1 /* 2 * CDDL HEADER START 3 * 4 * The contents of this file are subject to the terms of the 5 * Common Development and Distribution License (the "License"). 6 * You may not use this file except in compliance with the License. 7 * 8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 9 * or http://www.opensolaris.org/os/licensing. 10 * See the License for the specific language governing permissions 11 * and limitations under the License. 12 * 13 * When distributing Covered Code, include this CDDL HEADER in each 14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 15 * If applicable, add the following below this CDDL HEADER, with the 16 * fields enclosed by brackets "[]" replaced with your own identifying 17 * information: Portions Copyright [yyyy] [name of copyright owner] 18 * 19 * CDDL HEADER END 20 */ 21 /* 22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 23 */ 24 25 #include <sys/dmu.h> 26 #include <sys/dmu_impl.h> 27 #include <sys/dmu_tx.h> 28 #include <sys/dbuf.h> 29 #include <sys/dnode.h> 30 #include <sys/zfs_context.h> 31 #include <sys/dmu_objset.h> 32 #include <sys/dmu_traverse.h> 33 #include <sys/dsl_dataset.h> 34 #include <sys/dsl_dir.h> 35 #include <sys/dsl_pool.h> 36 #include <sys/dsl_synctask.h> 37 #include <sys/dsl_prop.h> 38 #include <sys/dmu_zfetch.h> 39 #include <sys/zfs_ioctl.h> 40 #include <sys/zap.h> 41 #include <sys/zio_checksum.h> 42 #include <sys/sa.h> 43 #ifdef _KERNEL 44 #include <sys/vmsystm.h> 45 #include <sys/zfs_znode.h> 46 #endif 47 48 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = { 49 { byteswap_uint8_array, TRUE, "unallocated" }, 50 { zap_byteswap, TRUE, "object directory" }, 51 { byteswap_uint64_array, TRUE, "object array" }, 52 { byteswap_uint8_array, TRUE, "packed nvlist" }, 53 { byteswap_uint64_array, TRUE, "packed nvlist size" }, 54 { byteswap_uint64_array, TRUE, "bplist" }, 55 { byteswap_uint64_array, TRUE, "bplist header" }, 56 { byteswap_uint64_array, TRUE, "SPA space map header" }, 57 { byteswap_uint64_array, TRUE, "SPA space map" }, 58 { byteswap_uint64_array, TRUE, "ZIL intent log" }, 59 { dnode_buf_byteswap, TRUE, "DMU dnode" }, 60 { dmu_objset_byteswap, TRUE, "DMU objset" }, 61 { byteswap_uint64_array, TRUE, "DSL directory" }, 62 { zap_byteswap, TRUE, "DSL directory child map"}, 63 { zap_byteswap, TRUE, "DSL dataset snap map" }, 64 { zap_byteswap, TRUE, "DSL props" }, 65 { byteswap_uint64_array, TRUE, "DSL dataset" }, 66 { zfs_znode_byteswap, TRUE, "ZFS znode" }, 67 { zfs_oldacl_byteswap, TRUE, "ZFS V0 ACL" }, 68 { byteswap_uint8_array, FALSE, "ZFS plain file" }, 69 { zap_byteswap, TRUE, "ZFS directory" }, 70 { zap_byteswap, TRUE, "ZFS master node" }, 71 { zap_byteswap, TRUE, "ZFS delete queue" }, 72 { byteswap_uint8_array, FALSE, "zvol object" }, 73 { zap_byteswap, TRUE, "zvol prop" }, 74 { byteswap_uint8_array, FALSE, "other uint8[]" }, 75 { byteswap_uint64_array, FALSE, "other uint64[]" }, 76 { zap_byteswap, TRUE, "other ZAP" }, 77 { zap_byteswap, TRUE, "persistent error log" }, 78 { byteswap_uint8_array, TRUE, "SPA history" }, 79 { byteswap_uint64_array, TRUE, "SPA history offsets" }, 80 { zap_byteswap, TRUE, "Pool properties" }, 81 { zap_byteswap, TRUE, "DSL permissions" }, 82 { zfs_acl_byteswap, TRUE, "ZFS ACL" }, 83 { byteswap_uint8_array, TRUE, "ZFS SYSACL" }, 84 { byteswap_uint8_array, TRUE, "FUID table" }, 85 { byteswap_uint64_array, TRUE, "FUID table size" }, 86 { zap_byteswap, TRUE, "DSL dataset next clones"}, 87 { zap_byteswap, TRUE, "scrub work queue" }, 88 { zap_byteswap, TRUE, "ZFS user/group used" }, 89 { zap_byteswap, TRUE, "ZFS user/group quota" }, 90 { zap_byteswap, TRUE, "snapshot refcount tags"}, 91 { zap_byteswap, TRUE, "DDT ZAP algorithm" }, 92 { zap_byteswap, TRUE, "DDT statistics" }, 93 { byteswap_uint8_array, TRUE, "System attributes" }, 94 { zap_byteswap, TRUE, "SA master node" }, 95 { zap_byteswap, TRUE, "SA attr registration" }, 96 { zap_byteswap, TRUE, "SA attr layouts" }, }; 97 98 int 99 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset, 100 void *tag, dmu_buf_t **dbp, int flags) 101 { 102 dnode_t *dn; 103 uint64_t blkid; 104 dmu_buf_impl_t *db; 105 int err; 106 int db_flags = DB_RF_CANFAIL; 107 108 if (flags & DMU_READ_NO_PREFETCH) 109 db_flags |= DB_RF_NOPREFETCH; 110 111 err = dnode_hold(os, object, FTAG, &dn); 112 if (err) 113 return (err); 114 blkid = dbuf_whichblock(dn, offset); 115 rw_enter(&dn->dn_struct_rwlock, RW_READER); 116 db = dbuf_hold(dn, blkid, tag); 117 rw_exit(&dn->dn_struct_rwlock); 118 if (db == NULL) { 119 err = EIO; 120 } else { 121 err = dbuf_read(db, NULL, db_flags); 122 if (err) { 123 dbuf_rele(db, tag); 124 db = NULL; 125 } 126 } 127 128 dnode_rele(dn, FTAG); 129 *dbp = &db->db; 130 return (err); 131 } 132 133 int 134 dmu_bonus_max(void) 135 { 136 return (DN_MAX_BONUSLEN); 137 } 138 139 int 140 dmu_set_bonus(dmu_buf_t *db, int newsize, dmu_tx_t *tx) 141 { 142 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 143 144 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 145 return (EINVAL); 146 if (newsize < 0 || newsize > db->db_size) 147 return (EINVAL); 148 dnode_setbonuslen(dn, newsize, tx); 149 return (0); 150 } 151 152 int 153 dmu_set_bonustype(dmu_buf_t *db, dmu_object_type_t type, dmu_tx_t *tx) 154 { 155 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 156 157 if (type > DMU_OT_NUMTYPES) 158 return (EINVAL); 159 160 if (dn->dn_bonus != (dmu_buf_impl_t *)db) 161 return (EINVAL); 162 163 dnode_setbonus_type(dn, type, tx); 164 return (0); 165 } 166 167 int 168 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx) 169 { 170 dnode_t *dn; 171 int error; 172 173 error = dnode_hold(os, object, FTAG, &dn); 174 dbuf_rm_spill(dn, tx); 175 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 176 dnode_rm_spill(dn, tx); 177 rw_exit(&dn->dn_struct_rwlock); 178 dnode_rele(dn, FTAG); 179 return (error); 180 } 181 182 /* 183 * returns ENOENT, EIO, or 0. 