xref: /titanic_52/usr/src/uts/common/fs/zfs/dmu_zfetch.c (revision 35b6f0471a5d938b98734483be3c5a258e319010)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright 2009 Sun Microsystems, Inc.  All rights reserved.
23  * Use is subject to license terms.
24  */
25 
26 /*
27  * Copyright (c) 2013 by Delphix. All rights reserved.
28  */
29 
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
34 #include <sys/dmu.h>
35 #include <sys/dbuf.h>
36 #include <sys/kstat.h>
37 
38 /*
39  * I'm against tune-ables, but these should probably exist as tweakable globals
40  * until we can get this working the way we want it to.
41  */
42 
43 int zfs_prefetch_disable = 0;
44 
45 /* max # of streams per zfetch */
46 uint32_t	zfetch_max_streams = 8;
47 /* min time before stream reclaim */
48 uint32_t	zfetch_min_sec_reap = 2;
49 /* max number of blocks to fetch at a time */
50 uint32_t	zfetch_block_cap = 256;
51 /* number of bytes in a array_read at which we stop prefetching (1Mb) */
52 uint64_t	zfetch_array_rd_sz = 1024 * 1024;
53 
54 /* forward decls for static routines */
55 static boolean_t	dmu_zfetch_colinear(zfetch_t *, zstream_t *);
56 static void		dmu_zfetch_dofetch(zfetch_t *, zstream_t *);
57 static uint64_t		dmu_zfetch_fetch(dnode_t *, uint64_t, uint64_t);
58 static uint64_t		dmu_zfetch_fetchsz(dnode_t *, uint64_t, uint64_t);
59 static boolean_t	dmu_zfetch_find(zfetch_t *, zstream_t *, int);
60 static int		dmu_zfetch_stream_insert(zfetch_t *, zstream_t *);
61 static zstream_t	*dmu_zfetch_stream_reclaim(zfetch_t *);
62 static void		dmu_zfetch_stream_remove(zfetch_t *, zstream_t *);
63 static int		dmu_zfetch_streams_equal(zstream_t *, zstream_t *);
64 
65 typedef struct zfetch_stats {
66 	kstat_named_t zfetchstat_hits;
67 	kstat_named_t zfetchstat_misses;
68 	kstat_named_t zfetchstat_colinear_hits;
69 	kstat_named_t zfetchstat_colinear_misses;
70 	kstat_named_t zfetchstat_stride_hits;
71 	kstat_named_t zfetchstat_stride_misses;
72 	kstat_named_t zfetchstat_reclaim_successes;
73 	kstat_named_t zfetchstat_reclaim_failures;
74 	kstat_named_t zfetchstat_stream_resets;
75 	kstat_named_t zfetchstat_stream_noresets;
76 	kstat_named_t zfetchstat_bogus_streams;
77 } zfetch_stats_t;
78 
79 static zfetch_stats_t zfetch_stats = {
80 	{ "hits",			KSTAT_DATA_UINT64 },
81 	{ "misses",			KSTAT_DATA_UINT64 },
82 	{ "colinear_hits",		KSTAT_DATA_UINT64 },
83 	{ "colinear_misses",		KSTAT_DATA_UINT64 },
84 	{ "stride_hits",		KSTAT_DATA_UINT64 },
85 	{ "stride_misses",		KSTAT_DATA_UINT64 },
86 	{ "reclaim_successes",		KSTAT_DATA_UINT64 },
87 	{ "reclaim_failures",		KSTAT_DATA_UINT64 },
88 	{ "streams_resets",		KSTAT_DATA_UINT64 },
89 	{ "streams_noresets",		KSTAT_DATA_UINT64 },
90 	{ "bogus_streams",		KSTAT_DATA_UINT64 },
91 };
92 
93 #define	ZFETCHSTAT_INCR(stat, val) \
94 	atomic_add_64(&zfetch_stats.stat.value.ui64, (val));
95 
96 #define	ZFETCHSTAT_BUMP(stat)		ZFETCHSTAT_INCR(stat, 1);
97 
98 kstat_t		*zfetch_ksp;
99 
100 /*
101  * Given a zfetch structure and a zstream structure, determine whether the
102  * blocks to be read are part of a co-linear pair of existing prefetch
103  * streams.  If a set is found, coalesce the streams, removing one, and
104  * configure the prefetch so it looks for a strided access pattern.
