xref: /titanic_52/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 2ac302890e472bf0c11db192dd18f12ded6043f6)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/dsl_pool.h>
27 #include <sys/dsl_dataset.h>
28 #include <sys/dsl_prop.h>
29 #include <sys/dsl_dir.h>
30 #include <sys/dsl_synctask.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/dnode.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dmu_objset.h>
35 #include <sys/arc.h>
36 #include <sys/zap.h>
37 #include <sys/zio.h>
38 #include <sys/zfs_context.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/zfs_znode.h>
41 #include <sys/spa_impl.h>
42 #include <sys/dsl_deadlist.h>
43 #include <sys/bptree.h>
44 #include <sys/zfeature.h>
45 #include <sys/zil_impl.h>
46 #include <sys/dsl_userhold.h>
47 
48 int zfs_no_write_throttle = 0;
49 int zfs_write_limit_shift = 3;			/* 1/8th of physical memory */
50 int zfs_txg_synctime_ms = 1000;		/* target millisecs to sync a txg */
51 
52 uint64_t zfs_write_limit_min = 32 << 20;	/* min write limit is 32MB */
53 uint64_t zfs_write_limit_max = 0;		/* max data payload per txg */
54 uint64_t zfs_write_limit_inflated = 0;
55 uint64_t zfs_write_limit_override = 0;
56 
57 kmutex_t zfs_write_limit_lock;
58 
59 static pgcnt_t old_physmem = 0;
60 
61 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
62 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
63 
64 int
65 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
66 {
67 	uint64_t obj;
68 	int err;
69 
70 	err = zap_lookup(dp->dp_meta_objset,
71 	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
72 	    name, sizeof (obj), 1, &obj);
73 	if (err)
74 		return (err);
75 
76 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
77 }
78 
79 static dsl_pool_t *
80 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
81 {
82 	dsl_pool_t *dp;
83 	blkptr_t *bp = spa_get_rootblkptr(spa);
84 
85 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
86 	dp->dp_spa = spa;
87 	dp->dp_meta_rootbp = *bp;
88 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
89 	dp->dp_write_limit = zfs_write_limit_min;
90 	txg_init(dp, txg);
91 
92 	txg_list_create(&dp->dp_dirty_datasets,
93 	    offsetof(dsl_dataset_t, ds_dirty_link));
94 	txg_list_create(&dp->dp_dirty_zilogs,
95 	    offsetof(zilog_t, zl_dirty_link));
96 	txg_list_create(&dp->dp_dirty_dirs,
97 	    offsetof(dsl_dir_t, dd_dirty_link));
98 	txg_list_create(&dp->dp_sync_tasks,
99 	    offsetof(dsl_sync_task_t, dst_node));
100 
101 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
102 
103 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
104 	    1, 4, 0);
105 
106 	return (dp);
107 }
108 
109 int
110 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
111 {
112 	int err;
113 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
114 
115 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
116 	    &dp->dp_meta_objset);
117 	if (err != 0)
118 		dsl_pool_close(dp);
119 	else
120 		*dpp = dp;
121 
122 	return (err);
123 }
124 
125 int
126 dsl_pool_open(dsl_pool_t *dp)
127 {
128 	int err;
129 	dsl_dir_t *dd;
130 	dsl_dataset_t *ds;
131 	uint64_t obj;
132 
133 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
134 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
135 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
136 	    &dp->dp_root_dir_obj);
137 	if (err)
138 		goto out;
139 
140 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
141 	    NULL, dp, &dp->dp_root_dir);
142 	if (err)
143 		goto out;
144 
145 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
146 	if (err)
147 		goto out;
148 
149 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
150 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
151 		if (err)
152 			goto out;
153 		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
154 		    FTAG, &ds);
155 		if (err == 0) {
156 			err = dsl_dataset_hold_obj(dp,
157 			    ds->ds_phys->ds_prev_snap_obj, dp,
158 			    &dp->dp_origin_snap);
159 			dsl_dataset_rele(ds, FTAG);
160 		}
161 		dsl_dir_rele(dd, dp);
162 		if (err)
163 			goto out;
164 	}
165 
166 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
167 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
168 		    &dp->dp_free_dir);
169 		if (err)
170 			goto out;
171 
172 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
173 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
174 		if (err)
175 			goto out;
176 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
177 		    dp->dp_meta_objset, obj));
178 	}
179 
180 	if (spa_feature_is_active(dp->dp_spa,
181 	    &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
182 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
183 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
184 		    &dp->dp_bptree_obj);
185 		if (err != 0)
186 			goto out;
187 	}
188 
189 	if (spa_feature_is_active(dp->dp_spa,
190 	    &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {
191 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
192 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
193 		    &dp->dp_empty_bpobj);
194 		if (err != 0)
195 			goto out;
196 	}
197 
198 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
199 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
200 	    &dp->dp_tmp_userrefs_obj);
201 	if (err == ENOENT)
202 		err = 0;
203 	if (err)
204 		goto out;
205 
206 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
207 
208 out:
209 	rrw_exit(&dp->dp_config_rwlock, FTAG);
210 	return (err);
211 }
212 
213 void
214 dsl_pool_close(dsl_pool_t *dp)
215 {
216 	/* drop our references from dsl_pool_open() */
217 
218 	/*
219 	 * Since we held the origin_snap from "syncing" context (which
220 	 * includes pool-opening context), it actually only got a "ref"
221 	 * and not a hold, so just drop that here.