184 */ 185 int 186 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp) 187 { 188 dnode_t *dn; 189 dmu_buf_impl_t *db; 190 int error; 191 192 error = dnode_hold(os, object, FTAG, &dn); 193 if (error) 194 return (error); 195 196 rw_enter(&dn->dn_struct_rwlock, RW_READER); 197 if (dn->dn_bonus == NULL) { 198 rw_exit(&dn->dn_struct_rwlock); 199 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 200 if (dn->dn_bonus == NULL) 201 dbuf_create_bonus(dn); 202 } 203 db = dn->dn_bonus; 204 rw_exit(&dn->dn_struct_rwlock); 205 206 /* as long as the bonus buf is held, the dnode will be held */ 207 if (refcount_add(&db->db_holds, tag) == 1) 208 VERIFY(dnode_add_ref(dn, db)); 209 210 dnode_rele(dn, FTAG); 211 212 VERIFY(0 == dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH)); 213 214 *dbp = &db->db; 215 return (0); 216 } 217 218 /* 219 * returns ENOENT, EIO, or 0. 220 * 221 * This interface will allocate a blank spill dbuf when a spill blk 222 * doesn't already exist on the dnode. 223 * 224 * if you only want to find an already existing spill db, then 225 * dmu_spill_hold_existing() should be used. 226 */ 227 int 228 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp) 229 { 230 dmu_buf_impl_t *db = NULL; 231 int err; 232 233 if ((flags & DB_RF_HAVESTRUCT) == 0) 234 rw_enter(&dn->dn_struct_rwlock, RW_READER); 235 236 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag); 237 238 if ((flags & DB_RF_HAVESTRUCT) == 0) 239 rw_exit(&dn->dn_struct_rwlock); 240 241 ASSERT(db != NULL); 242 err = dbuf_read(db, NULL, DB_RF_MUST_SUCCEED | flags); 243 *dbp = &db->db; 244 return (err); 245 } 246 247 int 248 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 249 { 250 dnode_t *dn = ((dmu_buf_impl_t *)bonus)->db_dnode; 251 int err; 252 253 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) 254 return (EINVAL); 255 rw_enter(&dn->dn_struct_rwlock, RW_READER); 256 257 if (!dn->dn_have_spill) { 258 rw_exit(&dn->dn_struct_rwlock); 259 return (ENOENT); 260 } 261 err = dmu_spill_hold_by_dnode(dn, DB_RF_HAVESTRUCT, tag, dbp); 262 rw_exit(&dn->dn_struct_rwlock); 263 return (err); 264 } 265 266 int 267 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp) 268 { 269 return (dmu_spill_hold_by_dnode(((dmu_buf_impl_t *)bonus)->db_dnode, 270 0, tag, dbp)); 271 } 272 273 /* 274 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces 275 * to take a held dnode rather than <os, object> -- the lookup is wasteful, 276 * and can induce severe lock contention when writing to several files 277 * whose dnodes are in the same block. 278 */ 279 static int 280 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length, 281 int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags) 282 { 283 dsl_pool_t *dp = NULL; 284 dmu_buf_t **dbp; 285 uint64_t blkid, nblks, i; 286 uint32_t dbuf_flags; 287 int err; 288 zio_t *zio; 289 hrtime_t start; 290 291 ASSERT(length <= DMU_MAX_ACCESS); 292 293 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT; 294 if (flags & DMU_READ_NO_PREFETCH || length > zfetch_array_rd_sz) 295 dbuf_flags |= DB_RF_NOPREFETCH; 296 297 rw_enter(&dn->dn_struct_rwlock, RW_READER); 298 if (dn->dn_datablkshift) { 299 int blkshift = dn->dn_datablkshift; 300 nblks = (P2ROUNDUP(offset+length, 1ULL<<blkshift) - 301 P2ALIGN(offset, 1ULL<<blkshift)) >> blkshift; 302 } else { 303 if (offset + length > dn->dn_datablksz) { 304 zfs_panic_recover("zfs: accessing past end of object " 305 "%llx/%llx (size=%u access=%llu+%llu)", 306 (longlong_t)dn->dn_objset-> 307 os_dsl_dataset->ds_object, 308 (longlong_t)dn->dn_object, dn->dn_datablksz, 309 (longlong_t)offset, (longlong_t)length); 310 rw_exit(&dn->dn_struct_rwlock); 311 return (EIO); 312 } 313 nblks = 1; 314 } 315 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP); 316 317 if (dn->dn_objset->os_dsl_dataset) 318 dp = dn->dn_objset->os_dsl_dataset->ds_dir->dd_pool; 319 if (dp && dsl_pool_sync_context(dp)) 320 start = gethrtime(); 321 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL); 322 blkid = dbuf_whichblock(dn, offset); 323 for (i = 0; i < nblks; i++) { 324 dmu_buf_impl_t *db = dbuf_hold(dn, blkid+i, tag); 325 if (db == NULL) { 326 rw_exit(&dn->dn_struct_rwlock); 327 dmu_buf_rele_array(dbp, nblks, tag); 328 zio_nowait(zio); 329 return (EIO); 330 } 331 /* initiate async i/o */ 332 if (read) { 333 (void) dbuf_read(db, zio, dbuf_flags); 334 } 335 dbp[i] = &db->db; 336 } 337 rw_exit(&dn->dn_struct_rwlock); 338 339 /* wait for async i/o */ 340 err = zio_wait(zio); 341 /* track read overhead when we are in sync context */ 342 if (dp && dsl_pool_sync_context(dp)) 343 dp->dp_read_overhead += gethrtime() - start; 344 if (err) { 345 dmu_buf_rele_array(dbp, nblks, tag); 346 return (err); 347 } 348 349 /* wait for other io to complete */ 350 if (read) { 351 for (i = 0; i < nblks; i++) { 352 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i]; 353 mutex_enter(&db->db_mtx); 354 while (db->db_state == DB_READ || 355 db->db_state == DB_FILL) 356 cv_wait(&db->db_changed, &db->db_mtx); 357 if (db->db_state == DB_UNCACHED) 358 err = EIO; 359 mutex_exit(&db->db_mtx); 360 if (err) { 361 