1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved. 23 * Use is subject to license terms. 24 */ 25 26 #pragma ident "%Z%%M% %I% %E% SMI" 27 28 #include <sys/dmu.h> 29 #include <sys/dmu_impl.h> 30 #include <sys/dbuf.h> 31 #include <sys/dmu_tx.h> 32 #include <sys/dmu_objset.h> 33 #include <sys/dsl_dataset.h> /* for dsl_dataset_block_freeable() */ 34 #include <sys/dsl_dir.h> /* for dsl_dir_tempreserve_*() */ 35 #include <sys/dsl_pool.h> 36 #include <sys/zap_impl.h> /* for fzap_default_block_shift */ 37 #include <sys/spa.h> 38 #include <sys/zfs_context.h> 39 40 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn, 41 uint64_t arg1, uint64_t arg2); 42 43 44 dmu_tx_t * 45 dmu_tx_create_dd(dsl_dir_t *dd) 46 { 47 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP); 48 tx->tx_dir = dd; 49 if (dd) 50 tx->tx_pool = dd->dd_pool; 51 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t), 52 offsetof(dmu_tx_hold_t, txh_node)); 53 #ifdef ZFS_DEBUG 54 refcount_create(&tx->tx_space_written); 55 refcount_create(&tx->tx_space_freed); 56 #endif 57 return (tx); 58 } 59 60 dmu_tx_t * 61 dmu_tx_create(objset_t *os) 62 { 63 dmu_tx_t *tx = dmu_tx_create_dd(os->os->os_dsl_dataset->ds_dir); 64 tx->tx_objset = os; 65 tx->tx_lastsnap_txg = dsl_dataset_prev_snap_txg(os->os->os_dsl_dataset); 66 return (tx); 67 } 68 69 dmu_tx_t * 70 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg) 71 { 72 dmu_tx_t *tx = dmu_tx_create_dd(NULL); 73 74 ASSERT3U(txg, <=, dp->dp_tx.tx_open_txg); 75 tx->tx_pool = dp; 76 tx->tx_txg = txg; 77 tx->tx_anyobj = TRUE; 78 79 return (tx); 80 } 81 82 int 83 dmu_tx_is_syncing(dmu_tx_t *tx) 84 { 85 return (tx->tx_anyobj); 86 } 87 88 int 89 dmu_tx_private_ok(dmu_tx_t *tx) 90 { 91 return (tx->tx_anyobj); 92 } 93 94 static dmu_tx_hold_t * 95 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object, 96 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2) 97 { 98 dmu_tx_hold_t *txh; 99 dnode_t *dn = NULL; 100 int err; 101 102 if (object != DMU_NEW_OBJECT) { 103 err = dnode_hold(os->os, object, tx, &dn); 104 if (err) { 105 tx->tx_err = err; 106 return (NULL); 107 } 108 109 if (err == 0 && tx->tx_txg != 0) { 110 mutex_enter(&dn->dn_mtx); 111 /* 112 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a 113 * problem, but there's no way for it to happen (for 114 * now, at least). 115 */ 116 ASSERT(dn->dn_assigned_txg == 0); 117 dn->dn_assigned_txg = tx->tx_txg; 118 (void) refcount_add(&dn->dn_tx_holds, tx); 119 mutex_exit(&dn->dn_mtx); 120 } 121 } 122 123 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP); 124 txh->txh_tx = tx; 125 txh->txh_dnode = dn; 126 #ifdef ZFS_DEBUG 127 txh->txh_type = type; 128 txh->txh_arg1 = arg1; 129 txh->txh_arg2 = arg2; 130 #endif 131 list_insert_tail(&tx->tx_holds, txh); 132 133 return (txh); 134 } 135 136 void 137 dmu_tx_add_new_object(dmu_tx_t *tx, objset_t *os, uint64_t object) 138 { 139 /* 140 * If we're syncing, they can manipulate any object anyhow, and 141 * the hold on the dnode_t can cause problems. 142 */ 143 if (!dmu_tx_is_syncing(tx)) { 144 (void) dmu_tx_hold_object_impl(tx, os, 145 object, THT_NEWOBJECT, 0, 0); 146 } 147 } 148 149 static int 150 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid) 151 { 152 int err; 153 dmu_buf_impl_t *db; 154 155 rw_enter(&dn->dn_struct_rwlock, RW_READER); 156 db = dbuf_hold_level(dn, level, blkid, FTAG); 157 rw_exit(&dn->dn_struct_rwlock); 158 if (db == NULL) 159 return (EIO); 160 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH); 161 dbuf_rele(db, FTAG); 162 return (err); 163 } 