105  *
106  * In other words: if we find two sequential access streams that are
107  * the same length and distance N appart, and this read is N from the
108  * last stream, then we are probably in a strided access pattern.  So
109  * combine the two sequential streams into a single strided stream.
110  *
111  * Returns whether co-linear streams were found.
112  */
113 static boolean_t
114 dmu_zfetch_colinear(zfetch_t *zf, zstream_t *zh)
115 {
116 	zstream_t	*z_walk;
117 	zstream_t	*z_comp;
118 
119 	if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
120 		return (0);
121 
122 	if (zh == NULL) {
123 		rw_exit(&zf->zf_rwlock);
124 		return (0);
125 	}
126 
127 	for (z_walk = list_head(&zf->zf_stream); z_walk;
128 	    z_walk = list_next(&zf->zf_stream, z_walk)) {
129 		for (z_comp = list_next(&zf->zf_stream, z_walk); z_comp;
130 		    z_comp = list_next(&zf->zf_stream, z_comp)) {
131 			int64_t		diff;
132 
133 			if (z_walk->zst_len != z_walk->zst_stride ||
134 			    z_comp->zst_len != z_comp->zst_stride) {
135 				continue;
136 			}
137 
138 			diff = z_comp->zst_offset - z_walk->zst_offset;
139 			if (z_comp->zst_offset + diff == zh->zst_offset) {
140 				z_walk->zst_offset = zh->zst_offset;
141 				z_walk->zst_direction = diff < 0 ? -1 : 1;
142 				z_walk->zst_stride =
143 				    diff * z_walk->zst_direction;
144 				z_walk->zst_ph_offset =
145 				    zh->zst_offset + z_walk->zst_stride;
146 				dmu_zfetch_stream_remove(zf, z_comp);
147 				mutex_destroy(&z_comp->zst_lock);
148 				kmem_free(z_comp, sizeof (zstream_t));
149 
150 				dmu_zfetch_dofetch(zf, z_walk);
151 
152 				rw_exit(&zf->zf_rwlock);
153 				return (1);
154 			}
155 
156 			diff = z_walk->zst_offset - z_comp->zst_offset;
157 			if (z_walk->zst_offset + diff == zh->zst_offset) {
158 				z_walk->zst_offset = zh->zst_offset;
159 				z_walk->zst_direction = diff < 0 ? -1 : 1;
160 				z_walk->zst_stride =
161 				    diff * z_walk->zst_direction;
162 				z_walk->zst_ph_offset =
163 				    zh->zst_offset + z_walk->zst_stride;
164 				dmu_zfetch_stream_remove(zf, z_comp);
165 				mutex_destroy(&z_comp->zst_lock);
166 				kmem_free(z_comp, sizeof (zstream_t));
167 
168 				dmu_zfetch_dofetch(zf, z_walk);
169 
170 				rw_exit(&zf->zf_rwlock);
171 				return (1);
172 			}
173 		}
174 	}
175 
176 	rw_exit(&zf->zf_rwlock);
177 	return (0);
178 }
179 
180 /*
181  * Given a zstream_t, determine the bounds of the prefetch.  Then call the
182  * routine that actually prefetches the individual blocks.
183  */
184 static void
185 dmu_zfetch_dofetch(zfetch_t *zf, zstream_t *zs)
186 {
187 	uint64_t	prefetch_tail;
188 	uint64_t	prefetch_limit;
189 	uint64_t	prefetch_ofst;
190 	uint64_t	prefetch_len;
191 	uint64_t	blocks_fetched;
192 
193 	zs->zst_stride = MAX((int64_t)zs->zst_stride, zs->zst_len);
194 	zs->zst_cap = MIN(zfetch_block_cap, 2 * zs->zst_cap);
195 
196 	prefetch_tail = MAX((int64_t)zs->zst_ph_offset,
197 	    (int64_t)(zs->zst_offset + zs->zst_stride));
198 	/*
199 	 * XXX: use a faster division method?
