 
1553 	/* attempt to online all the vdevs & validate */
1554 	attempt_reopen = B_TRUE;
1555 	for (i = 0; i < gcount; i++) {
1556 		if (glist[i] == 0)	/* vdev is hole */
1557 			continue;
1558 
1559 		vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
1560 		if (vd[i] == NULL) {
1561 			/*
1562 			 * Don't bother attempting to reopen the disks;
1563 			 * just do the split.
1564 			 */
1565 			attempt_reopen = B_FALSE;
1566 		} else {
1567 			/* attempt to re-online it */
1568 			vd[i]->vdev_offline = B_FALSE;
1569 		}
1570 	}
1571 
1572 	if (attempt_reopen) {
1573 		vdev_reopen(spa->spa_root_vdev);
1574 
1575 		/* check each device to see what state it's in */
1576 		for (extracted = 0, i = 0; i < gcount; i++) {
1577 			if (vd[i] != NULL &&
1578 			    vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
1579 				break;
1580 			++extracted;
1581 		}
1582 	}
1583 
1584 	/*
1585 	 * If every disk has been moved to the new pool, or if we never
1586 	 * even attempted to look at them, then we split them off for
1587 	 * good.
1588 	 */
1589 	if (!attempt_reopen || gcount == extracted) {
1590 		for (i = 0; i < gcount; i++)
1591 			if (vd[i] != NULL)
1592 				vdev_split(vd[i]);
1593 		vdev_reopen(spa->spa_root_vdev);
1594 	}
1595 
1596 	kmem_free(vd, gcount * sizeof (vdev_t *));
1597 }
1598 
1599 static int
1600 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type,
1601     boolean_t mosconfig)
1602 {
1603 	nvlist_t *config = spa->spa_config;
1604 	char *ereport = FM_EREPORT_ZFS_POOL;
1605 	int error;
1606 	uint64_t pool_guid;
1607 	nvlist_t *nvl;
1608 
1609 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid))
1610 		return (EINVAL);
1611 
1612 	/*
1613 	 * Versioning wasn't explicitly added to the label until later, so if
1614 	 * it's not present treat it as the initial version.
1615 	 */
1616 	if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
1617 	    &spa->spa_ubsync.ub_version) != 0)
1618 		spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
1619 
1620 	(void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
1621 	    &spa->spa_config_txg);
1622 
1623 	if ((state == SPA_LOAD_IMPORT || state == SPA_LOAD_TRYIMPORT) &&
1624 	    spa_guid_exists(pool_guid, 0)) {
1625 		error = EEXIST;
1626 	} else {
1627 		spa->spa_load_guid = pool_guid;
1628 
1629 		if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT,
1630 		    &nvl) == 0) {
1631 			VERIFY(nvlist_dup(nvl, &spa->spa_config_splitting,
1632 			    KM_SLEEP) == 0);
1633 		}
1634 
1635 		error = spa_load_impl(spa, pool_guid, config, state, type,
1636 		    mosconfig, &ereport);
1637 	}
1638 
1639 	spa->spa_minref = refcount_count(&spa->spa_refcount);
1640 	if (error && error != EBADF)
1641 		zfs_ereport_post(ereport, spa, NULL, NULL, 0, 0);
1642 	spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
1643 	spa->spa_ena = 0;
1644 
1645 	return (error);
1646 }
1647 
1648 /*
1649  * Load an existing storage pool, using the pool's builtin spa_config as a
1650  * source of configuration information.
1651  */
1652 static int
1653 spa_load_impl(spa_t *spa, uint64_t pool_guid, nvlist_t *config,
1654     spa_load_state_t state, spa_import_type_t type, boolean_t mosconfig,
1655     char **ereport)
1656 {
1657 	int error = 0;
1658 	nvlist_t *nvroot = NULL;
1659 	vdev_t *rvd;
1660 	uberblock_t *ub = &spa->spa_uberblock;
1661 	uint64_t config_cache_txg = spa->spa_config_txg;
1662 	int orig_mode = spa->spa_mode;
1663 	int parse;
1664 
1665 	/*
1666 	 * If this is an untrusted config, access the pool in read-only mode.
1667 	 * This prevents things like resilvering recently removed devices.
1668 	 */
1669 	if (!mosconfig)
1670 		spa->spa_mode = FREAD;
1671 
1672 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
1673 
1674 	spa->spa_load_state = state;
1675 
1676 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvroot))
1677 		return (EINVAL);
1678 
1679 	parse = (type == SPA_IMPORT_EXISTING ?
1680 	    VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
1681 
1682 	/*
1683 	 * Create "The Godfather" zio to hold all async IOs
1684 	 */
1685 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
1686 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
1687 
1688 	/*
1689 	 * Parse the configuration into a vdev tree.  We explicitly set the
1690 	 * value that will be returned by spa_version() since parsing the
1691 	 * configuration requires knowing the version number.
1692 	 */
1693 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1694 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, parse);
1695 	spa_config_exit(spa, SCL_ALL, FTAG);
1696 
1697 	if (error != 0)
1698 		return (error);
1699 
1700 	ASSERT(spa->spa_root_vdev == rvd);
1701 
1702 	if (type != SPA_IMPORT_ASSEMBLE) {
1703 		ASSERT(spa_guid(spa) == pool_guid);
1704 	}
1705 
1706 	/*
1707 	 * Try to open all vdevs, loading each label in the process.
1708 	 */
1709 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1710 	error = vdev_open(rvd);
1711 	spa_config_exit(spa, SCL_ALL, FTAG);
1712 	if (error != 0)
1713 		return (error);
1714 
1715 	/*
1716 	 * We need to validate the vdev labels against the configuration that
1717 	 * we have in hand, which is dependent on the setting of mosconfig. If
1718 	 * mosconfig is true then we're validating the vdev labels based on
1719 	 * that config.  Otherwise, we're validating against the cached config
1720 	 * (zpool.cache) that was read when we loaded the zfs module, and then
1721 	 * later we will recursively call spa_load() and validate against
1722 	 * the vdev config.
1723 	 *
1724 	 * If we're assembling a new pool that's been split off from an
1725 	 * existing pool, the labels haven't yet been updated so we skip
1726 	 * validation for now.
1727 	 */
1728 	if (type != SPA_IMPORT_ASSEMBLE) {
1729 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1730 		error = vdev_validate(rvd);
1731 		spa_config_exit(spa, SCL_ALL, FTAG);
1732 
1733 		if (error != 0)
1734 			return (error);
1735 
1736 		if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1737 			return (ENXIO);
1738 	}
1739 
1740 	/*
1741 	 * Find the best uberblock.
1742 	 */
1743 	vdev_uberblock_load(NULL, rvd, ub);
1744 
1745 	/*
1746 	 * If we weren't able to find a single valid uberblock, return failure.
1747 	 */
1748 	if (ub->ub_txg == 0)
1749 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
1750 
1751 	/*
1752 	 * If the pool is newer than the code, we can't open it.
1753 	 */
1754 	if (ub->ub_version > SPA_VERSION)
1755 		return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
1756 
1757 	/*
1758 	 * If the vdev guid sum doesn't match the uberblock, we have an
1759 	 * incomplete configuration.
1760 	 */
1761 	if (mosconfig && type != SPA_IMPORT_ASSEMBLE &&
1762 	    rvd->vdev_guid_sum != ub->ub_guid_sum)
1763 		return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
1764 
1765 	if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
1766 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1767 		spa_try_repair(spa, config);
1768 		spa_config_exit(spa, SCL_ALL, FTAG);
1769 		nvlist_free(spa->spa_config_splitting);
1770 		spa->spa_config_splitting = NULL;
1771 	}
1772 
1773 	/*
1774 	 * Initialize internal SPA structures.
1775 	 */
1776 	spa->spa_state = POOL_STATE_ACTIVE;
1777 	spa->spa_ubsync = spa->spa_uberblock;
1778 	spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
1779 	    TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
1780 	spa->spa_first_txg = spa->spa_last_ubsync_txg ?
1781 	    spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
1782 	spa->spa_claim_max_txg = spa->spa_first_txg;
1783 
1784 	error = dsl_pool_open(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
1785 	if (error)
1786 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1787 	spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
1788 
1789 	if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object) != 0)
1790 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1791 
1792 	if (!mosconfig) {
1793 		uint64_t hostid;
1794 		nvlist_t *policy = NULL, *nvconfig;
1795 
1796 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
1797 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1798 
1799 		if (!spa_is_root(spa) && nvlist_lookup_uint64(nvconfig,
1800 		    ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
1801 			char *hostname;
1802 			unsigned long myhostid = 0;
1803 
1804 			VERIFY(nvlist_lookup_string(nvconfig,
1805 			    ZPOOL_CONFIG_HOSTNAME, &hostname) == 0);
1806 
1807 #ifdef	_KERNEL
1808 			myhostid = zone_get_hostid(NULL);
1809 #else	/* _KERNEL */
1810 			/*
1811 			 * We're emulating the system's hostid in userland, so
1812 			 * we can't use zone_get_hostid().
1813 			 */
1814 			(void) ddi_strtoul(hw_serial, NULL, 10, &myhostid);
1815 #endif	/* _KERNEL */
1816 			if (hostid != 0 && myhostid != 0 &&
1817 			    hostid != myhostid) {
1818 				nvlist_free(nvconfig);
1819 				cmn_err(CE_WARN, "pool '%s' could not be "
1820 				    "loaded as it was last accessed by "
1821 				    "another system (host: %s hostid: 0x%lx). "
1822 				    "See: http://www.sun.com/msg/ZFS-8000-EY",
1823 				    spa_name(spa), hostname,
1824 				    (unsigned long)hostid);
1825 				return (EBADF);
1826 			}
1827 		}
1828 		if (nvlist_lookup_nvlist(spa->spa_config,
1829 		    ZPOOL_REWIND_POLICY, &policy) == 0)
1830 			VERIFY(nvlist_add_nvlist(nvconfig,
1831 			    ZPOOL_REWIND_POLICY, policy) == 0);
1832 
1833 		spa_config_set(spa, nvconfig);
1834 		spa_unload(spa);
1835 		spa_deactivate(spa);
1836 		spa_activate(spa, orig_mode);
1837 
1838 		return (spa_load(spa, state, SPA_IMPORT_EXISTING, B_TRUE));
1839 	}
1840 
1841 	if (spa_dir_prop(spa, DMU_POOL_SYNC_BPLIST,
1842 	    &spa->spa_deferred_bplist_obj) != 0)
1843 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1844 
1845 	/*
1846 	 * Load the bit that tells us to use the new accounting function
1847 	 * (raid-z deflation).  If we have an older pool, this will not
1848 	 * be present.
1849 	 */
1850 	error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate);
1851 	if (error != 0 && error != ENOENT)
1852 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1853 
1854 	/*
1855 	 * Load the persistent error log.  If we have an older pool, this will
1856 	 * not be present.
1857 	 */
1858 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last);
1859 	if (error != 0 && error != ENOENT)
1860 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1861 
1862 	error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
1863 	    &spa->spa_errlog_scrub);
1864 	if (error != 0 && error != ENOENT)
1865 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1866 
1867 	/*
1868 	 * Load the history object.  If we have an older pool, this
1869 	 * will not be present.
1870 	 */
1871 	error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history);
1872 	if (error != 0 && error != ENOENT)
1873 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1874 
1875 	/*
1876 	 * If we're assembling the pool from the split-off vdevs of
1877 	 * an existing pool, we don't want to attach the spares & cache
1878 	 * devices.
1879 	 */
1880 
1881 	/*
1882 	 * Load any hot spares for this pool.
1883 	 */
1884 	error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object);
1885 	if (error != 0 && error != ENOENT)
1886 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1887 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1888 		ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
1889 		if (load_nvlist(spa, spa->spa_spares.sav_object,
1890 		    &spa->spa_spares.sav_config) != 0)
1891 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1892 
1893 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1894 		spa_load_spares(spa);
1895 		spa_config_exit(spa, SCL_ALL, FTAG);
1896 	} else if (error == 0) {
1897 		spa->spa_spares.sav_sync = B_TRUE;
1898 	}
1899 
1900 	/*
1901 	 * Load any level 2 ARC devices for this pool.
1902 	 */
1903 	error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
1904 	    &spa->spa_l2cache.sav_object);
1905 	if (error != 0 && error != ENOENT)
1906 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1907 	if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
1908 		ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
1909 		if (load_nvlist(spa, spa->spa_l2cache.sav_object,
1910 		    &spa->spa_l2cache.sav_config) != 0)
1911 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1912 
1913 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1914 		spa_load_l2cache(spa);
1915 		spa_config_exit(spa, SCL_ALL, FTAG);
1916 	} else if (error == 0) {
1917 		spa->spa_l2cache.sav_sync = B_TRUE;
1918 	}
1919 
1920 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
1921 
1922 	error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object);
1923 	if (error && error != ENOENT)
1924 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1925 
1926 	if (error == 0) {
1927 		uint64_t autoreplace;
1928 
1929 		spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
1930 		spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
1931 		spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
1932 		spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
1933 		spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
1934 		spa_prop_find(spa, ZPOOL_PROP_DEDUPDITTO,
1935 		    &spa->spa_dedup_ditto);
1936 
1937 		spa->spa_autoreplace = (autoreplace != 0);
1938 	}
1939 
1940 	/*
1941 	 * If the 'autoreplace' property is set, then post a resource notifying
1942 	 * the ZFS DE that it should not issue any faults for unopenable
1943 	 * devices.  We also iterate over the vdevs, and post a sysevent for any
1944 	 * unopenable vdevs so that the normal autoreplace handler can take
1945 	 * over.
1946 	 */
1947 	if (spa->spa_autoreplace && state != SPA_LOAD_TRYIMPORT) {
1948 		spa_check_removed(spa->spa_root_vdev);
1949 		/*
1950 		 * For the import case, this is done in spa_import(), because
1951 		 * at this point we're using the spare definitions from
1952 		 * the MOS config, not necessarily from the userland config.
1953 		 */
1954 		if (state != SPA_LOAD_IMPORT) {
1955 			spa_aux_check_removed(&spa->spa_spares);
1956 			spa_aux_check_removed(&spa->spa_l2cache);
1957 		}
1958 	}
1959 
1960 	/*
1961 	 * Load the vdev state for all toplevel vdevs.
1962 	 */
1963 	vdev_load(rvd);
1964 
1965 	/*
1966 	 * Propagate the leaf DTLs we just loaded all the way up the tree.
1967 	 */
1968 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
1969 	vdev_dtl_reassess(rvd, 0, 0, B_FALSE);
1970 	spa_config_exit(spa, SCL_ALL, FTAG);
1971 
1972 	/*
1973 	 * Check the state of the root vdev.  If it can't be opened, it
1974 	 * indicates one or more toplevel vdevs are faulted.
1975 	 */
1976 	if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN)
1977 		return (ENXIO);
1978 
1979 	/*
1980 	 * Load the DDTs (dedup tables).
1981 	 */
1982 	error = ddt_load(spa);
1983 	if (error != 0)
1984 		return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
1985 
1986 	spa_update_dspace(spa);
1987 
1988 	if (state != SPA_LOAD_TRYIMPORT) {
1989 		error = spa_load_verify(spa);
1990 		if (error)
1991 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
1992 			    error));
1993 	}
1994 
1995 	/*
1996 	 * Load the intent log state and check log integrity.  If we're
1997 	 * assembling a pool from a split, the log is not transferred over.
1998 	 */
1999 	if (type != SPA_IMPORT_ASSEMBLE) {
2000 		nvlist_t *nvconfig;
2001 
2002 		if (load_nvlist(spa, spa->spa_config_object, &nvconfig) != 0)
2003 			return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
2004 
2005 		VERIFY(nvlist_lookup_nvlist(nvconfig, ZPOOL_CONFIG_VDEV_TREE,
2006 		    &nvroot) == 0);
2007 		spa_load_log_state(spa, nvroot);
2008 		nvlist_free(nvconfig);
2009 
2010 		if (spa_check_logs(spa)) {
2011 			*ereport = FM_EREPORT_ZFS_LOG_REPLAY;
2012 			return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG, ENXIO));
2013 		}
2014 	}
2015 
2016 	if (spa_writeable(spa) && (state == SPA_LOAD_RECOVER ||
2017 	    spa->spa_load_max_txg == UINT64_MAX)) {
2018 		dmu_tx_t *tx;
2019 		int need_update = B_FALSE;
2020 
2021 		ASSERT(state != SPA_LOAD_TRYIMPORT);
2022 
2023 		/*
2024 		 * Claim log blocks that haven't been committed yet.
2025 		 * This must all happen in a single txg.
2026 		 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
2027 		 * invoked from zil_claim_log_block()'s i/o done callback.
2028 		 * Price of rollback is that we abandon the log.
2029 		 */
2030 		spa->spa_claiming = B_TRUE;
2031 
2032 		tx = dmu_tx_create_assigned(spa_get_dsl(spa),
2033 		    spa_first_txg(spa));
2034 		(void) dmu_objset_find(spa_name(spa),
2035 		    zil_claim, tx, DS_FIND_CHILDREN);
2036 		dmu_tx_commit(tx);
2037 
2038 		spa->spa_claiming = B_FALSE;
2039 
2040 		spa_set_log_state(spa, SPA_LOG_GOOD);
2041 		spa->spa_sync_on = B_TRUE;
2042 		txg_sync_start(spa->spa_dsl_pool);
2043 
2044 		/*
2045 		 * Wait for all claims to sync.  We sync up to the highest
2046 		 * claimed log block birth time so that claimed log blocks
2047 		 * don't appear to be from the future.  spa_claim_max_txg
2048 		 * will have been set for us by either zil_check_log_chain()
2049 		 * (invoked from spa_check_logs()) or zil_claim() above.
2050 		 */
2051 		txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
2052 
2053 		/*
2054 		 * If the config cache is stale, or we have uninitialized
2055 		 * metaslabs (see spa_vdev_add()), then update the config.
2056 		 *
2057 		 * If spa_load_verbatim is true, trust the current
2058 		 * in-core spa_config and update the disk labels.
2059 		 */
2060 		if (config_cache_txg != spa->spa_config_txg ||
2061 		    state == SPA_LOAD_IMPORT || spa->spa_load_verbatim ||
2062 		    state == SPA_LOAD_RECOVER)
2063 			need_update = B_TRUE;
2064 
2065 		for (int c = 0; c < rvd->vdev_children; c++)
2066 			if (rvd->vdev_child[c]->vdev_ms_array == 0)
2067 				need_update = B_TRUE;
2068 
2069 		/*
2070 		 * Update the config cache asychronously in case we're the
2071 		 * root pool, in which case the config cache isn't writable yet.
