xref: /titanic_52/usr/src/uts/common/fs/zfs/dnode.c (revision 5fd03bc0f2e00e7ba02316c2e08f45d52aab15db)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright (c) 2012, 2014 by Delphix. All rights reserved.
24  */
25 
26 #include <sys/zfs_context.h>
27 #include <sys/dbuf.h>
28 #include <sys/dnode.h>
29 #include <sys/dmu.h>
30 #include <sys/dmu_impl.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_dataset.h>
35 #include <sys/spa.h>
36 #include <sys/zio.h>
37 #include <sys/dmu_zfetch.h>
38 #include <sys/range_tree.h>
39 
40 static kmem_cache_t *dnode_cache;
41 /*
42  * Define DNODE_STATS to turn on statistic gathering. By default, it is only
43  * turned on when DEBUG is also defined.
44  */
45 #ifdef	DEBUG
46 #define	DNODE_STATS
47 #endif	/* DEBUG */
48 
49 #ifdef	DNODE_STATS
50 #define	DNODE_STAT_ADD(stat)			((stat)++)
51 #else
52 #define	DNODE_STAT_ADD(stat)			/* nothing */
53 #endif	/* DNODE_STATS */
54 
55 static dnode_phys_t dnode_phys_zero;
56 
57 int zfs_default_bs = SPA_MINBLOCKSHIFT;
58 int zfs_default_ibs = DN_MAX_INDBLKSHIFT;
59 
60 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *);
61 
62 static int
63 dbuf_compare(const void *x1, const void *x2)
64 {
65 	const dmu_buf_impl_t *d1 = x1;
66 	const dmu_buf_impl_t *d2 = x2;
67 
68 	if (d1->db_level < d2->db_level) {
69 		return (-1);
70 	}
71 	if (d1->db_level > d2->db_level) {
72 		return (1);
73 	}
74 
75 	if (d1->db_blkid < d2->db_blkid) {
76 		return (-1);
77 	}
78 	if (d1->db_blkid > d2->db_blkid) {
79 		return (1);
80 	}
81 
82 	if (d1->db_state < d2->db_state) {
83 		return (-1);
84 	}
85 	if (d1->db_state > d2->db_state) {
86 		return (1);
87 	}
88 
89 	ASSERT3S(d1->db_state, !=, DB_SEARCH);
90 	ASSERT3S(d2->db_state, !=, DB_SEARCH);
91 
92 	if ((uintptr_t)d1 < (uintptr_t)d2) {
93 		return (-1);
94 	}
95 	if ((uintptr_t)d1 > (uintptr_t)d2) {
96 		return (1);
97 	}
98 	return (0);
99 }
100 
101 /* ARGSUSED */
102 static int
103 dnode_cons(void *arg, void *unused, int kmflag)
104 {
105 	dnode_t *dn = arg;
106 	int i;
107 
108 	rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL);
109 	mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL);
110 	mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL);
111 	cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL);
112 
113 	/*
114 	 * Every dbuf has a reference, and dropping a tracked reference is
115 	 * O(number of references), so don't track dn_holds.
116 	 */
117 	refcount_create_untracked(&dn->dn_holds);
118 	refcount_create(&dn->dn_tx_holds);
119 	list_link_init(&dn->dn_link);
120 
121 	bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr));
122 	bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels));
123 	bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift));
124 	bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype));
125 	bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk));
126 	bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen));
127 	bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz));
128 
129 	for (i = 0; i < TXG_SIZE; i++) {
130 		list_link_init(&dn->dn_dirty_link[i]);
131 		dn->dn_free_ranges[i] = NULL;
132 		list_create(&dn->dn_dirty_records[i],
133 		    sizeof (dbuf_dirty_record_t),
134 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
135 	}
136 
137 	dn->dn_allocated_txg = 0;
138 	dn->dn_free_txg = 0;
139 	dn->dn_assigned_txg = 0;
140 	dn->dn_dirtyctx = 0;
141 	dn->dn_dirtyctx_firstset = NULL;
142 	dn->dn_bonus = NULL;
143 	dn->dn_have_spill = B_FALSE;
144 	dn->dn_zio = NULL;
145 	dn->dn_oldused = 0;
146 	dn->dn_oldflags = 0;
147 	dn->dn_olduid = 0;
148 	dn->dn_oldgid = 0;
149 	dn->dn_newuid = 0;
150 	dn->dn_newgid = 0;
151 	dn->dn_id_flags = 0;
152 
153 	dn->dn_dbufs_count = 0;
154 	dn->dn_unlisted_l0_blkid = 0;
155 	avl_create(&dn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
156 	    offsetof(dmu_buf_impl_t, db_link));
157 
158 	dn->dn_moved = 0;
159 	return (0);
160 }
161 
162 /* ARGSUSED */
163 static void
164 dnode_dest(void *arg, void *unused)
165 {
166 	int i;
167 	dnode_t *dn = arg;
168 
169 	rw_destroy(&dn->dn_struct_rwlock);
170 	mutex_destroy(&dn->dn_mtx);
171 	mutex_destroy(&dn->dn_dbufs_mtx);
172 	cv_destroy(&dn->dn_notxholds);
173 	refcount_destroy(&dn->dn_holds);
174 	refcount_destroy(&dn->dn_tx_holds);
175 	ASSERT(!list_link_active(&dn->dn_link));
176 
177 	for (i = 0; i < TXG_SIZE; i++) {
178 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
179 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
180 		list_destroy(&dn->dn_dirty_records[i]);
181 		ASSERT0(dn->dn_next_nblkptr[i]);
182 		ASSERT0(dn->dn_next_nlevels[i]);
183 		ASSERT0(dn->dn_next_indblkshift[i]);
184 		ASSERT0(dn->dn_next_bonustype[i]);
185 		ASSERT0(dn->dn_rm_spillblk[i]);
186 		ASSERT0(dn->dn_next_bonuslen[i]);
187 		ASSERT0(dn->dn_next_blksz[i]);
188 	}
189 
190 	ASSERT0(dn->dn_allocated_txg);
191 	ASSERT0(dn->dn_free_txg);
192 	ASSERT0(dn->dn_assigned_txg);
193 	ASSERT0(dn->dn_dirtyctx);
194 	ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL);
195 	ASSERT3P(dn->dn_bonus, ==, NULL);
196 	ASSERT(!dn->dn_have_spill);
197 	ASSERT3P(dn->dn_zio, ==, NULL);
198 	ASSERT0(dn->dn_oldused);
199 	ASSERT0(dn->dn_oldflags);
200 	ASSERT0(dn->dn_olduid);
201 	ASSERT0(dn->dn_oldgid);
202 	ASSERT0(dn->dn_newuid);
203 	ASSERT0(dn->dn_newgid);
204 	ASSERT0(dn->dn_id_flags);
205 
206 	ASSERT0(dn->dn_dbufs_count);
207 	ASSERT0(dn->dn_unlisted_l0_blkid);
208 	avl_destroy(&dn->dn_dbufs);
209 }
210 
211 void
212 dnode_init(void)
213 {
214 	ASSERT(dnode_cache == NULL);
215 	dnode_cache = kmem_cache_create("dnode_t",
216 	    sizeof (dnode_t),
217 	    0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0);
218 	kmem_cache_set_move(dnode_cache, dnode_move);
219 }
220 
221 void
222 dnode_fini(void)
223 {
224 	kmem_cache_destroy(dnode_cache);
225 	dnode_cache = NULL;
226 }
227 
228 
229 #ifdef ZFS_DEBUG
230 void
231 dnode_verify(dnode_t *dn)
232 {
233 	int drop_struct_lock = FALSE;
234 
235 	ASSERT(dn->dn_phys);
236 	ASSERT(dn->dn_objset);
237 	ASSERT(dn->dn_handle->dnh_dnode == dn);
238 
239 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
240 
241 	if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY))
242 		return;
243 
244 	if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
245 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
246 		drop_struct_lock = TRUE;
247 	}
248 	if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) {
249 		int i;
250 		ASSERT3U(dn->dn_indblkshift, >=, 0);
251 		ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT);
252 		if (dn->dn_datablkshift) {
253 			ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT);
254 			ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT);
255 			ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz);
256 		}
257 		ASSERT3U(dn->dn_nlevels, <=, 30);
258 		ASSERT(DMU_OT_IS_VALID(dn->dn_type));
259 		ASSERT3U(dn->dn_nblkptr, >=, 1);
260 		ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
261 		ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
262 		ASSERT3U(dn->dn_datablksz, ==,
263 		    dn->dn_datablkszsec << SPA_MINBLOCKSHIFT);
264 		ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0);
265 		ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) +
266 		    dn->dn_bonuslen, <=, DN_MAX_BONUSLEN);
267 		for (i = 0; i < TXG_SIZE; i++) {
268 			ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels);
269 		}
270 	}
271 	if (dn->dn_phys->dn_type != DMU_OT_NONE)
272 		ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels);
273 	ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL);
274 	if (dn->dn_dbuf != NULL) {
275 		ASSERT3P(dn->dn_phys, ==,
276 		    (dnode_phys_t *)dn->dn_dbuf->db.db_data +
277 		    (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT)));
278 	}
279 	if (drop_struct_lock)
280 		rw_exit(&dn->dn_struct_rwlock);
281 }
282 #endif
283 
284 void
285 dnode_byteswap(dnode_phys_t *dnp)
286 {
287 	uint64_t *buf64 = (void*)&dnp->dn_blkptr;
288 	int i;
289 
290 	if (dnp->dn_type == DMU_OT_NONE) {
291 		bzero(dnp, sizeof (dnode_phys_t));
292 		return;
293 	}
294 
295 	dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec);
296 	dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen);
297 	dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid);
298 	dnp->dn_used = BSWAP_64(dnp->dn_used);
299 
300 	/*
301 	 * dn_nblkptr is only one byte, so it's OK to read it in either
302 	 * byte order.  We can't read dn_bouslen.
