xref: /titanic_52/usr/src/uts/common/fs/zfs/dmu_send.c (revision 880094b6062aebeec8eda6a8651757611c83b13e)
1 /*
2  * CDDL HEADER START
3  *
4  * The contents of this file are subject to the terms of the
5  * Common Development and Distribution License (the "License").
6  * You may not use this file except in compliance with the License.
7  *
8  * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9  * or http://www.opensolaris.org/os/licensing.
10  * See the License for the specific language governing permissions
11  * and limitations under the License.
12  *
13  * When distributing Covered Code, include this CDDL HEADER in each
14  * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15  * If applicable, add the following below this CDDL HEADER, with the
16  * fields enclosed by brackets "[]" replaced with your own identifying
17  * information: Portions Copyright [yyyy] [name of copyright owner]
18  *
19  * CDDL HEADER END
20  */
21 /*
22  * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23  * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24  * Copyright (c) 2011, 2015 by Delphix. All rights reserved.
25  * Copyright (c) 2014, Joyent, Inc. All rights reserved.
26  * Copyright 2014 HybridCluster. All rights reserved.
27  * Copyright 2016 RackTop Systems.
28  */
29 
30 #include <sys/dmu.h>
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dbuf.h>
34 #include <sys/dnode.h>
35 #include <sys/zfs_context.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dmu_traverse.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dsl_prop.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zap.h>
45 #include <sys/zio_checksum.h>
46 #include <sys/zfs_znode.h>
47 #include <zfs_fletcher.h>
48 #include <sys/avl.h>
49 #include <sys/ddt.h>
50 #include <sys/zfs_onexit.h>
51 #include <sys/dmu_send.h>
52 #include <sys/dsl_destroy.h>
53 #include <sys/blkptr.h>
54 #include <sys/dsl_bookmark.h>
55 #include <sys/zfeature.h>
56 #include <sys/bqueue.h>
57 
58 /* Set this tunable to TRUE to replace corrupt data with 0x2f5baddb10c */
59 int zfs_send_corrupt_data = B_FALSE;
60 int zfs_send_queue_length = 16 * 1024 * 1024;
61 int zfs_recv_queue_length = 16 * 1024 * 1024;
62 /* Set this tunable to FALSE to disable setting of DRR_FLAG_FREERECORDS */
63 int zfs_send_set_freerecords_bit = B_TRUE;
64 
65 static char *dmu_recv_tag = "dmu_recv_tag";
66 const char *recv_clone_name = "%recv";
67 
68 #define	BP_SPAN(datablkszsec, indblkshift, level) \
69 	(((uint64_t)datablkszsec) << (SPA_MINBLOCKSHIFT + \
70 	(level) * (indblkshift - SPA_BLKPTRSHIFT)))
71 
72 static void byteswap_record(dmu_replay_record_t *drr);
73 
74 struct send_thread_arg {
75 	bqueue_t	q;
76 	dsl_dataset_t	*ds;		/* Dataset to traverse */
77 	uint64_t	fromtxg;	/* Traverse from this txg */
78 	int		flags;		/* flags to pass to traverse_dataset */
79 	int		error_code;
80 	boolean_t	cancel;
81 	zbookmark_phys_t resume;
82 };
83 
84 struct send_block_record {
85 	boolean_t		eos_marker; /* Marks the end of the stream */
86 	blkptr_t		bp;
87 	zbookmark_phys_t	zb;
88 	uint8_t			indblkshift;
89 	uint16_t		datablkszsec;
90 	bqueue_node_t		ln;
91 };
92 
93 static int
94 dump_bytes(dmu_sendarg_t *dsp, void *buf, int len)
95 {
96 	dsl_dataset_t *ds = dmu_objset_ds(dsp->dsa_os);
97 	ssize_t resid; /* have to get resid to get detailed errno */
98 	ASSERT0(len % 8);
99 
100 	dsp->dsa_err = vn_rdwr(UIO_WRITE, dsp->dsa_vp,
101 	    (caddr_t)buf, len,
102 	    0, UIO_SYSSPACE, FAPPEND, RLIM64_INFINITY, CRED(), &resid);
103 
104 	mutex_enter(&ds->ds_sendstream_lock);
105 	*dsp->dsa_off += len;
106 	mutex_exit(&ds->ds_sendstream_lock);
107 
108 	return (dsp->dsa_err);
109 }
110 
111 /*
112  * For all record types except BEGIN, fill in the checksum (overlaid in
113  * drr_u.drr_checksum.drr_checksum).  The checksum verifies everything
114  * up to the start of the checksum itself.
115  */
116 static int
117 dump_record(dmu_sendarg_t *dsp, void *payload, int payload_len)
118 {
119 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
120 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
121 	fletcher_4_incremental_native(dsp->dsa_drr,
122 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
123 	    &dsp->dsa_zc);
124 	if (dsp->dsa_drr->drr_type != DRR_BEGIN) {
125 		ASSERT(ZIO_CHECKSUM_IS_ZERO(&dsp->dsa_drr->drr_u.
126 		    drr_checksum.drr_checksum));
127 		dsp->dsa_drr->drr_u.drr_checksum.drr_checksum = dsp->dsa_zc;
128 	}
129 	fletcher_4_incremental_native(&dsp->dsa_drr->
130 	    drr_u.drr_checksum.drr_checksum,
131 	    sizeof (zio_cksum_t), &dsp->dsa_zc);
132 	if (dump_bytes(dsp, dsp->dsa_drr, sizeof (dmu_replay_record_t)) != 0)
133 		return (SET_ERROR(EINTR));
134 	if (payload_len != 0) {
135 		fletcher_4_incremental_native(payload, payload_len,
136 		    &dsp->dsa_zc);
137 		if (dump_bytes(dsp, payload, payload_len) != 0)
138 			return (SET_ERROR(EINTR));
139 	}
140 	return (0);
141 }
142 
143 /*
144  * Fill in the drr_free struct, or perform aggregation if the previous record is
145  * also a free record, and the two are adjacent.
146  *
147  * Note that we send free records even for a full send, because we want to be
148  * able to receive a full send as a clone, which requires a list of all the free
149  * and freeobject records that were generated on the source.
150  */
151 static int
152 dump_free(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
153     uint64_t length)
154 {
155 	struct drr_free *drrf = &(dsp->dsa_drr->drr_u.drr_free);
156 
157 	/*
158 	 * When we receive a free record, dbuf_free_range() assumes
159 	 * that the receiving system doesn't have any dbufs in the range
160 	 * being freed.  This is always true because there is a one-record
161 	 * constraint: we only send one WRITE record for any given
162 	 * object,offset.  We know that the one-record constraint is
163 	 * true because we always send data in increasing order by
164 	 * object,offset.
165 	 *
166 	 * If the increasing-order constraint ever changes, we should find
167 	 * another way to assert that the one-record constraint is still
168 	 * satisfied.
169 	 */
170 	ASSERT(object > dsp->dsa_last_data_object ||
171 	    (object == dsp->dsa_last_data_object &&
172 	    offset > dsp->dsa_last_data_offset));
173 
174 	if (length != -1ULL && offset + length < offset)
175 		length = -1ULL;
176 
177 	/*
178 	 * If there is a pending op, but it's not PENDING_FREE, push it out,
179 	 * since free block aggregation can only be done for blocks of the
180 	 * same type (i.e., DRR_FREE records can only be aggregated with
181 	 * other DRR_FREE records.  DRR_FREEOBJECTS records can only be
182 	 * aggregated with other DRR_FREEOBJECTS records.
183 	 */
184 	if (dsp->dsa_pending_op != PENDING_NONE &&
185 	    dsp->dsa_pending_op != PENDING_FREE) {
186 		if (dump_record(dsp, NULL, 0) != 0)
187 			return (SET_ERROR(EINTR));
188 		dsp->dsa_pending_op = PENDING_NONE;
189 	}
190 
191 	if (dsp->dsa_pending_op == PENDING_FREE) {
192 		/*
193 		 * There should never be a PENDING_FREE if length is -1
194 		 * (because dump_dnode is the only place where this
195 		 * function is called with a -1, and only after flushing
196 		 * any pending record).
197 		 */
198 		ASSERT(length != -1ULL);
199 		/*
200 		 * Check to see whether this free block can be aggregated
201 		 * with pending one.
202 		 */
203 		if (drrf->drr_object == object && drrf->drr_offset +
204 		    drrf->drr_length == offset) {
205 			drrf->drr_length += length;
206 			return (0);
207 		} else {
208 			/* not a continuation.  Push out pending record */
209 			if (dump_record(dsp, NULL, 0) != 0)
210 				return (SET_ERROR(EINTR));
211 			dsp->dsa_pending_op = PENDING_NONE;
212 		}
213 	}
214 	/* create a FREE record and make it pending */
215 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
216 	dsp->dsa_drr->drr_type = DRR_FREE;
217 	drrf->drr_object = object;
218 	drrf->drr_offset = offset;
219 	drrf->drr_length = length;
220 	drrf->drr_toguid = dsp->dsa_toguid;
221 	if (length == -1ULL) {
222 		if (dump_record(dsp, NULL, 0) != 0)
223 			return (SET_ERROR(EINTR));
224 	} else {
225 		dsp->dsa_pending_op = PENDING_FREE;
226 	}
227 
228 	return (0);
229 }
230 
231 static int
232 dump_write(dmu_sendarg_t *dsp, dmu_object_type_t type,
233     uint64_t object, uint64_t offset, int blksz, const blkptr_t *bp, void *data)
234 {
235 	struct drr_write *drrw = &(dsp->dsa_drr->drr_u.drr_write);
236 
237 	/*
238 	 * We send data in increasing object, offset order.
239 	 * See comment in dump_free() for details.
240 	 */
241 	ASSERT(object > dsp->dsa_last_data_object ||
242 	    (object == dsp->dsa_last_data_object &&
243 	    offset > dsp->dsa_last_data_offset));
244 	dsp->dsa_last_data_object = object;
245 	dsp->dsa_last_data_offset = offset + blksz - 1;
246 
247 	/*
248 	 * If there is any kind of pending aggregation (currently either
249 	 * a grouping of free objects or free blocks), push it out to
250 	 * the stream, since aggregation can't be done across operations
251 	 * of different types.
252 	 */
253 	if (dsp->dsa_pending_op != PENDING_NONE) {
254 		if (dump_record(dsp, NULL, 0) != 0)
255 			return (SET_ERROR(EINTR));
256 		dsp->dsa_pending_op = PENDING_NONE;
257 	}
258 	/* write a WRITE record */
259 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
260 	dsp->dsa_drr->drr_type = DRR_WRITE;
261 	drrw->drr_object = object;
262 	drrw->drr_type = type;
263 	drrw->drr_offset = offset;
264 	drrw->drr_length = blksz;
265 	drrw->drr_toguid = dsp->dsa_toguid;
266 	if (bp == NULL || BP_IS_EMBEDDED(bp)) {
267 		/*
268 		 * There's no pre-computed checksum for partial-block
269 		 * writes or embedded BP's, so (like
270 		 * fletcher4-checkummed blocks) userland will have to
271 		 * compute a dedup-capable checksum itself.
272 		 */
273 		drrw->drr_checksumtype = ZIO_CHECKSUM_OFF;
274 	} else {
275 		drrw->drr_checksumtype = BP_GET_CHECKSUM(bp);
276 		if (zio_checksum_table[drrw->drr_checksumtype].ci_flags &
277 		    ZCHECKSUM_FLAG_DEDUP)
278 			drrw->drr_checksumflags |= DRR_CHECKSUM_DEDUP;
279 		DDK_SET_LSIZE(&drrw->drr_key, BP_GET_LSIZE(bp));
280 		DDK_SET_PSIZE(&drrw->drr_key, BP_GET_PSIZE(bp));
281 		DDK_SET_COMPRESS(&drrw->drr_key, BP_GET_COMPRESS(bp));
282 		drrw->drr_key.ddk_cksum = bp->blk_cksum;
283 	}
284 
285 	if (dump_record(dsp, data, blksz) != 0)
286 		return (SET_ERROR(EINTR));
287 	return (0);
288 }
289 
290 static int
291 dump_write_embedded(dmu_sendarg_t *dsp, uint64_t object, uint64_t offset,
292     int blksz, const blkptr_t *bp)
293 {
294 	char buf[BPE_PAYLOAD_SIZE];
295 	struct drr_write_embedded *drrw =
296 	    &(dsp->dsa_drr->drr_u.drr_write_embedded);
297 
298 	if (dsp->dsa_pending_op != PENDING_NONE) {
299 		if (dump_record(dsp, NULL, 0) != 0)
300 			return (EINTR);
301 		dsp->dsa_pending_op = PENDING_NONE;
302 	}
303 
304 	ASSERT(BP_IS_EMBEDDED(bp));
305 
306 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
307 	dsp->dsa_drr->drr_type = DRR_WRITE_EMBEDDED;
308 	drrw->drr_object = object;
309 	drrw->drr_offset = offset;
310 	drrw->drr_length = blksz;
311 	drrw->drr_toguid = dsp->dsa_toguid;
312 	drrw->drr_compression = BP_GET_COMPRESS(bp);
313 	drrw->drr_etype = BPE_GET_ETYPE(bp);
314 	drrw->drr_lsize = BPE_GET_LSIZE(bp);
315 	drrw->drr_psize = BPE_GET_PSIZE(bp);
316 
317 	decode_embedded_bp_compressed(bp, buf);
318 
319 	if (dump_record(dsp, buf, P2ROUNDUP(drrw->drr_psize, 8)) != 0)
320 		return (EINTR);
321 	return (0);
322 }
323 
324 static int
325 dump_spill(dmu_sendarg_t *dsp, uint64_t object, int blksz, void *data)
326 {
327 	struct drr_spill *drrs = &(dsp->dsa_drr->drr_u.drr_spill);
328 
329 	if (dsp->dsa_pending_op != PENDING_NONE) {
330 		if (dump_record(dsp, NULL, 0) != 0)
331 			return (SET_ERROR(EINTR));
332 		dsp->dsa_pending_op = PENDING_NONE;
333 	}
334 
335 	/* write a SPILL record */
336 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
337 	dsp->dsa_drr->drr_type = DRR_SPILL;
338 	drrs->drr_object = object;
339 	drrs->drr_length = blksz;
340 	drrs->drr_toguid = dsp->dsa_toguid;
341 
342 	if (dump_record(dsp, data, blksz) != 0)
343 		return (SET_ERROR(EINTR));
344 	return (0);
345 }
346 
347 static int
348 dump_freeobjects(dmu_sendarg_t *dsp, uint64_t firstobj, uint64_t numobjs)
349 {
350 	struct drr_freeobjects *drrfo = &(dsp->dsa_drr->drr_u.drr_freeobjects);
351 
352 	/*
353 	 * If there is a pending op, but it's not PENDING_FREEOBJECTS,
354 	 * push it out, since free block aggregation can only be done for
355 	 * blocks of the same type (i.e., DRR_FREE records can only be
356 	 * aggregated with other DRR_FREE records.  DRR_FREEOBJECTS records
357 	 * can only be aggregated with other DRR_FREEOBJECTS records.
358 	 */
359 	if (dsp->dsa_pending_op != PENDING_NONE &&
360 	    dsp->dsa_pending_op != PENDING_FREEOBJECTS) {
361 		if (dump_record(dsp, NULL, 0) != 0)
362 			return (SET_ERROR(EINTR));
363 		dsp->dsa_pending_op = PENDING_NONE;
364 	}
365 	if (dsp->dsa_pending_op == PENDING_FREEOBJECTS) {
366 		/*
367 		 * See whether this free object array can be aggregated
368 		 * with pending one
369 		 */
370 		if (drrfo->drr_firstobj + drrfo->drr_numobjs == firstobj) {
371 			drrfo->drr_numobjs += numobjs;
372 			return (0);
373 		} else {
374 			/* can't be aggregated.  Push out pending record */
375 			if (dump_record(dsp, NULL, 0) != 0)
376 				return (SET_ERROR(EINTR));
377 			dsp->dsa_pending_op = PENDING_NONE;
378 		}
379 	}
380 
381 	/* write a FREEOBJECTS record */
382 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
383 	dsp->dsa_drr->drr_type = DRR_FREEOBJECTS;
384 	drrfo->drr_firstobj = firstobj;
385 	drrfo->drr_numobjs = numobjs;
386 	drrfo->drr_toguid = dsp->dsa_toguid;
387 
388 	dsp->dsa_pending_op = PENDING_FREEOBJECTS;
389 
390 	return (0);
391 }
392 
393 static int
394 dump_dnode(dmu_sendarg_t *dsp, uint64_t object, dnode_phys_t *dnp)
395 {
396 	struct drr_object *drro = &(dsp->dsa_drr->drr_u.drr_object);
397 
398 	if (object < dsp->dsa_resume_object) {
399 		/*
400 		 * Note: when resuming, we will visit all the dnodes in
401 		 * the block of dnodes that we are resuming from.  In
402 		 * this case it's unnecessary to send the dnodes prior to
403 		 * the one we are resuming from.  We should be at most one
404 		 * block's worth of dnodes behind the resume point.