2072 		 */
2073 		if (need_update)
2074 			spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
2075 
2076 		/*
2077 		 * Check all DTLs to see if anything needs resilvering.
2078 		 */
2079 		if (vdev_resilver_needed(rvd, NULL, NULL))
2080 			spa_async_request(spa, SPA_ASYNC_RESILVER);
2081 
2082 		/*
2083 		 * Delete any inconsistent datasets.
2084 		 */
2085 		(void) dmu_objset_find(spa_name(spa),
2086 		    dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
2087 
2088 		/*
2089 		 * Clean up any stale temporary dataset userrefs.
2090 		 */
2091 		dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
2092 	}
2093 
2094 	return (0);
2095 }
2096 
2097 static int
2098 spa_load_retry(spa_t *spa, spa_load_state_t state, int mosconfig)
2099 {
2100 	spa_unload(spa);
2101 	spa_deactivate(spa);
2102 
2103 	spa->spa_load_max_txg--;
2104 
2105 	spa_activate(spa, spa_mode_global);
2106 	spa_async_suspend(spa);
2107 
2108 	return (spa_load(spa, state, SPA_IMPORT_EXISTING, mosconfig));
2109 }
2110 
2111 static int
2112 spa_load_best(spa_t *spa, spa_load_state_t state, int mosconfig,
2113     uint64_t max_request, int rewind_flags)
2114 {
2115 	nvlist_t *config = NULL;
2116 	int load_error, rewind_error;
2117 	uint64_t safe_rewind_txg;
2118 	uint64_t min_txg;
2119 
2120 	if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
2121 		spa->spa_load_max_txg = spa->spa_load_txg;
2122 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2123 	} else {
2124 		spa->spa_load_max_txg = max_request;
2125 	}
2126 
2127 	load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING,
2128 	    mosconfig);
2129 	if (load_error == 0)
2130 		return (0);
2131 
2132 	if (spa->spa_root_vdev != NULL)
2133 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2134 
2135 	spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
2136 	spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
2137 
2138 	if (rewind_flags & ZPOOL_NEVER_REWIND) {
2139 		nvlist_free(config);
2140 		return (load_error);
2141 	}
2142 
2143 	/* Price of rolling back is discarding txgs, including log */
2144 	if (state == SPA_LOAD_RECOVER)
2145 		spa_set_log_state(spa, SPA_LOG_CLEAR);
2146 
2147 	spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
2148 	safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
2149 	min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
2150 	    TXG_INITIAL : safe_rewind_txg;
2151 
2152 	/*
2153 	 * Continue as long as we're finding errors, we're still within
2154 	 * the acceptable rewind range, and we're still finding uberblocks
2155 	 */
2156 	while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
2157 	    spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
2158 		if (spa->spa_load_max_txg < safe_rewind_txg)
2159 			spa->spa_extreme_rewind = B_TRUE;
2160 		rewind_error = spa_load_retry(spa, state, mosconfig);
2161 	}
2162 
2163 	if (config)
2164 		spa_rewind_data_to_nvlist(spa, config);
2165 
2166 	spa->spa_extreme_rewind = B_FALSE;
2167 	spa->spa_load_max_txg = UINT64_MAX;
2168 
2169 	if (config && (rewind_error || state != SPA_LOAD_RECOVER))
2170 		spa_config_set(spa, config);
2171 
2172 	return (state == SPA_LOAD_RECOVER ? rewind_error : load_error);
2173 }
2174 
2175 /*
2176  * Pool Open/Import
2177  *
2178  * The import case is identical to an open except that the configuration is sent
2179  * down from userland, instead of grabbed from the configuration cache.  For the
2180  * case of an open, the pool configuration will exist in the
2181  * POOL_STATE_UNINITIALIZED state.
2182  *
2183  * The stats information (gen/count/ustats) is used to gather vdev statistics at
2184  * the same time open the pool, without having to keep around the spa_t in some
2185  * ambiguous state.
2186  */
2187 static int
2188 spa_open_common(const char *pool, spa_t **spapp, void *tag, nvlist_t *nvpolicy,
2189     nvlist_t **config)
2190 {
2191 	spa_t *spa;
2192 	int error;
2193 	int locked = B_FALSE;
2194 
2195 	*spapp = NULL;
2196 
2197 	/*
2198 	 * As disgusting as this is, we need to support recursive calls to this
2199 	 * function because dsl_dir_open() is called during spa_load(), and ends
2200 	 * up calling spa_open() again.  The real fix is to figure out how to
2201 	 * avoid dsl_dir_open() calling this in the first place.
2202 	 */
2203 	if (mutex_owner(&spa_namespace_lock) != curthread) {
2204 		mutex_enter(&spa_namespace_lock);
2205 		locked = B_TRUE;
2206 	}
2207 
2208 	if ((spa = spa_lookup(pool)) == NULL) {
2209 		if (locked)
2210 			mutex_exit(&spa_namespace_lock);
2211 		return (ENOENT);
2212 	}
2213 
2214 	if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
2215 		spa_load_state_t state = SPA_LOAD_OPEN;
2216 		zpool_rewind_policy_t policy;
2217 
2218 		zpool_get_rewind_policy(nvpolicy ? nvpolicy : spa->spa_config,
2219 		    &policy);
2220 		if (policy.zrp_request & ZPOOL_DO_REWIND)
2221 			state = SPA_LOAD_RECOVER;
2222 
2223 		spa_activate(spa, spa_mode_global);
2224 
2225 		if (spa->spa_last_open_failed && (policy.zrp_request &
2226 		    (ZPOOL_NO_REWIND | ZPOOL_NEVER_REWIND))) {
2227 			if (config != NULL && spa->spa_config)
2228 				VERIFY(nvlist_dup(spa->spa_config,
2229 				    config, KM_SLEEP) == 0);
2230 			spa_deactivate(spa);
2231 			if (locked)
2232 				mutex_exit(&spa_namespace_lock);
2233 			return (spa->spa_last_open_failed);
2234 		}
2235 
2236 		if (state != SPA_LOAD_RECOVER)
2237 			spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
2238 
2239 		error = spa_load_best(spa, state, B_FALSE, policy.zrp_txg,
2240 		    policy.zrp_request);
2241 
2242 		if (error == EBADF) {
2243 			/*
2244 			 * If vdev_validate() returns failure (indicated by
2245 			 * EBADF), it indicates that one of the vdevs indicates
2246 			 * that the pool has been exported or destroyed.  If
2247 			 * this is the case, the config cache is out of sync and
2248 			 * we should remove the pool from the namespace.
2249 			 */
2250 			spa_unload(spa);
2251 			spa_deactivate(spa);
2252 			spa_config_sync(spa, B_TRUE, B_TRUE);
2253 			spa_remove(spa);
2254 			if (locked)
2255 				mutex_exit(&spa_namespace_lock);
2256 			return (ENOENT);
2257 		}
2258 
2259 		if (error) {
2260 			/*
2261 			 * We can't open the pool, but we still have useful
2262 			 * information: the state of each vdev after the
2263 			 * attempted vdev_open().  Return this to the user.
2264 			 */
2265 			if (config != NULL && spa->spa_config)
2266 				VERIFY(nvlist_dup(spa->spa_config, config,
2267 				    KM_SLEEP) == 0);
2268 			spa_unload(spa);
2269 			spa_deactivate(spa);
2270 			spa->spa_last_open_failed = error;
2271 			if (locked)
2272 				mutex_exit(&spa_namespace_lock);
2273 			*spapp = NULL;
2274 			return (error);
2275 		}
2276 
2277 	}
2278 
2279 	spa_open_ref(spa, tag);
2280 
2281 
2282 	if (config != NULL)
2283 		*config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
2284 
2285 	if (locked) {
2286 		spa->spa_last_open_failed = 0;
2287 		spa->spa_last_ubsync_txg = 0;
2288 		spa->spa_load_txg = 0;
2289 		mutex_exit(&spa_namespace_lock);
2290 	}
2291 
2292 	*spapp = spa;
2293 
2294 	return (0);
2295 }
2296 
2297 int
2298 spa_open_rewind(const char *name, spa_t **spapp, void *tag, nvlist_t *policy,
2299     nvlist_t **config)
2300 {
2301 	return (spa_open_common(name, spapp, tag, policy, config));
2302 }
2303 
2304 int
2305 spa_open(const char *name, spa_t **spapp, void *tag)
2306 {
2307 	return (spa_open_common(name, spapp, tag, NULL, NULL));
2308 }
2309 
2310 /*
2311  * Lookup the given spa_t, incrementing the inject count in the process,
2312  * preventing it from being exported or destroyed.
2313  */
2314 spa_t *
2315 spa_inject_addref(char *name)
2316 {
2317 	spa_t *spa;
2318 
2319 	mutex_enter(&spa_namespace_lock);
2320 	if ((spa = spa_lookup(name)) == NULL) {
2321 		mutex_exit(&spa_namespace_lock);
2322 		return (NULL);
2323 	}
2324 	spa->spa_inject_ref++;
2325 	mutex_exit(&spa_namespace_lock);
2326 
2327 	return (spa);
2328 }
2329 
2330 void
2331 spa_inject_delref(spa_t *spa)
2332 {
2333 	mutex_enter(&spa_namespace_lock);
2334 	spa->spa_inject_ref--;
2335 	mutex_exit(&spa_namespace_lock);
2336 }
2337 
2338 /*
2339  * Add spares device information to the nvlist.
2340  */
2341 static void
2342 spa_add_spares(spa_t *spa, nvlist_t *config)
2343 {
2344 	nvlist_t **spares;
2345 	uint_t i, nspares;
2346 	nvlist_t *nvroot;
2347 	uint64_t guid;
2348 	vdev_stat_t *vs;
2349 	uint_t vsc;
2350 	uint64_t pool;
2351 
2352 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2353 
2354 	if (spa->spa_spares.sav_count == 0)
2355 		return;
2356 
2357 	VERIFY(nvlist_lookup_nvlist(config,
2358 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2359 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2360 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2361 	if (nspares != 0) {
2362 		VERIFY(nvlist_add_nvlist_array(nvroot,
2363 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2364 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2365 		    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0);
2366 
2367 		/*
2368 		 * Go through and find any spares which have since been
2369 		 * repurposed as an active spare.  If this is the case, update
2370 		 * their status appropriately.
2371 		 */
2372 		for (i = 0; i < nspares; i++) {
2373 			VERIFY(nvlist_lookup_uint64(spares[i],
2374 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2375 			if (spa_spare_exists(guid, &pool, NULL) &&
2376 			    pool != 0ULL) {
2377 				VERIFY(nvlist_lookup_uint64_array(
2378 				    spares[i], ZPOOL_CONFIG_STATS,
2379 				    (uint64_t **)&vs, &vsc) == 0);
2380 				vs->vs_state = VDEV_STATE_CANT_OPEN;
2381 				vs->vs_aux = VDEV_AUX_SPARED;
2382 			}
2383 		}
2384 	}
2385 }
2386 
2387 /*
2388  * Add l2cache device information to the nvlist, including vdev stats.
2389  */
2390 static void
2391 spa_add_l2cache(spa_t *spa, nvlist_t *config)
2392 {
2393 	nvlist_t **l2cache;
2394 	uint_t i, j, nl2cache;
2395 	nvlist_t *nvroot;
2396 	uint64_t guid;
2397 	vdev_t *vd;
2398 	vdev_stat_t *vs;
2399 	uint_t vsc;
2400 
2401 	ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
2402 
2403 	if (spa->spa_l2cache.sav_count == 0)
2404 		return;
2405 
2406 	VERIFY(nvlist_lookup_nvlist(config,
2407 	    ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
2408 	VERIFY(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
2409 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2410 	if (nl2cache != 0) {
2411 		VERIFY(nvlist_add_nvlist_array(nvroot,
2412 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2413 		VERIFY(nvlist_lookup_nvlist_array(nvroot,
2414 		    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0);
2415 
2416 		/*
2417 		 * Update level 2 cache device stats.
2418 		 */
2419 
2420 		for (i = 0; i < nl2cache; i++) {
2421 			VERIFY(nvlist_lookup_uint64(l2cache[i],
2422 			    ZPOOL_CONFIG_GUID, &guid) == 0);
2423 
2424 			vd = NULL;
2425 			for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
2426 				if (guid ==
2427 				    spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
2428 					vd = spa->spa_l2cache.sav_vdevs[j];
2429 					break;
2430 				}
2431 			}
2432 			ASSERT(vd != NULL);
2433 
2434 			VERIFY(nvlist_lookup_uint64_array(l2cache[i],
2435 			    ZPOOL_CONFIG_STATS, (uint64_t **)&vs, &vsc) == 0);
2436 			vdev_get_stats(vd, vs);
2437 		}
2438 	}
2439 }
2440 
2441 int
2442 spa_get_stats(const char *name, nvlist_t **config, char *altroot, size_t buflen)
2443 {
2444 	int error;
2445 	spa_t *spa;
2446 
2447 	*config = NULL;
2448 	error = spa_open_common(name, &spa, FTAG, NULL, config);
2449 
2450 	if (spa != NULL) {
2451 		/*
2452 		 * This still leaves a window of inconsistency where the spares
2453 		 * or l2cache devices could change and the config would be
2454 		 * self-inconsistent.
2455 		 */
2456 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
2457 
2458 		if (*config != NULL) {
2459 			VERIFY(nvlist_add_uint64(*config,
2460 			    ZPOOL_CONFIG_ERRCOUNT,
2461 			    spa_get_errlog_size(spa)) == 0);
2462 
2463 			if (spa_suspended(spa))
2464 				VERIFY(nvlist_add_uint64(*config,
2465 				    ZPOOL_CONFIG_SUSPENDED,
2466 				    spa->spa_failmode) == 0);
2467 
2468 			spa_add_spares(spa, *config);
2469 			spa_add_l2cache(spa, *config);
2470 		}
2471 	}
2472 
2473 	/*
2474 	 * We want to get the alternate root even for faulted pools, so we cheat
2475 	 * and call spa_lookup() directly.
2476 	 */
2477 	if (altroot) {
2478 		if (spa == NULL) {
2479 			mutex_enter(&spa_namespace_lock);
2480 			spa = spa_lookup(name);
2481 			if (spa)
2482 				spa_altroot(spa, altroot, buflen);
2483 			else
2484 				altroot[0] = '\0';
2485 			spa = NULL;
2486 			mutex_exit(&spa_namespace_lock);
2487 		} else {
2488 			spa_altroot(spa, altroot, buflen);
2489 		}
2490 	}
2491 
2492 	if (spa != NULL) {
2493 		spa_config_exit(spa, SCL_CONFIG, FTAG);
2494 		spa_close(spa, FTAG);
2495 	}
2496 
2497 	return (error);
2498 }
2499 
2500 /*
2501  * Validate that the auxiliary device array is well formed.  We must have an
2502  * array of nvlists, each which describes a valid leaf vdev.  If this is an
2503  * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
2504  * specified, as long as they are well-formed.
2505  */
2506 static int
2507 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
2508     spa_aux_vdev_t *sav, const char *config, uint64_t version,
2509     vdev_labeltype_t label)
2510 {
2511 	nvlist_t **dev;
2512 	uint_t i, ndev;
2513 	vdev_t *vd;
2514 	int error;
2515 
2516 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2517 
2518 	/*
2519 	 * It's acceptable to have no devs specified.
2520 	 */
2521 	if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
2522 		return (0);
2523 
2524 	if (ndev == 0)
2525 		return (EINVAL);
2526 
2527 	/*
2528 	 * Make sure the pool is formatted with a version that supports this
2529 	 * device type.
2530 	 */
2531 	if (spa_version(spa) < version)
2532 		return (ENOTSUP);
2533 
2534 	/*
2535 	 * Set the pending device list so we correctly handle device in-use
2536 	 * checking.
2537 	 */
2538 	sav->sav_pending = dev;
2539 	sav->sav_npending = ndev;
2540 
2541 	for (i = 0; i < ndev; i++) {
2542 		if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
2543 		    mode)) != 0)
2544 			goto out;
2545 
2546 		if (!vd->vdev_ops->vdev_op_leaf) {
2547 			vdev_free(vd);
2548 			error = EINVAL;
2549 			goto out;
2550 		}
2551 
2552 		/*
2553 		 * The L2ARC currently only supports disk devices in
2554 		 * kernel context.  For user-level testing, we allow it.
2555 		 */
2556 #ifdef _KERNEL
2557 		if ((strcmp(config, ZPOOL_CONFIG_L2CACHE) == 0) &&
2558 		    strcmp(vd->vdev_ops->vdev_op_type, VDEV_TYPE_DISK) != 0) {
2559 			error = ENOTBLK;
2560 			goto out;
2561 		}
2562 #endif
2563 		vd->vdev_top = vd;
2564 
2565 		if ((error = vdev_open(vd)) == 0 &&
2566 		    (error = vdev_label_init(vd, crtxg, label)) == 0) {
2567 			VERIFY(nvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
2568 			    vd->vdev_guid) == 0);
2569 		}
2570 
2571 		vdev_free(vd);
2572 
2573 		if (error &&
2574 		    (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
2575 			goto out;
2576 		else
2577 			error = 0;
2578 	}
2579 
2580 out:
2581 	sav->sav_pending = NULL;
2582 	sav->sav_npending = 0;
2583 	return (error);
2584 }
2585 
2586 static int
2587 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
2588 {
2589 	int error;
2590 
2591 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2592 
2593 	if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2594 	    &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
2595 	    VDEV_LABEL_SPARE)) != 0) {
2596 		return (error);
2597 	}
2598 
2599 	return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
2600 	    &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
2601 	    VDEV_LABEL_L2CACHE));
2602 }
2603 
2604 static void
2605 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
2606     const char *config)
2607 {
2608 	int i;
2609 
2610 	if (sav->sav_config != NULL) {
2611 		nvlist_t **olddevs;
2612 		uint_t oldndevs;
2613 		nvlist_t **newdevs;
2614 
2615 		/*
2616 		 * Generate new dev list by concatentating with the
2617 		 * current dev list.
