1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License, Version 1.0 only 6 * (the "License"). You may not use this file except in compliance 7 * with the License. 8 * 9 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 10 * or http://www.opensolaris.org/os/licensing. 11 * See the License for the specific language governing permissions 12 * and limitations under the License. 13 * 14 * When distributing Covered Code, include this CDDL HEADER in each 15 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 16 * If applicable, add the following below this CDDL HEADER, with the 17 * fields enclosed by brackets "[]" replaced with your own identifying 18 * information: Portions Copyright [yyyy] [name of copyright owner] 19 * 20 * CDDL HEADER END 21 */ 22 /* 23 * Copyright 2005 Sun Microsystems, Inc. All rights reserved. 24 * Use is subject to license terms. 25 */ 26 27 #pragma ident "%Z%%M% %I% %E% SMI" 28 29 #include <sys/zfs_context.h> 30 #include <sys/dnode.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_zfetch.h> 33 #include <sys/dmu.h> 34 #include <sys/dbuf.h> 35 36 /* 37 * I'm against tune-ables, but these should probably exist as tweakable globals 38 * until we can get this working the way we want it to. 39 */ 40 41 /* max # of streams per zfetch */ 42 uint32_t zfetch_max_streams = 8; 43 /* min time before stream reclaim */ 44 uint32_t zfetch_min_sec_reap = 2; 45 /* max number of blocks to fetch at a time */ 46 uint32_t zfetch_block_cap = 32; 47 /* number of bytes in a array_read at which we stop prefetching (1Mb) */ 48 uint64_t zfetch_array_rd_sz = 1024 * 1024; 49 50 /* forward decls for static routines */ 51 static int dmu_zfetch_colinear(zfetch_t *, zstream_t *); 52 static void dmu_zfetch_dofetch(zfetch_t *, zstream_t *); 53 static uint64_t dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t); 54 static uint64_t dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t); 55 static int dmu_zfetch_find(zfetch_t *, zstream_t *); 56 static int dmu_zfetch_stream_insert(zfetch_t *, zstream_t *); 57 static zstream_t *dmu_zfetch_stream_reclaim(zfetch_t *); 58 static void dmu_zfetch_stream_remove(zfetch_t *, zstream_t *); 59 static void dmu_zfetch_stream_update(zfetch_t *, zstream_t *); 60 static int dmu_zfetch_streams_equal(zstream_t *, zstream_t *); 61 62 63 /* 64 * Given a zfetch structure and a zstream structure, determine whether the 65 * blocks to be read are part of a co-linear to a pair of existing prefetch 66 * streams. If a set is found, coalesce the streams, removing one, and 67 * configure the prefetch so it looks for a strided access pattern. 68 * 69 * If no co-linear streams are found, return NULL. 70 */ 71 static int 72 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh) 73 { 74 zstream_t *z_walk; 75 zstream_t *z_comp; 76 77 rw_enter(&zf->zf_rwlock, RW_WRITER); 78 79 if (zh == NULL) { 80 rw_exit(&zf->zf_rwlock); 81 return (0); 82 } 83 84 for (z_walk = list_head(&zf->zf_stream); z_walk; 85 z_walk = list_next(&zf->zf_stream, z_walk)) { 86 for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp; 87 z_comp = list_next(&zf->zf_stream, z_comp)) { 88 int64_t diff; 89 90 if (z_walk->zst_len != z_walk->zst_stride || 91 z_comp->zst_len != z_comp->zst_stride) { 92 continue; 93 } 94 95 diff = z_comp->zst_offset - z_walk->zst_offset; 96 if (z_comp->zst_offset + diff == zh->zst_offset) { 97 