200 	 */
201 	prefetch_limit = zs->zst_offset + zs->zst_len +
202 	    (zs->zst_cap * zs->zst_stride) / zs->zst_len;
203 
204 	while (prefetch_tail < prefetch_limit) {
205 		prefetch_ofst = zs->zst_offset + zs->zst_direction *
206 		    (prefetch_tail - zs->zst_offset);
207 
208 		prefetch_len = zs->zst_len;
209 
210 		/*
211 		 * Don't prefetch beyond the end of the file, if working
212 		 * backwards.
213 		 */
214 		if ((zs->zst_direction == ZFETCH_BACKWARD) &&
215 		    (prefetch_ofst > prefetch_tail)) {
216 			prefetch_len += prefetch_ofst;
217 			prefetch_ofst = 0;
218 		}
219 
220 		/* don't prefetch more than we're supposed to */
221 		if (prefetch_len > zs->zst_len)
222 			break;
223 
224 		blocks_fetched = dmu_zfetch_fetch(zf->zf_dnode,
225 		    prefetch_ofst, zs->zst_len);
226 
227 		prefetch_tail += zs->zst_stride;
228 		/* stop if we've run out of stuff to prefetch */
229 		if (blocks_fetched < zs->zst_len)
230 			break;
231 	}
232 	zs->zst_ph_offset = prefetch_tail;
233 	zs->zst_last = ddi_get_lbolt();
234 }
235 
236 void
237 zfetch_init(void)
238 {
239 
240 	zfetch_ksp = kstat_create("zfs", 0, "zfetchstats", "misc",
241 	    KSTAT_TYPE_NAMED, sizeof (zfetch_stats) / sizeof (kstat_named_t),
242 	    KSTAT_FLAG_VIRTUAL);
243 
244 	if (zfetch_ksp != NULL) {
245 		zfetch_ksp->ks_data = &zfetch_stats;
246 		kstat_install(zfetch_ksp);
247 	}
248 }
249 
250 void
251 zfetch_fini(void)
252 {
253 	if (zfetch_ksp != NULL) {
254 		kstat_delete(zfetch_ksp);
255 		zfetch_ksp = NULL;
256 	}
257 }
258 
259 /*
260  * This takes a pointer to a zfetch structure and a dnode.  It performs the
261  * necessary setup for the zfetch structure, grokking data from the
262  * associated dnode.
263  */
264 void
265 dmu_zfetch_init(zfetch_t *zf, dnode_t *dno)
266 {
267 	if (zf == NULL) {
268 		return;
269 	}
270 
271 	zf->zf_dnode = dno;
272 	zf->zf_stream_cnt = 0;
273 	zf->zf_alloc_fail = 0;
274 
275 	list_create(&zf->zf_stream, sizeof (zstream_t),
276 	    offsetof(zstream_t, zst_node));
277 
278 	rw_init(&zf->zf_rwlock, NULL, RW_DEFAULT, NULL);
279 }
280 
281 /*
282  * This function computes the actual size, in blocks, that can be prefetched,
283  * and fetches it.
284  */
285 static uint64_t
286 dmu_zfetch_fetch(dnode_t *dn, uint64_t blkid, uint64_t nblks)
287 {
288 	uint64_t	fetchsz;
289 	uint64_t	i;
290 
291 	fetchsz = dmu_zfetch_fetchsz(dn, blkid, nblks);
292 
293 	for (i = 0; i < fetchsz; i++) {
294 		dbuf_prefetch(dn, blkid + i, ZIO_PRIORITY_ASYNC_READ);
295 	}
296 
297 	return (fetchsz);
298 }
299 
300 /*
301  * this function returns the number of blocks that would be prefetched, based
302  * upon the supplied dnode, blockid, and nblks.  This is used so that we can
303  * update streams in place, and then prefetch with their old value after the
304  * fact.  This way, we can delay the prefetch, but subsequent accesses to the
305  * stream won't result in the same data being prefetched multiple times.