303 	 */
304 	ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT);
305 	ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR);
306 	for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++)
307 		buf64[i] = BSWAP_64(buf64[i]);
308 
309 	/*
310 	 * OK to check dn_bonuslen for zero, because it won't matter if
311 	 * we have the wrong byte order.  This is necessary because the
312 	 * dnode dnode is smaller than a regular dnode.
313 	 */
314 	if (dnp->dn_bonuslen != 0) {
315 		/*
316 		 * Note that the bonus length calculated here may be
317 		 * longer than the actual bonus buffer.  This is because
318 		 * we always put the bonus buffer after the last block
319 		 * pointer (instead of packing it against the end of the
320 		 * dnode buffer).
321 		 */
322 		int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t);
323 		size_t len = DN_MAX_BONUSLEN - off;
324 		ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype));
325 		dmu_object_byteswap_t byteswap =
326 		    DMU_OT_BYTESWAP(dnp->dn_bonustype);
327 		dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len);
328 	}
329 
330 	/* Swap SPILL block if we have one */
331 	if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)
332 		byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t));
333 
334 }
335 
336 void
337 dnode_buf_byteswap(void *vbuf, size_t size)
338 {
339 	dnode_phys_t *buf = vbuf;
340 	int i;
341 
342 	ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT));
343 	ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0);
344 
345 	size >>= DNODE_SHIFT;
346 	for (i = 0; i < size; i++) {
347 		dnode_byteswap(buf);
348 		buf++;
349 	}
350 }
351 
352 void
353 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx)
354 {
355 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
356 
357 	dnode_setdirty(dn, tx);
358 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
359 	ASSERT3U(newsize, <=, DN_MAX_BONUSLEN -
360 	    (dn->dn_nblkptr-1) * sizeof (blkptr_t));
361 	dn->dn_bonuslen = newsize;
362 	if (newsize == 0)
363 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN;
364 	else
365 		dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
366 	rw_exit(&dn->dn_struct_rwlock);
367 }
368 
369 void
370 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx)
371 {
372 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
373 	dnode_setdirty(dn, tx);
374 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
375 	dn->dn_bonustype = newtype;
376 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
377 	rw_exit(&dn->dn_struct_rwlock);
378 }
379 
380 void
381 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx)
382 {
383 	ASSERT3U(refcount_count(&dn->dn_holds), >=, 1);
384 	ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
385 	dnode_setdirty(dn, tx);
386 	dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK;
387 	dn->dn_have_spill = B_FALSE;
388 }
389 
390 static void
391 dnode_setdblksz(dnode_t *dn, int size)
392 {
393 	ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE));
394 	ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
395 	ASSERT3U(size, >=, SPA_MINBLOCKSIZE);
396 	ASSERT3U(size >> SPA_MINBLOCKSHIFT, <,
397 	    1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8));
398 	dn->dn_datablksz = size;
399 	dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT;
400 	dn->dn_datablkshift = ISP2(size) ? highbit64(size - 1) : 0;
401 }
402 
403 static dnode_t *
404 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db,
405     uint64_t object, dnode_handle_t *dnh)
406 {
407 	dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP);
408 
409 	ASSERT(!POINTER_IS_VALID(dn->dn_objset));
410 	dn->dn_moved = 0;
411 
412 	/*
413 	 * Defer setting dn_objset until the dnode is ready to be a candidate
414 	 * for the dnode_move() callback.
415 	 */
416 	dn->dn_object = object;
417 	dn->dn_dbuf = db;
418 	dn->dn_handle = dnh;
419 	dn->dn_phys = dnp;
420 
421 	if (dnp->dn_datablkszsec) {
422 		dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT);
423 	} else {
424 		dn->dn_datablksz = 0;
425 		dn->dn_datablkszsec = 0;
426 		dn->dn_datablkshift = 0;
427 	}
428 	dn->dn_indblkshift = dnp->dn_indblkshift;
429 	dn->dn_nlevels = dnp->dn_nlevels;
430 	dn->dn_type = dnp->dn_type;
431 	dn->dn_nblkptr = dnp->dn_nblkptr;
432 	dn->dn_checksum = dnp->dn_checksum;
433 	dn->dn_compress = dnp->dn_compress;
434 	dn->dn_bonustype = dnp->dn_bonustype;
435 	dn->dn_bonuslen = dnp->dn_bonuslen;
436 	dn->dn_maxblkid = dnp->dn_maxblkid;
437 	dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0);
438 	dn->dn_id_flags = 0;
439 
440 	dmu_zfetch_init(&dn->dn_zfetch, dn);
441 
442 	ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type));
443 
444 	mutex_enter(&os->os_lock);
445 	list_insert_head(&os->os_dnodes, dn);
446 	membar_producer();
447 	/*
448 	 * Everything else must be valid before assigning dn_objset makes the
449 	 * dnode eligible for dnode_move().
450 	 */
451 	dn->dn_objset = os;
452 	mutex_exit(&os->os_lock);
453 
454 	arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER);
455 	return (dn);
456 }
457 
458 /*
459  * Caller must be holding the dnode handle, which is released upon return.
460  */
461 static void
462 dnode_destroy(dnode_t *dn)
463 {
464 	objset_t *os = dn->dn_objset;
465 
466 	ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0);
467 
468 	mutex_enter(&os->os_lock);
469 	POINTER_INVALIDATE(&dn->dn_objset);
470 	list_remove(&os->os_dnodes, dn);
471 	mutex_exit(&os->os_lock);
472 
473 	/* the dnode can no longer move, so we can release the handle */
474 	zrl_remove(&dn->dn_handle->dnh_zrlock);
475 
476 	dn->dn_allocated_txg = 0;
477 	dn->dn_free_txg = 0;
478 	dn->dn_assigned_txg = 0;
479 
480 	dn->dn_dirtyctx = 0;
481 	if (dn->dn_dirtyctx_firstset != NULL) {
482 		kmem_free(dn->dn_dirtyctx_firstset, 1);
483 		dn->dn_dirtyctx_firstset = NULL;
484 	}
485 	if (dn->dn_bonus != NULL) {
486 		mutex_enter(&dn->dn_bonus->db_mtx);
487 		dbuf_evict(dn->dn_bonus);
488 		dn->dn_bonus = NULL;
489 	}
490 	dn->dn_zio = NULL;
491 
492 	dn->dn_have_spill = B_FALSE;
493 	dn->dn_oldused = 0;
494 	dn->dn_oldflags = 0;
495 	dn->dn_olduid = 0;
496 	dn->dn_oldgid = 0;
497 	dn->dn_newuid = 0;
498 	dn->dn_newgid = 0;
499 	dn->dn_id_flags = 0;
500 	dn->dn_unlisted_l0_blkid = 0;
501 
502 	dmu_zfetch_rele(&dn->dn_zfetch);
503 	kmem_cache_free(dnode_cache, dn);
504 	arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER);
505 }
506 
507 void
508 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs,
509     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
510 {
511 	int i;
512 
513 	ASSERT3U(blocksize, <=,
514 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
515 	if (blocksize == 0)
516 		blocksize = 1 << zfs_default_bs;
517 	else
518 		blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE);
519 
520 	if (ibs == 0)
521 		ibs = zfs_default_ibs;
522 
523 	ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT);
524 
525 	dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset,
526 	    dn->dn_object, tx->tx_txg, blocksize, ibs);
527 
528 	ASSERT(dn->dn_type == DMU_OT_NONE);
529 	ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0);
530 	ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE);
531 	ASSERT(ot != DMU_OT_NONE);
532 	ASSERT(DMU_OT_IS_VALID(ot));
533 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
534 	    (bonustype == DMU_OT_SA && bonuslen == 0) ||
535 	    (bonustype != DMU_OT_NONE && bonuslen != 0));
536 	ASSERT(DMU_OT_IS_VALID(bonustype));
537 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
538 	ASSERT(dn->dn_type == DMU_OT_NONE);
539 	ASSERT0(dn->dn_maxblkid);
540 	ASSERT0(dn->dn_allocated_txg);
541 	ASSERT0(dn->dn_assigned_txg);
542 	ASSERT(refcount_is_zero(&dn->dn_tx_holds));
543 	ASSERT3U(refcount_count(&dn->dn_holds), <=, 1);
544 	ASSERT(avl_is_empty(&dn->dn_dbufs));
545 
546 	for (i = 0; i < TXG_SIZE; i++) {
547 		ASSERT0(dn->dn_next_nblkptr[i]);
548 		ASSERT0(dn->dn_next_nlevels[i]);
549 		ASSERT0(dn->dn_next_indblkshift[i]);
550 		ASSERT0(dn->dn_next_bonuslen[i]);
551 		ASSERT0(dn->dn_next_bonustype[i]);
552 		ASSERT0(dn->dn_rm_spillblk[i]);
553 		ASSERT0(dn->dn_next_blksz[i]);
554 		ASSERT(!list_link_active(&dn->dn_dirty_link[i]));