405 		 */
406 		ASSERT3U(dsp->dsa_resume_object - object, <,
407 		    1 << (DNODE_BLOCK_SHIFT - DNODE_SHIFT));
408 		return (0);
409 	}
410 
411 	if (dnp == NULL || dnp->dn_type == DMU_OT_NONE)
412 		return (dump_freeobjects(dsp, object, 1));
413 
414 	if (dsp->dsa_pending_op != PENDING_NONE) {
415 		if (dump_record(dsp, NULL, 0) != 0)
416 			return (SET_ERROR(EINTR));
417 		dsp->dsa_pending_op = PENDING_NONE;
418 	}
419 
420 	/* write an OBJECT record */
421 	bzero(dsp->dsa_drr, sizeof (dmu_replay_record_t));
422 	dsp->dsa_drr->drr_type = DRR_OBJECT;
423 	drro->drr_object = object;
424 	drro->drr_type = dnp->dn_type;
425 	drro->drr_bonustype = dnp->dn_bonustype;
426 	drro->drr_blksz = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
427 	drro->drr_bonuslen = dnp->dn_bonuslen;
428 	drro->drr_checksumtype = dnp->dn_checksum;
429 	drro->drr_compress = dnp->dn_compress;
430 	drro->drr_toguid = dsp->dsa_toguid;
431 
432 	if (!(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
433 	    drro->drr_blksz > SPA_OLD_MAXBLOCKSIZE)
434 		drro->drr_blksz = SPA_OLD_MAXBLOCKSIZE;
435 
436 	if (dump_record(dsp, DN_BONUS(dnp),
437 	    P2ROUNDUP(dnp->dn_bonuslen, 8)) != 0) {
438 		return (SET_ERROR(EINTR));
439 	}
440 
441 	/* Free anything past the end of the file. */
442 	if (dump_free(dsp, object, (dnp->dn_maxblkid + 1) *
443 	    (dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT), -1ULL) != 0)
444 		return (SET_ERROR(EINTR));
445 	if (dsp->dsa_err != 0)
446 		return (SET_ERROR(EINTR));
447 	return (0);
448 }
449 
450 static boolean_t
451 backup_do_embed(dmu_sendarg_t *dsp, const blkptr_t *bp)
452 {
453 	if (!BP_IS_EMBEDDED(bp))
454 		return (B_FALSE);
455 
456 	/*
457 	 * Compression function must be legacy, or explicitly enabled.
458 	 */
459 	if ((BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_LEGACY_FUNCTIONS &&
460 	    !(dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4)))
461 		return (B_FALSE);
462 
463 	/*
464 	 * Embed type must be explicitly enabled.
465 	 */
466 	switch (BPE_GET_ETYPE(bp)) {
467 	case BP_EMBEDDED_TYPE_DATA:
468 		if (dsp->dsa_featureflags & DMU_BACKUP_FEATURE_EMBED_DATA)
469 			return (B_TRUE);
470 		break;
471 	default:
472 		return (B_FALSE);
473 	}
474 	return (B_FALSE);
475 }
476 
477 /*
478  * This is the callback function to traverse_dataset that acts as the worker
479  * thread for dmu_send_impl.
480  */
481 /*ARGSUSED*/
482 static int
483 send_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
484     const zbookmark_phys_t *zb, const struct dnode_phys *dnp, void *arg)
485 {
486 	struct send_thread_arg *sta = arg;
487 	struct send_block_record *record;
488 	uint64_t record_size;
489 	int err = 0;
490 
491 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
492 	    zb->zb_object >= sta->resume.zb_object);
493 
494 	if (sta->cancel)
495 		return (SET_ERROR(EINTR));
496 
497 	if (bp == NULL) {
498 		ASSERT3U(zb->zb_level, ==, ZB_DNODE_LEVEL);
499 		return (0);
500 	} else if (zb->zb_level < 0) {
501 		return (0);
502 	}
503 
504 	record = kmem_zalloc(sizeof (struct send_block_record), KM_SLEEP);
505 	record->eos_marker = B_FALSE;
506 	record->bp = *bp;
507 	record->zb = *zb;
508 	record->indblkshift = dnp->dn_indblkshift;
509 	record->datablkszsec = dnp->dn_datablkszsec;
510 	record_size = dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT;
511 	bqueue_enqueue(&sta->q, record, record_size);
512 
513 	return (err);
514 }
515 
516 /*
517  * This function kicks off the traverse_dataset.  It also handles setting the
518  * error code of the thread in case something goes wrong, and pushes the End of
519  * Stream record when the traverse_dataset call has finished.  If there is no
520  * dataset to traverse, the thread immediately pushes End of Stream marker.
521  */
522 static void
523 send_traverse_thread(void *arg)
524 {
525 	struct send_thread_arg *st_arg = arg;
526 	int err;
527 	struct send_block_record *data;
528 
529 	if (st_arg->ds != NULL) {
530 		err = traverse_dataset_resume(st_arg->ds,
531 		    st_arg->fromtxg, &st_arg->resume,
532 		    st_arg->flags, send_cb, st_arg);
533 
534 		if (err != EINTR)
535 			st_arg->error_code = err;
536 	}
537 	data = kmem_zalloc(sizeof (*data), KM_SLEEP);
538 	data->eos_marker = B_TRUE;
539 	bqueue_enqueue(&st_arg->q, data, 1);
540 }
541 
542 /*
543  * This function actually handles figuring out what kind of record needs to be
544  * dumped, reading the data (which has hopefully been prefetched), and calling
545  * the appropriate helper function.
546  */
547 static int
548 do_dump(dmu_sendarg_t *dsa, struct send_block_record *data)
549 {
550 	dsl_dataset_t *ds = dmu_objset_ds(dsa->dsa_os);
551 	const blkptr_t *bp = &data->bp;
552 	const zbookmark_phys_t *zb = &data->zb;
553 	uint8_t indblkshift = data->indblkshift;
554 	uint16_t dblkszsec = data->datablkszsec;
555 	spa_t *spa = ds->ds_dir->dd_pool->dp_spa;
556 	dmu_object_type_t type = bp ? BP_GET_TYPE(bp) : DMU_OT_NONE;
557 	int err = 0;
558 
559 	ASSERT3U(zb->zb_level, >=, 0);
560 
561 	ASSERT(zb->zb_object == DMU_META_DNODE_OBJECT ||
562 	    zb->zb_object >= dsa->dsa_resume_object);
563 
564 	if (zb->zb_object != DMU_META_DNODE_OBJECT &&
565 	    DMU_OBJECT_IS_SPECIAL(zb->zb_object)) {
566 		return (0);
567 	} else if (BP_IS_HOLE(bp) &&
568 	    zb->zb_object == DMU_META_DNODE_OBJECT) {
569 		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
570 		uint64_t dnobj = (zb->zb_blkid * span) >> DNODE_SHIFT;
571 		err = dump_freeobjects(dsa, dnobj, span >> DNODE_SHIFT);
572 	} else if (BP_IS_HOLE(bp)) {
573 		uint64_t span = BP_SPAN(dblkszsec, indblkshift, zb->zb_level);
574 		uint64_t offset = zb->zb_blkid * span;
575 		err = dump_free(dsa, zb->zb_object, offset, span);
576 	} else if (zb->zb_level > 0 || type == DMU_OT_OBJSET) {
577 		return (0);
578 	} else if (type == DMU_OT_DNODE) {
579 		int blksz = BP_GET_LSIZE(bp);
580 		arc_flags_t aflags = ARC_FLAG_WAIT;
581 		arc_buf_t *abuf;
582 
583 		ASSERT0(zb->zb_level);
584 
585 		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
586 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
587 		    &aflags, zb) != 0)
588 			return (SET_ERROR(EIO));
589 
590 		dnode_phys_t *blk = abuf->b_data;
591 		uint64_t dnobj = zb->zb_blkid * (blksz >> DNODE_SHIFT);
592 		for (int i = 0; i < blksz >> DNODE_SHIFT; i++) {
593 			err = dump_dnode(dsa, dnobj + i, blk + i);
594 			if (err != 0)
595 				break;
596 		}
597 		(void) arc_buf_remove_ref(abuf, &abuf);
598 	} else if (type == DMU_OT_SA) {
599 		arc_flags_t aflags = ARC_FLAG_WAIT;
600 		arc_buf_t *abuf;
601 		int blksz = BP_GET_LSIZE(bp);
602 
603 		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
604 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
605 		    &aflags, zb) != 0)
606 			return (SET_ERROR(EIO));
607 
608 		err = dump_spill(dsa, zb->zb_object, blksz, abuf->b_data);
609 		(void) arc_buf_remove_ref(abuf, &abuf);
610 	} else if (backup_do_embed(dsa, bp)) {
611 		/* it's an embedded level-0 block of a regular object */
612 		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
613 		ASSERT0(zb->zb_level);
614 		err = dump_write_embedded(dsa, zb->zb_object,
615 		    zb->zb_blkid * blksz, blksz, bp);
616 	} else {
617 		/* it's a level-0 block of a regular object */
618 		arc_flags_t aflags = ARC_FLAG_WAIT;
619 		arc_buf_t *abuf;
620 		int blksz = dblkszsec << SPA_MINBLOCKSHIFT;
621 		uint64_t offset;
622 
623 		ASSERT0(zb->zb_level);
624 		ASSERT(zb->zb_object > dsa->dsa_resume_object ||
625 		    (zb->zb_object == dsa->dsa_resume_object &&
626 		    zb->zb_blkid * blksz >= dsa->dsa_resume_offset));
627 
628 		if (arc_read(NULL, spa, bp, arc_getbuf_func, &abuf,
629 		    ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_CANFAIL,
630 		    &aflags, zb) != 0) {
631 			if (zfs_send_corrupt_data) {
632 				/* Send a block filled with 0x"zfs badd bloc" */
633 				abuf = arc_buf_alloc(spa, blksz, &abuf,
634 				    ARC_BUFC_DATA);
635 				uint64_t *ptr;
636 				for (ptr = abuf->b_data;
637 				    (char *)ptr < (char *)abuf->b_data + blksz;
638 				    ptr++)
639 					*ptr = 0x2f5baddb10cULL;
640 			} else {
641 				return (SET_ERROR(EIO));
642 			}
643 		}
644 
645 		offset = zb->zb_blkid * blksz;
646 
647 		if (!(dsa->dsa_featureflags &
648 		    DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
649 		    blksz > SPA_OLD_MAXBLOCKSIZE) {
650 			char *buf = abuf->b_data;
651 			while (blksz > 0 && err == 0) {
652 				int n = MIN(blksz, SPA_OLD_MAXBLOCKSIZE);
653 				err = dump_write(dsa, type, zb->zb_object,
654 				    offset, n, NULL, buf);
655 				offset += n;
656 				buf += n;
657 				blksz -= n;
658 			}
659 		} else {
660 			err = dump_write(dsa, type, zb->zb_object,
661 			    offset, blksz, bp, abuf->b_data);
662 		}
663 		(void) arc_buf_remove_ref(abuf, &abuf);
664 	}
665 
666 	ASSERT(err == 0 || err == EINTR);
667 	return (err);
668 }
669 
670 /*
671  * Pop the new data off the queue, and free the old data.
672  */
673 static struct send_block_record *
674 get_next_record(bqueue_t *bq, struct send_block_record *data)
675 {
676 	struct send_block_record *tmp = bqueue_dequeue(bq);
677 	kmem_free(data, sizeof (*data));
678 	return (tmp);
679 }
680 
681 /*
682  * Actually do the bulk of the work in a zfs send.
683  *
684  * Note: Releases dp using the specified tag.