z_walk->zst_offset = zh->zst_offset; 98 z_walk->zst_direction = diff < 0 ? -1 : 1; 99 z_walk->zst_stride = 100 diff * z_walk->zst_direction; 101 z_walk->zst_ph_offset = 102 zh->zst_offset + z_walk->zst_stride; 103 dmu_zfetch_stream_remove(zf, z_comp); 104 mutex_destroy(&z_comp->zst_lock); 105 kmem_free(z_comp, sizeof (zstream_t)); 106 107 dmu_zfetch_dofetch(zf, z_walk); 108 109 rw_exit(&zf->zf_rwlock); 110 return (1); 111 } 112 113 diff = z_walk->zst_offset - z_comp->zst_offset; 114 if (z_walk->zst_offset + diff == zh->zst_offset) { 115 z_walk->zst_offset = zh->zst_offset; 116 z_walk->zst_direction = diff < 0 ? -1 : 1; 117 z_walk->zst_stride = 118 diff * z_walk->zst_direction; 119 z_walk->zst_ph_offset = 120 zh->zst_offset + z_walk->zst_stride; 121 dmu_zfetch_stream_remove(zf, z_comp); 122 mutex_destroy(&z_comp->zst_lock); 123 kmem_free(z_comp, sizeof (zstream_t)); 124 125 dmu_zfetch_dofetch(zf, z_walk); 126 127 rw_exit(&zf->zf_rwlock); 128 return (1); 129 } 130 } 131 } 132 133 rw_exit(&zf->zf_rwlock); 134 return (0); 135 } 136 137 /* 138 * Given a zstream_t, determine the bounds of the prefetch. Then call the 139 * routine that actually prefetches the individual blocks. 140 */ 141 static void 142 dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs) 143 { 144 uint64_t prefetch_tail; 145 uint64_t prefetch_limit; 146 uint64_t prefetch_ofst; 147 uint64_t prefetch_len; 148 uint64_t blocks_fetched; 149 150 zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len); 151 zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap); 152 153 prefetch_tail = MAX((int64_t)zs->zst_ph_offset, 154 (int64_t)(zs->zst_offset + zs->zst_stride)); 155 /* 156 * XXX: use a faster division method? 157 */ 158 prefetch_limit = zs->zst_offset + zs->zst_len + 159 (zs->zst_cap * zs->zst_stride) / zs->zst_len; 160 161 while (prefetch_tail < prefetch_limit) { 162 prefetch_ofst = zs->zst_offset + zs->zst_direction * 163 (prefetch_tail - zs->zst_offset); 164 165 prefetch_len = zs->zst_len; 166 167 /* 168 * Don't prefetch beyond the end of the file, if working 169 * backwards. 170 */ 171 if ((zs->zst_direction == ZFETCH_BACKWARD) && 172 (prefetch_ofst > prefetch_tail)) { 173 prefetch_len += prefetch_ofst; 174 prefetch_ofst = 0; 175 } 176 177 /* don't prefetch more than we're supposed to */ 178 if (prefetch_len > zs->zst_len) 179 break; 180 181 blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode, 182 prefetch_ofst, zs->zst_len); 183 184 prefetch_tail += zs->zst_stride; 185 /* stop if we've run out of stuff to prefetch */ 186 if (blocks_fetched < zs->zst_len) 187 break; 188 } 189 zs->zst_ph_offset = prefetch_tail; 190 zs->zst_last = lbolt; 191 } 192 193 /* 194 * This takes a pointer to a zfetch structure and a dnode. It performs the 195 * necessary setup for the zfetch structure, grokking data from the 196 * associated dnode. 197 */ 198 void 199 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno) 200 { 201 if (zf == NULL) { 202 return; 203 } 204 205 zf->zf_dnode = dno; 206 zf->zf_stream_cnt = 0; 207 zf->zf_alloc_fail = 0; 208 209 list_create(&zf->zf_stream, sizeof (zstream_t), 210 offsetof(zstream_t, zst_node)); 211 212 rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL); 213 } 214 215 /* 216 * This function computes the actual size, in blocks, that can be prefetched, 217 * and fetches it. 218 */ 219 static uint64_t 220 dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks) 221 { 222 uint64_t fetchsz; 223 uint64_t i; 224 225 fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks); 226 227 for (i = 0; i < fetchsz; i++) { 228 dbuf_prefetch(dn, blkid + i); 229 } 230 231 return (fetchsz); 232 } 233 234 /* 235 * this function returns the number of blocks that would be prefetched, based 236 * upon the supplied dnode, blockid, and nblks. This is used so that we can 237 * update streams in place, and then prefetch with their old value after the 238 * fact. This way, we can delay the prefetch, but subsequent accesses to the 239 * stream won't result in the same data being prefetched multiple times. 240 */ 241 static uint64_t 242 dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks) 243 { 244 uint64_t fetchsz; 245 246 if (blkid > dn->dn_maxblkid) { 247 return (0); 248 } 249 250 /* compute fetch size */ 251 if (blkid + nblks > dn->dn_maxblkid) { 252 fetchsz = dn->dn_maxblkid - blkid; 253 ASSERT(blkid + fetchsz <= dn->dn_maxblkid); 254 } else { 255 fetchsz = nblks; 256 } 257 258 259 return (fetchsz); 260 } 261 262 /* 263 * given a zfetch and a zsearch structure, see if there is an associated zstream 264 * for this block read. If so, it starts a prefetch for the stream it 265 * located and returns true, otherwise it returns false 266 */ 267 static int 268 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh) 269 { 270 zstream_t *zs; 271 int64_t diff; 272 int rc = 0; 273 274 if (zh == NULL) 275 return (0); 276 277 /* 278 * XXX: This locking strategy is a bit coarse; however, it's impact has 279 * yet to be tested. If this turns out to be an issue, it can be 280 * modified in a number of different ways. 281 */ 282 283 rw_enter(&zf->zf_rwlock, RW_READER); 284 top: 285 286 for (zs = list_head(&zf->zf_stream); zs; 287 zs = list_next(&zf->zf_stream, zs)) { 288 289 290 if (zs->zst_len == 0) { 291 /* bogus stream */ 292 continue; 293 } 294 295 if (zh->zst_offset - zs->zst_offset < zs->zst_len) { 296 /* already fetched */ 297 rw_exit(&zf->zf_rwlock); 298 return (1); 299 } 300 301 if (zh->zst_offset == zs->zst_offset + zs->zst_len) { 302 /* forward sequential access */ 303 304 mutex_enter(&zs->zst_lock); 305 306 if (zh->zst_offset != zs->zst_offset + zs->zst_len) { 307 mutex_exit(&zs->zst_lock); 308 goto top; 309 } 310 311 zs->zst_len += zh->zst_len; 312 diff = zs->zst_len - zfetch_block_cap; 313 if (diff > 0) { 314 zs->zst_offset += diff; 315 zs->zst_len = zs->zst_len > diff ? 316 zs->zst_len - diff : 0; 317 } 318 zs->zst_direction = ZFETCH_FORWARD; 319 320 break; 321 322 } else if (zh->zst_offset == zs->zst_offset - zh->zst_len) { 323 /* backwards sequential access */ 324 325 mutex_enter(&zs->zst_lock); 326 327 if (zh->zst_offset != zs->zst_offset - zh->zst_len) { 328 mutex_exit(&zs->zst_lock); 329 goto top; 330 } 331 332 zs->zst_offset = zs->zst_offset > zh->zst_len ? 333 zs->zst_offset - zh->zst_len : 0; 334 zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ? 335 zs->zst_ph_offset - zh->zst_len : 0; 336 zs->zst_len += zh->zst_len; 337 338 diff = zs->zst_len - zfetch_block_cap; 339 if (diff > 0) { 340 zs->zst_ph_offset = zs->zst_ph_offset > diff ? 341 zs->zst_ph_offset - diff : 0; 342 zs->zst_len = zs->zst_len > diff ? 