2618 		 */
2619 		VERIFY(nvlist_lookup_nvlist_array(sav->sav_config, config,
2620 		    &olddevs, &oldndevs) == 0);
2621 
2622 		newdevs = kmem_alloc(sizeof (void *) *
2623 		    (ndevs + oldndevs), KM_SLEEP);
2624 		for (i = 0; i < oldndevs; i++)
2625 			VERIFY(nvlist_dup(olddevs[i], &newdevs[i],
2626 			    KM_SLEEP) == 0);
2627 		for (i = 0; i < ndevs; i++)
2628 			VERIFY(nvlist_dup(devs[i], &newdevs[i + oldndevs],
2629 			    KM_SLEEP) == 0);
2630 
2631 		VERIFY(nvlist_remove(sav->sav_config, config,
2632 		    DATA_TYPE_NVLIST_ARRAY) == 0);
2633 
2634 		VERIFY(nvlist_add_nvlist_array(sav->sav_config,
2635 		    config, newdevs, ndevs + oldndevs) == 0);
2636 		for (i = 0; i < oldndevs + ndevs; i++)
2637 			nvlist_free(newdevs[i]);
2638 		kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
2639 	} else {
2640 		/*
2641 		 * Generate a new dev list.
2642 		 */
2643 		VERIFY(nvlist_alloc(&sav->sav_config, NV_UNIQUE_NAME,
2644 		    KM_SLEEP) == 0);
2645 		VERIFY(nvlist_add_nvlist_array(sav->sav_config, config,
2646 		    devs, ndevs) == 0);
2647 	}
2648 }
2649 
2650 /*
2651  * Stop and drop level 2 ARC devices
2652  */
2653 void
2654 spa_l2cache_drop(spa_t *spa)
2655 {
2656 	vdev_t *vd;
2657 	int i;
2658 	spa_aux_vdev_t *sav = &spa->spa_l2cache;
2659 
2660 	for (i = 0; i < sav->sav_count; i++) {
2661 		uint64_t pool;
2662 
2663 		vd = sav->sav_vdevs[i];
2664 		ASSERT(vd != NULL);
2665 
2666 		if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2667 		    pool != 0ULL && l2arc_vdev_present(vd))
2668 			l2arc_remove_vdev(vd);
2669 		if (vd->vdev_isl2cache)
2670 			spa_l2cache_remove(vd);
2671 		vdev_clear_stats(vd);
2672 		(void) vdev_close(vd);
2673 	}
2674 }
2675 
2676 /*
2677  * Pool Creation
2678  */
2679 int
2680 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
2681     const char *history_str, nvlist_t *zplprops)
2682 {
2683 	spa_t *spa;
2684 	char *altroot = NULL;
2685 	vdev_t *rvd;
2686 	dsl_pool_t *dp;
2687 	dmu_tx_t *tx;
2688 	int error = 0;
2689 	uint64_t txg = TXG_INITIAL;
2690 	nvlist_t **spares, **l2cache;
2691 	uint_t nspares, nl2cache;
2692 	uint64_t version;
2693 
2694 	/*
2695 	 * If this pool already exists, return failure.
2696 	 */
2697 	mutex_enter(&spa_namespace_lock);
2698 	if (spa_lookup(pool) != NULL) {
2699 		mutex_exit(&spa_namespace_lock);
2700 		return (EEXIST);
2701 	}
2702 
2703 	/*
2704 	 * Allocate a new spa_t structure.
2705 	 */
2706 	(void) nvlist_lookup_string(props,
2707 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
2708 	spa = spa_add(pool, NULL, altroot);
2709 	spa_activate(spa, spa_mode_global);
2710 
2711 	if (props && (error = spa_prop_validate(spa, props))) {
2712 		spa_deactivate(spa);
2713 		spa_remove(spa);
2714 		mutex_exit(&spa_namespace_lock);
2715 		return (error);
2716 	}
2717 
2718 	if (nvlist_lookup_uint64(props, zpool_prop_to_name(ZPOOL_PROP_VERSION),
2719 	    &version) != 0)
2720 		version = SPA_VERSION;
2721 	ASSERT(version <= SPA_VERSION);
2722 
2723 	spa->spa_first_txg = txg;
2724 	spa->spa_uberblock.ub_txg = txg - 1;
2725 	spa->spa_uberblock.ub_version = version;
2726 	spa->spa_ubsync = spa->spa_uberblock;
2727 
2728 	/*
2729 	 * Create "The Godfather" zio to hold all async IOs
2730 	 */
2731 	spa->spa_async_zio_root = zio_root(spa, NULL, NULL,
2732 	    ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE | ZIO_FLAG_GODFATHER);
2733 
2734 	/*
2735 	 * Create the root vdev.
2736 	 */
2737 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2738 
2739 	error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
2740 
2741 	ASSERT(error != 0 || rvd != NULL);
2742 	ASSERT(error != 0 || spa->spa_root_vdev == rvd);
2743 
2744 	if (error == 0 && !zfs_allocatable_devs(nvroot))
2745 		error = EINVAL;
2746 
2747 	if (error == 0 &&
2748 	    (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
2749 	    (error = spa_validate_aux(spa, nvroot, txg,
2750 	    VDEV_ALLOC_ADD)) == 0) {
2751 		for (int c = 0; c < rvd->vdev_children; c++) {
2752 			vdev_metaslab_set_size(rvd->vdev_child[c]);
2753 			vdev_expand(rvd->vdev_child[c], txg);
2754 		}
2755 	}
2756 
2757 	spa_config_exit(spa, SCL_ALL, FTAG);
2758 
2759 	if (error != 0) {
2760 		spa_unload(spa);
2761 		spa_deactivate(spa);
2762 		spa_remove(spa);
2763 		mutex_exit(&spa_namespace_lock);
2764 		return (error);
2765 	}
2766 
2767 	/*
2768 	 * Get the list of spares, if specified.
2769 	 */
2770 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
2771 	    &spares, &nspares) == 0) {
2772 		VERIFY(nvlist_alloc(&spa->spa_spares.sav_config, NV_UNIQUE_NAME,
2773 		    KM_SLEEP) == 0);
2774 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
2775 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
2776 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2777 		spa_load_spares(spa);
2778 		spa_config_exit(spa, SCL_ALL, FTAG);
2779 		spa->spa_spares.sav_sync = B_TRUE;
2780 	}
2781 
2782 	/*
2783 	 * Get the list of level 2 cache devices, if specified.
2784 	 */
2785 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
2786 	    &l2cache, &nl2cache) == 0) {
2787 		VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
2788 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
2789 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
2790 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
2791 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
2792 		spa_load_l2cache(spa);
2793 		spa_config_exit(spa, SCL_ALL, FTAG);
2794 		spa->spa_l2cache.sav_sync = B_TRUE;
2795 	}
2796 
2797 	spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, txg);
2798 	spa->spa_meta_objset = dp->dp_meta_objset;
2799 
2800 	/*
2801 	 * Create DDTs (dedup tables).
2802 	 */
2803 	ddt_create(spa);
2804 
2805 	spa_update_dspace(spa);
2806 
2807 	tx = dmu_tx_create_assigned(dp, txg);
2808 
2809 	/*
2810 	 * Create the pool config object.
2811 	 */
2812 	spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
2813 	    DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
2814 	    DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
2815 
2816 	if (zap_add(spa->spa_meta_objset,
2817 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
2818 	    sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
2819 		cmn_err(CE_PANIC, "failed to add pool config");
2820 	}
2821 
2822 	/* Newly created pools with the right version are always deflated. */
2823 	if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
2824 		spa->spa_deflate = TRUE;
2825 		if (zap_add(spa->spa_meta_objset,
2826 		    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
2827 		    sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
2828 			cmn_err(CE_PANIC, "failed to add deflate");
2829 		}
2830 	}
2831 
2832 	/*
2833 	 * Create the deferred-free bplist object.  Turn off compression
2834 	 * because sync-to-convergence takes longer if the blocksize
2835 	 * keeps changing.
2836 	 */
2837 	spa->spa_deferred_bplist_obj = bplist_create(spa->spa_meta_objset,
2838 	    1 << 14, tx);
2839 	dmu_object_set_compress(spa->spa_meta_objset,
2840 	    spa->spa_deferred_bplist_obj, ZIO_COMPRESS_OFF, tx);
2841 
2842 	if (zap_add(spa->spa_meta_objset,
2843 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPLIST,
2844 	    sizeof (uint64_t), 1, &spa->spa_deferred_bplist_obj, tx) != 0) {
2845 		cmn_err(CE_PANIC, "failed to add bplist");
2846 	}
2847 
2848 	/*
2849 	 * Create the pool's history object.
2850 	 */
2851 	if (version >= SPA_VERSION_ZPOOL_HISTORY)
2852 		spa_history_create_obj(spa, tx);
2853 
2854 	/*
2855 	 * Set pool properties.
2856 	 */
2857 	spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
2858 	spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
2859 	spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
2860 	spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
2861 
2862 	if (props != NULL) {
2863 		spa_configfile_set(spa, props, B_FALSE);
2864 		spa_sync_props(spa, props, CRED(), tx);
2865 	}
2866 
2867 	dmu_tx_commit(tx);
2868 
2869 	spa->spa_sync_on = B_TRUE;
2870 	txg_sync_start(spa->spa_dsl_pool);
2871 
2872 	/*
2873 	 * We explicitly wait for the first transaction to complete so that our
2874 	 * bean counters are appropriately updated.
2875 	 */
2876 	txg_wait_synced(spa->spa_dsl_pool, txg);
2877 
2878 	spa_config_sync(spa, B_FALSE, B_TRUE);
2879 
2880 	if (version >= SPA_VERSION_ZPOOL_HISTORY && history_str != NULL)
2881 		(void) spa_history_log(spa, history_str, LOG_CMD_POOL_CREATE);
2882 	spa_history_log_version(spa, LOG_POOL_CREATE);
2883 
2884 	spa->spa_minref = refcount_count(&spa->spa_refcount);
2885 
2886 	mutex_exit(&spa_namespace_lock);
2887 
2888 	return (0);
2889 }
2890 
2891 #ifdef _KERNEL
2892 /*
2893  * Get the root pool information from the root disk, then import the root pool
2894  * during the system boot up time.
2895  */
2896 extern int vdev_disk_read_rootlabel(char *, char *, nvlist_t **);
2897 
2898 static nvlist_t *
2899 spa_generate_rootconf(char *devpath, char *devid, uint64_t *guid)
2900 {
2901 	nvlist_t *config;
2902 	nvlist_t *nvtop, *nvroot;
2903 	uint64_t pgid;
2904 
2905 	if (vdev_disk_read_rootlabel(devpath, devid, &config) != 0)
2906 		return (NULL);
2907 
2908 	/*
2909 	 * Add this top-level vdev to the child array.
2910 	 */
2911 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
2912 	    &nvtop) == 0);
2913 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
2914 	    &pgid) == 0);
2915 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_GUID, guid) == 0);
2916 
2917 	/*
2918 	 * Put this pool's top-level vdevs into a root vdev.
2919 	 */
2920 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
2921 	VERIFY(nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE,
2922 	    VDEV_TYPE_ROOT) == 0);
2923 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_ID, 0ULL) == 0);
2924 	VERIFY(nvlist_add_uint64(nvroot, ZPOOL_CONFIG_GUID, pgid) == 0);
2925 	VERIFY(nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
2926 	    &nvtop, 1) == 0);
2927 
2928 	/*
2929 	 * Replace the existing vdev_tree with the new root vdev in
2930 	 * this pool's configuration (remove the old, add the new).
2931 	 */
2932 	VERIFY(nvlist_add_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, nvroot) == 0);
2933 	nvlist_free(nvroot);
2934 	return (config);
2935 }
2936 
2937 /*
2938  * Walk the vdev tree and see if we can find a device with "better"
2939  * configuration. A configuration is "better" if the label on that
2940  * device has a more recent txg.
2941  */
2942 static void
2943 spa_alt_rootvdev(vdev_t *vd, vdev_t **avd, uint64_t *txg)
2944 {
2945 	for (int c = 0; c < vd->vdev_children; c++)
2946 		spa_alt_rootvdev(vd->vdev_child[c], avd, txg);
2947 
2948 	if (vd->vdev_ops->vdev_op_leaf) {
2949 		nvlist_t *label;
2950 		uint64_t label_txg;
2951 
2952 		if (vdev_disk_read_rootlabel(vd->vdev_physpath, vd->vdev_devid,
2953 		    &label) != 0)
2954 			return;
2955 
2956 		VERIFY(nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG,
2957 		    &label_txg) == 0);
2958 
2959 		/*
2960 		 * Do we have a better boot device?
2961 		 */
2962 		if (label_txg > *txg) {
2963 			*txg = label_txg;
2964 			*avd = vd;
2965 		}
2966 		nvlist_free(label);
2967 	}
2968 }
2969 
2970 /*
2971  * Import a root pool.
2972  *
2973  * For x86. devpath_list will consist of devid and/or physpath name of
2974  * the vdev (e.g. "id1,sd@SSEAGATE..." or "/pci@1f,0/ide@d/disk@0,0:a").
2975  * The GRUB "findroot" command will return the vdev we should boot.
2976  *
2977  * For Sparc, devpath_list consists the physpath name of the booting device
2978  * no matter the rootpool is a single device pool or a mirrored pool.
2979  * e.g.
2980  *	"/pci@1f,0/ide@d/disk@0,0:a"
2981  */
2982 int
2983 spa_import_rootpool(char *devpath, char *devid)
2984 {
2985 	spa_t *spa;
2986 	vdev_t *rvd, *bvd, *avd = NULL;
2987 	nvlist_t *config, *nvtop;
2988 	uint64_t guid, txg;
2989 	char *pname;
2990 	int error;
2991 
2992 	/*
2993 	 * Read the label from the boot device and generate a configuration.
2994 	 */
2995 	config = spa_generate_rootconf(devpath, devid, &guid);
2996 #if defined(_OBP) && defined(_KERNEL)
2997 	if (config == NULL) {
2998 		if (strstr(devpath, "/iscsi/ssd") != NULL) {
2999 			/* iscsi boot */
3000 			get_iscsi_bootpath_phy(devpath);
3001 			config = spa_generate_rootconf(devpath, devid, &guid);
3002 		}
3003 	}
3004 #endif
3005 	if (config == NULL) {
3006 		cmn_err(CE_NOTE, "Can not read the pool label from '%s'",
3007 		    devpath);
3008 		return (EIO);
3009 	}
3010 
3011 	VERIFY(nvlist_lookup_string(config, ZPOOL_CONFIG_POOL_NAME,
3012 	    &pname) == 0);
3013 	VERIFY(nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG, &txg) == 0);
3014 
3015 	mutex_enter(&spa_namespace_lock);
3016 	if ((spa = spa_lookup(pname)) != NULL) {
3017 		/*
3018 		 * Remove the existing root pool from the namespace so that we
3019 		 * can replace it with the correct config we just read in.
3020 		 */
3021 		spa_remove(spa);
3022 	}
3023 
3024 	spa = spa_add(pname, config, NULL);
3025 	spa->spa_is_root = B_TRUE;
3026 	spa->spa_load_verbatim = B_TRUE;
3027 
3028 	/*
3029 	 * Build up a vdev tree based on the boot device's label config.
3030 	 */
3031 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3032 	    &nvtop) == 0);
3033 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3034 	error = spa_config_parse(spa, &rvd, nvtop, NULL, 0,
3035 	    VDEV_ALLOC_ROOTPOOL);
3036 	spa_config_exit(spa, SCL_ALL, FTAG);
3037 	if (error) {
3038 		mutex_exit(&spa_namespace_lock);
3039 		nvlist_free(config);
3040 		cmn_err(CE_NOTE, "Can not parse the config for pool '%s'",
3041 		    pname);
3042 		return (error);
3043 	}
3044 
3045 	/*
3046 	 * Get the boot vdev.
3047 	 */
3048 	if ((bvd = vdev_lookup_by_guid(rvd, guid)) == NULL) {
3049 		cmn_err(CE_NOTE, "Can not find the boot vdev for guid %llu",
3050 		    (u_longlong_t)guid);
3051 		error = ENOENT;
3052 		goto out;
3053 	}
3054 
3055 	/*
3056 	 * Determine if there is a better boot device.
3057 	 */
3058 	avd = bvd;
3059 	spa_alt_rootvdev(rvd, &avd, &txg);
3060 	if (avd != bvd) {
3061 		cmn_err(CE_NOTE, "The boot device is 'degraded'. Please "
3062 		    "try booting from '%s'", avd->vdev_path);
3063 		error = EINVAL;
3064 		goto out;
3065 	}
3066 
3067 	/*
3068 	 * If the boot device is part of a spare vdev then ensure that
3069 	 * we're booting off the active spare.
3070 	 */
3071 	if (bvd->vdev_parent->vdev_ops == &vdev_spare_ops &&
3072 	    !bvd->vdev_isspare) {
3073 		cmn_err(CE_NOTE, "The boot device is currently spared. Please "
3074 		    "try booting from '%s'",
3075 		    bvd->vdev_parent->vdev_child[1]->vdev_path);
3076 		error = EINVAL;
3077 		goto out;
3078 	}
3079 
3080 	error = 0;
3081 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3082 out:
3083 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3084 	vdev_free(rvd);
3085 	spa_config_exit(spa, SCL_ALL, FTAG);
3086 	mutex_exit(&spa_namespace_lock);
3087 
3088 	nvlist_free(config);
3089 	return (error);
3090 }
3091 
3092 #endif
3093 
3094 /*
3095  * Take a pool and insert it into the namespace as if it had been loaded at
3096  * boot.
3097  */
3098 int
3099 spa_import_verbatim(const char *pool, nvlist_t *config, nvlist_t *props)
3100 {
3101 	spa_t *spa;
3102 	char *altroot = NULL;
3103 
3104 	mutex_enter(&spa_namespace_lock);
3105 	if (spa_lookup(pool) != NULL) {
3106 		mutex_exit(&spa_namespace_lock);
3107 		return (EEXIST);
3108 	}
3109 
3110 	(void) nvlist_lookup_string(props,
3111 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3112 	spa = spa_add(pool, config, altroot);
3113 
3114 	spa->spa_load_verbatim = B_TRUE;
3115 
3116 	if (props != NULL)
3117 		spa_configfile_set(spa, props, B_FALSE);
3118 
3119 	spa_config_sync(spa, B_FALSE, B_TRUE);
3120 
3121 	mutex_exit(&spa_namespace_lock);
3122 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3123 
3124 	return (0);
3125 }
3126 
3127 /*
3128  * Import a non-root pool into the system.