685  */
686 static int
687 dmu_send_impl(void *tag, dsl_pool_t *dp, dsl_dataset_t *to_ds,
688     zfs_bookmark_phys_t *ancestor_zb,
689     boolean_t is_clone, boolean_t embedok, boolean_t large_block_ok, int outfd,
690     uint64_t resumeobj, uint64_t resumeoff,
691     vnode_t *vp, offset_t *off)
692 {
693 	objset_t *os;
694 	dmu_replay_record_t *drr;
695 	dmu_sendarg_t *dsp;
696 	int err;
697 	uint64_t fromtxg = 0;
698 	uint64_t featureflags = 0;
699 	struct send_thread_arg to_arg = { 0 };
700 
701 	err = dmu_objset_from_ds(to_ds, &os);
702 	if (err != 0) {
703 		dsl_pool_rele(dp, tag);
704 		return (err);
705 	}
706 
707 	drr = kmem_zalloc(sizeof (dmu_replay_record_t), KM_SLEEP);
708 	drr->drr_type = DRR_BEGIN;
709 	drr->drr_u.drr_begin.drr_magic = DMU_BACKUP_MAGIC;
710 	DMU_SET_STREAM_HDRTYPE(drr->drr_u.drr_begin.drr_versioninfo,
711 	    DMU_SUBSTREAM);
712 
713 #ifdef _KERNEL
714 	if (dmu_objset_type(os) == DMU_OST_ZFS) {
715 		uint64_t version;
716 		if (zfs_get_zplprop(os, ZFS_PROP_VERSION, &version) != 0) {
717 			kmem_free(drr, sizeof (dmu_replay_record_t));
718 			dsl_pool_rele(dp, tag);
719 			return (SET_ERROR(EINVAL));
720 		}
721 		if (version >= ZPL_VERSION_SA) {
722 			featureflags |= DMU_BACKUP_FEATURE_SA_SPILL;
723 		}
724 	}
725 #endif
726 
727 	if (large_block_ok && to_ds->ds_feature_inuse[SPA_FEATURE_LARGE_BLOCKS])
728 		featureflags |= DMU_BACKUP_FEATURE_LARGE_BLOCKS;
729 	if (embedok &&
730 	    spa_feature_is_active(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA)) {
731 		featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA;
732 		if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
733 			featureflags |= DMU_BACKUP_FEATURE_EMBED_DATA_LZ4;
734 	}
735 
736 	if (resumeobj != 0 || resumeoff != 0) {
737 		featureflags |= DMU_BACKUP_FEATURE_RESUMING;
738 	}
739 
740 	DMU_SET_FEATUREFLAGS(drr->drr_u.drr_begin.drr_versioninfo,
741 	    featureflags);
742 
743 	drr->drr_u.drr_begin.drr_creation_time =
744 	    dsl_dataset_phys(to_ds)->ds_creation_time;
745 	drr->drr_u.drr_begin.drr_type = dmu_objset_type(os);
746 	if (is_clone)
747 		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CLONE;
748 	drr->drr_u.drr_begin.drr_toguid = dsl_dataset_phys(to_ds)->ds_guid;
749 	if (dsl_dataset_phys(to_ds)->ds_flags & DS_FLAG_CI_DATASET)
750 		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_CI_DATA;
751 	if (zfs_send_set_freerecords_bit)
752 		drr->drr_u.drr_begin.drr_flags |= DRR_FLAG_FREERECORDS;
753 
754 	if (ancestor_zb != NULL) {
755 		drr->drr_u.drr_begin.drr_fromguid =
756 		    ancestor_zb->zbm_guid;
757 		fromtxg = ancestor_zb->zbm_creation_txg;
758 	}
759 	dsl_dataset_name(to_ds, drr->drr_u.drr_begin.drr_toname);
760 	if (!to_ds->ds_is_snapshot) {
761 		(void) strlcat(drr->drr_u.drr_begin.drr_toname, "@--head--",
762 		    sizeof (drr->drr_u.drr_begin.drr_toname));
763 	}
764 
765 	dsp = kmem_zalloc(sizeof (dmu_sendarg_t), KM_SLEEP);
766 
767 	dsp->dsa_drr = drr;
768 	dsp->dsa_vp = vp;
769 	dsp->dsa_outfd = outfd;
770 	dsp->dsa_proc = curproc;
771 	dsp->dsa_os = os;
772 	dsp->dsa_off = off;
773 	dsp->dsa_toguid = dsl_dataset_phys(to_ds)->ds_guid;
774 	dsp->dsa_pending_op = PENDING_NONE;
775 	dsp->dsa_featureflags = featureflags;
776 	dsp->dsa_resume_object = resumeobj;
777 	dsp->dsa_resume_offset = resumeoff;
778 
779 	mutex_enter(&to_ds->ds_sendstream_lock);
780 	list_insert_head(&to_ds->ds_sendstreams, dsp);
781 	mutex_exit(&to_ds->ds_sendstream_lock);
782 
783 	dsl_dataset_long_hold(to_ds, FTAG);
784 	dsl_pool_rele(dp, tag);
785 
786 	void *payload = NULL;
787 	size_t payload_len = 0;
788 	if (resumeobj != 0 || resumeoff != 0) {
789 		dmu_object_info_t to_doi;
790 		err = dmu_object_info(os, resumeobj, &to_doi);
791 		if (err != 0)
792 			goto out;
793 		SET_BOOKMARK(&to_arg.resume, to_ds->ds_object, resumeobj, 0,
794 		    resumeoff / to_doi.doi_data_block_size);
795 
796 		nvlist_t *nvl = fnvlist_alloc();
797 		fnvlist_add_uint64(nvl, "resume_object", resumeobj);
798 		fnvlist_add_uint64(nvl, "resume_offset", resumeoff);
799 		payload = fnvlist_pack(nvl, &payload_len);
800 		drr->drr_payloadlen = payload_len;
801 		fnvlist_free(nvl);
802 	}
803 
804 	err = dump_record(dsp, payload, payload_len);
805 	fnvlist_pack_free(payload, payload_len);
806 	if (err != 0) {
807 		err = dsp->dsa_err;
808 		goto out;
809 	}
810 
811 	err = bqueue_init(&to_arg.q, zfs_send_queue_length,
812 	    offsetof(struct send_block_record, ln));
813 	to_arg.error_code = 0;
814 	to_arg.cancel = B_FALSE;
815 	to_arg.ds = to_ds;
816 	to_arg.fromtxg = fromtxg;
817 	to_arg.flags = TRAVERSE_PRE | TRAVERSE_PREFETCH;
818 	(void) thread_create(NULL, 0, send_traverse_thread, &to_arg, 0, curproc,
819 	    TS_RUN, minclsyspri);
820 
821 	struct send_block_record *to_data;
822 	to_data = bqueue_dequeue(&to_arg.q);
823 
824 	while (!to_data->eos_marker && err == 0) {
825 		err = do_dump(dsp, to_data);
826 		to_data = get_next_record(&to_arg.q, to_data);
827 		if (issig(JUSTLOOKING) && issig(FORREAL))
828 			err = EINTR;
829 	}
830 
831 	if (err != 0) {
832 		to_arg.cancel = B_TRUE;
833 		while (!to_data->eos_marker) {
834 			to_data = get_next_record(&to_arg.q, to_data);
835 		}
836 	}
837 	kmem_free(to_data, sizeof (*to_data));
838 
839 	bqueue_destroy(&to_arg.q);
840 
841 	if (err == 0 && to_arg.error_code != 0)
842 		err = to_arg.error_code;
843 
844 	if (err != 0)
845 		goto out;
846 
847 	if (dsp->dsa_pending_op != PENDING_NONE)
848 		if (dump_record(dsp, NULL, 0) != 0)
849 			err = SET_ERROR(EINTR);
850 
851 	if (err != 0) {
852 		if (err == EINTR && dsp->dsa_err != 0)
853 			err = dsp->dsa_err;
854 		goto out;
855 	}
856 
857 	bzero(drr, sizeof (dmu_replay_record_t));
858 	drr->drr_type = DRR_END;
859 	drr->drr_u.drr_end.drr_checksum = dsp->dsa_zc;
860 	drr->drr_u.drr_end.drr_toguid = dsp->dsa_toguid;
861 
862 	if (dump_record(dsp, NULL, 0) != 0)
863 		err = dsp->dsa_err;
864 
865 out:
866 	mutex_enter(&to_ds->ds_sendstream_lock);
867 	list_remove(&to_ds->ds_sendstreams, dsp);
868 	mutex_exit(&to_ds->ds_sendstream_lock);
869 
870 	kmem_free(drr, sizeof (dmu_replay_record_t));
871 	kmem_free(dsp, sizeof (dmu_sendarg_t));
872 
873 	dsl_dataset_long_rele(to_ds, FTAG);
874 
875 	return (err);
876 }
877 
878 int
879 dmu_send_obj(const char *pool, uint64_t tosnap, uint64_t fromsnap,
880     boolean_t embedok, boolean_t large_block_ok,
881     int outfd, vnode_t *vp, offset_t *off)
882 {
883 	dsl_pool_t *dp;
884 	dsl_dataset_t *ds;
885 	dsl_dataset_t *fromds = NULL;
886 	int err;
887 
888 	err = dsl_pool_hold(pool, FTAG, &dp);
889 	if (err != 0)
890 		return (err);
891 
892 	err = dsl_dataset_hold_obj(dp, tosnap, FTAG, &ds);
893 	if (err != 0) {
894 		dsl_pool_rele(dp, FTAG);
895 		return (err);
896 	}
897 
898 	if (fromsnap != 0) {
899 		zfs_bookmark_phys_t zb;
900 		boolean_t is_clone;
901 
902 		err = dsl_dataset_hold_obj(dp, fromsnap, FTAG, &fromds);
903 		if (err != 0) {
904 			dsl_dataset_rele(ds, FTAG);
905 			dsl_pool_rele(dp, FTAG);
906 			return (err);
907 		}
908 		if (!dsl_dataset_is_before(ds, fromds, 0))
909 			err = SET_ERROR(EXDEV);
910 		zb.zbm_creation_time =
911 		    dsl_dataset_phys(fromds)->ds_creation_time;
912 		zb.zbm_creation_txg = dsl_dataset_phys(fromds)->ds_creation_txg;
913 		zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
914 		is_clone = (fromds->ds_dir != ds->ds_dir);
915 		dsl_dataset_rele(fromds, FTAG);
916 		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
917 		    embedok, large_block_ok, outfd, 0, 0, vp, off);
918 	} else {
919 		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
920 		    embedok, large_block_ok, outfd, 0, 0, vp, off);
921 	}
922 	dsl_dataset_rele(ds, FTAG);
923 	return (err);
924 }
925 
926 int
927 dmu_send(const char *tosnap, const char *fromsnap, boolean_t embedok,
928     boolean_t large_block_ok, int outfd, uint64_t resumeobj, uint64_t resumeoff,
929     vnode_t *vp, offset_t *off)
930 {
931 	dsl_pool_t *dp;
932 	dsl_dataset_t *ds;
933 	int err;
934 	boolean_t owned = B_FALSE;
935 
936 	if (fromsnap != NULL && strpbrk(fromsnap, "@#") == NULL)
937 		return (SET_ERROR(EINVAL));
938 
939 	err = dsl_pool_hold(tosnap, FTAG, &dp);
940 	if (err != 0)
941 		return (err);
942 
943 	if (strchr(tosnap, '@') == NULL && spa_writeable(dp->dp_spa)) {
944 		/*
945 		 * We are sending a filesystem or volume.  Ensure
946 		 * that it doesn't change by owning the dataset.
947 		 */
948 		err = dsl_dataset_own(dp, tosnap, FTAG, &ds);
949 		owned = B_TRUE;
950 	} else {
951 		err = dsl_dataset_hold(dp, tosnap, FTAG, &ds);
952 	}
953 	if (err != 0) {
954 		dsl_pool_rele(dp, FTAG);
955 		return (err);
956 	}
957 
958 	if (fromsnap != NULL) {
959 		zfs_bookmark_phys_t zb;
960 		boolean_t is_clone = B_FALSE;
961 		int fsnamelen = strchr(tosnap, '@') - tosnap;
962 
963 		/*
964 		 * If the fromsnap is in a different filesystem, then
965 		 * mark the send stream as a clone.
966 		 */
967 		if (strncmp(tosnap, fromsnap, fsnamelen) != 0 ||
968 		    (fromsnap[fsnamelen] != '@' &&
969 		    fromsnap[fsnamelen] != '#')) {
970 			is_clone = B_TRUE;
971 		}
972 
973 		if (strchr(fromsnap, '@')) {
974 			dsl_dataset_t *fromds;
975 			err = dsl_dataset_hold(dp, fromsnap, FTAG, &fromds);
976 			if (err == 0) {
977 				if (!dsl_dataset_is_before(ds, fromds, 0))
978 					err = SET_ERROR(EXDEV);
979 				zb.zbm_creation_time =
980 				    dsl_dataset_phys(fromds)->ds_creation_time;
981 				zb.zbm_creation_txg =
982 				    dsl_dataset_phys(fromds)->ds_creation_txg;
983 				zb.zbm_guid = dsl_dataset_phys(fromds)->ds_guid;
984 				is_clone = (ds->ds_dir != fromds->ds_dir);
985 				dsl_dataset_rele(fromds, FTAG);
986 			}
987 		} else {
988 			err = dsl_bookmark_lookup(dp, fromsnap, ds, &zb);
989 		}
990 		if (err != 0) {
991 			dsl_dataset_rele(ds, FTAG);
992 			dsl_pool_rele(dp, FTAG);
993 			return (err);
994 		}
995 		err = dmu_send_impl(FTAG, dp, ds, &zb, is_clone,
996 		    embedok, large_block_ok,
997 		    outfd, resumeobj, resumeoff, vp, off);
998 	} else {
999 		err = dmu_send_impl(FTAG, dp, ds, NULL, B_FALSE,
1000 		    embedok, large_block_ok,
1001 		    outfd, resumeobj, resumeoff, vp, off);
1002 	}
1003 	if (owned)
1004 		dsl_dataset_disown(ds, FTAG);
1005 	else
1006 		dsl_dataset_rele(ds, FTAG);
1007 	return (err);
1008 }
1009 
1010 static int
1011 dmu_adjust_send_estimate_for_indirects(dsl_dataset_t *ds, uint64_t size,
1012     uint64_t *sizep)
1013 {
1014 	int err;
1015 	/*
1016 	 * Assume that space (both on-disk and in-stream) is dominated by
1017 	 * data.  We will adjust for indirect blocks and the copies property,
1018 	 * but ignore per-object space used (eg, dnodes and DRR_OBJECT records).
1019 	 */
1020 
1021 	/*
1022 	 * Subtract out approximate space used by indirect blocks.
1023 	 * Assume most space is used by data blocks (non-indirect, non-dnode).
1024 	 * Assume all blocks are recordsize.  Assume ditto blocks and
1025 	 * internal fragmentation counter out compression.
1026 	 *
1027 	 * Therefore, space used by indirect blocks is sizeof(blkptr_t) per
1028 	 * block, which we observe in practice.
1029 	 */
1030 	uint64_t recordsize;
1031 	err = dsl_prop_get_int_ds(ds, "recordsize", &recordsize);
1032 	if (err != 0)
1033 		return (err);
1034 	size -= size / recordsize * sizeof (blkptr_t);
1035 
1036 	/* Add in the space for the record associated with each block. */
1037 	size += size / recordsize * sizeof (dmu_replay_record_t);
1038 
1039 	*sizep = size;
1040 
1041 	return (0);
1042 }
1043 
1044 int
1045 dmu_send_estimate(dsl_dataset_t *ds, dsl_dataset_t *fromds, uint64_t *sizep)
1046 {
1047 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1048 	int err;
1049 	uint64_t size;
1050 
1051 	ASSERT(dsl_pool_config_held(dp));
1052 
1053 	/* tosnap must be a snapshot */
1054 	if (!ds->ds_is_snapshot)
1055 		return (SET_ERROR(EINVAL));
1056 
1057 	/* fromsnap, if provided, must be a snapshot */
1058 	if (fromds != NULL && !fromds->ds_is_snapshot)
1059 		return (SET_ERROR(EINVAL));
1060 
1061 	/*
1062 	 * fromsnap must be an earlier snapshot from the same fs as tosnap,
1063 	 * or the origin's fs.
1064 	 */
1065 	if (fromds != NULL && !dsl_dataset_is_before(ds, fromds, 0))
1066 		return (SET_ERROR(EXDEV));
1067 
1068 	/* Get uncompressed size estimate of changed data. */
1069 	if (fromds == NULL) {
1070 		size = dsl_dataset_phys(ds)->ds_uncompressed_bytes;
1071 	} else {
1072 		uint64_t used, comp;
1073 		err = dsl_dataset_space_written(fromds, ds,
1074 		    &used, &comp, &size);
1075 		if (err != 0)
1076 			return (err);
1077 	}
1078 
1079 	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1080 	return (err);
1081 }
1082 
1083 /*
1084  * Simple callback used to traverse the blocks of a snapshot and sum their
1085  * uncompressed size
1086  */
1087 /* ARGSUSED */
1088 static int
1089 dmu_calculate_send_traversal(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
1090     const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
1091 {
1092 	uint64_t *spaceptr = arg;
1093 	if (bp != NULL && !BP_IS_HOLE(bp)) {
1094 		*spaceptr += BP_GET_UCSIZE(bp);
1095 	}
1096 	return (0);
1097 }
1098 
1099 /*
1100  * Given a desination snapshot and a TXG, calculate the approximate size of a
1101  * send stream sent from that TXG. from_txg may be zero, indicating that the
1102  * whole snapshot will be sent.
1103  */
1104 int
1105 dmu_send_estimate_from_txg(dsl_dataset_t *ds, uint64_t from_txg,
1106     uint64_t *sizep)
1107 {
1108 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1109 	int err;
1110 	uint64_t size = 0;
1111 
1112 	ASSERT(dsl_pool_config_held(dp));
1113 
1114 	/* tosnap must be a snapshot */
1115 	if (!dsl_dataset_is_snapshot(ds))
1116 		return (SET_ERROR(EINVAL));
1117 
1118 	/* verify that from_txg is before the provided snapshot was taken */
1119 	if (from_txg >= dsl_dataset_phys(ds)->ds_creation_txg) {
1120 		return (SET_ERROR(EXDEV));
1121 	}
1122 
1123 	/*
1124 	 * traverse the blocks of the snapshot with birth times after
1125 	 * from_txg, summing their uncompressed size
1126 	 */
1127 	err = traverse_dataset(ds, from_txg, TRAVERSE_POST,
1128 	    dmu_calculate_send_traversal, &size);
1129 	if (err)
1130 		return (err);
1131 
1132 	err = dmu_adjust_send_estimate_for_indirects(ds, size, sizep);
1133 	return (err);
1134 }
1135 
1136 typedef struct dmu_recv_begin_arg {
1137 	const char *drba_origin;
1138 	dmu_recv_cookie_t *drba_cookie;
1139 	cred_t *drba_cred;
1140 	uint64_t drba_snapobj;
1141 } dmu_recv_begin_arg_t;
1142 
1143 static int
1144 recv_begin_check_existing_impl(dmu_recv_begin_arg_t *drba, dsl_dataset_t *ds,
1145     uint64_t fromguid)
1146 {
1147 	uint64_t val;
1148 	int error;
1149 	dsl_pool_t *dp = ds->ds_dir->dd_pool;
1150 
1151 	/* temporary clone name must not exist */
1152 	error = zap_lookup(dp->dp_meta_objset,
1153 	    dsl_dir_phys(ds->ds_dir)->dd_child_dir_zapobj, recv_clone_name,
1154 	    8, 1, &val);
1155 	if (error != ENOENT)
1156 		return (error == 0 ? EBUSY : error);
1157 
1158 	/* new snapshot name must not exist */
1159 	error = zap_lookup(dp->dp_meta_objset,
1160 	    dsl_dataset_phys(ds)->ds_snapnames_zapobj,
1161 	    drba->drba_cookie->drc_tosnap, 8, 1, &val);
1162 	if (error != ENOENT)
1163 		return (error == 0 ? EEXIST : error);
1164 
1165 	/*
1166 	 * Check snapshot limit before receiving. We'll recheck again at the
1167 	 * end, but might as well abort before receiving if we're already over
1168 	 * the limit.
1169 	 *
1170 	 * Note that we do not check the file system limit with
1171 	 * dsl_dir_fscount_check because the temporary %clones don't count
1172 	 * against that limit.
1173 	 */
1174 	error = dsl_fs_ss_limit_check(ds->ds_dir, 1, ZFS_PROP_SNAPSHOT_LIMIT,
1175 	    NULL, drba->drba_cred);
1176 	if (error != 0)
1177 		return (error);
1178 
1179 	if (fromguid != 0) {
1180 		dsl_dataset_t *snap;
1181 		uint64_t obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
1182 
1183 		/* Find snapshot in this dir that matches fromguid. */
1184 		while (obj != 0) {
1185 			error = dsl_dataset_hold_obj(dp, obj, FTAG,
1186 			    &snap);
1187 			if (error != 0)
1188 				return (SET_ERROR(ENODEV));
1189 			if (snap->ds_dir != ds->ds_dir) {
1190 				dsl_dataset_rele(snap, FTAG);
1191 				return (SET_ERROR(ENODEV));
1192 			}
1193 			if (dsl_dataset_phys(snap)->ds_guid == fromguid)
1194 				break;
1195 			obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
1196 			dsl_dataset_rele(snap, FTAG);
1197 		}
1198 		if (obj == 0)
1199 			return (SET_ERROR(ENODEV));
1200 
1201 		if (drba->drba_cookie->drc_force) {
1202 			drba->drba_snapobj = obj;
1203 		} else {
1204 			/*
1205 			 * If we are not forcing, there must be no
1206 			 * changes since fromsnap.