306  */
307 static uint64_t
308 dmu_zfetch_fetchsz(dnode_t *dn, uint64_t blkid, uint64_t nblks)
309 {
310 	uint64_t	fetchsz;
311 
312 	if (blkid > dn->dn_maxblkid) {
313 		return (0);
314 	}
315 
316 	/* compute fetch size */
317 	if (blkid + nblks + 1 > dn->dn_maxblkid) {
318 		fetchsz = (dn->dn_maxblkid - blkid) + 1;
319 		ASSERT(blkid + fetchsz - 1 <= dn->dn_maxblkid);
320 	} else {
321 		fetchsz = nblks;
322 	}
323 
324 
325 	return (fetchsz);
326 }
327 
328 /*
329  * given a zfetch and a zstream structure, see if there is an associated zstream
330  * for this block read.  If so, it starts a prefetch for the stream it
331  * located and returns true, otherwise it returns false
332  */
333 static boolean_t
334 dmu_zfetch_find(zfetch_t *zf, zstream_t *zh, int prefetched)
335 {
336 	zstream_t	*zs;
337 	int64_t		diff;
338 	int		reset = !prefetched;
339 	int		rc = 0;
340 
341 	if (zh == NULL)
342 		return (0);
343 
344 	/*
345 	 * XXX: This locking strategy is a bit coarse; however, it's impact has
346 	 * yet to be tested.  If this turns out to be an issue, it can be
347 	 * modified in a number of different ways.
348 	 */
349 
350 	rw_enter(&zf->zf_rwlock, RW_READER);
351 top:
352 
353 	for (zs = list_head(&zf->zf_stream); zs;
354 	    zs = list_next(&zf->zf_stream, zs)) {
355 
356 		/*
357 		 * XXX - should this be an assert?
358 		 */
359 		if (zs->zst_len == 0) {
360 			/* bogus stream */
361 			ZFETCHSTAT_BUMP(zfetchstat_bogus_streams);
362 			continue;
363 		}
364 
365 		/*
366 		 * We hit this case when we are in a strided prefetch stream:
367 		 * we will read "len" blocks before "striding".
368 		 */
369 		if (zh->zst_offset >= zs->zst_offset &&
370 		    zh->zst_offset < zs->zst_offset + zs->zst_len) {
371 			if (prefetched) {
372 				/* already fetched */
373 				ZFETCHSTAT_BUMP(zfetchstat_stride_hits);
374 				rc = 1;
375 				goto out;
376 			} else {
377 				ZFETCHSTAT_BUMP(zfetchstat_stride_misses);
378 			}
379 		}
380 
381 		/*
382 		 * This is the forward sequential read case: we increment
383 		 * len by one each time we hit here, so we will enter this
384 		 * case on every read.
385 		 */
386 		if (zh->zst_offset == zs->zst_offset + zs->zst_len) {
387 
388 			reset = !prefetched && zs->zst_len > 1;
389 
390 			mutex_enter(&zs->zst_lock);
391 
392 			if (zh->zst_offset != zs->zst_offset + zs->zst_len) {
393 				mutex_exit(&zs->zst_lock);
394 				goto top;
395 			}
396 			zs->zst_len += zh->zst_len;
397 			diff = zs->zst_len - zfetch_block_cap;
398 			if (diff > 0) {
399 				zs->zst_offset += diff;
400 				zs->zst_len = zs->zst_len > diff ?
401 				    zs->zst_len - diff : 0;
402 			}
403 			zs->zst_direction = ZFETCH_FORWARD;
404 
405 			break;
406 
407 		/*
408 		 * Same as above, but reading backwards through the file.
409 		 */
410 		} else if (zh->zst_offset == zs->zst_offset - zh->zst_len) {
411 			/* backwards sequential access */
412 
413 			reset = !prefetched && zs->zst_len > 1;
414 
415 			mutex_enter(&zs->zst_lock);
416 
417 			if (zh->zst_offset != zs->zst_offset - zh->zst_len) {
418 				mutex_exit(&zs->zst_lock);
419 				goto top;
420 			}
421 
422 			zs->zst_offset = zs->zst_offset > zh->zst_len ?