3129  */
3130 int
3131 spa_import(const char *pool, nvlist_t *config, nvlist_t *props)
3132 {
3133 	spa_t *spa;
3134 	char *altroot = NULL;
3135 	spa_load_state_t state = SPA_LOAD_IMPORT;
3136 	zpool_rewind_policy_t policy;
3137 	int error;
3138 	nvlist_t *nvroot;
3139 	nvlist_t **spares, **l2cache;
3140 	uint_t nspares, nl2cache;
3141 
3142 	/*
3143 	 * If a pool with this name exists, return failure.
3144 	 */
3145 	mutex_enter(&spa_namespace_lock);
3146 	if (spa_lookup(pool) != NULL) {
3147 		mutex_exit(&spa_namespace_lock);
3148 		return (EEXIST);
3149 	}
3150 
3151 	zpool_get_rewind_policy(config, &policy);
3152 	if (policy.zrp_request & ZPOOL_DO_REWIND)
3153 		state = SPA_LOAD_RECOVER;
3154 
3155 	/*
3156 	 * Create and initialize the spa structure.
3157 	 */
3158 	(void) nvlist_lookup_string(props,
3159 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
3160 	spa = spa_add(pool, config, altroot);
3161 	spa_activate(spa, spa_mode_global);
3162 
3163 	/*
3164 	 * Don't start async tasks until we know everything is healthy.
3165 	 */
3166 	spa_async_suspend(spa);
3167 
3168 	/*
3169 	 * Pass off the heavy lifting to spa_load().  Pass TRUE for mosconfig
3170 	 * because the user-supplied config is actually the one to trust when
3171 	 * doing an import.
3172 	 */
3173 	if (state != SPA_LOAD_RECOVER)
3174 		spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
3175 	error = spa_load_best(spa, state, B_TRUE, policy.zrp_txg,
3176 	    policy.zrp_request);
3177 
3178 	/*
3179 	 * Propagate anything learned about failing or best txgs
3180 	 * back to caller
3181 	 */
3182 	spa_rewind_data_to_nvlist(spa, config);
3183 
3184 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3185 	/*
3186 	 * Toss any existing sparelist, as it doesn't have any validity
3187 	 * anymore, and conflicts with spa_has_spare().
3188 	 */
3189 	if (spa->spa_spares.sav_config) {
3190 		nvlist_free(spa->spa_spares.sav_config);
3191 		spa->spa_spares.sav_config = NULL;
3192 		spa_load_spares(spa);
3193 	}
3194 	if (spa->spa_l2cache.sav_config) {
3195 		nvlist_free(spa->spa_l2cache.sav_config);
3196 		spa->spa_l2cache.sav_config = NULL;
3197 		spa_load_l2cache(spa);
3198 	}
3199 
3200 	VERIFY(nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE,
3201 	    &nvroot) == 0);
3202 	if (error == 0)
3203 		error = spa_validate_aux(spa, nvroot, -1ULL,
3204 		    VDEV_ALLOC_SPARE);
3205 	if (error == 0)
3206 		error = spa_validate_aux(spa, nvroot, -1ULL,
3207 		    VDEV_ALLOC_L2CACHE);
3208 	spa_config_exit(spa, SCL_ALL, FTAG);
3209 
3210 	if (props != NULL)
3211 		spa_configfile_set(spa, props, B_FALSE);
3212 
3213 	if (error != 0 || (props && spa_writeable(spa) &&
3214 	    (error = spa_prop_set(spa, props)))) {
3215 		spa_unload(spa);
3216 		spa_deactivate(spa);
3217 		spa_remove(spa);
3218 		mutex_exit(&spa_namespace_lock);
3219 		return (error);
3220 	}
3221 
3222 	spa_async_resume(spa);
3223 
3224 	/*
3225 	 * Override any spares and level 2 cache devices as specified by
3226 	 * the user, as these may have correct device names/devids, etc.
3227 	 */
3228 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
3229 	    &spares, &nspares) == 0) {
3230 		if (spa->spa_spares.sav_config)
3231 			VERIFY(nvlist_remove(spa->spa_spares.sav_config,
3232 			    ZPOOL_CONFIG_SPARES, DATA_TYPE_NVLIST_ARRAY) == 0);
3233 		else
3234 			VERIFY(nvlist_alloc(&spa->spa_spares.sav_config,
3235 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3236 		VERIFY(nvlist_add_nvlist_array(spa->spa_spares.sav_config,
3237 		    ZPOOL_CONFIG_SPARES, spares, nspares) == 0);
3238 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3239 		spa_load_spares(spa);
3240 		spa_config_exit(spa, SCL_ALL, FTAG);
3241 		spa->spa_spares.sav_sync = B_TRUE;
3242 	}
3243 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
3244 	    &l2cache, &nl2cache) == 0) {
3245 		if (spa->spa_l2cache.sav_config)
3246 			VERIFY(nvlist_remove(spa->spa_l2cache.sav_config,
3247 			    ZPOOL_CONFIG_L2CACHE, DATA_TYPE_NVLIST_ARRAY) == 0);
3248 		else
3249 			VERIFY(nvlist_alloc(&spa->spa_l2cache.sav_config,
3250 			    NV_UNIQUE_NAME, KM_SLEEP) == 0);
3251 		VERIFY(nvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
3252 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache) == 0);
3253 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3254 		spa_load_l2cache(spa);
3255 		spa_config_exit(spa, SCL_ALL, FTAG);
3256 		spa->spa_l2cache.sav_sync = B_TRUE;
3257 	}
3258 
3259 	/*
3260 	 * Check for any removed devices.
3261 	 */
3262 	if (spa->spa_autoreplace) {
3263 		spa_aux_check_removed(&spa->spa_spares);
3264 		spa_aux_check_removed(&spa->spa_l2cache);
3265 	}
3266 
3267 	if (spa_writeable(spa)) {
3268 		/*
3269 		 * Update the config cache to include the newly-imported pool.
3270 		 */
3271 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3272 	}
3273 
3274 	/*
3275 	 * It's possible that the pool was expanded while it was exported.
3276 	 * We kick off an async task to handle this for us.
3277 	 */
3278 	spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
3279 
3280 	mutex_exit(&spa_namespace_lock);
3281 	spa_history_log_version(spa, LOG_POOL_IMPORT);
3282 
3283 	return (0);
3284 }
3285 
3286 nvlist_t *
3287 spa_tryimport(nvlist_t *tryconfig)
3288 {
3289 	nvlist_t *config = NULL;
3290 	char *poolname;
3291 	spa_t *spa;
3292 	uint64_t state;
3293 	int error;
3294 
3295 	if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
3296 		return (NULL);
3297 
3298 	if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
3299 		return (NULL);
3300 
3301 	/*
3302 	 * Create and initialize the spa structure.
3303 	 */
3304 	mutex_enter(&spa_namespace_lock);
3305 	spa = spa_add(TRYIMPORT_NAME, tryconfig, NULL);
3306 	spa_activate(spa, FREAD);
3307 
3308 	/*
3309 	 * Pass off the heavy lifting to spa_load().
3310 	 * Pass TRUE for mosconfig because the user-supplied config
3311 	 * is actually the one to trust when doing an import.
3312 	 */
3313 	error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING, B_TRUE);
3314 
3315 	/*
3316 	 * If 'tryconfig' was at least parsable, return the current config.
3317 	 */
3318 	if (spa->spa_root_vdev != NULL) {
3319 		config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
3320 		VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME,
3321 		    poolname) == 0);
3322 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
3323 		    state) == 0);
3324 		VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3325 		    spa->spa_uberblock.ub_timestamp) == 0);
3326 
3327 		/*
3328 		 * If the bootfs property exists on this pool then we
3329 		 * copy it out so that external consumers can tell which
3330 		 * pools are bootable.
3331 		 */
3332 		if ((!error || error == EEXIST) && spa->spa_bootfs) {
3333 			char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3334 
3335 			/*
3336 			 * We have to play games with the name since the
3337 			 * pool was opened as TRYIMPORT_NAME.
3338 			 */
3339 			if (dsl_dsobj_to_dsname(spa_name(spa),
3340 			    spa->spa_bootfs, tmpname) == 0) {
3341 				char *cp;
3342 				char *dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
3343 
3344 				cp = strchr(tmpname, '/');
3345 				if (cp == NULL) {
3346 					(void) strlcpy(dsname, tmpname,
3347 					    MAXPATHLEN);
3348 				} else {
3349 					(void) snprintf(dsname, MAXPATHLEN,
3350 					    "%s/%s", poolname, ++cp);
3351 				}
3352 				VERIFY(nvlist_add_string(config,
3353 				    ZPOOL_CONFIG_BOOTFS, dsname) == 0);
3354 				kmem_free(dsname, MAXPATHLEN);
3355 			}
3356 			kmem_free(tmpname, MAXPATHLEN);
3357 		}
3358 
3359 		/*
3360 		 * Add the list of hot spares and level 2 cache devices.
3361 		 */
3362 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
3363 		spa_add_spares(spa, config);
3364 		spa_add_l2cache(spa, config);
3365 		spa_config_exit(spa, SCL_CONFIG, FTAG);
3366 	}
3367 
3368 	spa_unload(spa);
3369 	spa_deactivate(spa);
3370 	spa_remove(spa);
3371 	mutex_exit(&spa_namespace_lock);
3372 
3373 	return (config);
3374 }
3375 
3376 /*
3377  * Pool export/destroy
3378  *
3379  * The act of destroying or exporting a pool is very simple.  We make sure there
3380  * is no more pending I/O and any references to the pool are gone.  Then, we
3381  * update the pool state and sync all the labels to disk, removing the
3382  * configuration from the cache afterwards. If the 'hardforce' flag is set, then
3383  * we don't sync the labels or remove the configuration cache.
3384  */
3385 static int
3386 spa_export_common(char *pool, int new_state, nvlist_t **oldconfig,
3387     boolean_t force, boolean_t hardforce)
3388 {
3389 	spa_t *spa;
3390 
3391 	if (oldconfig)
3392 		*oldconfig = NULL;
3393 
3394 	if (!(spa_mode_global & FWRITE))
3395 		return (EROFS);
3396 
3397 	mutex_enter(&spa_namespace_lock);
3398 	if ((spa = spa_lookup(pool)) == NULL) {
3399 		mutex_exit(&spa_namespace_lock);
3400 		return (ENOENT);
3401 	}
3402 
3403 	/*
3404 	 * Put a hold on the pool, drop the namespace lock, stop async tasks,
3405 	 * reacquire the namespace lock, and see if we can export.
3406 	 */
3407 	spa_open_ref(spa, FTAG);
3408 	mutex_exit(&spa_namespace_lock);
3409 	spa_async_suspend(spa);
3410 	mutex_enter(&spa_namespace_lock);
3411 	spa_close(spa, FTAG);
3412 
3413 	/*
3414 	 * The pool will be in core if it's openable,
3415 	 * in which case we can modify its state.
3416 	 */
3417 	if (spa->spa_state != POOL_STATE_UNINITIALIZED && spa->spa_sync_on) {
3418 		/*
3419 		 * Objsets may be open only because they're dirty, so we
3420 		 * have to force it to sync before checking spa_refcnt.
3421 		 */
3422 		txg_wait_synced(spa->spa_dsl_pool, 0);
3423 
3424 		/*
3425 		 * A pool cannot be exported or destroyed if there are active
3426 		 * references.  If we are resetting a pool, allow references by
3427 		 * fault injection handlers.
3428 		 */
3429 		if (!spa_refcount_zero(spa) ||
3430 		    (spa->spa_inject_ref != 0 &&
3431 		    new_state != POOL_STATE_UNINITIALIZED)) {
3432 			spa_async_resume(spa);
3433 			mutex_exit(&spa_namespace_lock);
3434 			return (EBUSY);
3435 		}
3436 
3437 		/*
3438 		 * A pool cannot be exported if it has an active shared spare.
3439 		 * This is to prevent other pools stealing the active spare
3440 		 * from an exported pool. At user's own will, such pool can
3441 		 * be forcedly exported.
3442 		 */
3443 		if (!force && new_state == POOL_STATE_EXPORTED &&
3444 		    spa_has_active_shared_spare(spa)) {
3445 			spa_async_resume(spa);
3446 			mutex_exit(&spa_namespace_lock);
3447 			return (EXDEV);
3448 		}
3449 
3450 		/*
3451 		 * We want this to be reflected on every label,
3452 		 * so mark them all dirty.  spa_unload() will do the
3453 		 * final sync that pushes these changes out.
3454 		 */
3455 		if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
3456 			spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3457 			spa->spa_state = new_state;
3458 			spa->spa_final_txg = spa_last_synced_txg(spa) + 1;
3459 			vdev_config_dirty(spa->spa_root_vdev);
3460 			spa_config_exit(spa, SCL_ALL, FTAG);
3461 		}
3462 	}
3463 
3464 	spa_event_notify(spa, NULL, ESC_ZFS_POOL_DESTROY);
3465 
3466 	if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
3467 		spa_unload(spa);
3468 		spa_deactivate(spa);
3469 	}
3470 
3471 	if (oldconfig && spa->spa_config)
3472 		VERIFY(nvlist_dup(spa->spa_config, oldconfig, 0) == 0);
3473 
3474 	if (new_state != POOL_STATE_UNINITIALIZED) {
3475 		if (!hardforce)
3476 			spa_config_sync(spa, B_TRUE, B_TRUE);
3477 		spa_remove(spa);
3478 	}
3479 	mutex_exit(&spa_namespace_lock);
3480 
3481 	return (0);
3482 }
3483 
3484 /*
3485  * Destroy a storage pool.
3486  */
3487 int
3488 spa_destroy(char *pool)
3489 {
3490 	return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
3491 	    B_FALSE, B_FALSE));
3492 }
3493 
3494 /*
3495  * Export a storage pool.
3496  */
3497 int
3498 spa_export(char *pool, nvlist_t **oldconfig, boolean_t force,
3499     boolean_t hardforce)
3500 {
3501 	return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
3502 	    force, hardforce));
3503 }
3504 
3505 /*
3506  * Similar to spa_export(), this unloads the spa_t without actually removing it
3507  * from the namespace in any way.
3508  */
3509 int
3510 spa_reset(char *pool)
3511 {
3512 	return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
3513 	    B_FALSE, B_FALSE));
3514 }
3515 
3516 /*
3517  * ==========================================================================
3518  * Device manipulation
3519  * ==========================================================================
3520  */
3521 
3522 /*
3523  * Add a device to a storage pool.
3524  */
3525 int
3526 spa_vdev_add(spa_t *spa, nvlist_t *nvroot)
3527 {
3528 	uint64_t txg, id;
3529 	int error;
3530 	vdev_t *rvd = spa->spa_root_vdev;
3531 	vdev_t *vd, *tvd;
3532 	nvlist_t **spares, **l2cache;
3533 	uint_t nspares, nl2cache;
3534 
3535 	txg = spa_vdev_enter(spa);
3536 
3537 	if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
3538 	    VDEV_ALLOC_ADD)) != 0)
3539 		return (spa_vdev_exit(spa, NULL, txg, error));
3540 
3541 	spa->spa_pending_vdev = vd;	/* spa_vdev_exit() will clear this */
3542 
3543 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
3544 	    &nspares) != 0)
3545 		nspares = 0;
3546 
3547 	if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
3548 	    &nl2cache) != 0)
3549 		nl2cache = 0;
3550 
3551 	if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
3552 		return (spa_vdev_exit(spa, vd, txg, EINVAL));
3553 
3554 	if (vd->vdev_children != 0 &&
3555 	    (error = vdev_create(vd, txg, B_FALSE)) != 0)
3556 		return (spa_vdev_exit(spa, vd, txg, error));
3557 
3558 	/*
3559 	 * We must validate the spares and l2cache devices after checking the
3560 	 * children.  Otherwise, vdev_inuse() will blindly overwrite the spare.
3561 	 */
3562 	if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
3563 		return (spa_vdev_exit(spa, vd, txg, error));
3564 
3565 	/*
3566 	 * Transfer each new top-level vdev from vd to rvd.
3567 	 */
3568 	for (int c = 0; c < vd->vdev_children; c++) {
3569 
3570 		/*
3571 		 * Set the vdev id to the first hole, if one exists.
3572 		 */
3573 		for (id = 0; id < rvd->vdev_children; id++) {
3574 			if (rvd->vdev_child[id]->vdev_ishole) {
3575 				vdev_free(rvd->vdev_child[id]);
3576 				break;
3577 			}
3578 		}
3579 		tvd = vd->vdev_child[c];
3580 		vdev_remove_child(vd, tvd);
3581 		tvd->vdev_id = id;
3582 		vdev_add_child(rvd, tvd);
3583 		vdev_config_dirty(tvd);
3584 	}
3585 
3586 	if (nspares != 0) {
3587 		spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
3588 		    ZPOOL_CONFIG_SPARES);
3589 		spa_load_spares(spa);
3590 		spa->spa_spares.sav_sync = B_TRUE;
3591 	}
3592 
3593 	if (nl2cache != 0) {
3594 		spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
3595 		    ZPOOL_CONFIG_L2CACHE);
3596 		spa_load_l2cache(spa);
3597 		spa->spa_l2cache.sav_sync = B_TRUE;
3598 	}
3599 
3600 	/*
3601 	 * We have to be careful when adding new vdevs to an existing pool.
3602 	 * If other threads start allocating from these vdevs before we
3603 	 * sync the config cache, and we lose power, then upon reboot we may
3604 	 * fail to open the pool because there are DVAs that the config cache
3605 	 * can't translate.  Therefore, we first add the vdevs without
3606 	 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
3607 	 * and then let spa_config_update() initialize the new metaslabs.
3608 	 *
3609 	 * spa_load() checks for added-but-not-initialized vdevs, so that
3610 	 * if we lose power at any point in this sequence, the remaining
3611 	 * steps will be completed the next time we load the pool.
3612 	 */
3613 	(void) spa_vdev_exit(spa, vd, txg, 0);
3614 
3615 	mutex_enter(&spa_namespace_lock);
3616 	spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
3617 	mutex_exit(&spa_namespace_lock);
3618 
3619 	return (0);
3620 }
3621 
3622 /*
3623  * Attach a device to a mirror.  The arguments are the path to any device
3624  * in the mirror, and the nvroot for the new device.  If the path specifies
3625  * a device that is not mirrored, we automatically insert the mirror vdev.
3626  *
3627  * If 'replacing' is specified, the new device is intended to replace the
3628  * existing device; in this case the two devices are made into their own
3629  * mirror using the 'replacing' vdev, which is functionally identical to
3630  * the mirror vdev (it actually reuses all the same ops) but has a few
3631  * extra rules: you can't attach to it after it's been created, and upon
3632  * completion of resilvering, the first disk (the one being replaced)
3633  * is automatically detached.