1207 			 */
1208 			if (dsl_dataset_modified_since_snap(ds, snap)) {
1209 				dsl_dataset_rele(snap, FTAG);
1210 				return (SET_ERROR(ETXTBSY));
1211 			}
1212 			drba->drba_snapobj = ds->ds_prev->ds_object;
1213 		}
1214 
1215 		dsl_dataset_rele(snap, FTAG);
1216 	} else {
1217 		/* if full, then must be forced */
1218 		if (!drba->drba_cookie->drc_force)
1219 			return (SET_ERROR(EEXIST));
1220 		/* start from $ORIGIN@$ORIGIN, if supported */
1221 		drba->drba_snapobj = dp->dp_origin_snap != NULL ?
1222 		    dp->dp_origin_snap->ds_object : 0;
1223 	}
1224 
1225 	return (0);
1226 
1227 }
1228 
1229 static int
1230 dmu_recv_begin_check(void *arg, dmu_tx_t *tx)
1231 {
1232 	dmu_recv_begin_arg_t *drba = arg;
1233 	dsl_pool_t *dp = dmu_tx_pool(tx);
1234 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1235 	uint64_t fromguid = drrb->drr_fromguid;
1236 	int flags = drrb->drr_flags;
1237 	int error;
1238 	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1239 	dsl_dataset_t *ds;
1240 	const char *tofs = drba->drba_cookie->drc_tofs;
1241 
1242 	/* already checked */
1243 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1244 	ASSERT(!(featureflags & DMU_BACKUP_FEATURE_RESUMING));
1245 
1246 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1247 	    DMU_COMPOUNDSTREAM ||
1248 	    drrb->drr_type >= DMU_OST_NUMTYPES ||
1249 	    ((flags & DRR_FLAG_CLONE) && drba->drba_origin == NULL))
1250 		return (SET_ERROR(EINVAL));
1251 
1252 	/* Verify pool version supports SA if SA_SPILL feature set */
1253 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1254 	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1255 		return (SET_ERROR(ENOTSUP));
1256 
1257 	if (drba->drba_cookie->drc_resumable &&
1258 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EXTENSIBLE_DATASET))
1259 		return (SET_ERROR(ENOTSUP));
1260 
1261 	/*
1262 	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1263 	 * record to a plan WRITE record, so the pool must have the
1264 	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1265 	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1266 	 */
1267 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1268 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1269 		return (SET_ERROR(ENOTSUP));
1270 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1271 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1272 		return (SET_ERROR(ENOTSUP));
1273 
1274 	/*
1275 	 * The receiving code doesn't know how to translate large blocks
1276 	 * to smaller ones, so the pool must have the LARGE_BLOCKS
1277 	 * feature enabled if the stream has LARGE_BLOCKS.
1278 	 */
1279 	if ((featureflags & DMU_BACKUP_FEATURE_LARGE_BLOCKS) &&
1280 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LARGE_BLOCKS))
1281 		return (SET_ERROR(ENOTSUP));
1282 
1283 	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1284 	if (error == 0) {
1285 		/* target fs already exists; recv into temp clone */
1286 
1287 		/* Can't recv a clone into an existing fs */
1288 		if (flags & DRR_FLAG_CLONE || drba->drba_origin) {
1289 			dsl_dataset_rele(ds, FTAG);
1290 			return (SET_ERROR(EINVAL));
1291 		}
1292 
1293 		error = recv_begin_check_existing_impl(drba, ds, fromguid);
1294 		dsl_dataset_rele(ds, FTAG);
1295 	} else if (error == ENOENT) {
1296 		/* target fs does not exist; must be a full backup or clone */
1297 		char buf[MAXNAMELEN];
1298 
1299 		/*
1300 		 * If it's a non-clone incremental, we are missing the
1301 		 * target fs, so fail the recv.
1302 		 */
1303 		if (fromguid != 0 && !(flags & DRR_FLAG_CLONE ||
1304 		    drba->drba_origin))
1305 			return (SET_ERROR(ENOENT));
1306 
1307 		/*
1308 		 * If we're receiving a full send as a clone, and it doesn't
1309 		 * contain all the necessary free records and freeobject
1310 		 * records, reject it.
1311 		 */
1312 		if (fromguid == 0 && drba->drba_origin &&
1313 		    !(flags & DRR_FLAG_FREERECORDS))
1314 			return (SET_ERROR(EINVAL));
1315 
1316 		/* Open the parent of tofs */
1317 		ASSERT3U(strlen(tofs), <, MAXNAMELEN);
1318 		(void) strlcpy(buf, tofs, strrchr(tofs, '/') - tofs + 1);
1319 		error = dsl_dataset_hold(dp, buf, FTAG, &ds);
1320 		if (error != 0)
1321 			return (error);
1322 
1323 		/*
1324 		 * Check filesystem and snapshot limits before receiving. We'll
1325 		 * recheck snapshot limits again at the end (we create the
1326 		 * filesystems and increment those counts during begin_sync).
1327 		 */
1328 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1329 		    ZFS_PROP_FILESYSTEM_LIMIT, NULL, drba->drba_cred);
1330 		if (error != 0) {
1331 			dsl_dataset_rele(ds, FTAG);
1332 			return (error);
1333 		}
1334 
1335 		error = dsl_fs_ss_limit_check(ds->ds_dir, 1,
1336 		    ZFS_PROP_SNAPSHOT_LIMIT, NULL, drba->drba_cred);
1337 		if (error != 0) {
1338 			dsl_dataset_rele(ds, FTAG);
1339 			return (error);
1340 		}
1341 
1342 		if (drba->drba_origin != NULL) {
1343 			dsl_dataset_t *origin;
1344 			error = dsl_dataset_hold(dp, drba->drba_origin,
1345 			    FTAG, &origin);
1346 			if (error != 0) {
1347 				dsl_dataset_rele(ds, FTAG);
1348 				return (error);
1349 			}
1350 			if (!origin->ds_is_snapshot) {
1351 				dsl_dataset_rele(origin, FTAG);
1352 				dsl_dataset_rele(ds, FTAG);
1353 				return (SET_ERROR(EINVAL));
1354 			}
1355 			if (dsl_dataset_phys(origin)->ds_guid != fromguid &&
1356 			    fromguid != 0) {
1357 				dsl_dataset_rele(origin, FTAG);
1358 				dsl_dataset_rele(ds, FTAG);
1359 				return (SET_ERROR(ENODEV));
1360 			}
1361 			dsl_dataset_rele(origin, FTAG);
1362 		}
1363 		dsl_dataset_rele(ds, FTAG);
1364 		error = 0;
1365 	}
1366 	return (error);
1367 }
1368 
1369 static void
1370 dmu_recv_begin_sync(void *arg, dmu_tx_t *tx)
1371 {
1372 	dmu_recv_begin_arg_t *drba = arg;
1373 	dsl_pool_t *dp = dmu_tx_pool(tx);
1374 	objset_t *mos = dp->dp_meta_objset;
1375 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1376 	const char *tofs = drba->drba_cookie->drc_tofs;
1377 	dsl_dataset_t *ds, *newds;
1378 	uint64_t dsobj;
1379 	int error;
1380 	uint64_t crflags = 0;
1381 
1382 	if (drrb->drr_flags & DRR_FLAG_CI_DATA)
1383 		crflags |= DS_FLAG_CI_DATASET;
1384 
1385 	error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1386 	if (error == 0) {
1387 		/* create temporary clone */
1388 		dsl_dataset_t *snap = NULL;
1389 		if (drba->drba_snapobj != 0) {
1390 			VERIFY0(dsl_dataset_hold_obj(dp,
1391 			    drba->drba_snapobj, FTAG, &snap));
1392 		}
1393 		dsobj = dsl_dataset_create_sync(ds->ds_dir, recv_clone_name,
1394 		    snap, crflags, drba->drba_cred, tx);
1395 		if (drba->drba_snapobj != 0)
1396 			dsl_dataset_rele(snap, FTAG);
1397 		dsl_dataset_rele(ds, FTAG);
1398 	} else {
1399 		dsl_dir_t *dd;
1400 		const char *tail;
1401 		dsl_dataset_t *origin = NULL;
1402 
1403 		VERIFY0(dsl_dir_hold(dp, tofs, FTAG, &dd, &tail));
1404 
1405 		if (drba->drba_origin != NULL) {
1406 			VERIFY0(dsl_dataset_hold(dp, drba->drba_origin,
1407 			    FTAG, &origin));
1408 		}
1409 
1410 		/* Create new dataset. */
1411 		dsobj = dsl_dataset_create_sync(dd,
1412 		    strrchr(tofs, '/') + 1,
1413 		    origin, crflags, drba->drba_cred, tx);
1414 		if (origin != NULL)
1415 			dsl_dataset_rele(origin, FTAG);
1416 		dsl_dir_rele(dd, FTAG);
1417 		drba->drba_cookie->drc_newfs = B_TRUE;
1418 	}
1419 	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &newds));
1420 
1421 	if (drba->drba_cookie->drc_resumable) {
1422 		dsl_dataset_zapify(newds, tx);
1423 		if (drrb->drr_fromguid != 0) {
1424 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_FROMGUID,
1425 			    8, 1, &drrb->drr_fromguid, tx));
1426 		}
1427 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TOGUID,
1428 		    8, 1, &drrb->drr_toguid, tx));
1429 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_TONAME,
1430 		    1, strlen(drrb->drr_toname) + 1, drrb->drr_toname, tx));
1431 		uint64_t one = 1;
1432 		uint64_t zero = 0;
1433 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OBJECT,
1434 		    8, 1, &one, tx));
1435 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_OFFSET,
1436 		    8, 1, &zero, tx));
1437 		VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_BYTES,
1438 		    8, 1, &zero, tx));
1439 		if (DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo) &
1440 		    DMU_BACKUP_FEATURE_EMBED_DATA) {
1441 			VERIFY0(zap_add(mos, dsobj, DS_FIELD_RESUME_EMBEDOK,
1442 			    8, 1, &one, tx));
1443 		}
1444 	}
1445 
1446 	dmu_buf_will_dirty(newds->ds_dbuf, tx);
1447 	dsl_dataset_phys(newds)->ds_flags |= DS_FLAG_INCONSISTENT;
1448 
1449 	/*
1450 	 * If we actually created a non-clone, we need to create the
1451 	 * objset in our new dataset.
1452 	 */
1453 	if (BP_IS_HOLE(dsl_dataset_get_blkptr(newds))) {
1454 		(void) dmu_objset_create_impl(dp->dp_spa,
1455 		    newds, dsl_dataset_get_blkptr(newds), drrb->drr_type, tx);
1456 	}
1457 
1458 	drba->drba_cookie->drc_ds = newds;
1459 
1460 	spa_history_log_internal_ds(newds, "receive", tx, "");
1461 }
1462 
1463 static int
1464 dmu_recv_resume_begin_check(void *arg, dmu_tx_t *tx)
1465 {
1466 	dmu_recv_begin_arg_t *drba = arg;
1467 	dsl_pool_t *dp = dmu_tx_pool(tx);
1468 	struct drr_begin *drrb = drba->drba_cookie->drc_drrb;
1469 	int error;
1470 	uint64_t featureflags = DMU_GET_FEATUREFLAGS(drrb->drr_versioninfo);
1471 	dsl_dataset_t *ds;
1472 	const char *tofs = drba->drba_cookie->drc_tofs;
1473 
1474 	/* already checked */
1475 	ASSERT3U(drrb->drr_magic, ==, DMU_BACKUP_MAGIC);
1476 	ASSERT(featureflags & DMU_BACKUP_FEATURE_RESUMING);
1477 
1478 	if (DMU_GET_STREAM_HDRTYPE(drrb->drr_versioninfo) ==
1479 	    DMU_COMPOUNDSTREAM ||
1480 	    drrb->drr_type >= DMU_OST_NUMTYPES)
1481 		return (SET_ERROR(EINVAL));
1482 
1483 	/* Verify pool version supports SA if SA_SPILL feature set */
1484 	if ((featureflags & DMU_BACKUP_FEATURE_SA_SPILL) &&
1485 	    spa_version(dp->dp_spa) < SPA_VERSION_SA)
1486 		return (SET_ERROR(ENOTSUP));
1487 
1488 	/*
1489 	 * The receiving code doesn't know how to translate a WRITE_EMBEDDED
1490 	 * record to a plain WRITE record, so the pool must have the
1491 	 * EMBEDDED_DATA feature enabled if the stream has WRITE_EMBEDDED
1492 	 * records.  Same with WRITE_EMBEDDED records that use LZ4 compression.
1493 	 */
1494 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA) &&
1495 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_EMBEDDED_DATA))
1496 		return (SET_ERROR(ENOTSUP));
1497 	if ((featureflags & DMU_BACKUP_FEATURE_EMBED_DATA_LZ4) &&
1498 	    !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_LZ4_COMPRESS))
1499 		return (SET_ERROR(ENOTSUP));
1500 
1501 	char recvname[ZFS_MAXNAMELEN];
1502 
1503 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1504 	    tofs, recv_clone_name);
1505 
1506 	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1507 		/* %recv does not exist; continue in tofs */
1508 		error = dsl_dataset_hold(dp, tofs, FTAG, &ds);
1509 		if (error != 0)
1510 			return (error);
1511 	}
1512 
1513 	/* check that ds is marked inconsistent */
1514 	if (!DS_IS_INCONSISTENT(ds)) {
1515 		dsl_dataset_rele(ds, FTAG);
1516 		return (SET_ERROR(EINVAL));
1517 	}
1518 
1519 	/* check that there is resuming data, and that the toguid matches */
1520 	if (!dsl_dataset_is_zapified(ds)) {
1521 		dsl_dataset_rele(ds, FTAG);
1522 		return (SET_ERROR(EINVAL));
1523 	}
1524 	uint64_t val;
1525 	error = zap_lookup(dp->dp_meta_objset, ds->ds_object,
1526 	    DS_FIELD_RESUME_TOGUID, sizeof (val), 1, &val);
1527 	if (error != 0 || drrb->drr_toguid != val) {
1528 		dsl_dataset_rele(ds, FTAG);
1529 		return (SET_ERROR(EINVAL));
1530 	}
1531 
1532 	/*
1533 	 * Check if the receive is still running.  If so, it will be owned.
1534 	 * Note that nothing else can own the dataset (e.g. after the receive
1535 	 * fails) because it will be marked inconsistent.
1536 	 */
1537 	if (dsl_dataset_has_owner(ds)) {
1538 		dsl_dataset_rele(ds, FTAG);
1539 		return (SET_ERROR(EBUSY));
1540 	}
1541 
1542 	/* There should not be any snapshots of this fs yet. */
1543 	if (ds->ds_prev != NULL && ds->ds_prev->ds_dir == ds->ds_dir) {
1544 		dsl_dataset_rele(ds, FTAG);
1545 		return (SET_ERROR(EINVAL));
1546 	}
1547 
1548 	/*
1549 	 * Note: resume point will be checked when we process the first WRITE
1550 	 * record.
1551 	 */
1552 
1553 	/* check that the origin matches */
1554 	val = 0;
1555 	(void) zap_lookup(dp->dp_meta_objset, ds->ds_object,
1556 	    DS_FIELD_RESUME_FROMGUID, sizeof (val), 1, &val);
1557 	if (drrb->drr_fromguid != val) {
1558 		dsl_dataset_rele(ds, FTAG);
1559 		return (SET_ERROR(EINVAL));
1560 	}
1561 
1562 	dsl_dataset_rele(ds, FTAG);
1563 	return (0);
1564 }
1565 
1566 static void
1567 dmu_recv_resume_begin_sync(void *arg, dmu_tx_t *tx)
1568 {
1569 	dmu_recv_begin_arg_t *drba = arg;
1570 	dsl_pool_t *dp = dmu_tx_pool(tx);
1571 	const char *tofs = drba->drba_cookie->drc_tofs;
1572 	dsl_dataset_t *ds;
1573 	uint64_t dsobj;
1574 	char recvname[ZFS_MAXNAMELEN];
1575 
1576 	(void) snprintf(recvname, sizeof (recvname), "%s/%s",
1577 	    tofs, recv_clone_name);
1578 
1579 	if (dsl_dataset_hold(dp, recvname, FTAG, &ds) != 0) {
1580 		/* %recv does not exist; continue in tofs */
1581 		VERIFY0(dsl_dataset_hold(dp, tofs, FTAG, &ds));
1582 		drba->drba_cookie->drc_newfs = B_TRUE;
1583 	}
1584 
1585 	/* clear the inconsistent flag so that we can own it */
1586 	ASSERT(DS_IS_INCONSISTENT(ds));
1587 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1588 	dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
1589 	dsobj = ds->ds_object;
1590 	dsl_dataset_rele(ds, FTAG);
1591 
1592 	VERIFY0(dsl_dataset_own_obj(dp, dsobj, dmu_recv_tag, &ds));
1593 
1594 	dmu_buf_will_dirty(ds->ds_dbuf, tx);
1595 	dsl_dataset_phys(ds)->ds_flags |= DS_FLAG_INCONSISTENT;
1596 
1597 	ASSERT(!BP_IS_HOLE(dsl_dataset_get_blkptr(ds)));
1598 
1599 	drba->drba_cookie->drc_ds = ds;
1600 
1601 	spa_history_log_internal_ds(ds, "resume receive", tx, "");
1602 }
1603 
1604 /*
1605  * NB: callers *MUST* call dmu_recv_stream() if dmu_recv_begin()
1606  * succeeds; otherwise we will leak the holds on the datasets.