164 165 /* ARGSUSED */ 166 static void 167 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 168 { 169 dnode_t *dn = txh->txh_dnode; 170 uint64_t start, end, i; 171 int min_bs, max_bs, min_ibs, max_ibs, epbs, bits; 172 int err = 0; 173 174 if (len == 0) 175 return; 176 177 min_bs = SPA_MINBLOCKSHIFT; 178 max_bs = SPA_MAXBLOCKSHIFT; 179 min_ibs = DN_MIN_INDBLKSHIFT; 180 max_ibs = DN_MAX_INDBLKSHIFT; 181 182 183 /* 184 * For i/o error checking, read the first and last level-0 185 * blocks (if they are not aligned), and all the level-1 blocks. 186 */ 187 188 if (dn) { 189 if (dn->dn_maxblkid == 0) { 190 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 191 if (err) 192 goto out; 193 } else { 194 zio_t *zio = zio_root(dn->dn_objset->os_spa, 195 NULL, NULL, ZIO_FLAG_CANFAIL); 196 197 /* first level-0 block */ 198 start = off >> dn->dn_datablkshift; 199 if (P2PHASE(off, dn->dn_datablksz) || 200 len < dn->dn_datablksz) { 201 err = dmu_tx_check_ioerr(zio, dn, 0, start); 202 if (err) 203 goto out; 204 } 205 206 /* last level-0 block */ 207 end = (off+len-1) >> dn->dn_datablkshift; 208 if (end != start && 209 P2PHASE(off+len, dn->dn_datablksz)) { 210 err = dmu_tx_check_ioerr(zio, dn, 0, end); 211 if (err) 212 goto out; 213 } 214 215 /* level-1 blocks */ 216 if (dn->dn_nlevels > 1) { 217 start >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; 218 end >>= dn->dn_indblkshift - SPA_BLKPTRSHIFT; 219 for (i = start+1; i < end; i++) { 220 err = dmu_tx_check_ioerr(zio, dn, 1, i); 221 if (err) 222 goto out; 223 } 224 } 225 226 err = zio_wait(zio); 227 if (err) 228 goto out; 229 } 230 } 231 232 /* 233 * If there's more than one block, the blocksize can't change, 234 * so we can make a more precise estimate. Alternatively, 235 * if the dnode's ibs is larger than max_ibs, always use that. 236 * This ensures that if we reduce DN_MAX_INDBLKSHIFT, 237 * the code will still work correctly on existing pools. 238 */ 239 if (dn && (dn->dn_maxblkid != 0 || dn->dn_indblkshift > max_ibs)) { 240 min_ibs = max_ibs = dn->dn_indblkshift; 241 if (dn->dn_datablkshift != 0) 242 min_bs = max_bs = dn->dn_datablkshift; 243 } 244 245 /* 246 * 'end' is the last thing we will access, not one past. 247 * This way we won't overflow when accessing the last byte. 248 */ 249 start = P2ALIGN(off, 1ULL << max_bs); 250 end = P2ROUNDUP(off + len, 1ULL << max_bs) - 1; 251 txh->txh_space_towrite += end - start + 1; 252 253 start >>= min_bs; 254 end >>= min_bs; 255 256 epbs = min_ibs - SPA_BLKPTRSHIFT; 257 258 /* 259 * The object contains at most 2^(64 - min_bs) blocks, 260 * and each indirect level maps 2^epbs. 261 */ 262 for (bits = 64 - min_bs; bits >= 0; bits -= epbs) { 263 start >>= epbs; 264 end >>= epbs; 265 /* 266 * If we increase the number of levels of indirection, 267 * we'll need new blkid=0 indirect blocks. If start == 0, 268 * we're already accounting for that blocks; and if end == 0, 269 * we can't increase the number of levels beyond that. 270 */ 271 if (start != 0 && end != 0) 272 txh->txh_space_towrite += 1ULL << max_ibs; 273 txh->txh_space_towrite += (end - start + 1) << max_ibs; 274 } 275 276 ASSERT(txh->txh_space_towrite < 2 * DMU_MAX_ACCESS); 277 278 out: 279 if (err) 280 txh->txh_tx->tx_err = err; 281 } 282 283 static void 284 dmu_tx_count_dnode(dmu_tx_hold_t *txh) 285 { 286 dnode_t *dn = txh->txh_dnode; 287 dnode_t *mdn = txh->txh_tx->tx_objset->os->os_meta_dnode; 288 uint64_t space = mdn->dn_datablksz + 289 ((mdn->dn_nlevels-1) << mdn->dn_indblkshift); 290 291 if (dn && dn->dn_dbuf->db_blkptr && 292 dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 293 dn->dn_dbuf->db_blkptr->blk_birth)) { 294 txh->txh_space_tooverwrite += space; 295 } else { 296 txh->txh_space_towrite += space; 297 if (dn && dn->dn_dbuf->db_blkptr) 298 txh->txh_space_tounref += space; 299 } 300 } 301 302 void 303 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len) 304 { 305 dmu_tx_hold_t *txh; 306 307 ASSERT(tx->tx_txg == 0); 308 ASSERT(len < DMU_MAX_ACCESS); 309 ASSERT(len == 0 || UINT64_MAX - off >= len - 1); 310 311 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 312 object, THT_WRITE, off, len); 313 if (txh == NULL) 314 return; 315 316 dmu_tx_count_write(txh, off, len); 317 dmu_tx_count_dnode(txh); 318 } 319 320 static void 321 dmu_tx_count_free(dmu_tx_hold_t *txh, uint64_t off, uint64_t len) 322 { 323 uint64_t blkid, nblks, lastblk; 324 uint64_t space = 0, unref = 0, skipped = 0; 325 dnode_t *dn = txh->txh_dnode; 326 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 327 spa_t *spa = txh->txh_tx->tx_pool->dp_spa; 328 int epbs; 329 330 if (dn->dn_nlevels == 0) 331 return; 332 333 /* 334 * The struct_rwlock protects us against dn_nlevels 335 * changing, in case (against all odds) we manage to dirty & 336 * sync out the changes after we check for being dirty. 337 * Also, dbuf_hold_level() wants us to have the struct_rwlock. 338 */ 339 rw_enter(&dn->dn_struct_rwlock, RW_READER); 340 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 341 if (dn->dn_maxblkid == 0) { 342 if (off == 0 && len >= dn->dn_datablksz) { 343 blkid = 0; 344 nblks = 1; 345 } else { 346 rw_exit(&dn->dn_struct_rwlock); 347 return; 348 } 349 } else { 350 blkid = off >> dn->dn_datablkshift; 351 nblks = (len + dn->dn_datablksz - 1) >> dn->dn_datablkshift; 352 353 if (blkid >= dn->dn_maxblkid) { 354 rw_exit(&dn->dn_struct_rwlock); 355 return; 356 } 357 if (blkid + nblks > dn->dn_maxblkid) 358 nblks = dn->dn_maxblkid - blkid; 359 360 } 361 if (dn->dn_nlevels == 1) { 362 int i; 363 for (i = 0; i < nblks; i++) { 364 blkptr_t *bp = dn->dn_phys->dn_blkptr; 365 ASSERT3U(blkid + i, <, dn->dn_nblkptr); 366 bp += blkid + i; 367 if (dsl_dataset_block_freeable(ds, bp->blk_birth)) { 368 dprintf_bp(bp, "can free old%s", ""); 369 space += bp_get_dasize(spa, bp); 370 } 371 unref += BP_GET_ASIZE(bp); 372 } 373 nblks = 0; 374 } 375 376 /* 377 * Add in memory requirements of higher-level indirects 378 */ 379 if (nblks && dn->dn_nlevels > 2) { 380 uint64_t blkcnt = 1 + ((nblks >> epbs) >> epbs); 381 int level = 2; 382 383 while (level++ < dn->dn_nlevels) { 384 txh->txh_memory_tohold += blkcnt << dn->dn_indblkshift; 385 blkcnt = 1 + (blkcnt >> epbs); 386 } 387 ASSERT(blkcnt <= dn->dn_nblkptr); 388 } 389 390 lastblk = blkid + nblks - 1; 391 while (nblks) { 392 dmu_buf_impl_t *dbuf; 393 uint64_t ibyte, new_blkid; 394 int epb = 1 << epbs; 395 int err, i, blkoff, tochk; 396 blkptr_t *bp; 397 398 ibyte = blkid << dn->dn_datablkshift; 399 err = dnode_next_offset(dn, 400 DNODE_FIND_HAVELOCK, &ibyte, 2, 1, 0); 401 new_blkid = ibyte >> dn->dn_datablkshift; 402 if (err == ESRCH) 403 break; 404 if (err) { 405 txh->txh_tx->tx_err = err; 406 break; 407 } 408 if (new_blkid > lastblk) 409 break; 410 411 if (new_blkid > blkid) { 412 skipped += new_blkid - blkid - 1; 413 nblks -= new_blkid - blkid; 414 blkid = new_blkid; 415 } 416 blkoff = P2PHASE(blkid, epb); 417 tochk = MIN(epb - blkoff, nblks); 418 419 dbuf = dbuf_hold_level(dn, 1, blkid >> epbs, FTAG); 420 421 txh->txh_memory_tohold += dbuf->db.db_size; 422 if (txh->txh_memory_tohold > DMU_MAX_ACCESS) { 423 txh->txh_tx->tx_err = E2BIG; 424 dbuf_rele(dbuf, FTAG); 425 break; 426 } 427 err = dbuf_read(dbuf, NULL, DB_RF_HAVESTRUCT | DB_RF_CANFAIL); 428 if (err != 0) { 429 txh->txh_tx->tx_err = err; 430 dbuf_rele(dbuf, FTAG); 431 break; 432 } 433 434 bp = dbuf->db.db_data; 435 bp += blkoff; 436 437 for (i = 0; i < tochk; i++) { 438 if (dsl_dataset_block_freeable(ds, bp[i].blk_birth)) { 439 dprintf_bp(&bp[i], "can free old%s", ""); 440 space += bp_get_dasize(spa, &bp[i]); 441 } 442 unref += BP_GET_ASIZE(bp); 443 } 444 dbuf_rele(dbuf, FTAG); 445 446 blkid += tochk; 447 nblks -= tochk; 448 } 449 rw_exit(&dn->dn_struct_rwlock); 450 451 /* account for new level 1 indirect blocks that might show up */ 452 if (skipped) { 453 skipped = MIN(skipped, DMU_MAX_DELETEBLKCNT >> epbs); 454 txh->txh_memory_tohold += skipped << dn->dn_indblkshift; 455 } 456 txh->txh_space_tofree += space; 457 txh->txh_space_tounref += unref; 458 } 459 460 void 461 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len) 462 { 463 dmu_tx_hold_t *txh; 464 dnode_t *dn; 465 uint64_t start, end, i; 466 int err, shift; 467 zio_t *zio; 468 469 ASSERT(tx->tx_txg == 0); 470 471 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 472 object, THT_FREE, off, len); 473 if (txh == NULL) 474 return; 475 dn = txh->txh_dnode; 476 477 /* first block */ 478 if (off != 0) 479 dmu_tx_count_write(txh, off, 1); 480 /* last block */ 481 if (len != DMU_OBJECT_END) 482 dmu_tx_count_write(txh, off+len, 1); 483 484 if (off >= (dn->dn_maxblkid+1) * dn->dn_datablksz) 485 return; 486 if (len == DMU_OBJECT_END) 487 len = (dn->dn_maxblkid+1) * dn->dn_datablksz - off; 488 489 /* 490 * For i/o error checking, read the first and last level-0 491 * blocks, and all the level-1 blocks. The above count_write's 492 * have already taken care of the level-0 blocks. 493 */ 494 if (dn->dn_nlevels > 1) { 495 shift = dn->dn_datablkshift + dn->dn_indblkshift - 496 SPA_BLKPTRSHIFT; 497 start = off >> shift; 498 end = dn->dn_datablkshift ? ((off+len) >> shift) : 0; 499 500 zio = zio_root(tx->tx_pool->dp_spa, 501 NULL, NULL, ZIO_FLAG_CANFAIL); 502 for (i = start; i <= end; i++) { 503 uint64_t ibyte = i << shift; 504 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0); 505 i = ibyte >> shift; 506 if (err == ESRCH) 507 break; 508 if (err) { 509 tx->tx_err = err; 510 return; 511 } 512 513 err = dmu_tx_check_ioerr(zio, dn, 1, i); 514 if (err) { 515 tx->tx_err = err; 516 return; 517 } 518 } 519 err = zio_wait(zio); 520 if (err) { 521 tx->tx_err = err; 522 return; 523 } 524 } 525 526 dmu_tx_count_dnode(txh); 527 dmu_tx_count_free(txh, off, len); 528 } 529 530 void 531 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, char *name) 532 { 533 dmu_tx_hold_t *txh; 534 dnode_t *dn; 535 uint64_t nblocks; 536 int epbs, err; 537 538 ASSERT(tx->tx_txg == 0); 539 540 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 541 object, THT_ZAP, add, (uintptr_t)name); 542 if (txh == NULL) 543 return; 544 dn = txh->txh_dnode; 545 546 dmu_tx_count_dnode(txh); 547 548 if (dn == NULL) { 549 /* 550 * We will be able to fit a new object's entries into one leaf 551 * block. So there will be at most 2 blocks total, 552 * including the header block. 553 */ 554 dmu_tx_count_write(txh, 0, 2 << fzap_default_block_shift); 555 return; 556 } 557 558 ASSERT3P(dmu_ot[dn->dn_type].ot_byteswap, ==, zap_byteswap); 559 560 if (dn->dn_maxblkid == 0 && !add) { 561 /* 562 * If there is only one block (i.e. this is a micro-zap) 563 * and we are not adding anything, the accounting is simple. 