555 		ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL);
556 		ASSERT3P(dn->dn_free_ranges[i], ==, NULL);
557 	}
558 
559 	dn->dn_type = ot;
560 	dnode_setdblksz(dn, blocksize);
561 	dn->dn_indblkshift = ibs;
562 	dn->dn_nlevels = 1;
563 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
564 		dn->dn_nblkptr = 1;
565 	else
566 		dn->dn_nblkptr = 1 +
567 		    ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
568 	dn->dn_bonustype = bonustype;
569 	dn->dn_bonuslen = bonuslen;
570 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
571 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
572 	dn->dn_dirtyctx = 0;
573 
574 	dn->dn_free_txg = 0;
575 	if (dn->dn_dirtyctx_firstset) {
576 		kmem_free(dn->dn_dirtyctx_firstset, 1);
577 		dn->dn_dirtyctx_firstset = NULL;
578 	}
579 
580 	dn->dn_allocated_txg = tx->tx_txg;
581 	dn->dn_id_flags = 0;
582 
583 	dnode_setdirty(dn, tx);
584 	dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs;
585 	dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen;
586 	dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype;
587 	dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz;
588 }
589 
590 void
591 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize,
592     dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
593 {
594 	int nblkptr;
595 
596 	ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE);
597 	ASSERT3U(blocksize, <=,
598 	    spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
599 	ASSERT0(blocksize % SPA_MINBLOCKSIZE);
600 	ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx));
601 	ASSERT(tx->tx_txg != 0);
602 	ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) ||
603 	    (bonustype != DMU_OT_NONE && bonuslen != 0) ||
604 	    (bonustype == DMU_OT_SA && bonuslen == 0));
605 	ASSERT(DMU_OT_IS_VALID(bonustype));
606 	ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN);
607 
608 	/* clean up any unreferenced dbufs */
609 	dnode_evict_dbufs(dn);
610 
611 	dn->dn_id_flags = 0;
612 
613 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
614 	dnode_setdirty(dn, tx);
615 	if (dn->dn_datablksz != blocksize) {
616 		/* change blocksize */
617 		ASSERT(dn->dn_maxblkid == 0 &&
618 		    (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) ||
619 		    dnode_block_freed(dn, 0)));
620 		dnode_setdblksz(dn, blocksize);
621 		dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize;
622 	}
623 	if (dn->dn_bonuslen != bonuslen)
624 		dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen;
625 
626 	if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */
627 		nblkptr = 1;
628 	else
629 		nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT);
630 	if (dn->dn_bonustype != bonustype)
631 		dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype;
632 	if (dn->dn_nblkptr != nblkptr)
633 		dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr;
634 	if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
635 		dbuf_rm_spill(dn, tx);
636 		dnode_rm_spill(dn, tx);
637 	}
638 	rw_exit(&dn->dn_struct_rwlock);
639 
640 	/* change type */
641 	dn->dn_type = ot;
642 
643 	/* change bonus size and type */
644 	mutex_enter(&dn->dn_mtx);
645 	dn->dn_bonustype = bonustype;
646 	dn->dn_bonuslen = bonuslen;
647 	dn->dn_nblkptr = nblkptr;
648 	dn->dn_checksum = ZIO_CHECKSUM_INHERIT;
649 	dn->dn_compress = ZIO_COMPRESS_INHERIT;
650 	ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR);
651 
652 	/* fix up the bonus db_size */
653 	if (dn->dn_bonus) {
654 		dn->dn_bonus->db.db_size =
655 		    DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t);
656 		ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size);
657 	}
658 
659 	dn->dn_allocated_txg = tx->tx_txg;
660 	mutex_exit(&dn->dn_mtx);
661 }
662 
663 #ifdef	DNODE_STATS
664 static struct {
665 	uint64_t dms_dnode_invalid;
666 	uint64_t dms_dnode_recheck1;
667 	uint64_t dms_dnode_recheck2;
668 	uint64_t dms_dnode_special;
669 	uint64_t dms_dnode_handle;
670 	uint64_t dms_dnode_rwlock;
671 	uint64_t dms_dnode_active;
672 } dnode_move_stats;
673 #endif	/* DNODE_STATS */
674 
675 static void
676 dnode_move_impl(dnode_t *odn, dnode_t *ndn)
677 {
678 	int i;
679 
680 	ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock));
681 	ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx));
682 	ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx));
683 	ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock));
684 
685 	/* Copy fields. */
686 	ndn->dn_objset = odn->dn_objset;
687 	ndn->dn_object = odn->dn_object;
688 	ndn->dn_dbuf = odn->dn_dbuf;
689 	ndn->dn_handle = odn->dn_handle;
690 	ndn->dn_phys = odn->dn_phys;
691 	ndn->dn_type = odn->dn_type;
692 	ndn->dn_bonuslen = odn->dn_bonuslen;
693 	ndn->dn_bonustype = odn->dn_bonustype;
694 	ndn->dn_nblkptr = odn->dn_nblkptr;
695 	ndn->dn_checksum = odn->dn_checksum;
696 	ndn->dn_compress = odn->dn_compress;
697 	ndn->dn_nlevels = odn->dn_nlevels;
698 	ndn->dn_indblkshift = odn->dn_indblkshift;
699 	ndn->dn_datablkshift = odn->dn_datablkshift;
700 	ndn->dn_datablkszsec = odn->dn_datablkszsec;
701 	ndn->dn_datablksz = odn->dn_datablksz;
702 	ndn->dn_maxblkid = odn->dn_maxblkid;
703 	bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0],
704 	    sizeof (odn->dn_next_nblkptr));
705 	bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0],
706 	    sizeof (odn->dn_next_nlevels));
707 	bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0],
708 	    sizeof (odn->dn_next_indblkshift));
709 	bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0],
710 	    sizeof (odn->dn_next_bonustype));
711 	bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0],
712 	    sizeof (odn->dn_rm_spillblk));
713 	bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0],
714 	    sizeof (odn->dn_next_bonuslen));
715 	bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0],
716 	    sizeof (odn->dn_next_blksz));
717 	for (i = 0; i < TXG_SIZE; i++) {
718 		list_move_tail(&ndn->dn_dirty_records[i],
719 		    &odn->dn_dirty_records[i]);
720 	}
721 	bcopy(&odn->dn_free_ranges[0], &ndn->dn_free_ranges[0],
722 	    sizeof (odn->dn_free_ranges));
723 	ndn->dn_allocated_txg = odn->dn_allocated_txg;
724 	ndn->dn_free_txg = odn->dn_free_txg;
725 	ndn->dn_assigned_txg = odn->dn_assigned_txg;
726 	ndn->dn_dirtyctx = odn->dn_dirtyctx;
727 	ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset;
728 	ASSERT(refcount_count(&odn->dn_tx_holds) == 0);
729 	refcount_transfer(&ndn->dn_holds, &odn->dn_holds);
730 	ASSERT(avl_is_empty(&ndn->dn_dbufs));
731 	avl_swap(&ndn->dn_dbufs, &odn->dn_dbufs);
732 	ndn->dn_dbufs_count = odn->dn_dbufs_count;
733 	ndn->dn_unlisted_l0_blkid = odn->dn_unlisted_l0_blkid;
734 	ndn->dn_bonus = odn->dn_bonus;
735 	ndn->dn_have_spill = odn->dn_have_spill;
736 	ndn->dn_zio = odn->dn_zio;
737 	ndn->dn_oldused = odn->dn_oldused;
738 	ndn->dn_oldflags = odn->dn_oldflags;
739 	ndn->dn_olduid = odn->dn_olduid;
740 	ndn->dn_oldgid = odn->dn_oldgid;
741 	ndn->dn_newuid = odn->dn_newuid;
742 	ndn->dn_newgid = odn->dn_newgid;
743 	ndn->dn_id_flags = odn->dn_id_flags;
744 	dmu_zfetch_init(&ndn->dn_zfetch, NULL);
745 	list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream);
746 	ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode;
747 	ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt;
748 	ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail;
749 
750 	/*
751 	 * Update back pointers. Updating the handle fixes the back pointer of
752 	 * every descendant dbuf as well as the bonus dbuf.
753 	 */
754 	ASSERT(ndn->dn_handle->dnh_dnode == odn);
755 	ndn->dn_handle->dnh_dnode = ndn;
756 	if (ndn->dn_zfetch.zf_dnode == odn) {
757 		ndn->dn_zfetch.zf_dnode = ndn;
758 	}
759 
760 	/*
761 	 * Invalidate the original dnode by clearing all of its back pointers.
762 	 */
763 	odn->dn_dbuf = NULL;
764 	odn->dn_handle = NULL;
765 	avl_create(&odn->dn_dbufs, dbuf_compare, sizeof (dmu_buf_impl_t),
766 	    offsetof(dmu_buf_impl_t, db_link));
767 	odn->dn_dbufs_count = 0;
768 	odn->dn_unlisted_l0_blkid = 0;
769 	odn->dn_bonus = NULL;
770 	odn->dn_zfetch.zf_dnode = NULL;
771 
772 	/*
773 	 * Set the low bit of the objset pointer to ensure that dnode_move()
774 	 * recognizes the dnode as invalid in any subsequent callback.