423 			    zs->zst_offset - zh->zst_len : 0;
424 			zs->zst_ph_offset = zs->zst_ph_offset > zh->zst_len ?
425 			    zs->zst_ph_offset - zh->zst_len : 0;
426 			zs->zst_len += zh->zst_len;
427 
428 			diff = zs->zst_len - zfetch_block_cap;
429 			if (diff > 0) {
430 				zs->zst_ph_offset = zs->zst_ph_offset > diff ?
431 				    zs->zst_ph_offset - diff : 0;
432 				zs->zst_len = zs->zst_len > diff ?
433 				    zs->zst_len - diff : zs->zst_len;
434 			}
435 			zs->zst_direction = ZFETCH_BACKWARD;
436 
437 			break;
438 
439 		} else if ((zh->zst_offset - zs->zst_offset - zs->zst_stride <
440 		    zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
441 			/* strided forward access */
442 
443 			mutex_enter(&zs->zst_lock);
444 
445 			if ((zh->zst_offset - zs->zst_offset - zs->zst_stride >=
446 			    zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
447 				mutex_exit(&zs->zst_lock);
448 				goto top;
449 			}
450 
451 			zs->zst_offset += zs->zst_stride;
452 			zs->zst_direction = ZFETCH_FORWARD;
453 
454 			break;
455 
456 		} else if ((zh->zst_offset - zs->zst_offset + zs->zst_stride <
457 		    zs->zst_len) && (zs->zst_len != zs->zst_stride)) {
458 			/* strided reverse access */
459 
460 			mutex_enter(&zs->zst_lock);
461 
462 			if ((zh->zst_offset - zs->zst_offset + zs->zst_stride >=
463 			    zs->zst_len) || (zs->zst_len == zs->zst_stride)) {
464 				mutex_exit(&zs->zst_lock);
465 				goto top;
466 			}
467 
468 			zs->zst_offset = zs->zst_offset > zs->zst_stride ?
469 			    zs->zst_offset - zs->zst_stride : 0;
470 			zs->zst_ph_offset = (zs->zst_ph_offset >
471 			    (2 * zs->zst_stride)) ?
472 			    (zs->zst_ph_offset - (2 * zs->zst_stride)) : 0;
473 			zs->zst_direction = ZFETCH_BACKWARD;
474 
475 			break;
476 		}
477 	}
478 
479 	if (zs) {
480 		if (reset) {
481 			zstream_t *remove = zs;
482 
483 			ZFETCHSTAT_BUMP(zfetchstat_stream_resets);
484 			rc = 0;
485 			mutex_exit(&zs->zst_lock);
486 			rw_exit(&zf->zf_rwlock);
487 			rw_enter(&zf->zf_rwlock, RW_WRITER);
488 			/*
489 			 * Relocate the stream, in case someone removes
490 			 * it while we were acquiring the WRITER lock.
491 			 */
492 			for (zs = list_head(&zf->zf_stream); zs;
493 			    zs = list_next(&zf->zf_stream, zs)) {
494 				if (zs == remove) {
495 					dmu_zfetch_stream_remove(zf, zs);
496 					mutex_destroy(&zs->zst_lock);
497 					kmem_free(zs, sizeof (zstream_t));
498 					break;
499 				}
500 			}
501 		} else {
502 			ZFETCHSTAT_BUMP(zfetchstat_stream_noresets);
503 			rc = 1;
504 			dmu_zfetch_dofetch(zf, zs);
505 			mutex_exit(&zs->zst_lock);
506 		}
507 	}
508 out:
509 	rw_exit(&zf->zf_rwlock);
510 	return (rc);
511 }
512 
513 /*
514  * Clean-up state associated with a zfetch structure.  This frees allocated
515  * structure members, empties the zf_stream tree, and generally makes things
516  * nice.  This doesn't free the zfetch_t itself, that's left to the caller.