222 	 */
223 	if (dp->dp_origin_snap)
224 		dsl_dataset_rele(dp->dp_origin_snap, dp);
225 	if (dp->dp_mos_dir)
226 		dsl_dir_rele(dp->dp_mos_dir, dp);
227 	if (dp->dp_free_dir)
228 		dsl_dir_rele(dp->dp_free_dir, dp);
229 	if (dp->dp_root_dir)
230 		dsl_dir_rele(dp->dp_root_dir, dp);
231 
232 	bpobj_close(&dp->dp_free_bpobj);
233 
234 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
235 	if (dp->dp_meta_objset)
236 		dmu_objset_evict(dp->dp_meta_objset);
237 
238 	txg_list_destroy(&dp->dp_dirty_datasets);
239 	txg_list_destroy(&dp->dp_dirty_zilogs);
240 	txg_list_destroy(&dp->dp_sync_tasks);
241 	txg_list_destroy(&dp->dp_dirty_dirs);
242 
243 	arc_flush(dp->dp_spa);
244 	txg_fini(dp);
245 	dsl_scan_fini(dp);
246 	rrw_destroy(&dp->dp_config_rwlock);
247 	mutex_destroy(&dp->dp_lock);
248 	taskq_destroy(dp->dp_vnrele_taskq);
249 	if (dp->dp_blkstats)
250 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
251 	kmem_free(dp, sizeof (dsl_pool_t));
252 }
253 
254 dsl_pool_t *
255 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
256 {
257 	int err;
258 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
259 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
260 	objset_t *os;
261 	dsl_dataset_t *ds;
262 	uint64_t obj;
263 
264 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
265 
266 	/* create and open the MOS (meta-objset) */
267 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
268 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
269 
270 	/* create the pool directory */
271 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
272 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
273 	ASSERT0(err);
274 
275 	/* Initialize scan structures */
276 	VERIFY0(dsl_scan_init(dp, txg));
277 
278 	/* create and open the root dir */
279 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
280 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
281 	    NULL, dp, &dp->dp_root_dir));
282 
283 	/* create and open the meta-objset dir */
284 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
285 	VERIFY0(dsl_pool_open_special_dir(dp,
286 	    MOS_DIR_NAME, &dp->dp_mos_dir));
287 
288 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
289 		/* create and open the free dir */
290 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
291 		    FREE_DIR_NAME, tx);
292 		VERIFY0(dsl_pool_open_special_dir(dp,
293 		    FREE_DIR_NAME, &dp->dp_free_dir));
294 
295 		/* create and open the free_bplist */
296 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
297 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
298 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
299 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
300 		    dp->dp_meta_objset, obj));
301 	}
302 
303 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
304 		dsl_pool_create_origin(dp, tx);
305 
306 	/* create the root dataset */
307 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
308 
309 	/* create the root objset */
310 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
311 	os = dmu_objset_create_impl(dp->dp_spa, ds,
312 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
313 #ifdef _KERNEL
314 	zfs_create_fs(os, kcred, zplprops, tx);
315 #endif
316 	dsl_dataset_rele(ds, FTAG);
317 
318 	dmu_tx_commit(tx);
319 
320 	rrw_exit(&dp->dp_config_rwlock, FTAG);
321 
322 	return (dp);
323 }
324 
325 /*
326  * Account for the meta-objset space in its placeholder dsl_dir.