564 */ 565 err = dmu_tx_check_ioerr(NULL, dn, 0, 0); 566 if (err) { 567 tx->tx_err = err; 568 return; 569 } 570 571 /* 572 * Use max block size here, since we don't know how much 573 * the size will change between now and the dbuf dirty call. 574 */ 575 if (dsl_dataset_block_freeable(dn->dn_objset->os_dsl_dataset, 576 dn->dn_phys->dn_blkptr[0].blk_birth)) { 577 txh->txh_space_tooverwrite += SPA_MAXBLOCKSIZE; 578 } else { 579 txh->txh_space_towrite += SPA_MAXBLOCKSIZE; 580 txh->txh_space_tounref += 581 BP_GET_ASIZE(dn->dn_phys->dn_blkptr); 582 } 583 return; 584 } 585 586 if (dn->dn_maxblkid > 0 && name) { 587 /* 588 * access the name in this fat-zap so that we'll check 589 * for i/o errors to the leaf blocks, etc. 590 */ 591 err = zap_lookup(&dn->dn_objset->os, dn->dn_object, name, 592 8, 0, NULL); 593 if (err == EIO) { 594 tx->tx_err = err; 595 return; 596 } 597 } 598 599 /* 600 * 3 blocks overwritten: target leaf, ptrtbl block, header block 601 * 3 new blocks written if adding: new split leaf, 2 grown ptrtbl blocks 602 */ 603 dmu_tx_count_write(txh, dn->dn_maxblkid * dn->dn_datablksz, 604 (3 + add ? 3 : 0) << dn->dn_datablkshift); 605 606 /* 607 * If the modified blocks are scattered to the four winds, 608 * we'll have to modify an indirect twig for each. 609 */ 610 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 611 for (nblocks = dn->dn_maxblkid >> epbs; nblocks != 0; nblocks >>= epbs) 612 txh->txh_space_towrite += 3 << dn->dn_indblkshift; 613 } 614 615 void 616 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object) 617 { 618 dmu_tx_hold_t *txh; 619 620 ASSERT(tx->tx_txg == 0); 621 622 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 623 object, THT_BONUS, 0, 0); 624 if (txh) 625 dmu_tx_count_dnode(txh); 626 } 627 628 void 629 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space) 630 { 631 dmu_tx_hold_t *txh; 632 ASSERT(tx->tx_txg == 0); 633 634 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, 635 DMU_NEW_OBJECT, THT_SPACE, space, 0); 636 637 txh->txh_space_towrite += space; 638 } 639 640 int 641 dmu_tx_holds(dmu_tx_t *tx, uint64_t object) 642 { 643 dmu_tx_hold_t *txh; 644 int holds = 0; 645 646 /* 647 * By asserting that the tx is assigned, we're counting the 648 * number of dn_tx_holds, which is the same as the number of 649 * dn_holds. Otherwise, we'd be counting dn_holds, but 650 * dn_tx_holds could be 0. 651 */ 652 ASSERT(tx->tx_txg != 0); 653 654 /* if (tx->tx_anyobj == TRUE) */ 655 /* return (0); */ 656 657 for (txh = list_head(&tx->tx_holds); txh; 658 txh = list_next(&tx->tx_holds, txh)) { 659 if (txh->txh_dnode && txh->txh_dnode->dn_object == object) 660 holds++; 661 } 662 663 return (holds); 664 } 665 666 #ifdef ZFS_DEBUG 667 void 668 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db) 669 { 670 dmu_tx_hold_t *txh; 671 int match_object = FALSE, match_offset = FALSE; 672 dnode_t *dn = db->db_dnode; 673 674 ASSERT(tx->tx_txg != 0); 675 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset->os); 676 ASSERT3U(dn->dn_object, ==, db->db.db_object); 677 678 if (tx->tx_anyobj) 679 return; 680 681 /* XXX No checking on the meta dnode for now */ 682 if (db->db.db_object == DMU_META_DNODE_OBJECT) 683 return; 684 685 for (txh = list_head(&tx->tx_holds); txh; 686 txh = list_next(&tx->tx_holds, txh)) { 687 ASSERT(dn == NULL || dn->dn_assigned_txg == tx->tx_txg); 688 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT) 689 match_object = TRUE; 690 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) { 691 int datablkshift = dn->dn_datablkshift ? 