xref: /titanic_52/usr/src/uts/common/fs/zfs/dsl_pool.c (revision 2227b8ad8ebd0984a34b696ce07145248700852b)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2013 by Delphix. All rights reserved.
24  * Copyright (c) 2013 Steven Hartland. All rights reserved.
25  */
26 
27 #include <sys/dsl_pool.h>
28 #include <sys/dsl_dataset.h>
29 #include <sys/dsl_prop.h>
30 #include <sys/dsl_dir.h>
31 #include <sys/dsl_synctask.h>
32 #include <sys/dsl_scan.h>
33 #include <sys/dnode.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dmu_objset.h>
36 #include <sys/arc.h>
37 #include <sys/zap.h>
38 #include <sys/zio.h>
39 #include <sys/zfs_context.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/zfs_znode.h>
42 #include <sys/spa_impl.h>
43 #include <sys/dsl_deadlist.h>
44 #include <sys/bptree.h>
45 #include <sys/zfeature.h>
46 #include <sys/zil_impl.h>
47 #include <sys/dsl_userhold.h>
48 
49 int zfs_no_write_throttle = 0;
50 int zfs_write_limit_shift = 3;			/* 1/8th of physical memory */
51 int zfs_txg_synctime_ms = 1000;		/* target millisecs to sync a txg */
52 
53 uint64_t zfs_write_limit_min = 32 << 20;	/* min write limit is 32MB */
54 uint64_t zfs_write_limit_max = 0;		/* max data payload per txg */
55 uint64_t zfs_write_limit_inflated = 0;
56 uint64_t zfs_write_limit_override = 0;
57 
58 kmutex_t zfs_write_limit_lock;
59 
60 static pgcnt_t old_physmem = 0;
61 
62 hrtime_t zfs_throttle_delay = MSEC2NSEC(10);
63 hrtime_t zfs_throttle_resolution = MSEC2NSEC(10);
64 
65 int
66 dsl_pool_open_special_dir(dsl_pool_t *dp, const char *name, dsl_dir_t **ddp)
67 {
68 	uint64_t obj;
69 	int err;
70 
71 	err = zap_lookup(dp->dp_meta_objset,
72 	    dp->dp_root_dir->dd_phys->dd_child_dir_zapobj,
73 	    name, sizeof (obj), 1, &obj);
74 	if (err)
75 		return (err);
76 
77 	return (dsl_dir_hold_obj(dp, obj, name, dp, ddp));
78 }
79 
80 static dsl_pool_t *
81 dsl_pool_open_impl(spa_t *spa, uint64_t txg)
82 {
83 	dsl_pool_t *dp;
84 	blkptr_t *bp = spa_get_rootblkptr(spa);
85 
86 	dp = kmem_zalloc(sizeof (dsl_pool_t), KM_SLEEP);
87 	dp->dp_spa = spa;
88 	dp->dp_meta_rootbp = *bp;
89 	rrw_init(&dp->dp_config_rwlock, B_TRUE);
90 	dp->dp_write_limit = zfs_write_limit_min;
91 	txg_init(dp, txg);
92 
93 	txg_list_create(&dp->dp_dirty_datasets,
94 	    offsetof(dsl_dataset_t, ds_dirty_link));
95 	txg_list_create(&dp->dp_dirty_zilogs,
96 	    offsetof(zilog_t, zl_dirty_link));
97 	txg_list_create(&dp->dp_dirty_dirs,
98 	    offsetof(dsl_dir_t, dd_dirty_link));
99 	txg_list_create(&dp->dp_sync_tasks,
100 	    offsetof(dsl_sync_task_t, dst_node));
101 
102 	mutex_init(&dp->dp_lock, NULL, MUTEX_DEFAULT, NULL);
103 
104 	dp->dp_vnrele_taskq = taskq_create("zfs_vn_rele_taskq", 1, minclsyspri,
105 	    1, 4, 0);
106 
107 	return (dp);
108 }
109 
110 int
111 dsl_pool_init(spa_t *spa, uint64_t txg, dsl_pool_t **dpp)
112 {
113 	int err;
114 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
115 
116 	err = dmu_objset_open_impl(spa, NULL, &dp->dp_meta_rootbp,
117 	    &dp->dp_meta_objset);
118 	if (err != 0)
119 		dsl_pool_close(dp);
120 	else
121 		*dpp = dp;
122 
123 	return (err);
124 }
125 
126 int
127 dsl_pool_open(dsl_pool_t *dp)
128 {
129 	int err;
130 	dsl_dir_t *dd;
131 	dsl_dataset_t *ds;
132 	uint64_t obj;
133 
134 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
135 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
136 	    DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1,
137 	    &dp->dp_root_dir_obj);
138 	if (err)
139 		goto out;
140 
141 	err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
142 	    NULL, dp, &dp->dp_root_dir);
143 	if (err)
144 		goto out;
145 
146 	err = dsl_pool_open_special_dir(dp, MOS_DIR_NAME, &dp->dp_mos_dir);
147 	if (err)
148 		goto out;
149 
150 	if (spa_version(dp->dp_spa) >= SPA_VERSION_ORIGIN) {
151 		err = dsl_pool_open_special_dir(dp, ORIGIN_DIR_NAME, &dd);
152 		if (err)
153 			goto out;
154 		err = dsl_dataset_hold_obj(dp, dd->dd_phys->dd_head_dataset_obj,
155 		    FTAG, &ds);
156 		if (err == 0) {
157 			err = dsl_dataset_hold_obj(dp,