327  */
328 void
329 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
330     int64_t used, int64_t comp, int64_t uncomp)
331 {
332 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
333 	mutex_enter(&dp->dp_lock);
334 	dp->dp_mos_used_delta += used;
335 	dp->dp_mos_compressed_delta += comp;
336 	dp->dp_mos_uncompressed_delta += uncomp;
337 	mutex_exit(&dp->dp_lock);
338 }
339 
340 static int
341 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
342 {
343 	dsl_deadlist_t *dl = arg;
344 	dsl_deadlist_insert(dl, bp, tx);
345 	return (0);
346 }
347 
348 void
349 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
350 {
351 	zio_t *zio;
352 	dmu_tx_t *tx;
353 	dsl_dir_t *dd;
354 	dsl_dataset_t *ds;
355 	objset_t *mos = dp->dp_meta_objset;
356 	hrtime_t start, write_time;
357 	uint64_t data_written;
358 	int err;
359 	list_t synced_datasets;
360 
361 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
362 	    offsetof(dsl_dataset_t, ds_synced_link));
363 
364 	/*
365 	 * We need to copy dp_space_towrite() before doing
366 	 * dsl_sync_task_sync(), because
367 	 * dsl_dataset_snapshot_reserve_space() will increase
368 	 * dp_space_towrite but not actually write anything.
369 	 */
370 	data_written = dp->dp_space_towrite[txg & TXG_MASK];
371 
372 	tx = dmu_tx_create_assigned(dp, txg);
373 
374 	dp->dp_read_overhead = 0;
375 	start = gethrtime();
376 
377 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
378 	while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
379 		/*
380 		 * We must not sync any non-MOS datasets twice, because
381 		 * we may have taken a snapshot of them.  However, we
382 		 * may sync newly-created datasets on pass 2.
383 		 */
384 		ASSERT(!list_link_active(&ds->ds_synced_link));
385 		list_insert_tail(&synced_datasets, ds);
386 		dsl_dataset_sync(ds, zio, tx);
387 	}
388 	DTRACE_PROBE(pool_sync__1setup);
389 	err = zio_wait(zio);
390 
391 	write_time = gethrtime() - start;
392 	ASSERT(err == 0);
393 	DTRACE_PROBE(pool_sync__2rootzio);
394 
395 	/*
396 	 * After the data blocks have been written (ensured by the zio_wait()
397 	 * above), update the user/group space accounting.
398 	 */
399 	for (ds = list_head(&synced_datasets); ds;
400 	    ds = list_next(&synced_datasets, ds))
401 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
402 
403 	/*
404 	 * Sync the datasets again to push out the changes due to
405 	 * userspace updates.  This must be done before we process the
406 	 * sync tasks, so that any snapshots will have the correct
407 	 * user accounting information (and we won't get confused
408 	 * about which blocks are part of the snapshot).
409 	 */
410 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
411 	while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
412 		ASSERT(list_link_active(&ds->ds_synced_link));
413 		dmu_buf_rele(ds->ds_dbuf, ds);
414 		dsl_dataset_sync(ds, zio, tx);
415 	}
416 	err = zio_wait(zio);
417 
418 	/*
419 	 * Now that the datasets have been completely synced, we can
420 	 * clean up our in-memory structures accumulated while syncing:
421 	 *
422 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
423 	 *  - release hold from dsl_dataset_dirty()
424 	 */
425 	while (ds = list_remove_head(&synced_datasets)) {
426 		objset_t *os = ds->ds_objset;
427 		bplist_iterate(&ds->ds_pending_deadlist,
428 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
429 		ASSERT(!dmu_objset_is_dirty(os, txg));
430 		dmu_buf_rele(ds->ds_dbuf, ds);
431 	}
432 
433 	start = gethrtime();
434 	while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg))
435 		dsl_dir_sync(dd, tx);
436 	write_time += gethrtime() - start;
437 
438 	/*
439 	 * The MOS's space is accounted for in the pool/$MOS
440 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
441 	 * it, so we remember the deltas and apply them here.