692 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT; 693 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 694 int shift = datablkshift + epbs * db->db_level; 695 uint64_t beginblk = shift >= 64 ? 0 : 696 (txh->txh_arg1 >> shift); 697 uint64_t endblk = shift >= 64 ? 0 : 698 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift); 699 uint64_t blkid = db->db_blkid; 700 701 /* XXX txh_arg2 better not be zero... */ 702 703 dprintf("found txh type %x beginblk=%llx endblk=%llx\n", 704 txh->txh_type, beginblk, endblk); 705 706 switch (txh->txh_type) { 707 case THT_WRITE: 708 if (blkid >= beginblk && blkid <= endblk) 709 match_offset = TRUE; 710 /* 711 * We will let this hold work for the bonus 712 * buffer so that we don't need to hold it 713 * when creating a new object. 714 */ 715 if (blkid == DB_BONUS_BLKID) 716 match_offset = TRUE; 717 /* 718 * They might have to increase nlevels, 719 * thus dirtying the new TLIBs. Or the 720 * might have to change the block size, 721 * thus dirying the new lvl=0 blk=0. 722 */ 723 if (blkid == 0) 724 match_offset = TRUE; 725 break; 726 case THT_FREE: 727 /* 728 * We will dirty all the level 1 blocks in 729 * the free range and perhaps the first and 730 * last level 0 block. 731 */ 732 if (blkid >= beginblk && (blkid <= endblk || 733 txh->txh_arg2 == DMU_OBJECT_END)) 734 match_offset = TRUE; 735 break; 736 case THT_BONUS: 737 if (blkid == DB_BONUS_BLKID) 738 match_offset = TRUE; 739 break; 740 case THT_ZAP: 741 match_offset = TRUE; 742 break; 743 case THT_NEWOBJECT: 744 match_object = TRUE; 745 break; 746 default: 747 ASSERT(!"bad txh_type"); 748 } 749 } 750 if (match_object && match_offset) 751 return; 752 } 753 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n", 754 (u_longlong_t)db->db.db_object, db->db_level, 755 (u_longlong_t)db->db_blkid); 756 } 757 #endif 758 759 static int 760 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how) 761 { 762 dmu_tx_hold_t *txh; 763 spa_t *spa = tx->tx_pool->dp_spa; 764 uint64_t memory, asize, fsize, usize; 765 uint64_t towrite, tofree, tooverwrite, tounref, tohold; 766 767 ASSERT3U(tx->tx_txg, ==, 0); 768 769 if (tx->tx_err) 770 return (tx->tx_err); 771 772 if (spa_state(spa) == POOL_STATE_IO_FAILURE) { 773 /* 774 * If the user has indicated a blocking failure mode 775 * then return ERESTART which will block in dmu_tx_wait(). 776 * Otherwise, return EIO so that an error can get 777 * propagated back to the VOP calls. 778 * 779 * Note that we always honor the txg_how flag regardless 780 * of the failuremode setting. 781 */ 782 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE && 783 txg_how != TXG_WAIT) 784 return (EIO); 785 786 return (ERESTART); 787 } 788 789 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh); 790 tx->tx_needassign_txh = NULL; 791 792 /* 793 * NB: No error returns are allowed after txg_hold_open, but 794 * before processing the dnode holds, due to the 795 * dmu_tx_unassign() logic. 796 */ 797 798 towrite = tofree = tooverwrite = tounref = tohold = 0; 799 for (txh = list_head(&tx->tx_holds); txh; 800 txh = list_next(&tx->tx_holds, txh)) { 801 dnode_t *dn = txh->txh_dnode; 802 if (dn != NULL) { 803 mutex_enter(&dn->dn_mtx); 804 if (dn->dn_assigned_txg == tx->tx_txg - 1) { 805 mutex_exit(&dn->dn_mtx); 806 tx->tx_needassign_txh = txh; 807 return (ERESTART); 808 } 809 if (dn->dn_assigned_txg == 0) 810 dn->dn_assigned_txg = tx->tx_txg; 811 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 812 (void) refcount_add(&dn->dn_tx_holds, tx); 813 