517  */
518 void
519 dmu_zfetch_rele(zfetch_t *zf)
520 {
521 	zstream_t	*zs;
522 	zstream_t	*zs_next;
523 
524 	ASSERT(!RW_LOCK_HELD(&zf->zf_rwlock));
525 
526 	for (zs = list_head(&zf->zf_stream); zs; zs = zs_next) {
527 		zs_next = list_next(&zf->zf_stream, zs);
528 
529 		list_remove(&zf->zf_stream, zs);
530 		mutex_destroy(&zs->zst_lock);
531 		kmem_free(zs, sizeof (zstream_t));
532 	}
533 	list_destroy(&zf->zf_stream);
534 	rw_destroy(&zf->zf_rwlock);
535 
536 	zf->zf_dnode = NULL;
537 }
538 
539 /*
540  * Given a zfetch and zstream structure, insert the zstream structure into the
541  * AVL tree contained within the zfetch structure.  Peform the appropriate
542  * book-keeping.  It is possible that another thread has inserted a stream which
543  * matches one that we are about to insert, so we must be sure to check for this
544  * case.  If one is found, return failure, and let the caller cleanup the
545  * duplicates.
546  */
547 static int
548 dmu_zfetch_stream_insert(zfetch_t *zf, zstream_t *zs)
549 {
550 	zstream_t	*zs_walk;
551 	zstream_t	*zs_next;
552 
553 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
554 
555 	for (zs_walk = list_head(&zf->zf_stream); zs_walk; zs_walk = zs_next) {
556 		zs_next = list_next(&zf->zf_stream, zs_walk);
557 
558 		if (dmu_zfetch_streams_equal(zs_walk, zs)) {
559 			return (0);
560 		}
561 	}
562 
563 	list_insert_head(&zf->zf_stream, zs);
564 	zf->zf_stream_cnt++;
565 	return (1);
566 }
567 
568 
569 /*
570  * Walk the list of zstreams in the given zfetch, find an old one (by time), and
571  * reclaim it for use by the caller.
572  */
573 static zstream_t *
574 dmu_zfetch_stream_reclaim(zfetch_t *zf)
575 {
576 	zstream_t	*zs;
577 
578 	if (! rw_tryenter(&zf->zf_rwlock, RW_WRITER))
579 		return (0);
580 
581 	for (zs = list_head(&zf->zf_stream); zs;
582 	    zs = list_next(&zf->zf_stream, zs)) {
583 
584 		if (((ddi_get_lbolt() - zs->zst_last)/hz) > zfetch_min_sec_reap)
585 			break;
586 	}
587 
588 	if (zs) {
589 		dmu_zfetch_stream_remove(zf, zs);
590 		mutex_destroy(&zs->zst_lock);
591 		bzero(zs, sizeof (zstream_t));
592 	} else {
593 		zf->zf_alloc_fail++;
594 	}
595 	rw_exit(&zf->zf_rwlock);
596 
597 	return (zs);
598 }
599 
600 /*
601  * Given a zfetch and zstream structure, remove the zstream structure from its
602  * container in the zfetch structure.  Perform the appropriate book-keeping.
603  */
604 static void
605 dmu_zfetch_stream_remove(zfetch_t *zf, zstream_t *zs)
606 {
607 	ASSERT(RW_WRITE_HELD(&zf->zf_rwlock));
608 
609 	list_remove(&zf->zf_stream, zs);
610 	zf->zf_stream_cnt--;
611 }
612 
613 static int
614 dmu_zfetch_streams_equal(zstream_t *zs1, zstream_t *zs2)
615 {
616 	if (zs1->zst_offset != zs2->zst_offset)
617 		return (0);
618 
619 	if (zs1->zst_len != zs2->zst_len)
620 		return (0);
621 
622 	if (zs1->zst_stride != zs2->zst_stride)
623 		return (0);
624 
625 	if (zs1->zst_ph_offset != zs2->zst_ph_offset)
626 		return (0);
627 
628 	if (zs1->zst_cap != zs2->zst_cap)
629 		return (0);
630 
631 	if (zs1->zst_direction != zs2->zst_direction)
632 		return (0);
633 
634 	return (1);
635 }
636 
637 /*
638  * This is the prefetch entry point.  It calls all of the other dmu_zfetch
639  * routines to create, delete, find, or operate upon prefetch streams.