775 	 */
776 	POINTER_INVALIDATE(&odn->dn_objset);
777 
778 	/*
779 	 * Satisfy the destructor.
780 	 */
781 	for (i = 0; i < TXG_SIZE; i++) {
782 		list_create(&odn->dn_dirty_records[i],
783 		    sizeof (dbuf_dirty_record_t),
784 		    offsetof(dbuf_dirty_record_t, dr_dirty_node));
785 		odn->dn_free_ranges[i] = NULL;
786 		odn->dn_next_nlevels[i] = 0;
787 		odn->dn_next_indblkshift[i] = 0;
788 		odn->dn_next_bonustype[i] = 0;
789 		odn->dn_rm_spillblk[i] = 0;
790 		odn->dn_next_bonuslen[i] = 0;
791 		odn->dn_next_blksz[i] = 0;
792 	}
793 	odn->dn_allocated_txg = 0;
794 	odn->dn_free_txg = 0;
795 	odn->dn_assigned_txg = 0;
796 	odn->dn_dirtyctx = 0;
797 	odn->dn_dirtyctx_firstset = NULL;
798 	odn->dn_have_spill = B_FALSE;
799 	odn->dn_zio = NULL;
800 	odn->dn_oldused = 0;
801 	odn->dn_oldflags = 0;
802 	odn->dn_olduid = 0;
803 	odn->dn_oldgid = 0;
804 	odn->dn_newuid = 0;
805 	odn->dn_newgid = 0;
806 	odn->dn_id_flags = 0;
807 
808 	/*
809 	 * Mark the dnode.
810 	 */
811 	ndn->dn_moved = 1;
812 	odn->dn_moved = (uint8_t)-1;
813 }
814 
815 #ifdef	_KERNEL
816 /*ARGSUSED*/
817 static kmem_cbrc_t
818 dnode_move(void *buf, void *newbuf, size_t size, void *arg)
819 {
820 	dnode_t *odn = buf, *ndn = newbuf;
821 	objset_t *os;
822 	int64_t refcount;
823 	uint32_t dbufs;
824 
825 	/*
826 	 * The dnode is on the objset's list of known dnodes if the objset
827 	 * pointer is valid. We set the low bit of the objset pointer when
828 	 * freeing the dnode to invalidate it, and the memory patterns written
829 	 * by kmem (baddcafe and deadbeef) set at least one of the two low bits.
830 	 * A newly created dnode sets the objset pointer last of all to indicate
831 	 * that the dnode is known and in a valid state to be moved by this
832 	 * function.
833 	 */
834 	os = odn->dn_objset;
835 	if (!POINTER_IS_VALID(os)) {
836 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid);
837 		return (KMEM_CBRC_DONT_KNOW);
838 	}
839 
840 	/*
841 	 * Ensure that the objset does not go away during the move.
842 	 */
843 	rw_enter(&os_lock, RW_WRITER);
844 	if (os != odn->dn_objset) {
845 		rw_exit(&os_lock);
846 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1);
847 		return (KMEM_CBRC_DONT_KNOW);
848 	}
849 
850 	/*
851 	 * If the dnode is still valid, then so is the objset. We know that no
852 	 * valid objset can be freed while we hold os_lock, so we can safely
853 	 * ensure that the objset remains in use.
854 	 */
855 	mutex_enter(&os->os_lock);
856 
857 	/*
858 	 * Recheck the objset pointer in case the dnode was removed just before
859 	 * acquiring the lock.
860 	 */
861 	if (os != odn->dn_objset) {
862 		mutex_exit(&os->os_lock);
863 		rw_exit(&os_lock);
864 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2);
865 		return (KMEM_CBRC_DONT_KNOW);
866 	}
867 
868 	/*
869 	 * At this point we know that as long as we hold os->os_lock, the dnode
870 	 * cannot be freed and fields within the dnode can be safely accessed.
871 	 * The objset listing this dnode cannot go away as long as this dnode is
872 	 * on its list.
873 	 */
874 	rw_exit(&os_lock);
875 	if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) {
876 		mutex_exit(&os->os_lock);
877 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special);
878 		return (KMEM_CBRC_NO);
879 	}
880 	ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */
881 
882 	/*
883 	 * Lock the dnode handle to prevent the dnode from obtaining any new
884 	 * holds. This also prevents the descendant dbufs and the bonus dbuf
885 	 * from accessing the dnode, so that we can discount their holds. The
886 	 * handle is safe to access because we know that while the dnode cannot
887 	 * go away, neither can its handle. Once we hold dnh_zrlock, we can
888 	 * safely move any dnode referenced only by dbufs.
889 	 */
890 	if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) {
891 		mutex_exit(&os->os_lock);
892 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle);
893 		return (KMEM_CBRC_LATER);
894 	}
895 
896 	/*
897 	 * Ensure a consistent view of the dnode's holds and the dnode's dbufs.
898 	 * We need to guarantee that there is a hold for every dbuf in order to
899 	 * determine whether the dnode is actively referenced. Falsely matching
900 	 * a dbuf to an active hold would lead to an unsafe move. It's possible
901 	 * that a thread already having an active dnode hold is about to add a
902 	 * dbuf, and we can't compare hold and dbuf counts while the add is in
903 	 * progress.
904 	 */
905 	if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) {
906 		zrl_exit(&odn->dn_handle->dnh_zrlock);
907 		mutex_exit(&os->os_lock);
908 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock);
909 		return (KMEM_CBRC_LATER);
910 	}
911 
912 	/*
913 	 * A dbuf may be removed (evicted) without an active dnode hold. In that
914 	 * case, the dbuf count is decremented under the handle lock before the
915 	 * dbuf's hold is released. This order ensures that if we count the hold
916 	 * after the dbuf is removed but before its hold is released, we will
917 	 * treat the unmatched hold as active and exit safely. If we count the
918 	 * hold before the dbuf is removed, the hold is discounted, and the
919 	 * removal is blocked until the move completes.
920 	 */
921 	refcount = refcount_count(&odn->dn_holds);
922 	ASSERT(refcount >= 0);
923 	dbufs = odn->dn_dbufs_count;
924 
925 	/* We can't have more dbufs than dnode holds. */
926 	ASSERT3U(dbufs, <=, refcount);
927 	DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount,
928 	    uint32_t, dbufs);
929 
930 	if (refcount > dbufs) {
931 		rw_exit(&odn->dn_struct_rwlock);
932 		zrl_exit(&odn->dn_handle->dnh_zrlock);
933 		mutex_exit(&os->os_lock);
934 		DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active);
935 		return (KMEM_CBRC_LATER);
936 	}
937 
938 	rw_exit(&odn->dn_struct_rwlock);
939 
940 	/*
941 	 * At this point we know that anyone with a hold on the dnode is not
942 	 * actively referencing it. The dnode is known and in a valid state to
943 	 * move. We're holding the locks needed to execute the critical section.
944 	 */
945 	dnode_move_impl(odn, ndn);
946 
947 	list_link_replace(&odn->dn_link, &ndn->dn_link);
948 	/* If the dnode was safe to move, the refcount cannot have changed. */
949 	ASSERT(refcount == refcount_count(&ndn->dn_holds));
950 	ASSERT(dbufs == ndn->dn_dbufs_count);
951 	zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */
952 	mutex_exit(&os->os_lock);
953 
954 	return (KMEM_CBRC_YES);
955 }
956 #endif	/* _KERNEL */
957 
958 void
959 dnode_special_close(dnode_handle_t *dnh)
960 {
961 	dnode_t *dn = dnh->dnh_dnode;
962 
963 	/*
964 	 * Wait for final references to the dnode to clear.  This can
965 	 * only happen if the arc is asyncronously evicting state that
966 	 * has a hold on this dnode while we are trying to evict this
967 	 * dnode.
968 	 */
969 	while (refcount_count(&dn->dn_holds) > 0)
970 		delay(1);
971 	zrl_add(&dnh->dnh_zrlock);
972 	dnode_destroy(dn); /* implicit zrl_remove() */
973 	zrl_destroy(&dnh->dnh_zrlock);
974 	dnh->dnh_dnode = NULL;
975 }
976 
977 dnode_t *
978 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object,
979     dnode_handle_t *dnh)
980 {
981 	dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh);
982 	dnh->dnh_dnode = dn;
983 	zrl_init(&dnh->dnh_zrlock);
984 	DNODE_VERIFY(dn);
985 	return (dn);
986 }
987 
988 static void
989 dnode_buf_pageout(dmu_buf_t *db, void *arg)
990 {
991 	dnode_children_t *children_dnodes = arg;
992 	int i;
993 	int epb = db->db_size >> DNODE_SHIFT;
994 
995 	ASSERT(epb == children_dnodes->dnc_count);
996 
997 	for (i = 0; i < epb; i++) {
998 		dnode_handle_t *dnh = &children_dnodes->dnc_children[i];
999 		dnode_t *dn;
1000 
1001 		/*
1002 		 * The dnode handle lock guards against the dnode moving to
1003 		 * another valid address, so there is no need here to guard
1004 		 * against changes to or from NULL.