mutex_exit(&dn->dn_mtx); 814 } 815 towrite += txh->txh_space_towrite; 816 tofree += txh->txh_space_tofree; 817 tooverwrite += txh->txh_space_tooverwrite; 818 tounref += txh->txh_space_tounref; 819 tohold += txh->txh_memory_tohold; 820 } 821 822 /* 823 * NB: This check must be after we've held the dnodes, so that 824 * the dmu_tx_unassign() logic will work properly 825 */ 826 if (txg_how >= TXG_INITIAL && txg_how != tx->tx_txg) 827 return (ERESTART); 828 829 /* 830 * If a snapshot has been taken since we made our estimates, 831 * assume that we won't be able to free or overwrite anything. 832 */ 833 if (tx->tx_objset && 834 dsl_dataset_prev_snap_txg(tx->tx_objset->os->os_dsl_dataset) > 835 tx->tx_lastsnap_txg) { 836 towrite += tooverwrite; 837 tooverwrite = tofree = 0; 838 } 839 840 /* needed allocation: worst-case estimate of write space */ 841 asize = spa_get_asize(tx->tx_pool->dp_spa, towrite + tooverwrite); 842 /* freed space estimate: worst-case overwrite + free estimate */ 843 fsize = spa_get_asize(tx->tx_pool->dp_spa, tooverwrite) + tofree; 844 /* convert unrefd space to worst-case estimate */ 845 usize = spa_get_asize(tx->tx_pool->dp_spa, tounref); 846 /* calculate memory footprint estimate */ 847 memory = towrite + tooverwrite + tohold; 848 849 #ifdef ZFS_DEBUG 850 /* add in 'tohold' to account for our dirty holds on this memory */ 851 tx->tx_space_towrite = asize + 852 spa_get_asize(tx->tx_pool->dp_spa, tohold); 853 tx->tx_space_tofree = tofree; 854 tx->tx_space_tooverwrite = tooverwrite; 855 tx->tx_space_tounref = tounref; 856 #endif 857 858 if (tx->tx_dir && asize != 0) { 859 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory, 860 asize, fsize, usize, &tx->tx_tempreserve_cookie, tx); 861 if (err) 862 return (err); 863 } 864 865 return (0); 866 } 867 868 static void 869 dmu_tx_unassign(dmu_tx_t *tx) 870 { 871 dmu_tx_hold_t *txh; 872 873 if (tx->tx_txg == 0) 874 return; 875 876 txg_rele_to_quiesce(&tx->tx_txgh); 877 878 for (txh = list_head(&tx->tx_holds); txh != tx->tx_needassign_txh; 879 txh = list_next(&tx->tx_holds, txh)) { 880 dnode_t *dn = txh->txh_dnode; 881 882 if (dn == NULL) 883 continue; 884 mutex_enter(&dn->dn_mtx); 885 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 886 887 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 888 dn->dn_assigned_txg = 0; 889 cv_broadcast(&dn->dn_notxholds); 890 } 891 mutex_exit(&dn->dn_mtx); 892 } 893 894 txg_rele_to_sync(&tx->tx_txgh); 895 896 tx->tx_lasttried_txg = tx->tx_txg; 897 tx->tx_txg = 0; 898 } 899 900 /* 901 * Assign tx to a transaction group. txg_how can be one of: 902 * 903 * (1) TXG_WAIT. If the current open txg is full, waits until there's 904 * a new one. This should be used when you're not holding locks. 905 * If will only fail if we're truly out of space (or over quota). 906 * 907 * (2) TXG_NOWAIT. If we can't assign into the current open txg without 908 * blocking, returns immediately with ERESTART. This should be used 909 * whenever you're holding locks. On an ERESTART error, the caller 910 * should drop locks, do a dmu_tx_wait(tx), and try again. 