1607  */
1608 int
1609 dmu_recv_begin(char *tofs, char *tosnap, dmu_replay_record_t *drr_begin,
1610     boolean_t force, boolean_t resumable, char *origin, dmu_recv_cookie_t *drc)
1611 {
1612 	dmu_recv_begin_arg_t drba = { 0 };
1613 
1614 	bzero(drc, sizeof (dmu_recv_cookie_t));
1615 	drc->drc_drr_begin = drr_begin;
1616 	drc->drc_drrb = &drr_begin->drr_u.drr_begin;
1617 	drc->drc_tosnap = tosnap;
1618 	drc->drc_tofs = tofs;
1619 	drc->drc_force = force;
1620 	drc->drc_resumable = resumable;
1621 	drc->drc_cred = CRED();
1622 
1623 	if (drc->drc_drrb->drr_magic == BSWAP_64(DMU_BACKUP_MAGIC)) {
1624 		drc->drc_byteswap = B_TRUE;
1625 		fletcher_4_incremental_byteswap(drr_begin,
1626 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1627 		byteswap_record(drr_begin);
1628 	} else if (drc->drc_drrb->drr_magic == DMU_BACKUP_MAGIC) {
1629 		fletcher_4_incremental_native(drr_begin,
1630 		    sizeof (dmu_replay_record_t), &drc->drc_cksum);
1631 	} else {
1632 		return (SET_ERROR(EINVAL));
1633 	}
1634 
1635 	drba.drba_origin = origin;
1636 	drba.drba_cookie = drc;
1637 	drba.drba_cred = CRED();
1638 
1639 	if (DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo) &
1640 	    DMU_BACKUP_FEATURE_RESUMING) {
1641 		return (dsl_sync_task(tofs,
1642 		    dmu_recv_resume_begin_check, dmu_recv_resume_begin_sync,
1643 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1644 	} else  {
1645 		return (dsl_sync_task(tofs,
1646 		    dmu_recv_begin_check, dmu_recv_begin_sync,
1647 		    &drba, 5, ZFS_SPACE_CHECK_NORMAL));
1648 	}
1649 }
1650 
1651 struct receive_record_arg {
1652 	dmu_replay_record_t header;
1653 	void *payload; /* Pointer to a buffer containing the payload */
1654 	/*
1655 	 * If the record is a write, pointer to the arc_buf_t containing the
1656 	 * payload.
1657 	 */
1658 	arc_buf_t *write_buf;
1659 	int payload_size;
1660 	uint64_t bytes_read; /* bytes read from stream when record created */
1661 	boolean_t eos_marker; /* Marks the end of the stream */
1662 	bqueue_node_t node;
1663 };
1664 
1665 struct receive_writer_arg {
1666 	objset_t *os;
1667 	boolean_t byteswap;
1668 	bqueue_t q;
1669 
1670 	/*
1671 	 * These three args are used to signal to the main thread that we're
1672 	 * done.
1673 	 */
1674 	kmutex_t mutex;
1675 	kcondvar_t cv;
1676 	boolean_t done;
1677 
1678 	int err;
1679 	/* A map from guid to dataset to help handle dedup'd streams. */
1680 	avl_tree_t *guid_to_ds_map;
1681 	boolean_t resumable;
1682 	uint64_t last_object, last_offset;
1683 	uint64_t bytes_read; /* bytes read when current record created */
1684 };
1685 
1686 struct objlist {
1687 	list_t list; /* List of struct receive_objnode. */
1688 	/*
1689 	 * Last object looked up. Used to assert that objects are being looked
1690 	 * up in ascending order.
1691 	 */
1692 	uint64_t last_lookup;
1693 };
1694 
1695 struct receive_objnode {
1696 	list_node_t node;
1697 	uint64_t object;
1698 };
1699 
1700 struct receive_arg  {
1701 	objset_t *os;
1702 	vnode_t *vp; /* The vnode to read the stream from */
1703 	uint64_t voff; /* The current offset in the stream */
1704 	uint64_t bytes_read;
1705 	/*
1706 	 * A record that has had its payload read in, but hasn't yet been handed
1707 	 * off to the worker thread.
1708 	 */
1709 	struct receive_record_arg *rrd;
1710 	/* A record that has had its header read in, but not its payload. */
1711 	struct receive_record_arg *next_rrd;
1712 	zio_cksum_t cksum;
1713 	zio_cksum_t prev_cksum;
1714 	int err;
1715 	boolean_t byteswap;
1716 	/* Sorted list of objects not to issue prefetches for. */
1717 	struct objlist ignore_objlist;
1718 };
1719 
1720 typedef struct guid_map_entry {
1721 	uint64_t	guid;
1722 	dsl_dataset_t	*gme_ds;
1723 	avl_node_t	avlnode;
1724 } guid_map_entry_t;
1725 
1726 static int
1727 guid_compare(const void *arg1, const void *arg2)
1728 {
1729 	const guid_map_entry_t *gmep1 = arg1;
1730 	const guid_map_entry_t *gmep2 = arg2;
1731 
1732 	if (gmep1->guid < gmep2->guid)
1733 		return (-1);
1734 	else if (gmep1->guid > gmep2->guid)
1735 		return (1);
1736 	return (0);
1737 }
1738 
1739 static void
1740 free_guid_map_onexit(void *arg)
1741 {
1742 	avl_tree_t *ca = arg;
1743 	void *cookie = NULL;
1744 	guid_map_entry_t *gmep;
1745 
1746 	while ((gmep = avl_destroy_nodes(ca, &cookie)) != NULL) {
1747 		dsl_dataset_long_rele(gmep->gme_ds, gmep);
1748 		dsl_dataset_rele(gmep->gme_ds, gmep);
1749 		kmem_free(gmep, sizeof (guid_map_entry_t));
1750 	}
1751 	avl_destroy(ca);
1752 	kmem_free(ca, sizeof (avl_tree_t));
1753 }
1754 
1755 static int
1756 receive_read(struct receive_arg *ra, int len, void *buf)
1757 {
1758 	int done = 0;
1759 
1760 	/* some things will require 8-byte alignment, so everything must */
1761 	ASSERT0(len % 8);
1762 
1763 	while (done < len) {
1764 		ssize_t resid;
1765 
1766 		ra->err = vn_rdwr(UIO_READ, ra->vp,
1767 		    (char *)buf + done, len - done,
1768 		    ra->voff, UIO_SYSSPACE, FAPPEND,
1769 		    RLIM64_INFINITY, CRED(), &resid);
1770 
1771 		if (resid == len - done) {
1772 			/*
1773 			 * Note: ECKSUM indicates that the receive
1774 			 * was interrupted and can potentially be resumed.
1775 			 */
1776 			ra->err = SET_ERROR(ECKSUM);
1777 		}
1778 		ra->voff += len - done - resid;
1779 		done = len - resid;
1780 		if (ra->err != 0)
1781 			return (ra->err);
1782 	}
1783 
1784 	ra->bytes_read += len;
1785 
1786 	ASSERT3U(done, ==, len);
1787 	return (0);
1788 }
1789 
1790 static void
1791 byteswap_record(dmu_replay_record_t *drr)
1792 {
1793 #define	DO64(X) (drr->drr_u.X = BSWAP_64(drr->drr_u.X))
1794 #define	DO32(X) (drr->drr_u.X = BSWAP_32(drr->drr_u.X))
1795 	drr->drr_type = BSWAP_32(drr->drr_type);
1796 	drr->drr_payloadlen = BSWAP_32(drr->drr_payloadlen);
1797 
1798 	switch (drr->drr_type) {
1799 	case DRR_BEGIN:
1800 		DO64(drr_begin.drr_magic);
1801 		DO64(drr_begin.drr_versioninfo);
1802 		DO64(drr_begin.drr_creation_time);
1803 		DO32(drr_begin.drr_type);
1804 		DO32(drr_begin.drr_flags);
1805 		DO64(drr_begin.drr_toguid);
1806 		DO64(drr_begin.drr_fromguid);
1807 		break;
1808 	case DRR_OBJECT:
1809 		DO64(drr_object.drr_object);
1810 		DO32(drr_object.drr_type);
1811 		DO32(drr_object.drr_bonustype);
1812 		DO32(drr_object.drr_blksz);
1813 		DO32(drr_object.drr_bonuslen);
1814 		DO64(drr_object.drr_toguid);
1815 		break;
1816 	case DRR_FREEOBJECTS:
1817 		DO64(drr_freeobjects.drr_firstobj);
1818 		DO64(drr_freeobjects.drr_numobjs);
1819 		DO64(drr_freeobjects.drr_toguid);
1820 		break;
1821 	case DRR_WRITE:
1822 		DO64(drr_write.drr_object);
1823 		DO32(drr_write.drr_type);
1824 		DO64(drr_write.drr_offset);
1825 		DO64(drr_write.drr_length);
1826 		DO64(drr_write.drr_toguid);
1827 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write.drr_key.ddk_cksum);
1828 		DO64(drr_write.drr_key.ddk_prop);
1829 		break;
1830 	case DRR_WRITE_BYREF:
1831 		DO64(drr_write_byref.drr_object);
1832 		DO64(drr_write_byref.drr_offset);
1833 		DO64(drr_write_byref.drr_length);
1834 		DO64(drr_write_byref.drr_toguid);
1835 		DO64(drr_write_byref.drr_refguid);
1836 		DO64(drr_write_byref.drr_refobject);
1837 		DO64(drr_write_byref.drr_refoffset);
1838 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_write_byref.
1839 		    drr_key.ddk_cksum);
1840 		DO64(drr_write_byref.drr_key.ddk_prop);
1841 		break;
1842 	case DRR_WRITE_EMBEDDED:
1843 		DO64(drr_write_embedded.drr_object);
1844 		DO64(drr_write_embedded.drr_offset);
1845 		DO64(drr_write_embedded.drr_length);
1846 		DO64(drr_write_embedded.drr_toguid);
1847 		DO32(drr_write_embedded.drr_lsize);
1848 		DO32(drr_write_embedded.drr_psize);
1849 		break;
1850 	case DRR_FREE:
1851 		DO64(drr_free.drr_object);
1852 		DO64(drr_free.drr_offset);
1853 		DO64(drr_free.drr_length);
1854 		DO64(drr_free.drr_toguid);
1855 		break;
1856 	case DRR_SPILL:
1857 		DO64(drr_spill.drr_object);
1858 		DO64(drr_spill.drr_length);
1859 		DO64(drr_spill.drr_toguid);
1860 		break;
1861 	case DRR_END:
1862 		DO64(drr_end.drr_toguid);
1863 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_end.drr_checksum);
1864 		break;
1865 	}
1866 
1867 	if (drr->drr_type != DRR_BEGIN) {
1868 		ZIO_CHECKSUM_BSWAP(&drr->drr_u.drr_checksum.drr_checksum);
1869 	}
1870 
1871 #undef DO64
1872 #undef DO32
1873 }
1874 
1875 static inline uint8_t
1876 deduce_nblkptr(dmu_object_type_t bonus_type, uint64_t bonus_size)
1877 {
1878 	if (bonus_type == DMU_OT_SA) {
1879 		return (1);
1880 	} else {
1881 		return (1 +
1882 		    ((DN_MAX_BONUSLEN - bonus_size) >> SPA_BLKPTRSHIFT));
1883 	}
1884 }
1885 
1886 static void
1887 save_resume_state(struct receive_writer_arg *rwa,
1888     uint64_t object, uint64_t offset, dmu_tx_t *tx)
1889 {
1890 	int txgoff = dmu_tx_get_txg(tx) & TXG_MASK;
1891 
1892 	if (!rwa->resumable)
1893 		return;
1894 
1895 	/*
1896 	 * We use ds_resume_bytes[] != 0 to indicate that we need to
1897 	 * update this on disk, so it must not be 0.
1898 	 */
1899 	ASSERT(rwa->bytes_read != 0);
1900 
1901 	/*
1902 	 * We only resume from write records, which have a valid
1903 	 * (non-meta-dnode) object number.
1904 	 */
1905 	ASSERT(object != 0);
1906 
1907 	/*
1908 	 * For resuming to work correctly, we must receive records in order,
1909 	 * sorted by object,offset.  This is checked by the callers, but
1910 	 * assert it here for good measure.
1911 	 */
1912 	ASSERT3U(object, >=, rwa->os->os_dsl_dataset->ds_resume_object[txgoff]);
1913 	ASSERT(object != rwa->os->os_dsl_dataset->ds_resume_object[txgoff] ||
1914 	    offset >= rwa->os->os_dsl_dataset->ds_resume_offset[txgoff]);
1915 	ASSERT3U(rwa->bytes_read, >=,
1916 	    rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff]);
1917 
1918 	rwa->os->os_dsl_dataset->ds_resume_object[txgoff] = object;
1919 	rwa->os->os_dsl_dataset->ds_resume_offset[txgoff] = offset;
1920 	rwa->os->os_dsl_dataset->ds_resume_bytes[txgoff] = rwa->bytes_read;
1921 }
1922 
1923 static int
1924 receive_object(struct receive_writer_arg *rwa, struct drr_object *drro,
1925     void *data)
1926 {
1927 	dmu_object_info_t doi;
1928 	dmu_tx_t *tx;
1929 	uint64_t object;
1930 	int err;
1931 
1932 	if (drro->drr_type == DMU_OT_NONE ||
1933 	    !DMU_OT_IS_VALID(drro->drr_type) ||
1934 	    !DMU_OT_IS_VALID(drro->drr_bonustype) ||
1935 	    drro->drr_checksumtype >= ZIO_CHECKSUM_FUNCTIONS ||
1936 	    drro->drr_compress >= ZIO_COMPRESS_FUNCTIONS ||
1937 	    P2PHASE(drro->drr_blksz, SPA_MINBLOCKSIZE) ||
1938 	    drro->drr_blksz < SPA_MINBLOCKSIZE ||
1939 	    drro->drr_blksz > spa_maxblocksize(dmu_objset_spa(rwa->os)) ||
1940 	    drro->drr_bonuslen > DN_MAX_BONUSLEN) {
1941 		return (SET_ERROR(EINVAL));
1942 	}
1943 
1944 	err = dmu_object_info(rwa->os, drro->drr_object, &doi);
1945 
1946 	if (err != 0 && err != ENOENT)
1947 		return (SET_ERROR(EINVAL));
1948 	object = err == 0 ? drro->drr_object : DMU_NEW_OBJECT;
1949 
1950 	/*
1951 	 * If we are losing blkptrs or changing the block size this must
1952 	 * be a new file instance.  We must clear out the previous file
1953 	 * contents before we can change this type of metadata in the dnode.