343 zs->zst_len - diff : zs->zst_len; 344 } 345 zs->zst_direction = ZFETCH_BACKWARD; 346 347 break; 348 349 } else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride < 350 zs->zst_len) && (zs->zst_len != zs->zst_stride)) { 351 /* strided forward access */ 352 353 mutex_enter(&zs->zst_lock); 354 355 if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >= 356 zs->zst_len) || (zs->zst_len == zs->zst_stride)) { 357 mutex_exit(&zs->zst_lock); 358 goto top; 359 } 360 361 zs->zst_offset += zs->zst_stride; 362 zs->zst_direction = ZFETCH_FORWARD; 363 364 break; 365 366 } else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride < 367 zs->zst_len) && (zs->zst_len != zs->zst_stride)) { 368 /* strided reverse access */ 369 370 mutex_enter(&zs->zst_lock); 371 372 if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >= 373 zs->zst_len) || (zs->zst_len == zs->zst_stride)) { 374 mutex_exit(&zs->zst_lock); 375 goto top; 376 } 377 378 zs->zst_offset = zs->zst_offset > zs->zst_stride ? 379 zs->zst_offset - zs->zst_stride : 0; 380 zs->zst_ph_offset = (zs->zst_ph_offset > 381 (2 * zs->zst_stride)) ? 382 (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0; 383 zs->zst_direction = ZFETCH_BACKWARD; 384 385 break; 386 } 387 } 388 389 if (zs) { 390 rc = 1; 391 dmu_zfetch_dofetch(zf, zs); 392 mutex_exit(&zs->zst_lock); 393 } 394 395 rw_exit(&zf->zf_rwlock); 396 return (rc); 397 } 398 399 /* 400 * Clean-up state associated with a zfetch structure. This frees allocated 401 * structure members, empties the zf_stream tree, and generally makes things 402 * nice. This doesn't free the zfetch_t itself, that's left to the caller. 403 */ 404 void 405 dmu_zfetch_rele(zfetch_t *zf) 406 { 407 zstream_t *zs; 408 zstream_t *zs_next; 409 410 ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock)); 411 412 for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) { 413 zs_next = list_next(&zf->zf_stream, zs); 414 415 list_remove(&zf->zf_stream, zs); 416 mutex_destroy(&zs->zst_lock); 417 kmem_free(zs, sizeof (zstream_t)); 418 } 419 list_destroy(&zf->zf_stream); 420 rw_destroy(&zf->zf_rwlock); 421 422 zf->zf_dnode = NULL; 423 } 424 425 /* 426 * Given a zfetch and zstream structure, insert the zstream structure into the 427 * AVL tree contained within the zfetch structure. Peform the appropriate 428 * book-keeping. It is possible that another thread has inserted a stream which 429 * matches one that we are about to insert, so we must be sure to check for this 430 * case. If one is found, return failure, and let the caller cleanup the 431 * duplicates. 432 */ 433 static int 434 dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs) 435 { 436 zstream_t *zs_walk; 437 zstream_t *zs_next; 438 439 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock)); 440 441 for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) { 442 zs_next = list_next(&zf->zf_stream, zs_walk); 443 444 if (dmu_zfetch_streams_equal(zs_walk, zs)) { 445 return (0); 446 } 447 } 448 449 list_insert_head(&zf->zf_stream, zs); 450 zf->zf_stream_cnt++; 451 452 return (1); 453 } 454 455 456 /* 457 * Walk the list of zstreams in the given zfetch, find an old one (by time), and 458 * reclaim it for use by the caller. 