1005 		 */
1006 		if (dnh->dnh_dnode == NULL) {
1007 			zrl_destroy(&dnh->dnh_zrlock);
1008 			continue;
1009 		}
1010 
1011 		zrl_add(&dnh->dnh_zrlock);
1012 		dn = dnh->dnh_dnode;
1013 		/*
1014 		 * If there are holds on this dnode, then there should
1015 		 * be holds on the dnode's containing dbuf as well; thus
1016 		 * it wouldn't be eligible for eviction and this function
1017 		 * would not have been called.
1018 		 */
1019 		ASSERT(refcount_is_zero(&dn->dn_holds));
1020 		ASSERT(refcount_is_zero(&dn->dn_tx_holds));
1021 
1022 		dnode_destroy(dn); /* implicit zrl_remove() */
1023 		zrl_destroy(&dnh->dnh_zrlock);
1024 		dnh->dnh_dnode = NULL;
1025 	}
1026 	kmem_free(children_dnodes, sizeof (dnode_children_t) +
1027 	    epb * sizeof (dnode_handle_t));
1028 }
1029 
1030 /*
1031  * errors:
1032  * EINVAL - invalid object number.
1033  * EIO - i/o error.
1034  * succeeds even for free dnodes.
1035  */
1036 int
1037 dnode_hold_impl(objset_t *os, uint64_t object, int flag,
1038     void *tag, dnode_t **dnp)
1039 {
1040 	int epb, idx, err;
1041 	int drop_struct_lock = FALSE;
1042 	int type;
1043 	uint64_t blk;
1044 	dnode_t *mdn, *dn;
1045 	dmu_buf_impl_t *db;
1046 	dnode_children_t *children_dnodes;
1047 	dnode_handle_t *dnh;
1048 
1049 	/*
1050 	 * If you are holding the spa config lock as writer, you shouldn't
1051 	 * be asking the DMU to do *anything* unless it's the root pool
1052 	 * which may require us to read from the root filesystem while
1053 	 * holding some (not all) of the locks as writer.
1054 	 */
1055 	ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 ||
1056 	    (spa_is_root(os->os_spa) &&
1057 	    spa_config_held(os->os_spa, SCL_STATE, RW_WRITER)));
1058 
1059 	if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) {
1060 		dn = (object == DMU_USERUSED_OBJECT) ?
1061 		    DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os);
1062 		if (dn == NULL)
1063 			return (SET_ERROR(ENOENT));
1064 		type = dn->dn_type;
1065 		if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE)
1066 			return (SET_ERROR(ENOENT));
1067 		if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE)
1068 			return (SET_ERROR(EEXIST));
1069 		DNODE_VERIFY(dn);
1070 		(void) refcount_add(&dn->dn_holds, tag);
1071 		*dnp = dn;
1072 		return (0);
1073 	}
1074 
1075 	if (object == 0 || object >= DN_MAX_OBJECT)
1076 		return (SET_ERROR(EINVAL));
1077 
1078 	mdn = DMU_META_DNODE(os);
1079 	ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT);
1080 
1081 	DNODE_VERIFY(mdn);
1082 
1083 	if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) {
1084 		rw_enter(&mdn->dn_struct_rwlock, RW_READER);
1085 		drop_struct_lock = TRUE;
1086 	}
1087 
1088 	blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t));
1089 
1090 	db = dbuf_hold(mdn, blk, FTAG);
1091 	if (drop_struct_lock)
1092 		rw_exit(&mdn->dn_struct_rwlock);
1093 	if (db == NULL)
1094 		return (SET_ERROR(EIO));
1095 	err = dbuf_read(db, NULL, DB_RF_CANFAIL);
1096 	if (err) {
1097 		dbuf_rele(db, FTAG);
1098 		return (err);
1099 	}
1100 
1101 	ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT);
1102 	epb = db->db.db_size >> DNODE_SHIFT;
1103 
1104 	idx = object & (epb-1);
1105 
1106 	ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE);
1107 	children_dnodes = dmu_buf_get_user(&db->db);
1108 	if (children_dnodes == NULL) {
1109 		int i;
1110 		dnode_children_t *winner;
1111 		children_dnodes = kmem_alloc(sizeof (dnode_children_t) +
1112 		    epb * sizeof (dnode_handle_t), KM_SLEEP);
1113 		children_dnodes->dnc_count = epb;
1114 		dnh = &children_dnodes->dnc_children[0];
1115 		for (i = 0; i < epb; i++) {
1116 			zrl_init(&dnh[i].dnh_zrlock);
1117 			dnh[i].dnh_dnode = NULL;
1118 		}
1119 		if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL,
1120 		    dnode_buf_pageout)) {
1121 
1122 			for (i = 0; i < epb; i++) {
1123 				zrl_destroy(&dnh[i].dnh_zrlock);
1124 			}
1125 
1126 			kmem_free(children_dnodes, sizeof (dnode_children_t) +
1127 			    epb * sizeof (dnode_handle_t));
1128 			children_dnodes = winner;
1129 		}
1130 	}
1131 	ASSERT(children_dnodes->dnc_count == epb);
1132 
1133 	dnh = &children_dnodes->dnc_children[idx];
1134 	zrl_add(&dnh->dnh_zrlock);
1135 	if ((dn = dnh->dnh_dnode) == NULL) {
1136 		dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx;
1137 		dnode_t *winner;
1138 
1139 		dn = dnode_create(os, phys, db, object, dnh);
1140 		winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn);
1141 		if (winner != NULL) {
1142 			zrl_add(&dnh->dnh_zrlock);
1143 			dnode_destroy(dn); /* implicit zrl_remove() */
1144 			dn = winner;
1145 		}
1146 	}
1147 
1148 	mutex_enter(&dn->dn_mtx);
1149 	type = dn->dn_type;
1150 	if (dn->dn_free_txg ||
1151 	    ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) ||
1152 	    ((flag & DNODE_MUST_BE_FREE) &&
1153 	    (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) {
1154 		mutex_exit(&dn->dn_mtx);
1155 		zrl_remove(&dnh->dnh_zrlock);
1156 		dbuf_rele(db, FTAG);
1157 		return (type == DMU_OT_NONE ? ENOENT : EEXIST);
1158 	}
1159 	mutex_exit(&dn->dn_mtx);
1160 
1161 	if (refcount_add(&dn->dn_holds, tag) == 1)
1162 		dbuf_add_ref(db, dnh);
1163 	/* Now we can rely on the hold to prevent the dnode from moving. */
1164 	zrl_remove(&dnh->dnh_zrlock);
1165 
1166 	DNODE_VERIFY(dn);
1167 	ASSERT3P(dn->dn_dbuf, ==, db);
1168 	ASSERT3U(dn->dn_object, ==, object);
1169 	dbuf_rele(db, FTAG);
1170 
1171 	*dnp = dn;
1172 	return (0);
1173 }
1174 
1175 /*
1176  * Return held dnode if the object is allocated, NULL if not.
1177  */
1178 int
1179 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp)
1180 {
1181 	return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp));
1182 }
1183 
1184 /*
1185  * Can only add a reference if there is already at least one
1186  * reference on the dnode.  Returns FALSE if unable to add a
1187  * new reference.
1188  */
1189 boolean_t
1190 dnode_add_ref(dnode_t *dn, void *tag)
1191 {
1192 	mutex_enter(&dn->dn_mtx);
1193 	if (refcount_is_zero(&dn->dn_holds)) {
1194 		mutex_exit(&dn->dn_mtx);
1195 		return (FALSE);
1196 	}
1197 	VERIFY(1 < refcount_add(&dn->dn_holds, tag));
1198 	mutex_exit(&dn->dn_mtx);
1199 	return (TRUE);
1200 }
1201 
1202 void
1203 dnode_rele(dnode_t *dn, void *tag)
1204 {
1205 	uint64_t refs;
1206 	/* Get while the hold prevents the dnode from moving. */
1207 	dmu_buf_impl_t *db = dn->dn_dbuf;
1208 	dnode_handle_t *dnh = dn->dn_handle;
1209 
1210 	mutex_enter(&dn->dn_mtx);
1211 	refs = refcount_remove(&dn->dn_holds, tag);
1212 	mutex_exit(&dn->dn_mtx);
1213 
1214 	/*
1215 	 * It's unsafe to release the last hold on a dnode by dnode_rele() or
1216 	 * indirectly by dbuf_rele() while relying on the dnode handle to
1217 	 * prevent the dnode from moving, since releasing the last hold could
1218 	 * result in the dnode's parent dbuf evicting its dnode handles. For
1219 	 * that reason anyone calling dnode_rele() or dbuf_rele() without some
1220 	 * other direct or indirect hold on the dnode must first drop the dnode
1221 	 * handle.
1222 	 */
1223 	ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread);
1224 
1225 	/* NOTE: the DNODE_DNODE does not have a dn_dbuf */
1226 	if (refs == 0 && db != NULL) {
1227 		/*
1228 		 * Another thread could add a hold to the dnode handle in
1229 		 * dnode_hold_impl() while holding the parent dbuf. Since the
1230 		 * hold on the parent dbuf prevents the handle from being
1231 		 * destroyed, the hold on the handle is OK. We can't yet assert
1232 		 * that the handle has zero references, but that will be
1233 		 * asserted anyway when the handle gets destroyed.