158 			    ds->ds_phys->ds_prev_snap_obj, dp,
159 			    &dp->dp_origin_snap);
160 			dsl_dataset_rele(ds, FTAG);
161 		}
162 		dsl_dir_rele(dd, dp);
163 		if (err)
164 			goto out;
165 	}
166 
167 	if (spa_version(dp->dp_spa) >= SPA_VERSION_DEADLISTS) {
168 		err = dsl_pool_open_special_dir(dp, FREE_DIR_NAME,
169 		    &dp->dp_free_dir);
170 		if (err)
171 			goto out;
172 
173 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
174 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj);
175 		if (err)
176 			goto out;
177 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
178 		    dp->dp_meta_objset, obj));
179 	}
180 
181 	if (spa_feature_is_active(dp->dp_spa,
182 	    &spa_feature_table[SPA_FEATURE_ASYNC_DESTROY])) {
183 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
184 		    DMU_POOL_BPTREE_OBJ, sizeof (uint64_t), 1,
185 		    &dp->dp_bptree_obj);
186 		if (err != 0)
187 			goto out;
188 	}
189 
190 	if (spa_feature_is_active(dp->dp_spa,
191 	    &spa_feature_table[SPA_FEATURE_EMPTY_BPOBJ])) {
192 		err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
193 		    DMU_POOL_EMPTY_BPOBJ, sizeof (uint64_t), 1,
194 		    &dp->dp_empty_bpobj);
195 		if (err != 0)
196 			goto out;
197 	}
198 
199 	err = zap_lookup(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
200 	    DMU_POOL_TMP_USERREFS, sizeof (uint64_t), 1,
201 	    &dp->dp_tmp_userrefs_obj);
202 	if (err == ENOENT)
203 		err = 0;
204 	if (err)
205 		goto out;
206 
207 	err = dsl_scan_init(dp, dp->dp_tx.tx_open_txg);
208 
209 out:
210 	rrw_exit(&dp->dp_config_rwlock, FTAG);
211 	return (err);
212 }
213 
214 void
215 dsl_pool_close(dsl_pool_t *dp)
216 {
217 	/* drop our references from dsl_pool_open() */
218 
219 	/*
220 	 * Since we held the origin_snap from "syncing" context (which
221 	 * includes pool-opening context), it actually only got a "ref"
222 	 * and not a hold, so just drop that here.
223 	 */
224 	if (dp->dp_origin_snap)
225 		dsl_dataset_rele(dp->dp_origin_snap, dp);
226 	if (dp->dp_mos_dir)
227 		dsl_dir_rele(dp->dp_mos_dir, dp);
228 	if (dp->dp_free_dir)
229 		dsl_dir_rele(dp->dp_free_dir, dp);
230 	if (dp->dp_root_dir)
231 		dsl_dir_rele(dp->dp_root_dir, dp);
232 
233 	bpobj_close(&dp->dp_free_bpobj);
234 
235 	/* undo the dmu_objset_open_impl(mos) from dsl_pool_open() */
236 	if (dp->dp_meta_objset)
237 		dmu_objset_evict(dp->dp_meta_objset);
238 
239 	txg_list_destroy(&dp->dp_dirty_datasets);
240 	txg_list_destroy(&dp->dp_dirty_zilogs);
241 	txg_list_destroy(&dp->dp_sync_tasks);
242 	txg_list_destroy(&dp->dp_dirty_dirs);
243 
244 	arc_flush(dp->dp_spa);
245 	txg_fini(dp);
246 	dsl_scan_fini(dp);
247 	rrw_destroy(&dp->dp_config_rwlock);
248 	mutex_destroy(&dp->dp_lock);
249 	taskq_destroy(dp->dp_vnrele_taskq);
250 	if (dp->dp_blkstats)
251 		kmem_free(dp->dp_blkstats, sizeof (zfs_all_blkstats_t));
252 	kmem_free(dp, sizeof (dsl_pool_t));
253 }
254 
255 dsl_pool_t *
256 dsl_pool_create(spa_t *spa, nvlist_t *zplprops, uint64_t txg)
257 {
258 	int err;
259 	dsl_pool_t *dp = dsl_pool_open_impl(spa, txg);
260 	dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
261 	objset_t *os;
262 	dsl_dataset_t *ds;
263 	uint64_t obj;
264 
265 	rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
266 
267 	/* create and open the MOS (meta-objset) */
268 	dp->dp_meta_objset = dmu_objset_create_impl(spa,
269 	    NULL, &dp->dp_meta_rootbp, DMU_OST_META, tx);
270 
271 	/* create the pool directory */
272 	err = zap_create_claim(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
273 	    DMU_OT_OBJECT_DIRECTORY, DMU_OT_NONE, 0, tx);
274 	ASSERT0(err);
275 
276 	/* Initialize scan structures */
277 	VERIFY0(dsl_scan_init(dp, txg));
278 
279 	/* create and open the root dir */
280 	dp->dp_root_dir_obj = dsl_dir_create_sync(dp, NULL, NULL, tx);
281 	VERIFY0(dsl_dir_hold_obj(dp, dp->dp_root_dir_obj,
282 	    NULL, dp, &dp->dp_root_dir));
283 
284 	/* create and open the meta-objset dir */
285 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, MOS_DIR_NAME, tx);