dmu_buf_rele_array(dbp, nblks, tag); 362 return (err); 363 } 364 } 365 } 366 367 *numbufsp = nblks; 368 *dbpp = dbp; 369 return (0); 370 } 371 372 static int 373 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset, 374 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 375 { 376 dnode_t *dn; 377 int err; 378 379 err = dnode_hold(os, object, FTAG, &dn); 380 if (err) 381 return (err); 382 383 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 384 numbufsp, dbpp, DMU_READ_PREFETCH); 385 386 dnode_rele(dn, FTAG); 387 388 return (err); 389 } 390 391 int 392 dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset, 393 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp) 394 { 395 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 396 int err; 397 398 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag, 399 numbufsp, dbpp, DMU_READ_PREFETCH); 400 401 return (err); 402 } 403 404 void 405 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag) 406 { 407 int i; 408 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake; 409 410 if (numbufs == 0) 411 return; 412 413 for (i = 0; i < numbufs; i++) { 414 if (dbp[i]) 415 dbuf_rele(dbp[i], tag); 416 } 417 418 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs); 419 } 420 421 void 422 dmu_prefetch(objset_t *os, uint64_t object, uint64_t offset, uint64_t len) 423 { 424 dnode_t *dn; 425 uint64_t blkid; 426 int nblks, i, err; 427 428 if (zfs_prefetch_disable) 429 return; 430 431 if (len == 0) { /* they're interested in the bonus buffer */ 432 dn = os->os_meta_dnode; 433 434 if (object == 0 || object >= DN_MAX_OBJECT) 435 return; 436 437 rw_enter(&dn->dn_struct_rwlock, RW_READER); 438 blkid = dbuf_whichblock(dn, object * sizeof (dnode_phys_t)); 439 dbuf_prefetch(dn, blkid); 440 rw_exit(&dn->dn_struct_rwlock); 441 return; 442 } 443 444 /* 445 * XXX - Note, if the dnode for the requested object is not 446 * already cached, we will do a *synchronous* read in the 447 * dnode_hold() call. The same is true for any indirects. 448 */ 449 err = dnode_hold(os, object, FTAG, &dn); 450 if (err != 0) 451 return; 452 453 rw_enter(&dn->dn_struct_rwlock, RW_READER); 454 if (dn->dn_datablkshift) { 455 int blkshift = dn->dn_datablkshift; 456 nblks = (P2ROUNDUP(offset+len, 1<<blkshift) - 457 P2ALIGN(offset, 1<<blkshift)) >> blkshift; 458 } else { 459 nblks = (offset < dn->dn_datablksz); 460 } 461 462 if (nblks != 0) { 463 blkid = dbuf_whichblock(dn, offset); 464 for (i = 0; i < nblks; i++) 465 dbuf_prefetch(dn, blkid+i); 466 } 467 468 rw_exit(&dn->dn_struct_rwlock); 469 470 dnode_rele(dn, FTAG); 471 } 472 473 /* 474 * Get the next "chunk" of file data to free. We traverse the file from 475 * the end so that the file gets shorter over time (if we crashes in the 476 * middle, this will leave us in a better state). We find allocated file 477 * data by simply searching the allocated level 1 indirects. 478 */ 479 static int 480 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t limit) 481 { 482 uint64_t len = *start - limit; 483 uint64_t blkcnt = 0; 484 uint64_t maxblks = DMU_MAX_ACCESS / (1ULL << (dn->dn_indblkshift + 1)); 485 uint64_t iblkrange = 486 dn->dn_datablksz * EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT); 487 488 ASSERT(limit <= *start); 489 490 if (len <= iblkrange * maxblks) { 491 *start = limit; 492 return (0); 493 } 494 ASSERT(ISP2(iblkrange)); 495 496 while (*start > limit && blkcnt < maxblks) { 497 int err; 498 499 /* find next allocated L1 indirect */ 500 err = dnode_next_offset(dn, 501 DNODE_FIND_BACKWARDS, start, 2, 1, 0); 502 503 /* if there are no more, then we are done */ 504 if (err == ESRCH) { 505 *start = limit; 506 return (0); 507 } else if (err) { 508 return (err); 509 } 510 blkcnt += 1; 511 512 /* reset offset to end of "next" block back */ 513 *start = P2ALIGN(*start, iblkrange); 514 if (*start <= limit) 515 *start = limit; 516 else 517 *start -= 1; 518 } 519 return (0); 520 } 521 522 static int 523 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset, 524 uint64_t length, boolean_t free_dnode) 525 { 526 dmu_tx_t *tx; 527 uint64_t object_size, start, end, len; 528 boolean_t trunc = (length == DMU_OBJECT_END); 529 int align, err; 530 531 align = 1 << dn->dn_datablkshift; 532 ASSERT(align > 0); 533 object_size = align == 1 ? dn->dn_datablksz : 534 (dn->dn_maxblkid + 1) << dn->dn_datablkshift; 535 536 end = offset + length; 537 if (trunc || end > object_size) 538 end = object_size; 539 if (end <= offset) 540 return (0); 541 length = end - offset; 542 543 while (length) { 544 start = end; 545 /* assert(offset <= start) */ 546 err = get_next_chunk(dn, &start, offset); 547 if (err) 548 return (err); 549 len = trunc ? DMU_OBJECT_END : end - start; 550 551 tx = dmu_tx_create(os); 552 dmu_tx_hold_free(tx, dn->dn_object, start, len); 553 err = dmu_tx_assign(tx, TXG_WAIT); 554 if (err) { 555 dmu_tx_abort(tx); 556 return (err); 557 } 558 559 dnode_free_range(dn, start, trunc ? -1 : len, tx); 560 561 if (start == 0 && free_dnode) { 562 ASSERT(trunc); 563 dnode_free(dn, tx); 564 } 565 566 length -= end - start; 567 568 dmu_tx_commit(tx); 569 end = start; 570 } 571 return (0); 572 } 573 574 int 575 dmu_free_long_range(objset_t *os, uint64_t object, 576 uint64_t offset, uint64_t length) 577 { 578 dnode_t *dn; 579 int err; 580 581 err = dnode_hold(os, object, FTAG, &dn); 582 if (err != 0) 583 return (err); 584 err = dmu_free_long_range_impl(os, dn, offset, length, FALSE); 585 dnode_rele(dn, FTAG); 586 return (err); 587 } 588 589 int 590 