1954 	 */
1955 	if (err == 0) {
1956 		int nblkptr;
1957 
1958 		nblkptr = deduce_nblkptr(drro->drr_bonustype,
1959 		    drro->drr_bonuslen);
1960 
1961 		if (drro->drr_blksz != doi.doi_data_block_size ||
1962 		    nblkptr < doi.doi_nblkptr) {
1963 			err = dmu_free_long_range(rwa->os, drro->drr_object,
1964 			    0, DMU_OBJECT_END);
1965 			if (err != 0)
1966 				return (SET_ERROR(EINVAL));
1967 		}
1968 	}
1969 
1970 	tx = dmu_tx_create(rwa->os);
1971 	dmu_tx_hold_bonus(tx, object);
1972 	err = dmu_tx_assign(tx, TXG_WAIT);
1973 	if (err != 0) {
1974 		dmu_tx_abort(tx);
1975 		return (err);
1976 	}
1977 
1978 	if (object == DMU_NEW_OBJECT) {
1979 		/* currently free, want to be allocated */
1980 		err = dmu_object_claim(rwa->os, drro->drr_object,
1981 		    drro->drr_type, drro->drr_blksz,
1982 		    drro->drr_bonustype, drro->drr_bonuslen, tx);
1983 	} else if (drro->drr_type != doi.doi_type ||
1984 	    drro->drr_blksz != doi.doi_data_block_size ||
1985 	    drro->drr_bonustype != doi.doi_bonus_type ||
1986 	    drro->drr_bonuslen != doi.doi_bonus_size) {
1987 		/* currently allocated, but with different properties */
1988 		err = dmu_object_reclaim(rwa->os, drro->drr_object,
1989 		    drro->drr_type, drro->drr_blksz,
1990 		    drro->drr_bonustype, drro->drr_bonuslen, tx);
1991 	}
1992 	if (err != 0) {
1993 		dmu_tx_commit(tx);
1994 		return (SET_ERROR(EINVAL));
1995 	}
1996 
1997 	dmu_object_set_checksum(rwa->os, drro->drr_object,
1998 	    drro->drr_checksumtype, tx);
1999 	dmu_object_set_compress(rwa->os, drro->drr_object,
2000 	    drro->drr_compress, tx);
2001 
2002 	if (data != NULL) {
2003 		dmu_buf_t *db;
2004 
2005 		VERIFY0(dmu_bonus_hold(rwa->os, drro->drr_object, FTAG, &db));
2006 		dmu_buf_will_dirty(db, tx);
2007 
2008 		ASSERT3U(db->db_size, >=, drro->drr_bonuslen);
2009 		bcopy(data, db->db_data, drro->drr_bonuslen);
2010 		if (rwa->byteswap) {
2011 			dmu_object_byteswap_t byteswap =
2012 			    DMU_OT_BYTESWAP(drro->drr_bonustype);
2013 			dmu_ot_byteswap[byteswap].ob_func(db->db_data,
2014 			    drro->drr_bonuslen);
2015 		}
2016 		dmu_buf_rele(db, FTAG);
2017 	}
2018 	dmu_tx_commit(tx);
2019 
2020 	return (0);
2021 }
2022 
2023 /* ARGSUSED */
2024 static int
2025 receive_freeobjects(struct receive_writer_arg *rwa,
2026     struct drr_freeobjects *drrfo)
2027 {
2028 	uint64_t obj;
2029 	int next_err = 0;
2030 
2031 	if (drrfo->drr_firstobj + drrfo->drr_numobjs < drrfo->drr_firstobj)
2032 		return (SET_ERROR(EINVAL));
2033 
2034 	for (obj = drrfo->drr_firstobj;
2035 	    obj < drrfo->drr_firstobj + drrfo->drr_numobjs && next_err == 0;
2036 	    next_err = dmu_object_next(rwa->os, &obj, FALSE, 0)) {
2037 		int err;
2038 
2039 		if (dmu_object_info(rwa->os, obj, NULL) != 0)
2040 			continue;
2041 
2042 		err = dmu_free_long_object(rwa->os, obj);
2043 		if (err != 0)
2044 			return (err);
2045 	}
2046 	if (next_err != ESRCH)
2047 		return (next_err);
2048 	return (0);
2049 }
2050 
2051 static int
2052 receive_write(struct receive_writer_arg *rwa, struct drr_write *drrw,
2053     arc_buf_t *abuf)
2054 {
2055 	dmu_tx_t *tx;
2056 	int err;
2057 
2058 	if (drrw->drr_offset + drrw->drr_length < drrw->drr_offset ||
2059 	    !DMU_OT_IS_VALID(drrw->drr_type))
2060 		return (SET_ERROR(EINVAL));
2061 
2062 	/*
2063 	 * For resuming to work, records must be in increasing order
2064 	 * by (object, offset).
2065 	 */
2066 	if (drrw->drr_object < rwa->last_object ||
2067 	    (drrw->drr_object == rwa->last_object &&
2068 	    drrw->drr_offset < rwa->last_offset)) {
2069 		return (SET_ERROR(EINVAL));
2070 	}
2071 	rwa->last_object = drrw->drr_object;
2072 	rwa->last_offset = drrw->drr_offset;
2073 
2074 	if (dmu_object_info(rwa->os, drrw->drr_object, NULL) != 0)
2075 		return (SET_ERROR(EINVAL));
2076 
2077 	tx = dmu_tx_create(rwa->os);
2078 
2079 	dmu_tx_hold_write(tx, drrw->drr_object,
2080 	    drrw->drr_offset, drrw->drr_length);
2081 	err = dmu_tx_assign(tx, TXG_WAIT);
2082 	if (err != 0) {
2083 		dmu_tx_abort(tx);
2084 		return (err);
2085 	}
2086 	if (rwa->byteswap) {
2087 		dmu_object_byteswap_t byteswap =
2088 		    DMU_OT_BYTESWAP(drrw->drr_type);
2089 		dmu_ot_byteswap[byteswap].ob_func(abuf->b_data,
2090 		    drrw->drr_length);
2091 	}
2092 
2093 	dmu_buf_t *bonus;
2094 	if (dmu_bonus_hold(rwa->os, drrw->drr_object, FTAG, &bonus) != 0)
2095 		return (SET_ERROR(EINVAL));
2096 	dmu_assign_arcbuf(bonus, drrw->drr_offset, abuf, tx);
2097 
2098 	/*
2099 	 * Note: If the receive fails, we want the resume stream to start
2100 	 * with the same record that we last successfully received (as opposed
2101 	 * to the next record), so that we can verify that we are
2102 	 * resuming from the correct location.
2103 	 */
2104 	save_resume_state(rwa, drrw->drr_object, drrw->drr_offset, tx);
2105 	dmu_tx_commit(tx);
2106 	dmu_buf_rele(bonus, FTAG);
2107 
2108 	return (0);
2109 }
2110 
2111 /*
2112  * Handle a DRR_WRITE_BYREF record.  This record is used in dedup'ed
2113  * streams to refer to a copy of the data that is already on the
2114  * system because it came in earlier in the stream.  This function
2115  * finds the earlier copy of the data, and uses that copy instead of
2116  * data from the stream to fulfill this write.
2117  */
2118 static int
2119 receive_write_byref(struct receive_writer_arg *rwa,
2120     struct drr_write_byref *drrwbr)
2121 {
2122 	dmu_tx_t *tx;
2123 	int err;
2124 	guid_map_entry_t gmesrch;
2125 	guid_map_entry_t *gmep;
2126 	avl_index_t where;
2127 	objset_t *ref_os = NULL;
2128 	dmu_buf_t *dbp;
2129 
2130 	if (drrwbr->drr_offset + drrwbr->drr_length < drrwbr->drr_offset)
2131 		return (SET_ERROR(EINVAL));
2132 
2133 	/*
2134 	 * If the GUID of the referenced dataset is different from the
2135 	 * GUID of the target dataset, find the referenced dataset.
2136 	 */
2137 	if (drrwbr->drr_toguid != drrwbr->drr_refguid) {
2138 		gmesrch.guid = drrwbr->drr_refguid;
2139 		if ((gmep = avl_find(rwa->guid_to_ds_map, &gmesrch,
2140 		    &where)) == NULL) {
2141 			return (SET_ERROR(EINVAL));
2142 		}
2143 		if (dmu_objset_from_ds(gmep->gme_ds, &ref_os))
2144 			return (SET_ERROR(EINVAL));
2145 	} else {
2146 		ref_os = rwa->os;
2147 	}
2148 
2149 	err = dmu_buf_hold(ref_os, drrwbr->drr_refobject,
2150 	    drrwbr->drr_refoffset, FTAG, &dbp, DMU_READ_PREFETCH);
2151 	if (err != 0)
2152 		return (err);
2153 
2154 	tx = dmu_tx_create(rwa->os);
2155 
2156 	dmu_tx_hold_write(tx, drrwbr->drr_object,
2157 	    drrwbr->drr_offset, drrwbr->drr_length);
2158 	err = dmu_tx_assign(tx, TXG_WAIT);
2159 	if (err != 0) {
2160 		dmu_tx_abort(tx);
2161 		return (err);
2162 	}
2163 	dmu_write(rwa->os, drrwbr->drr_object,
2164 	    drrwbr->drr_offset, drrwbr->drr_length, dbp->db_data, tx);
2165 	dmu_buf_rele(dbp, FTAG);
2166 
2167 	/* See comment in restore_write. */
2168 	save_resume_state(rwa, drrwbr->drr_object, drrwbr->drr_offset, tx);
2169 	dmu_tx_commit(tx);
2170 	return (0);
2171 }
2172 
2173 static int
2174 receive_write_embedded(struct receive_writer_arg *rwa,
2175     struct drr_write_embedded *drrwe, void *data)
2176 {
2177 	dmu_tx_t *tx;
2178 	int err;
2179 
2180 	if (drrwe->drr_offset + drrwe->drr_length < drrwe->drr_offset)
2181 		return (EINVAL);
2182 
2183 	if (drrwe->drr_psize > BPE_PAYLOAD_SIZE)
2184 		return (EINVAL);
2185 
2186 	if (drrwe->drr_etype >= NUM_BP_EMBEDDED_TYPES)
2187 		return (EINVAL);
2188 	if (drrwe->drr_compression >= ZIO_COMPRESS_FUNCTIONS)
2189 		return (EINVAL);
2190 
2191 	tx = dmu_tx_create(rwa->os);
2192 
2193 	dmu_tx_hold_write(tx, drrwe->drr_object,
2194 	    drrwe->drr_offset, drrwe->drr_length);
2195 	err = dmu_tx_assign(tx, TXG_WAIT);
2196 	if (err != 0) {
2197 		dmu_tx_abort(tx);
2198 		return (err);
2199 	}
2200 
2201 	dmu_write_embedded(rwa->os, drrwe->drr_object,
2202 	    drrwe->drr_offset, data, drrwe->drr_etype,
2203 	    drrwe->drr_compression, drrwe->drr_lsize, drrwe->drr_psize,
2204 	    rwa->byteswap ^ ZFS_HOST_BYTEORDER, tx);
2205 
2206 	/* See comment in restore_write. */
2207 	save_resume_state(rwa, drrwe->drr_object, drrwe->drr_offset, tx);
2208 	dmu_tx_commit(tx);
2209 	return (0);
2210 }
2211 
2212 static int
2213 receive_spill(struct receive_writer_arg *rwa, struct drr_spill *drrs,
2214     void *data)
2215 {
2216 	dmu_tx_t *tx;
2217 	dmu_buf_t *db, *db_spill;
2218 	int err;
2219 
2220 	if (drrs->drr_length < SPA_MINBLOCKSIZE ||
2221 	    drrs->drr_length > spa_maxblocksize(dmu_objset_spa(rwa->os)))
2222 		return (SET_ERROR(EINVAL));
2223 
2224 	if (dmu_object_info(rwa->os, drrs->drr_object, NULL) != 0)
2225 		return (SET_ERROR(EINVAL));
2226 
2227 	VERIFY0(dmu_bonus_hold(rwa->os, drrs->drr_object, FTAG, &db));
2228 	if ((err = dmu_spill_hold_by_bonus(db, FTAG, &db_spill)) != 0) {
2229 		dmu_buf_rele(db, FTAG);
2230 		return (err);
2231 	}
2232 
2233 	tx = dmu_tx_create(rwa->os);
2234 
2235 	dmu_tx_hold_spill(tx, db->db_object);
2236 
2237 	err = dmu_tx_assign(tx, TXG_WAIT);
2238 	if (err != 0) {
2239 		dmu_buf_rele(db, FTAG);
2240 		dmu_buf_rele(db_spill, FTAG);
2241 		dmu_tx_abort(tx);
2242 		return (err);
2243 	}
2244 	dmu_buf_will_dirty(db_spill, tx);
2245 
2246 	if (db_spill->db_size < drrs->drr_length)
2247 		VERIFY(0 == dbuf_spill_set_blksz(db_spill,
2248 		    drrs->drr_length, tx));
2249 	bcopy(data, db_spill->db_data, drrs->drr_length);
2250 
2251 	dmu_buf_rele(db, FTAG);
2252 	dmu_buf_rele(db_spill, FTAG);
2253 
2254 	dmu_tx_commit(tx);
2255 	return (0);
2256 }
2257 
2258 /* ARGSUSED */
2259 static int
2260 receive_free(struct receive_writer_arg *rwa, struct drr_free *drrf)
2261 {
2262 	int err;
2263 
2264 	if (drrf->drr_length != -1ULL &&
2265 	    drrf->drr_offset + drrf->drr_length < drrf->drr_offset)
2266 		return (SET_ERROR(EINVAL));
2267 
2268 	if (dmu_object_info(rwa->os, drrf->drr_object, NULL) != 0)
2269 		return (SET_ERROR(EINVAL));
2270 
2271 	err = dmu_free_long_range(rwa->os, drrf->drr_object,
2272 	    drrf->drr_offset, drrf->drr_length);
2273 
2274 	return (err);
2275 }
2276 
2277 /* used to destroy the drc_ds on error */
2278 static void
2279 dmu_recv_cleanup_ds(dmu_recv_cookie_t *drc)
2280 {
2281 	if (drc->drc_resumable) {
2282 		/* wait for our resume state to be written to disk */
2283 		txg_wait_synced(drc->drc_ds->ds_dir->dd_pool, 0);
2284 		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2285 	} else {
2286 		char name[MAXNAMELEN];
2287 		dsl_dataset_name(drc->drc_ds, name);
2288 		dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
2289 		(void) dsl_destroy_head(name);
2290 	}
2291 }
2292 
2293 static void
2294 receive_cksum(struct receive_arg *ra, int len, void *buf)
2295 {
2296 	if (ra->byteswap) {
2297 		fletcher_4_incremental_byteswap(buf, len, &ra->cksum);
2298 	} else {
2299 		fletcher_4_incremental_native(buf, len, &ra->cksum);
2300 	}
2301 }
2302 
2303 /*
2304  * Read the payload into a buffer of size len, and update the current record's
2305  * payload field.
2306  * Allocate ra->next_rrd and read the next record's header into
2307  * ra->next_rrd->header.
2308  * Verify checksum of payload and next record.
2309  */
2310 static int
2311 receive_read_payload_and_next_header(struct receive_arg *ra, int len, void *buf)
2312 {
2313 	int err;
2314 
2315 	if (len != 0) {
2316 		ASSERT3U(len, <=, SPA_MAXBLOCKSIZE);
2317 		err = receive_read(ra, len, buf);
2318 		if (err != 0)
2319 			return (err);
2320 		receive_cksum(ra, len, buf);
2321 
2322 		/* note: rrd is NULL when reading the begin record's payload */
2323 		if (ra->rrd != NULL) {
2324 			ra->rrd->payload = buf;
2325 			ra->rrd->payload_size = len;
2326 			ra->rrd->bytes_read = ra->bytes_read;
2327 		}
2328 	}
2329 
2330 	ra->prev_cksum = ra->cksum;
2331 
2332 	ra->next_rrd = kmem_zalloc(sizeof (*ra->next_rrd), KM_SLEEP);
2333 	err = receive_read(ra, sizeof (ra->next_rrd->header),
2334 	    &ra->next_rrd->header);
2335 	ra->next_rrd->bytes_read = ra->bytes_read;
2336 	if (err != 0) {
2337 		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2338 		ra->next_rrd = NULL;
2339 		return (err);
2340 	}
2341 	if (ra->next_rrd->header.drr_type == DRR_BEGIN) {
2342 		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2343 		ra->next_rrd = NULL;
2344 		return (SET_ERROR(EINVAL));
2345 	}
2346 
2347 	/*
2348 	 * Note: checksum is of everything up to but not including the
2349 	 * checksum itself.
2350 	 */
2351 	ASSERT3U(offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2352 	    ==, sizeof (dmu_replay_record_t) - sizeof (zio_cksum_t));
2353 	receive_cksum(ra,
2354 	    offsetof(dmu_replay_record_t, drr_u.drr_checksum.drr_checksum),
2355 	    &ra->next_rrd->header);
2356 
2357 	zio_cksum_t cksum_orig =
2358 	    ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2359 	zio_cksum_t *cksump =
2360 	    &ra->next_rrd->header.drr_u.drr_checksum.drr_checksum;
2361 
2362 	if (ra->byteswap)
2363 		byteswap_record(&ra->next_rrd->header);
2364 
2365 	if ((!ZIO_CHECKSUM_IS_ZERO(cksump)) &&
2366 	    !ZIO_CHECKSUM_EQUAL(ra->cksum, *cksump)) {
2367 		kmem_free(ra->next_rrd, sizeof (*ra->next_rrd));
2368 		ra->next_rrd = NULL;
2369 		return (SET_ERROR(ECKSUM));
2370 	}
2371 
2372 	receive_cksum(ra, sizeof (cksum_orig), &cksum_orig);
2373 
2374 	return (0);
2375 }
2376 
2377 static void
2378 objlist_create(struct objlist *list)
2379 {
2380 	list_create(&list->list, sizeof (struct receive_objnode),
2381 	    offsetof(struct receive_objnode, node));
2382 	list->last_lookup = 0;
2383 }
2384 
2385 static void
2386 objlist_destroy(struct objlist *list)
2387 {
2388 	for (struct receive_objnode *n = list_remove_head(&list->list);
2389 	    n != NULL; n = list_remove_head(&list->list)) {
2390 		kmem_free(n, sizeof (*n));
2391 	}
2392 	list_destroy(&list->list);
2393 }
2394 
2395 /*
2396  * This function looks through the objlist to see if the specified object number
2397  * is contained in the objlist.  In the process, it will remove all object
2398  * numbers in the list that are smaller than the specified object number.  Thus,
2399  * any lookup of an object number smaller than a previously looked up object
2400  * number will always return false; therefore, all lookups should be done in
2401  * ascending order.