286 	VERIFY0(dsl_pool_open_special_dir(dp,
287 	    MOS_DIR_NAME, &dp->dp_mos_dir));
288 
289 	if (spa_version(spa) >= SPA_VERSION_DEADLISTS) {
290 		/* create and open the free dir */
291 		(void) dsl_dir_create_sync(dp, dp->dp_root_dir,
292 		    FREE_DIR_NAME, tx);
293 		VERIFY0(dsl_pool_open_special_dir(dp,
294 		    FREE_DIR_NAME, &dp->dp_free_dir));
295 
296 		/* create and open the free_bplist */
297 		obj = bpobj_alloc(dp->dp_meta_objset, SPA_MAXBLOCKSIZE, tx);
298 		VERIFY(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
299 		    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx) == 0);
300 		VERIFY0(bpobj_open(&dp->dp_free_bpobj,
301 		    dp->dp_meta_objset, obj));
302 	}
303 
304 	if (spa_version(spa) >= SPA_VERSION_DSL_SCRUB)
305 		dsl_pool_create_origin(dp, tx);
306 
307 	/* create the root dataset */
308 	obj = dsl_dataset_create_sync_dd(dp->dp_root_dir, NULL, 0, tx);
309 
310 	/* create the root objset */
311 	VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG, &ds));
312 	os = dmu_objset_create_impl(dp->dp_spa, ds,
313 	    dsl_dataset_get_blkptr(ds), DMU_OST_ZFS, tx);
314 #ifdef _KERNEL
315 	zfs_create_fs(os, kcred, zplprops, tx);
316 #endif
317 	dsl_dataset_rele(ds, FTAG);
318 
319 	dmu_tx_commit(tx);
320 
321 	rrw_exit(&dp->dp_config_rwlock, FTAG);
322 
323 	return (dp);
324 }
325 
326 /*
327  * Account for the meta-objset space in its placeholder dsl_dir.
328  */
329 void
330 dsl_pool_mos_diduse_space(dsl_pool_t *dp,
331     int64_t used, int64_t comp, int64_t uncomp)
332 {
333 	ASSERT3U(comp, ==, uncomp); /* it's all metadata */
334 	mutex_enter(&dp->dp_lock);
335 	dp->dp_mos_used_delta += used;
336 	dp->dp_mos_compressed_delta += comp;
337 	dp->dp_mos_uncompressed_delta += uncomp;
338 	mutex_exit(&dp->dp_lock);
339 }
340 
341 static int
342 deadlist_enqueue_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
343 {
344 	dsl_deadlist_t *dl = arg;
345 	dsl_deadlist_insert(dl, bp, tx);
346 	return (0);
347 }
348 
349 void
350 dsl_pool_sync(dsl_pool_t *dp, uint64_t txg)
351 {
352 	zio_t *zio;
353 	dmu_tx_t *tx;
354 	dsl_dir_t *dd;
355 	dsl_dataset_t *ds;
356 	objset_t *mos = dp->dp_meta_objset;
357 	hrtime_t start, write_time;
358 	uint64_t data_written;
359 	int err;
360 	list_t synced_datasets;
361 
362 	list_create(&synced_datasets, sizeof (dsl_dataset_t),
363 	    offsetof(dsl_dataset_t, ds_synced_link));
364 
365 	/*
366 	 * We need to copy dp_space_towrite() before doing
367 	 * dsl_sync_task_sync(), because
368 	 * dsl_dataset_snapshot_reserve_space() will increase
369 	 * dp_space_towrite but not actually write anything.
370 	 */
371 	data_written = dp->dp_space_towrite[txg & TXG_MASK];
372 
373 	tx = dmu_tx_create_assigned(dp, txg);
374 
375 	dp->dp_read_overhead = 0;
376 	start = gethrtime();
377 
378 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
379 	while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
380 		/*
381 		 * We must not sync any non-MOS datasets twice, because
382 		 * we may have taken a snapshot of them.  However, we
383 		 * may sync newly-created datasets on pass 2.
384 		 */
385 		ASSERT(!list_link_active(&ds->ds_synced_link));
386 		list_insert_tail(&synced_datasets, ds);
387 		dsl_dataset_sync(ds, zio, tx);
388 	}
389 	DTRACE_PROBE(pool_sync__1setup);
390 	err = zio_wait(zio);
391 
392 	write_time = gethrtime() - start;
393 	ASSERT(err == 0);
394 	DTRACE_PROBE(pool_sync__2rootzio);
395 
396 	/*
397 	 * After the data blocks have been written (ensured by the zio_wait()
398 	 * above), update the user/group space accounting.
399 	 */
400 	for (ds = list_head(&synced_datasets); ds;
401 	    ds = list_next(&synced_datasets, ds))
402 		dmu_objset_do_userquota_updates(ds->ds_objset, tx);
403 
404 	/*
405 	 * Sync the datasets again to push out the changes due to
406 	 * userspace updates.  This must be done before we process the
407 	 * sync tasks, so that any snapshots will have the correct
408 	 * user accounting information (and we won't get confused
409 	 * about which blocks are part of the snapshot).