3634  */
3635 int
3636 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing)
3637 {
3638 	uint64_t txg, open_txg;
3639 	vdev_t *rvd = spa->spa_root_vdev;
3640 	vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
3641 	vdev_ops_t *pvops;
3642 	char *oldvdpath, *newvdpath;
3643 	int newvd_isspare;
3644 	int error;
3645 
3646 	txg = spa_vdev_enter(spa);
3647 
3648 	oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
3649 
3650 	if (oldvd == NULL)
3651 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3652 
3653 	if (!oldvd->vdev_ops->vdev_op_leaf)
3654 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3655 
3656 	pvd = oldvd->vdev_parent;
3657 
3658 	if ((error = spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
3659 	    VDEV_ALLOC_ADD)) != 0)
3660 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
3661 
3662 	if (newrootvd->vdev_children != 1)
3663 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3664 
3665 	newvd = newrootvd->vdev_child[0];
3666 
3667 	if (!newvd->vdev_ops->vdev_op_leaf)
3668 		return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
3669 
3670 	if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
3671 		return (spa_vdev_exit(spa, newrootvd, txg, error));
3672 
3673 	/*
3674 	 * Spares can't replace logs
3675 	 */
3676 	if (oldvd->vdev_top->vdev_islog && newvd->vdev_isspare)
3677 		return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3678 
3679 	if (!replacing) {
3680 		/*
3681 		 * For attach, the only allowable parent is a mirror or the root
3682 		 * vdev.
3683 		 */
3684 		if (pvd->vdev_ops != &vdev_mirror_ops &&
3685 		    pvd->vdev_ops != &vdev_root_ops)
3686 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3687 
3688 		pvops = &vdev_mirror_ops;
3689 	} else {
3690 		/*
3691 		 * Active hot spares can only be replaced by inactive hot
3692 		 * spares.
3693 		 */
3694 		if (pvd->vdev_ops == &vdev_spare_ops &&
3695 		    pvd->vdev_child[1] == oldvd &&
3696 		    !spa_has_spare(spa, newvd->vdev_guid))
3697 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3698 
3699 		/*
3700 		 * If the source is a hot spare, and the parent isn't already a
3701 		 * spare, then we want to create a new hot spare.  Otherwise, we
3702 		 * want to create a replacing vdev.  The user is not allowed to
3703 		 * attach to a spared vdev child unless the 'isspare' state is
3704 		 * the same (spare replaces spare, non-spare replaces
3705 		 * non-spare).
3706 		 */
3707 		if (pvd->vdev_ops == &vdev_replacing_ops)
3708 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3709 		else if (pvd->vdev_ops == &vdev_spare_ops &&
3710 		    newvd->vdev_isspare != oldvd->vdev_isspare)
3711 			return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
3712 		else if (pvd->vdev_ops != &vdev_spare_ops &&
3713 		    newvd->vdev_isspare)
3714 			pvops = &vdev_spare_ops;
3715 		else
3716 			pvops = &vdev_replacing_ops;
3717 	}
3718 
3719 	/*
3720 	 * Make sure the new device is big enough.
3721 	 */
3722 	if (newvd->vdev_asize < vdev_get_min_asize(oldvd))
3723 		return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
3724 
3725 	/*
3726 	 * The new device cannot have a higher alignment requirement
3727 	 * than the top-level vdev.
3728 	 */
3729 	if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift)
3730 		return (spa_vdev_exit(spa, newrootvd, txg, EDOM));
3731 
3732 	/*
3733 	 * If this is an in-place replacement, update oldvd's path and devid
3734 	 * to make it distinguishable from newvd, and unopenable from now on.
3735 	 */
3736 	if (strcmp(oldvd->vdev_path, newvd->vdev_path) == 0) {
3737 		spa_strfree(oldvd->vdev_path);
3738 		oldvd->vdev_path = kmem_alloc(strlen(newvd->vdev_path) + 5,
3739 		    KM_SLEEP);
3740 		(void) sprintf(oldvd->vdev_path, "%s/%s",
3741 		    newvd->vdev_path, "old");
3742 		if (oldvd->vdev_devid != NULL) {
3743 			spa_strfree(oldvd->vdev_devid);
3744 			oldvd->vdev_devid = NULL;
3745 		}
3746 	}
3747 
3748 	/*
3749 	 * If the parent is not a mirror, or if we're replacing, insert the new
3750 	 * mirror/replacing/spare vdev above oldvd.
3751 	 */
3752 	if (pvd->vdev_ops != pvops)
3753 		pvd = vdev_add_parent(oldvd, pvops);
3754 
3755 	ASSERT(pvd->vdev_top->vdev_parent == rvd);
3756 	ASSERT(pvd->vdev_ops == pvops);
3757 	ASSERT(oldvd->vdev_parent == pvd);
3758 
3759 	/*
3760 	 * Extract the new device from its root and add it to pvd.
3761 	 */
3762 	vdev_remove_child(newrootvd, newvd);
3763 	newvd->vdev_id = pvd->vdev_children;
3764 	newvd->vdev_crtxg = oldvd->vdev_crtxg;
3765 	vdev_add_child(pvd, newvd);
3766 
3767 	tvd = newvd->vdev_top;
3768 	ASSERT(pvd->vdev_top == tvd);
3769 	ASSERT(tvd->vdev_parent == rvd);
3770 
3771 	vdev_config_dirty(tvd);
3772 
3773 	/*
3774 	 * Set newvd's DTL to [TXG_INITIAL, open_txg].  It will propagate
3775 	 * upward when spa_vdev_exit() calls vdev_dtl_reassess().
3776 	 */
3777 	open_txg = txg + TXG_CONCURRENT_STATES - 1;
3778 
3779 	vdev_dtl_dirty(newvd, DTL_MISSING,
3780 	    TXG_INITIAL, open_txg - TXG_INITIAL + 1);
3781 
3782 	if (newvd->vdev_isspare) {
3783 		spa_spare_activate(newvd);
3784 		spa_event_notify(spa, newvd, ESC_ZFS_VDEV_SPARE);
3785 	}
3786 
3787 	oldvdpath = spa_strdup(oldvd->vdev_path);
3788 	newvdpath = spa_strdup(newvd->vdev_path);
3789 	newvd_isspare = newvd->vdev_isspare;
3790 
3791 	/*
3792 	 * Mark newvd's DTL dirty in this txg.
3793 	 */
3794 	vdev_dirty(tvd, VDD_DTL, newvd, txg);
3795 
3796 	(void) spa_vdev_exit(spa, newrootvd, open_txg, 0);
3797 
3798 	spa_history_internal_log(LOG_POOL_VDEV_ATTACH, spa, NULL,
3799 	    CRED(),  "%s vdev=%s %s vdev=%s",
3800 	    replacing && newvd_isspare ? "spare in" :
3801 	    replacing ? "replace" : "attach", newvdpath,
3802 	    replacing ? "for" : "to", oldvdpath);
3803 
3804 	spa_strfree(oldvdpath);
3805 	spa_strfree(newvdpath);
3806 
3807 	/*
3808 	 * Kick off a resilver to update newvd.
3809 	 */
3810 	VERIFY3U(spa_scrub(spa, POOL_SCRUB_RESILVER), ==, 0);
3811 
3812 	return (0);
3813 }
3814 
3815 /*
3816  * Detach a device from a mirror or replacing vdev.
3817  * If 'replace_done' is specified, only detach if the parent
3818  * is a replacing vdev.
3819  */
3820 int
3821 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
3822 {
3823 	uint64_t txg;
3824 	int error;
3825 	vdev_t *rvd = spa->spa_root_vdev;
3826 	vdev_t *vd, *pvd, *cvd, *tvd;
3827 	boolean_t unspare = B_FALSE;
3828 	uint64_t unspare_guid;
3829 	size_t len;
3830 	char *vdpath;
3831 
3832 	txg = spa_vdev_enter(spa);
3833 
3834 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
3835 
3836 	if (vd == NULL)
3837 		return (spa_vdev_exit(spa, NULL, txg, ENODEV));
3838 
3839 	if (!vd->vdev_ops->vdev_op_leaf)
3840 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3841 
3842 	pvd = vd->vdev_parent;
3843 
3844 	/*
3845 	 * If the parent/child relationship is not as expected, don't do it.
3846 	 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
3847 	 * vdev that's replacing B with C.  The user's intent in replacing
3848 	 * is to go from M(A,B) to M(A,C).  If the user decides to cancel
3849 	 * the replace by detaching C, the expected behavior is to end up
3850 	 * M(A,B).  But suppose that right after deciding to detach C,
3851 	 * the replacement of B completes.  We would have M(A,C), and then
3852 	 * ask to detach C, which would leave us with just A -- not what
3853 	 * the user wanted.  To prevent this, we make sure that the
3854 	 * parent/child relationship hasn't changed -- in this example,
3855 	 * that C's parent is still the replacing vdev R.
3856 	 */
3857 	if (pvd->vdev_guid != pguid && pguid != 0)
3858 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3859 
3860 	/*
3861 	 * If replace_done is specified, only remove this device if it's
3862 	 * the first child of a replacing vdev.  For the 'spare' vdev, either
3863 	 * disk can be removed.
3864 	 */
3865 	if (replace_done) {
3866 		if (pvd->vdev_ops == &vdev_replacing_ops) {
3867 			if (vd->vdev_id != 0)
3868 				return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3869 		} else if (pvd->vdev_ops != &vdev_spare_ops) {
3870 			return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3871 		}
3872 	}
3873 
3874 	ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
3875 	    spa_version(spa) >= SPA_VERSION_SPARES);
3876 
3877 	/*
3878 	 * Only mirror, replacing, and spare vdevs support detach.
3879 	 */
3880 	if (pvd->vdev_ops != &vdev_replacing_ops &&
3881 	    pvd->vdev_ops != &vdev_mirror_ops &&
3882 	    pvd->vdev_ops != &vdev_spare_ops)
3883 		return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
3884 
3885 	/*
3886 	 * If this device has the only valid copy of some data,
3887 	 * we cannot safely detach it.
3888 	 */
3889 	if (vdev_dtl_required(vd))
3890 		return (spa_vdev_exit(spa, NULL, txg, EBUSY));
3891 
3892 	ASSERT(pvd->vdev_children >= 2);
3893 
3894 	/*
3895 	 * If we are detaching the second disk from a replacing vdev, then
3896 	 * check to see if we changed the original vdev's path to have "/old"
3897 	 * at the end in spa_vdev_attach().  If so, undo that change now.
3898 	 */
3899 	if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id == 1 &&
3900 	    pvd->vdev_child[0]->vdev_path != NULL &&
3901 	    pvd->vdev_child[1]->vdev_path != NULL) {
3902 		ASSERT(pvd->vdev_child[1] == vd);
3903 		cvd = pvd->vdev_child[0];
3904 		len = strlen(vd->vdev_path);
3905 		if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
3906 		    strcmp(cvd->vdev_path + len, "/old") == 0) {
3907 			spa_strfree(cvd->vdev_path);
3908 			cvd->vdev_path = spa_strdup(vd->vdev_path);
3909 		}
3910 	}
3911 
3912 	/*
3913 	 * If we are detaching the original disk from a spare, then it implies
3914 	 * that the spare should become a real disk, and be removed from the
3915 	 * active spare list for the pool.
3916 	 */
3917 	if (pvd->vdev_ops == &vdev_spare_ops &&
3918 	    vd->vdev_id == 0 && pvd->vdev_child[1]->vdev_isspare)
3919 		unspare = B_TRUE;
3920 
3921 	/*
3922 	 * Erase the disk labels so the disk can be used for other things.
3923 	 * This must be done after all other error cases are handled,
3924 	 * but before we disembowel vd (so we can still do I/O to it).
3925 	 * But if we can't do it, don't treat the error as fatal --
3926 	 * it may be that the unwritability of the disk is the reason
3927 	 * it's being detached!
3928 	 */
3929 	error = vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
3930 
3931 	/*
3932 	 * Remove vd from its parent and compact the parent's children.
3933 	 */
3934 	vdev_remove_child(pvd, vd);
3935 	vdev_compact_children(pvd);
3936 
3937 	/*
3938 	 * Remember one of the remaining children so we can get tvd below.
3939 	 */
3940 	cvd = pvd->vdev_child[0];
3941 
3942 	/*
3943 	 * If we need to remove the remaining child from the list of hot spares,
3944 	 * do it now, marking the vdev as no longer a spare in the process.
3945 	 * We must do this before vdev_remove_parent(), because that can
3946 	 * change the GUID if it creates a new toplevel GUID.  For a similar
3947 	 * reason, we must remove the spare now, in the same txg as the detach;
3948 	 * otherwise someone could attach a new sibling, change the GUID, and
3949 	 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
3950 	 */
3951 	if (unspare) {
3952 		ASSERT(cvd->vdev_isspare);
3953 		spa_spare_remove(cvd);
3954 		unspare_guid = cvd->vdev_guid;
3955 		(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
3956 	}
3957 
3958 	/*
3959 	 * If the parent mirror/replacing vdev only has one child,
3960 	 * the parent is no longer needed.  Remove it from the tree.
3961 	 */
3962 	if (pvd->vdev_children == 1)
3963 		vdev_remove_parent(cvd);
3964 
3965 	/*
3966 	 * We don't set tvd until now because the parent we just removed
3967 	 * may have been the previous top-level vdev.
3968 	 */
3969 	tvd = cvd->vdev_top;
3970 	ASSERT(tvd->vdev_parent == rvd);
3971 
3972 	/*
3973 	 * Reevaluate the parent vdev state.
3974 	 */
3975 	vdev_propagate_state(cvd);
3976 
3977 	/*
3978 	 * If the 'autoexpand' property is set on the pool then automatically
3979 	 * try to expand the size of the pool. For example if the device we
3980 	 * just detached was smaller than the others, it may be possible to
3981 	 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
3982 	 * first so that we can obtain the updated sizes of the leaf vdevs.
3983 	 */
3984 	if (spa->spa_autoexpand) {
3985 		vdev_reopen(tvd);
3986 		vdev_expand(tvd, txg);
3987 	}
3988 
3989 	vdev_config_dirty(tvd);
3990 
3991 	/*
3992 	 * Mark vd's DTL as dirty in this txg.  vdev_dtl_sync() will see that
3993 	 * vd->vdev_detached is set and free vd's DTL object in syncing context.
3994 	 * But first make sure we're not on any *other* txg's DTL list, to
3995 	 * prevent vd from being accessed after it's freed.
3996 	 */
3997 	vdpath = spa_strdup(vd->vdev_path);
3998 	for (int t = 0; t < TXG_SIZE; t++)
3999 		(void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
4000 	vd->vdev_detached = B_TRUE;
4001 	vdev_dirty(tvd, VDD_DTL, vd, txg);
4002 
4003 	spa_event_notify(spa, vd, ESC_ZFS_VDEV_REMOVE);
4004 
4005 	error = spa_vdev_exit(spa, vd, txg, 0);
4006 
4007 	spa_history_internal_log(LOG_POOL_VDEV_DETACH, spa, NULL, CRED(),
4008 	    "vdev=%s", vdpath);
4009 	spa_strfree(vdpath);
4010 
4011 	/*
4012 	 * If this was the removal of the original device in a hot spare vdev,
4013 	 * then we want to go through and remove the device from the hot spare
4014 	 * list of every other pool.
4015 	 */
4016 	if (unspare) {
4017 		spa_t *myspa = spa;
4018 		spa = NULL;
4019 		mutex_enter(&spa_namespace_lock);
4020 		while ((spa = spa_next(spa)) != NULL) {
4021 			if (spa->spa_state != POOL_STATE_ACTIVE)
4022 				continue;
4023 			if (spa == myspa)
4024 				continue;
4025 			spa_open_ref(spa, FTAG);
4026 			mutex_exit(&spa_namespace_lock);
4027 			(void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
4028 			mutex_enter(&spa_namespace_lock);
4029 			spa_close(spa, FTAG);
4030 		}
4031 		mutex_exit(&spa_namespace_lock);
4032 	}
4033 
4034 	return (error);
4035 }
4036 
4037 /*
4038  * Split a set of devices from their mirrors, and create a new pool from them.