442 	 */
443 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
444 	    dp->dp_mos_uncompressed_delta != 0) {
445 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
446 		    dp->dp_mos_used_delta,
447 		    dp->dp_mos_compressed_delta,
448 		    dp->dp_mos_uncompressed_delta, tx);
449 		dp->dp_mos_used_delta = 0;
450 		dp->dp_mos_compressed_delta = 0;
451 		dp->dp_mos_uncompressed_delta = 0;
452 	}
453 
454 	start = gethrtime();
455 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
456 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
457 		zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
458 		dmu_objset_sync(mos, zio, tx);
459 		err = zio_wait(zio);
460 		ASSERT(err == 0);
461 		dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
462 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
463 	}
464 	write_time += gethrtime() - start;
465 	DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
466 	    hrtime_t, dp->dp_read_overhead);
467 	write_time -= dp->dp_read_overhead;
468 
469 	/*
470 	 * If we modify a dataset in the same txg that we want to destroy it,
471 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
472 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
473 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
474 	 * and clearing the hold on it) before we process the sync_tasks.
475 	 * The MOS data dirtied by the sync_tasks will be synced on the next
476 	 * pass.
477 	 */
478 	DTRACE_PROBE(pool_sync__3task);
479 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
480 		dsl_sync_task_t *dst;
481 		/*
482 		 * No more sync tasks should have been added while we
483 		 * were syncing.
484 		 */
485 		ASSERT(spa_sync_pass(dp->dp_spa) == 1);
486 		while (dst = txg_list_remove(&dp->dp_sync_tasks, txg))
487 			dsl_sync_task_sync(dst, tx);
488 	}
489 
490 	dmu_tx_commit(tx);
491 
492 	dp->dp_space_towrite[txg & TXG_MASK] = 0;
493 	ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
494 
495 	/*
496 	 * If the write limit max has not been explicitly set, set it
497 	 * to a fraction of available physical memory (default 1/8th).
498 	 * Note that we must inflate the limit because the spa
499 	 * inflates write sizes to account for data replication.
500 	 * Check this each sync phase to catch changing memory size.
501 	 */
502 	if (physmem != old_physmem && zfs_write_limit_shift) {
503 		mutex_enter(&zfs_write_limit_lock);
504 		old_physmem = physmem;
505 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
506 		zfs_write_limit_inflated = MAX(zfs_write_limit_min,
507 		    spa_get_asize(dp->dp_spa, zfs_write_limit_max));
508 		mutex_exit(&zfs_write_limit_lock);
509 	}
510 
511 	/*
512 	 * Attempt to keep the sync time consistent by adjusting the
513 	 * amount of write traffic allowed into each transaction group.
514 	 * Weight the throughput calculation towards the current value:
515 	 * 	thru = 3/4 old_thru + 1/4 new_thru
516 	 *
517 	 * Note: write_time is in nanosecs while dp_throughput is expressed in
518 	 * bytes per millisecond.
519 	 */
520 	ASSERT(zfs_write_limit_min > 0);
521 	if (data_written > zfs_write_limit_min / 8 &&
522 	    write_time > MSEC2NSEC(1)) {
523 		uint64_t throughput = data_written / NSEC2MSEC(write_time);
524 
525 		if (dp->dp_throughput)
526 			dp->dp_throughput = throughput / 4 +
527 			    3 * dp->dp_throughput / 4;
528 		else
529 			dp->dp_throughput = throughput;
530 		dp->dp_write_limit = MIN(zfs_write_limit_inflated,
531 		    MAX(zfs_write_limit_min,
532 		    dp->dp_throughput * zfs_txg_synctime_ms));
533 	}
534 }
535 
536 void
537 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
538 {
539 	zilog_t *zilog;
540 	dsl_dataset_t *ds;
541 
542 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
543 		ds = dmu_objset_ds(zilog->zl_os);
544 		zil_clean(zilog, txg);
545 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
546 		dmu_buf_rele(ds->ds_dbuf, zilog);
547 	}
548 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
549 }
550 
551 /*
552  * TRUE if the current thread is the tx_sync_thread or if we
553  * are being called from SPA context during pool initialization.