410 	 */
411 	zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
412 	while (ds = txg_list_remove(&dp->dp_dirty_datasets, txg)) {
413 		ASSERT(list_link_active(&ds->ds_synced_link));
414 		dmu_buf_rele(ds->ds_dbuf, ds);
415 		dsl_dataset_sync(ds, zio, tx);
416 	}
417 	err = zio_wait(zio);
418 
419 	/*
420 	 * Now that the datasets have been completely synced, we can
421 	 * clean up our in-memory structures accumulated while syncing:
422 	 *
423 	 *  - move dead blocks from the pending deadlist to the on-disk deadlist
424 	 *  - release hold from dsl_dataset_dirty()
425 	 */
426 	while (ds = list_remove_head(&synced_datasets)) {
427 		objset_t *os = ds->ds_objset;
428 		bplist_iterate(&ds->ds_pending_deadlist,
429 		    deadlist_enqueue_cb, &ds->ds_deadlist, tx);
430 		ASSERT(!dmu_objset_is_dirty(os, txg));
431 		dmu_buf_rele(ds->ds_dbuf, ds);
432 	}
433 
434 	start = gethrtime();
435 	while (dd = txg_list_remove(&dp->dp_dirty_dirs, txg))
436 		dsl_dir_sync(dd, tx);
437 	write_time += gethrtime() - start;
438 
439 	/*
440 	 * The MOS's space is accounted for in the pool/$MOS
441 	 * (dp_mos_dir).  We can't modify the mos while we're syncing
442 	 * it, so we remember the deltas and apply them here.
443 	 */
444 	if (dp->dp_mos_used_delta != 0 || dp->dp_mos_compressed_delta != 0 ||
445 	    dp->dp_mos_uncompressed_delta != 0) {
446 		dsl_dir_diduse_space(dp->dp_mos_dir, DD_USED_HEAD,
447 		    dp->dp_mos_used_delta,
448 		    dp->dp_mos_compressed_delta,
449 		    dp->dp_mos_uncompressed_delta, tx);
450 		dp->dp_mos_used_delta = 0;
451 		dp->dp_mos_compressed_delta = 0;
452 		dp->dp_mos_uncompressed_delta = 0;
453 	}
454 
455 	start = gethrtime();
456 	if (list_head(&mos->os_dirty_dnodes[txg & TXG_MASK]) != NULL ||
457 	    list_head(&mos->os_free_dnodes[txg & TXG_MASK]) != NULL) {
458 		zio = zio_root(dp->dp_spa, NULL, NULL, ZIO_FLAG_MUSTSUCCEED);
459 		dmu_objset_sync(mos, zio, tx);
460 		err = zio_wait(zio);
461 		ASSERT(err == 0);
462 		dprintf_bp(&dp->dp_meta_rootbp, "meta objset rootbp is %s", "");
463 		spa_set_rootblkptr(dp->dp_spa, &dp->dp_meta_rootbp);
464 	}
465 	write_time += gethrtime() - start;
466 	DTRACE_PROBE2(pool_sync__4io, hrtime_t, write_time,
467 	    hrtime_t, dp->dp_read_overhead);
468 	write_time -= dp->dp_read_overhead;
469 
470 	/*
471 	 * If we modify a dataset in the same txg that we want to destroy it,
472 	 * its dsl_dir's dd_dbuf will be dirty, and thus have a hold on it.
473 	 * dsl_dir_destroy_check() will fail if there are unexpected holds.
474 	 * Therefore, we want to sync the MOS (thus syncing the dd_dbuf
475 	 * and clearing the hold on it) before we process the sync_tasks.
476 	 * The MOS data dirtied by the sync_tasks will be synced on the next
477 	 * pass.
478 	 */
479 	DTRACE_PROBE(pool_sync__3task);
480 	if (!txg_list_empty(&dp->dp_sync_tasks, txg)) {
481 		dsl_sync_task_t *dst;
482 		/*
483 		 * No more sync tasks should have been added while we
484 		 * were syncing.
485 		 */
486 		ASSERT(spa_sync_pass(dp->dp_spa) == 1);
487 		while (dst = txg_list_remove(&dp->dp_sync_tasks, txg))
488 			dsl_sync_task_sync(dst, tx);
489 	}
490 
491 	dmu_tx_commit(tx);
492 
493 	dp->dp_space_towrite[txg & TXG_MASK] = 0;
494 	ASSERT(dp->dp_tempreserved[txg & TXG_MASK] == 0);
495 
496 	/*
497 	 * If the write limit max has not been explicitly set, set it
498 	 * to a fraction of available physical memory (default 1/8th).
499 	 * Note that we must inflate the limit because the spa
500 	 * inflates write sizes to account for data replication.
501 	 * Check this each sync phase to catch changing memory size.
502 	 */
503 	if (physmem != old_physmem && zfs_write_limit_shift) {
504 		mutex_enter(&zfs_write_limit_lock);
505 		old_physmem = physmem;
506 		zfs_write_limit_max = ptob(physmem) >> zfs_write_limit_shift;
507 		zfs_write_limit_inflated = MAX(zfs_write_limit_min,
508 		    spa_get_asize(dp->dp_spa, zfs_write_limit_max));
509 		mutex_exit(&zfs_write_limit_lock);
510 	}
511 
512 	/*
513 	 * Attempt to keep the sync time consistent by adjusting the
514 	 * amount of write traffic allowed into each transaction group.
515 	 * Weight the throughput calculation towards the current value:
516 	 * 	thru = 3/4 old_thru + 1/4 new_thru
517 	 *
518 	 * Note: write_time is in nanosecs while dp_throughput is expressed in
519 	 * bytes per millisecond.