4039  */
4040 int
4041 spa_vdev_split_mirror(spa_t *spa, char *newname, nvlist_t *config,
4042     nvlist_t *props, boolean_t exp)
4043 {
4044 	int error = 0;
4045 	uint64_t txg, *glist;
4046 	spa_t *newspa;
4047 	uint_t c, children, lastlog;
4048 	nvlist_t **child, *nvl, *tmp;
4049 	dmu_tx_t *tx;
4050 	char *altroot = NULL;
4051 	vdev_t *rvd, **vml = NULL;			/* vdev modify list */
4052 	boolean_t activate_slog;
4053 
4054 	if (!spa_writeable(spa))
4055 		return (EROFS);
4056 
4057 	txg = spa_vdev_enter(spa);
4058 
4059 	/* clear the log and flush everything up to now */
4060 	activate_slog = spa_passivate_log(spa);
4061 	(void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4062 	error = spa_offline_log(spa);
4063 	txg = spa_vdev_config_enter(spa);
4064 
4065 	if (activate_slog)
4066 		spa_activate_log(spa);
4067 
4068 	if (error != 0)
4069 		return (spa_vdev_exit(spa, NULL, txg, error));
4070 
4071 	/* check new spa name before going any further */
4072 	if (spa_lookup(newname) != NULL)
4073 		return (spa_vdev_exit(spa, NULL, txg, EEXIST));
4074 
4075 	/*
4076 	 * scan through all the children to ensure they're all mirrors
4077 	 */
4078 	if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
4079 	    nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
4080 	    &children) != 0)
4081 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4082 
4083 	/* first, check to ensure we've got the right child count */
4084 	rvd = spa->spa_root_vdev;
4085 	lastlog = 0;
4086 	for (c = 0; c < rvd->vdev_children; c++) {
4087 		vdev_t *vd = rvd->vdev_child[c];
4088 
4089 		/* don't count the holes & logs as children */
4090 		if (vd->vdev_islog || vd->vdev_ishole) {
4091 			if (lastlog == 0)
4092 				lastlog = c;
4093 			continue;
4094 		}
4095 
4096 		lastlog = 0;
4097 	}
4098 	if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
4099 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4100 
4101 	/* next, ensure no spare or cache devices are part of the split */
4102 	if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
4103 	    nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
4104 		return (spa_vdev_exit(spa, NULL, txg, EINVAL));
4105 
4106 	vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
4107 	glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
4108 
4109 	/* then, loop over each vdev and validate it */
4110 	for (c = 0; c < children; c++) {
4111 		uint64_t is_hole = 0;
4112 
4113 		(void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
4114 		    &is_hole);
4115 
4116 		if (is_hole != 0) {
4117 			if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
4118 			    spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
4119 				continue;
4120 			} else {
4121 				error = EINVAL;
4122 				break;
4123 			}
4124 		}
4125 
4126 		/* which disk is going to be split? */
4127 		if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
4128 		    &glist[c]) != 0) {
4129 			error = EINVAL;
4130 			break;
4131 		}
4132 
4133 		/* look it up in the spa */
4134 		vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
4135 		if (vml[c] == NULL) {
4136 			error = ENODEV;
4137 			break;
4138 		}
4139 
4140 		/* make sure there's nothing stopping the split */
4141 		if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
4142 		    vml[c]->vdev_islog ||
4143 		    vml[c]->vdev_ishole ||
4144 		    vml[c]->vdev_isspare ||
4145 		    vml[c]->vdev_isl2cache ||
4146 		    !vdev_writeable(vml[c]) ||
4147 		    vml[c]->vdev_children != 0 ||
4148 		    vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
4149 		    c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
4150 			error = EINVAL;
4151 			break;
4152 		}
4153 
4154 		if (vdev_dtl_required(vml[c])) {
4155 			error = EBUSY;
4156 			break;
4157 		}
4158 
4159 		/* we need certain info from the top level */
4160 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
4161 		    vml[c]->vdev_top->vdev_ms_array) == 0);
4162 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
4163 		    vml[c]->vdev_top->vdev_ms_shift) == 0);
4164 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
4165 		    vml[c]->vdev_top->vdev_asize) == 0);
4166 		VERIFY(nvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
4167 		    vml[c]->vdev_top->vdev_ashift) == 0);
4168 	}
4169 
4170 	if (error != 0) {
4171 		kmem_free(vml, children * sizeof (vdev_t *));
4172 		kmem_free(glist, children * sizeof (uint64_t));
4173 		return (spa_vdev_exit(spa, NULL, txg, error));
4174 	}
4175 
4176 	/* stop writers from using the disks */
4177 	for (c = 0; c < children; c++) {
4178 		if (vml[c] != NULL)
4179 			vml[c]->vdev_offline = B_TRUE;
4180 	}
4181 	vdev_reopen(spa->spa_root_vdev);
4182 
4183 	/*
4184 	 * Temporarily record the splitting vdevs in the spa config.  This
4185 	 * will disappear once the config is regenerated.
4186 	 */
4187 	VERIFY(nvlist_alloc(&nvl, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4188 	VERIFY(nvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
4189 	    glist, children) == 0);
4190 	kmem_free(glist, children * sizeof (uint64_t));
4191 
4192 	mutex_enter(&spa->spa_props_lock);
4193 	VERIFY(nvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT,
4194 	    nvl) == 0);
4195 	mutex_exit(&spa->spa_props_lock);
4196 	spa->spa_config_splitting = nvl;
4197 	vdev_config_dirty(spa->spa_root_vdev);
4198 
4199 	/* configure and create the new pool */
4200 	VERIFY(nvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname) == 0);
4201 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
4202 	    exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE) == 0);
4203 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
4204 	    spa_version(spa)) == 0);
4205 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG,
4206 	    spa->spa_config_txg) == 0);
4207 	VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
4208 	    spa_generate_guid(NULL)) == 0);
4209 	(void) nvlist_lookup_string(props,
4210 	    zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
4211 
4212 	/* add the new pool to the namespace */
4213 	newspa = spa_add(newname, config, altroot);
4214 	newspa->spa_config_txg = spa->spa_config_txg;
4215 	spa_set_log_state(newspa, SPA_LOG_CLEAR);
4216 
4217 	/* release the spa config lock, retaining the namespace lock */
4218 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4219 
4220 	if (zio_injection_enabled)
4221 		zio_handle_panic_injection(spa, FTAG, 1);
4222 
4223 	spa_activate(newspa, spa_mode_global);
4224 	spa_async_suspend(newspa);
4225 
4226 	/* create the new pool from the disks of the original pool */
4227 	error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE, B_TRUE);
4228 	if (error)
4229 		goto out;
4230 
4231 	/* if that worked, generate a real config for the new pool */
4232 	if (newspa->spa_root_vdev != NULL) {
4233 		VERIFY(nvlist_alloc(&newspa->spa_config_splitting,
4234 		    NV_UNIQUE_NAME, KM_SLEEP) == 0);
4235 		VERIFY(nvlist_add_uint64(newspa->spa_config_splitting,
4236 		    ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa)) == 0);
4237 		spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
4238 		    B_TRUE));
4239 	}
4240 
4241 	/* set the props */
4242 	if (props != NULL) {
4243 		spa_configfile_set(newspa, props, B_FALSE);
4244 		error = spa_prop_set(newspa, props);
4245 		if (error)
4246 			goto out;
4247 	}
4248 
4249 	/* flush everything */
4250 	txg = spa_vdev_config_enter(newspa);
4251 	vdev_config_dirty(newspa->spa_root_vdev);
4252 	(void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
4253 
4254 	if (zio_injection_enabled)
4255 		zio_handle_panic_injection(spa, FTAG, 2);
4256 
4257 	spa_async_resume(newspa);
4258 
4259 	/* finally, update the original pool's config */
4260 	txg = spa_vdev_config_enter(spa);
4261 	tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
4262 	error = dmu_tx_assign(tx, TXG_WAIT);
4263 	if (error != 0)
4264 		dmu_tx_abort(tx);
4265 	for (c = 0; c < children; c++) {
4266 		if (vml[c] != NULL) {
4267 			vdev_split(vml[c]);
4268 			if (error == 0)
4269 				spa_history_internal_log(LOG_POOL_VDEV_DETACH,
4270 				    spa, tx, CRED(), "vdev=%s",
4271 				    vml[c]->vdev_path);
4272 			vdev_free(vml[c]);
4273 		}
4274 	}
4275 	vdev_config_dirty(spa->spa_root_vdev);
4276 	spa->spa_config_splitting = NULL;
4277 	nvlist_free(nvl);
4278 	if (error == 0)
4279 		dmu_tx_commit(tx);
4280 	(void) spa_vdev_exit(spa, NULL, txg, 0);
4281 
4282 	if (zio_injection_enabled)
4283 		zio_handle_panic_injection(spa, FTAG, 3);
4284 
4285 	/* split is complete; log a history record */
4286 	spa_history_internal_log(LOG_POOL_SPLIT, newspa, NULL, CRED(),
4287 	    "split new pool %s from pool %s", newname, spa_name(spa));
4288 
4289 	kmem_free(vml, children * sizeof (vdev_t *));
4290 
4291 	/* if we're not going to mount the filesystems in userland, export */
4292 	if (exp)
4293 		error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
4294 		    B_FALSE, B_FALSE);
4295 
4296 	return (error);
4297 
4298 out:
4299 	spa_unload(newspa);
4300 	spa_deactivate(newspa);
4301 	spa_remove(newspa);
4302 
4303 	txg = spa_vdev_config_enter(spa);
4304 
4305 	/* re-online all offlined disks */
4306 	for (c = 0; c < children; c++) {
4307 		if (vml[c] != NULL)
4308 			vml[c]->vdev_offline = B_FALSE;
4309 	}
4310 	vdev_reopen(spa->spa_root_vdev);
4311 
4312 	nvlist_free(spa->spa_config_splitting);
4313 	spa->spa_config_splitting = NULL;
4314 	(void) spa_vdev_exit(spa, NULL, txg, error);
4315 
4316 	kmem_free(vml, children * sizeof (vdev_t *));
4317 	return (error);
4318 }
4319 
4320 static nvlist_t *
4321 spa_nvlist_lookup_by_guid(nvlist_t **nvpp, int count, uint64_t target_guid)
4322 {
4323 	for (int i = 0; i < count; i++) {
4324 		uint64_t guid;
4325 
4326 		VERIFY(nvlist_lookup_uint64(nvpp[i], ZPOOL_CONFIG_GUID,
4327 		    &guid) == 0);
4328 
4329 		if (guid == target_guid)
4330 			return (nvpp[i]);
4331 	}
4332 
4333 	return (NULL);
4334 }
4335 
4336 static void
4337 spa_vdev_remove_aux(nvlist_t *config, char *name, nvlist_t **dev, int count,
4338 	nvlist_t *dev_to_remove)
4339 {
4340 	nvlist_t **newdev = NULL;
4341 
4342 	if (count > 1)
4343 		newdev = kmem_alloc((count - 1) * sizeof (void *), KM_SLEEP);
4344 
4345 	for (int i = 0, j = 0; i < count; i++) {
4346 		if (dev[i] == dev_to_remove)
4347 			continue;
4348 		VERIFY(nvlist_dup(dev[i], &newdev[j++], KM_SLEEP) == 0);
4349 	}
4350 
4351 	VERIFY(nvlist_remove(config, name, DATA_TYPE_NVLIST_ARRAY) == 0);
4352 	VERIFY(nvlist_add_nvlist_array(config, name, newdev, count - 1) == 0);
4353 
4354 	for (int i = 0; i < count - 1; i++)
4355 		nvlist_free(newdev[i]);
4356 
4357 	if (count > 1)
4358 		kmem_free(newdev, (count - 1) * sizeof (void *));
4359 }
4360 
4361 /*
4362  * Removing a device from the vdev namespace requires several steps
4363  * and can take a significant amount of time.  As a result we use
4364  * the spa_vdev_config_[enter/exit] functions which allow us to
4365  * grab and release the spa_config_lock while still holding the namespace
4366  * lock.  During each step the configuration is synced out.
4367  */
4368 
4369 /*
4370  * Evacuate the device.
4371  */
4372 int
4373 spa_vdev_remove_evacuate(spa_t *spa, vdev_t *vd)
4374 {
4375 	int error = 0;
4376 	uint64_t txg;
4377 
4378 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4379 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4380 	ASSERT(vd == vd->vdev_top);
4381 
4382 	/*
4383 	 * Evacuate the device.  We don't hold the config lock as writer
4384 	 * since we need to do I/O but we do keep the
4385 	 * spa_namespace_lock held.  Once this completes the device
4386 	 * should no longer have any blocks allocated on it.
4387 	 */
4388 	if (vd->vdev_islog) {
4389 		error = dmu_objset_find(spa_name(spa), zil_vdev_offline,
4390 		    NULL, DS_FIND_CHILDREN);
4391 	} else {
4392 		error = ENOTSUP;	/* until we have bp rewrite */
4393 	}
4394 
4395 	txg_wait_synced(spa_get_dsl(spa), 0);
4396 
4397 	if (error)
4398 		return (error);
4399 
4400 	/*
4401 	 * The evacuation succeeded.  Remove any remaining MOS metadata
4402 	 * associated with this vdev, and wait for these changes to sync.
4403 	 */
4404 	txg = spa_vdev_config_enter(spa);
4405 	vd->vdev_removing = B_TRUE;
4406 	vdev_dirty(vd, 0, NULL, txg);
4407 	vdev_config_dirty(vd);
4408 	spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
4409 
4410 	return (0);
4411 }
4412 
4413 /*
4414  * Complete the removal by cleaning up the namespace.
4415  */
4416 void
4417 spa_vdev_remove_from_namespace(spa_t *spa, vdev_t *vd)
4418 {
4419 	vdev_t *rvd = spa->spa_root_vdev;
4420 	uint64_t id = vd->vdev_id;
4421 	boolean_t last_vdev = (id == (rvd->vdev_children - 1));
4422 
4423 	ASSERT(MUTEX_HELD(&spa_namespace_lock));
4424 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
4425 	ASSERT(vd == vd->vdev_top);
4426 
4427 	(void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
4428 
4429 	if (list_link_active(&vd->vdev_state_dirty_node))
4430 		vdev_state_clean(vd);
4431 	if (list_link_active(&vd->vdev_config_dirty_node))
4432 		vdev_config_clean(vd);
4433 
4434 	vdev_free(vd);
4435 
4436 	if (last_vdev) {
4437 		vdev_compact_children(rvd);
4438 	} else {
4439 		vd = vdev_alloc_common(spa, id, 0, &vdev_hole_ops);
4440 		vdev_add_child(rvd, vd);
4441 	}
4442 	vdev_config_dirty(rvd);
4443 
4444 	/*
4445 	 * Reassess the health of our root vdev.
4446 	 */
4447 	vdev_reopen(rvd);
4448 }
4449 
4450 /*
4451  * Remove a device from the pool.  Currently, this supports removing only hot
4452  * spares, slogs, and level 2 ARC devices.
4453  */
4454 int
4455 spa_vdev_remove(spa_t *spa, uint64_t guid, boolean_t unspare)
4456 {
4457 	vdev_t *vd;
4458 	metaslab_group_t *mg;
4459 	nvlist_t **spares, **l2cache, *nv;
4460 	uint64_t txg = 0;
4461 	uint_t nspares, nl2cache;
4462 	int error = 0;
4463 	boolean_t locked = MUTEX_HELD(&spa_namespace_lock);
4464 
4465 	if (!locked)
4466 		txg = spa_vdev_enter(spa);
4467 
4468 	vd = spa_lookup_by_guid(spa, guid, B_FALSE);
4469 
4470 	if (spa->spa_spares.sav_vdevs != NULL &&
4471 	    nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
4472 	    ZPOOL_CONFIG_SPARES, &spares, &nspares) == 0 &&
4473 	    (nv = spa_nvlist_lookup_by_guid(spares, nspares, guid)) != NULL) {
4474 		/*
4475 		 * Only remove the hot spare if it's not currently in use
4476 		 * in this pool.
4477 		 */
4478 		if (vd == NULL || unspare) {
4479 			spa_vdev_remove_aux(spa->spa_spares.sav_config,
4480 			    ZPOOL_CONFIG_SPARES, spares, nspares, nv);
4481 			spa_load_spares(spa);
4482 			spa->spa_spares.sav_sync = B_TRUE;
4483 		} else {
4484 			error = EBUSY;
4485 		}
4486 	} else if (spa->spa_l2cache.sav_vdevs != NULL &&
4487 	    nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
4488 	    ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache) == 0 &&
4489 	    (nv = spa_nvlist_lookup_by_guid(l2cache, nl2cache, guid)) != NULL) {
4490 		/*
4491 		 * Cache devices can always be removed.
4492 		 */
4493 		spa_vdev_remove_aux(spa->spa_l2cache.sav_config,
4494 		    ZPOOL_CONFIG_L2CACHE, l2cache, nl2cache, nv);
4495 		spa_load_l2cache(spa);
4496 		spa->spa_l2cache.sav_sync = B_TRUE;
4497 	} else if (vd != NULL && vd->vdev_islog) {
4498 		ASSERT(!locked);
4499 		ASSERT(vd == vd->vdev_top);
4500 
4501 		/*
4502 		 * XXX - Once we have bp-rewrite this should
4503 		 * become the common case.
4504 		 */
4505 
4506 		mg = vd->vdev_mg;
4507 
4508 		/*
4509 		 * Stop allocating from this vdev.
4510 		 */
4511 		metaslab_group_passivate(mg);
4512 
4513 		/*
4514 		 * Wait for the youngest allocations and frees to sync,
4515 		 * and then wait for the deferral of those frees to finish.
4516 		 */
4517 		spa_vdev_config_exit(spa, NULL,
4518 		    txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
4519 
4520 		/*
4521 		 * Attempt to evacuate the vdev.
4522 		 */
4523 		error = spa_vdev_remove_evacuate(spa, vd);
4524 
4525 		txg = spa_vdev_config_enter(spa);
4526 
4527 		/*
4528 		 * If we couldn't evacuate the vdev, unwind.
4529 		 */
4530 		if (error) {
4531 			metaslab_group_activate(mg);
4532 			return (spa_vdev_exit(spa, NULL, txg, error));
4533 		}
4534 
4535 		/*
4536 		 * Clean up the vdev namespace.
4537 		 */
4538 		spa_vdev_remove_from_namespace(spa, vd);
4539 
4540 	} else if (vd != NULL) {
4541 		/*
4542 		 * Normal vdevs cannot be removed (yet).
4543 		 */
4544 		error = ENOTSUP;
4545 	} else {
4546 		/*
4547 		 * There is no vdev of any kind with the specified guid.
4548 		 */
4549 		error = ENOENT;
4550 	}
4551 
4552 	if (!locked)
4553 		return (spa_vdev_exit(spa, NULL, txg, error));
4554 
4555 	return (error);
4556 }
4557 
4558 /*
4559  * Find any device that's done replacing, or a vdev marked 'unspare' that's
4560  * current spared, so we can detach it.
4561  */
4562 static vdev_t *
4563 spa_vdev_resilver_done_hunt(vdev_t *vd)
4564 {
4565 	vdev_t *newvd, *oldvd;
4566 
4567 	for (int c = 0; c < vd->vdev_children; c++) {
4568 		oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
4569 		if (oldvd != NULL)
4570 			return (oldvd);
4571 	}
4572 
4573 	/*
4574 	 * Check for a completed replacement.
4575 	 */
4576 	if (vd->vdev_ops == &vdev_replacing_ops && vd->vdev_children == 2) {
4577 		oldvd = vd->vdev_child[0];
4578 		newvd = vd->vdev_child[1];
4579 
4580 		if (vdev_dtl_empty(newvd, DTL_MISSING) &&
4581 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4582 		    !vdev_dtl_required(oldvd))
4583 			return (oldvd);
4584 	}
4585 
4586 	/*
4587 	 * Check for a completed resilver with the 'unspare' flag set.
4588 	 */
4589 	if (vd->vdev_ops == &vdev_spare_ops && vd->vdev_children == 2) {
4590 		newvd = vd->vdev_child[0];
4591 		oldvd = vd->vdev_child[1];
4592 
4593 		if (newvd->vdev_unspare &&
4594 		    vdev_dtl_empty(newvd, DTL_MISSING) &&
4595 		    vdev_dtl_empty(newvd, DTL_OUTAGE) &&
4596 		    !vdev_dtl_required(oldvd)) {
4597 			newvd->vdev_unspare = 0;
4598 			return (oldvd);
4599 		}
4600 	}
4601 
4602 	return (NULL);
4603 }
4604 
4605 static void
4606 spa_vdev_resilver_done(spa_t *spa)
4607 {
4608 	vdev_t *vd, *pvd, *ppvd;
4609 	uint64_t guid, sguid, pguid, ppguid;
4610 
4611 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4612 
4613 	while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
4614 		pvd = vd->vdev_parent;
4615 		ppvd = pvd->vdev_parent;
4616 		guid = vd->vdev_guid;
4617 		pguid = pvd->vdev_guid;
4618 		ppguid = ppvd->vdev_guid;
4619 		sguid = 0;
4620 		/*
4621 		 * If we have just finished replacing a hot spared device, then
4622 		 * we need to detach the parent's first child (the original hot
4623 		 * spare) as well.