554  */
555 int
556 dsl_pool_sync_context(dsl_pool_t *dp)
557 {
558 	return (curthread == dp->dp_tx.tx_sync_thread ||
559 	    spa_is_initializing(dp->dp_spa));
560 }
561 
562 uint64_t
563 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
564 {
565 	uint64_t space, resv;
566 
567 	/*
568 	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
569 	 * efficiency.
570 	 * XXX The intent log is not accounted for, so it must fit
571 	 * within this slop.
572 	 *
573 	 * If we're trying to assess whether it's OK to do a free,
574 	 * cut the reservation in half to allow forward progress
575 	 * (e.g. make it possible to rm(1) files from a full pool).
576 	 */
577 	space = spa_get_dspace(dp->dp_spa);
578 	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
579 	if (netfree)
580 		resv >>= 1;
581 
582 	return (space - resv);
583 }
584 
585 int
586 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
587 {
588 	uint64_t reserved = 0;
589 	uint64_t write_limit = (zfs_write_limit_override ?
590 	    zfs_write_limit_override : dp->dp_write_limit);
591 
592 	if (zfs_no_write_throttle) {
593 		atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
594 		    space);
595 		return (0);
596 	}
597 
598 	/*
599 	 * Check to see if we have exceeded the maximum allowed IO for
600 	 * this transaction group.  We can do this without locks since
601 	 * a little slop here is ok.  Note that we do the reserved check
602 	 * with only half the requested reserve: this is because the
603 	 * reserve requests are worst-case, and we really don't want to
604 	 * throttle based off of worst-case estimates.
605 	 */
606 	if (write_limit > 0) {
607 		reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
608 		    + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
609 
610 		if (reserved && reserved > write_limit)
611 			return (SET_ERROR(ERESTART));
612 	}
613 
614 	atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
615 
616 	/*
617 	 * If this transaction group is over 7/8ths capacity, delay
618 	 * the caller 1 clock tick.  This will slow down the "fill"
619 	 * rate until the sync process can catch up with us.
620 	 */
621 	if (reserved && reserved > (write_limit - (write_limit >> 3))) {
622 		txg_delay(dp, tx->tx_txg, zfs_throttle_delay,
623 		    zfs_throttle_resolution);
624 	}
625 
626 	return (0);
627 }
628 
629 void
630 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
631 {
632 	ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
633 	atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
634 }
635 
636 void
637 dsl_pool_memory_pressure(dsl_pool_t *dp)
638 {
639 	uint64_t space_inuse = 0;
640 	int i;
641 
642 	if (dp->dp_write_limit == zfs_write_limit_min)
643 		return;
644 
645 	for (i = 0; i < TXG_SIZE; i++) {
646 		space_inuse += dp->dp_space_towrite[i];
647 		space_inuse += dp->dp_tempreserved[i];
648 	}
649 	dp->dp_write_limit = MAX(zfs_write_limit_min,
650 	    MIN(dp->dp_write_limit, space_inuse / 4));
651 }
652 
653 void
654 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
655 {
656 	if (space > 0) {
657 		mutex_enter(&dp->dp_lock);
658 		dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
659 		mutex_exit(&dp->dp_lock);
660 	}
661 }
662 
663 /* ARGSUSED */
664 static int
665 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
666 {
667 	dmu_tx_t *tx = arg;
668 	dsl_dataset_t *ds, *prev = NULL;
669 	int err;
670 
671 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
672 	if (err)
673 		return (err);
674 
675 	while (ds->ds_phys->ds_prev_snap_obj != 0) {
676 		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
677 		    FTAG, &prev);
678 		if (err) {
679 			dsl_dataset_rele(ds, FTAG);
680 			return (err);
681 		}
682 
683 		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
684 			break;
685 		dsl_dataset_rele(ds, FTAG);
686 		ds = prev;
687 		prev = NULL;
688 	}
689 
690 	if (prev == NULL) {
691 		prev = dp->dp_origin_snap;
692 
693 		/*
694 		 * The $ORIGIN can't have any data, or the accounting
695 		 * will be wrong.