520 	 */
521 	ASSERT(zfs_write_limit_min > 0);
522 	if (data_written > zfs_write_limit_min / 8 &&
523 	    write_time > MSEC2NSEC(1)) {
524 		uint64_t throughput = data_written / NSEC2MSEC(write_time);
525 
526 		if (dp->dp_throughput)
527 			dp->dp_throughput = throughput / 4 +
528 			    3 * dp->dp_throughput / 4;
529 		else
530 			dp->dp_throughput = throughput;
531 		dp->dp_write_limit = MIN(zfs_write_limit_inflated,
532 		    MAX(zfs_write_limit_min,
533 		    dp->dp_throughput * zfs_txg_synctime_ms));
534 	}
535 }
536 
537 void
538 dsl_pool_sync_done(dsl_pool_t *dp, uint64_t txg)
539 {
540 	zilog_t *zilog;
541 	dsl_dataset_t *ds;
542 
543 	while (zilog = txg_list_remove(&dp->dp_dirty_zilogs, txg)) {
544 		ds = dmu_objset_ds(zilog->zl_os);
545 		zil_clean(zilog, txg);
546 		ASSERT(!dmu_objset_is_dirty(zilog->zl_os, txg));
547 		dmu_buf_rele(ds->ds_dbuf, zilog);
548 	}
549 	ASSERT(!dmu_objset_is_dirty(dp->dp_meta_objset, txg));
550 }
551 
552 /*
553  * TRUE if the current thread is the tx_sync_thread or if we
554  * are being called from SPA context during pool initialization.
555  */
556 int
557 dsl_pool_sync_context(dsl_pool_t *dp)
558 {
559 	return (curthread == dp->dp_tx.tx_sync_thread ||
560 	    spa_is_initializing(dp->dp_spa));
561 }
562 
563 uint64_t
564 dsl_pool_adjustedsize(dsl_pool_t *dp, boolean_t netfree)
565 {
566 	uint64_t space, resv;
567 
568 	/*
569 	 * Reserve about 1.6% (1/64), or at least 32MB, for allocation
570 	 * efficiency.
571 	 * XXX The intent log is not accounted for, so it must fit
572 	 * within this slop.
573 	 *
574 	 * If we're trying to assess whether it's OK to do a free,
575 	 * cut the reservation in half to allow forward progress
576 	 * (e.g. make it possible to rm(1) files from a full pool).
577 	 */
578 	space = spa_get_dspace(dp->dp_spa);
579 	resv = MAX(space >> 6, SPA_MINDEVSIZE >> 1);
580 	if (netfree)
581 		resv >>= 1;
582 
583 	return (space - resv);
584 }
585 
586 int
587 dsl_pool_tempreserve_space(dsl_pool_t *dp, uint64_t space, dmu_tx_t *tx)
588 {
589 	uint64_t reserved = 0;
590 	uint64_t write_limit = (zfs_write_limit_override ?
591 	    zfs_write_limit_override : dp->dp_write_limit);
592 
593 	if (zfs_no_write_throttle) {
594 		atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK],
595 		    space);
596 		return (0);
597 	}
598 
599 	/*
600 	 * Check to see if we have exceeded the maximum allowed IO for
601 	 * this transaction group.  We can do this without locks since
602 	 * a little slop here is ok.  Note that we do the reserved check
603 	 * with only half the requested reserve: this is because the
604 	 * reserve requests are worst-case, and we really don't want to
605 	 * throttle based off of worst-case estimates.
606 	 */
607 	if (write_limit > 0) {
608 		reserved = dp->dp_space_towrite[tx->tx_txg & TXG_MASK]
609 		    + dp->dp_tempreserved[tx->tx_txg & TXG_MASK] / 2;
610 
611 		if (reserved && reserved > write_limit)
612 			return (SET_ERROR(ERESTART));
613 	}
614 
615 	atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], space);
616 
617 	/*
618 	 * If this transaction group is over 7/8ths capacity, delay
619 	 * the caller 1 clock tick.  This will slow down the "fill"
620 	 * rate until the sync process can catch up with us.
621 	 */
622 	if (reserved && reserved > (write_limit - (write_limit >> 3))) {
623 		txg_delay(dp, tx->tx_txg, zfs_throttle_delay,
624 		    zfs_throttle_resolution);
625 	}
626 
627 	return (0);
628 }
629 
630 void
631 dsl_pool_tempreserve_clear(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
632 {
633 	ASSERT(dp->dp_tempreserved[tx->tx_txg & TXG_MASK] >= space);
634 	atomic_add_64(&dp->dp_tempreserved[tx->tx_txg & TXG_MASK], -space);
635 }
636 
637 void
638 dsl_pool_memory_pressure(dsl_pool_t *dp)
639 {
640 	uint64_t space_inuse = 0;
641 	int i;
642 
643 	if (dp->dp_write_limit == zfs_write_limit_min)
644 		return;
645 
646 	for (i = 0; i < TXG_SIZE; i++) {
647 		space_inuse += dp->dp_space_towrite[i];
648 		space_inuse += dp->dp_tempreserved[i];
649 	}
650 	dp->dp_write_limit = MAX(zfs_write_limit_min,
651 	    MIN(dp->dp_write_limit, space_inuse / 4));
652 }
653 
654 void
655 dsl_pool_willuse_space(dsl_pool_t *dp, int64_t space, dmu_tx_t *tx)
656 {
657 	if (space > 0) {
658 		mutex_enter(&dp->dp_lock);
659 		dp->dp_space_towrite[tx->tx_txg & TXG_MASK] += space;
660 		mutex_exit(&dp->dp_lock);
661 	}
662 }
663 
664 /* ARGSUSED */
665 static int
666 upgrade_clones_cb(dsl_pool_t *dp, dsl_dataset_t *hds, void *arg)
667 {
668 	dmu_tx_t *tx = arg;
669 	dsl_dataset_t *ds, *prev = NULL;
670 	int err;
671 
672 	err = dsl_dataset_hold_obj(dp, hds->ds_object, FTAG, &ds);
673 	if (err)
674 		return (err);
675 
676 	while (ds->ds_phys->ds_prev_snap_obj != 0) {
677 		err = dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
678 		    FTAG, &prev);
679 		if (err) {
680 			dsl_dataset_rele(ds, FTAG);
681 			return (err);
682 		}
683 
684 		if (prev->ds_phys->ds_next_snap_obj != ds->ds_object)
685 			break;
686 		dsl_dataset_rele(ds, FTAG);
687 		ds = prev;
688 		prev = NULL;
689 	}
690 
691 	if (prev == NULL) {
692 		prev = dp->dp_origin_snap;
693 
694 		/*
695 		 * The $ORIGIN can't have any data, or the accounting
696 		 * will be wrong.