dmu_free_object(objset_t *os, uint64_t object) 591 { 592 dnode_t *dn; 593 dmu_tx_t *tx; 594 int err; 595 596 err = dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, 597 FTAG, &dn); 598 if (err != 0) 599 return (err); 600 if (dn->dn_nlevels == 1) { 601 tx = dmu_tx_create(os); 602 dmu_tx_hold_bonus(tx, object); 603 dmu_tx_hold_free(tx, dn->dn_object, 0, DMU_OBJECT_END); 604 err = dmu_tx_assign(tx, TXG_WAIT); 605 if (err == 0) { 606 dnode_free_range(dn, 0, DMU_OBJECT_END, tx); 607 dnode_free(dn, tx); 608 dmu_tx_commit(tx); 609 } else { 610 dmu_tx_abort(tx); 611 } 612 } else { 613 err = dmu_free_long_range_impl(os, dn, 0, DMU_OBJECT_END, TRUE); 614 } 615 dnode_rele(dn, FTAG); 616 return (err); 617 } 618 619 int 620 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset, 621 uint64_t size, dmu_tx_t *tx) 622 { 623 dnode_t *dn; 624 int err = dnode_hold(os, object, FTAG, &dn); 625 if (err) 626 return (err); 627 ASSERT(offset < UINT64_MAX); 628 ASSERT(size == -1ULL || size <= UINT64_MAX - offset); 629 dnode_free_range(dn, offset, size, tx); 630 dnode_rele(dn, FTAG); 631 return (0); 632 } 633 634 int 635 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 636 void *buf, uint32_t flags) 637 { 638 dnode_t *dn; 639 dmu_buf_t **dbp; 640 int numbufs, err; 641 642 err = dnode_hold(os, object, FTAG, &dn); 643 if (err) 644 return (err); 645 646 /* 647 * Deal with odd block sizes, where there can't be data past the first 648 * block. If we ever do the tail block optimization, we will need to 649 * handle that here as well. 650 */ 651 if (dn->dn_maxblkid == 0) { 652 int newsz = offset > dn->dn_datablksz ? 0 : 653 MIN(size, dn->dn_datablksz - offset); 654 bzero((char *)buf + newsz, size - newsz); 655 size = newsz; 656 } 657 658 while (size > 0) { 659 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2); 660 int i; 661 662 /* 663 * NB: we could do this block-at-a-time, but it's nice 664 * to be reading in parallel. 665 */ 666 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen, 667 TRUE, FTAG, &numbufs, &dbp, flags); 668 if (err) 669 break; 670 671 for (i = 0; i < numbufs; i++) { 672 int tocpy; 673 int bufoff; 674 dmu_buf_t *db = dbp[i]; 675 676 ASSERT(size > 0); 677 678 bufoff = offset - db->db_offset; 679 tocpy = (int)MIN(db->db_size - bufoff, size); 680 681 bcopy((char *)db->db_data + bufoff, buf, tocpy); 682 683 offset += tocpy; 684 size -= tocpy; 685 buf = (char *)buf + tocpy; 686 } 687 dmu_buf_rele_array(dbp, numbufs, FTAG); 688 } 689 dnode_rele(dn, FTAG); 690 return (err); 691 } 692 693 void 694 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 695 const void *buf, dmu_tx_t *tx) 696 { 697 dmu_buf_t **dbp; 698 int numbufs, i; 699 700 if (size == 0) 701 return; 702 703 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 704 FALSE, FTAG, &numbufs, &dbp)); 705 706 for (i = 0; i < numbufs; i++) { 707 int tocpy; 708 int bufoff; 709 dmu_buf_t *db = dbp[i]; 710 711 ASSERT(size > 0); 712 713 bufoff = offset - db->db_offset; 714 tocpy = (int)MIN(db->db_size - bufoff, size); 715 716 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 717 718 if (tocpy == db->db_size) 719 dmu_buf_will_fill(db, tx); 720 else 721 dmu_buf_will_dirty(db, tx); 722 723 bcopy(buf, (char *)db->db_data + bufoff, tocpy); 724 725 if (tocpy == db->db_size) 726 dmu_buf_fill_done(db, tx); 727 728 offset += tocpy; 729 size -= tocpy; 730 buf = (char *)buf + tocpy; 731 } 732 dmu_buf_rele_array(dbp, numbufs, FTAG); 733 } 734 735 void 736 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 737 dmu_tx_t *tx) 738 { 739 dmu_buf_t **dbp; 740 int numbufs, i; 741 742 if (size == 0) 743 return; 744 745 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size, 746 FALSE, FTAG, &numbufs, &dbp)); 747 748 for (i = 0; i < numbufs; i++) { 749 dmu_buf_t *db = dbp[i]; 750 751 dmu_buf_will_not_fill(db, tx); 752 } 753 dmu_buf_rele_array(dbp, numbufs, FTAG); 754 } 755 756 /* 757 * DMU support for xuio 758 */ 759 kstat_t *xuio_ksp = NULL; 760 761 int 762 dmu_xuio_init(xuio_t *xuio, int nblk) 763 { 764 dmu_xuio_t *priv; 765 uio_t *uio = &xuio->xu_uio; 766 767 uio->uio_iovcnt = nblk; 768 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP); 769 770 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP); 771 priv->cnt = nblk; 772 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP); 773 priv->iovp = uio->uio_iov; 774 XUIO_XUZC_PRIV(xuio) = priv; 775 776 if (XUIO_XUZC_RW(xuio) == UIO_READ) 777 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk); 778 else 779 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk); 780 781 return (0); 782 } 783 784 void 785 dmu_xuio_fini(xuio_t *xuio) 786 { 787 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 788 int nblk = priv->cnt; 789 790 kmem_free(priv->iovp, nblk * sizeof (iovec_t)); 791 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *)); 792 kmem_free(priv, sizeof (dmu_xuio_t)); 793 794 if (XUIO_XUZC_RW(xuio) == UIO_READ) 795 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk); 796 else 797 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk); 798 } 799 800 /* 801 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf } 802 * and increase priv->next by 1. 