459 */ 460 static zstream_t * 461 dmu_zfetch_stream_reclaim(zfetch_t *zf) 462 { 463 zstream_t *zs; 464 465 rw_enter(&zf->zf_rwlock, RW_WRITER); 466 467 for (zs = list_head(&zf->zf_stream); zs; 468 zs = list_next(&zf->zf_stream, zs)) { 469 470 if (((lbolt - zs->zst_last) / hz) > zfetch_min_sec_reap) 471 break; 472 } 473 474 if (zs) { 475 dmu_zfetch_stream_remove(zf, zs); 476 mutex_destroy(&zs->zst_lock); 477 bzero(zs, sizeof (zstream_t)); 478 } else { 479 zf->zf_alloc_fail++; 480 } 481 rw_exit(&zf->zf_rwlock); 482 483 return (zs); 484 } 485 486 /* 487 * Given a zfetch and zstream structure, remove the zstream structure from its 488 * container in the zfetch structure. Perform the appropriate book-keeping. 489 */ 490 static void 491 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs) 492 { 493 ASSERT(RW_WRITE_HELD(&zf->zf_rwlock)); 494 495 list_remove(&zf->zf_stream, zs); 496 zf->zf_stream_cnt--; 497 } 498 499 static int 500 dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2) 501 { 502 if (zs1->zst_offset != zs2->zst_offset) 503 return (0); 504 505 if (zs1->zst_len != zs2->zst_len) 506 return (0); 507 508 if (zs1->zst_stride != zs2->zst_stride) 509 return (0); 510 511 if (zs1->zst_ph_offset != zs2->zst_ph_offset) 512 return (0); 513 514 if (zs1->zst_cap != zs2->zst_cap) 515 return (0); 516 517 if (zs1->zst_direction != zs2->zst_direction) 518 return (0); 519 520 return (1); 521 } 522 523 /* 524 * This is the prefetch entry point. It calls all of the other dmu_zfetch 525 * routines to create, delete, find, or operate upon prefetch streams. 526 */ 527 void 528 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size) 529 { 530 zstream_t zst; 531 zstream_t *newstream; 532 int fetched; 533 int inserted; 534 unsigned int blkshft; 535 uint64_t blksz; 536 537 /* files that aren't ln2 blocksz are only one block -- nothing to do */ 538 if (!zf->zf_dnode->dn_datablkshift) { 539 return; 540 } 541 542 /* convert offset and size, into blockid and nblocks */ 543 blkshft = zf->zf_dnode->dn_datablkshift; 544 blksz = (1 << blkshft); 545 546 bzero(&zst, sizeof (zstream_t)); 547 zst.zst_offset = offset >> blkshft; 548 zst.zst_len = (P2ROUNDUP(offset + size, blksz) - 549 P2ALIGN(offset, blksz)) >> blkshft; 550 551 fetched = dmu_zfetch_find(zf, &zst); 552 if (!fetched) { 553 fetched = dmu_zfetch_colinear(zf, &zst); 554 } 555 556 if (!fetched) { 557 newstream = dmu_zfetch_stream_reclaim(zf); 558 559 /* 560 * we still couldn't find a stream, drop the lock, and allocate 561 * one if possible. Otherwise, give up and go home. 562 */ 563 if (newstream == NULL) { 564 uint64_t maxblocks; 565 uint32_t max_streams; 566 uint32_t cur_streams; 567 568 cur_streams = zf->zf_stream_cnt; 569 maxblocks = zf->zf_dnode->dn_maxblkid; 570 571 max_streams = MIN(zfetch_max_streams, 572 (maxblocks / zfetch_block_cap)); 573 if (max_streams == 0) { 574 max_streams++; 575 } 576 577 if (cur_streams >= max_streams) { 578 return; 579 } 580 581 newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP); 582 } 583 584 newstream->zst_offset = zst.zst_offset; 585 newstream->zst_len = zst.zst_len; 586 newstream->zst_stride = zst.zst_len; 587 newstream->zst_ph_offset = zst.zst_len + zst.zst_offset; 588 newstream->zst_cap = zst.zst_len; 589 newstream->zst_direction = ZFETCH_FORWARD; 590 newstream->zst_last = lbolt; 591 592 mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL); 593 594 rw_enter(&zf->zf_rwlock, RW_WRITER); 595 inserted = dmu_zfetch_stream_insert(zf, newstream); 596 rw_exit(&zf->zf_rwlock); 597 598 if (!inserted) { 599 mutex_destroy(&newstream->zst_lock); 600 kmem_free(newstream, sizeof (zstream_t)); 601 } 602 } 603 } 604