1234 		 */
1235 		dbuf_rele(db, dnh);
1236 	}
1237 }
1238 
1239 void
1240 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx)
1241 {
1242 	objset_t *os = dn->dn_objset;
1243 	uint64_t txg = tx->tx_txg;
1244 
1245 	if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) {
1246 		dsl_dataset_dirty(os->os_dsl_dataset, tx);
1247 		return;
1248 	}
1249 
1250 	DNODE_VERIFY(dn);
1251 
1252 #ifdef ZFS_DEBUG
1253 	mutex_enter(&dn->dn_mtx);
1254 	ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg);
1255 	ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg);
1256 	mutex_exit(&dn->dn_mtx);
1257 #endif
1258 
1259 	/*
1260 	 * Determine old uid/gid when necessary
1261 	 */
1262 	dmu_objset_userquota_get_ids(dn, B_TRUE, tx);
1263 
1264 	mutex_enter(&os->os_lock);
1265 
1266 	/*
1267 	 * If we are already marked dirty, we're done.
1268 	 */
1269 	if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) {
1270 		mutex_exit(&os->os_lock);
1271 		return;
1272 	}
1273 
1274 	ASSERT(!refcount_is_zero(&dn->dn_holds) ||
1275 	    !avl_is_empty(&dn->dn_dbufs));
1276 	ASSERT(dn->dn_datablksz != 0);
1277 	ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]);
1278 	ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]);
1279 	ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]);
1280 
1281 	dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n",
1282 	    dn->dn_object, txg);
1283 
1284 	if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) {
1285 		list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn);
1286 	} else {
1287 		list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn);
1288 	}
1289 
1290 	mutex_exit(&os->os_lock);
1291 
1292 	/*
1293 	 * The dnode maintains a hold on its containing dbuf as
1294 	 * long as there are holds on it.  Each instantiated child
1295 	 * dbuf maintains a hold on the dnode.  When the last child
1296 	 * drops its hold, the dnode will drop its hold on the
1297 	 * containing dbuf. We add a "dirty hold" here so that the
1298 	 * dnode will hang around after we finish processing its
1299 	 * children.
1300 	 */
1301 	VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg));
1302 
1303 	(void) dbuf_dirty(dn->dn_dbuf, tx);
1304 
1305 	dsl_dataset_dirty(os->os_dsl_dataset, tx);
1306 }
1307 
1308 void
1309 dnode_free(dnode_t *dn, dmu_tx_t *tx)
1310 {
1311 	int txgoff = tx->tx_txg & TXG_MASK;
1312 
1313 	dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg);
1314 
1315 	/* we should be the only holder... hopefully */
1316 	/* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */
1317 
1318 	mutex_enter(&dn->dn_mtx);
1319 	if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) {
1320 		mutex_exit(&dn->dn_mtx);
1321 		return;
1322 	}
1323 	dn->dn_free_txg = tx->tx_txg;
1324 	mutex_exit(&dn->dn_mtx);
1325 
1326 	/*
1327 	 * If the dnode is already dirty, it needs to be moved from
1328 	 * the dirty list to the free list.
1329 	 */
1330 	mutex_enter(&dn->dn_objset->os_lock);
1331 	if (list_link_active(&dn->dn_dirty_link[txgoff])) {
1332 		list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn);
1333 		list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn);
1334 		mutex_exit(&dn->dn_objset->os_lock);
1335 	} else {
1336 		mutex_exit(&dn->dn_objset->os_lock);
1337 		dnode_setdirty(dn, tx);
1338 	}
1339 }
1340 
1341 /*
1342  * Try to change the block size for the indicated dnode.  This can only
1343  * succeed if there are no blocks allocated or dirty beyond first block
1344  */
1345 int
1346 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx)
1347 {
1348 	dmu_buf_impl_t *db;
1349 	int err;
1350 
1351 	ASSERT3U(size, <=, spa_maxblocksize(dmu_objset_spa(dn->dn_objset)));
1352 	if (size == 0)
1353 		size = SPA_MINBLOCKSIZE;
1354 	else
1355 		size = P2ROUNDUP(size, SPA_MINBLOCKSIZE);
1356 
1357 	if (ibs == dn->dn_indblkshift)
1358 		ibs = 0;
1359 
1360 	if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0)
1361 		return (0);
1362 
1363 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1364 
1365 	/* Check for any allocated blocks beyond the first */
1366 	if (dn->dn_maxblkid != 0)
1367 		goto fail;
1368 
1369 	mutex_enter(&dn->dn_dbufs_mtx);
1370 	for (db = avl_first(&dn->dn_dbufs); db != NULL;
1371 	    db = AVL_NEXT(&dn->dn_dbufs, db)) {
1372 		if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID &&
1373 		    db->db_blkid != DMU_SPILL_BLKID) {
1374 			mutex_exit(&dn->dn_dbufs_mtx);
1375 			goto fail;
1376 		}
1377 	}
1378 	mutex_exit(&dn->dn_dbufs_mtx);
1379 
1380 	if (ibs && dn->dn_nlevels != 1)
1381 		goto fail;
1382 
1383 	/* resize the old block */
1384 	err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db);
1385 	if (err == 0)
1386 		dbuf_new_size(db, size, tx);
1387 	else if (err != ENOENT)
1388 		goto fail;
1389 
1390 	dnode_setdblksz(dn, size);
1391 	dnode_setdirty(dn, tx);
1392 	dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size;
1393 	if (ibs) {
1394 		dn->dn_indblkshift = ibs;
1395 		dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs;
1396 	}
1397 	/* rele after we have fixed the blocksize in the dnode */
1398 	if (db)
1399 		dbuf_rele(db, FTAG);
1400 
1401 	rw_exit(&dn->dn_struct_rwlock);
1402 	return (0);
1403 
1404 fail:
1405 	rw_exit(&dn->dn_struct_rwlock);
1406 	return (SET_ERROR(ENOTSUP));
1407 }
1408 
1409 /* read-holding callers must not rely on the lock being continuously held */
1410 void
1411 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read)
1412 {
1413 	uint64_t txgoff = tx->tx_txg & TXG_MASK;
1414 	int epbs, new_nlevels;
1415 	uint64_t sz;
1416 
1417 	ASSERT(blkid != DMU_BONUS_BLKID);
1418 
1419 	ASSERT(have_read ?
1420 	    RW_READ_HELD(&dn->dn_struct_rwlock) :
1421 	    RW_WRITE_HELD(&dn->dn_struct_rwlock));
1422 
1423 	/*
1424 	 * if we have a read-lock, check to see if we need to do any work
1425 	 * before upgrading to a write-lock.
1426 	 */
1427 	if (have_read) {
1428 		if (blkid <= dn->dn_maxblkid)
1429 			return;
1430 
1431 		if (!rw_tryupgrade(&dn->dn_struct_rwlock)) {
1432 			rw_exit(&dn->dn_struct_rwlock);
1433 			rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1434 		}
1435 	}
1436 
1437 	if (blkid <= dn->dn_maxblkid)
1438 		goto out;
1439 
1440 	dn->dn_maxblkid = blkid;
1441 
1442 	/*
1443 	 * Compute the number of levels necessary to support the new maxblkid.
1444 	 */
1445 	new_nlevels = 1;
1446 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1447 	for (sz = dn->dn_nblkptr;
1448 	    sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs)
1449 		new_nlevels++;
1450 
1451 	if (new_nlevels > dn->dn_nlevels) {
1452 		int old_nlevels = dn->dn_nlevels;
1453 		dmu_buf_impl_t *db;
1454 		list_t *list;
1455 		dbuf_dirty_record_t *new, *dr, *dr_next;
1456 
1457 		dn->dn_nlevels = new_nlevels;
1458 
1459 		ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]);
1460 		dn->dn_next_nlevels[txgoff] = new_nlevels;
1461 
1462 		/* dirty the left indirects */
1463 		db = dbuf_hold_level(dn, old_nlevels, 0, FTAG);
1464 		ASSERT(db != NULL);
1465 		new = dbuf_dirty(db, tx);
1466 		dbuf_rele(db, FTAG);
1467 
1468 		/* transfer the dirty records to the new indirect */
1469 		mutex_enter(&dn->dn_mtx);
1470 		mutex_enter(&new->dt.di.dr_mtx);
1471 		list = &dn->dn_dirty_records[txgoff];
1472 		for (dr = list_head(list); dr; dr = dr_next) {
1473 			dr_next = list_next(&dn->dn_dirty_records[txgoff], dr);
1474 			if (dr->dr_dbuf->db_level != new_nlevels-1 &&
1475 			    dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
1476 			    dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
1477 				ASSERT(dr->dr_dbuf->db_level == old_nlevels-1);
1478 				list_remove(&dn->dn_dirty_records[txgoff], dr);
1479 				list_insert_tail(&new->dt.di.dr_children, dr);
1480 				dr->dr_parent = new;
1481 			}
1482 		}
1483 		mutex_exit(&new->dt.di.dr_mtx);
1484 		mutex_exit(&dn->dn_mtx);
1485 	}
1486 
1487 out:
1488 	if (have_read)
1489 		rw_downgrade(&dn->dn_struct_rwlock);
1490 }
1491 
1492 void
1493 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx)
1494 {
1495 	dmu_buf_impl_t *db;
1496 	uint64_t blkoff, blkid, nblks;
1497 	int blksz, blkshift, head, tail;
1498 	int trunc = FALSE;
1499 	int epbs;
1500 
1501 	rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1502 	blksz = dn->dn_datablksz;
1503 	blkshift = dn->dn_datablkshift;
1504 	epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
1505 
1506 	if (len == DMU_OBJECT_END) {
1507 		len = UINT64_MAX - off;
1508 		trunc = TRUE;
1509 	}
1510 
1511 	/*
1512 	 * First, block align the region to free:
1513 	 */
1514 	if (ISP2(blksz)) {
1515 		head = P2NPHASE(off, blksz);
1516 		blkoff = P2PHASE(off, blksz);
1517 		if ((off >> blkshift) > dn->dn_maxblkid)
1518 			goto out;
1519 	} else {
1520 		ASSERT(dn->dn_maxblkid == 0);
1521 		if (off == 0 && len >= blksz) {
1522 			/*
1523 			 * Freeing the whole block; fast-track this request.