803 */ 804 int 805 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n) 806 { 807 struct iovec *iov; 808 uio_t *uio = &xuio->xu_uio; 809 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 810 int i = priv->next++; 811 812 ASSERT(i < priv->cnt); 813 ASSERT(off + n <= arc_buf_size(abuf)); 814 iov = uio->uio_iov + i; 815 iov->iov_base = (char *)abuf->b_data + off; 816 iov->iov_len = n; 817 priv->bufs[i] = abuf; 818 return (0); 819 } 820 821 int 822 dmu_xuio_cnt(xuio_t *xuio) 823 { 824 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 825 return (priv->cnt); 826 } 827 828 arc_buf_t * 829 dmu_xuio_arcbuf(xuio_t *xuio, int i) 830 { 831 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 832 833 ASSERT(i < priv->cnt); 834 return (priv->bufs[i]); 835 } 836 837 void 838 dmu_xuio_clear(xuio_t *xuio, int i) 839 { 840 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio); 841 842 ASSERT(i < priv->cnt); 843 priv->bufs[i] = NULL; 844 } 845 846 static void 847 xuio_stat_init(void) 848 { 849 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc", 850 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t), 851 KSTAT_FLAG_VIRTUAL); 852 if (xuio_ksp != NULL) { 853 xuio_ksp->ks_data = &xuio_stats; 854 kstat_install(xuio_ksp); 855 } 856 } 857 858 static void 859 xuio_stat_fini(void) 860 { 861 if (xuio_ksp != NULL) { 862 kstat_delete(xuio_ksp); 863 xuio_ksp = NULL; 864 } 865 } 866 867 void 868 xuio_stat_wbuf_copied() 869 { 870 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 871 } 872 873 void 874 xuio_stat_wbuf_nocopy() 875 { 876 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy); 877 } 878 879 #ifdef _KERNEL 880 int 881 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size) 882 { 883 dmu_buf_t **dbp; 884 int numbufs, i, err; 885 xuio_t *xuio = NULL; 886 887 /* 888 * NB: we could do this block-at-a-time, but it's nice 889 * to be reading in parallel. 890 */ 891 err = dmu_buf_hold_array(os, object, uio->uio_loffset, size, TRUE, FTAG, 892 &numbufs, &dbp); 893 if (err) 894 return (err); 895 896 if (uio->uio_extflg == UIO_XUIO) 897 xuio = (xuio_t *)uio; 898 899 for (i = 0; i < numbufs; i++) { 900 int tocpy; 901 int bufoff; 902 dmu_buf_t *db = dbp[i]; 903 904 ASSERT(size > 0); 905 906 bufoff = uio->uio_loffset - db->db_offset; 907 tocpy = (int)MIN(db->db_size - bufoff, size); 908 909 if (xuio) { 910 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db; 911 arc_buf_t *dbuf_abuf = dbi->db_buf; 912 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi); 913 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy); 914 if (!err) { 915 uio->uio_resid -= tocpy; 916 uio->uio_loffset += tocpy; 917 } 918 919 if (abuf == dbuf_abuf) 920 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy); 921 else 922 XUIOSTAT_BUMP(xuiostat_rbuf_copied); 923 } else { 924 err = uiomove((char *)db->db_data + bufoff, tocpy, 925 UIO_READ, uio); 926 } 927 if (err) 928 break; 929 930 size -= tocpy; 931 } 932 dmu_buf_rele_array(dbp, numbufs, FTAG); 933 934 return (err); 935 } 936 937 static int 938 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx) 939 { 940 dmu_buf_t **dbp; 941 int numbufs; 942 int err = 0; 943 int i; 944 945 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size, 946 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH); 947 if (err) 948 return (err); 949 950 for (i = 0; i < numbufs; i++) { 951 int tocpy; 952 int bufoff; 953 dmu_buf_t *db = dbp[i]; 954 955 ASSERT(size > 0); 956 957 bufoff = uio->uio_loffset - db->db_offset; 958 tocpy = (int)MIN(db->db_size - bufoff, size); 959 960 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 961 962 if (tocpy == db->db_size) 963 dmu_buf_will_fill(db, tx); 964 else 965 dmu_buf_will_dirty(db, tx); 966 967 /* 968 * XXX uiomove could block forever (eg. nfs-backed 969 * pages). There needs to be a uiolockdown() function 970 * to lock the pages in memory, so that uiomove won't 971 * block. 972 */ 973 err = uiomove((char *)db->db_data + bufoff, tocpy, 974 UIO_WRITE, uio); 975 976 if (tocpy == db->db_size) 977 dmu_buf_fill_done(db, tx); 978 979 if (err) 980 break; 981 982 size -= tocpy; 983 } 984 985 dmu_buf_rele_array(dbp, numbufs, FTAG); 986 return (err); 987 } 988 989 int 990 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size, 991 dmu_tx_t *tx) 992 { 993 if (size == 0) 994 return (0); 995 996 return (dmu_write_uio_dnode(((dmu_buf_impl_t *)zdb)->db_dnode, 997 uio, size, tx)); 998 } 999 1000 int 1001 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size, 1002 dmu_tx_t *tx) 1003 { 1004 dnode_t *dn; 1005 int err; 1006 1007 if (size == 0) 1008 return (0); 1009 1010 err = dnode_hold(os, object, FTAG, &dn); 1011 if (err) 1012 return (err); 1013 1014 err = dmu_write_uio_dnode(dn, uio, size, tx); 1015 1016 dnode_rele(dn, FTAG); 1017 1018 return (err); 1019 } 1020 1021 int 1022 dmu_write_pages(objset_t *os, uint64_t object, uint64_t offset, uint64_t size, 1023 page_t *pp, dmu_tx_t *tx) 1024 { 1025 dmu_buf_t **dbp; 1026 int numbufs, i; 1027 int err; 1028 1029 if (size == 0) 1030 return (0); 1031 1032 err = dmu_buf_hold_array(os, object, offset, size, 1033 FALSE, FTAG, &numbufs, &dbp); 1034 if (err) 1035 return (err); 1036 1037 for (i = 0; i < numbufs; i++) { 1038 int tocpy, copied, thiscpy; 1039 int bufoff; 1040 dmu_buf_t *db = dbp[i]; 1041 caddr_t va; 1042 1043 ASSERT(size > 0); 1044 ASSERT3U(db->db_size, >=, PAGESIZE); 1045 1046 bufoff = offset - db->db_offset; 1047 tocpy = (int)MIN(db->db_size - bufoff, size); 1048 1049 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size); 1050 1051 if (tocpy == db->db_size) 1052 dmu_buf_will_fill(db, tx); 1053 else 1054 dmu_buf_will_dirty(db, tx); 1055 1056 for (copied = 0; copied < tocpy; copied += PAGESIZE) { 1057 ASSERT3U(pp->p_offset, ==, db->db_offset + bufoff); 1058 thiscpy = MIN(PAGESIZE, tocpy - copied); 1059 va = zfs_map_page(pp, S_READ); 1060 bcopy(va, (char *)db->db_data + bufoff, thiscpy); 1061 zfs_unmap_page(pp, va); 1062 pp = pp->p_next; 1063 bufoff += PAGESIZE; 1064 } 1065 1066 if (tocpy == db->db_size) 1067 dmu_buf_fill_done(db, tx); 1068 1069 offset += tocpy; 1070 size -= tocpy; 1071 } 1072 dmu_buf_rele_array(dbp, numbufs, FTAG); 1073 return (err); 1074 } 1075 #endif 1076 1077 /* 1078 * Allocate a loaned anonymous arc buffer. 