696 		 */
697 		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
698 
699 		/* The origin doesn't get attached to itself */
700 		if (ds->ds_object == prev->ds_object) {
701 			dsl_dataset_rele(ds, FTAG);
702 			return (0);
703 		}
704 
705 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
706 		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
707 		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
708 
709 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
710 		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
711 
712 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
713 		prev->ds_phys->ds_num_children++;
714 
715 		if (ds->ds_phys->ds_next_snap_obj == 0) {
716 			ASSERT(ds->ds_prev == NULL);
717 			VERIFY0(dsl_dataset_hold_obj(dp,
718 			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
719 		}
720 	}
721 
722 	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
723 	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
724 
725 	if (prev->ds_phys->ds_next_clones_obj == 0) {
726 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
727 		prev->ds_phys->ds_next_clones_obj =
728 		    zap_create(dp->dp_meta_objset,
729 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
730 	}
731 	VERIFY0(zap_add_int(dp->dp_meta_objset,
732 	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
733 
734 	dsl_dataset_rele(ds, FTAG);
735 	if (prev != dp->dp_origin_snap)
736 		dsl_dataset_rele(prev, FTAG);
737 	return (0);
738 }
739 
740 void
741 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
742 {
743 	ASSERT(dmu_tx_is_syncing(tx));
744 	ASSERT(dp->dp_origin_snap != NULL);
745 
746 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
747 	    tx, DS_FIND_CHILDREN));
748 }
749 
750 /* ARGSUSED */
751 static int
752 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
753 {
754 	dmu_tx_t *tx = arg;
755 	objset_t *mos = dp->dp_meta_objset;
756 
757 	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
758 		dsl_dataset_t *origin;
759 
760 		VERIFY0(dsl_dataset_hold_obj(dp,
761 		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
762 
763 		if (origin->ds_dir->dd_phys->dd_clones == 0) {
764 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
765 			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
766 			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
767 		}
768 
769 		VERIFY0(zap_add_int(dp->dp_meta_objset,
770 		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
771 
772 		dsl_dataset_rele(origin, FTAG);
773 	}
774 	return (0);
775 }
776 
777 void
778 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
779 {
780 	ASSERT(dmu_tx_is_syncing(tx));
781 	uint64_t obj;
782 
783 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
784 	VERIFY0(dsl_pool_open_special_dir(dp,
785 	    FREE_DIR_NAME, &dp->dp_free_dir));
786 
787 	/*
788 	 * We can't use bpobj_alloc(), because spa_version() still
789 	 * returns the old version, and we need a new-version bpobj with
790 	 * subobj support.  So call dmu_object_alloc() directly.
791 	 */
792 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
793 	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
794 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
795 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
796 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
797 
798 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
799 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
800 }
801 
802 void
803 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
804 {
805 	uint64_t dsobj;
806 	dsl_dataset_t *ds;
807 
808 	ASSERT(dmu_tx_is_syncing(tx));
809 	ASSERT(dp->dp_origin_snap == NULL);
810 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
811 
812 	/* create the origin dir, ds, & snap-ds */
813 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
814 	    NULL, 0, kcred, tx);
815 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
816 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
817 	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
818 	    dp, &dp->dp_origin_snap));
819 	dsl_dataset_rele(ds, FTAG);
820 }
821 
822 taskq_t *
823 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
824 {
825 	return (dp->dp_vnrele_taskq);
826 }
827 
828 /*
829  * Walk through the pool-wide zap object of temporary snapshot user holds
830  * and release them.
831  */
832 void
833 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
834 {
835 	zap_attribute_t za;
836 	zap_cursor_t zc;
837 	objset_t *mos = dp->dp_meta_objset;
838 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
839 
840 	if (zapobj == 0)
841 		return;
842 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
843 
844 	for (zap_cursor_init(&zc, mos, zapobj);
845 	    zap_cursor_retrieve(&zc, &za) == 0;
846 	    zap_cursor_advance(&zc)) {
847 		char *htag;
848 		uint64_t dsobj;
849 
850 		htag = strchr(za.za_name, '-');
851 		*htag = '\0';
852 		++htag;
853 		dsobj = strtonum(za.za_name, NULL);
854 		dsl_dataset_user_release_tmp(dp, dsobj, htag);
855 	}
856 	zap_cursor_fini(&zc);
857 }
858 
859 /*
860  * Create the pool-wide zap object for storing temporary snapshot holds.
861  */
862 void
863 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
864 {
865 	objset_t *mos = dp->dp_meta_objset;
866 
867 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
868 	ASSERT(dmu_tx_is_syncing(tx));
869 
870 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
871 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
872 }
873 
874 static int
875 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
876     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
877 {
878 	objset_t *mos = dp->dp_meta_objset;
879 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
880 	char *name;
881 	int error;
882 
883 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
884 	ASSERT(dmu_tx_is_syncing(tx));
885 
886 	/*
887 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
888 	 * zap object for temporary holds might not exist yet.