1524 			 * Note that we won't dirty any indirect blocks,
1525 			 * which is fine because we will be freeing the entire
1526 			 * file and thus all indirect blocks will be freed
1527 			 * by free_children().
1528 			 */
1529 			blkid = 0;
1530 			nblks = 1;
1531 			goto done;
1532 		} else if (off >= blksz) {
1533 			/* Freeing past end-of-data */
1534 			goto out;
1535 		} else {
1536 			/* Freeing part of the block. */
1537 			head = blksz - off;
1538 			ASSERT3U(head, >, 0);
1539 		}
1540 		blkoff = off;
1541 	}
1542 	/* zero out any partial block data at the start of the range */
1543 	if (head) {
1544 		ASSERT3U(blkoff + head, ==, blksz);
1545 		if (len < head)
1546 			head = len;
1547 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE,
1548 		    FTAG, &db) == 0) {
1549 			caddr_t data;
1550 
1551 			/* don't dirty if it isn't on disk and isn't dirty */
1552 			if (db->db_last_dirty ||
1553 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1554 				rw_exit(&dn->dn_struct_rwlock);
1555 				dmu_buf_will_dirty(&db->db, tx);
1556 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1557 				data = db->db.db_data;
1558 				bzero(data + blkoff, head);
1559 			}
1560 			dbuf_rele(db, FTAG);
1561 		}
1562 		off += head;
1563 		len -= head;
1564 	}
1565 
1566 	/* If the range was less than one block, we're done */
1567 	if (len == 0)
1568 		goto out;
1569 
1570 	/* If the remaining range is past end of file, we're done */
1571 	if ((off >> blkshift) > dn->dn_maxblkid)
1572 		goto out;
1573 
1574 	ASSERT(ISP2(blksz));
1575 	if (trunc)
1576 		tail = 0;
1577 	else
1578 		tail = P2PHASE(len, blksz);
1579 
1580 	ASSERT0(P2PHASE(off, blksz));
1581 	/* zero out any partial block data at the end of the range */
1582 	if (tail) {
1583 		if (len < tail)
1584 			tail = len;
1585 		if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len),
1586 		    TRUE, FTAG, &db) == 0) {
1587 			/* don't dirty if not on disk and not dirty */
1588 			if (db->db_last_dirty ||
1589 			    (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) {
1590 				rw_exit(&dn->dn_struct_rwlock);
1591 				dmu_buf_will_dirty(&db->db, tx);
1592 				rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
1593 				bzero(db->db.db_data, tail);
1594 			}
1595 			dbuf_rele(db, FTAG);
1596 		}
1597 		len -= tail;
1598 	}
1599 
1600 	/* If the range did not include a full block, we are done */
1601 	if (len == 0)
1602 		goto out;
1603 
1604 	ASSERT(IS_P2ALIGNED(off, blksz));
1605 	ASSERT(trunc || IS_P2ALIGNED(len, blksz));
1606 	blkid = off >> blkshift;
1607 	nblks = len >> blkshift;
1608 	if (trunc)
1609 		nblks += 1;
1610 
1611 	/*
1612 	 * Dirty the first and last indirect blocks, as they (and/or their
1613 	 * parents) will need to be written out if they were only
1614 	 * partially freed.  Interior indirect blocks will be themselves freed,
1615 	 * by free_children(), so they need not be dirtied.  Note that these
1616 	 * interior blocks have already been prefetched by dmu_tx_hold_free().
1617 	 */
1618 	if (dn->dn_nlevels > 1) {
1619 		uint64_t first, last;
1620 
1621 		first = blkid >> epbs;
1622 		if (db = dbuf_hold_level(dn, 1, first, FTAG)) {
1623 			dmu_buf_will_dirty(&db->db, tx);
1624 			dbuf_rele(db, FTAG);
1625 		}
1626 		if (trunc)
1627 			last = dn->dn_maxblkid >> epbs;
1628 		else
1629 			last = (blkid + nblks - 1) >> epbs;
1630 		if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) {
1631 			dmu_buf_will_dirty(&db->db, tx);
1632 			dbuf_rele(db, FTAG);
1633 		}
1634 	}
1635 
1636 done:
1637 	/*
1638 	 * Add this range to the dnode range list.
1639 	 * We will finish up this free operation in the syncing phase.
1640 	 */
1641 	mutex_enter(&dn->dn_mtx);
1642 	int txgoff = tx->tx_txg & TXG_MASK;
1643 	if (dn->dn_free_ranges[txgoff] == NULL) {
1644 		dn->dn_free_ranges[txgoff] =
1645 		    range_tree_create(NULL, NULL, &dn->dn_mtx);
1646 	}
1647 	range_tree_clear(dn->dn_free_ranges[txgoff], blkid, nblks);
1648 	range_tree_add(dn->dn_free_ranges[txgoff], blkid, nblks);
1649 	dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n",
1650 	    blkid, nblks, tx->tx_txg);
1651 	mutex_exit(&dn->dn_mtx);
1652 
1653 	dbuf_free_range(dn, blkid, blkid + nblks - 1, tx);
1654 	dnode_setdirty(dn, tx);
1655 out:
1656 
1657 	rw_exit(&dn->dn_struct_rwlock);
1658 }
1659 
1660 static boolean_t
1661 dnode_spill_freed(dnode_t *dn)
1662 {
1663 	int i;
1664 
1665 	mutex_enter(&dn->dn_mtx);
1666 	for (i = 0; i < TXG_SIZE; i++) {
1667 		if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK)
1668 			break;
1669 	}
1670 	mutex_exit(&dn->dn_mtx);
1671 	return (i < TXG_SIZE);
1672 }
1673 
1674 /* return TRUE if this blkid was freed in a recent txg, or FALSE if it wasn't */
1675 uint64_t
1676 dnode_block_freed(dnode_t *dn, uint64_t blkid)
1677 {
1678 	void *dp = spa_get_dsl(dn->dn_objset->os_spa);
1679 	int i;
1680 
1681 	if (blkid == DMU_BONUS_BLKID)
1682 		return (FALSE);
1683 
1684 	/*
1685 	 * If we're in the process of opening the pool, dp will not be
1686 	 * set yet, but there shouldn't be anything dirty.
1687 	 */
1688 	if (dp == NULL)
1689 		return (FALSE);
1690 
1691 	if (dn->dn_free_txg)
1692 		return (TRUE);
1693 
1694 	if (blkid == DMU_SPILL_BLKID)
1695 		return (dnode_spill_freed(dn));
1696 
1697 	mutex_enter(&dn->dn_mtx);
1698 	for (i = 0; i < TXG_SIZE; i++) {
1699 		if (dn->dn_free_ranges[i] != NULL &&
1700 		    range_tree_contains(dn->dn_free_ranges[i], blkid, 1))
1701 			break;
1702 	}
1703 	mutex_exit(&dn->dn_mtx);
1704 	return (i < TXG_SIZE);
1705 }
1706 
1707 /* call from syncing context when we actually write/free space for this dnode */
1708 void
1709 dnode_diduse_space(dnode_t *dn, int64_t delta)
1710 {
1711 	uint64_t space;
1712 	dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n",
1713 	    dn, dn->dn_phys,
1714 	    (u_longlong_t)dn->dn_phys->dn_used,
1715 	    (longlong_t)delta);
1716 
1717 	mutex_enter(&dn->dn_mtx);
1718 	space = DN_USED_BYTES(dn->dn_phys);
1719 	if (delta > 0) {
1720 		ASSERT3U(space + delta, >=, space); /* no overflow */
1721 	} else {
1722 		ASSERT3U(space, >=, -delta); /* no underflow */
1723 	}
1724 	space += delta;
1725 	if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) {
1726 		ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0);
1727 		ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT));
1728 		dn->dn_phys->dn_used = space >> DEV_BSHIFT;
1729 	} else {
1730 		dn->dn_phys->dn_used = space;
1731 		dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES;
1732 	}
1733 	mutex_exit(&dn->dn_mtx);
1734 }
1735 
1736 /*
1737  * Call when we think we're going to write/free space in open context to track
1738  * the amount of memory in use by the currently open txg.