697 		 */
698 		ASSERT0(prev->ds_phys->ds_bp.blk_birth);
699 
700 		/* The origin doesn't get attached to itself */
701 		if (ds->ds_object == prev->ds_object) {
702 			dsl_dataset_rele(ds, FTAG);
703 			return (0);
704 		}
705 
706 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
707 		ds->ds_phys->ds_prev_snap_obj = prev->ds_object;
708 		ds->ds_phys->ds_prev_snap_txg = prev->ds_phys->ds_creation_txg;
709 
710 		dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
711 		ds->ds_dir->dd_phys->dd_origin_obj = prev->ds_object;
712 
713 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
714 		prev->ds_phys->ds_num_children++;
715 
716 		if (ds->ds_phys->ds_next_snap_obj == 0) {
717 			ASSERT(ds->ds_prev == NULL);
718 			VERIFY0(dsl_dataset_hold_obj(dp,
719 			    ds->ds_phys->ds_prev_snap_obj, ds, &ds->ds_prev));
720 		}
721 	}
722 
723 	ASSERT3U(ds->ds_dir->dd_phys->dd_origin_obj, ==, prev->ds_object);
724 	ASSERT3U(ds->ds_phys->ds_prev_snap_obj, ==, prev->ds_object);
725 
726 	if (prev->ds_phys->ds_next_clones_obj == 0) {
727 		dmu_buf_will_dirty(prev->ds_dbuf, tx);
728 		prev->ds_phys->ds_next_clones_obj =
729 		    zap_create(dp->dp_meta_objset,
730 		    DMU_OT_NEXT_CLONES, DMU_OT_NONE, 0, tx);
731 	}
732 	VERIFY0(zap_add_int(dp->dp_meta_objset,
733 	    prev->ds_phys->ds_next_clones_obj, ds->ds_object, tx));
734 
735 	dsl_dataset_rele(ds, FTAG);
736 	if (prev != dp->dp_origin_snap)
737 		dsl_dataset_rele(prev, FTAG);
738 	return (0);
739 }
740 
741 void
742 dsl_pool_upgrade_clones(dsl_pool_t *dp, dmu_tx_t *tx)
743 {
744 	ASSERT(dmu_tx_is_syncing(tx));
745 	ASSERT(dp->dp_origin_snap != NULL);
746 
747 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj, upgrade_clones_cb,
748 	    tx, DS_FIND_CHILDREN));
749 }
750 
751 /* ARGSUSED */
752 static int
753 upgrade_dir_clones_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
754 {
755 	dmu_tx_t *tx = arg;
756 	objset_t *mos = dp->dp_meta_objset;
757 
758 	if (ds->ds_dir->dd_phys->dd_origin_obj != 0) {
759 		dsl_dataset_t *origin;
760 
761 		VERIFY0(dsl_dataset_hold_obj(dp,
762 		    ds->ds_dir->dd_phys->dd_origin_obj, FTAG, &origin));
763 
764 		if (origin->ds_dir->dd_phys->dd_clones == 0) {
765 			dmu_buf_will_dirty(origin->ds_dir->dd_dbuf, tx);
766 			origin->ds_dir->dd_phys->dd_clones = zap_create(mos,
767 			    DMU_OT_DSL_CLONES, DMU_OT_NONE, 0, tx);
768 		}
769 
770 		VERIFY0(zap_add_int(dp->dp_meta_objset,
771 		    origin->ds_dir->dd_phys->dd_clones, ds->ds_object, tx));
772 
773 		dsl_dataset_rele(origin, FTAG);
774 	}
775 	return (0);
776 }
777 
778 void
779 dsl_pool_upgrade_dir_clones(dsl_pool_t *dp, dmu_tx_t *tx)
780 {
781 	ASSERT(dmu_tx_is_syncing(tx));
782 	uint64_t obj;
783 
784 	(void) dsl_dir_create_sync(dp, dp->dp_root_dir, FREE_DIR_NAME, tx);
785 	VERIFY0(dsl_pool_open_special_dir(dp,
786 	    FREE_DIR_NAME, &dp->dp_free_dir));
787 
788 	/*
789 	 * We can't use bpobj_alloc(), because spa_version() still
790 	 * returns the old version, and we need a new-version bpobj with
791 	 * subobj support.  So call dmu_object_alloc() directly.