889 	 */
890 	if (zapobj == 0) {
891 		if (holding) {
892 			dsl_pool_user_hold_create_obj(dp, tx);
893 			zapobj = dp->dp_tmp_userrefs_obj;
894 		} else {
895 			return (SET_ERROR(ENOENT));
896 		}
897 	}
898 
899 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
900 	if (holding)
901 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
902 	else
903 		error = zap_remove(mos, zapobj, name, tx);
904 	strfree(name);
905 
906 	return (error);
907 }
908 
909 /*
910  * Add a temporary hold for the given dataset object and tag.
911  */
912 int
913 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
914     uint64_t now, dmu_tx_t *tx)
915 {
916 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
917 }
918 
919 /*
920  * Release a temporary hold for the given dataset object and tag.
921  */
922 int
923 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
924     dmu_tx_t *tx)
925 {
926 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
927 	    tx, B_FALSE));
928 }
929 
930 /*
931  * DSL Pool Configuration Lock
932  *
933  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
934  * creation / destruction / rename / property setting).  It must be held for
935  * read to hold a dataset or dsl_dir.  I.e. you must call
936  * dsl_pool_config_enter() or dsl_pool_hold() before calling
937  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
938  * must be held continuously until all datasets and dsl_dirs are released.
939  *
940  * The only exception to this rule is that if a "long hold" is placed on
941  * a dataset, then the dp_config_rwlock may be dropped while the dataset
942  * is still held.  The long hold will prevent the dataset from being
943  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
944  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
945  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
946  *
947  * Legitimate long-holders (including owners) should be long-running, cancelable
948  * tasks that should cause "zfs destroy" to fail.  This includes DMU
949  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
950  * "zfs send", and "zfs diff".  There are several other long-holders whose
951  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
952  *
953  * The usual formula for long-holding would be:
954  * dsl_pool_hold()
955  * dsl_dataset_hold()
956  * ... perform checks ...
957  * dsl_dataset_long_hold()
958  * dsl_pool_rele()
959  * ... perform long-running task ...
960  * dsl_dataset_long_rele()
961  * dsl_dataset_rele()
962  *
963  * Note that when the long hold is released, the dataset is still held but
964  * the pool is not held.  The dataset may change arbitrarily during this time
965  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
966  * dataset except release it.
967  *
968  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
969  * or modifying operations.
970  *
971  * Modifying operations should generally use dsl_sync_task().  The synctask
972  * infrastructure enforces proper locking strategy with respect to the
973  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
974  *
975  * Read-only operations will manually hold the pool, then the dataset, obtain
976  * information from the dataset, then release the pool and dataset.
977  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
978  * hold/rele.
979  */
980 
981 int
982 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
983 {
984 	spa_t *spa;
985 	int error;
986 
987 	error = spa_open(name, &spa, tag);
988 	if (error == 0) {
989 		*dp = spa_get_dsl(spa);
990 		dsl_pool_config_enter(*dp, tag);
991 	}
992 	return (error);
993 }
994 
995 void
996 dsl_pool_rele(dsl_pool_t *dp, void *tag)
997 {
998 	dsl_pool_config_exit(dp, tag);
999 	spa_close(dp->dp_spa, tag);
1000 }
1001 
1002 void
1003 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1004 {
1005 	/*
1006 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1007 	 *
1008 	 * The rrwlock can (with the track_all flag) track all reading threads,
1009 	 * which is very useful for debugging which code path failed to release
1010 	 * the lock, and for verifying that the *current* thread does hold
1011 	 * the lock.
1012 	 *
1013 	 * (Unlike a rwlock, which knows that N threads hold it for
1014 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1015 	 * if any thread holds it for read, even if this thread doesn't).
1016 	 */
1017 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1018 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1019 }
1020 
1021 void
1022 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1023 {
1024 	rrw_exit(&dp->dp_config_rwlock, tag);
1025 }
1026 
1027 boolean_t
1028 dsl_pool_config_held(dsl_pool_t *dp)
1029 {
1030 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1031 }
1032