640  */
641 void
642 dmu_zfetch(zfetch_t *zf, uint64_t offset, uint64_t size, int prefetched)
643 {
644 	zstream_t	zst;
645 	zstream_t	*newstream;
646 	boolean_t	fetched;
647 	int		inserted;
648 	unsigned int	blkshft;
649 	uint64_t	blksz;
650 
651 	if (zfs_prefetch_disable)
652 		return;
653 
654 	/* files that aren't ln2 blocksz are only one block -- nothing to do */
655 	if (!zf->zf_dnode->dn_datablkshift)
656 		return;
657 
658 	/* convert offset and size, into blockid and nblocks */
659 	blkshft = zf->zf_dnode->dn_datablkshift;
660 	blksz = (1 << blkshft);
661 
662 	bzero(&zst, sizeof (zstream_t));
663 	zst.zst_offset = offset >> blkshft;
664 	zst.zst_len = (P2ROUNDUP(offset + size, blksz) -
665 	    P2ALIGN(offset, blksz)) >> blkshft;
666 
667 	fetched = dmu_zfetch_find(zf, &zst, prefetched);
668 	if (fetched) {
669 		ZFETCHSTAT_BUMP(zfetchstat_hits);
670 	} else {
671 		ZFETCHSTAT_BUMP(zfetchstat_misses);
672 		fetched = dmu_zfetch_colinear(zf, &zst);
673 		if (fetched) {
674 			ZFETCHSTAT_BUMP(zfetchstat_colinear_hits);
675 		} else {
676 			ZFETCHSTAT_BUMP(zfetchstat_colinear_misses);
677 		}
678 	}
679 
680 	if (!fetched) {
681 		newstream = dmu_zfetch_stream_reclaim(zf);
682 
683 		/*
684 		 * we still couldn't find a stream, drop the lock, and allocate
685 		 * one if possible.  Otherwise, give up and go home.
686 		 */
687 		if (newstream) {
688 			ZFETCHSTAT_BUMP(zfetchstat_reclaim_successes);
689 		} else {
690 			uint64_t	maxblocks;
691 			uint32_t	max_streams;
692 			uint32_t	cur_streams;
693 
694 			ZFETCHSTAT_BUMP(zfetchstat_reclaim_failures);
695 			cur_streams = zf->zf_stream_cnt;
696 			maxblocks = zf->zf_dnode->dn_maxblkid;
697 
698 			max_streams = MIN(zfetch_max_streams,
699 			    (maxblocks / zfetch_block_cap));
700 			if (max_streams == 0) {
701 				max_streams++;
702 			}
703 
704 			if (cur_streams >= max_streams) {
705 				return;
706 			}
707 			newstream = kmem_zalloc(sizeof (zstream_t), KM_SLEEP);
708 		}
709 
710 		newstream->zst_offset = zst.zst_offset;
711 		newstream->zst_len = zst.zst_len;
712 		newstream->zst_stride = zst.zst_len;
713 		newstream->zst_ph_offset = zst.zst_len + zst.zst_offset;
714 		newstream->zst_cap = zst.zst_len;
715 		newstream->zst_direction = ZFETCH_FORWARD;
716 		newstream->zst_last = ddi_get_lbolt();
717 
718 		mutex_init(&newstream->zst_lock, NULL, MUTEX_DEFAULT, NULL);
719 
720 		rw_enter(&zf->zf_rwlock, RW_WRITER);
721 		inserted = dmu_zfetch_stream_insert(zf, newstream);
722 		rw_exit(&zf->zf_rwlock);
723 
724 		if (!inserted) {
725 			mutex_destroy(&newstream->zst_lock);
726 			kmem_free(newstream, sizeof (zstream_t));
727 		}
728 	}
729 }
730