792 	 */
793 	obj = dmu_object_alloc(dp->dp_meta_objset, DMU_OT_BPOBJ,
794 	    SPA_MAXBLOCKSIZE, DMU_OT_BPOBJ_HDR, sizeof (bpobj_phys_t), tx);
795 	VERIFY0(zap_add(dp->dp_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
796 	    DMU_POOL_FREE_BPOBJ, sizeof (uint64_t), 1, &obj, tx));
797 	VERIFY0(bpobj_open(&dp->dp_free_bpobj, dp->dp_meta_objset, obj));
798 
799 	VERIFY0(dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
800 	    upgrade_dir_clones_cb, tx, DS_FIND_CHILDREN));
801 }
802 
803 void
804 dsl_pool_create_origin(dsl_pool_t *dp, dmu_tx_t *tx)
805 {
806 	uint64_t dsobj;
807 	dsl_dataset_t *ds;
808 
809 	ASSERT(dmu_tx_is_syncing(tx));
810 	ASSERT(dp->dp_origin_snap == NULL);
811 	ASSERT(rrw_held(&dp->dp_config_rwlock, RW_WRITER));
812 
813 	/* create the origin dir, ds, & snap-ds */
814 	dsobj = dsl_dataset_create_sync(dp->dp_root_dir, ORIGIN_DIR_NAME,
815 	    NULL, 0, kcred, tx);
816 	VERIFY0(dsl_dataset_hold_obj(dp, dsobj, FTAG, &ds));
817 	dsl_dataset_snapshot_sync_impl(ds, ORIGIN_DIR_NAME, tx);
818 	VERIFY0(dsl_dataset_hold_obj(dp, ds->ds_phys->ds_prev_snap_obj,
819 	    dp, &dp->dp_origin_snap));
820 	dsl_dataset_rele(ds, FTAG);
821 }
822 
823 taskq_t *
824 dsl_pool_vnrele_taskq(dsl_pool_t *dp)
825 {
826 	return (dp->dp_vnrele_taskq);
827 }
828 
829 /*
830  * Walk through the pool-wide zap object of temporary snapshot user holds
831  * and release them.
832  */
833 void
834 dsl_pool_clean_tmp_userrefs(dsl_pool_t *dp)
835 {
836 	zap_attribute_t za;
837 	zap_cursor_t zc;
838 	objset_t *mos = dp->dp_meta_objset;
839 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
840 	nvlist_t *holds;
841 
842 	if (zapobj == 0)
843 		return;
844 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
845 
846 	holds = fnvlist_alloc();
847 
848 	for (zap_cursor_init(&zc, mos, zapobj);
849 	    zap_cursor_retrieve(&zc, &za) == 0;
850 	    zap_cursor_advance(&zc)) {
851 		char *htag;
852 		nvlist_t *tags;
853 
854 		htag = strchr(za.za_name, '-');
855 		*htag = '\0';
856 		++htag;
857 		if (nvlist_lookup_nvlist(holds, za.za_name, &tags) != 0) {
858 			tags = fnvlist_alloc();
859 			fnvlist_add_boolean(tags, htag);
860 			fnvlist_add_nvlist(holds, za.za_name, tags);
861 			fnvlist_free(tags);
862 		} else {
863 			fnvlist_add_boolean(tags, htag);
864 		}
865 	}
866 	dsl_dataset_user_release_tmp(dp, holds);
867 	fnvlist_free(holds);
868 	zap_cursor_fini(&zc);
869 }
870 
871 /*
872  * Create the pool-wide zap object for storing temporary snapshot holds.
873  */
874 void
875 dsl_pool_user_hold_create_obj(dsl_pool_t *dp, dmu_tx_t *tx)
876 {
877 	objset_t *mos = dp->dp_meta_objset;
878 
879 	ASSERT(dp->dp_tmp_userrefs_obj == 0);
880 	ASSERT(dmu_tx_is_syncing(tx));
881 
882 	dp->dp_tmp_userrefs_obj = zap_create_link(mos, DMU_OT_USERREFS,
883 	    DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_TMP_USERREFS, tx);
884 }
885 
886 static int
887 dsl_pool_user_hold_rele_impl(dsl_pool_t *dp, uint64_t dsobj,
888     const char *tag, uint64_t now, dmu_tx_t *tx, boolean_t holding)
889 {
890 	objset_t *mos = dp->dp_meta_objset;
891 	uint64_t zapobj = dp->dp_tmp_userrefs_obj;
892 	char *name;
893 	int error;
894 
895 	ASSERT(spa_version(dp->dp_spa) >= SPA_VERSION_USERREFS);
896 	ASSERT(dmu_tx_is_syncing(tx));
897 
898 	/*
899 	 * If the pool was created prior to SPA_VERSION_USERREFS, the
900 	 * zap object for temporary holds might not exist yet.
901 	 */
902 	if (zapobj == 0) {
903 		if (holding) {
904 			dsl_pool_user_hold_create_obj(dp, tx);
905 			zapobj = dp->dp_tmp_userrefs_obj;
906 		} else {
907 			return (SET_ERROR(ENOENT));
908 		}
909 	}
910 
911 	name = kmem_asprintf("%llx-%s", (u_longlong_t)dsobj, tag);
912 	if (holding)
913 		error = zap_add(mos, zapobj, name, 8, 1, &now, tx);
914 	else
915 		error = zap_remove(mos, zapobj, name, tx);
916 	strfree(name);
917 
918 	return (error);
919 }
920 
921 /*
922  * Add a temporary hold for the given dataset object and tag.