1079 */ 1080 arc_buf_t * 1081 dmu_request_arcbuf(dmu_buf_t *handle, int size) 1082 { 1083 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1084 1085 return (arc_loan_buf(dn->dn_objset->os_spa, size)); 1086 } 1087 1088 /* 1089 * Free a loaned arc buffer. 1090 */ 1091 void 1092 dmu_return_arcbuf(arc_buf_t *buf) 1093 { 1094 arc_return_buf(buf, FTAG); 1095 VERIFY(arc_buf_remove_ref(buf, FTAG) == 1); 1096 } 1097 1098 /* 1099 * When possible directly assign passed loaned arc buffer to a dbuf. 1100 * If this is not possible copy the contents of passed arc buf via 1101 * dmu_write(). 1102 */ 1103 void 1104 dmu_assign_arcbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf, 1105 dmu_tx_t *tx) 1106 { 1107 dnode_t *dn = ((dmu_buf_impl_t *)handle)->db_dnode; 1108 dmu_buf_impl_t *db; 1109 uint32_t blksz = (uint32_t)arc_buf_size(buf); 1110 uint64_t blkid; 1111 1112 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1113 blkid = dbuf_whichblock(dn, offset); 1114 VERIFY((db = dbuf_hold(dn, blkid, FTAG)) != NULL); 1115 rw_exit(&dn->dn_struct_rwlock); 1116 1117 if (offset == db->db.db_offset && blksz == db->db.db_size) { 1118 dbuf_assign_arcbuf(db, buf, tx); 1119 dbuf_rele(db, FTAG); 1120 } else { 1121 dbuf_rele(db, FTAG); 1122 dmu_write(dn->dn_objset, dn->dn_object, offset, blksz, 1123 buf->b_data, tx); 1124 dmu_return_arcbuf(buf); 1125 XUIOSTAT_BUMP(xuiostat_wbuf_copied); 1126 } 1127 } 1128 1129 typedef struct { 1130 dbuf_dirty_record_t *dsa_dr; 1131 dmu_sync_cb_t *dsa_done; 1132 zgd_t *dsa_zgd; 1133 dmu_tx_t *dsa_tx; 1134 } dmu_sync_arg_t; 1135 1136 /* ARGSUSED */ 1137 static void 1138 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg) 1139 { 1140 dmu_sync_arg_t *dsa = varg; 1141 dmu_buf_t *db = dsa->dsa_zgd->zgd_db; 1142 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1143 blkptr_t *bp = zio->io_bp; 1144 1145 if (zio->io_error == 0) { 1146 if (BP_IS_HOLE(bp)) { 1147 /* 1148 * A block of zeros may compress to a hole, but the 1149 * block size still needs to be known for replay. 1150 */ 1151 BP_SET_LSIZE(bp, db->db_size); 1152 } else { 1153 ASSERT(BP_GET_TYPE(bp) == dn->dn_type); 1154 ASSERT(BP_GET_LEVEL(bp) == 0); 1155 bp->blk_fill = 1; 1156 } 1157 } 1158 } 1159 1160 static void 1161 dmu_sync_late_arrival_ready(zio_t *zio) 1162 { 1163 dmu_sync_ready(zio, NULL, zio->io_private); 1164 } 1165 1166 /* ARGSUSED */ 1167 static void 1168 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg) 1169 { 1170 dmu_sync_arg_t *dsa = varg; 1171 dbuf_dirty_record_t *dr = dsa->dsa_dr; 1172 dmu_buf_impl_t *db = dr->dr_dbuf; 1173 1174 mutex_enter(&db->db_mtx); 1175 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC); 1176 if (zio->io_error == 0) { 1177 dr->dt.dl.dr_overridden_by = *zio->io_bp; 1178 dr->dt.dl.dr_override_state = DR_OVERRIDDEN; 1179 dr->dt.dl.dr_copies = zio->io_prop.zp_copies; 1180 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by)) 1181 BP_ZERO(&dr->dt.dl.dr_overridden_by); 1182 } else { 1183 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN; 1184 } 1185 cv_broadcast(&db->db_changed); 1186 mutex_exit(&db->db_mtx); 1187 1188 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1189 1190 kmem_free(dsa, sizeof (*dsa)); 1191 } 1192 1193 static void 1194 dmu_sync_late_arrival_done(zio_t *zio) 1195 { 1196 blkptr_t *bp = zio->io_bp; 1197 dmu_sync_arg_t *dsa = zio->io_private; 1198 1199 if (zio->io_error == 0 && !BP_IS_HOLE(bp)) { 1200 ASSERT(zio->io_bp->blk_birth == zio->io_txg); 1201 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa)); 1202 zio_free(zio->io_spa, zio->io_txg, zio->io_bp); 1203 } 1204 1205 dmu_tx_commit(dsa->dsa_tx); 1206 1207 dsa->dsa_done(dsa->dsa_zgd, zio->io_error); 1208 1209 kmem_free(dsa, sizeof (*dsa)); 1210 } 1211 1212 static int 1213 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd, 1214 zio_prop_t *zp, zbookmark_t *zb) 1215 { 1216 dmu_sync_arg_t *dsa; 1217 dmu_tx_t *tx; 1218 1219 tx = dmu_tx_create(os); 1220 dmu_tx_hold_space(tx, zgd->zgd_db->db_size); 1221 if (dmu_tx_assign(tx, TXG_WAIT) != 0) { 1222 dmu_tx_abort(tx); 1223 return (EIO); /* Make zl_get_data do txg_waited_synced() */ 1224 } 1225 1226 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1227 dsa->dsa_dr = NULL; 1228 dsa->dsa_done = done; 1229 dsa->dsa_zgd = zgd; 1230 dsa->dsa_tx = tx; 1231 1232 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp, 1233 zgd->zgd_db->db_data, zgd->zgd_db->db_size, zp, 1234 dmu_sync_late_arrival_ready, dmu_sync_late_arrival_done, dsa, 1235 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb)); 1236 1237 return (0); 1238 } 1239 1240 /* 1241 * Intent log support: sync the block associated with db to disk. 1242 * N.B. and XXX: the caller is responsible for making sure that the 1243 * data isn't changing while dmu_sync() is writing it. 1244 * 1245 * Return values: 1246 * 1247 * EEXIST: this txg has already been synced, so there's nothing to to. 1248 * The caller should not log the write. 1249 * 1250 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do. 1251 * The caller should not log the write. 1252 * 1253 * EALREADY: this block is already in the process of being synced. 