4624 		 */
4625 		if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0) {
4626 			ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
4627 			ASSERT(ppvd->vdev_children == 2);
4628 			sguid = ppvd->vdev_child[1]->vdev_guid;
4629 		}
4630 		spa_config_exit(spa, SCL_ALL, FTAG);
4631 		if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
4632 			return;
4633 		if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
4634 			return;
4635 		spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4636 	}
4637 
4638 	spa_config_exit(spa, SCL_ALL, FTAG);
4639 }
4640 
4641 /*
4642  * Update the stored path or FRU for this vdev.
4643  */
4644 int
4645 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
4646     boolean_t ispath)
4647 {
4648 	vdev_t *vd;
4649 	boolean_t sync = B_FALSE;
4650 
4651 	spa_vdev_state_enter(spa, SCL_ALL);
4652 
4653 	if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
4654 		return (spa_vdev_state_exit(spa, NULL, ENOENT));
4655 
4656 	if (!vd->vdev_ops->vdev_op_leaf)
4657 		return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
4658 
4659 	if (ispath) {
4660 		if (strcmp(value, vd->vdev_path) != 0) {
4661 			spa_strfree(vd->vdev_path);
4662 			vd->vdev_path = spa_strdup(value);
4663 			sync = B_TRUE;
4664 		}
4665 	} else {
4666 		if (vd->vdev_fru == NULL) {
4667 			vd->vdev_fru = spa_strdup(value);
4668 			sync = B_TRUE;
4669 		} else if (strcmp(value, vd->vdev_fru) != 0) {
4670 			spa_strfree(vd->vdev_fru);
4671 			vd->vdev_fru = spa_strdup(value);
4672 			sync = B_TRUE;
4673 		}
4674 	}
4675 
4676 	return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
4677 }
4678 
4679 int
4680 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
4681 {
4682 	return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
4683 }
4684 
4685 int
4686 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
4687 {
4688 	return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
4689 }
4690 
4691 /*
4692  * ==========================================================================
4693  * SPA Scrubbing
4694  * ==========================================================================
4695  */
4696 
4697 int
4698 spa_scrub(spa_t *spa, pool_scrub_type_t type)
4699 {
4700 	ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
4701 
4702 	if ((uint_t)type >= POOL_SCRUB_TYPES)
4703 		return (ENOTSUP);
4704 
4705 	/*
4706 	 * If a resilver was requested, but there is no DTL on a
4707 	 * writeable leaf device, we have nothing to do.
4708 	 */
4709 	if (type == POOL_SCRUB_RESILVER &&
4710 	    !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
4711 		spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
4712 		return (0);
4713 	}
4714 
4715 	if (type == POOL_SCRUB_EVERYTHING &&
4716 	    spa->spa_dsl_pool->dp_scrub_func != SCRUB_FUNC_NONE &&
4717 	    spa->spa_dsl_pool->dp_scrub_isresilver)
4718 		return (EBUSY);
4719 
4720 	if (type == POOL_SCRUB_EVERYTHING || type == POOL_SCRUB_RESILVER) {
4721 		return (dsl_pool_scrub_clean(spa->spa_dsl_pool));
4722 	} else if (type == POOL_SCRUB_NONE) {
4723 		return (dsl_pool_scrub_cancel(spa->spa_dsl_pool));
4724 	} else {
4725 		return (EINVAL);
4726 	}
4727 }
4728 
4729 /*
4730  * ==========================================================================
4731  * SPA async task processing
4732  * ==========================================================================
4733  */
4734 
4735 static void
4736 spa_async_remove(spa_t *spa, vdev_t *vd)
4737 {
4738 	if (vd->vdev_remove_wanted) {
4739 		vd->vdev_remove_wanted = B_FALSE;
4740 		vd->vdev_delayed_close = B_FALSE;
4741 		vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
4742 
4743 		/*
4744 		 * We want to clear the stats, but we don't want to do a full
4745 		 * vdev_clear() as that will cause us to throw away
4746 		 * degraded/faulted state as well as attempt to reopen the
4747 		 * device, all of which is a waste.
4748 		 */
4749 		vd->vdev_stat.vs_read_errors = 0;
4750 		vd->vdev_stat.vs_write_errors = 0;
4751 		vd->vdev_stat.vs_checksum_errors = 0;
4752 
4753 		vdev_state_dirty(vd->vdev_top);
4754 	}
4755 
4756 	for (int c = 0; c < vd->vdev_children; c++)
4757 		spa_async_remove(spa, vd->vdev_child[c]);
4758 }
4759 
4760 static void
4761 spa_async_probe(spa_t *spa, vdev_t *vd)
4762 {
4763 	if (vd->vdev_probe_wanted) {
4764 		vd->vdev_probe_wanted = B_FALSE;
4765 		vdev_reopen(vd);	/* vdev_open() does the actual probe */
4766 	}
4767 
4768 	for (int c = 0; c < vd->vdev_children; c++)
4769 		spa_async_probe(spa, vd->vdev_child[c]);
4770 }
4771 
4772 static void
4773 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
4774 {
4775 	sysevent_id_t eid;
4776 	nvlist_t *attr;
4777 	char *physpath;
4778 
4779 	if (!spa->spa_autoexpand)
4780 		return;
4781 
4782 	for (int c = 0; c < vd->vdev_children; c++) {
4783 		vdev_t *cvd = vd->vdev_child[c];
4784 		spa_async_autoexpand(spa, cvd);
4785 	}
4786 
4787 	if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
4788 		return;
4789 
4790 	physpath = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
4791 	(void) snprintf(physpath, MAXPATHLEN, "/devices%s", vd->vdev_physpath);
4792 
4793 	VERIFY(nvlist_alloc(&attr, NV_UNIQUE_NAME, KM_SLEEP) == 0);
4794 	VERIFY(nvlist_add_string(attr, DEV_PHYS_PATH, physpath) == 0);
4795 
4796 	(void) ddi_log_sysevent(zfs_dip, SUNW_VENDOR, EC_DEV_STATUS,
4797 	    ESC_DEV_DLE, attr, &eid, DDI_SLEEP);
4798 
4799 	nvlist_free(attr);
4800 	kmem_free(physpath, MAXPATHLEN);
4801 }
4802 
4803 static void
4804 spa_async_thread(spa_t *spa)
4805 {
4806 	int tasks;
4807 
4808 	ASSERT(spa->spa_sync_on);
4809 
4810 	mutex_enter(&spa->spa_async_lock);
4811 	tasks = spa->spa_async_tasks;
4812 	spa->spa_async_tasks = 0;
4813 	mutex_exit(&spa->spa_async_lock);
4814 
4815 	/*
4816 	 * See if the config needs to be updated.
4817 	 */
4818 	if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
4819 		uint64_t old_space, new_space;
4820 
4821 		mutex_enter(&spa_namespace_lock);
4822 		old_space = metaslab_class_get_space(spa_normal_class(spa));
4823 		spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
4824 		new_space = metaslab_class_get_space(spa_normal_class(spa));
4825 		mutex_exit(&spa_namespace_lock);
4826 
4827 		/*
4828 		 * If the pool grew as a result of the config update,
4829 		 * then log an internal history event.
4830 		 */
4831 		if (new_space != old_space) {
4832 			spa_history_internal_log(LOG_POOL_VDEV_ONLINE,
4833 			    spa, NULL, CRED(),
4834 			    "pool '%s' size: %llu(+%llu)",
4835 			    spa_name(spa), new_space, new_space - old_space);
4836 		}
4837 	}
4838 
4839 	/*
4840 	 * See if any devices need to be marked REMOVED.
4841 	 */
4842 	if (tasks & SPA_ASYNC_REMOVE) {
4843 		spa_vdev_state_enter(spa, SCL_NONE);
4844 		spa_async_remove(spa, spa->spa_root_vdev);
4845 		for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
4846 			spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
4847 		for (int i = 0; i < spa->spa_spares.sav_count; i++)
4848 			spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
4849 		(void) spa_vdev_state_exit(spa, NULL, 0);
4850 	}
4851 
4852 	if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
4853 		spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
4854 		spa_async_autoexpand(spa, spa->spa_root_vdev);
4855 		spa_config_exit(spa, SCL_CONFIG, FTAG);
4856 	}
4857 
4858 	/*
4859 	 * See if any devices need to be probed.
4860 	 */
4861 	if (tasks & SPA_ASYNC_PROBE) {
4862 		spa_vdev_state_enter(spa, SCL_NONE);
4863 		spa_async_probe(spa, spa->spa_root_vdev);
4864 		(void) spa_vdev_state_exit(spa, NULL, 0);
4865 	}
4866 
4867 	/*
4868 	 * If any devices are done replacing, detach them.
4869 	 */
4870 	if (tasks & SPA_ASYNC_RESILVER_DONE)
4871 		spa_vdev_resilver_done(spa);
4872 
4873 	/*
4874 	 * Kick off a resilver.
4875 	 */
4876 	if (tasks & SPA_ASYNC_RESILVER)
4877 		VERIFY(spa_scrub(spa, POOL_SCRUB_RESILVER) == 0);
4878 
4879 	/*
4880 	 * Let the world know that we're done.
4881 	 */
4882 	mutex_enter(&spa->spa_async_lock);
4883 	spa->spa_async_thread = NULL;
4884 	cv_broadcast(&spa->spa_async_cv);
4885 	mutex_exit(&spa->spa_async_lock);
4886 	thread_exit();
4887 }
4888 
4889 void
4890 spa_async_suspend(spa_t *spa)
4891 {
4892 	mutex_enter(&spa->spa_async_lock);
4893 	spa->spa_async_suspended++;
4894 	while (spa->spa_async_thread != NULL)
4895 		cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
4896 	mutex_exit(&spa->spa_async_lock);
4897 }
4898 
4899 void
4900 spa_async_resume(spa_t *spa)
4901 {
4902 	mutex_enter(&spa->spa_async_lock);
4903 	ASSERT(spa->spa_async_suspended != 0);
4904 	spa->spa_async_suspended--;
4905 	mutex_exit(&spa->spa_async_lock);
4906 }
4907 
4908 static void
4909 spa_async_dispatch(spa_t *spa)
4910 {
4911 	mutex_enter(&spa->spa_async_lock);
4912 	if (spa->spa_async_tasks && !spa->spa_async_suspended &&
4913 	    spa->spa_async_thread == NULL &&
4914 	    rootdir != NULL && !vn_is_readonly(rootdir))
4915 		spa->spa_async_thread = thread_create(NULL, 0,
4916 		    spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
4917 	mutex_exit(&spa->spa_async_lock);
4918 }
4919 
4920 void
4921 spa_async_request(spa_t *spa, int task)
4922 {
4923 	mutex_enter(&spa->spa_async_lock);
4924 	spa->spa_async_tasks |= task;
4925 	mutex_exit(&spa->spa_async_lock);
4926 }
4927 
4928 /*
4929  * ==========================================================================
4930  * SPA syncing routines
4931  * ==========================================================================
4932  */
4933 static void
4934 spa_sync_deferred_bplist(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx, uint64_t txg)
4935 {
4936 	blkptr_t blk;
4937 	uint64_t itor = 0;
4938 	uint8_t c = 1;
4939 
4940 	while (bplist_iterate(bpl, &itor, &blk) == 0) {
4941 		ASSERT(blk.blk_birth < txg);
4942 		zio_free(spa, txg, &blk);
4943 	}
4944 
4945 	bplist_vacate(bpl, tx);
4946 
4947 	/*
4948 	 * Pre-dirty the first block so we sync to convergence faster.
4949 	 * (Usually only the first block is needed.)
4950 	 */
4951 	dmu_write(bpl->bpl_mos, spa->spa_deferred_bplist_obj, 0, 1, &c, tx);
4952 }
4953 
4954 static void
4955 spa_sync_free(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
4956 {
4957 	zio_t *zio = arg;
4958 
4959 	zio_nowait(zio_free_sync(zio, zio->io_spa, dmu_tx_get_txg(tx), bp,
4960 	    zio->io_flags));
4961 }
4962 
4963 static void
4964 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
4965 {
4966 	char *packed = NULL;
4967 	size_t bufsize;
4968 	size_t nvsize = 0;
4969 	dmu_buf_t *db;
4970 
4971 	VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
4972 
4973 	/*
4974 	 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
4975 	 * information.  This avoids the dbuf_will_dirty() path and
4976 	 * saves us a pre-read to get data we don't actually care about.
4977 	 */
4978 	bufsize = P2ROUNDUP(nvsize, SPA_CONFIG_BLOCKSIZE);
4979 	packed = kmem_alloc(bufsize, KM_SLEEP);
4980 
4981 	VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
4982 	    KM_SLEEP) == 0);
4983 	bzero(packed + nvsize, bufsize - nvsize);
4984 
4985 	dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
4986 
4987 	kmem_free(packed, bufsize);
4988 
4989 	VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
4990 	dmu_buf_will_dirty(db, tx);
4991 	*(uint64_t *)db->db_data = nvsize;
4992 	dmu_buf_rele(db, FTAG);
4993 }
4994 
4995 static void
4996 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
4997     const char *config, const char *entry)
4998 {
4999 	nvlist_t *nvroot;
5000 	nvlist_t **list;
5001 	int i;
5002 
5003 	if (!sav->sav_sync)
5004 		return;
5005 
5006 	/*
5007 	 * Update the MOS nvlist describing the list of available devices.
5008 	 * spa_validate_aux() will have already made sure this nvlist is
5009 	 * valid and the vdevs are labeled appropriately.
5010 	 */
5011 	if (sav->sav_object == 0) {
5012 		sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
5013 		    DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
5014 		    sizeof (uint64_t), tx);
5015 		VERIFY(zap_update(spa->spa_meta_objset,
5016 		    DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
5017 		    &sav->sav_object, tx) == 0);
5018 	}
5019 
5020 	VERIFY(nvlist_alloc(&nvroot, NV_UNIQUE_NAME, KM_SLEEP) == 0);
5021 	if (sav->sav_count == 0) {
5022 		VERIFY(nvlist_add_nvlist_array(nvroot, config, NULL, 0) == 0);
5023 	} else {
5024 		list = kmem_alloc(sav->sav_count * sizeof (void *), KM_SLEEP);
5025 		for (i = 0; i < sav->sav_count; i++)
5026 			list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
5027 			    B_FALSE, B_FALSE, B_TRUE);
5028 		VERIFY(nvlist_add_nvlist_array(nvroot, config, list,
5029 		    sav->sav_count) == 0);
5030 		for (i = 0; i < sav->sav_count; i++)
5031 			nvlist_free(list[i]);
5032 		kmem_free(list, sav->sav_count * sizeof (void *));
5033 	}
5034 
5035 	spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
5036 	nvlist_free(nvroot);
5037 
5038 	sav->sav_sync = B_FALSE;
5039 }
5040 
5041 static void
5042 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
5043 {
5044 	nvlist_t *config;
5045 
5046 	if (list_is_empty(&spa->spa_config_dirty_list))
5047 		return;
5048 
5049 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5050 
5051 	config = spa_config_generate(spa, spa->spa_root_vdev,
5052 	    dmu_tx_get_txg(tx), B_FALSE);
5053 
5054 	spa_config_exit(spa, SCL_STATE, FTAG);
5055 
5056 	if (spa->spa_config_syncing)
5057 		nvlist_free(spa->spa_config_syncing);
5058 	spa->spa_config_syncing = config;
5059 
5060 	spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
5061 }
5062 
5063 /*
5064  * Set zpool properties.
5065  */
5066 static void
5067 spa_sync_props(void *arg1, void *arg2, cred_t *cr, dmu_tx_t *tx)
5068 {
5069 	spa_t *spa = arg1;
5070 	objset_t *mos = spa->spa_meta_objset;
5071 	nvlist_t *nvp = arg2;
5072 	nvpair_t *elem;
5073 	uint64_t intval;
5074 	char *strval;
5075 	zpool_prop_t prop;
5076 	const char *propname;
5077 	zprop_type_t proptype;
5078 
5079 	mutex_enter(&spa->spa_props_lock);
5080 
5081 	elem = NULL;
5082 	while ((elem = nvlist_next_nvpair(nvp, elem))) {
5083 		switch (prop = zpool_name_to_prop(nvpair_name(elem))) {
5084 		case ZPOOL_PROP_VERSION:
5085 			/*
5086 			 * Only set version for non-zpool-creation cases
5087 			 * (set/import). spa_create() needs special care
5088 			 * for version setting.
5089 			 */
5090 			if (tx->tx_txg != TXG_INITIAL) {
5091 				VERIFY(nvpair_value_uint64(elem,
5092 				    &intval) == 0);
5093 				ASSERT(intval <= SPA_VERSION);
5094 				ASSERT(intval >= spa_version(spa));
5095 				spa->spa_uberblock.ub_version = intval;
5096 				vdev_config_dirty(spa->spa_root_vdev);
5097 			}
5098 			break;
5099 
5100 		case ZPOOL_PROP_ALTROOT:
5101 			/*
5102 			 * 'altroot' is a non-persistent property. It should
5103 			 * have been set temporarily at creation or import time.
5104 			 */
5105 			ASSERT(spa->spa_root != NULL);
5106 			break;
5107 
5108 		case ZPOOL_PROP_CACHEFILE:
5109 			/*
5110 			 * 'cachefile' is also a non-persisitent property.
5111 			 */
5112 			break;
5113 		default:
5114 			/*
5115 			 * Set pool property values in the poolprops mos object.