1739  */
1740 void
1741 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx)
1742 {
1743 	objset_t *os = dn->dn_objset;
1744 	dsl_dataset_t *ds = os->os_dsl_dataset;
1745 	int64_t aspace = spa_get_asize(os->os_spa, space);
1746 
1747 	if (ds != NULL) {
1748 		dsl_dir_willuse_space(ds->ds_dir, aspace, tx);
1749 		dsl_pool_dirty_space(dmu_tx_pool(tx), space, tx);
1750 	}
1751 
1752 	dmu_tx_willuse_space(tx, aspace);
1753 }
1754 
1755 /*
1756  * Scans a block at the indicated "level" looking for a hole or data,
1757  * depending on 'flags'.
1758  *
1759  * If level > 0, then we are scanning an indirect block looking at its
1760  * pointers.  If level == 0, then we are looking at a block of dnodes.
1761  *
1762  * If we don't find what we are looking for in the block, we return ESRCH.
1763  * Otherwise, return with *offset pointing to the beginning (if searching
1764  * forwards) or end (if searching backwards) of the range covered by the
1765  * block pointer we matched on (or dnode).
1766  *
1767  * The basic search algorithm used below by dnode_next_offset() is to
1768  * use this function to search up the block tree (widen the search) until
1769  * we find something (i.e., we don't return ESRCH) and then search back
1770  * down the tree (narrow the search) until we reach our original search
1771  * level.
1772  */
1773 static int
1774 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset,
1775 	int lvl, uint64_t blkfill, uint64_t txg)
1776 {
1777 	dmu_buf_impl_t *db = NULL;
1778 	void *data = NULL;
1779 	uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
1780 	uint64_t epb = 1ULL << epbs;
1781 	uint64_t minfill, maxfill;
1782 	boolean_t hole;
1783 	int i, inc, error, span;
1784 
1785 	dprintf("probing object %llu offset %llx level %d of %u\n",
1786 	    dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels);
1787 
1788 	hole = ((flags & DNODE_FIND_HOLE) != 0);
1789 	inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1;
1790 	ASSERT(txg == 0 || !hole);
1791 
1792 	if (lvl == dn->dn_phys->dn_nlevels) {
1793 		error = 0;
1794 		epb = dn->dn_phys->dn_nblkptr;
1795 		data = dn->dn_phys->dn_blkptr;
1796 	} else {
1797 		uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl);
1798 		error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db);
1799 		if (error) {
1800 			if (error != ENOENT)
1801 				return (error);
1802 			if (hole)
1803 				return (0);
1804 			/*
1805 			 * This can only happen when we are searching up
1806 			 * the block tree for data.  We don't really need to
1807 			 * adjust the offset, as we will just end up looking
1808 			 * at the pointer to this block in its parent, and its
1809 			 * going to be unallocated, so we will skip over it.
1810 			 */
1811 			return (SET_ERROR(ESRCH));
1812 		}
1813 		error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT);
1814 		if (error) {
1815 			dbuf_rele(db, FTAG);
1816 			return (error);
1817 		}
1818 		data = db->db.db_data;
1819 	}
1820 
1821 
1822 	if (db != NULL && txg != 0 && (db->db_blkptr == NULL ||
1823 	    db->db_blkptr->blk_birth <= txg ||
1824 	    BP_IS_HOLE(db->db_blkptr))) {
1825 		/*
1826 		 * This can only happen when we are searching up the tree
1827 		 * and these conditions mean that we need to keep climbing.
1828 		 */
1829 		error = SET_ERROR(ESRCH);
1830 	} else if (lvl == 0) {
1831 		dnode_phys_t *dnp = data;
1832 		span = DNODE_SHIFT;
1833 		ASSERT(dn->dn_type == DMU_OT_DNODE);
1834 
1835 		for (i = (*offset >> span) & (blkfill - 1);
1836 		    i >= 0 && i < blkfill; i += inc) {
1837 			if ((dnp[i].dn_type == DMU_OT_NONE) == hole)
1838 				break;
1839 			*offset += (1ULL << span) * inc;
1840 		}
1841 		if (i < 0 || i == blkfill)
1842 			error = SET_ERROR(ESRCH);
1843 	} else {
1844 		blkptr_t *bp = data;
1845 		uint64_t start = *offset;
1846 		span = (lvl - 1) * epbs + dn->dn_datablkshift;
1847 		minfill = 0;
1848 		maxfill = blkfill << ((lvl - 1) * epbs);
1849 
1850 		if (hole)
1851 			maxfill--;
1852 		else
1853 			minfill++;
1854 
1855 		*offset = *offset >> span;
1856 		for (i = BF64_GET(*offset, 0, epbs);
1857 		    i >= 0 && i < epb; i += inc) {
1858 			if (BP_GET_FILL(&bp[i]) >= minfill &&
1859 			    BP_GET_FILL(&bp[i]) <= maxfill &&
1860 			    (hole || bp[i].blk_birth > txg))
1861 				break;
1862 			if (inc > 0 || *offset > 0)
1863 				*offset += inc;
1864 		}
1865 		*offset = *offset << span;
1866 		if (inc < 0) {
1867 			/* traversing backwards; position offset at the end */
1868 			ASSERT3U(*offset, <=, start);
1869 			*offset = MIN(*offset + (1ULL << span) - 1, start);
1870 		} else if (*offset < start) {
1871 			*offset = start;
1872 		}
1873 		if (i < 0 || i >= epb)
1874 			error = SET_ERROR(ESRCH);
1875 	}
1876 
1877 	if (db)
1878 		dbuf_rele(db, FTAG);
1879 
1880 	return (error);
1881 }
1882 
1883 /*
1884  * Find the next hole, data, or sparse region at or after *offset.
1885  * The value 'blkfill' tells us how many items we expect to find
1886  * in an L0 data block; this value is 1 for normal objects,
1887  * DNODES_PER_BLOCK for the meta dnode, and some fraction of
1888  * DNODES_PER_BLOCK when searching for sparse regions thereof.
1889  *
1890  * Examples:
1891  *
1892  * dnode_next_offset(dn, flags, offset, 1, 1, 0);
1893  *	Finds the next/previous hole/data in a file.
1894  *	Used in dmu_offset_next().
1895  *
1896  * dnode_next_offset(mdn, flags, offset, 0, DNODES_PER_BLOCK, txg);
1897  *	Finds the next free/allocated dnode an objset's meta-dnode.
1898  *	Only finds objects that have new contents since txg (ie.
1899  *	bonus buffer changes and content removal are ignored).
1900  *	Used in dmu_object_next().
1901  *
1902  * dnode_next_offset(mdn, DNODE_FIND_HOLE, offset, 2, DNODES_PER_BLOCK >> 2, 0);
1903  *	Finds the next L2 meta-dnode bp that's at most 1/4 full.
1904  *	Used in dmu_object_alloc().
1905  */
1906 int
1907 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset,
1908     int minlvl, uint64_t blkfill, uint64_t txg)
1909 {
1910 	uint64_t initial_offset = *offset;
1911 	int lvl, maxlvl;
1912 	int error = 0;
1913 
1914 	if (!(flags & DNODE_FIND_HAVELOCK))
1915 		rw_enter(&dn->dn_struct_rwlock, RW_READER);
1916 
1917 	if (dn->dn_phys->dn_nlevels == 0) {
1918 		error = SET_ERROR(ESRCH);
1919 		goto out;
1920 	}
1921 
1922 	if (dn->dn_datablkshift == 0) {
1923 		if (*offset < dn->dn_datablksz) {
1924 			if (flags & DNODE_FIND_HOLE)
1925 				*offset = dn->dn_datablksz;
1926 		} else {
1927 			error = SET_ERROR(ESRCH);
1928 		}
1929 		goto out;
1930 	}
1931 
1932 	maxlvl = dn->dn_phys->dn_nlevels;
1933 
1934 	for (lvl = minlvl; lvl <= maxlvl; lvl++) {
1935 		error = dnode_next_offset_level(dn,
1936 		    flags, offset, lvl, blkfill, txg);
1937 		if (error != ESRCH)
1938 			break;
1939 	}
1940 
1941 	while (error == 0 && --lvl >= minlvl) {
1942 		error = dnode_next_offset_level(dn,
1943 		    flags, offset, lvl, blkfill, txg);
1944 	}
1945 
1946 	/*
1947 	 * There's always a "virtual hole" at the end of the object, even
1948 	 * if all BP's which physically exist are non-holes.
1949 	 */
1950 	if ((flags & DNODE_FIND_HOLE) && error == ESRCH && txg == 0 &&
1951 	    minlvl == 1 && blkfill == 1 && !(flags & DNODE_FIND_BACKWARDS)) {
1952 		error = 0;
1953 	}
1954 
1955 	if (error == 0 && (flags & DNODE_FIND_BACKWARDS ?
1956 	    initial_offset < *offset : initial_offset > *offset))
1957 		error = SET_ERROR(ESRCH);
1958 out:
1959 	if (!(flags & DNODE_FIND_HAVELOCK))
1960 		rw_exit(&dn->dn_struct_rwlock);
1961 
1962 	return (error);
1963 }
1964