1254 * The caller should track its progress (somehow). 1255 * 1256 * EIO: could not do the I/O. 1257 * The caller should do a txg_wait_synced(). 1258 * 1259 * 0: the I/O has been initiated. 1260 * The caller should log this blkptr in the done callback. 1261 * It is possible that the I/O will fail, in which case 1262 * the error will be reported to the done callback and 1263 * propagated to pio from zio_done(). 1264 */ 1265 int 1266 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd) 1267 { 1268 blkptr_t *bp = zgd->zgd_bp; 1269 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db; 1270 objset_t *os = db->db_objset; 1271 dsl_dataset_t *ds = os->os_dsl_dataset; 1272 dbuf_dirty_record_t *dr; 1273 dmu_sync_arg_t *dsa; 1274 zbookmark_t zb; 1275 zio_prop_t zp; 1276 1277 ASSERT(pio != NULL); 1278 ASSERT(BP_IS_HOLE(bp)); 1279 ASSERT(txg != 0); 1280 1281 SET_BOOKMARK(&zb, ds->ds_object, 1282 db->db.db_object, db->db_level, db->db_blkid); 1283 1284 dmu_write_policy(os, db->db_dnode, db->db_level, WP_DMU_SYNC, &zp); 1285 1286 /* 1287 * If we're frozen (running ziltest), we always need to generate a bp. 1288 */ 1289 if (txg > spa_freeze_txg(os->os_spa)) 1290 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1291 1292 /* 1293 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf() 1294 * and us. If we determine that this txg is not yet syncing, 1295 * but it begins to sync a moment later, that's OK because the 1296 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx. 1297 */ 1298 mutex_enter(&db->db_mtx); 1299 1300 if (txg <= spa_last_synced_txg(os->os_spa)) { 1301 /* 1302 * This txg has already synced. There's nothing to do. 1303 */ 1304 mutex_exit(&db->db_mtx); 1305 return (EEXIST); 1306 } 1307 1308 if (txg <= spa_syncing_txg(os->os_spa)) { 1309 /* 1310 * This txg is currently syncing, so we can't mess with 1311 * the dirty record anymore; just write a new log block. 1312 */ 1313 mutex_exit(&db->db_mtx); 1314 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb)); 1315 } 1316 1317 dr = db->db_last_dirty; 1318 while (dr && dr->dr_txg != txg) 1319 dr = dr->dr_next; 1320 1321 if (dr == NULL) { 1322 /* 1323 * There's no dr for this dbuf, so it must have been freed. 1324 * There's no need to log writes to freed blocks, so we're done. 1325 */ 1326 mutex_exit(&db->db_mtx); 1327 return (ENOENT); 1328 } 1329 1330 ASSERT(dr->dr_txg == txg); 1331 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC || 1332 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) { 1333 /* 1334 * We have already issued a sync write for this buffer, 1335 * or this buffer has already been synced. It could not 1336 * have been dirtied since, or we would have cleared the state. 1337 */ 1338 mutex_exit(&db->db_mtx); 1339 return (EALREADY); 1340 } 1341 1342 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN); 1343 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC; 1344 mutex_exit(&db->db_mtx); 1345 1346 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP); 1347 dsa->dsa_dr = dr; 1348 dsa->dsa_done = done; 1349 dsa->dsa_zgd = zgd; 1350 dsa->dsa_tx = NULL; 1351 1352 zio_nowait(arc_write(pio, os->os_spa, txg, 1353 bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db), &zp, 1354 dmu_sync_ready, dmu_sync_done, dsa, 1355 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb)); 1356 1357 return (0); 1358 } 1359 1360 int 1361 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs, 1362 dmu_tx_t *tx) 1363 { 1364 dnode_t *dn; 1365 int err; 1366 1367 err = dnode_hold(os, object, FTAG, &dn); 1368 if (err) 1369 return (err); 1370 err = dnode_set_blksz(dn, size, ibs, tx); 1371 dnode_rele(dn, FTAG); 1372 return (err); 1373 } 1374 1375 void 1376 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum, 1377 dmu_tx_t *tx) 1378 { 1379 dnode_t *dn; 1380 1381 /* XXX assumes dnode_hold will not get an i/o error */ 1382 (void) dnode_hold(os, object, FTAG, &dn); 1383 ASSERT(checksum < ZIO_CHECKSUM_FUNCTIONS); 1384 dn->dn_checksum = checksum; 1385 dnode_setdirty(dn, tx); 1386 dnode_rele(dn, FTAG); 1387 } 1388 1389 void 1390 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress, 1391 dmu_tx_t *tx) 1392 { 1393 dnode_t *dn; 1394 1395 /* XXX assumes dnode_hold will not get an i/o error */ 1396 (void) dnode_hold(os, object, FTAG, &dn); 1397 ASSERT(compress < ZIO_COMPRESS_FUNCTIONS); 1398 dn->dn_compress = compress; 1399 dnode_setdirty(dn, tx); 1400 dnode_rele(dn, FTAG); 1401 } 1402 1403 int zfs_mdcomp_disable = 0; 1404 1405 void 1406 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp) 1407 { 1408 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET; 1409 boolean_t ismd = (level > 0 || dmu_ot[type].ot_metadata); 1410 enum zio_checksum checksum = os->os_checksum; 1411 enum zio_compress compress = os->os_compress; 1412 enum zio_checksum dedup_checksum = os->os_dedup_checksum; 1413 boolean_t dedup; 1414 boolean_t dedup_verify = os->os_dedup_verify; 1415 int copies = os->os_copies; 1416 1417 /* 1418 * Determine checksum setting. 1419 */ 1420 if (ismd) { 1421 /* 1422 * Metadata always gets checksummed. If the data 1423 * checksum is multi-bit correctable, and it's not a 1424 * ZBT-style checksum, then it's suitable for metadata 1425 * as well. Otherwise, the metadata checksum defaults 1426 * to fletcher4. 1427 */ 1428 if (zio_checksum_table[checksum].ci_correctable < 1 || 1429 zio_checksum_table[checksum].ci_eck) 1430 checksum = ZIO_CHECKSUM_FLETCHER_4; 1431 } else { 1432 checksum = zio_checksum_select(dn->dn_checksum, checksum); 1433 } 1434 1435 /* 1436 * Determine compression setting. 