2402  */
2403 static boolean_t
2404 objlist_exists(struct objlist *list, uint64_t object)
2405 {
2406 	struct receive_objnode *node = list_head(&list->list);
2407 	ASSERT3U(object, >=, list->last_lookup);
2408 	list->last_lookup = object;
2409 	while (node != NULL && node->object < object) {
2410 		VERIFY3P(node, ==, list_remove_head(&list->list));
2411 		kmem_free(node, sizeof (*node));
2412 		node = list_head(&list->list);
2413 	}
2414 	return (node != NULL && node->object == object);
2415 }
2416 
2417 /*
2418  * The objlist is a list of object numbers stored in ascending order.  However,
2419  * the insertion of new object numbers does not seek out the correct location to
2420  * store a new object number; instead, it appends it to the list for simplicity.
2421  * Thus, any users must take care to only insert new object numbers in ascending
2422  * order.
2423  */
2424 static void
2425 objlist_insert(struct objlist *list, uint64_t object)
2426 {
2427 	struct receive_objnode *node = kmem_zalloc(sizeof (*node), KM_SLEEP);
2428 	node->object = object;
2429 #ifdef ZFS_DEBUG
2430 	struct receive_objnode *last_object = list_tail(&list->list);
2431 	uint64_t last_objnum = (last_object != NULL ? last_object->object : 0);
2432 	ASSERT3U(node->object, >, last_objnum);
2433 #endif
2434 	list_insert_tail(&list->list, node);
2435 }
2436 
2437 /*
2438  * Issue the prefetch reads for any necessary indirect blocks.
2439  *
2440  * We use the object ignore list to tell us whether or not to issue prefetches
2441  * for a given object.  We do this for both correctness (in case the blocksize
2442  * of an object has changed) and performance (if the object doesn't exist, don't
2443  * needlessly try to issue prefetches).  We also trim the list as we go through
2444  * the stream to prevent it from growing to an unbounded size.
2445  *
2446  * The object numbers within will always be in sorted order, and any write
2447  * records we see will also be in sorted order, but they're not sorted with
2448  * respect to each other (i.e. we can get several object records before
2449  * receiving each object's write records).  As a result, once we've reached a
2450  * given object number, we can safely remove any reference to lower object
2451  * numbers in the ignore list. In practice, we receive up to 32 object records
2452  * before receiving write records, so the list can have up to 32 nodes in it.
2453  */
2454 /* ARGSUSED */
2455 static void
2456 receive_read_prefetch(struct receive_arg *ra,
2457     uint64_t object, uint64_t offset, uint64_t length)
2458 {
2459 	if (!objlist_exists(&ra->ignore_objlist, object)) {
2460 		dmu_prefetch(ra->os, object, 1, offset, length,
2461 		    ZIO_PRIORITY_SYNC_READ);
2462 	}
2463 }
2464 
2465 /*
2466  * Read records off the stream, issuing any necessary prefetches.
2467  */
2468 static int
2469 receive_read_record(struct receive_arg *ra)
2470 {
2471 	int err;
2472 
2473 	switch (ra->rrd->header.drr_type) {
2474 	case DRR_OBJECT:
2475 	{
2476 		struct drr_object *drro = &ra->rrd->header.drr_u.drr_object;
2477 		uint32_t size = P2ROUNDUP(drro->drr_bonuslen, 8);
2478 		void *buf = kmem_zalloc(size, KM_SLEEP);
2479 		dmu_object_info_t doi;
2480 		err = receive_read_payload_and_next_header(ra, size, buf);
2481 		if (err != 0) {
2482 			kmem_free(buf, size);
2483 			return (err);
2484 		}
2485 		err = dmu_object_info(ra->os, drro->drr_object, &doi);
2486 		/*
2487 		 * See receive_read_prefetch for an explanation why we're
2488 		 * storing this object in the ignore_obj_list.
2489 		 */
2490 		if (err == ENOENT ||
2491 		    (err == 0 && doi.doi_data_block_size != drro->drr_blksz)) {
2492 			objlist_insert(&ra->ignore_objlist, drro->drr_object);
2493 			err = 0;
2494 		}
2495 		return (err);
2496 	}
2497 	case DRR_FREEOBJECTS:
2498 	{
2499 		err = receive_read_payload_and_next_header(ra, 0, NULL);
2500 		return (err);
2501 	}
2502 	case DRR_WRITE:
2503 	{
2504 		struct drr_write *drrw = &ra->rrd->header.drr_u.drr_write;
2505 		arc_buf_t *abuf = arc_loan_buf(dmu_objset_spa(ra->os),
2506 		    drrw->drr_length);
2507 
2508 		err = receive_read_payload_and_next_header(ra,
2509 		    drrw->drr_length, abuf->b_data);
2510 		if (err != 0) {
2511 			dmu_return_arcbuf(abuf);
2512 			return (err);
2513 		}
2514 		ra->rrd->write_buf = abuf;
2515 		receive_read_prefetch(ra, drrw->drr_object, drrw->drr_offset,
2516 		    drrw->drr_length);
2517 		return (err);
2518 	}
2519 	case DRR_WRITE_BYREF:
2520 	{
2521 		struct drr_write_byref *drrwb =
2522 		    &ra->rrd->header.drr_u.drr_write_byref;
2523 		err = receive_read_payload_and_next_header(ra, 0, NULL);
2524 		receive_read_prefetch(ra, drrwb->drr_object, drrwb->drr_offset,
2525 		    drrwb->drr_length);
2526 		return (err);
2527 	}
2528 	case DRR_WRITE_EMBEDDED:
2529 	{
2530 		struct drr_write_embedded *drrwe =
2531 		    &ra->rrd->header.drr_u.drr_write_embedded;
2532 		uint32_t size = P2ROUNDUP(drrwe->drr_psize, 8);
2533 		void *buf = kmem_zalloc(size, KM_SLEEP);
2534 
2535 		err = receive_read_payload_and_next_header(ra, size, buf);
2536 		if (err != 0) {
2537 			kmem_free(buf, size);
2538 			return (err);
2539 		}
2540 
2541 		receive_read_prefetch(ra, drrwe->drr_object, drrwe->drr_offset,
2542 		    drrwe->drr_length);
2543 		return (err);
2544 	}
2545 	case DRR_FREE:
2546 	{
2547 		/*
2548 		 * It might be beneficial to prefetch indirect blocks here, but
2549 		 * we don't really have the data to decide for sure.
2550 		 */
2551 		err = receive_read_payload_and_next_header(ra, 0, NULL);
2552 		return (err);
2553 	}
2554 	case DRR_END:
2555 	{
2556 		struct drr_end *drre = &ra->rrd->header.drr_u.drr_end;
2557 		if (!ZIO_CHECKSUM_EQUAL(ra->prev_cksum, drre->drr_checksum))
2558 			return (SET_ERROR(ECKSUM));
2559 		return (0);
2560 	}
2561 	case DRR_SPILL:
2562 	{
2563 		struct drr_spill *drrs = &ra->rrd->header.drr_u.drr_spill;
2564 		void *buf = kmem_zalloc(drrs->drr_length, KM_SLEEP);
2565 		err = receive_read_payload_and_next_header(ra, drrs->drr_length,
2566 		    buf);
2567 		if (err != 0)
2568 			kmem_free(buf, drrs->drr_length);
2569 		return (err);
2570 	}
2571 	default:
2572 		return (SET_ERROR(EINVAL));
2573 	}
2574 }
2575 
2576 /*
2577  * Commit the records to the pool.
2578  */
2579 static int
2580 receive_process_record(struct receive_writer_arg *rwa,
2581     struct receive_record_arg *rrd)
2582 {
2583 	int err;
2584 
2585 	/* Processing in order, therefore bytes_read should be increasing. */
2586 	ASSERT3U(rrd->bytes_read, >=, rwa->bytes_read);
2587 	rwa->bytes_read = rrd->bytes_read;
2588 
2589 	switch (rrd->header.drr_type) {
2590 	case DRR_OBJECT:
2591 	{
2592 		struct drr_object *drro = &rrd->header.drr_u.drr_object;
2593 		err = receive_object(rwa, drro, rrd->payload);
2594 		kmem_free(rrd->payload, rrd->payload_size);
2595 		rrd->payload = NULL;
2596 		return (err);
2597 	}
2598 	case DRR_FREEOBJECTS:
2599 	{
2600 		struct drr_freeobjects *drrfo =
2601 		    &rrd->header.drr_u.drr_freeobjects;
2602 		return (receive_freeobjects(rwa, drrfo));
2603 	}
2604 	case DRR_WRITE:
2605 	{
2606 		struct drr_write *drrw = &rrd->header.drr_u.drr_write;
2607 		err = receive_write(rwa, drrw, rrd->write_buf);
2608 		/* if receive_write() is successful, it consumes the arc_buf */
2609 		if (err != 0)
2610 			dmu_return_arcbuf(rrd->write_buf);
2611 		rrd->write_buf = NULL;
2612 		rrd->payload = NULL;
2613 		return (err);
2614 	}
2615 	case DRR_WRITE_BYREF:
2616 	{
2617 		struct drr_write_byref *drrwbr =
2618 		    &rrd->header.drr_u.drr_write_byref;
2619 		return (receive_write_byref(rwa, drrwbr));
2620 	}
2621 	case DRR_WRITE_EMBEDDED:
2622 	{
2623 		struct drr_write_embedded *drrwe =
2624 		    &rrd->header.drr_u.drr_write_embedded;
2625 		err = receive_write_embedded(rwa, drrwe, rrd->payload);
2626 		kmem_free(rrd->payload, rrd->payload_size);
2627 		rrd->payload = NULL;
2628 		return (err);
2629 	}
2630 	case DRR_FREE:
2631 	{
2632 		struct drr_free *drrf = &rrd->header.drr_u.drr_free;
2633 		return (receive_free(rwa, drrf));
2634 	}
2635 	case DRR_SPILL:
2636 	{
2637 		struct drr_spill *drrs = &rrd->header.drr_u.drr_spill;
2638 		err = receive_spill(rwa, drrs, rrd->payload);
2639 		kmem_free(rrd->payload, rrd->payload_size);
2640 		rrd->payload = NULL;
2641 		return (err);
2642 	}
2643 	default:
2644 		return (SET_ERROR(EINVAL));
2645 	}
2646 }
2647 
2648 /*
2649  * dmu_recv_stream's worker thread; pull records off the queue, and then call
2650  * receive_process_record  When we're done, signal the main thread and exit.
2651  */
2652 static void
2653 receive_writer_thread(void *arg)
2654 {
2655 	struct receive_writer_arg *rwa = arg;
2656 	struct receive_record_arg *rrd;
2657 	for (rrd = bqueue_dequeue(&rwa->q); !rrd->eos_marker;
2658 	    rrd = bqueue_dequeue(&rwa->q)) {
2659 		/*
2660 		 * If there's an error, the main thread will stop putting things
2661 		 * on the queue, but we need to clear everything in it before we
2662 		 * can exit.
2663 		 */
2664 		if (rwa->err == 0) {
2665 			rwa->err = receive_process_record(rwa, rrd);
2666 		} else if (rrd->write_buf != NULL) {
2667 			dmu_return_arcbuf(rrd->write_buf);
2668 			rrd->write_buf = NULL;
2669 			rrd->payload = NULL;
2670 		} else if (rrd->payload != NULL) {
2671 			kmem_free(rrd->payload, rrd->payload_size);
2672 			rrd->payload = NULL;
2673 		}
2674 		kmem_free(rrd, sizeof (*rrd));
2675 	}
2676 	kmem_free(rrd, sizeof (*rrd));
2677 	mutex_enter(&rwa->mutex);
2678 	rwa->done = B_TRUE;
2679 	cv_signal(&rwa->cv);
2680 	mutex_exit(&rwa->mutex);
2681 }
2682 
2683 static int
2684 resume_check(struct receive_arg *ra, nvlist_t *begin_nvl)
2685 {
2686 	uint64_t val;
2687 	objset_t *mos = dmu_objset_pool(ra->os)->dp_meta_objset;
2688 	uint64_t dsobj = dmu_objset_id(ra->os);
2689 	uint64_t resume_obj, resume_off;
2690 
2691 	if (nvlist_lookup_uint64(begin_nvl,
2692 	    "resume_object", &resume_obj) != 0 ||
2693 	    nvlist_lookup_uint64(begin_nvl,
2694 	    "resume_offset", &resume_off) != 0) {
2695 		return (SET_ERROR(EINVAL));
2696 	}
2697 	VERIFY0(zap_lookup(mos, dsobj,
2698 	    DS_FIELD_RESUME_OBJECT, sizeof (val), 1, &val));
2699 	if (resume_obj != val)
2700 		return (SET_ERROR(EINVAL));
2701 	VERIFY0(zap_lookup(mos, dsobj,
2702 	    DS_FIELD_RESUME_OFFSET, sizeof (val), 1, &val));
2703 	if (resume_off != val)
2704 		return (SET_ERROR(EINVAL));
2705 
2706 	return (0);
2707 }
2708 
2709 /*
2710  * Read in the stream's records, one by one, and apply them to the pool.  There
2711  * are two threads involved; the thread that calls this function will spin up a
2712  * worker thread, read the records off the stream one by one, and issue
2713  * prefetches for any necessary indirect blocks.  It will then push the records
2714  * onto an internal blocking queue.  The worker thread will pull the records off
2715  * the queue, and actually write the data into the DMU.  This way, the worker
2716  * thread doesn't have to wait for reads to complete, since everything it needs
2717  * (the indirect blocks) will be prefetched.
2718  *
2719  * NB: callers *must* call dmu_recv_end() if this succeeds.
2720  */
2721 int
2722 dmu_recv_stream(dmu_recv_cookie_t *drc, vnode_t *vp, offset_t *voffp,
2723     int cleanup_fd, uint64_t *action_handlep)
2724 {
2725 	int err = 0;
2726 	struct receive_arg ra = { 0 };
2727 	struct receive_writer_arg rwa = { 0 };
2728 	int featureflags;
2729 	nvlist_t *begin_nvl = NULL;
2730 
2731 	ra.byteswap = drc->drc_byteswap;
2732 	ra.cksum = drc->drc_cksum;
2733 	ra.vp = vp;
2734 	ra.voff = *voffp;
2735 
2736 	if (dsl_dataset_is_zapified(drc->drc_ds)) {
2737 		(void) zap_lookup(drc->drc_ds->ds_dir->dd_pool->dp_meta_objset,
2738 		    drc->drc_ds->ds_object, DS_FIELD_RESUME_BYTES,
2739 		    sizeof (ra.bytes_read), 1, &ra.bytes_read);
2740 	}
2741 
2742 	objlist_create(&ra.ignore_objlist);
2743 
2744 	/* these were verified in dmu_recv_begin */
2745 	ASSERT3U(DMU_GET_STREAM_HDRTYPE(drc->drc_drrb->drr_versioninfo), ==,
2746 	    DMU_SUBSTREAM);
2747 	ASSERT3U(drc->drc_drrb->drr_type, <, DMU_OST_NUMTYPES);
2748 
2749 	/*
2750 	 * Open the objset we are modifying.