5116 			 */
5117 			if (spa->spa_pool_props_object == 0) {
5118 				VERIFY((spa->spa_pool_props_object =
5119 				    zap_create(mos, DMU_OT_POOL_PROPS,
5120 				    DMU_OT_NONE, 0, tx)) > 0);
5121 
5122 				VERIFY(zap_update(mos,
5123 				    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
5124 				    8, 1, &spa->spa_pool_props_object, tx)
5125 				    == 0);
5126 			}
5127 
5128 			/* normalize the property name */
5129 			propname = zpool_prop_to_name(prop);
5130 			proptype = zpool_prop_get_type(prop);
5131 
5132 			if (nvpair_type(elem) == DATA_TYPE_STRING) {
5133 				ASSERT(proptype == PROP_TYPE_STRING);
5134 				VERIFY(nvpair_value_string(elem, &strval) == 0);
5135 				VERIFY(zap_update(mos,
5136 				    spa->spa_pool_props_object, propname,
5137 				    1, strlen(strval) + 1, strval, tx) == 0);
5138 
5139 			} else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
5140 				VERIFY(nvpair_value_uint64(elem, &intval) == 0);
5141 
5142 				if (proptype == PROP_TYPE_INDEX) {
5143 					const char *unused;
5144 					VERIFY(zpool_prop_index_to_string(
5145 					    prop, intval, &unused) == 0);
5146 				}
5147 				VERIFY(zap_update(mos,
5148 				    spa->spa_pool_props_object, propname,
5149 				    8, 1, &intval, tx) == 0);
5150 			} else {
5151 				ASSERT(0); /* not allowed */
5152 			}
5153 
5154 			switch (prop) {
5155 			case ZPOOL_PROP_DELEGATION:
5156 				spa->spa_delegation = intval;
5157 				break;
5158 			case ZPOOL_PROP_BOOTFS:
5159 				spa->spa_bootfs = intval;
5160 				break;
5161 			case ZPOOL_PROP_FAILUREMODE:
5162 				spa->spa_failmode = intval;
5163 				break;
5164 			case ZPOOL_PROP_AUTOEXPAND:
5165 				spa->spa_autoexpand = intval;
5166 				spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
5167 				break;
5168 			case ZPOOL_PROP_DEDUPDITTO:
5169 				spa->spa_dedup_ditto = intval;
5170 				break;
5171 			default:
5172 				break;
5173 			}
5174 		}
5175 
5176 		/* log internal history if this is not a zpool create */
5177 		if (spa_version(spa) >= SPA_VERSION_ZPOOL_HISTORY &&
5178 		    tx->tx_txg != TXG_INITIAL) {
5179 			spa_history_internal_log(LOG_POOL_PROPSET,
5180 			    spa, tx, cr, "%s %lld %s",
5181 			    nvpair_name(elem), intval, spa_name(spa));
5182 		}
5183 	}
5184 
5185 	mutex_exit(&spa->spa_props_lock);
5186 }
5187 
5188 /*
5189  * Sync the specified transaction group.  New blocks may be dirtied as
5190  * part of the process, so we iterate until it converges.
5191  */
5192 void
5193 spa_sync(spa_t *spa, uint64_t txg)
5194 {
5195 	dsl_pool_t *dp = spa->spa_dsl_pool;
5196 	objset_t *mos = spa->spa_meta_objset;
5197 	bplist_t *defer_bpl = &spa->spa_deferred_bplist;
5198 	bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
5199 	vdev_t *rvd = spa->spa_root_vdev;
5200 	vdev_t *vd;
5201 	dmu_tx_t *tx;
5202 	int error;
5203 
5204 	/*
5205 	 * Lock out configuration changes.
5206 	 */
5207 	spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5208 
5209 	spa->spa_syncing_txg = txg;
5210 	spa->spa_sync_pass = 0;
5211 
5212 	/*
5213 	 * If there are any pending vdev state changes, convert them
5214 	 * into config changes that go out with this transaction group.
5215 	 */
5216 	spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5217 	while (list_head(&spa->spa_state_dirty_list) != NULL) {
5218 		/*
5219 		 * We need the write lock here because, for aux vdevs,
5220 		 * calling vdev_config_dirty() modifies sav_config.
5221 		 * This is ugly and will become unnecessary when we
5222 		 * eliminate the aux vdev wart by integrating all vdevs
5223 		 * into the root vdev tree.
5224 		 */
5225 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5226 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
5227 		while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
5228 			vdev_state_clean(vd);
5229 			vdev_config_dirty(vd);
5230 		}
5231 		spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
5232 		spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
5233 	}
5234 	spa_config_exit(spa, SCL_STATE, FTAG);
5235 
5236 	VERIFY(0 == bplist_open(defer_bpl, mos, spa->spa_deferred_bplist_obj));
5237 
5238 	tx = dmu_tx_create_assigned(dp, txg);
5239 
5240 	/*
5241 	 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
5242 	 * set spa_deflate if we have no raid-z vdevs.
5243 	 */
5244 	if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
5245 	    spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
5246 		int i;
5247 
5248 		for (i = 0; i < rvd->vdev_children; i++) {
5249 			vd = rvd->vdev_child[i];
5250 			if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
5251 				break;
5252 		}
5253 		if (i == rvd->vdev_children) {
5254 			spa->spa_deflate = TRUE;
5255 			VERIFY(0 == zap_add(spa->spa_meta_objset,
5256 			    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
5257 			    sizeof (uint64_t), 1, &spa->spa_deflate, tx));
5258 		}
5259 	}
5260 
5261 	if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
5262 	    spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
5263 		dsl_pool_create_origin(dp, tx);
5264 
5265 		/* Keeping the origin open increases spa_minref */
5266 		spa->spa_minref += 3;
5267 	}
5268 
5269 	if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
5270 	    spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
5271 		dsl_pool_upgrade_clones(dp, tx);
5272 	}
5273 
5274 	/*
5275 	 * If anything has changed in this txg, push the deferred frees
5276 	 * from the previous txg.  If not, leave them alone so that we
5277 	 * don't generate work on an otherwise idle system.
5278 	 */
5279 	if (!txg_list_empty(&dp->dp_dirty_datasets, txg) ||
5280 	    !txg_list_empty(&dp->dp_dirty_dirs, txg) ||
5281 	    !txg_list_empty(&dp->dp_sync_tasks, txg))
5282 		spa_sync_deferred_bplist(spa, defer_bpl, tx, txg);
5283 
5284 	/*
5285 	 * Iterate to convergence.
5286 	 */
5287 	do {
5288 		int pass = ++spa->spa_sync_pass;
5289 
5290 		spa_sync_config_object(spa, tx);
5291 		spa_sync_aux_dev(spa, &spa->spa_spares, tx,
5292 		    ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
5293 		spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
5294 		    ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
5295 		spa_errlog_sync(spa, txg);
5296 		dsl_pool_sync(dp, txg);
5297 
5298 		if (pass <= SYNC_PASS_DEFERRED_FREE) {
5299 			zio_t *zio = zio_root(spa, NULL, NULL, 0);
5300 			bplist_sync(free_bpl, spa_sync_free, zio, tx);
5301 			VERIFY(zio_wait(zio) == 0);
5302 		} else {
5303 			bplist_sync(free_bpl, bplist_enqueue_cb, defer_bpl, tx);
5304 		}
5305 
5306 		ddt_sync(spa, txg);
5307 
5308 		mutex_enter(&spa->spa_scrub_lock);
5309 		while (spa->spa_scrub_inflight > 0)
5310 			cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
5311 		mutex_exit(&spa->spa_scrub_lock);
5312 
5313 		while (vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
5314 			vdev_sync(vd, txg);
5315 
5316 	} while (dmu_objset_is_dirty(mos, txg));
5317 
5318 	ASSERT(list_is_empty(&free_bpl->bpl_queue));
5319 
5320 	bplist_close(defer_bpl);
5321 
5322 	/*
5323 	 * Rewrite the vdev configuration (which includes the uberblock)
5324 	 * to commit the transaction group.
5325 	 *
5326 	 * If there are no dirty vdevs, we sync the uberblock to a few
5327 	 * random top-level vdevs that are known to be visible in the
5328 	 * config cache (see spa_vdev_add() for a complete description).
5329 	 * If there *are* dirty vdevs, sync the uberblock to all vdevs.
5330 	 */
5331 	for (;;) {
5332 		/*
5333 		 * We hold SCL_STATE to prevent vdev open/close/etc.
5334 		 * while we're attempting to write the vdev labels.
5335 		 */
5336 		spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
5337 
5338 		if (list_is_empty(&spa->spa_config_dirty_list)) {
5339 			vdev_t *svd[SPA_DVAS_PER_BP];
5340 			int svdcount = 0;
5341 			int children = rvd->vdev_children;
5342 			int c0 = spa_get_random(children);
5343 
5344 			for (int c = 0; c < children; c++) {
5345 				vd = rvd->vdev_child[(c0 + c) % children];
5346 				if (vd->vdev_ms_array == 0 || vd->vdev_islog)
5347 					continue;
5348 				svd[svdcount++] = vd;
5349 				if (svdcount == SPA_DVAS_PER_BP)
5350 					break;
5351 			}
5352 			error = vdev_config_sync(svd, svdcount, txg, B_FALSE);
5353 			if (error != 0)
5354 				error = vdev_config_sync(svd, svdcount, txg,
5355 				    B_TRUE);
5356 		} else {
5357 			error = vdev_config_sync(rvd->vdev_child,
5358 			    rvd->vdev_children, txg, B_FALSE);
5359 			if (error != 0)
5360 				error = vdev_config_sync(rvd->vdev_child,
5361 				    rvd->vdev_children, txg, B_TRUE);
5362 		}
5363 
5364 		spa_config_exit(spa, SCL_STATE, FTAG);
5365 
5366 		if (error == 0)
5367 			break;
5368 		zio_suspend(spa, NULL);
5369 		zio_resume_wait(spa);
5370 	}
5371 	dmu_tx_commit(tx);
5372 
5373 	/*
5374 	 * Clear the dirty config list.
5375 	 */
5376 	while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
5377 		vdev_config_clean(vd);
5378 
5379 	/*
5380 	 * Now that the new config has synced transactionally,
5381 	 * let it become visible to the config cache.
5382 	 */
5383 	if (spa->spa_config_syncing != NULL) {
5384 		spa_config_set(spa, spa->spa_config_syncing);
5385 		spa->spa_config_txg = txg;
5386 		spa->spa_config_syncing = NULL;
5387 	}
5388 
5389 	spa->spa_ubsync = spa->spa_uberblock;
5390 
5391 	dsl_pool_sync_done(dp, txg);
5392 
5393 	/*
5394 	 * Update usable space statistics.
5395 	 */
5396 	while (vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
5397 		vdev_sync_done(vd, txg);
5398 
5399 	spa_update_dspace(spa);
5400 
5401 	/*
5402 	 * It had better be the case that we didn't dirty anything
5403 	 * since vdev_config_sync().
5404 	 */
5405 	ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
5406 	ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
5407 	ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
5408 	ASSERT(list_is_empty(&defer_bpl->bpl_queue));
5409 	ASSERT(list_is_empty(&free_bpl->bpl_queue));
5410 
5411 	spa->spa_sync_pass = 0;
5412 
5413 	spa_config_exit(spa, SCL_CONFIG, FTAG);
5414 
5415 	spa_handle_ignored_writes(spa);
5416 
5417 	/*
5418 	 * If any async tasks have been requested, kick them off.
5419 	 */
5420 	spa_async_dispatch(spa);
5421 }
5422 
5423 /*
5424  * Sync all pools.  We don't want to hold the namespace lock across these
5425  * operations, so we take a reference on the spa_t and drop the lock during the
5426  * sync.
5427  */
5428 void
5429 spa_sync_allpools(void)
5430 {
5431 	spa_t *spa = NULL;
5432 	mutex_enter(&spa_namespace_lock);
5433 	while ((spa = spa_next(spa)) != NULL) {
5434 		if (spa_state(spa) != POOL_STATE_ACTIVE || spa_suspended(spa))
5435 			continue;
5436 		spa_open_ref(spa, FTAG);
5437 		mutex_exit(&spa_namespace_lock);
5438 		txg_wait_synced(spa_get_dsl(spa), 0);
5439 		mutex_enter(&spa_namespace_lock);
5440 		spa_close(spa, FTAG);
5441 	}
5442 	mutex_exit(&spa_namespace_lock);
5443 }
5444 
5445 /*
5446  * ==========================================================================
5447  * Miscellaneous routines
5448  * ==========================================================================
5449  */
5450 
5451 /*
5452  * Remove all pools in the system.
5453  */
5454 void
5455 spa_evict_all(void)
5456 {
5457 	spa_t *spa;
5458 
5459 	/*
5460 	 * Remove all cached state.  All pools should be closed now,
5461 	 * so every spa in the AVL tree should be unreferenced.
5462 	 */
5463 	mutex_enter(&spa_namespace_lock);
5464 	while ((spa = spa_next(NULL)) != NULL) {
5465 		/*
5466 		 * Stop async tasks.  The async thread may need to detach
5467 		 * a device that's been replaced, which requires grabbing
5468 		 * spa_namespace_lock, so we must drop it here.
5469 		 */
5470 		spa_open_ref(spa, FTAG);
5471 		mutex_exit(&spa_namespace_lock);
5472 		spa_async_suspend(spa);
5473 		mutex_enter(&spa_namespace_lock);
5474 		spa_close(spa, FTAG);
5475 
5476 		if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
5477 			spa_unload(spa);
5478 			spa_deactivate(spa);
5479 		}
5480 		spa_remove(spa);
5481 	}
5482 	mutex_exit(&spa_namespace_lock);
5483 }
5484 
5485 vdev_t *
5486 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
5487 {
5488 	vdev_t *vd;
5489 	int i;
5490 
5491 	if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
5492 		return (vd);
5493 
5494 	if (aux) {
5495 		for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
5496 			vd = spa->spa_l2cache.sav_vdevs[i];
5497 			if (vd->vdev_guid == guid)
5498 				return (vd);
5499 		}
5500 
5501 		for (i = 0; i < spa->spa_spares.sav_count; i++) {
5502 			vd = spa->spa_spares.sav_vdevs[i];
5503 			if (vd->vdev_guid == guid)
5504 				return (vd);
5505 		}
5506 	}
5507 
5508 	return (NULL);
5509 }
5510 
5511 void
5512 spa_upgrade(spa_t *spa, uint64_t version)
5513 {
5514 	spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5515 
5516 	/*
5517 	 * This should only be called for a non-faulted pool, and since a
5518 	 * future version would result in an unopenable pool, this shouldn't be
5519 	 * possible.
5520 	 */
5521 	ASSERT(spa->spa_uberblock.ub_version <= SPA_VERSION);
5522 	ASSERT(version >= spa->spa_uberblock.ub_version);
5523 
5524 	spa->spa_uberblock.ub_version = version;
5525 	vdev_config_dirty(spa->spa_root_vdev);
5526 
5527 	spa_config_exit(spa, SCL_ALL, FTAG);
5528 
5529 	txg_wait_synced(spa_get_dsl(spa), 0);
5530 }
5531 
5532 boolean_t
5533 spa_has_spare(spa_t *spa, uint64_t guid)
5534 {
5535 	int i;
5536 	uint64_t spareguid;
5537 	spa_aux_vdev_t *sav = &spa->spa_spares;
5538 
5539 	for (i = 0; i < sav->sav_count; i++)
5540 		if (sav->sav_vdevs[i]->vdev_guid == guid)
5541 			return (B_TRUE);
5542 
5543 	for (i = 0; i < sav->sav_npending; i++) {
5544 		if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
5545 		    &spareguid) == 0 && spareguid == guid)
5546 			return (B_TRUE);
5547 	}
5548 
5549 	return (B_FALSE);
5550 }
5551 
5552 /*
5553  * Check if a pool has an active shared spare device.
5554  * Note: reference count of an active spare is 2, as a spare and as a replace
5555  */
5556 static boolean_t
5557 spa_has_active_shared_spare(spa_t *spa)
5558 {
5559 	int i, refcnt;
5560 	uint64_t pool;
5561 	spa_aux_vdev_t *sav = &spa->spa_spares;
5562 
5563 	for (i = 0; i < sav->sav_count; i++) {
5564 		if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
5565 		    &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
5566 		    refcnt > 2)
5567 			return (B_TRUE);
5568 	}
5569 
5570 	return (B_FALSE);
5571 }
5572 
5573 /*
5574  * Post a sysevent corresponding to the given event.  The 'name' must be one of
5575  * the event definitions in sys/sysevent/eventdefs.h.  The payload will be
5576  * filled in from the spa and (optionally) the vdev.  This doesn't do anything
5577  * in the userland libzpool, as we don't want consumers to misinterpret ztest
5578  * or zdb as real changes.
5579  */
5580 void
5581 spa_event_notify(spa_t *spa, vdev_t *vd, const char *name)
5582 {
5583 #ifdef _KERNEL
5584 	sysevent_t		*ev;
5585 	sysevent_attr_list_t	*attr = NULL;
5586 	sysevent_value_t	value;
5587 	sysevent_id_t		eid;
5588 
5589 	ev = sysevent_alloc(EC_ZFS, (char *)name, SUNW_KERN_PUB "zfs",
5590 	    SE_SLEEP);
5591 
5592 	value.value_type = SE_DATA_TYPE_STRING;
5593 	value.value.sv_string = spa_name(spa);
5594 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_NAME, &value, SE_SLEEP) != 0)
5595 		goto done;
5596 
5597 	value.value_type = SE_DATA_TYPE_UINT64;
5598 	value.value.sv_uint64 = spa_guid(spa);
5599 	if (sysevent_add_attr(&attr, ZFS_EV_POOL_GUID, &value, SE_SLEEP) != 0)
5600 		goto done;
5601 
5602 	if (vd) {
5603 		value.value_type = SE_DATA_TYPE_UINT64;
5604 		value.value.sv_uint64 = vd->vdev_guid;
5605 		if (sysevent_add_attr(&attr, ZFS_EV_VDEV_GUID, &value,
5606 		    SE_SLEEP) != 0)
5607 			goto done;
5608 
5609 		if (vd->vdev_path) {
5610 			value.value_type = SE_DATA_TYPE_STRING;
5611 			value.value.sv_string = vd->vdev_path;
5612 			if (sysevent_add_attr(&attr, ZFS_EV_VDEV_PATH,
5613 			    &value, SE_SLEEP) != 0)
5614 				goto done;
5615 		}
5616 	}
5617 
5618 	if (sysevent_attach_attributes(ev, attr) != 0)
5619 		goto done;
5620 	attr = NULL;
5621 
5622 	(void) log_sysevent(ev, SE_SLEEP, &eid);
5623 
5624 done:
5625 	if (attr)
5626 		sysevent_free_attr(attr);
5627 	sysevent_free(ev);
5628 #endif
5629 }
5630