1437 */ 1438 if (ismd) { 1439 /* 1440 * XXX -- we should design a compression algorithm 1441 * that specializes in arrays of bps. 1442 */ 1443 compress = zfs_mdcomp_disable ? ZIO_COMPRESS_EMPTY : 1444 ZIO_COMPRESS_LZJB; 1445 } else { 1446 compress = zio_compress_select(dn->dn_compress, compress); 1447 } 1448 1449 /* 1450 * Determine dedup setting. If we are in dmu_sync(), we won't 1451 * actually dedup now because that's all done in syncing context; 1452 * but we do want to use the dedup checkum. If the checksum is not 1453 * strong enough to ensure unique signatures, force dedup_verify. 1454 */ 1455 dedup = (!ismd && dedup_checksum != ZIO_CHECKSUM_OFF); 1456 if (dedup) { 1457 checksum = dedup_checksum; 1458 if (!zio_checksum_table[checksum].ci_dedup) 1459 dedup_verify = 1; 1460 } 1461 1462 if (wp & WP_DMU_SYNC) 1463 dedup = 0; 1464 1465 if (wp & WP_NOFILL) { 1466 ASSERT(!ismd && level == 0); 1467 checksum = ZIO_CHECKSUM_OFF; 1468 compress = ZIO_COMPRESS_OFF; 1469 dedup = B_FALSE; 1470 } 1471 1472 zp->zp_checksum = checksum; 1473 zp->zp_compress = compress; 1474 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type; 1475 zp->zp_level = level; 1476 zp->zp_copies = MIN(copies + ismd, spa_max_replication(os->os_spa)); 1477 zp->zp_dedup = dedup; 1478 zp->zp_dedup_verify = dedup && dedup_verify; 1479 } 1480 1481 int 1482 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off) 1483 { 1484 dnode_t *dn; 1485 int i, err; 1486 1487 err = dnode_hold(os, object, FTAG, &dn); 1488 if (err) 1489 return (err); 1490 /* 1491 * Sync any current changes before 1492 * we go trundling through the block pointers. 1493 */ 1494 for (i = 0; i < TXG_SIZE; i++) { 1495 if (list_link_active(&dn->dn_dirty_link[i])) 1496 break; 1497 } 1498 if (i != TXG_SIZE) { 1499 dnode_rele(dn, FTAG); 1500 txg_wait_synced(dmu_objset_pool(os), 0); 1501 err = dnode_hold(os, object, FTAG, &dn); 1502 if (err) 1503 return (err); 1504 } 1505 1506 err = dnode_next_offset(dn, (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0); 1507 dnode_rele(dn, FTAG); 1508 1509 return (err); 1510 } 1511 1512 void 1513 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi) 1514 { 1515 dnode_phys_t *dnp; 1516 1517 rw_enter(&dn->dn_struct_rwlock, RW_READER); 1518 mutex_enter(&dn->dn_mtx); 1519 1520 dnp = dn->dn_phys; 1521 1522 doi->doi_data_block_size = dn->dn_datablksz; 1523 doi->doi_metadata_block_size = dn->dn_indblkshift ? 1524 1ULL << dn->dn_indblkshift : 0; 1525 doi->doi_type = dn->dn_type; 1526 doi->doi_bonus_type = dn->dn_bonustype; 1527 doi->doi_bonus_size = dn->dn_bonuslen; 1528 doi->doi_indirection = dn->dn_nlevels; 1529 doi->doi_checksum = dn->dn_checksum; 1530 doi->doi_compress = dn->dn_compress; 1531 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9; 1532 doi->doi_max_offset = (dnp->dn_maxblkid + 1) * dn->dn_datablksz; 1533 doi->doi_fill_count = 0; 1534 for (int i = 0; i < dnp->dn_nblkptr; i++) 1535 doi->doi_fill_count += dnp->dn_blkptr[i].blk_fill; 1536 1537 mutex_exit(&dn->dn_mtx); 1538 rw_exit(&dn->dn_struct_rwlock); 1539 } 1540 1541 /* 1542 * Get information on a DMU object. 1543 * If doi is NULL, just indicates whether the object exists. 1544 */ 1545 int 1546 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi) 1547 { 1548 dnode_t *dn; 1549 int err = dnode_hold(os, object, FTAG, &dn); 1550 1551 if (err) 1552 return (err); 1553 1554 if (doi != NULL) 1555 dmu_object_info_from_dnode(dn, doi); 1556 1557 dnode_rele(dn, FTAG); 1558 return (0); 1559 } 1560 1561 /* 1562 * As above, but faster; can be used when you have a held dbuf in hand. 1563 */ 1564 void 1565 dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi) 1566 { 1567 dmu_object_info_from_dnode(((dmu_buf_impl_t *)db)->db_dnode, doi); 1568 } 1569 1570 /* 1571 * Faster still when you only care about the size. 1572 * This is specifically optimized for zfs_getattr(). 1573 */ 1574 void 1575 dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize, u_longlong_t *nblk512) 1576 { 1577 dnode_t *dn = ((dmu_buf_impl_t *)db)->db_dnode; 1578 1579 *blksize = dn->dn_datablksz; 1580 /* add 1 for dnode space */ 1581 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >> 1582 SPA_MINBLOCKSHIFT) + 1; 1583 } 1584 1585 void 1586 byteswap_uint64_array(void *vbuf, size_t size) 1587 { 1588 uint64_t *buf = vbuf; 1589 size_t count = size >> 3; 1590 int i; 1591 1592 ASSERT((size & 7) == 0); 1593 1594 for (i = 0; i < count; i++) 1595 buf[i] = BSWAP_64(buf[i]); 1596 } 1597 1598 void 1599 byteswap_uint32_array(void *vbuf, size_t size) 1600 { 1601 uint32_t *buf = vbuf; 1602 size_t count = size >> 2; 1603 int i; 1604 1605 ASSERT((size & 3) == 0); 1606 1607 for (i = 0; i < count; i++) 1608 buf[i] = BSWAP_32(buf[i]); 1609 } 1610 1611 void 1612 byteswap_uint16_array(void *vbuf, size_t size) 1613 { 1614 uint16_t *buf = vbuf; 1615 size_t count = size >> 1; 1616 int i; 1617 1618 ASSERT((size & 1) == 0); 1619 1620 for (i = 0; i < count; i++) 1621 buf[i] = BSWAP_16(buf[i]); 1622 } 1623 1624 /* ARGSUSED */ 1625 void 1626 byteswap_uint8_array(void *vbuf, size_t size) 1627 { 1628 } 1629 1630 void 1631 dmu_init(void) 1632 { 1633 dbuf_init(); 1634 dnode_init(); 1635 zfetch_init(); 1636 arc_init(); 1637 l2arc_init(); 1638 xuio_stat_init(); 1639 sa_cache_init(); 1640 } 1641 1642 void 1643 dmu_fini(void) 1644 { 1645 arc_fini(); 1646 zfetch_fini(); 1647 dnode_fini(); 1648 dbuf_fini(); 1649 l2arc_fini(); 1650 xuio_stat_fini(); 1651 sa_cache_fini(); 1652 } 1653