2751 	 */
2752 	VERIFY0(dmu_objset_from_ds(drc->drc_ds, &ra.os));
2753 
2754 	ASSERT(dsl_dataset_phys(drc->drc_ds)->ds_flags & DS_FLAG_INCONSISTENT);
2755 
2756 	featureflags = DMU_GET_FEATUREFLAGS(drc->drc_drrb->drr_versioninfo);
2757 
2758 	/* if this stream is dedup'ed, set up the avl tree for guid mapping */
2759 	if (featureflags & DMU_BACKUP_FEATURE_DEDUP) {
2760 		minor_t minor;
2761 
2762 		if (cleanup_fd == -1) {
2763 			ra.err = SET_ERROR(EBADF);
2764 			goto out;
2765 		}
2766 		ra.err = zfs_onexit_fd_hold(cleanup_fd, &minor);
2767 		if (ra.err != 0) {
2768 			cleanup_fd = -1;
2769 			goto out;
2770 		}
2771 
2772 		if (*action_handlep == 0) {
2773 			rwa.guid_to_ds_map =
2774 			    kmem_alloc(sizeof (avl_tree_t), KM_SLEEP);
2775 			avl_create(rwa.guid_to_ds_map, guid_compare,
2776 			    sizeof (guid_map_entry_t),
2777 			    offsetof(guid_map_entry_t, avlnode));
2778 			err = zfs_onexit_add_cb(minor,
2779 			    free_guid_map_onexit, rwa.guid_to_ds_map,
2780 			    action_handlep);
2781 			if (ra.err != 0)
2782 				goto out;
2783 		} else {
2784 			err = zfs_onexit_cb_data(minor, *action_handlep,
2785 			    (void **)&rwa.guid_to_ds_map);
2786 			if (ra.err != 0)
2787 				goto out;
2788 		}
2789 
2790 		drc->drc_guid_to_ds_map = rwa.guid_to_ds_map;
2791 	}
2792 
2793 	uint32_t payloadlen = drc->drc_drr_begin->drr_payloadlen;
2794 	void *payload = NULL;
2795 	if (payloadlen != 0)
2796 		payload = kmem_alloc(payloadlen, KM_SLEEP);
2797 
2798 	err = receive_read_payload_and_next_header(&ra, payloadlen, payload);
2799 	if (err != 0) {
2800 		if (payloadlen != 0)
2801 			kmem_free(payload, payloadlen);
2802 		goto out;
2803 	}
2804 	if (payloadlen != 0) {
2805 		err = nvlist_unpack(payload, payloadlen, &begin_nvl, KM_SLEEP);
2806 		kmem_free(payload, payloadlen);
2807 		if (err != 0)
2808 			goto out;
2809 	}
2810 
2811 	if (featureflags & DMU_BACKUP_FEATURE_RESUMING) {
2812 		err = resume_check(&ra, begin_nvl);
2813 		if (err != 0)
2814 			goto out;
2815 	}
2816 
2817 	(void) bqueue_init(&rwa.q, zfs_recv_queue_length,
2818 	    offsetof(struct receive_record_arg, node));
2819 	cv_init(&rwa.cv, NULL, CV_DEFAULT, NULL);
2820 	mutex_init(&rwa.mutex, NULL, MUTEX_DEFAULT, NULL);
2821 	rwa.os = ra.os;
2822 	rwa.byteswap = drc->drc_byteswap;
2823 	rwa.resumable = drc->drc_resumable;
2824 
2825 	(void) thread_create(NULL, 0, receive_writer_thread, &rwa, 0, curproc,
2826 	    TS_RUN, minclsyspri);
2827 	/*
2828 	 * We're reading rwa.err without locks, which is safe since we are the
2829 	 * only reader, and the worker thread is the only writer.  It's ok if we
2830 	 * miss a write for an iteration or two of the loop, since the writer
2831 	 * thread will keep freeing records we send it until we send it an eos
2832 	 * marker.
2833 	 *
2834 	 * We can leave this loop in 3 ways:  First, if rwa.err is
2835 	 * non-zero.  In that case, the writer thread will free the rrd we just
2836 	 * pushed.  Second, if  we're interrupted; in that case, either it's the
2837 	 * first loop and ra.rrd was never allocated, or it's later, and ra.rrd
2838 	 * has been handed off to the writer thread who will free it.  Finally,
2839 	 * if receive_read_record fails or we're at the end of the stream, then
2840 	 * we free ra.rrd and exit.
2841 	 */
2842 	while (rwa.err == 0) {
2843 		if (issig(JUSTLOOKING) && issig(FORREAL)) {
2844 			err = SET_ERROR(EINTR);
2845 			break;
2846 		}
2847 
2848 		ASSERT3P(ra.rrd, ==, NULL);
2849 		ra.rrd = ra.next_rrd;
2850 		ra.next_rrd = NULL;
2851 		/* Allocates and loads header into ra.next_rrd */
2852 		err = receive_read_record(&ra);
2853 
2854 		if (ra.rrd->header.drr_type == DRR_END || err != 0) {
2855 			kmem_free(ra.rrd, sizeof (*ra.rrd));
2856 			ra.rrd = NULL;
2857 			break;
2858 		}
2859 
2860 		bqueue_enqueue(&rwa.q, ra.rrd,
2861 		    sizeof (struct receive_record_arg) + ra.rrd->payload_size);
2862 		ra.rrd = NULL;
2863 	}
2864 	if (ra.next_rrd == NULL)
2865 		ra.next_rrd = kmem_zalloc(sizeof (*ra.next_rrd), KM_SLEEP);
2866 	ra.next_rrd->eos_marker = B_TRUE;
2867 	bqueue_enqueue(&rwa.q, ra.next_rrd, 1);
2868 
2869 	mutex_enter(&rwa.mutex);
2870 	while (!rwa.done) {
2871 		cv_wait(&rwa.cv, &rwa.mutex);
2872 	}
2873 	mutex_exit(&rwa.mutex);
2874 
2875 	cv_destroy(&rwa.cv);
2876 	mutex_destroy(&rwa.mutex);
2877 	bqueue_destroy(&rwa.q);
2878 	if (err == 0)
2879 		err = rwa.err;
2880 
2881 out:
2882 	nvlist_free(begin_nvl);
2883 	if ((featureflags & DMU_BACKUP_FEATURE_DEDUP) && (cleanup_fd != -1))
2884 		zfs_onexit_fd_rele(cleanup_fd);
2885 
2886 	if (err != 0) {
2887 		/*
2888 		 * Clean up references. If receive is not resumable,
2889 		 * destroy what we created, so we don't leave it in
2890 		 * the inconsistent state.
2891 		 */
2892 		dmu_recv_cleanup_ds(drc);
2893 	}
2894 
2895 	*voffp = ra.voff;
2896 	objlist_destroy(&ra.ignore_objlist);
2897 	return (err);
2898 }
2899 
2900 static int
2901 dmu_recv_end_check(void *arg, dmu_tx_t *tx)
2902 {
2903 	dmu_recv_cookie_t *drc = arg;
2904 	dsl_pool_t *dp = dmu_tx_pool(tx);
2905 	int error;
2906 
2907 	ASSERT3P(drc->drc_ds->ds_owner, ==, dmu_recv_tag);
2908 
2909 	if (!drc->drc_newfs) {
2910 		dsl_dataset_t *origin_head;
2911 
2912 		error = dsl_dataset_hold(dp, drc->drc_tofs, FTAG, &origin_head);
2913 		if (error != 0)
2914 			return (error);
2915 		if (drc->drc_force) {
2916 			/*
2917 			 * We will destroy any snapshots in tofs (i.e. before
2918 			 * origin_head) that are after the origin (which is
2919 			 * the snap before drc_ds, because drc_ds can not
2920 			 * have any snaps of its own).
2921 			 */
2922 			uint64_t obj;
2923 
2924 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2925 			while (obj !=
2926 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2927 				dsl_dataset_t *snap;
2928 				error = dsl_dataset_hold_obj(dp, obj, FTAG,
2929 				    &snap);
2930 				if (error != 0)
2931 					break;
2932 				if (snap->ds_dir != origin_head->ds_dir)
2933 					error = SET_ERROR(EINVAL);
2934 				if (error == 0)  {
2935 					error = dsl_destroy_snapshot_check_impl(
2936 					    snap, B_FALSE);
2937 				}
2938 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2939 				dsl_dataset_rele(snap, FTAG);
2940 				if (error != 0)
2941 					break;
2942 			}
2943 			if (error != 0) {
2944 				dsl_dataset_rele(origin_head, FTAG);
2945 				return (error);
2946 			}
2947 		}
2948 		error = dsl_dataset_clone_swap_check_impl(drc->drc_ds,
2949 		    origin_head, drc->drc_force, drc->drc_owner, tx);
2950 		if (error != 0) {
2951 			dsl_dataset_rele(origin_head, FTAG);
2952 			return (error);
2953 		}
2954 		error = dsl_dataset_snapshot_check_impl(origin_head,
2955 		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2956 		dsl_dataset_rele(origin_head, FTAG);
2957 		if (error != 0)
2958 			return (error);
2959 
2960 		error = dsl_destroy_head_check_impl(drc->drc_ds, 1);
2961 	} else {
2962 		error = dsl_dataset_snapshot_check_impl(drc->drc_ds,
2963 		    drc->drc_tosnap, tx, B_TRUE, 1, drc->drc_cred);
2964 	}
2965 	return (error);
2966 }
2967 
2968 static void
2969 dmu_recv_end_sync(void *arg, dmu_tx_t *tx)
2970 {
2971 	dmu_recv_cookie_t *drc = arg;
2972 	dsl_pool_t *dp = dmu_tx_pool(tx);
2973 
2974 	spa_history_log_internal_ds(drc->drc_ds, "finish receiving",
2975 	    tx, "snap=%s", drc->drc_tosnap);
2976 
2977 	if (!drc->drc_newfs) {
2978 		dsl_dataset_t *origin_head;
2979 
2980 		VERIFY0(dsl_dataset_hold(dp, drc->drc_tofs, FTAG,
2981 		    &origin_head));
2982 
2983 		if (drc->drc_force) {
2984 			/*
2985 			 * Destroy any snapshots of drc_tofs (origin_head)
2986 			 * after the origin (the snap before drc_ds).
2987 			 */
2988 			uint64_t obj;
2989 
2990 			obj = dsl_dataset_phys(origin_head)->ds_prev_snap_obj;
2991 			while (obj !=
2992 			    dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj) {
2993 				dsl_dataset_t *snap;
2994 				VERIFY0(dsl_dataset_hold_obj(dp, obj, FTAG,
2995 				    &snap));
2996 				ASSERT3P(snap->ds_dir, ==, origin_head->ds_dir);
2997 				obj = dsl_dataset_phys(snap)->ds_prev_snap_obj;
2998 				dsl_destroy_snapshot_sync_impl(snap,
2999 				    B_FALSE, tx);
3000 				dsl_dataset_rele(snap, FTAG);
3001 			}
3002 		}
3003 		VERIFY3P(drc->drc_ds->ds_prev, ==,
3004 		    origin_head->ds_prev);
3005 
3006 		dsl_dataset_clone_swap_sync_impl(drc->drc_ds,
3007 		    origin_head, tx);
3008 		dsl_dataset_snapshot_sync_impl(origin_head,
3009 		    drc->drc_tosnap, tx);
3010 
3011 		/* set snapshot's creation time and guid */
3012 		dmu_buf_will_dirty(origin_head->ds_prev->ds_dbuf, tx);
3013 		dsl_dataset_phys(origin_head->ds_prev)->ds_creation_time =
3014 		    drc->drc_drrb->drr_creation_time;
3015 		dsl_dataset_phys(origin_head->ds_prev)->ds_guid =
3016 		    drc->drc_drrb->drr_toguid;
3017 		dsl_dataset_phys(origin_head->ds_prev)->ds_flags &=
3018 		    ~DS_FLAG_INCONSISTENT;
3019 
3020 		dmu_buf_will_dirty(origin_head->ds_dbuf, tx);
3021 		dsl_dataset_phys(origin_head)->ds_flags &=
3022 		    ~DS_FLAG_INCONSISTENT;
3023 
3024 		dsl_dataset_rele(origin_head, FTAG);
3025 		dsl_destroy_head_sync_impl(drc->drc_ds, tx);
3026 
3027 		if (drc->drc_owner != NULL)
3028 			VERIFY3P(origin_head->ds_owner, ==, drc->drc_owner);
3029 	} else {
3030 		dsl_dataset_t *ds = drc->drc_ds;
3031 
3032 		dsl_dataset_snapshot_sync_impl(ds, drc->drc_tosnap, tx);
3033 
3034 		/* set snapshot's creation time and guid */
3035 		dmu_buf_will_dirty(ds->ds_prev->ds_dbuf, tx);
3036 		dsl_dataset_phys(ds->ds_prev)->ds_creation_time =
3037 		    drc->drc_drrb->drr_creation_time;
3038 		dsl_dataset_phys(ds->ds_prev)->ds_guid =
3039 		    drc->drc_drrb->drr_toguid;
3040 		dsl_dataset_phys(ds->ds_prev)->ds_flags &=
3041 		    ~DS_FLAG_INCONSISTENT;
3042 
3043 		dmu_buf_will_dirty(ds->ds_dbuf, tx);
3044 		dsl_dataset_phys(ds)->ds_flags &= ~DS_FLAG_INCONSISTENT;
3045 		if (dsl_dataset_has_resume_receive_state(ds)) {
3046 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3047 			    DS_FIELD_RESUME_FROMGUID, tx);
3048 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3049 			    DS_FIELD_RESUME_OBJECT, tx);
3050 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3051 			    DS_FIELD_RESUME_OFFSET, tx);
3052 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3053 			    DS_FIELD_RESUME_BYTES, tx);
3054 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3055 			    DS_FIELD_RESUME_TOGUID, tx);
3056 			(void) zap_remove(dp->dp_meta_objset, ds->ds_object,
3057 			    DS_FIELD_RESUME_TONAME, tx);
3058 		}
3059 	}
3060 	drc->drc_newsnapobj = dsl_dataset_phys(drc->drc_ds)->ds_prev_snap_obj;
3061 	/*
3062 	 * Release the hold from dmu_recv_begin.  This must be done before
3063 	 * we return to open context, so that when we free the dataset's dnode,
3064 	 * we can evict its bonus buffer.
3065 	 */
3066 	dsl_dataset_disown(drc->drc_ds, dmu_recv_tag);
3067 	drc->drc_ds = NULL;
3068 }
3069 
3070 static int
3071 add_ds_to_guidmap(const char *name, avl_tree_t *guid_map, uint64_t snapobj)
3072 {
3073 	dsl_pool_t *dp;
3074 	dsl_dataset_t *snapds;
3075 	guid_map_entry_t *gmep;
3076 	int err;
3077 
3078 	ASSERT(guid_map != NULL);
3079 
3080 	err = dsl_pool_hold(name, FTAG, &dp);
3081 	if (err != 0)
3082 		return (err);
3083 	gmep = kmem_alloc(sizeof (*gmep), KM_SLEEP);
3084 	err = dsl_dataset_hold_obj(dp, snapobj, gmep, &snapds);
3085 	if (err == 0) {
3086 		gmep->guid = dsl_dataset_phys(snapds)->ds_guid;
3087 		gmep->gme_ds = snapds;
3088 		avl_add(guid_map, gmep);
3089 		dsl_dataset_long_hold(snapds, gmep);
3090 	} else {
3091 		kmem_free(gmep, sizeof (*gmep));
3092 	}
3093 
3094 	dsl_pool_rele(dp, FTAG);
3095 	return (err);
3096 }
3097 
3098 static int dmu_recv_end_modified_blocks = 3;
3099 
3100 static int
3101 dmu_recv_existing_end(dmu_recv_cookie_t *drc)
3102 {
3103 	int error;
3104 	char name[MAXNAMELEN];
3105 
3106 #ifdef _KERNEL
3107 	/*
3108 	 * We will be destroying the ds; make sure its origin is unmounted if
3109 	 * necessary.
3110 	 */
3111 	dsl_dataset_name(drc->drc_ds, name);
3112 	zfs_destroy_unmount_origin(name);
3113 #endif
3114 
3115 	error = dsl_sync_task(drc->drc_tofs,
3116 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3117 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3118 
3119 	if (error != 0)
3120 		dmu_recv_cleanup_ds(drc);
3121 	return (error);
3122 }
3123 
3124 static int
3125 dmu_recv_new_end(dmu_recv_cookie_t *drc)
3126 {
3127 	int error;
3128 
3129 	error = dsl_sync_task(drc->drc_tofs,
3130 	    dmu_recv_end_check, dmu_recv_end_sync, drc,
3131 	    dmu_recv_end_modified_blocks, ZFS_SPACE_CHECK_NORMAL);
3132 
3133 	if (error != 0) {
3134 		dmu_recv_cleanup_ds(drc);
3135 	} else if (drc->drc_guid_to_ds_map != NULL) {
3136 		(void) add_ds_to_guidmap(drc->drc_tofs,
3137 		    drc->drc_guid_to_ds_map,
3138 		    drc->drc_newsnapobj);
3139 	}
3140 	return (error);
3141 }
3142 
3143 int
3144 dmu_recv_end(dmu_recv_cookie_t *drc, void *owner)
3145 {
3146 	drc->drc_owner = owner;
3147 
3148 	if (drc->drc_newfs)
3149 		return (dmu_recv_new_end(drc));
3150 	else
3151 		return (dmu_recv_existing_end(drc));
3152 }
3153 
3154 /*
3155  * Return TRUE if this objset is currently being received into.
3156  */
3157 boolean_t
3158 dmu_objset_is_receiving(objset_t *os)
3159 {
3160 	return (os->os_dsl_dataset != NULL &&
3161 	    os->os_dsl_dataset->ds_owner == dmu_recv_tag);
3162 }
3163