911 * 912 * (3) A specific txg. Use this if you need to ensure that multiple 913 * transactions all sync in the same txg. Like TXG_NOWAIT, it 914 * returns ERESTART if it can't assign you into the requested txg. 915 */ 916 int 917 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how) 918 { 919 int err; 920 921 ASSERT(tx->tx_txg == 0); 922 ASSERT(txg_how != 0); 923 ASSERT(!dsl_pool_sync_context(tx->tx_pool)); 924 925 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) { 926 dmu_tx_unassign(tx); 927 928 if (err != ERESTART || txg_how != TXG_WAIT) 929 return (err); 930 931 dmu_tx_wait(tx); 932 } 933 934 txg_rele_to_quiesce(&tx->tx_txgh); 935 936 return (0); 937 } 938 939 void 940 dmu_tx_wait(dmu_tx_t *tx) 941 { 942 spa_t *spa = tx->tx_pool->dp_spa; 943 944 ASSERT(tx->tx_txg == 0); 945 946 /* 947 * It's possible that the pool has become active after this thread 948 * has tried to obtain a tx. If that's the case then his 949 * tx_lasttried_txg would not have been assigned. 950 */ 951 if (spa_state(spa) == POOL_STATE_IO_FAILURE || 952 tx->tx_lasttried_txg == 0) { 953 txg_wait_synced(tx->tx_pool, spa_last_synced_txg(spa) + 1); 954 } else if (tx->tx_needassign_txh) { 955 dnode_t *dn = tx->tx_needassign_txh->txh_dnode; 956 957 mutex_enter(&dn->dn_mtx); 958 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1) 959 cv_wait(&dn->dn_notxholds, &dn->dn_mtx); 960 mutex_exit(&dn->dn_mtx); 961 tx->tx_needassign_txh = NULL; 962 } else { 963 txg_wait_open(tx->tx_pool, tx->tx_lasttried_txg + 1); 964 } 965 } 966 967 void 968 dmu_tx_willuse_space(dmu_tx_t *tx, int64_t delta) 969 { 970 #ifdef ZFS_DEBUG 971 if (tx->tx_dir == NULL || delta == 0) 972 return; 973 974 if (delta > 0) { 975 ASSERT3U(refcount_count(&tx->tx_space_written) + delta, <=, 976 tx->tx_space_towrite); 977 (void) refcount_add_many(&tx->tx_space_written, delta, NULL); 978 } else { 979 (void) refcount_add_many(&tx->tx_space_freed, -delta, NULL); 980 } 981 #endif 982 } 983 984 void 985 dmu_tx_commit(dmu_tx_t *tx) 986 { 987 dmu_tx_hold_t *txh; 988 989 ASSERT(tx->tx_txg != 0); 990 991 while (txh = list_head(&tx->tx_holds)) { 992 dnode_t *dn = txh->txh_dnode; 993 994 list_remove(&tx->tx_holds, txh); 995 kmem_free(txh, sizeof (dmu_tx_hold_t)); 996 if (dn == NULL) 997 continue; 998 mutex_enter(&dn->dn_mtx); 999 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg); 1000 1001 if (refcount_remove(&dn->dn_tx_holds, tx) == 0) { 1002 dn->dn_assigned_txg = 0; 1003 cv_broadcast(&dn->dn_notxholds); 1004 } 1005 mutex_exit(&dn->dn_mtx); 1006 dnode_rele(dn, tx); 1007 } 1008 1009 if (tx->tx_tempreserve_cookie) 1010 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx); 1011 1012 if (tx->tx_anyobj == FALSE) 1013 txg_rele_to_sync(&tx->tx_txgh); 1014 list_destroy(&tx->tx_holds); 1015 #ifdef ZFS_DEBUG 1016 dprintf("towrite=%llu written=%llu tofree=%llu freed=%llu\n", 1017 tx->tx_space_towrite, refcount_count(&tx->tx_space_written), 1018 tx->tx_space_tofree, refcount_count(&tx->tx_space_freed)); 1019 refcount_destroy_many(&tx->tx_space_written, 1020 refcount_count(&tx->tx_space_written)); 1021 refcount_destroy_many(&tx->tx_space_freed, 1022 refcount_count(&tx->tx_space_freed)); 1023 #endif 1024 kmem_free(tx, sizeof (dmu_tx_t)); 1025 } 1026 1027 void 1028 dmu_tx_abort(dmu_tx_t *tx) 1029 { 1030 dmu_tx_hold_t *txh; 1031 1032 ASSERT(tx->tx_txg == 0); 1033 1034 while (txh = list_head(&tx->tx_holds)) { 1035 dnode_t *dn = txh->txh_dnode; 1036 1037 list_remove(&tx->tx_holds, txh); 1038 kmem_free(txh, sizeof (dmu_tx_hold_t)); 1039 if (dn != NULL) 1040 dnode_rele(dn, tx); 1041 } 1042 list_destroy(&tx->tx_holds); 1043 #ifdef ZFS_DEBUG 1044 refcount_destroy_many(&tx->tx_space_written, 1045 refcount_count(&tx->tx_space_written)); 1046 refcount_destroy_many(&tx->tx_space_freed, 1047 refcount_count(&tx->tx_space_freed)); 1048 #endif 1049 kmem_free(tx, sizeof (dmu_tx_t)); 1050 } 1051 1052 uint64_t 1053 dmu_tx_get_txg(dmu_tx_t *tx) 1054 { 1055 ASSERT(tx->tx_txg != 0); 1056 return (tx->tx_txg); 1057 } 1058