923  */
924 int
925 dsl_pool_user_hold(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
926     uint64_t now, dmu_tx_t *tx)
927 {
928 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, now, tx, B_TRUE));
929 }
930 
931 /*
932  * Release a temporary hold for the given dataset object and tag.
933  */
934 int
935 dsl_pool_user_release(dsl_pool_t *dp, uint64_t dsobj, const char *tag,
936     dmu_tx_t *tx)
937 {
938 	return (dsl_pool_user_hold_rele_impl(dp, dsobj, tag, NULL,
939 	    tx, B_FALSE));
940 }
941 
942 /*
943  * DSL Pool Configuration Lock
944  *
945  * The dp_config_rwlock protects against changes to DSL state (e.g. dataset
946  * creation / destruction / rename / property setting).  It must be held for
947  * read to hold a dataset or dsl_dir.  I.e. you must call
948  * dsl_pool_config_enter() or dsl_pool_hold() before calling
949  * dsl_{dataset,dir}_hold{_obj}.  In most circumstances, the dp_config_rwlock
950  * must be held continuously until all datasets and dsl_dirs are released.
951  *
952  * The only exception to this rule is that if a "long hold" is placed on
953  * a dataset, then the dp_config_rwlock may be dropped while the dataset
954  * is still held.  The long hold will prevent the dataset from being
955  * destroyed -- the destroy will fail with EBUSY.  A long hold can be
956  * obtained by calling dsl_dataset_long_hold(), or by "owning" a dataset
957  * (by calling dsl_{dataset,objset}_{try}own{_obj}).
958  *
959  * Legitimate long-holders (including owners) should be long-running, cancelable
960  * tasks that should cause "zfs destroy" to fail.  This includes DMU
961  * consumers (i.e. a ZPL filesystem being mounted or ZVOL being open),
962  * "zfs send", and "zfs diff".  There are several other long-holders whose
963  * uses are suboptimal (e.g. "zfs promote", and zil_suspend()).
964  *
965  * The usual formula for long-holding would be:
966  * dsl_pool_hold()
967  * dsl_dataset_hold()
968  * ... perform checks ...
969  * dsl_dataset_long_hold()
970  * dsl_pool_rele()
971  * ... perform long-running task ...
972  * dsl_dataset_long_rele()
973  * dsl_dataset_rele()
974  *
975  * Note that when the long hold is released, the dataset is still held but
976  * the pool is not held.  The dataset may change arbitrarily during this time
977  * (e.g. it could be destroyed).  Therefore you shouldn't do anything to the
978  * dataset except release it.
979  *
980  * User-initiated operations (e.g. ioctls, zfs_ioc_*()) are either read-only
981  * or modifying operations.
982  *
983  * Modifying operations should generally use dsl_sync_task().  The synctask
984  * infrastructure enforces proper locking strategy with respect to the
985  * dp_config_rwlock.  See the comment above dsl_sync_task() for details.
986  *
987  * Read-only operations will manually hold the pool, then the dataset, obtain
988  * information from the dataset, then release the pool and dataset.
989  * dmu_objset_{hold,rele}() are convenience routines that also do the pool
990  * hold/rele.
991  */
992 
993 int
994 dsl_pool_hold(const char *name, void *tag, dsl_pool_t **dp)
995 {
996 	spa_t *spa;
997 	int error;
998 
999 	error = spa_open(name, &spa, tag);
1000 	if (error == 0) {
1001 		*dp = spa_get_dsl(spa);
1002 		dsl_pool_config_enter(*dp, tag);
1003 	}
1004 	return (error);
1005 }
1006 
1007 void
1008 dsl_pool_rele(dsl_pool_t *dp, void *tag)
1009 {
1010 	dsl_pool_config_exit(dp, tag);
1011 	spa_close(dp->dp_spa, tag);
1012 }
1013 
1014 void
1015 dsl_pool_config_enter(dsl_pool_t *dp, void *tag)
1016 {
1017 	/*
1018 	 * We use a "reentrant" reader-writer lock, but not reentrantly.
1019 	 *
1020 	 * The rrwlock can (with the track_all flag) track all reading threads,
1021 	 * which is very useful for debugging which code path failed to release
1022 	 * the lock, and for verifying that the *current* thread does hold
1023 	 * the lock.
1024 	 *
1025 	 * (Unlike a rwlock, which knows that N threads hold it for
1026 	 * read, but not *which* threads, so rw_held(RW_READER) returns TRUE
1027 	 * if any thread holds it for read, even if this thread doesn't).
1028 	 */
1029 	ASSERT(!rrw_held(&dp->dp_config_rwlock, RW_READER));
1030 	rrw_enter(&dp->dp_config_rwlock, RW_READER, tag);
1031 }
1032 
1033 void
1034 dsl_pool_config_exit(dsl_pool_t *dp, void *tag)
1035 {
1036 	rrw_exit(&dp->dp_config_rwlock, tag);
1037 }
1038 
1039 boolean_t
1040 dsl_pool_config_held(dsl_pool_t *dp)
1041 {
1042 	return (RRW_LOCK_HELD(&dp->dp_config_rwlock));
1043 }
1044